CHAPTER II

LITERATURE REVIEW

An increase in the number of people in the world having health problems has been caused by various diseases, especially cancers. Discovering new compounds from natural products is very important for formulating new drugs. Endophytic fungi have been recognized as a new source for pharmaceutically important compounds that can be used in the treatment of various life threatening diseases. (Strobel 2002).

1. Endophytic Fungi

Endophytic fungi are symbiotic microorganisms living within tissues of the plant hosts without causing noticeable diseases. At times, endophytic fungi are known to prevent the host plants from successfully attacking other organisms and improve the resistance of the host plants by producing the bioactive secondary metabolites (Strobel and Daisy 2003). In addition, these endophytic fungi have been widely investigated for diverse bioactive secondary metabolites exhibiting a variety of biological activities against different diseases. Interestingly, some endophytic fungi have been reported to produce bioactive compounds previously isolated from their host plants (Joseph and Priya 2011).

.

2. Anticancer Agents from Endophytic Fungi

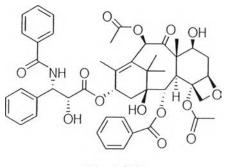
Endophytic fungi have been studied as a source of anticancer agents since the isolation of taxol [1] from the endophytic fungus *Taxomyces andreanae*. Taxol was isolated for the first time from the bark of Pacific yew tree, *Taxus brevifolia*. Nevertheless, the trees are rare, slow growing and produce small amount of taxol, implying its high price in the market. Furthermore, the use of plant source as the unique option has limited the supply of this drug. The isolation of taxol-producing endophytic fungus *Taxomyces andreanae* has provided an alternative approach to gain more amounts of taxol by fungal fermentation (Stierle *et al.*, 1993).

The anticancer agents from endophytic fungi and host plants are summarized in Table 1, and their chemical structures are shown in Figure 1.

.

Table 1. Anticancer agents from endophytic fungi.

.


Compound	Endophytic fungus	Host plant	Reference	
Taxol [1]	Taxomyces andreanae	Taxus brevifolia	(Stierle <i>et al.,</i> 1993)	
Torreyanic acid [2]	Pestalotiopsis microspara	Torreya taxifolia	(Lee <i>et al.,</i> 1996)	
Sequoiatone A [3]	Aspergillus parasiticus	Sequoia sempervirens	(Stierle <i>et al.,</i> 1999)	
Rubrofusarin B [4]	Aspergillus niger IFB-E003	Cynodon dactylon	(Song <i>et al.,</i> 2004)	
Camptothecin [5]	Entrophospora infrequens	Nothapodytes foetida	(Puri <i>et al.,</i> 2005)	
	Fusarium solani	Camptotheca acuminata	(Kusari <i>et al.,</i> 2009)	
Periconicin B [6]	Periconia atropurpurea	Xylopia aromatic	(Teles <i>et al.,</i> 2006)	
Podophyllotoxin [7]	Trametes hirsuta	Podophyllum hexandrum	(Puri <i>et al.,</i> 2006)	
Radicicol [8]	Chaetomium chiversii	Ephredra fasciculata	(Turbyville <i>et al.,</i> 2006)	
Beauvericin [9]	Fusarium oxysporum EPH2R _{AA}	Ephedra fasciculata	(Zhan <i>et al.</i> , 2007)	
Bikaverin [10]	Fusarium oxysporum CECIS	Cylindropuntia echinocarpus		

6

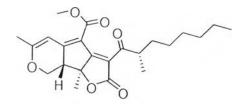
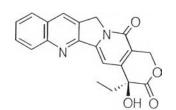
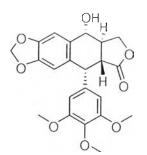
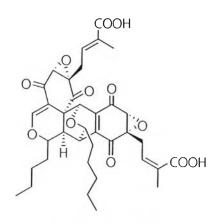


Table 1. (continued)

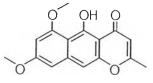

Compound	Endophytic fungus	Host plant	Reference	
Daldinones C-D	Huppy den truncatum IEP 19	Artemisia annua		
[11-12]	Hypoxylon truncatum IFB-18	Artemisia annua	(Gu et al., 2007)	
Alternariol [13]	Alternaria sp.	Polygonum senegalense	(Aly et al., 2008)	
Tauranin [14]	Phyllosticta spinarun	Platycladus orientalis	(Wijeratne <i>et al.,</i> 2008)	
Cochliodinol [15]	Chaetomium sp.	Salvia officinalis	(Debbab <i>et al.,</i> 2009)	
Eutypellin A [16]	Eutypella sp. BCC 13199	Etlingera littoralis	(Isaka <i>et al.,</i> 2009)	
Sclerotiorin [17]	Cephalotheca faveolata	Eugenia jumbolana	(Giridharan <i>et al.,</i> 2012)	


Taxol [1]

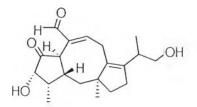
Sequoiatone A [3]

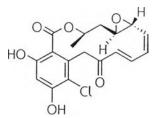


Camptothecin [5]

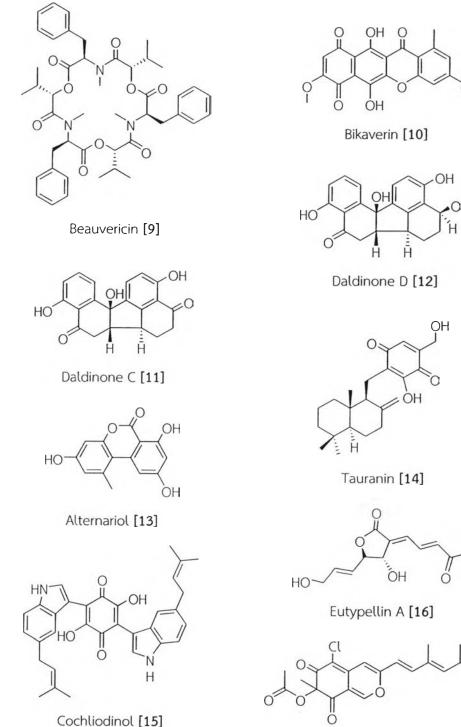


Podophyllotoxin [7]


Figure 1. Anticancer agents from endophytic fungi.


Torreyanic acid [2]

Rubrofusarin B [4]



Periconicin B [6]

Radicicol [8]

Cochliodinol [15]

Sclerotiorin [17]

H

Figure 1. (continued)

3. Antileukemic Agents from Endophytic Fungi

The screening of 172 endophytic fungi isolated from Chinese medicinal plants showed 13.4 % of endophytes produced antileukemic substances on HL-60 cell line (Huang *et al.,* 2001). This evidence suggested that endophytic fungi could be an alternative source for discovery of novel antileukemic agents.

The antileukemic constituents found in endophytic fungi together with host plants, cell lines and EC₅₀ are summarized in Table 2, and their chemical structures are shown in Figure 2.

4. Anticancer Agents from Phomopsis

The endophytic fungi in the genus *Phomopsis* belonging to Diaporthaceae family have been reported as the endophytes in several plants and marine organisms. The *Phomopsis* endophytes have been found to be a source of biologically active secondary metabolites, particularly anticancer activity.

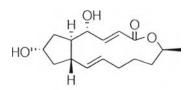
The anticancer agents found in the endophytic fungus *Phomopsis* together with host plants and cell lines are summarized in **Table 3**, and their chemical structures are shown in **Figure 3**.

Table 2. Antileukemic agents from endophytic fungi.

Compound	Cell line (EC ₅₀)		Endophytic fungus	Host plant	Reference
Brefeldin A [18]	HL-60 10.0 ng/m	10.0 pg/m	Aspergillus clavatus	Taxus mairei (Wang et al., 2002)	
		10.0 115/111	Paecilomyces sp.	Torreya grandis	
Altersolanol B [19]	K562	3.7 µg/ml			
Dactylariol [20]	K562	1.3 µg/ml	Pleospora sp. IFB-E006	Imperata cylindrica	(Ge <i>et al.,</i> 2005)
Deoxybostrycin [21]	K562	3.1 µg/ml			
Chaetominine [22]	K562	21.0 nM	Chaetomium sp. IFB-E015	Adenophora axilliflora	(Jiao <i>et al.,</i> 2006)
Penicillenone [23]	P388	1.38 µM	Penicillium sp. Aegiceras corniculatum		(Lin <i>et al.,</i> 2008)
Emodin [24]	THP-1	-	Thielavia subthermophila	Hunoricum porforatum	(Kusari <i>et al.,</i> 2009)
Hypericin [25]	THP-1	-		Hypericum perforatum	
9-deacetoxyfumi	K562	3 10			(Ge et al., 2009)
gaclavine C [26]	K562	3.10 µM	Aspergillus fumigatus	Cynodon dactylon	

Table 2. (continued)

.....


Compound	Cell	line (EC ₅₀)	Endophytic fungus	Host plant	Reference
6-methyl-1,2,3-tri					
hydroxy-7,8-cyclo					
hepta-9,12-diene-11		20	A 11		
-one-5,6,7,8-tetra	THP-1	30 µg/ml	Aspergillus sp.	Gloriosa superba	(Budhiraja <i>et ol.</i> , 2012)
lene-7-acetamide					
[27]					
Ergosta-4,6,8(14),22-	K562	0.35 µg/ml			
tetraene-3one [28]	HL-60	0.03 µg/ml		Vinca rosea	(Metwaly <i>et al.,</i> 2014)
Ergosta-7,9(14),22-	K562	0.35 µg/ml	Nigrospora sphaerica		
triene-3β-ol [29]	HL-60	0. 39 µg/ml			

12

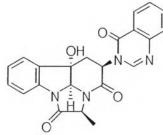
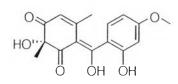
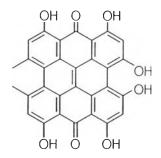


Table 2. (continued)

Compound	Cell line (EC ₅₀)		Endophytic fungus	Host plant	Reference
4-(hydroxymethyl)- 3,5-dimethyldihydro	K562	0.49 µg/ml			
furan-2(3H)-one [30]	HL-60	0.2 µg/ml	Nigrospora sphaerica	Vinco rosea	(Metwaly <i>et al.,</i> 2014)
3-(1-hydroxyethyl)-	K562	0.01 µg/ml			2014)
4-methyldihydro furan-2(3H)-one [31]	HL-60	0.4 µg/ml			

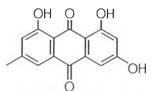


Brefeldin A [18]



Dactylariol [20] Deoxybostrycin [21]

Chaetominine [22]


Penicillenone [23]

Hypericin [25]

÷.

Figure 2. Antileukemic agents from endophytic fungi.

 R_1

ÓН Ö

Altersolanol B [19]

 R_2

'OH

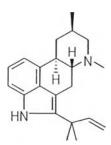
ЮH

 R_2

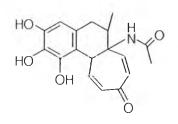
Н

OH

Н

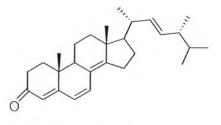

 R_1

Н

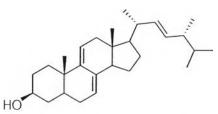

Н

OH

Emodin [24]


9-Deacetoxyfumigaclavine C [26]

6-Methyl-1,2,3-trihydroxy-7,8-


cyclohepta-9,12-diene-11-one-

5,6,7,8-tetralene-7-acetamide [27]

Ergosta-4,6,8(14),22-tetraene-3one

[28]

Ergosta-7,9(14),22-triene-3β-ol [29]

HO

4-(Hydroxymethyl)-3,5-dimethyl

dihydrofuran-2(3H)-one [30]

3-(1-Hydroxyethyl)-4-methyl dihydrofuran-2(3H)-one [31]

Figure 2. (continued)

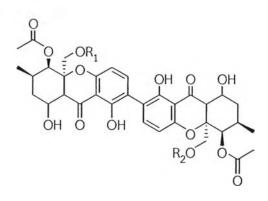
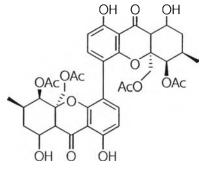
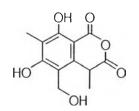
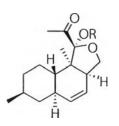


 Table 3. Anticancer agents from Phomopsis.

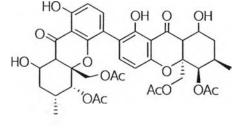

•

Compound	Cell line	Host plant	Reference	
Dicerandrols A-C [32-34]	A549, HCT-116	Dicerandra frutescens	(Wagenaar and Clardy 2001)	
Phomoxanthones A-B [35-36]	KB, BC, Vero	Tectona grandis	(Isaka <i>et al.,</i> 2001)	
Phomopsilactone [37]	HeLa	Cassia spectabilis	(Silva <i>et al.,</i> 2005)	
Taxol [1]	B⊤220, HL251	Taxus cuspidata	(Kumaran and Hur 2009)	
2-(7 [°] -hydroxyoxooctyl)-3-hydroxy-				
5-methoxybenzene acetic acid	Hep-2, HepG2	Excoecaria agallocha	(Huang <i>et al.,</i> 2009)	
ethyl ester [38]				
Oblongolides Y-Z [39-40]	KB, BC, NCI-H187, Vero	Musa acuminata	(Bunyapaiboonsri <i>et al.,</i> 2009)	
Phomoarcherins A-B [41-42]	КВ	Vanilla albidia	(Hemtasin <i>et al.,</i> 2011)	
Pestalotin [43]	PC-3, HT-29			
4-butoxy-6-(1-hydroxypentyl)-5,6-		Corylus avellana	(Akay et al., 2014)	
dihydro-2H-pyran-2-one [44]	MDA-MB-231			

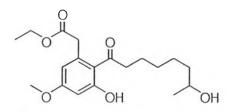

16


R1R2Dicerandrol A [32]HHDicerandrol B [33]AcHDicerandrol C [34]AcAc

Phomoxanthone A [35]

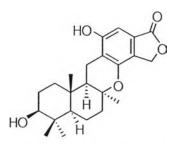


Phomopsilactone [37]

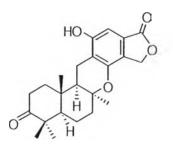


Oblongolide Y [39] R = CH₃

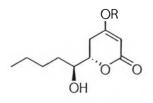
Oblongolide Z [40] $R = CH_2CH_2Ph$


Phomoxanthone B [36]

2-(7'-Hydroxyoxooctyl)-3-hydroxy-5-


methoxybenzene acetic acid ethyl ester

[38]



Phomoarcherin A [41]

Figure 3. Anticancer agents from Phomopsis.

Phomoarcherin B [42]

Pestalotin [43] $R = CH_3$

4-Butoxy-6-(1-hydroxypentyl)-5,6-dihydro-

2H-pyran-2-one [44] $R = CH_2CH_2CH_2CH_3$

Figure 3. (continued)

