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ABST RACT (THAI)  นภิศา ภทัรปรัชญากุล : การเพ่ิมการผลิตเช้ือเพลิงชีวภาพในจุลสาหร่ายโดยการดดัแปรทางพนัธุกรรมและ
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ดร.ฮาน มิน อู 

  
จุลสาหร่ายคือจุลินทรีย์ท่ีสามารถสังเคราะห์แสงได้  ซ่ึงมีความสามารถน ามาใช้เป็นโรงงานระดับเซลล์  โดยการเปลี่ยนก๊าซ

คาร์บอนไดออกไซด์เป็นผลิตภัณฑ์ชีวภาพท่ีมีมูลค่าสูงและเช้ือเพลิงชีวภาพได้ ในการวิจัยน้ีมีความตั้งใจท่ีจะพฒันาแหล่งผลิตเช้ือเพลิงชีวภาพจากจุล
สาหร่ายสีเขียว Chlorella sp. ท่ีคดัแยกไดจ้ากธรรมชาติ และไซยาโนแบคทีเรียสายพนัธุ์ Synechococcus elongatus PCC 7942 

โดยเพิ่มการผลิตไขมนั (สารตั้งตน้ของ FAMEs) และสารเทอร์พีน (α-farnesene) ตามล าดบั โดยในส่วนแรกของงานวิจยัจะเก่ียวกบัการเพิ่ม
ไขมนัและการวิเคราะห์ FAMEs และคุณสมบติัของไบโอดีเซลภายใตก้ารเลี้ยงในสภาวะจ ากดัฟอสฟอรัส (0-50%P) ร่วมกบัการเติมโลหะหนัก 

(Fe, Co, Pb)  ผลการทดลองพบว่าปริมาณการเพิ่มของไขมันสูงสุดพบในสภาวะขาด P ร่วมกับการเพิ่มโคบอลต์ 17 mM ท่ี 19% สูงกว่า
คอนโทรล นอกจากนั้นพบว่าการเติมตะกัว่ความเขม้ขน้ต ่าสามารถกระตุน้การเจริญเติบโตของจุลสาหร่ายไดแ้มอ้ยู่ในสภาวะขาด P ถึงแมว่้าจะมีปริมาณ
ของ MUFAs สูงกว่า PUFAs ในเกือบทุกสภาวะ โดยเฉพาะ palmitoleic acid (C16:1) ภาพรวมของคุณสมบติัของไบโอดีเซลพบว่า
อยู่ในคุณภาพท่ียอมรับได้ โดยอา้งอิงจากมาตรฐาน ASTM and EN อีกทั้งยงัพบว่าการเปลี่ยนแปลงพลงังานจากแสงเป็นไขมนัภายใน 7 วนั มี
ประสิทธิภาพ 10-16% ซ่ึงทดัเทียมกบัการเลี้ยงจุลสาหร่ายในสภาวะแบบ mixotrophic condition จากงานวิจยัก่อนหนา้ ดงันั้นพบว่าการดดั
แปรทางสรีรวิทยาดว้ยการใช้ความเครียดในการเลี้ยงสามารถท าให้เกิดการเพิ่มข้ึนของไขมนัในจุลสาหร่ายไดแ้มจ้ะเป็นสายพนัธุ์ท่ีคดัเลือกจากธรรมชาติ
และไม่มีฐานขอ้มูลของจีโนมก็ตาม 

                ไซยาโนแบคทีเรีย S. elongatus PCC 7942  มีข้อดีท่ีเหนือกว่าจุลสาหร่ายสีเขียว Chlorella ในด้านการ
จดัการทางพนัธุกรรม และมีฐานข้อมูลทางคอมพิวเตอร์ของจีโนมอยู่แลว้ ดงันั้นจึงสามารถน าการดดัแปรทางพนัธุกรรมมาใช้ปรับปรุงสายพนัธุ์ได ้ใน
การศึกษาน้ีการปรับปรุงสายพนัธุ์ดว้ยวิธีการวิศวกรรมในระบบเมตาบอลิซึมเพื่อเพิ่มการผลิตสาร α-farnesene โดยการปรับแต่ง ribosome-

binding site (RBS) ของยีน farnesene synthase ให้แสดงออกอย่างเหมาะสม พบว่าอัตรา translation initiation rate ท่ีต ่า
กว่า สามารถผลิต α-farnesene ไดม้ากข้ึน (0.57 mg/L/day) อีกทั้งยงัมีการพฒันาสายพนัธุ์ โดยเทคนิค random mutation หลงัจาก
วิเคราะห์ด้วยวิธีการตรวจจับแสงฟลูออเรสเซนซ์ไม่พบสายพันธุ์ท่ีดีกว่าสายพันธุ์  RBS-optimized อย่างไรก็ตามพบว่าวิธีทางวิศวกรรมเชิง
วิวฒันาการสามารถเพิ่มการผลิต α-farnesene ถึง 2 เท่า (1.2 mg/L/day) เมื่อเทียบกบังานวิจยัก่อนหนา้ ดงันั้นการร่วมกนัระหว่างวิศวกรรม
ในระบบเมตาบอลิซึมและเชิงวิวฒันาการอาจเป็นประโยชน์ในการท าให้สมรรถนะการท างานในเซลล์เพื่อการผลิตสารเคมีเป้าหมายของไซยาโนแบคทีเรี ย
ดีย่ิงข้ึน 
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ABST RACT (ENGLISH) # # 5772880823 : MAJOR BIOTECHNOLOGY 

KEYWORD: MICROALGAE, Chlorella sp., Synechococcus elongatus PCC 7942, BIOFUEL, 

BIODIESEL PRODUCTION, GENETIC MODIFICATION, PHYSIOLOGICAL 

MODIFICATION 

 Napisa Pattharaprachayakul : Enhancement of biofuel production in microalgae 

by genetic and physiological modification. Advisor: Prof. Dr. ARAN 

INCHAROENSAKDI Co-advisor: Prof. Dr. ็H็an Min Woo 

  

Microalgae are photosynthetic microorganisms, which could be used as potential 

microbial cell factories by directly converting CO2 into valuable bioproducts and biofuels. This 

study aims to improve the target biofuel feedstocks from the isolated green alga Chlorella sp. and 

the engineered cyanobacterium Synechococcus elongatus PCC 7942 in terms of the improvement on 

lipids (as precursors of FAMEs) and terpene (α-farnesene), respectively. The first part is concerned 

with the enhancement of lipids and the determination of FAMEs and biodiesel properties in 

Chlorella sp. under the phosphorus (P) limitation (0-50%) alone or in combination with heavy 

metals (Fe, Co, Pb) supplementation. The results showed that the highest yield of lipids was 

achieved under 0%P with 17 mM Co addition with 19% higher than the control. Moreover, the 

addition of low Pb concentrations could elevate the cell growth even under P limitation whereas the 

MUFAs, particularly palmitoleic acid (C16:1), was higher than PUFAs under most conditions. The 

overall biodiesel properties of the obtained FAMEs were of acceptable quality according to the 

standards (ASTM and EN). Additionally, the energy conversion from light energy to lipids was 

shown to be in the range of 10-16% conversion efficiency within 7 days, which corresponded to 

mixotrophic condition of microalgae cultures from previous studies. Hence, the physiological 

modification by stress treatments to cultures could offer the improvement of lipid content in 

microalgae although the genome database was not analyzed. 

Cyanobacterium S. elongatus PCC 7942 with available genomic database has advantages 

on genetic manipulation over the isolated Chlorella sp., thus the genetic modification was performed 

on  S. elongatus PCC 7942 in this study. Herein, S. elongatus PCC 7942 was metabolically 

engineered for an enhanced production of α-farnesene by optimizing the ribosome-binding site 

(RBS) of the codon-optimized farnesene synthase gene. The production of α-farnesene was found to 

be enhanced in strains with a low translation initiation rate, resulting in α-farnesene productivity of 

0.57 mg/L/day. Using the RBS variants and random mutation, the fluorescence-based analysis was 

done on cells grown in 96-well culture plates to screen the α-farnesene-producing strains, and the 

results showed no improvement in the titers by the RBS-optimized strains. However, evolutionary 

engineering of the RBS-optimized strains resulted in a two-fold increase in α-farnesene productivity 

(1.2 mg/L/day) compared to the previous study. Therefore, combining metabolic and evolutionary 

engineering might be helpful for enhancing the cellular fitness of cyanobacteria for the production of 

target chemicals. 
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MUFAs Monounsaturated fatty acids 

PUFAs Polyunsaturated fatty acids 

FAMEs Fatty acid methyl esters 

CO2 Carbon dioxide 

Dxs 1-deoxy-D-xylulose-5-phosphate synthase of E. coli 

Idi Isopentenyl diphosphate isomerase of E. coli 

IspA (Ec) Farnesyl diphosphate synthase (IspA) of E. coli 

FS (Apple fruit) Farnesene synthase of Malus X domestica Borkh 
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DXP 1-Deoxy-D- xylulose-5-phosphate 

MEP 2-C-Methyl-D-erythritol-4-phosphate 

ME 4-Diphosphocytidyl-2-C-methyl-D-erythritol 

CDP-MEP 4-Diphosphocytidyl-2C-methyl-D-erythritol-2-phosphate 
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IPP Isopentenyl diphosphate 
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FPP Farnesyl diphosphate 

LacI Lac repressor 

RBS Ribosome binding site 
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CHAPTER I: INTRODUCTION 

 

To date, the use of biofuels instead of fossil fuel is a worldwide 

issue, which includes the consideration of both economic and 

environmental aspects [1]. Rising costs of petroleum oil is general 

economic issue in many countries for decades and fossil fuel combustion 

leads to increase in greenhouse gases, especially carbon dioxide [2]. The 

demand of diesel is higher in markets compared with gasoline and also no 

need of modified engine [3, 4]. Then biodiesel research and development 

is a major plan of the policies starting from 2008 and ending at 2022, 

aiming to change the use of diesel from crude palm oil to biodiesel [5].  

Biodiesel is biodegradable fuel that is mainly made from oleaginous 

crops in the form of fatty acid methyl esters (FAMEs) or ethyl esters 

(FAEEs), where the major source of biodiesel in Thailand is crude palm 

oil [6]. However, palm oil is generally used for food production as 

cooking oil, which causes then the competition between uses for food and 

biodiesel is a challenge [7]. Moreover, the palm yield has slightly 

decreased since 2014 due to rising drought condition whereas the 

mandate is stable [8].  Furthermore, the limited arable land and additional 

fertilization requires more budgets for improvement. Hence, the new 

alternative biodiesel feedstocks need to be considered. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 

 

In terms of biofuel production, microalgae obtain several 

advantages over oleaginous crops, including higher growth rate, CO2 

neutral and no needs of arable lands [9]. Additionally, the direct 

conversion of solar energy into target biofuel is also a potential benefit as 

similar to plants, in which lipids and fatty acids profiles are varied 

depending on species or conditions [10]. Some microalgae mainly 

produce high unsaturated fatty acids (UFAs), which have lower  gel point 

than saturated fatty acids (SFAs) biodiesel hence it is suitable to use in 

cold climate countries. On the other hand, higher saturated-fats could 

provide greater properties on oxidative stability and cetane number [11]. 

Furthermore, biodiesel produced from microalgae is the nontoxic [12]. 

Thus, using microalgae as the third generation of biodiesel could 

desirably facilitate the way on bioenergy applications. 

Microalgae could live under harsh environments, which could 

trigger some metabolites production under those undesirable 

environments [10], corresponding to aquatic ecosystems that are 

regulated by ecological conditions with numerous factors [13]. Moreover, 

there is continuous degradation of nutrients and toxic substances in water, 

especially heavy metals from industry as  wastewater discharges [14]. 

Therefore, the physiochemical approaches are necessary in industrial 

wastewater treatment process because of the high costs of chemicals [15]. 
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The regulations in wastewater treatment have restrictions and rules on 

effluent discharge into the environment resources by the multiple steps of 

treatment [16, 17]. For instance, a phytoremediation of heavy metal ions 

in wastewater using algae instead of plants – e.g. water hyacinths – could 

provide ecologically safer, cheaper, and more flexible processes to 

remove metal ions from industrial wastewater [17, 18]. Microalgae have 

attracted a significant amount of attention due to their ability to raise their 

lipid accumulation under various concentration of nitrogen and 

phosphorus [15, 19]. However, to reach the desired levels of tolerance, 

each algal physiology is essentially required to be observed with 

individual conditions. In addition, different levels of metal dissolved in 

wastewater can also induce their great potential in lipid production [20]. 

Hence, we can use this opportunity to cultivate and trigger the microalgae 

for biodiesel production simultaneously as the biological process for 

further industrial applications [14, 21], which can consequently resolve 

Thailand’s situation in terms of the reduction of petroleum-based fuel 

uses.  

In general, microalgae are more suitable to be studied as biodiesel 

feedstocks over crops and cyanobacteria due to their higher lipid 

productivities, especially green algae – e.g. Botryococcus braunii, 

Chlorella sp., Isochrysis galbana, Nannochloropsis sp. and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 

 

Shizochytrium sp. [22-24]. Therefore, most of researchers have been 

interested in investigating the lipid content and fatty acid profiles of 

microalgae under severe conditions including the desirable methods for 

cell pretreatment and lipid extraction [10, 12, 25]. For instances, S 

Chakravarty, et al. [26] have recently studied the optimization of lipid 

accumulation in green microalga Selenastrum sp. under different levels of 

NaCl, nitrate and phosphate concentrations. The results showed that the 

highest lipid yield (33.72%) has been achieved under nitrogen starvation 

condition at day 9, then dramatically dropped after that. Another study 

has been done on Chlorella pyrenoidosa cultivation under oxidative 

stress induced by nitrate, phosphate and sulphate regimes, which resulted 

in the maximal lipid content at 48.90% under nitrogen starvation [27]. 

However, the both results demonstrated the strong growth inhibition 

because nitrogen is an essential nutrient for protein synthesis in 

organisms. Interestingly, nutrients limitation conditions could differently 

affect lipid accumulation in individual species [10]. Hence, the 

optimization of stress conditions is necessary for lipid accumulation and 

biodiesel quality of microalgae.  

On the other hand, cyanobacteria also obtain several advantages as 

microalgae compared with higher plants. Notably, the advancement of 

synthetic biology and genetic manipulation has permitted engineering of 
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cyanobacteria to produce non-natural chemicals, whereby microalgae 

studies have more obstacle. Several synthesized biofuel precursors have 

been successfully produced by engineered cyanobacteria achieved from 

both conventional and synthetic engineering approaches such as alcohols, 

fatty acids and isoprenoids [9]. For biodiesel production, terpenes also 

attain good properties as precursors besides fatty acids after saturation by 

hydrogenation, including a lower freezing point, higher energy content and 

good fluidity at low temperatures due to their special carbon skeletons [28-

30]. Terpenes are volatile hydrocarbon compounds that are naturally 

emitted by several higher plants, thus they could be extracted or derived 

with difficulty [9]. Similar to other hydrocarbons, terpenes have obtained 

structures in forms of short-, middle- and long-chain, and been classified 

by their number of carbon in terpenoid molecules, including hemiterpenes 

(C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), 

triterpenes (C30) and tetraterpenes (C40) [31]. Generally, terpenes could 

be naturally derived from either the methylerythritol 4-phosphate (MEP) 

pathway or the mevalonate (MVA) pathway, where MEP is often found 

in bacteria and plants plastid and MVA pathway is mostly found in 

eukaryotic organisms [29, 32]. The process of terpenes synthesis in 

cyanobacteria is involved with MEP pathway. However, cyanobacteria are 

devoid of key enzymes for terpenes synthesis, especially the last step 
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enzymes e.g. isoprene synthase (IspS), limonene synthase (LS), farnesene 

synthase (FS) or squalene synthase (SQS) [31]. Therefore, the metabolic 

engineering approach is required for terpenes-producing cyanobacteria. 

To develop cyanobacteria-based bio-solar cell factories, certain key 

genes coding for chemicals that are absent in the native strains can be 

derived from the original source or made synthetically for heterologous 

expression of these target genes. Moreover, the factors involved in gene 

expression also need to be optimized in each species [33], such as 

promoters, ribosome binding sites (RBSs) [34], replicons and terminators. 

As mentioned above, cyanobacteria gain the advantage on genomic 

database over microalgae and also the genetic manipulation efficiency. 

Synechococcus elongatus PCC 7942 (Syn7942) is one of novel 

cyanobacteria, which has been studied as a host for terpenes production 

few years ago such as isoprene [35], limonene [36], farnesene [37, 38], 

amorpha-4,11-diene [39] and squalene [39, 40]. Unlike fatty acids-based 

biodiesel production, the number of carbons in terpenes can be controlled 

by each specific terpene synthetic enzyme, especially monoterpene (C10) 

and sesquiterpene synthases (C15) [30]. Most of terpene synthetic genes 

are derived from plants or yeasts due to their high activity such as LS 

from Mentha spicata [36, 41], FS from Malus x domestica [38], (E)-α-

bisabolene synthase (BLS) from Abies grandis [42], SQS from 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 

 

Saccharomyces cerevisiae and amorpha-4,11-diene [39, 40] and β-

caryophyllene synthases from Artemisia annua [43]. In addition, the MEP 

pathway key genes have been mostly derived from native genes or 

bacteria i.e. Escherichia coli [38, 39, 44]. For example, SY Choi, et al. 

[40] had studied squalene production in Syn7942, which could achieve 

11.98 mg/L/OD730 of squalene as the maximum production. The 

strategies used in this study were gene optimization (SQS derived from S. 

cerevisiae), gene overexpression (the ispA, dxs, idi gene) and fusion 

protein (CpcB·SQS) to initiate and improve the squalene production in 

Syn7942. Thus, the conventional engineering and synthetic biology could 

be cooperated as powerful tools for obligating and developing the 

terpene-derived biofuel production of engineered cyanobacteria. 

Though similar in hydrocarbon composition, fatty acids and 

terpenoids are desirably used as biodiesel precursors, which should have 

major components as C9-C23 hydrocarbons [45]. To transform biofuels 

from an idea into a real industrial alternative to petroleum-based fuels, it 

is essential to understand how one can best design efficient biomaterials 

[46]. In contrast, a major challenge is the low amount of biofuel 

production in microalgae and cyanobacteria compared with other 

heterotrophic microorganisms [47]. Hence, the improvement of lipids and 

terpenoids by physiological and genetic modification approaches could 
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provide the promising biodiesel feedstocks – i.e. microalgae and 

cyanobacteria, which can be used as the feasible strategies for further 

industrial aspects. 
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CHAPTER II: ENHANCEMENT OF LIPID CONTENT 

IN Chlorella sp. ISOLATE 

FOR BIODIESEL PRODUCTION 

 

2.1 Literature reviews 

Microalgae obtain several advantages compared with crops, which 

including higher growth rate, zero CO2 producing and no need of arable 

lands for cell growing. Notably, microalgae is attractive to because of 

their ability to raise their lipid accumulation under various concentration 

of nitrogen and phosphorus [15, 19]. Focus on phosphate limitation, 

higher lipid contents – i.e. neutral lipids and glycolipids – and unsaturated 

fatty acids (UFAs) at lower concentrations of phosphate are widely 

reported in some microalgae, including Chlorella sp. [10, 48].  The 

phosphorus found in biodiesel comes from the phospholipids contained in 

the oil used as feedstock, which could interrupt the engine systems by 

damage the catalytic converters [49]. Moreover, a maximum level of 10 

mg/kg of phosphorus in biodiesel samples has been established by the 

ASTM 6751 standard. Furthermore, micronutrients or heavy metals also 

essentially participate in microalgae metabolic functions in form of co-

enzymes or energy carriers [50]. In general, heavy metals could be toxic 

to microalgae. Although the addition of heavy metal concentrations has 
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been found that could enhance lipid content of microalgae (even in the 

same species) with different trends and patterns [51]. For instances, 

Chlorella vulgaris demonstrated that could enhance the absorption of 

Cu2+ by addition of HCl for approximately 70% [52]. Additionally, JPK 

Wong, et al. [53] had studied on nickel absorption by two Chlorella 

species – i.e. C. vulgaris (commercial) and C. miniata (a local isolate), 

which then found that the C. miniata isolate could absorb the maximal 

Ni(II) 2-times greater than C. vulgaris. PC Gorain, et al. [54] also had 

taken the opportunity from this ability of microalgae to adapt in biodiesel 

production by treating heavy metals (Ca, Mg and NaCl) to two green 

microalgae – i.e. C. vulgaris and Scenedesmus obliquus. Interestingly, 

increased concentration of Mg could enhance the lipids and biomass 

production in both microalgae, even though the higher NaCl could also 

improve lipid content approximately 40% but strongly reduce the 

biomass yields. Moreover, the major advantage from using microalgae as 

biofuel generators is their capability on CO2 capture and could convert it 

to a more stable form for long term storage, which obtain the capture 

efficiency as high as 99% under optimal conditions [55]. In contrast, the 

conversion efficiency from solar energy to biomass is also significantly 

higher than higher plants, which is 100-fold faster on biomass 

productivity [56, 57]. Thus, the phosphorus limitation and metal stress 
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conditions need to be studied to investigate the trends and potential as a 

biodiesel feedstock, since some microalgae revealed the outstanding high 

lipid accumulation potential under various stresses. And the energy 

conversion efficiency could also represent the capability on biodiesel 

production in terms of economic aspects for further large-scale studies.  

In this study, isolated microalga Chlorella sp. has been observed 

for the biomass, lipid content and lipid production for biodiesel 

production under the heavy stress and phosphorus limitation conditions. 

The heavy metals used in this study are iron (Fe), cobalt (Co) and lead 

(Pb). Fe and Co are general metal ions used in BG11 medium whereas Pb 

is the heavy metal found in contaminated area or wastewater. Several 

literatures have reported on their oxidative stress to microalgae leading to 

the desirably increase of lipid content, especially Fe and Co [10, 58-60]. 

Owing to Pb as non-BG11 based metals, the studies on their effects 

combined with P limitation are still unavailable so far. Additionally, the 

fatty acids compositions and biodiesel properties affected by each Pb 

condition had been also determined. In this background, the present study 

was purposed at improving the isolated green microalga, Chlorella sp. as 

the candidate for biodiesel feedstock by the heavy metal stress and P 

limitation.
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2.2 Materials and Methods 

2.2.1 Microalgal cultivation and biomass collection 

Chlorella sp. was one of collection that isolated from natural 

brackish water in Thailand. The cultures of microalga were separated into 

2 phases: Growth phase and Production phase. Growth phase was aimed 

to increase biomass production. The start optical density of microalgae is 

0.5 at 680 nm in 800 mL BG11 medium [61]. All samples were then 

cultured under constant cool white light 40 µmol/m2/s, 150 rpm at 30ºC 

for 14 days.  

The production phase was anticipated to induce lipid accumulation 

in microalgae for 7 days with triplicates. The BG11-based metals had 

been observed under P deprivation and Fe3+ and Co2+ stress 

combinations, which Fe (FeCl3·6H2O; UNILAB®, Australia) and Co 

(Co(NO3)2·6H2O; Sigma-Aldrich, USA; 98%) concentrations were 3, 6 

µM and 1.7, 17 mM, respectively. Noted that the basic Fe3+ source in 

BG11 is Ammonium ferric citrate ((NH4)5[Fe(C6H4O7)2]; UNILAB®, 

Australia) with 21 µM as a final concentration and also 0.17 mM for 

Cobaltous nitrate. In non-BG11-based metal experiments, Pb2+ with 

concentration of 0.1, 1, 10 µM (Pb(NO3)2; Ajax Finechem, AR grade) 

was subjected into P limitation; 0%P, 50%P (0.115 mM) and 100%P or 
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normal BG11 (0.230 mM). According to A Piotrowska-Niczyporuk, et al. 

[62], exceeding 10 µM of Pb cab cause the toxic effect to microalgal 

growth. The biomass production was achieved by collecting 45 mL 

samples were collected in pre-weighted Eppendorf tubes at 0, 1, 3 and 7 

days. Then centrifuged cell samples were kept in -80ºC until used and 

disrupted by -50ºC freeze dryer (Labconco®, USA) overnight. The 

lyophilized cells were weighted by gravimetric method. 

2.2.2 Total lipid extraction and determination 

Several solvent systems can be used for lipid extraction in 

microalgae. Using n-hexane is one of the suitable systems, which a 

simple method that revealed high efficiency in lipid extraction from green 

algae [63]. Microalgal total lipids were extracted by n-hexane system, 

which adapted from R Halim, et al. [64]. Briefly, 5-10 mg lyophilized 

biomass of each condition were suspended in 800 µL n-hexane. Total 

lipids were subsequently extracted in hexane phase after incubated 

shaking at ambient temperature overnight. Centrifuge at 8000 rpm (6000 

 g) for 2 min and remove an upper layer to a new pre-weighted glass 

vial. Then evaporate residual hexane for 2-3 h or until it is constant 

weight. Each dried total lipid sample was determined by gravimetric 

analysis (Appendix C). 
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2.2.3 Transesterification and biodiesel properties analysis 

Transesterification and  fatty acid profiles analysis were partly 

adapted from M Limsuwatthanathamrong, et al. [65]. Briefly, each dried 

total lipid was firstly esterified into methyl esters by saponification with 

0.5 N methanolic NaOH and transesterified with 14% BF3 in methanol 

(v/v) [66]. Finally, cooling down the solution and adding NaCl for 

precipitation and remove the derivatized solution as form as fatty acid 

methyl esters (FAMEs) into a new vial. After transesterification, the 

FAMEs were analyzed by gas chromatography (GC 6890N/FID HP-

INNOWax, Agilent, USA). Individual FAMEs were identified by 

comparison with C14-C20 FAMEs standard (Sigma-Aldrich, USA).  The 

GC chromatographic temperature program was set as follow: initial 

temperature of 150ºC and the oven temperature was setting to gradient 

increasing to 180ºC at 10ºC/min, to 200ºC at 5ºC/min, to 205ºC at 

0.5ºC/min and held at 205ºC for 2 min. Finally, the temperature was 

rising to 250ºC at 5ºC/min and then held for 5 min (30 min as a total 

running time). 

According to R Sivaramakrishnan, et al. [67], the determination of 

biodiesel characteristics had been characterized by equations published 

earlier. Saponification value (SV) and iodine value (IV) were determined 
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by the equations from ÉC Francisco, et al. [47]. Cetane number (CN) was 

determined by equations published by MJ Ramos, et al. [11]. Cloud point 

(CP) was calculated using the equation from A Sarin, et al. [68]. KV, 

density, and higher heating value (HHV) were determined by equations 

published by LF Ramírez-Verduzco, et al. [69]. 

2.2.4 Oxidative stress from Pb treatment determination 

The Pb(NO3)2
 treated cells of H2O2

 content was determined by 

treating the cells with 1 M potassium iodide (KI). The experiments were 

performed according to the V Alexieva, et al. [70] and the absorbance 

was read at 390 nm using UV spectrophotometer. A fresh known H2O2 

concentration solution is used for standard curve [70]. The supernatant 

was mixed with 1 mL 0.5% thiobarbituric acid and 0.5 mL of 20% 

trichloroacetic acid to determine the MDA content. The reaction mixture 

then incubated in a boiling water bath for 15 min and centrifuged at 2790 

 g for 10 min. The samples were analyzed using spectrophotometer at 

450, 532 and 600 nm and the different values obtained from different nm 

were used to calculate the MDA content by using following equation [71]. 

𝑀𝐷𝐴 =
[6.45 × (𝑂𝐷532 − 𝑂𝐷600)] − (0.56 × 𝑂𝐷450)

𝑊
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The lysed cell suspension was used for the determination of SOD 

and CAT activity by using kit protocol supplied Sigma Aldrich, USA 

(WST-1 reagent and CAT assay kit, respectively). 

2.2.5 Energy conversion efficiency analysis 

 According to H-Y Ren, et al. [72] report, the potential of lipid 

production had been determined under various microalgal culture modes 

by calculating total energy conversion efficiency (TECE) from light to 

lipids as following equation.  

𝑇𝐸𝐶𝐸 =
𝐻𝑉 𝑜𝑓 𝑒𝑥𝑡𝑟𝑎𝑐𝑡𝑒𝑑 𝑙𝑖𝑝𝑖𝑑𝑠

𝑖𝑛𝑝𝑢𝑡 𝑙𝑖𝑔ℎ𝑡 𝑒𝑛𝑒𝑟𝑔𝑦
× 100% 

where TECE unit is % and HV of lipids is estimated as 36.3 kJ/g, 

which the values could be varied depending on different microalgal 

species. The input light energy was calculated by the equation in 

Appendix D, consequently in 18.88 kJ. 

2.2.6 Statistical analysis 

The results are presented as mean of three replicate values, with the 

error bars showing standard deviations (means ± SD, n = 3). Statistical 

significance (p < 0.01-0.1) was analyzed by t-test comparisons using 

graph pad software. 
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2.3 Results and Discussions 

2.3.1 Phosphorus limitation conditions 

 In general, the nutrient limitation is method used for lipid induction 

in microalgae for decades, especially nitrogen and phosphorus limitation 

[73]. As mentioned above, nitrogen deprivation is strongly inducing the 

lipid content but also negatively affecting the cell biomass accumulation 

in Chlorella sp. [74]. The phosphorus limitation has been less studied and 

also could elevate lipid content and unsaturated fatty acids in some 

microalgae species, including Chlorella sp. [48, 73, 75]. Thus, the 

increase of unsaturated fatty acids is desirable for biodiesel production 

aspect, which could be achieved from phosphorus limitation in 

microalgae cultivation [76, 77].   

The isolated Chlorella obtained a lipid content 30-40% (stationary 

phase), which within the range of other Chlorella (2-55%) reports [78]. In 

this study, we chose the stationary phase Chlorella as initial cells for lipid 

production due to the higher lipid content and well growing under stress 

conditions [79, 80]. The lipid content in normal condition became steady 

after 7-day production phase. The lipid content was increased from 43 to 

56% within 1 day and higher than control approximately 21% under P 

deprivation (Figure 1). The result showed that is higher than some 
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previous Chlorella studies under P deprivation (0%P) i.e. Chlorella sp. 

BUM11008 (31.9%) [74], C. zofingiensis (44.7%) [81] and C. 

pyrenoidosa (32.77%) [82] and other Chlorella sp. (13.9%) [83]. Thus, 

the 0%P could not effectively elevate lipid content in some Chlorella 

[80]. The phosphorus plays important roles in ATP and NADPH 

production that is required to drive lipid synthesis and photosynthetic 

activity [84]. Therefore, the 0%P could severely decline the chlorophyll 

content and lead to low biomass [85]. As expect, the biomass was 

reduced under 0%P and resulting in the lower lipid production than 

control, which the biomass was slightly declined and remains steady after 

3-day cultivation. However, the lipid content could be less affected 

because the reduction of phospholipids have not decreased the total lipids 

but could alter the lipid composition, e.g. diacylglyceryl-

trimethylhomoserine (DGTS), diacylglyceryl-hydroxymethyltrimethyl-β-

alanine (DGTA) and diacylglyceryl-carboxyhydroxy-methylcholine 

(DGCC), in plastid membranes of several green microalgae, including 

Chlorella [73, 86]. For examples, the 0%P cultivation of green alga 

Monodus subterraneus also reduced the phospholipid but could increase 

triacylglycerols (TAG), which mainly in digalactosyldiacylglycerol 

(DGDG) and DGTS [87]. According to L Alipanah, et al. [88], they had 

studied on the changes in  expression of genes associated with lipid 
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metabolism under 0%P in diatom Phaeodactylum tricornutum. They 

observed the downregulation of fatty acid synthesis pathway, which leads 

to the decrease in membrane lipid synthesis and the lowering cell 

division. Additionally, the upregulation of phospholipid:diacylglycerol 

acyltransferase (PDAT) and phospholipase genes was detected, which 

acted to degrade the phospholipids and then release into diacylglycerol 

(DAG) and phosphatidic acid (PA) resulting in high TAG accumulation. 

Thus, this study could suggest that the isolated Chlorella sp. could 

accumulate high lipid content under P deprivation. However, the biomass 

is still low then the further optimization of nutrients is required. 

 

Figure 1. The effects of Chlorella cultivation under normal, N and P derivation in 

BG11 conditions. (A) Biomass (g/L) (B) Total lipid content (%DCW) (C) Lipid 

production (g/L). All the data are expressed as mean ± standard deviation from 

cultures that were run in triplicate. Total lipid content is significantly greater in -P 
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and -N for t-test; The p-values are 0.000775 and 0.007706, respectively 

(indicated by asterisks). 

2.3.2 Effects from the combination of phosphorus limitation and 

BG11-based metals stress 

The optimized key macro- and micro-nutrient based in BG11 

medium could differently alter the lipid content in each microalga. The 

limitation of phosphate and the supplement metal ions – i.e. Fe3+ and Co2+ 

– could elevate the lipid content in Chlorella [89]. In this study, we have 

combined both of 0%P and metal addition in Chlorella cultures in order 

to increase the lipid content. Both of Fe3+ and Co2+ addition conditions 

demonstrated the increase of lipid content with 10% and 19% over the 

control, respectively. However, the lipid production was lower than 

control due to the inhibited growth from stressed conditions. 

Interestingly, the Co2+ conditions showed the higher lipid content than Fe 

condition reaching 69% at day-1 cultivation whereas Co2+ also stronger 

suppressed the cell growth. 

Fe3+ is one of the most appropriate heavy metals used to increase 

the lipid content in microalgae [90]. Interestingly, the addition 

concentration of Fe has not only improve the lipid content but could also 

increase the cell growth in green algae [67, 91]. In this study, we applied 
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FeCl3 as an extra iron supplement source because of its strong influence 

in lipid content in green algae [92]. The combined Fe3+ stress and P 

deprivation condition could negatively affect the cell growth but not 

completely inhibited (Figure 2A).  P Singh, et al. [93] have studied on 

the physiological effects of Chlorella sorokiniana under N and P 

limitation combined with various stress conditions. Because Fe3+ and 

Mg2+ both play significant role in photosynthesis, thus maximum 

quantum efficiency of photosystem II (Fv/Fm) was improved under metal 

stress condition. Consequently, the chlorophyll content was increased 

when the metal concentrations (Fe, Mg, Ca) were also increased. 

Additionally, green alga Ankistrodesmus faculatus KJ671624 has been 

studied on biomass and lipid content under various stress combinations 

i.e. N, P and Fe3+ [94]. They also found that the highest lipid content 

(59.6%) was achieved under N limitation (750 mg/L), P deprivation and 

Fe3+ addition (9 mg/L) and the biomass was declined approximately 2-

fold from the control (BG11). Notably, a sufficient Fe amount could 

prevent a severe drop in biomass production in several microalgae even 

were under the essential nutrient limitation (i.e. N and P) [58, 92, 94].  
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Figure 2. The effects of Chlorella cultivation from P deprivation with BG11-

based metals (Fe and Co) treatment conditions. (A) and (D) Biomass (g/L) (B) 

and (E) Total lipid content (%DCW) (C) and (F) Lipid production (g/L). Fe; (A-

C), Co; (D-F). All the data are expressed as mean ± standard deviation from 

cultures that were run in triplicate. Total lipid content and lipid production are 

significantly greater in -P with 1.7 and 17 mM of cobalt for t-test; The p-values 

are between 0.00065 to 0.051568 (indicated by asterisks). 

In this study, 17 mM cobalt nitrate (100X of normal BG11) was 

applied to the P deprived BG11 leading to the improvement of lipid 

content and the reduction of biomass (Figure 2D and 2E). Unlike Fe3+ 

studies, M Battah, et al. [59] reported that Co2+ could also increase lipid 
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content but slightly suppress the biomass in C. vulgaris even presented in 

small amount (3 µM) added in bold basal medium (BBM). Moreover, M 

Li, et al. [95] also found that 10 µM of Co2+ could inhibit the cell 

growth of marine microalga Pavlova viridis and markedly increased 

antioxidant enzymes and non-enzyme antioxidative substances over 

control value showing a strong oxidative stress occurred. Additionally, 

SE Plekhanov, et al. [96] had studied on several metal effects in C. 

pyrenoidosa and observed the rapidly decrease of Fv/Fm under 0.1-10 mM 

of Co2+ treatment within 30 min. Thus Co2+ can induce toxicity in 

Chlorella and other green microalgae and has strongly inhibited the 

growth and photosynthesis when presented in too high concentrations 

[95, 96]. Therefore, the 19% of lipid content had increased over the 

control, but it was still lower than previous study (22%; M Battah, et al. 

[59]). Although the combined Co2+ with P deprivation might cause a 

lethal effect to the Chlorella even incubated for 1 day. Obviously, Fe and 

Co both play significant roles in photosynthesis and microalgal growth, 

where Fe is the most essential heavy metal of PSII [93]. Hence, these 

results clearly revealed that the positive influence of only Fe on the 

photosynthetic physiology and lipid content of microalgae whereas 

inappropriate concentration of Co could turn the negative effects to 
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microalgal growth. The incubation of Chlorella in presence of Co should 

be further adjusted properly with shorter time or alternatively lower 

concentration to allow better lipid production. 

2.3.3 Lead stress combined with phosphorus limitation and oxidative 

stress determination 

 Pb2+ has been also studied that could trigger the lipid content in 

microalgae and growth when presents in proper amount [62, 97]. In this 

study, the P limitation (50%P) and P deprivation (0%P) conditions have 

been studied along with Pb2+ additional cultures to observe altered lipid 

content. The controls were different in each experiment – i.e. normal 

BG11 (100%P), P limitation (50%P; 115 µM of PO4) and P deprivation 

(0%P), which the Pb2+ supplement samples revealed the declined trends 

in lipid content compared with controls (Figure 3B, 3E, 3H). 

Interestingly, the Pb2+ supplemented cultures indicated the better growth 

than controls in 50%P and 0%P conditions and elevated to the improved 

lipid production with 0.16 and 0.13 g/L, respectively. Additionally, the 

50%P without Pb2+ addition could elevate the total lipids into 60% in 1 

day. Obviously, the culture with presence of Pb2+ could trigger the 

biomass production of Chlorella when phosphate is limited. Thus, the P 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 

 

 
 

limitation and Pb2+ addition combinations could positively affect to the 

changes in lipid production in Chlorella.  

 

Figure 3. The effects on Chlorella cultivation from non BG11-based metals i.e. Pb 

treatment in different P concentration conditions. (A, D, G). Biomass (g/L) (B, 

E, H). Total lipid content (%DCW) (C, F, I). Lipid production (g/L). 100%P; 

(A-C), 50%P; (D-F). 0%P; (G-I). All the data are expressed as mean ± standard 

deviation from cultures that were run in triplicate. Lipid production is 
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significantly greater in 50%P with 1 µM of lead for t-test; The p-value is 

0.000783 (indicated by an asterisk). 

 Besides the P deprivation, P limitation (50%P) is also could 

increase the lipid content and alter the fatty acids composition in green 

microalgae. K Liang, et al. [48] had studied effect of phosphorus in 

Chlorella sp., which could enhance a lipid content reaching to 23.60% at 

32 µM phosphorus. Furthermore, the fatty acid profiles were also 

different in each concentration, especially stearate acid (C18:0) 

decreasing 15.34% from 240 to 16 μM. P Singh, et al. [93] had 

investigated the effects on lipid content and biomass of microalgae, 

which biomass could be reduced either under limitation or repletion of P 

condition [93]. In addition, they also found that the heavy metal stress 

could induce the cell growth and lipid content even under macronutrients 

limitation condition as same as this Fe3+ study. This could be a reason 

why the Pb cells could grow better under P limitation. Unlike Fe3+ and 

Co2+, Pb2+ is heavy metal that non-essential micronutrient for microalgae 

growth and found as toxicity to environment. Therefore, the lower range 

of Pb has been studied in microalgae such as 0.01-500 µM [97, 98]. Thus, 

the unharmful levels of Pb could induce some pigment contents in 

microalgae range from 0.01-10 µM addition [98]. Additionally, A Bajguz 
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[97] had reported on the effects of heavy metals inhibitory in C. vulgaris. 

Consequently, the cell density was reduced when increase a concentration 

of Pb treatment from 1 to 100 µM whereas the cells number and 

chlorophyll content of 1 µM Pb condition were barely different from 

control. Moreover, lead treatment also revealed the highest accumulation 

in cellular C. vulgaris within first 24 h. Then A Piotrowska-Niczyporuk, 

et al. [62] had been studied Pb adverse effects in green alga Acutodesmus 

obliquus but it showed different trends of Pb accumulation from C. 

vulgaris, which the cell growth and contents of pigments of A. obliquus 

were suppressed when at lower concentration of Pb (0.1 µM) than C. 

vulgaris. Recently, T-L Pham, et al. [99] has studied on lipid production 

combined with removal of lead (0.05-10 mg/L) from wastewater by 

Scenedesmus sp. Consequently, the cell concentration was rapidly 

dropped when increase of Pb concentration from 1 to 2 mg/L and 

beginning to a stationary phase after 5 days. And the maximum lipid 

contents (31.1% and 30.8%) were achieved at 0.5 and 1 mg/L of Pb. 

Thus, the 0.1-10 µM of Pb have been selected to be used as the selected 

concentration for Chlorella cultivation in this study. The results shown 

that the maximum lipid content was observed under presence of 1 µM 

and the decrease of biomass in 10 µM of Pb conditions (data not shown), 
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which was corresponding to A Bajguz [97] study. In addition, the 

oxidative stress treatment is also necessary for distinguishing the Pb 

toxicity and the stimulation of lipid content to this isolated Chlorella. 

And I also determine the fatty acid profiles of Pb addition conditions for 

further used in biodiesel production and wastewater treatment aspects. 

Oxidative stress treatment was performed to improve the lipid 

content. After 24 h treatment of Pb displays variations in the H2O2, MDA, 

SOD and CAT contents and it was shown in Figure 4. H2O2 is the 

important marker to determine the ROS effects of cells after Pb treatment. 

After the treatment H2O2 level was elevated when compared to the 

control. Oxidative treatment showed some positive effects on lipid 

content. During oxidative stress, O2
- reduced in chloroplast electron 

transport and forms H2O2 [100]. The presence of ROS (oxidants) 

stimulate the signaling molecules and progresses the physiological 

responses and cell growth [101]. In the present study, it is obvious that 

the Pb treatment increases the H2O2 as a response of oxidative stress. 
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Figure 4. H2O2 and MDA levels, SOD and CAT activities on 10 µM of Pb 

supplementation. All the data are expressed as mean ± standard deviation from 

cultures that were run in triplicate. 

To determine the effect of ROS, MDA is the important marker to 

study the effect of ROS. During oxidative stress, poly unsaturated fatty 

acids get oxidized and generate MDA and hence it is considered as an 

oxidative marker. Cell walls get damaged and the cells try to recover 

itself by lipid peroxidation [102]. In the present study, MDA level was 

increased after Pb treatment and it confirms that the cells able to defend 

against the oxidative stress. 

In response of H2O2 and MDA, cell itself produce antioxidant 

enzymes to neutralize the effects of ROS. The antioxidant enzymes SOD 

and CAT were analyzed and shown in Figure 4. SOD is an important 

metalloenzyme which efficiently scavenges the superoxide molecules 
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[71]. In the present study, Pb treatment increased the ROS, and the cells 

were well responded against ROS by SOD and CAT enzymes. Both the 

enzyme activity was enhanced after the oxidative treatment. Due to the 

action of SOD and CAT enzymes, ROS-mediated electrons flow towards 

lipid synthesis to neutralize the effect of ROS and it was evident with the 

lipid content after the Pb treatment.  

2.3.4 Fatty acid profiles and biodiesel properties under Pb conditions 

The fatty acid compositions and biodiesel properties are 

determined from day-1 Chlorella samples (in FAME forms) under 

different phosphorus and Pb concentrations (Table 1). The ratio of SFAs 

and UFAs had showed in high value compared with other microalgae 

because of high content of palmitic acid (C16:0) and stearic acid (C18:0), 

where the others are mixers of C18:2, C18:3 and low content of C20:0 

(≤0.01%) [10]. In this study, the reduction of the decanoic acid (C10:0) 

and stearic acid (C18:0) was observed under the decrease of P 

concentrations although the C16:0 have been increased, especially under 

presence of Pb (54.57%). Under 0%P condition, the UFAs are higher and 

different in compositions compared with other conditions, which majorly 

found as palmitoleic acid (C16:1). Hence, phosphorus limitation could 

increase UFAs in Chlorella sp., especially MUFAs [73, 74]. 
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Interestingly, higher amount of MUFAs could obligate the balance 

between CN and CFPP properties of biodiesel [76]. Additionally, the 

SFAs content and length could directly affect the cloud point (CP), which 

the different SFAs mixture is more favorable than a high single SFA 

component due to their independent crystallization. Furthermore, I also 

attempted to test the nitrogen limitation and found the high amount of 

UFAs in both with and without Pb (data not shown) as similar to previous 

reports [10]. However, the low levels of phosphorus could improve a 

quality of biodiesel by reducing damage to catalytic converters in 

operational systems [49]. Then we had determined the key properties 

which affect the quality of biodiesel: SV, IV, CN, CP, KV, Density, and 

HHV were analyzed as shown in Table 1, which each property has 

followed to SK Hoekman, et al. [103].  

Saponification value. The SV is a measure of the average 

molecular weight of all fatty acids present. Maximum SV was obtained 

under 100%P with Pb supplement condition at 2.37 g KOH/g lipid. In 

contrast, the Pb addition demonstrated the higher SV than non-Pb 

cultures in each phosphorus-limited condition. Thus, the addition of 1 µM 

Pb could positively alter the SV in all the three concentrations – i.e. 

100%, 50% and 0% of phosphorus condition, which could increase from 

controls at 10.14, 4.78 and 4.17 g KOH/g, respectively. 
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Iodine value. Iodine value is a measure of total unsaturation of 

biodiesel, and this value is used to represent oxidative stability [104]. The 

increase of IV could negatively affect engine performance because high 

alkyl double bonds lead to formation of insoluble sediments from 

degradation. According to the European biodiesel standard, IV is limited 

to 120 g I2/100 g. The results showed that the value of all conditions 

within the limits. In all the cases, the value was not significantly different, 

except under P deprivation without Pb that obtained the highest value at 

38.75 g I2/100 g whereas higher than the others 18.06-22.18 g I2/100 g. 

 

Table 1. Fatty acid profiles and biodiesel properties as per ASTM D675 and 

EN14214 under combined stress conditions. Fatty acid profiles of Chlorella 

treated with 1 µM of Pb under normal and P-limited BG11 for maximum lipid 

production. Fatty acids were measured after 1 days of incubation. All the data 

are expressed as mean ± standard deviation from cultures that were run in 

triplicate; Values are given as percent (%) of total fatty acids. SFA Saturated 

fatty acid, UFA unsaturated fatty acid. n.d. Not detected. aPhosphate 

concentration. bC18:2 and C18:3 total %.  

Fatty acid compositions (%) 

Types of fatty acids 
BG11 BG11 with Pb 

100%a 50% a 0% a 100% a 50% a 0% a 

Decanoic acid (C10:0) 8.21 7.66 n.d. 24.30 11.16 2.56 

Myristic acid (C14:0) 11.86 10.88 ≤0.01 3.33 11.13 12.02 

Palmitic acid (C16:0) 42.27 45.86 49.24 26.19 38.59 54.57 

Palmitoleic acid (C16:1) 15.52 9.32 33.36 5.27 17.15 7.61 

Stearic acid (C18:0) 17.94 16.68 11.36 25.24 18.01 11.89 
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Units of factors. SV (mg KOH/g), IV (g I2/100g), CP (°C), HHV 

(MJ/kg), KV (mm2/s), Density (g/cm3). 

 

Cetane number. Cetane number is an important property 

determining the combustion quality, and ignition delay time. A high CN 

ensures the ignition properties and good engine performance as well as 

the reduction of white smoke formation from the engine. The results 

demonstrated that all of the samples are higher than the minimum value 

of the American Society for Testing and Materials (ASTM) and European 

standards. The lowest CN was found in 0%P whereas the highest is also 

found in 0%P with the Pb addition. However, the range of CN is not 

significant different in each condition. Notably, this Chlorella revealed a 

higher CN (62.93-67.18) than Chlorella sp. in some previous studies 

Oleic acid (C18:1) ≤0.01 6.92 ≤0.01 10.59 ≤0.01 2.30 

Othersb 1.20 2.69 6.05 5.08 3.97 8.98 

SFA 83.28 81.07 60.60 79.06 78.88 81.04 

UFA 16.72 18.93 39.41 18.89 21.12 18.89 

Factors EN ASTM Biodiesel properties 

SV  NA NA 226.50 224.14 215.32 236.64 228.92 219.49 

IV 120 NA 16.57 17.95 38.75 19.35 20.69 17.74 

CN >51 >47 66.67 66.61 62.93 65.00 65.49 67.18 

CP NA NA 18.82 19.13 20.91 8.78 15.31 23.71 

HHV NA NA 38.90 38.97 39.21 38.56 38.82 39.09 

Viscosity 3.5-5.0 1.9-6.0 3.47 3.54 3.70 3.18 3.37 3.68 

Density 0.86-0.90 NA 0.87 0.87 0.87 0.87 0.87 0.87 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

35 

 

 
 

[105], which meant that it could be blended at higher concentrations with 

petroleum diesel [10]. Thus, this is the good candidate for biodiesel 

production.  

Cloud point. Cloud point is the temperature at which the fuel starts 

to appear cloud and confirms the wax crystal formation which blocks the 

filters and fuel lines of the vehicle [106]. No limit ranges are given in 

ASTM due to the fact that the climate conditions in the United States 

vary considerably. However, a lower range of CP is more suitable. In this 

study, the range was rather high in each condition, except in 100%P with 

Pb condition (8.78°C). Additionally, the decrease of P concentrations was 

observed that could lead the increase of CP, where the highest CP was in 

0%P with Pb at 23.71°C. However, this Chlorella oil still obtained a high 

CP when compared with other microalgae oil [105]. A number of double 

bonds located near the ends of carbon chains were higher than the middle 

of carbon chain or might have low shorter linear carbon chain than longer 

chain, consequently this oil have high CP [107]. 

Kinematic viscosity. Kinematic viscosity is essential value used to 

present the resistance of biodiesel flow in fuel injection system at low 

temperature, which samples obtaining cis double bond generally have 

higher KV than samples obtaining trans double bond [104]. Moreover, 

the unsaturated FAMEs have lower viscosities than the saturated FAMEs. 
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Hence, the high KV could cause to poor vaporization and atomization of 

the engine. For ASTM values, the KV range is 1.9–6.0 whereas the KV 

range in Europe is 3.5–5.0. The results demonstrated that KV values of 

all conditions are within the limits of both EN and ASTM. Interestingly, 

the KV of this Chlorella FAMEs was achieved at lower values (3.18-3.70 

mm2/s) than several crops biodiesels and some microalgae – e.g. 

Nannochloropsis oculate, Dorstenia brasiliensis and B. braunii [10, 108]. 

Density. The density of fatty acids is related to the number of 

carbon atoms present, which high saturated and shorter chain fatty acids 

could lead to high density biodiesel [104, 107]. The lower density is 

desirable for the fuel injection process, which correlated with amount of 

fuel into the engine estimated by its volume (g/cm3). Thus, the high 

content of long chain unsaturated FAMEs is better for blending with 

biodiesel. Adopting European values, the density (g/cm3) ranges between 

0.86 and 0.90. All experiments revealed same density values at 0.87, 

which achieved more considerable value than vegetable oils – e.g. palm 

(0.897), rapeseed (0.913) and soybean (0.916) [107]. 

Higher heating value. Higher heating value is the amount of heat 

released after the complete combustion, which in a unit quantity of fuel 

into H2O and CO2 [107]. HHV could be decreased when double bonds 

increase and high amount of shorter chain fatty acids. However, the 
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selection between the lower or higher HHV compounds as biodiesel 

sources remains unclear. In general, HHV of microalgae biodiesel was 

found to be in the range of 36.6-40.4 MJ/kg, which is normally lower 

than that obtained from commercial diesel fuel (45.62-46.48 MJ/kg) [10, 

106]. The HHV of all experiments were between 38-39 MJ/kg, which 

within the range as MA Islam, et al. [10] report. 

2.3.5 Energy conversion efficiency 

This shows that algal cells cultured in normal and stress conditions 

can efficiently convert the substrate into lipids. However, under the stress 

conditions, the TECE of cultivations were lower than normal condition 

due to the lower biomass production. The highest TECEs were obtained 

at 26.70±1.52% and 19.66±6.28% under in normal BG11 with Pb and 

0%P with Fe condition, respectively (Table 2). Interestingly, the results 

have been higher than Scenedesmus sp. cultured under mixotrophic 

condition (14.6%) in previous study [72]. Interestingly, the either nutrient 

limitation or heavy metal stress of microalgae could allow the 

improvement of the energy conversion even under autotrophic cultivation. 

To further enhance the economic feasibility of algal biodiesel production 

in wastewater, it is essential to fittingly cultivate microalgae outdoors in 

natural conditions. 
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Table 2. Energy conversion efficiency from light to lipids under different 

conditions. 

Conditions Total lipids 

(g/L) 

HV of 

lipids (kJ) 

Input light 

energy (kJ) 

TECE 

(%) 

Normal 0.19 6.90 44.05 15.66 

P dev 0.17 6.17 44.05 14.01 

P dev Cobalt 0.13 4.72 44.05 10.71 

P dev Iron 0.14 5.08 44.05 11.54 

Pb 0.18 6.53 44.05 14.83 

50%P Pb 0.16 5.81 44.05 13.19 

P dev Pb 0.13 4.72 44.05 10.71 
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CHAPTER III: EVOLUTIONARY ENGINEERING  

IN Synechococcus elongatus PCC 7942  

FOR α-FARNESENE PRODUCTION 

 

3.1 Literature reviews 

Most of studies conducted on metabolically engineered 

cyanobacteria for the production of photosynthetic terpenes have been 

done by overexpressing the key genes in the 2-C-methyl-D-erythritol 4-

phosphate (MEP) pathway coupled with heterologous expression of 

specific terpene synthases. The key genes in the MEP pathway can be 

both native genes or foreign genes (from novel bacteria), which play 

significant roles in supplying intermediates from G3P and pyruvate, such 

as dimethylallyl diphosphate (DMAPP), isopentenyl diphosphate (IPP), 

geranyl diphosphate (GPP) or farnesyl diphosphate (FPP), and triggering 

the terpene synthesis pathways [32, 109]. The rate-limiting genes in the 

MEP pathway have been already studied based on the E. coli pathway in 

different species of cyanobacteria, which include DXP synthase (dxs), 

isopentenyl diphosphate isomerase (idi), HMB-PP synthase (ispG) and 

farnesyl diphosphate synthase (ispA) [110, 111]. For examples, metabolic 

engineering of Syn7942 has achieved great improvement in the isoprene 

production level (up to 1.26 g/L) using a strong inducible promoter (Ptrc) 
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with the overexpression of the key MEP pathway genes (idi, dxs, ispG) 

coupled with a fused idi-ispS [35]. 

Besides the overexpression of MEP genes, heterologous terpene 

synthases have been also considered. Terpene synthases are usually 

derived from plants and certain terpene-producing bacteria, which most 

of plant enzymes have been specified to be compatible for cyanobacterial 

expression [31]. Terpenes are derived from a prenyl diphosphate (FPP) 

precursor and are composed of isoprene (C5) units. Photoautotrophic 

cyanobacteria are exceptional microbial cell factories that can perform 

CO2 fixation and facilitate direct conversion of photon-to-fuel [112-114]. 

Push-pull metabolic engineering of cyanobacteria has enabled the 

production of many different classes of terpenes such as hemiterpene 

(C5), monoterpene (C10), sesquiterpene (C15), diterpene (C20), 

triterpene (C30), and tetraterpene (C40) [31]. 

In this study, acyclic sesquiterpene – i.e. α-farnesene, has been 

produced in engineered Syn7942. α-Farnesene is a valuable volatile 

compound in various applications e.g. pharmaceuticals, fragrances and 

advanced biofuels [29, 115]. Focus on biofuel application, α-farnesene 

obtains desirable characteristics as biodiesel precursor – i.e. low 

hygroscopicity and high energy density. In fact, the natural α-farnesene is 

generally found in several plants such as plant pollination, apple aroma 
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and immune response to herbivores [115]. Obviously, it could be 

produced in limited amount and difficult to achieve in origin plants. Thus, 

the metabolic engineering of cyanobacteria could provide the promising 

tools to enhance the α-farnesene production. Previously, the engineered 

cyanobacteria had been already studied in Anabaena sp. PCC 7120 

(Ana7120) [37] and Syn7942 [38] by heterologous expressing the codon-

optimized farnesene synthase (FS) from Norway spruce and Malus x 

domestica (apple), respectively. Additionally, the overexpression of the 

key genes in the MEP pathway (codon-optimized dxs-idi-ispA from E. 

coli) under the control of trc promoter has also been employed in 

Syn7942 to increase the pools of farnesyl diphosphate (FPP) as 

intermediate. This strategy significantly elevated the production of α-

farnesene up to 15-fold (4.6 mg/L) compared to that with a single 

heterologous expression of Pnir-psba1-FS in Ana7120. In fact, Ana7120 

displayed slower growth rates than Syn7942 and this might be the reason 

behind the low production. In addition, P Hellier, et al. [116] had studied 

the toxic effect of five terpenes – i.e. geraniol, geranial, linalool, 

farnesene and citronellene – on Synechocystis sp. PCC 6803 (Syn6803) 

with an absence of n-dodecane overlay, consequently in toxic effect of all 

terpenes (the least toxic is citronellene). Notably, the cultures of Syn6803 

with a presence of n-dodecane indicated the enhancement in cell growth 
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under 0.02-1.0%v/v of farnesene. Thus, this is the alternative strategy to 

generate the two-phase system of the non-toxic organic solvent and 

cyanobacterial culture medium for terpene production. Furthermore, the 

development of solvent system [38] with dodecane was also helpful to 

collect the more volatile α-farnesene released from the cells compared 

with the sealed gaseous trapped system [37].  

Push strategies of metabolic engineering can be applied to increase 

the key intermediaries by overexpressing the key enzyme(s)—such as 

farnesyl diphosphate (FPP), for terpene synthesis—in the 

methylerythritol phosphate (MEP) or mevalonate (MVA) pathway. 

However, pull strategy of metabolic engineering is based on improving 

the enzymatic abilities of terpene synthase to produce terpenes as a 

carbon sink from the accumulated intermediates [40, 117]. Therefore, a 

balance between the push and pull pathways is important when 

engineering a strain is not for only reducing the toxicity resulting from 

the accumulation of key intermediaries, but also for enhancing the titer of 

the final product [38, 39, 118]. 

However, lack of a precise regulator of target gene expression or 

dynamic genetic switch in engineered strains may cause an imbalance 

between the push and pull pathways, resulting in lower production of 

biochemicals or growth inhibition [119, 120]. To overcome this 
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limitation, adaptive laboratory evolution (ALE) has been applied to 

construct microbial cell factories using metabolic engineering and 

random mutagenesis [121-123]. This method leads to the generation of a 

large number of mutant libraries (commonly >100 samples), therefore a 

high-throughput screening technique is often employed later to rapidly 

screen all the samples within a short time period [124, 125]. ALE has 

been applied to improve the production of chemicals using natural or 

artificial selection by growing the microbes in a controlled condition 

[121]. Recently, a cyanobacterium, Syn6803 evolved to grow under 

extremely high concentrations of isobutanol (5 g/L) after long-term 

adaption in a medium containing 2 g/L isobutanol [126]. Another study 

obtained an evolved Syn6803 strain by culturing it in a medium 

containing 9 µM cadmium sulphate (CdSO4) over 800 days in order to 

identify high cadmium tolerant strains that can be used for wastewater 

treatment [127].  
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Figure 5. A schematic pathway depicting the α-farnesene production by heterologous 

expression of α-farnesene synthase in the Methylerythritol Phosphate (MEP)-optimized 

recombinant S. elongatus PCC 7942 (SeHL33). The strain SeHL33 overexpressing the 

key genes (dxs, idi, and ispA) of the MEP pathway has been developed to supply 

the pool of farnesyl pyrophosphate (FPP) [39], which is shown in orange. FPP is 

converted to farnesene by heterologous farnesene synthase (red). 

Among the photosynthetic terpenes produced by microbes, 

phototrophic sesquiterpene compounds, such as β-caryophyllene [43] 
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(0.32 ng/L), α-bisabolene [42] (0.6 mg/L), amorpha-4,11-diene [39] (19.8 

mg/L), and farnesene [38] (4.6 mg/L), have been successfully produced 

in metabolically engineered cyanobacterial strains. Metabolic engineering 

of Syn7942 with overexpressed MEP pathway genes (dxs, idi, and ispA) 

and synthetic FS gene has resulted in the production of 4.6 mg/L of α-

farnesene (a precursor of squalene or biodiesel) from CO2 (Figure 5) [38]. 

However, the final yield of α-farnesene was relatively low compared to 

either phototrophic sesquiterpene production or heterotrophic α-farnesene 

production [31]. Thus, in this study, modular engineering to regulate gene 

expression, protein engineering of farnesene synthase (FS), and 

evolutionary engineering were performed in Syn7942 in order to increase 

the production of α-farnesene from CO2.  
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3.2 Materials and Methods 

3.2.1 Strains and plasmid construction. 

All the bacterial strains and plasmids used in this study are listed in 

Table 4. E. coli DH10β was used for gene cloning and was grown in 

Luria-Bertani (LB) medium supplemented with 50 µg/mL kanamycin at 

37°C. Different ribosome binding sites (RBSs) from pSe2Bb1k-AFS 

(apple fruit - AFS1; GenBank accession number AY182241) plasmid [38] 

were designed using the RBS Calculator software v2.0 (Salis Lab; De 

Novo DNA, CA). The translation initiation rates (TIR) of the RBS sites 

were calculated at 10-fold different levels (i.e. 56871, 5687, 568 arbitrary 

unit. [a.u.]). Polymerase chain reaction (PCR) components were 

purchased from Phusion High-Fidelity PCR Kit (Thermo Fisher 

Scientific™). Briefly, the reactions were running for 30 cycles (Step 2-4), 

which programmed as (1) Initial denature step: 98°C, 30 s. (2) Denature 

step: 98°C, 10 s. (3) Annealing step: 55-68°C, 30 s.  (4) Extension step: 

72°C, 1.15 min. (5) Final extension step: 72°C, 10 min. (6) Cooling down: 

15°C, N/A.  
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Figure 6. Schematic diagram showing the construction of S. elongatus PCC 7942 

strains that produce α-farnesene. The dxs-idi-ispA genes were codon-optimized 

to Syn7942 from E. coli (given by Dr. Choi [39] from FMB laboratory) and then 

introduced into the neutral site I (NSI) for supplying the FPP intermediate from 

CO2 (OverMEP module). The farnesene synthase gene (AFS) (Malus  

domestica Borkh [128]) was introduced in the neutral site II (NSII) of S. 

elongatus genomic DNA (FS module) with different RBS sequences (RBS-C, 

RBS-1, RBS-2, RBS-3). The details of the RBS sequences are shown in Table 3. 

For plasmid construction, we used SynBrick expression plasmids 

for integration into the chromosome of the Syn7942 strain[38] (Figure 6); 

this was done based on the BglBrick standard cloning method [129]. All 

the plasmids were constructed using pSe2Bb1k-AFS with various RBS 

sequences. To generate random mutations in the AFS gene, error-prone 
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PCR was performed using GeneMorph® II random mutagenesis kit 

(Agilent Technologies, USA) [130]. The mutation frequency (low or high) 

was controlled by the initial target quantity (ng) of the AFS gene product; 

for regulating the mutation frequency, both low (500 ng) and high (25 ng) 

amounts of target were employed in this study. After the PCR products 

were cleaned up, the mutated PCR products were cloned into pSe2Bb1k-

RBS3-AFS, then transformed into competent E. coli cells. Hundreds of E. 

coli colonies from each plate were then collected with a cell scraper and 

resuspended in LB medium, resulting in pools of pSe2Bb1k-AFS 

(erPCR). The primers used for gene cloning and DNA sequencing are 

described in Table 3 and Table 10.  

Table 3. RBS sequences and oligonucleotides used for gene cloning in this 

study. 

Name  Relevant characteristics (5’ → 3’) Source 

RBS-1 
CAAAagatctAATAAAGGAGGTTTAAAGC

TATGgaatttcgcgtgcacctgcag 
This study 

RBS-2 
CAAAagatctTAGCATCGAACATAGAGAG

GTCAGACATGgaatttcgcgtgcac 
This study 

RBS-3 
CAAAagatctTGTATTCGTAGGGTACAGTT

TATGgaatttcgcgtgcacct 
This study 

RBS-R TTGGATGCTCTTGAATTGCC This study 

Note: The restriction enzyme sites were shown as lower cases. RBS and 

coding regions of AFS were underlined and bold letters, respectively. 
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3.2.2 Transformation of engineered S. elongatus PCC 7942.  

Transformation of Syn7942 was performed as described previously 

[38, 131]. Three recently engineered RBS plasmids were transformed into 

the strain, SeHL33, which overexpressed the key MEP pathway enzymes 

[38]. In addition, the pools of pSe2Bb1k-AFS (erPCR) were used for 

constructing pools of recombinant cyanobacteria using the strain, 

SeHL33. The presence of colonies was observed on BG11 agar with the 

addition of spectinomycin (10 µg/mL) and kanamycin (5 µg/mL), which 

indicated successful transformation of the resultant plasmids into 

Syn7942. To validate successful chromosomal integration, the genomic 

DNA from each strain was extracted and confirmed by PCR and DNA 

sequencing of targets into neutral site II (NSII). The primers used to 

verify the sequences were NSII-fw (5’-TAA TGT TTT TTG CGC CGA 

CA-3’) and NSII-rv (5’-TTG GAT GCT CTT GAA TTG CC-3’) for NSII. 

The relevant characteristics of the recombinant Syn7942 strains are 

described in Table 4. 
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Table 4. Bacterial strains and plasmids used in this study. 

 1 

Strain or plasmid Relevant characteristics References 

Strains   

   E. coli DH5α 
F−(80d lacZ M15) (lacZYA-argF) U169 

hsdR17(r– m+) recA1 endA1 relA1 deoR96 
[105] 

S. elongatus PCC 7942 Wild type (ATCC 33912) ATCC 

SeHL33 
S. elongatus PCC 7942 NSI::Bb1s-dxs-idi-

ispA 
[106] 

SeHL32FS SeHL33 NSII::Bb1k-AFS [86] 

FMB-1236 SeHL33 NSII::Bb1k-RBS1-AFS This study 

FMB-1237 SeHL33 NSII::Bb1k-RBS2-AFS This study 

FMB-1238 SeHL33NSII::Bb1k-RBS3-AFS This study 

FMB-1239 
SeHL33 NSII::Bb1k-RBS3-AFS, laboratory 

adapted strain under 0.5 mM IPTG 
This study 

FMB-

1238(erPCR) 

FMB-1238 strain variants by pSe2Bb1k-

AFS(erPCR) integration 
This study 

Plasmids   

pSe2Bb1k-GFP 
pUC, Kmr, LacI, Ptrc, BglBrick sites, NSII 

target sites, SyneBrick Vector 
[107] 

pSe2Bb1k -AFS 

pUC, Kmr, LacI, Ptrc, NSII target sites,  

the farnesene synthase gene (AFS) originated 

from Malus  domestica Borkh[101].; the AFS 

gene(se.co) with 3238 a.u. RBS 

[86] 

pSe2Bb1k-RBS1-

AFS 
pSe2Bb1k-AFS with 56871 a.u. RBS This study 

pSe2Bb1k-RBS2-

AFS 
pSe2Bb1k-AFS with 5687 a.u. RBS This study 

pSe2Bb1k-RBS3-

AFS 
pSe2Bb1k-AFS with 568 a.u. RBS This study 

pSe2Bb1k-

AFS(erPCR) 
pSe2Bb1k-RBS3-erPCR products of AFS This study 

Note: (se.co) represents that the gene sequence is codon-optimized to S. 

elongatus PCC 7942. 
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3.2.3 Cyanobacterial culture conditions and adaptive laboratory 

evolution.  

Engineered strains were cultured in 100 mL BG11 medium 

supplemented with 10 mM MOPS (pH 7.5) and were incubated in 5% 

CO2 gas and 95% (v/v) filtered air (flow rate of 10 cc/min). The cultures 

were incubated at 30°C with exposure to 100 µE/m2/s continuous 

fluorescent light [39, 132]. In addition, the medium was supplemented 

with 10 µg/mL each of spectinomycin and kanamycin as a selection 

pressure. For the production of α-farnesene from Syn7942, 1 mM 

isopropyl-β-D-1-thiogalactopyranoside (IPTG) was added to the culture 

medium 24 h after inoculation for induction of gene expression along 

with supplementation with 20% (v/v) dodecane in order to trap the in situ 

α-farnesene produced from the cell culture after induction, in accordance 

with a protocol published in a previous study [38]. For achieving adaptive 

laboratory evolution (ALE), 0.5 mM IPTG was added into the culture 

medium after 24 h of incubation, instead of 1 mM IPTG. 

3.2.4 Quantification of photosynthetic -farnesene production.  

The α-farnesene produced by the cyanobacterial strains was 

determined using gas chromatography (GC; Agilent 7890B, USA), as 

previously described [38]. In brief, 200 µL samples from the dodecane 
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overlay in the culture were collected and diluted with 800 µL ethyl 

acetate containing 5 mg/L α-humulene (No. 53675; Sigma-Aldrich, USA), 

as an internal standard. The samples from the dodecane/ethyl acetate 

mixture were subsequently quantified using trans-β-farnesene (No. 73492; 

Sigma-Aldrich, USA) as a reference standard. 

3.2.5 Quantification of inorganic pyrophosphate and determination 

of enzyme activity by using PiPER™ assay.  

Recombinant Syn7942 strains were grown in 96-well plates 

containing BG11 at 30°C with exposure to 100 µE/m2/s continuous 

fluorescent light. After 3 or 7 days of IPTG induction, the cell samples 

were prepared for the measurement of intracellular inorganic 

pyrophosphate (PPi) using PiPER™ assay. The preparation of the 

samples and solutions was performed according to the PiPER™ assay kit 

(Thermo Fisher Scientific™) manual. In brief, the cyanobacterial cell 

culture (100 µL) was centrifuged at 3667  g for 10 min, the cell pellets 

in the 96-well plates were resuspended before lysing with B-PER™ 

bacterial lysis buffer (Thermo Fisher Scientific™) [133] and then, the cell 

extracts were continually diluted with the reaction buffer before adding a 

reaction solution (containing maltose phosphorylase and Amplex red 

reagent) to a final volume of 100 µL per well. The changes in the PPi 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

53 

 

 
 

levels in the wells containing the mutants were measured by calculating 

the optical density (OD730) per well every 10 min using a microplate 

reader (Infinite® M Nano, Tecan Life Science) and then, these results 

were compared with those of the control (Figure 18). The enzyme 

activity assay was also performed in accordance with the guidelines 

provided in the PiPER™ assay kit manual using 2 µg farnesyl-

pyrophosphate (FPP, No. F6892; Sigma-Aldrich, USA) as the substrate. 

Quantification of the protein was done using the Quick Start™ Bradford 

Protein Assay (Bio-Rad). 
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3.3 Results and discussion 

3.3.1 RBS optimization for improved α-farnesene translation 

The new plasmids were redesigned and constructed with four 

different RBSs (56781, 5687, 3238, and 568 a.u. TIR) controlling AFS 

gene. The chromosomally integration was occurred in host strain 

(SeHL33; OverMEP module) [38] to obligate the new RBS-optimized 

strains, i.e. FMB-1236, 1237, 0185, and 1238, respectively (Figure 7). 

The results showed that the highest production of of α-farnesene was 

found in the strain with the lowest TIR (FMB-1238; 568 a.u.) with a titer 

of 5.66 ± 0.58 mg/L, whereas α-farnesene was not detected in the highest 

TIR strain (FMB-1236; 56871 a.u.) (Figure 8). In contrast, the FMB-

1238 strain could produce α-farnesene a little higher than a control 

(FMB-0185; 3238 a.u.) from previous study [38]. Additionally, the PPi 

contents were also simultaneously determined as co-products from α-

farnesene conversion, consequently in the lower PPi contents were 

observed in higher TIR strains. 
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Figure 7. Gel electrophoresis of RBS-C and RBS-1, -2, -3 with AFS PCR 

products. The PCR products electrophoresed on a 1.5% agarose gel in 1X TAE 

buffer. From left: lane 1: DNA ladder, lane 2-6: RBS-C (1,788 bp), lane 7-11: RBS-1 

(1,778 bp), lane 12-16: RBS-2 (1,784 bp), land 17–21: RBS-3 (1,779 bp). 

Regarding protein translation, the lower TIR for AFS protein, i.e. 

568-3238 a.u.) might be suitable for the expression of AFS to convert 

FPP into α-farnesene in SeHL33 strain. The predicted translation 

efficiencies by Salis calculator and UTR Designer have been reported no 

correlation between the predicted and experimental expression of eYFP 

and GFP systems in Synechococcus sp. PCC 7002 and Syn6803 [134, 

135]. The translation initiation is a process that the ribosome recognizes 

the start of open reading frame (ORF) and initiates protein translation 

specifically to mRNAs and organisms [136]. In contrast, the translation 

rate of cyanobacteria is unlike to E. coli as they obtain slower growth rate 

and prefer cooler temperatures, which might be the reason behind the 

slower translation rate [137, 138]. Although the slower translation rate 
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could positively allow a more soluble and proper folded proteins by time 

window for the co-translation folding of each domain [139].  

 

Figure 8. Correlations between α-farnesene production (mg/L; black), 

intracellular PPi level (µM; red), and translation initiation rate (TIR) (arbitrary 

unit, a.u.; blue) for the recombinant strains were calculated using the RBS 

calculator. The genotypes of the recombinant strains are shown in Table 4. 

3.3.2 Generation of random AFS mutant libraries  

Further, protein engineering of FS could be beneficial in increasing 

α-farnesene production as an alternative metabolic engineering strategy 

[134]. The random mutagenesis approach is one of the powerful tools to 

generate mutant libraries, which could be achieved by physical, chemical 

and biological methods along with high-throughput screening method 

[140, 141]. To increase the enzymatic activity of FS, random mutations 
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were introduced in AFS using Error-Prone PCR in this study due to its 

more specificity to the target gene than either physical (e.g. gamma, X-

rays and UV-C exposure) or chemical (Chemical mutagens act as 

alkylating agents, cross-linking agents, and polycyclic aromatic 

hydrocarbons (PAHs)) techniques [141, 142]. 

For the generation of AFS mutant libraries, 3.15 to 4.59 × 102 and 

6.88 to 7.6 × 103 CFU/µg E. coli transformants were used. A pool of 

integration plasmids with AFS mutations was transformed into the FMB-

1238 strain. Over 500 Syn7942 colonies were collected and cultured. As 

the specific PPi levels and AFS activities that measured following a 

PiPER™ assay correlated with the α-farnesene production, we analyzed 

the cultures growing in the 96-well microtiter plates using this method to 

compare the α-farnesene production among selected mutants (Figure 9 

and 10). The titer of the best α-farnesene producing strain among mutant 

was lower than that of the control (FMB-1238). It is possible that 

hundreds of strains used for the testing might produce low titer as more 

than 100,000 strains were tested for industrial strain development using 

fluorescence-activated cell sorting (FACS) system [125]. For instance, 

the combination of Error-Prone PCR using GeneMorph® II with FACS 

had been already successful in phototrophic purple bacterium  

Rhodobacter capsulatus to re-engineer nifH variants purposed for 
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improving H2 production [143]. After sequencing 20 E. coli variants per 

library (selected from ~4 × 106 clones per library), they could not 

investigate the obvious mutational incidences and then approximately 8 × 

105 R. capsulatus clones per library were achieved after mating process. 

Only 0.024% of total population had shown higher cell emitting 

fluorescence than the main population, thus large number of libraries is 

necessary for FACS. Moreover, the random mutation could occur 

undesirable consequences – e.g. frame shift mutation or amino acid 

substitutions, which could lead to yield inactive proteins. As proof, the 

point mutation of amino acids at position 330 (D→A) and 487 (S→A) 

could be resulted in a loss of sesquiterpene synthase activity on AFS 

enzyme due to inactivated metal binding sites – i.e. Mn2+/Mg2+ and K+, 

respectively [144, 145]. On the other hand, the substitution of S487K by 

site-directed mutagenesis could enhance 4-fold on sesquiterpene synthase 

activity of AFS in the absence of potassium [145]. The reduction of initial 

DNA concentration as a substrate of error-prone PCR might also increase 

the chance of mutations [130, 134]. In addition, a FACS-assisted α-

farnesene screening system has not been developed yet due to lack of a 

fluoresce-based biosensor. Thus, the limitations in high-throughput 

screening (HTS) for α-farnesene production could contribute to the 

failure of strain selection [146].  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

59 

 

 
 

 

Figure 9. Measurement of specific PPi levels in the α-farnesene producing strain. 

The PPi levels in the cultures (A) 3 days after induction and (B) 7 days after 

induction were analyzed using the PiPER™ assay kit. The strains used for this 

assay were the cyanobacterial mutants generated using error-prone PCR library 

(FMB-1238 (erPCR), white bar), metabolically engineered strains (FMB-0185, 

blue; FMB-0128, green), and the evolved strain (FMB-1239, red). The PPi 

signals were normalized to the optical density at 730 nm.  

3.3.3 Push-and-pull strategy and engineered RBS-Syn7942 fitness 

In a ‘push-and-pull strategy’ of metabolic engineering [40, 147, 

148] that supplies the key intermediaries and increases the rate of 

formation of the final product, controlling the accumulation of the key 
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intermediate could be essential for enhancing the production if the key 

intermediate is toxic. The pull strategy was not effective for α-farnesene 

in Syn7942. Interestingly, different specific PPi levels were observed on 

day 7 after induction in both FMB-0185 or FMB-1238 strains, compared 

to their levels on day 3 days after induction (Figure 9 and 10). Based on 

this, we speculated that the cell growth and production of α-farnesene 

could be imbalanced in recombinant strains due to the formation of a 

toxic intermediate, FPP. 

 

Figure 10. Enzyme activity of FS in control and ALE strains.  The FS activities 

of (A) day-3 and (B) day-7 after induction were analyzed using the PiPER™ 

assay kit with the substrate, FPP. 

The correlation of the predicted TIR and gross differences in 

expression should be tested by the most tightly controlled IPTG induction 

system for engineered Syn7942 [134]. Then, we investigated the 
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imbalanced gene expression systems for α-farnesene production in the 

recombinant strains by lowering the IPTG concentration, which led to 

lower expression of AFS and the key MEP enzymes. Then the induction 

with 0.5 mM IPTG was investigated that had caused severe growth 

inhibition in all four cyanobacterial strains (FMB-0185, FMB-1236, 

FMB-1237, FMB-1238), all of which had different FS activities as 

demonstrated by the measured PPi levels (Figure 11). This growth 

inhibition could be due to the accumulation of FPP resulting from 

imbalanced gene expression [116, 149]. Interestingly, the growth of only 

the FMB-1238 strain recovered and improved after 10 days (Figure 11) 

while the other cyanobacterial cells did not grow at all. Subsequently, the 

laboratory evolved strain FMB-1238, which was renamed as FMB-1239, 

was transferred to fresh BG11 medium under the normal induction 

conditions (1 mM IPTG). Compared to the production of cyanobacterial 

farnesene in other strains, FMB-1239 showed the maximum productivity 

with 1197 µg/L/d (7.18 ± 0.36 in 6 days), which was higher than that of 

the control (SeHL32FS; 600 µg/L/d) [38] as well as Anabaena sp. PCC 

7120 (20.4 µg/L/d) [37] by approximately 2- and 59-fold, respectively. In 

this study, the evolved strain exhibited increased production rates during 

log (2 to 6 days) to early stationary (6 to 10 days) phases. Moreover, as 

the growth rate in the evolved strain was comparably higher than that of 
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the other strains for up to 20 days, long-term production of the enzyme by 

this strain could be employed at an industrial scale (Figure 11). Thus, the 

adaptive laboratory evolved strain (FMB-1239) showed better cell growth 

and 2-fold higher enzyme production (12.99 ± 1.66 mg/L), compared to 

that of the other strains used in this study (Figure 12).  

 

Figure 11. Adaptive laboratory evolution (ALE) of cyanobacteria for α-farnesene 

production. The growth of the engineered cyanobacterial strains after induction 

with 0.5 mM IPTG. The blue box shows the time period of adaptive evolution. 

The image of cuvettes was taken for the samples A and B.  
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Based on a previous TIR study, FMB-1239 showed the lowest RBS 

strength for AFS expression, which is equal to the value of FMB-1238. In 

parallel, the highest specific PPi value was obtained from the evolved 

strain (FMB-1239) (Figure 9). Although the specific enzyme activities of 

FMB-0185 and FMB-1239 were at the same levels at 3 days after 

induction, the specific enzyme activity of FMB-1239 was higher than that 

of FMB-0185 at 7 days after induction (Figure 10). Thus, we believe that 

the evolved strain might have adapted a gene balancing mechanism for 

the key MEP enzyme and FS gene to eliminate the FPP accumulation. To 

confirm the evolved strain, the native, overexpressed MEP pathway genes 

(dxs, idi, and ispA) and AFS were sequenced otherwise that no mutation 

occurs. Further whole-genome sequencing is required to identify the 

mutations that resulted in the enhanced cellular fitness and α-farnesene 

production. In addition, RNA-sequencing analysis could also be useful 

for understanding the changes in the chromosomal DNA in the evolved 

strain and explain the key genetic points or segments affecting α-

farnesene production-related pathways. 
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Figure 12. The growth of engineered cyanobacterial strains and the evolved 

strain after induction with 1 mM IPTG. α-farnesene production from the 

cyanobacterial cells was determined. The growth and farnesene yield (mg/L) of 

the recombinant strains were measured. The genotypes of the recombinant 

strains are presented in Table 4. All the data are expressed as mean ± standard 

deviation from cultures that were run in triplicate. N.D., not detected; LOD, 

0.045 mg/L; LOQ, 0.136 mg/L.  
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CHAPTER IV 

 

Conclusions 

Microalgae as feedstock for biodiesel production are obviously 

more effective and productive than vegetable oils used in terms of 

environmental and sustainable aspects. Besides the reduction of CO2 

emission, microalgae could also absorb and survive under heavy metals 

stress or limited nutrients conditions e.g. wastewater or harsh 

environment. In this study, the isolated green alga Chlorella was studied 

under P limitation and heavy metals (Fe, Co and Pb) stress conditions to 

achieve an enhancement of lipid content for biodiesel application with 

good quality. Based on the results, the highest increase of lipid content 

was observed with 19% over control under Co stress and P deprivation, 

but the biomass was strongly inhibited. Interestingly, an isolated 

Chlorella sp. showed a good biomass production reaching 0.49 g/L when 

adding Pb with P deprivation condition with 0.13 g/L of lipid production. 

Thus, 1 µM of Pb is not harmful to this Chlorella but could favorably 

trigger the cell growth. The fatty acid profiles revealed the increase of 

UFAs under sole P deprivation but most in MUFAs i.e. C16:1. Under Pb 

stress, there is no significant enhancement in PUFAs whereas the 

biodiesel quality was slightly better than non-Pb conditions. However, the 
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biodiesel properties were all in good values in accordance with the EN 

14214 and ASTM D6751 standards. Notably, the energy conversion 

efficiency from stress conditions could provide good TECE% as 

comparable to mixotrophic conditions in previous study. In contrast, this 

study has found a desirable Chlorella and could enhance the lipid content 

and production under various stress conditions over some previous 

studies (Table 5). Hence, the Pb supplement conditions could provide the 

suitable environment in this Chlorella for biodiesel production.  

Moreover, this is the first study on Pb stress with P limitation 

combinations in Chlorella for biodiesel production purpose as the 

reduction of phosphorus could improve the quality of biodiesel.  

Several heterotrophic microbes have been studied on metabolic 

engineering of FPP-derived biofuel production as potential microbial cell 

factories. In this study, a cyanobacterium Syn7942 has been successfully 

developed for improvement in α-farnesene production by synthetic 

biology tools and high throughput analysis, such as the 96-well plate-

based screening method. Moreover, the evolutionary engineering can be 

also used synergistically with metabolic engineering to improve α-

farnesene yield reaching at 12.99 mg/L, which was more than 2-fold 

higher than previous study. The alternative synthetic biology tools are 

expectantly established in further studies to produce efficient 
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cyanobacteria-based bio-solar cell factories, such as dynamic switches 

that regulate carbon fluxes and genetic elements triggered by intracellular 

cellular responses. In conclusion, the physiological and genetic 

modification of microalgae and cyanobacteria could offer the promising 

tools to enhance biodiesel precursors.  
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Appendix A 

The BG11 medium recipe 

Table 6. BG11 medium recipe. 

Components Amount 
Final 

concentration 

NaNO3 1.5 g 17.6 mM 

K2HPO4 0.04 g 0.23 mM 

MgSO4·7H2O 0.075 g 0.3 mM 

CaCl2·2H2O 0.036 g 0.24 mM 

Citric acid 0.006 g 0.031 mM 

Ferric ammonium citrate 0.006 g 0.021 mM 

EDTA (disodium salt) 0.001 g 0.0027 mM 

Na2CO3 0.02 g 0.19 mM 

Trace metal mix A5 1.0 mL   

Na2S2O3·5H2O 

(agar media only, sterile) 

49.8 g/200 mL 

dH2O 
1 mM 

Agar (if needed) 10.0 g   

Distilled water 1.0 L   

*pH adjustment by (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) 

buffer (HEPES) at pH 7.5. 

Table 7. Trace metal mix A5 recipe. 

Components Amount 

H3BO3 2.86 g 

MnCl2·4H2O 1.81 g 

ZnSO4·7H2O 0.222 g 

NaMoO4·2H2O 0.39 g 

CuSO4·5H2O 0.079 g 

Co(NO3)2·6H2O 49.4 mg 

Distilled water 1.0 L 
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Appendix B 

TAE buffer preparation 

 

Working solution 

 1X 0.04 M Tris acetate 

0.01 M EDTA 

 

Concentrated stock solution (per liter) 

 242 g Tris base 

 57.1 mL glacial acetic acid 

 100 mL 0.5M EDTA (pH8.0) 
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Appendix C 

Biomass, lipid content and lipid production calculation 

 

According to A-y Liu, et al. [154] calculation, Biomass (B) was 

reported as grams of dried biomass in per liter of culture and lipid content 

(C) was reported as percentage of dry mass (% of DCW), while lipid 

production (P) was reported as grams per liter using the following 

equation for calculation:  

P= CB 

where P is lipid production (mg/L); C is lipid content (% of DCW); 

B is biomass (g/L).  

Total lipid content calculated as percent dry weight by: 

Total lipids content (%DCW) =  
g dried lipids

g dried biomass
× 100 
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Appendix D 

The input light energy calculation 

The input light energy  was calculated as H-Y Ren, et al. [72] 

studies as follows: 

𝐼𝑛𝑝𝑢𝑡 𝑙𝑖𝑔ℎ𝑡 𝑒𝑛𝑒𝑟𝑔𝑦 =
(𝐿𝑖𝑔ℎ𝑡 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 × 𝐴𝑟𝑒𝑎 𝑜𝑓 𝑙𝑖𝑔ℎ𝑡 𝑒𝑥𝑝𝑜𝑠𝑒𝑑 × 𝑇𝑖𝑚𝑒)

1000
 

 where the unit of input light is kJ, light intensity is W/m2, area of 

light exposed is m2 and time is s.  

 This study, the light intensity of 9.09 W/m2 is chosen and the 

duration time of experiment was 3 days or 72 h. The effective area of 

light intercepted in each flask was calculated as figure below [113]: 

 

The calculation of 500 mL Erlenmeyer flask is based on the 

average area of top and lateral area is used for energy calculation, which 

the area of light exposed is calculated equal 0.008012 m2. Therefore, the 

input light energy in this experiment is 18.88 kJ. 

  

Top 
Lateral 
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Appendix E 

Preliminary studies in Chlorella cultivation and pretreatment 

 The preliminary studies were not principally used in this study but 

only for observing the minor effects on Chlorella from pretreatment of 

cells by microwave (Figure 13) and different growth rates from 2 

medium cultures (Figure 14), where each condition had been done only 

single sample. 

 

Figure 13. Pretreatment of Chlorella by microwave. Total lipids from samples 

disrupted with highest temperature at different time points by microwave. Note: 

Dry cells are all collected from same day and same weights (day-18) and 

extracted the total lipid for twice times because of soap formation. 

 The pretreatment of microalgal cells by microwave and ultrasonic 

had been already studied on their effects on lipid extraction [155]. The 

results demonstrated that the increased length of treatment time could 
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improve the lipid extraction yield (%) to the maximum at 11.6% in both 

methods. However, when the lipid yields remained stable after 75 and 

1200 s pretreated with microwave and ultrasound, respectively. 

 The difference of components concentration between BG11 and 

Modified Chu13 are shown as a table below:  

Table 8. The comparison of component final concentrations in BG11 and 

M.Chu13 media.  

Components 

Final concentration 

BG11 
M. Chu13 

[156] 

NaNO3/KNO3* 17.6 mM 1.98 mM* 

K2HPO4 0.23 mM 0.23 mM 

MgSO4·7H2O 0.3 mM 0.41 mM 

CaCl2·2H2O 0.24 mM 0.54 mM 

Citric acid 0.031 mM 0.52 mM 

Ferric ammonium 

citrate 
0.021 mM 0.038 mM 

EDTA 0.0027 mM - 

Na2CO3 0.19 mM - 

 The both of growth rates were observed for 24 days and found that 

slightly increasing for 3 days. In contrast, the growth became to 

exponential phase (3-12 days) only in BG11 medium whereas the 

exponential phase was reached slower (9-18 days) but could elevate 

higher cell density in M.Chu13 medium. 
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Figure 14. The comparison of Chlorella growth in BG11 and M.Chu13 medium 

for 24 days.  
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Appendix F 

Fatty acid profiles and biodiesel properties under -N and Pb 

Table 9. Fatty acid profiles and biodiesel properties as per ASTM D675 and 

EN14214 under combined -N and Pb stress conditions. Fatty acid profiles 

of Chlorella treated with 1 µM of Pb under normal and P-limited BG11 

for maximum lipid production. Fatty acids were measured after 1 days of 

incubation. All the data are expressed as mean ± standard deviation from 

cultures that were run in triplicate; Values are given as percent (%) of 

total fatty acids. SFA Saturated fatty acid, UFA unsaturated fatty acid. n.d. 

Not detected. aC18:2 and C18:3 total %. 

Fatty acids composition (%) 

N concentration 100% 50% 0% 

Pb (µM) 0 0.1 1 10 0.1 1 10 

Decanoic acid (C10:0) 8.21 8.57 n.d. 9.75 n.d. n.d. 10.04 

Myristic acid (C14:0) 11.86 16.78 ≤0.01 12.98 ≤0.01 ≤0.01 13.08 

Palmitic acid (C16:0) 42.27 40.27 59.84 42.00 55.41 51.52 36.86 

Palmitoleic acid (C16:1) 15.52 13.06 26.57 13.08 12.88 26.07 17.24 

Stearic acid (C18:0) 17.94 13.13 9.55 17.21 17.64 12.53 9.83 

Oleic acid (C18:1) ≤0.01 13.78 ≤0.01 ≤0.01 ≤0.01 ≤0.01 10.88 

Othersa 1.20 0.94 4.04 4.98 14.07 9.89 2.08 

SFAs 83.28 78.75 69.39 81.94 73.23 64.05 69.81 

UFAs 16.72 26.84 30.61 18.06 26.77 35.96 30.20 

Factors EN ASTM Biodiesel properties 

SV  NA NA 226.50 238.87 215.98 227.79 212.41 214.17 228.21 

IV  120 NA 16.57 25.43 30.16 17.54 25.42 34.92 28.87 

CN >51 >47 66.67 63.43 64.79 66.32 66.28 63.93 63.72 

CP  NA NA 18.82 16.19 26.48 17.10 24.82 22.11 14.40 

HHV  NA NA 38.90 41.06 39.21 38.86 39.33 39.26 38.82 

KV  3.5-5.0 1.9-6.0 3.47 3.67 3.73 3.42 3.92 3.78 3.33 

Density 0.86-

0.90 

NA 0.87 0.92 0.87 0.87 0.87 0.87 0.87 

Units of factors. SV (mg KOH/g), IV (g I2/100g), CP (°C), HHV 

(MJ/kg), KV (mm2/s), Density (g/cm3).  
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Appendix G 

Map of Se2Bb1k-AFS vector 

 

Figure 15. Map of Se2Bb1k-AFS vector. Acknowledged locations of primers, 

neutral sites, ORFs are including: forward (prHW882) and 3' reverse 

(prHW883) primers (purple arrows). Neutral site II a and b (dark blue 

sites). Kanamycin resistance gene (green site). Trc promoter (light blue 

site). RBS (yellow). AFS gene (red arrow). LacI system is used for 

controlling AFS expression. This vector is derived from HJ Lee, et al. 

[38].  
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Appendix H 

The list of primers used in this study 

Table 10. Oligonucleotides used for DNA sequencing. 

Name  Relevant characteristics (5’ → 3’) Source  

Promoter checking 

Native MEP   

dxs-proF GGGTCGACAGACTGAGCCCA This study 

dxs-proR TGTCGTTGAGCACGACCAAC This study 

dxr-proF CGAGACCGGCCAAACCAG This study 

dxr-proR CAGTTACTTGCGACAGCCGT This study 

ispD-proF GCACTCAAATTCCAGCCTCC This study 

ispD-proR GCTCAACGACGACATCAATC This study 

ispE-proF CGCTTCCAGTTCTGGTTGTG This study 

ispE-proR TTGGCCTTCGTAAAGTTGG This study 

ispF-proF TGGGATCGAAACGTACGCTG This study 

ispF-proR CGCCTCCTCCACGGACTGAT This study 

ispG-proF CTCGCGCAGGCTGGTGACTA This study 

ispG-proR CTCAGAAGCCGATAAAGAC This study 

ispH-proF CTTTCCGCAGCTCCAAG This study 

ispH-proR GAGCTGGTGGCGACCGTCTC This study 

idi-proF CAACAAGCCCTTCGGCTCCA This study 

idi-proR TGCCTGTGAACGTCGGTACC This study 

ispA-proF TCTGACGACCGATTCGAC This study 

ispA-proR CCTGGAATGGGTTGAGATG This study 

NSI   

UP-pTrcI CGACAGGTTTCCCGACTGGA This study 

Pr_AFS-R1 CAGCCGTTGCGCAGGTATTC This study 

NSII   

Up-pTrcI CGACAGGTTTCCCGACTGGA This study 

DXS-R1 TAAAGGCCAGGTGCAGGCGGG This study 

Gene checking   

Native MEP   

7942_dxs_F ACGTTCACTGCAGCCAGCAG This study 
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7942_dxs_R CATGATCAGTCCAGGTCTTG This study 

7942_dxr_F TCGCCTCCCTCGCTTCAGCA This study 

7942_dxr_R TAGACCTCAGGCACATCGAT This study 

7942_ispD_F ATCGGGGTAAGCTGAAGTC This study 

7942_ispD_R GCACTCAAATTCCAGCCTCC This study 

7942_ispF_F ATCTAGGCCACATGACGTCA This study 

7942_ispF_R TGGGATCGAAACGTACGCTG This study 

7942_ispE_F ATCAGATTGCGCCCGAAGC This study 

7942_ispE_R GAGCTAGTGCTGGATGGGAT This study 

7942_ispG_F TCGCCCAAGGGTTGGTCGAT This study 

7942_ispG_R GCGAAAACCGCCTATCAGGA This study 

7942_ispH_F GCAATTGGCGATCGCGGCTT This study 

7942_ispH_R GTGGAGTCGAGAGTCACGAT This study 

7942_idi_F CAGCACATGCCAGTTCAGAC This study 

7942_idi_R GTTGGACCAATGACCGTGGC This study 

7942_ispA_F GTCAAGCTGAAGGTGGGCAC This study 

7942_ispA_R CGGTAGCGAAATAGCGATCG This study 

NSI   

DXS-F1 CGTGTCGCTCAAGGCGCACT This study 

DXS-R1 TAAAGGCCAGGTGCAGGCGGG This study 

idi-F1 AACCCGTGCCCGTGCTGA This study 

idi-R1 TACACCAGAAAGGGGCGCAG This study 

ispA-F1 ATCGATGCCACCCCCTGGG This study 

ispA-R1 AGCCGAACGCCCTAGGTATA This study 

NSII   

PrHW882F TAATGTTTTTTGCGCCGACA FMB lab collection 

PrHW883R TTGGATGCTCTTGAATTGCC FMB lab collection 

Pr_AFS-F1 CACCACTTTGCCCACCTGAA This study 

Pr_AFS-R1 CAGCCGTTGCGCAGGTATTC This study 

Pr_AFS-F2 CTACCTGATCAACCAGCGCC This study 

Pr_AFS-R2 CATCGCCATCTTTGTACAGG This study 
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Appendix I 

The protein structure and domains of AFS  

 

Figure 16. Swiss model of (E,E)-α-farnesene synthase (Q84LB2) of Malus 

domestica (Apple).  

 SW Pechous, et al. [128] had reported that the RR(X8)W motif 

might play a role in reaction of acyclic sesquiterpene synthase and yield 

α-farnesene. 

 

Figure 17. Domains within Malus domestica protein AFS1_MALDO (Q84LB2). 

Domain1: terpene synth; Range 43-219 aa. Domain2: terpene synth C; 

Range 251-518 aa. PDB domain: 33-575 aa. SCOP domain: 547-574 aa. 

Low complexity region: 427-440 aa. 

  

(http://smart.embl-heidelberg.de/smart/job_status.pl?jobid=11514514280436301539586678PWLChakvpj) 

http://smart.embl-heidelberg.de/smart/job_status.pl?jobid=11514514280436301539586678PWLChakvpj
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Appendix J 

The optimization of PiPER assay in this study 

 

 

Figure 18. An image of PPi standard from PiPER assay. From left: 0, 1, 3, 5, 7, 10, 12, 

15, 17 and 20 µM of PPi. 

 

Figure 19. An optimization of culture and Tris-HCl solution ratios. The 

fluorescence and absorbance achieved from PPi signals were measured by 

microplate reader (Infinite® 200 PRO, Tecan). The three ratios were tested; (A) 

1:3 (B) 2:3 (C) 1:1. All the data are expressed as mean ± standard deviation from 

cultures that were run in triplicate.  
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Appendix K 

The scheme of generation of random mutants and PPi analysis 

 

Figure 20. Scheme of generation of random mutants and PPi analysis. 

Generation of mutants by error-prone PCR. The template used in 

error-prone PCR was pFMB786 (described in Table 4). Error-prone PCR 

was performed by using GeneMorph® II Random Mutagenesis Kit 

(Agilent) and following its manual instruction, which high- and low-rate 

of mutation were obtained from 25 and 500 ng of initial template, 

respectively. Randomly mutated PCR libraries were cut and ligated with 

pSe2Bb1k plasmid backbone before transformed into E. coli DH10β. 

Random-mutated plasmids were continually collected and transformed 
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into SeHL33. The colonies selection was done with cultivation on BG11 

supplemented with spectinomycin and kanamycin. 

Collection and extraction of 96-well cultures. Each selective colony 

was inoculated in 96-well microplate along with controls until reaching 

OD730 >1 and then transferred 100 µL of culture to new 96-well plates 

(Clear 96-Well Plate, Greiner Bio-One) containing BG11 with 1 mM 

IPTG addition. Preparation of samples before fluorescence screening was 

firstly collecting cell pellets and then removing supernatants. Cell pellets 

were then washed and lysed by mixing with pH 7.5 Tris-HCl and lysis 

buffer (B-PER™, Thermo Fisher Scientific™) respectively. Diluted cell 

extracts from day-3 and -8 after induction were transferred to new 96-

well plate (µClear® 96 Well Plate, Greiner Bio-One) for PPi signal 

detection and OD730 measurement.  

Analysis of PPi content and enzyme activity by PiPER™. PiPER™ 

reaction solution must be prepared fresh before use (described in the 

instruction) and added into 96-well plate containing cell extracts (with 

100 µL in total volume). The reaction was run for 30 – 60 min at 37°C in 

microplate reader. Resofurin fluorescence was measured and calculated at 

560 nm with 590 nm excitation wavelength. Note that the enzyme activity 

assay is described in second part of instruction.  
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Appendix L 

The repeated experiments of ALE cultivation 

  

To confirm the potential of ALE strain in farnesene production, the 

repeated cultivation (SET2) was parallelly observed, which the starter in 

SET2 was obtained from 20-day cell culture from SET1. 

 

Figure 21. The repeated cultivation of ALE strain. 20-day cell culture were re-

inoculated twice to confirm the efficiency of α-farnesene production with total 

40 days. The second set can produce α-farnesene up to 14 mg/L. All the data are 

expressed as mean ± standard deviation from cultures that were run in duplicate. 
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Figure 22. The comparison of control and ALE strain. ALE strain obtains 2-fold 

higher ability of α-farnesene production than control in 10-day cultivation, 

including growth rate. All the data are expressed as mean ± standard deviation 

from cultures that were run in duplicate. 
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 Appendix M 

The determination of dxs and AFS expression level 

by RT-qPCR 

 

 
 
Figure 23. The relative mRNA expression level of dxs and AFS in control, RBS-3 

and ALE strain. The 3 and 7-days induction of each strain were determined as 

mid-log and late-log stage in order to observe the changes of dxs (E. coli) and 

AFS expression. USA). Quantitative real-time PCR was performed using a 

TaqMan™ Gene expression Master Mix reagent (Applied 

Biosystem, USA) on a 7300-system instrument (Applied Biosystem, Foster City, 

CA, USA) in accordance with the manufacturer’s instructions. The rrsB gene 

encoding 16S RNA ribosomal RNA was used as housekeeping gene 

(5’TAMRA TaqMan™). The amplification conditions were as follows: 10 min 

denaturation at 95 °C; 40 cycles at 95 °C for 15 s, at 60 °C for 1 min. 
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