PREPARATION OF MESOPOROUS CeO₂-ZrO₂ FOR CATALYTIC CONVERTER

1.1

1.1.2

Watthanavut Phathidee

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, and Case Western Reserve University 2015

Thesis Title:	Preparation of Mesoporous CeO_2 -ZrO ₂ for	
	Catalytic Converter	
By:	Watthanavut Phathidee	
Program:	Polymer Science	
Thesis Advisors:	Assoc. Prof. Sujitra Wongkasemjit	
	Asst. Prof. Thanyalak Chaisuwan	

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfillment of the requirements for the Degree of Master of Science.

College Dean

(Asst. Prof. Pomthong Malakul)

Sijih Worghennijit

(Assoc. Prof. Sujitra Wongkasemjit)

Thanyalah Chaisuwa

(Asst. Prof. Thanyalak Chaisuwan)

. (Asst. Prof. Munit Nithitanakul)

(Asst. Prof. Bussarin Ksapabutr)

Thesis Committee:

ABSTRACT

5672031063:	Polymer Science Program	
	Watthanavut Phathidee: Preparation of Mesoporous CeO ₂ -ZrO ₂ for	
	Catalytic Converter	
	Thesis Advisors: Assoc. Prof. Sujitra Wongkasemjit, and Assist.	
	Prof. Thanyalak Chaisuwan 49 pp.	
Keywords:	Ceria-Zirconia/ Mesoporous/ Nanocasting method	

Currently, there is a great amount of ongoing research involved in catalytic converters because of their interesting applications in eliminating toxic gases from exhaust pipes. Many types of porous materials have been widely studied and used to increase the catalytic activity. In this work, mesoporous ceria-zirconia (CeO₂-ZrO₂) was synthesized using MCM-48 as a hard template via the nanocasting method. The obtained product provided a high surface area of 248.5 m²/g. The optimum conditions were to stir for 4 h at 100 °C evaporation temperature of solvent. The synthesized mesoporous CeO₂-ZrO₂ was characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), Transmission electron microscopy (TEM), and N₂ adsorption/desorption. The Temperature-programmed reduction results provided only surface reduction temperatures at 280-620 °C.

σ

0

บทคัดย่อ

วัฒนาวุธ พาทิคี: การเตรียมซีเรียเซอร์ โคเนียที่มีรูพรุนขนาคเมโซเพื่อใช้เป็นตัวเร่ง ปฏิกิริยาในเครื่องฟอกไอเสีย (Preparation of Mesoporous CeO₂-ZrO₂ for Catalytic Converter) อาจารย์ที่ปรึกษา: รศ.คร. สุจิตรา วงศ์เกษมจิตต์ และ ผศ.คร. ธัญลักษณ์ ฉายสุวรรณ์ 49 หน้า

ในปัจจุบันนี้ มีการศึกษาวิจัยอย่างต่อเนื่องที่เกี่ยวกับตัวเร่งปฏิกิริยาในเครื่องฟอกไอเสีย เพื่อนำไปประยุกต์ใช้ในการกำจัคมลพิษที่มาจากท่อไอเสียรถยนต์ วัสคุที่มีความเป็นรูพรุน หลากหลายชนิค ถูกนำมาศึกษาอย่างกว้างขวางและถูกใช้เพื่อเพิ่มความว่องไวในการเร่งปฏิกิริยา ในงานวิจัยนี้ ซีเรียเซอร์โคเนียที่มีความเป็นรูพรุนขนาคเมโซถูกสังเคราะห์ขึ้น โดยใช้ MCM-48 เป็นตัวแม่แบบและผ่านวิธีนาโนแคสติ้ง ผลิตภัณฑ์ที่ได้มีพื้นที่ผิวสูงถึง 248.5 ตารางเมตรต่อกรัม โดยใช้สภาวะการเตรียมที่มีการกวนสารละลายเป็นเวลา 4 ชั่วโมง และระเหยตัวทำละลายที่ อุณหภูมิ 100 องศาเซลเซียส วัสคุที่สังเคราะห์ได้ ถูกพิสูจน์เอกลักษณ์โดยใช้เทคนิค XRD, XRF, TEM, และ N₂adsorption/desorption โดยช่วงในการเกิดปฏิกิริยา reduction ของผลิตภัณฑ์ เกิดขึ้น ที่ช่วงอุณหภูมิ 280-620 องศาเซลเซียส ซึ่งเป็นการเกิดปฏิกิริยาที่พื้นผิวของวัสดุ

σ

ACKNOWLEDGMENTS

This work would not have been successful without the assistance of following financial support:

- The Petroleum and Petrochemical College, Chulalongkorn University
- Ratchadapisake Sompote, Chulalongkorn University
- The Center of Excellence on Petrochemical and Materials Technology, Thailand

I would like to express special thanks to my advisor and co-advisor, Assoc. Prof. Sujitra Wongkasemjit and Asst. Prof. Thanyalak Chaisuwan, for their encouragement and words of advice. Moreover, I would like to thank all of the members in my research group for their kindness, cheerfulness, good suggestions, encouragement, and friendly assistance during my research. I had the most enjoyable time working with all of them.

Finally, I would like to give an expression of gratitude to my family for graceful suggestions. Especially, their loving and encouragements.

e

0

V

TABLE OF CONTENTS

		PAGE
Titl	e Page	i
Abs	stract (in English)	iii
Abs	stract (in Thai)	iv
Ack	nowledgements	v
Tab	le of Contents	vi
List	of Tables	viii
List	of Figures	ix
СНАРТЕ	CR	
I	INTRODUCTION	1
II	LITERATURE REVIEW	3
	2.1 Porous Material	3
	2.1.1 Mesoporous Materials	4
	2.1.2 Mesoporous Materials: Synthesis	5
	2.1.3 Mesoporous Materials: Structure	7
	2.2 Cerium Oxide	8
	2.3 Zirconium Oxide	8
	2.4 Ceria-Zirconia Mixed Oxide	9
	2.5 The Casting Process	10
	2.6 The Nanocasting Process	11
	2.6.1 General Principle	11
	2.6.2 Hard Templates	12
	2.6.3 Precursor	12
	2.6.4 Solvents	13
	2.6.5 Methods for Removing Templates	13
	2.6.6 The Nanocasting Mesoporous Metal Oxides	13

-

0

1.1

Ш	EXPERIMENTAL	15
	3.1 Materials	15
	3.2 Synthesis	15
	3.2.1 Synthesis of Silatrane	15
	3.2.2 Synthesis of Mesoporous MCM-48	15
	3.2.3 Synthesis of Mesoporous Ceria-Zirconia	16
	3.3 Materials Characterization	16
IV	PREPARATION OF MESOPOROUS CeO ₂ -ZrO ₂ FOR	
	CATALYTIC CONVERTER	18
	4.1 Abstract	18
	4.2 Introduction	19
	4.3 Experimental	20
	4.3.1 Materials	20
	4.3.2 Synthesis Method	20
	4.3.3 Materials Charecterization	21
	4.4 Results and Discussion	22
	4.4.1 Nanocasting Process	22
	4.4.2 Temperature Programmed Reduction (TPR)	25
	4.5 Conclusions	26
	4.6 Acknowledgements	26
	4.7 References	27
V	CONCLUSIONS AND RECOMMENDATIONS	41
	5.1 Conclusions	41
	5.2 Recommendations	41
	REFERENCES	42
	APPENDIX	47
	Appendix A Silatrane Precursor	47

.

LIST OF TABLES

.

TABLE		PAGE
4.1	Specific surface area, pore size, and pore volume of MSP	
	$Ce_{0.75}Zr_{0.25}O_2$ at different stirring times via the nanocasting	
	process	30
4.2	Specific surface area, pore size, and pore volume of MSP	
	$Ce_{0.75}Zr_{0.25}O_2$ at different evaporated temperatures via the	
	nanocasting process	31
4.3	XRF analysis of the order MSP ceria-zirconia	32
4.4	Specific surface area, pore size, and pore volume of the	
	synthesis order MSP $Ce_{1-x}Zr_xO_2$ via the nanocasting	
	process	33

σ

LIST OF FIGURES

FIGURE

.

2.1	Comparison of pore size for typical porous materials.		: 3	
2.2	The porous materials topology of pore space.		4	
2.3	The structures for M41S mesoporous materials.		5	
2.4	Geometric mesostructures.		6	
2.5	Synthesis pathway for formation of mesoporous silica			
	materials.		6	
2.6	The hexagonally symmetric pore arrays.		7	
2.7	Pore model of 3-D cubic mesoporous mesostructure.		7	
2.8	Pore model of caged mesostructure.		8	
2.9	Diagram for the changes in the morphologies of ceria-			
	zirconia mixed oxides.		10	
2.10	The illustration of traditional casting process.		11	
2.11	The illustration of nanocasting pathway.		12	
4.1	Small angle XRD patterns of a) MCM-48 and b)			
	$Ce_{0.75}Zr_{0.25}O_2$ varying stirring times via the nanocasting			
	process.		34	•
4.2	(a) N_2 adsorption-desorption isotherm and (b) pore size			
	distribution of the ordered MSP $Ce_{0.75}Zr_{0.25}O_2$ resulted from			
	various stirring times.		35	
4.3	Small angle XRD patterns of MSP $Ce_{0.75}Zr_{0.25}O_2$ at a)			
	ambient temperature; b) 50 °, and c) 100 °C evaporated	·		
	temperature via the nanocasting process.		36	
4.4	a) SEM and b) TEM images of the synthesized ordered			
	MSP $Ce_{0.75}Zr_{0.25}O_2$.		37	
4.5	Small angle XRD patterns of a) Ce _{0.75} Zr _{0.25} O ₂ ,			
	and b) $Ce_{0.60}Zr_{0.40}O_2$.		38	

σ

PAGE

-

LIST OF FIGURES

FIGURE		PAGE
4.6	Wide angle XRD patterns of a) CeO ₂ ; b.) Ce _{0.75} Zr _{0.25} O ₂	
	and c) $Ce_{0.60}Zr_{0.40}O_2$ by	
	(O) cubic phase, and (\mathcal{K}) tetragonal phase.	39
4.7	TPR profiles of order MSP a) CeO ₂ ; b) Ce _{0.75} Zr _{0.25} O ₂ ,	
	and c) $Ce_{0.60}Zr_{0.40}O_2$.	40
Al	Structure of silatrane precursor.	47
A2	FTIR spectrum of silatrane precursor.	48

o

. .

σ