THE INFLUENCE OF PROCESSING HISTORY ON THE FRACTURE SURFACES OF HDPE, HDPE AND PET BLENDS, NYLON 6,6, AND PEI

Ms. Chatchayanee Kumcharoen

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of science The Petroleum and Petrochemical College Chulalongkron University in Academic Partnership with The University of Michigan, The University of Oklahoma and Case Western Reserve University 1996 ISBN 974-633-847-1

エイチトチレトコト

Thesis Title	:	The Influence of Processing History on the
		Fracture Surfaces of HDPE, HDPE and PET
		blends, Nylon 6,6 and PEI
Ву	÷	Ms. Chatchayanee Kumcharoen
Program	į.	Polymer Science
Thesis Advisors	4	1. Asst. Prof. David C. Martin
		2. Assoc. Prof. Kanchana Trakulcoo

Accepted by the Petroleum and Petrochemical College, Chulalongkorn University, in Partial Fulfillment of the Requirements for the Degree of Master of Science.

(Prof. Somchai Osuwan)

Thesis Committee

(Asst. Prof. David C. Martin)

ih Trafente

(Assoc. Prof. Kanchana Trakulcoo)

Anivat Social

(Assoc. Prof. Anuvat Sirivat)

ABSTRACT

942001 : MAJOR POLYMER SCIENCE

KEYWORDS: FRACTOGRAPHY / MORPHOLOGY / FRACTURE SURFACE / PROCESSING HISTORY / HDPE / PEI / NYLON 6,6 : CHATCHAYANEE KUMCHAROEN : THE INFLUENCE OF PROCESSING HISTORY ON THE FRACTURE SURFACES OF HDPE, HDPE AND PET BLENDS, NYLON 6,6, PEI : THESIS ADVISORS : ASST. PROF. DAVID C. MARTIN, PH.D. AND ASSOC. PROF. KANCHANA TRAKULCOO, PH.D., 54 PP. ISBN 974-633-847-1

The effects of reprocessing on the mechanical fracture surfaces of engineering plastics; Nylon 6,6 and polyether imide (PEI) were studied and compared with commodity plastics; HDPE and HDPE-PET blends. The fracture surfaces were examined by scanning electron microscope with gold coated surface. Fractography of each material showed sharp differences and the processing history had some effects on the morphological structure. In virgin and reprocessed HDPE, the fracture surfaces exhibited discontinuous growth bands perpendicular to the crack direction. The crack morphology of reprocessed engineering plastics showed a mirror region in the crack initiation step and hackle lines in the crack propagation step.

บทคัดย่อ

ชัชญาณี คำเจริญ: ผลของการนำกลับมาผลิตใหม่ต่อรอยแตกของพื้นผิวของโพลิเอทิลีนความ หนาแน่นสูง พลาสติกผสมของโพลิเอทิลีนความหนาแน่นสูง และโพลิเอทลีนเทเรฟทาเลต, ในล่อน 6.6 และโพลิอีเทอร์อะมายค์ อ.ที่ปรึกษา : ผศ.คร. เควิค ซี มาร์ติน, รศ. คร. กัญจนา ตระกูลดู 54 หน้า ISBN 974-633-847-1

เมื่อเปรียบเทียบโครงสร้างอนุภาคของพื้นผิวรอยแตกระหว่างพลาสดิกวิศวกรรม (ไนล่อน 6,6 และ โพลิอีเทอร์อะมายค์) และพลาสติกทางการค้า (โพลิเอทิลีนความหนาแน่นสูงและพลาสติก ผสมของโพลิเอทิลีนความหนาแน่นสูงและโพลิเอทลีนเทเรฟทาเลต) ด้วยกล้องจุลทรรศน์อิเลคตรอน แบบกราคลำแสง โดยชิ้นงานจะเคลือบด้วยทองก่อนนำมาศึกษา การแตกของวัสดุจะแตกต่างกันขึ้น กับชนิดของวัสดุ และจำนวนครั้งในการนำกลับมาผลิตใหม่ของวัสดุแต่ละชนิด กลไกการแตกของโพ ลิเอทิลีน ความหนาแน่นสูงบริสุทธิ์ และโพลิเอทิลีนความหนาแน่นสูงที่นำกลับมาผลิตใหม่แสดงแถบ การขยายตัวที่ไม่ต่อเนื่องในทิศทางที่ตั้งฉากกับทิศทางของการแตกและการแผ่ขยายของรอยแตก ส่วน จุดเริ่มต้นของการแตกของพลาสติกวิศวกรรมมักจะเริ่มต้นด้วยบริเวณของมิลเลอร์ และขยายรอยแตก ต่อไปด้วยลักษณะของเส้นเฮกเคิล

ACKNOWLEDGMENTS

The author is grateful to my advisors, Asst. Prof. David C. Martin for the helpful suggestions and I would like to give my special thanks to Assoc. Prof. Kanchana Trakulcoo who contributed a good deal to this work.

I would like to express my appreciation to the TOTAL exploration and production Thailand for the scholarship support. I also wish to thank all of the staff and my friends at the Petroleum and Petrochemical College, Chulalongkorn University, for their help and kindness.

Finally, special thanks to my parents and my sisters for encouraging and supporting in everything for my study and all of my life.

TABLE OF CONTENTS

CHAPTER

PAGE

Title Page	i
Abstract	iii
Acknowledgments	v
Table of Contents	vi
List of Tables	viii
List of Figures	ix

I INTRODUCTION

1.1	General	Morphology of the Fracture Surface	1
	1.1.1	Mirror Region	2
	1.1.2	Hackle Region	2
	1.1.3	Wallner Lines	3
	1.1.4	Discontinuous Growth Bands	3
	1.1.5	Parabolic Marking	4
1.2	Backgro	ound and Literature Review	4
1.3	Objectiv	/es	6

II EXPERIMENTAL PART

2.1	Materials	7
2.2	Processing	7

2.3	Specimen Preparation	8
2.4	Mechanical Test	9
2.5	Scanning Electron Microscope	9

III RESULTS AND DISCUSSION

3.1	High De	ensity Polyethylene	10
	3.1.1	Fractography of High Density Polyethylene	10
	3.1.2	Effects of Processing History	14
3.2	HDPE	and PET Blends	18
	3.2.1	Effects of Processing History	18
	3.2.2	Ternary Blends : HDPE/PET/MA	21
3.3	Nylon 6	6	24
	3.3.1	Fractography of Nylon 6,6	24
	3.3.2	Tensile Fracture Surface of Nylon 6,6	28
	3.3.3	Effects of Processing History	29
3.4	Polyeth	erimide	31
	3.4.1	Tensile Fracture Surface of Polyetherimide	31
	3.4.2	Impact Fracture Surface of Polyetherimide	34
	3.4.3	Effects of Processing History	34

IV CONCLUSIONS

39

REFERENCES

LIST OF TABLES

TABLE		PAGE
2.1	Typical extrusion parameter for HDPE, HDPE/PET,	8
	Nylon and PEI	
2.2	Compression molding condition for HDPE, HDPE/PET,	9
	Nylon and PEI	

LIST OF FIGURES

FIGURE	2
--------	---

PAGE

3.1	A schematic of impact fracture surface of HDPE	11
	Semicrystalline polymer.	
3.2	SEM photograph of half circular region and patchy region	11
	of impact fracture surface of HDPE.	
3.3	SEM photograph of propagation region of impact fracture	13
	surface of HDPE (a) x100 (b) x3500.	
3.4	SEM photograph of impact fracture surface of HDPE	15
	(a) Virgin (b) Reprocessed material.	
3.5	SEM photograph of post-consumer HDPE showing the	16
	discontinuous growth bands of impact fracture surface.	
3.6	SEM photograph showing impurity of the impact fracture	17
	surface in (a) patchy region (b) discontinuous growth bands.	
3.7	SEM photograph of impact fracture surface of blends at	19
	ratio 95/5 (x500) (a) initial process (b) reprocessed 5 passes.	
3.8	SEM photograph of impact fracture surface of blends	20
	at ratio 95/5 (x2,000) (a) initial process	
	(b) reprocessed 5 passes.	
3.9	SEM photograph of (a) binary blends at ratio 90/10 and	22
	(b) ternary blends at ratio 85/10/5	
3.10	SEM photograph of ternary blends (x5,000) (a) impact fracture	23
	surface at ratio 75/20/5 (b) tensile fracture surface at ratio 75/20/	/5.

FIGURE

3.11	A schematic of impact fracture surface of Nylon 6,6:	25
	(a) impact fracture surface; (b) impact break.	
3.12	SEM photograph of impact fracture surface of mirror	26
	region and hackle region of Nylon 6,6.	
3.13	SEM photograph of hackle lines at higher magnification.	26
3.14	SEM photograph of impact fracture surface of secondary	27
	crack of Nylon 6,6.	
3.15	SEM photograph of tensile fracture surface of Nylon 6,6.	28
	(a) crack generate by defect and (b) nucleation during	
	specimen was stretched.	
3.16	SEM photograph of impact fracture surface showing mirror	30
	region and hackle region of Nylon 6,6.	
3.17	SEM photograph showing transition region of tensile	32
	fracture surface of PEI.	
3.18	SEM photograph showing rough region of tensile fracture	32
	surface of PEI.	
3.19	SEM photograph of tensile fracture surface of PEI.	33
3.20	SEM photograph of impact fracture surface of PEI	35
	(a) showing area near the notch (b) showing the latter	
	field along the crack direction.	
3.21	SEM photograph of impact fracture surface of	36
	reprocessed PEI (a) x35 (b) x500.	
3.22	SEM photograph of impact fracture surface of PEI showing	38
	Wallner lines (a) Interspersed in hackle lines	
	(b) at higher magnification.	