REFERENCES

- [1] Chen, C.H., Koenig, J.L., Shelton, J.R., and Collins, E.A. Rubber. <u>Journal of Chemical</u> <u>Technology</u> 55 (1982): 103-115.
- [2] Studebaker, M.L. <u>Compounding with Carbon Black in Reinforcement of Elastomers</u>. New York: Interscience Publishers, 1965.
- [3] Porter, M. The Chemistry of the Sulfur Vulcanization of Natural Rubber. In A. V. Tobolsky (ed.), The Chemistry of Sulfides, pp.165. New York: Interscience Publishers, 1968.
- [4] Boonkerd, K. Effect of Effeciency of Sulfur Vulcanization on Properties of Gum and Black- filled Natural Rubber Vulcanizates. Doctoral dissertation, The University of Akron, 2006.
- [5] Eng, A.H., and Ong, E.L. <u>Handbook of Elastomers</u>. New York: Marcel Dekker, 2001.
- [6] Kovuttikulrangsie, S., and Sakdapipanich, J. The Molecular Weight and Molecular Weight Distribution of NR from Different Age and Clone Hevea Tree. <u>Journal</u> <u>Science Technology</u> 27 (2005): 337-342.
- [7] Key Centre for Polymer Colloids. <u>What makes polymers hard or soft?</u> [online].
 Available from : http://discovery.kcpc.usyd.edu.au//9.2.1/9.2.1_Tg.html [2010, June 25]
- [8] Nagdi, K. <u>Rubber as An Engineering Material</u>. 1 st ed. New York: Henser Plublisher, 1993.
- [9] Hoffmann, W. Rubber Technology Handbook. New York: Hanser Plublisher, 1989.
- [10] Hoffmann, W. <u>Vulcanization and Vulcanizing Agents</u>. London: MacLaren, 1967.
- [11] Wolfe, J.R. The Chemistry of Sulfur Curing. I. Kinetics of Vulcanization of an EPDM Elastomer Accelerated by Zinc Dimethyldithiocarbamate. <u>Journal of Applied</u> <u>Polymer Science</u> 12 (1968): 1167-1181.
- [12] Wolfe, J.R. The Chemistry of Sulfur Curing. II. Kinetics of Vulcanization of an EPDM Elastomer Accelerated by Tetramethylthiuram Monosulfide and Disulfide. <u>Journal</u> <u>of Applied Polymer Science</u> 12 (1968): 1183-1192.

- [13] Chen, M., and others Comparison and Evaluation of the Thermooxidative Stability of Medical Natural Rubber Latex Products Prepared with a Sulfur Vulcanization System and a Peroxide Vulcanization System. <u>Journal of Applied Polymer Science</u> 98 (2005) 591-597.
- [14] Hopkins, W., Von, H., Carl, W. <u>Curing of Butyl Rubber with a Phenolic Resin</u>. EP 1016691, 2000.
- [15] Coker, J.N. <u>Curing Thiocarbonyl Fluoride-allyl Chloroformate Copolymers with</u> <u>Polyvalent Metal Oxides</u>. US 3275607, 1966.
- [16] Bateman, L. <u>The Chemistry and Physics of Rubber-like Substances.</u> New York: John Wiley & Sons, 1963.
- [17] Coran, A.Y. Science and Technology of Rubber. San Diego : Academic Press, 1994.
- [18] Porter, M. <u>The Chemistry of the Sulfur Vulcanization of Natural Rubber</u>. New York: Interscience Publishers, 2001.
- [19] Fath, M. A. Vulcanization of Elastomers. <u>Rubber World</u> 22 (1993): 209.
- [20] Akiba, M., and Hashim, A.S. Vulcanization and Crosslinking in Elastomers. <u>Progress</u> in <u>Polymer Science</u> 22 (1997): 475-521.
- [21] Mullins, L. Relationships Between Structure and Properties. <u>Proceedings of the</u> <u>Natural Rubber Producers' Research Association Jubilee Conference Cambridge</u> <u>1964</u>, pp.215, London: 1964.
- [22] Robert, A.D. Natural Rubber Science and Technology. New York: Oxford, 1990.
- [23] Hamed, G.R. <u>Material and Compounds.Department of Polymer Science</u>. USA : The University of Akron, 2001.
- [24] Porter, M. The Influence of Vulcanisate Structure on Physical Properties and Aging Behaviour. <u>Proceedings of the International Rubber Technology Conference 1988</u>.
 pp.26. Malaysia: Penang, 1988.
- [25] Rader, C.P. <u>Vulcanization of Rubber-A. Sulfur and Non-peroxides</u>. In K. C. Baranwal and H. L. Stephens (ed.) Basic Elastomer Technology, pp.163. Ohio: The Rubber Division American chemical Society, 2001.
- [26] Wise, R.W. Processing and Vulcanization Tests. In M. Morton (ed.) Rubber Technology, pp.87. New York: Van Norstrand Reinhold, 1973.

- [27] Datta, R.N., and Ivany, M.S. A Chemical for Reversion Resistant Compounding. <u>Rubber World</u> 24 (1995): 212.
- [28] Henning, S.K., and Shapot, S.A. <u>Multifunctional Acrylates as Anti-reversion Agents in</u> <u>Sulfur Cured Systems</u>. Fall 168th Technical Meeting of the Rubber Division, Pittsburgh, American Chemical Society. 2005.
- [29] Fath, M.A. Vulcanization of Elastomers. <u>Rubber World</u> 22 (1993): 209.
- [30] Sloan, J.M. <u>Reversion Studies of Natural and Guayule Rubbers</u>. U.S.: Army Materials Technology Laboratory, 1992.
- [31] Chen, C. H., Koenig, J. L., Shelton, J. R. and Collins, E. A. The Influence of Carbon Black on the Reversion Process in Sulfur-accelerated Vulcanization of Natural Rubber. <u>Rubber Chemistry and Technology</u> 55 (1982): 103.
- [32] Boonkerd, K. <u>Rubber Technology</u>. Bangkok: Chulalongkorn University, 2009.(Unpublished Manuscript)
- [33] Wolff, S., Wang, M.J., and Tan, E.H. Filler-elastomer Interaction: Part VII study on Bound Rubber. <u>Rubber Chemistry and Technology</u> 66 (1994): 163-177.
- [34] Wolff, S. Chemical Aspects of Rubber Reinforcement by Fillers. <u>Rubber Chemistry</u> and Technology (1996): 325-376.
- [35] Sircar, A.K., and Voet, A. Immobilization of Elastomers at the Carbon Black Particles Surface. <u>Rubber Chemistry and Technology</u> 43 (1970): 973-980.
- [36] Blow, C.M., and Hupburn, C. <u>Rubber Technology and Manufacture</u>. New York: The Plastic and Rubber Institute, 1982.
- [37] Donnet, J.B. and Voet, A. Carbon black. New York: Marcel Dekker, 1976.
- [38] Morton-Jones, D.H. Polymer Processing. London: Champman and Hall, 1989.
- [39] Leblance, J.L. Rubber-filler Interactions and Rheological Properties in filled Compounds. <u>Progress Polymer Science</u> (2007): 627-687.
- [40] Leblanc, J.L. Rubber-filler Interactions and Rheological Properties in filled Compounds. <u>Progress in Polymer Science</u> 27 (2002): 627-687.
- [41] Wang, M-J., Wolff, S. and Donnet, J-B. Rubber. <u>Journal of Chemical Technology</u> 64 (1991): 714.
- [42] Norman, D.T. <u>Rubber Grade Carbon Blacks</u>. In R. F. Ohm (ed.), The Vanderbilt Rubber Handbook, pp.397 Connecticut: R. Vanderbilt Company, Inc., 1990.

- [43] Medalia, A.I., and Kraus, G. <u>Reinforcement of Elastomers by Particuate Fillers</u>. In J.E.
 Mark, B. Erman, and F.R. Eirich (ed.), Science and Technology of Rubber, pp.387.
 San Diego: Academic Press, 1994.
- [44] Gerspacher, M., and Wampler, W. A. <u>Filler-A. Carbon Black</u>. In K. C. Baranwal and H. L. Stephens (ed.), Basic Elastomer Technology, pp.57. Ohio: The Rubber Division American Chemical Society, 2001.
- [45] Adhikari, B., Ghosh, A., and Maiti, S. Developments in Carbon Black for Rubber Reinforcement. Journal of Polymer Materials 17 (2000): 101.
- [46] Wampler, W. A., Gerspacher, M., and Yang, H.H. CB's Role in Compound Curing Behavior. <u>Rubbber World</u> 39 (1994): 210.
- [47] Bueche, F. Mullins Effect and Rubber-Filler Interaction. Journal of Applied Polymer Science 5 (1961): 271.
- [48] Ismail, H., Osman, H., Ariffin, A.A. Comparative Study on Curing Characteristics, Mechanical Properties, Swelling Behavior, Thermal Stability, and morphology of Feldspar and Silica in SMR L Vulcanizates. <u>Polymer Plastics Technology and engineering</u> 43 (2004): 1323-1344.
- [49] Dick, J.S and Annicelli, R.A. <u>Rubber Technology: Compounding and Testing for</u> <u>Performance</u>. New York: Hanser Verlag, 2001.
- [50] Chauvistré, R., Hormes, J., Hartmann, E., Etzenbach, N. and Hosch, R,. Journal of <u>Chemical Physics</u> 223 (1997): 293-302.
- [51] Hormes, J., and Modrow, H. Industrial use of synchrotron radiation: a very subjective overview. <u>Nuclear Instruments and Methods in Physics Research Section A</u> 467-468 (2001): 1179-1191.
- [52] Brendebach, B., and Modorw, H. Observation of Filler-Crosslink Interactions Using X-ray Absorption Near Edge Structure (XANES) of the sulfur K-edge. <u>Kautsch</u> <u>Gummi Kunstst</u> 55 (2002): 157-163.
- [53] Leblanc, J.L., Rubber–Filler Interactions and Rheological Properties in Filled Compounds. <u>Progress in Polymer Science</u> 27 (2002): 627.
- [54] Mark, J.E., Erman, B., and Eirich, F.R. <u>The Science and Technology of Rubber</u>. third ed. Elsevier Academic Press, 2005.

- [55] Cancarb Co., Ltd.Carbon black N990 [online]. Available from : http://www.cancarb.com/pdf/N990-N991-Specifications-01.pdf [2010, August 6]
- [56] Maged, S.S, El-Nashar D. E., and Maziad, N. A. Cure Characteristics and Physicomechanical Properties of Calcium Carbonate Reinforcement Rubber Composites. <u>Egyptian Journal of Solids</u> 26 (2003): 241-257.
- [57] Dumbbell Co., Ltd. <u>ISO 37</u>. [online]. Available from : http://www.odn.ne.jp/aal63880/image/DM_K6251-6.jpg [2010, JUNE 11]
- [58] Robert, A.D., Natural Rubber Science and Technology. 3 rd (ed). Oxford: New York, 1990.
- [59] Treepetch, C., The Dynamic Behavior of Oil-Swollen EPDM Rubber Under Pre-Stain. Doctoral Dissertation, Mahidol University, 2007.
- [60] Bristow, G.M., and Watson, W.F. Cohesive Energy Densities of Polymers. <u>Transactions of the Faraday Society</u> 54 (1985): 1734.
- [61] Ahagon, A. <u>Oxidative Aging of Black-filled Elastomers</u>. Rubber Division ACS Meeting Fall 12, 1984.
- [62] Ravel, B., and Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for Xray absorption spectroscopy using IFEFFIT. <u>Journal of Synchrotron Radiation</u> 12 (2005): 537-541.
- [63] Loo, C. T. High Temperature Vulcanization of Elastomers: 2. Network Structures in Conventional Sulphenamide-Sulphur Natural Rubber Vulcanizates. <u>Polymer</u> 15 (1974): 357-365.
- [64] Krejsa, M.R., and Koenig, J.L., Solid-State Carbon ¹³ NMR Studies Vulcanized Elastomer VIII Accerlerated Sulfur-Vulcanised Butyl Rubber at 75.5 MHz. <u>Rubber</u> <u>chemistry and technology</u> (1991): 40-56.
- [65] Rattanasom, N. and Prasertsri S., Relationship among mechanical properties, heat ageing resistance, cut growth behaviour and morphology in natural rubber: Partial replacement of clay with various types of carbon black at similar hardness level <u>Polymer Testing</u> 28 (2009): 270–276.
- [66] Rattanasom, N., Saowapark, T. and Deeprasertkul, C., Reinforcement of Natural Rubber with Silica/Carbon Black Hybrid Filler, <u>Polymer Testing</u> 26 (2007): 369.

- [67] Sae-oui, P., Sirisinha, C., Wantana, T. and Hatthapanit, K., Influence of Silica Loading on the Mechanical Properties and Resistance to Oil and Thermal Aging of CR/NR Blends, Journal of Applied Polymer Science 104 (2007): 3478.
- [68] Kim, J., Koh J. and Choi, K., Effects of Foaming Temperature and Carbon Black Content on the Cure Characteristics and Mechanical Properties of Natural Rubber Foams, <u>Journal of Industrial and Engineering Chemistry</u> 13 (2007): 198-205.
- [69]. Liu Y, Li , L. and Wang Q., Effect of carbon black/nanoclay hybrid filler on the dynamic properties of natural rubber vulcanizates, <u>Journal of Applied Polymer</u> <u>Science</u> 118 (2010): 1111-1120.
- [70] Sam, S.T., Ismail, H., Ahmad Fauzi, M.N. and Abu Bakar, A., The Effect of Carbon Black on the Properties of Magnetic Ferrite Filled Natural Rubber Composites, Journal of Reinforced Plastics and Composites 27 (2008): 1893-1908.
- [71] Ismail, H., Osman, H., Ariffin, A.A., Comparative Study on Curing Characteristic, Mechanical Properties, Swelling Behavior, Thermal Stability, and Morphology of Feldspar and silica in SMR L vulcanizates, <u>Polymer Plastic Technology and Engineering</u> 43 (2004): 1323-1344.
- [72] Kok C.M., The effect of Compounding Variables on the Reversion Process in the Sulphur Vulcanization of Natural Rubber, <u>Journal of European Polymer</u> 23 (1987):
 611.
- [73] James, E.M, Burak E. and Frederick, R.E., <u>Science and Technology of Rubber</u>.Second edition. New york: Academic Press, 1994.

APPENDICES

CURE CURVE OF NR COMPOUNDS

APPENDIX A

Figure A-1 Cure curve of N330 filled NR compound with 20 phr

at different curing temperature

Figure A-2 Cure curve of N330 filled NR compound with 30 phr

Figure A-7 Cure curve of N776 filled NR compound with 20 phr

at different curing temperature

Figure A-9 Cure curve of N776 filled NR compound with 40 phr

at different curing temperature

119

Figure A-18 Cure curve of N330 filled NR compound cured at 140°C with various loading

Figure A-19 Cure curve of N330 filled NR compound cured at 150°C with various loading

Figure A-20 Cure curve of N330 filled NR compound cured at 170°C with various loading

Figure A-21 Cure curve of N330 filled NR compound cured at 180°C with various loading

Figure A-22 Cure curve of N550 filled NR compound cured at 130°C with various loading

Figure A-23 Cure curve of N550 filled NR compound cured at 140°C with various loading

Figure A-24 Cure curve of N550 filled NR compound cured at 150°C with various loading

Figure A-25 Cure curve of N550 filled NR compound cured at 170°C with various loading

Figure A-26Cure curve of N550 filled NR compound cured at 180°C with various loading

Figure A-27 Cure curve of N776 filled NR compound cured at 130°C with various loading

Figure A-28 Cure curve of N776 filled NR compound cured at 140°C with various loading

Figure A-29 Cure curve of N776 filled NR compound cured at 150°C with various loading

Figure A-30 Cure curve of N776 filled NR compound cured at 170°C with various loading

Figure A-31 Cure curve of N776 filled NR compound cured at 180°C with various loading

Figure A-32 Cure curve of N990 filled NR compound cured at 130°C with various loading

Figure A-33 Cure curve of N990 filled NR compound cured at 140°C with various loading

Figure A-34 Cure curve of N990 filled NR compound cured at 150°C with various loading

Figure A-35 Cure curve of N990 filled NR compound cured at 170°C with various loading

Figure A-36 Cure curve of N990 filled NR compound cured at 180°C with various loading

Figure A-37 Cure curve of gN330 filled NR compound cured at 130°C with various loading

Figure A-38 Cure curve of gN330 filled NR compound cured at 140°C with various loading

Figure A-39 Cure curve of gN330 filled NR compound cured at 150°C with various loading

Figure A-40 Cure curve of gN330 filled NR compound cured at 170°C with various loading

Figure A-41 Cure curve of gN330 filled NR compound cured at 180°C with various loading

APPENDIX B

CROSSLINK DENSITIES OF NR COMPOUNDS

Sampla	Crosslink density (mol/m ³)					
Sample	tc ₉₀	tc 100	tC _{100+20min}			
1	79.9	66.8	48.5			
2	79.1	65.2	49.2			
3	80.8	67.7	49.3			
Mean	80.0	66.5	66.5			
SD	0.86	1.26	1.26			

Table B-1 Crosslink densities of gum NR vulcanizates

Table B-2 Crosslink densities of N330 filled NR vulcanizates at $\ensuremath{tc_{_{90}}}$

Comple	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	67.6	92.5	117	114	182	
2	67.5	94.1	116	123	184	
3	66.9	92.5	120	140	186	
Mean	67.3	93.0	117	126	184	
SD	0.36	0.91	0.96	5.81	2.15	

Table B-3 Crosslink densities of N330 filled NR vulcanizates at tc_{10}	0
---	---

Samplo	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	68.9	91.0	123	133	186	
2	68.9	91.1	121	135	196	
3	68.5	91.6	200	135	186	
Mean	68.7	91.2	122	135	189	
SD	0.23	0.34	1.59	1.10	5.40	

Comple	Crosslink density (mol/m ³)						
Sample	10 phr	20 phr	30 phr	40 phr	50 phr		
1	50.8	66.8	81.8	113	146		
2	51.1	67.8	82.6	112	156		
3	47.9	70.2	85.7	113	146		
Mean	68.8	91.2	122	134	189		
SD	0.23	0.34	1.59	1.10	5.40		

Table B-4 Crosslink densities of N330 filled NR vulcanizates at $tc_{\rm 100+20\ min}$

Table B-5 Crosslink densities of N550 filled NR vulcanizates at $tc_{\rm _{90}}$

Sample	Crosslink density (mol/m ³)						
Sample	10 phr	20 phr	30 phr	40 phr	50 phr		
1	67.3	85.5	112	137	164		
2	65.6	85.7	113	139	170		
3	65.9	85.8	112	142	169		
Mean	66.3	85.7	112	139	167		
SD	0.90	0.18	0.43	3.33	4.02		

Table B-6 Crosslink densities of N550 filled NR vulcanizates at te	C ₁₀₀
--	------------------

Sampla	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	61.8	89.7	112	145	168	
2	60.4	89.5	110	142	172	
3	61.9	88.8	109	136	168	
Mean	61.4	89.4	110	141	170	
SD	0.85	0.47	1.14	6.05	3.39	

Comple	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	44.5	62.9	82.2	103	134	
2	44.5	63.1	82.7	100	128	
3	43.8	63.0	82.5	104	128	
Mean	44.3	63.0	82.5	102	131	
SD	0.41	0.10	0.29	0.54	4.26	

Table B-7 Crosslink densities of N550 filled NR vulcanizates at $tc_{\rm 100+20\ min}$

Table B-8 Crosslink densities of N776 filled NR vulcanizates at $tc_{\rm _{90}}$

Comple	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	64.6	86.9	98.8	123	142	
2	66.9	84.6	100	120	147	
3	63.7	83.7	97.2	120	146	
Mean	65.1	85.0	98.7	121	145	
SD	1.62	1.66	0.95	2.00	2.76	

Table B-9 Crosslink densities of N776	6 filled NR vulcanizates at tc ₁₀₀
---------------------------------------	---

Sampla	Crosslink density (mol/m ³)					
Sample	10 phr	20 phr	30 phr	40 phr	50 phr	
1	62.5	74.3	94.3	117	146	
2	62.4	72.1	93.9	116	150	
3	62.1	72.8	94.3	117	150	
Mean	62.4	73.1	94.1	117	148	
SD	0.21	1.14	0.32	0.57	1.95	

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	49.6	55.7	68.3	85.2	112			
2	48.5	55.6	69.6	88.5	111			
3	48.6	55.6	69.5	83.7	111			
Mean	48.9	55.6	69.1	85.8	111			
SD	0.61	0.06	0.72	2.47	0.67			

Table B-10 Crosslink densities of N776 filled NR vulcanizates at $tc_{\rm 100+20min}$

Table B-11 Crosslink densities of N990 filled NR vulcanizates at $\mathrm{tc}_{_{90}}$

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	55.1	64.2	74.2	85.4	102			
2	56.4	63.6	74.6	84.3	101			
3	55.0	63.5	75.1	83.3	105			
Mean	55.5	63.8	74.6	84.3	103			
SD	0.75	0.36	0.26	0.75	1.85			

Table B-12 Crosslink densi	ies of N990 filled NR vulcanizates at tc_{100}
----------------------------	--

Samplo	Crosslink density (mol/m ³)							
Sample	10 phr	20 phr	30 phr	40 phr	50 phr			
1	56.2	67.6	80.1	83.9	103			
2	56.6	68.0	77.3	85.6	107			
3	56.7	67.3	227	85.2	101			
Mean	56.5	67.6	78.7	84.9	104			
SD	0.29	0.36	2.03	0.91	3.15			

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	42.5	50.1	57.4	65.7	79.6			
2	43.4	49.7	57.5	65.1	77.1			
3	43.2	50.2	57.1	65.6	75.9			
Mean	43.0	50.0	57.3	65.5	77.5			
SD	0.50	0.26	0.24	0.32	2.57			

Table B-13 Crosslink densities of N990 filled NR vulcanizates at $tc_{100+20 \text{ min}}$

Table B-14 Crosslink densities of gN330 filled NR vulcanizates at $tc_{\rm _{90}}$

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	57.2	64.8	74.7	83.2	98.7			
2	57.1	67.3	74.5	85.3	98.7			
3	57.1	64.8	74.9	84.1	97.3			
Mean	57.2	65.7	74.7	84.2	98.2			
SD	0.09	1.43	0.08	1.48	0.80			

Table B-15 Crosslink	densities	of	gN330	filled	NR	vulcanizates	at	tc ₁₀₀
----------------------	-----------	----	-------	--------	----	--------------	----	-------------------

Sampla	Crosslink density (mol/m ³)							
Sample	10 phr	20 phr	30 phr	40 phr	50 phr			
1	58.7	66.0	74.2	87.9	96.5			
2	59.8	67.1	76.3	86.1	97.6			
3	56.9	67.2	76.0	85.9	97.7			
Mean	58.4	66.8	75.2	86.6	97.3			
SD	1.46	0.70	1.44	1.12	0.64			

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	43.5	49.9	56.1	62.0	73.6			
2	42.4	48.9	56.9	62.7	71.0			
3	40.3	48.7	55.9	63.8	69.5			
Mean	42.1	49.2	56.3	62.8	71.3			
SD	1.63	0.68	0.52	0.92	2.88			

Table B-16 Crosslink densities of gN330 filled NR vulcanizates at $tc_{\rm 100+20\ min}$

Table B-17 Crosslink de	ensities of gum N	R vulcanizates	with thermal	aging at	tc_{90}
-------------------------	-------------------	----------------	--------------	----------	-----------

Sampla	Crosslink density (mol/m ³)					
Sample	tc ₉₀	tc,00	tc _{100+20min}			
1	83.6	83.6	60.3			
2	83.5	83.5	60.8			
3	83.6	70.7	62.3			
Mean	83.6	79.27	61.1			
SD	0.06	0.06	1.03			

Table B-18 Crosslink densities of N330 filled NR vulcanizates with thermal aging a	at tc ₉₀
--	---------------------

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	84.0	121	160	207	262			
2	86.6	122	163	191	250			
3	87.2	120	160	214	235			
Mean	85.9	121	161	204	249			
SD	1.68	1.23	1.84	4.77	8.06			

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	93.2	126	173	197	267			
2	93.7	125	173	194	269			
3	93.2	127	173	197	266			
Mean	93.4	126	173	196	267			
SD	0.27	0.55	0.02	1.47	1.28			

Table B-19 Crosslink densities of N330 filled NR vulcanizates with thermal aging at tc_{100}

Table B-20 Crosslink dens	ities of N550 filled	NR vulcanizates	with thermal	aging at	tc ₉₀
---------------------------	----------------------	-----------------	--------------	----------	------------------

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	90.4	121	161	203	248			
2	88.4	121	163	206	254			
3	87.2	120	161	202	253			
Mean	88.7	121	162	204	251			
SD	1.61	0.81	1.01	0.69	4.14			

Table B-21	Crosslink	densities	of I	N550	filled	NR	vulcanizates	with	thermal	aging	at	tc ₁₀₀
------------	-----------	-----------	------	------	--------	----	--------------	------	---------	-------	----	-------------------

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	83.7	119	158	212	254			
2	81.1	116	156	213	244			
3	84.0	121	158	209	246			
Mean	82.9	119	157	211	249			
SD	1.58	2.57	0.85	2.13	7.04			

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	85.1	113	140	174	217			
2	86.4	111	140	146	225			
3	86.1	113	142	172	226			
Mean	85.9	112	141	164	223			
SD	0.68	0.97	1.28	0.97	5.87			

Table B-22 Crosslink densities of N776 filled NR vulcanizates with thermal aging at $tc_{\rm _{90}}$

Table B-23 Crosslink densities of N776 filled NR vulcanizates with thermal aging at $tc_{\mbox{\tiny 100}}$

Sampla	Crosslink density (mol/m ³)							
Sample	10 phr	20 phr	30 phr	40 phr	50 phr			
1	84.1	102	138	172	216			
2	83.8	103	134	174	216			
3	81.2	108	137	178	214			
Mean	83.0	104	136	175	215			
SD	1.58	3.65	2.42	3.14	0.94			

Table B-24 Crosslin	k densities	of N990	filled N	١R	vulcanizates	at	: with	thermal	aging	tc_{90}
---------------------	-------------	---------	----------	----	--------------	----	--------	---------	-------	-----------

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	73.0	86.2	101	114	145			
2	74.1	84.0	101	115	146			
3	73.9	85.8	104	117	145			
Mean	73.7	85.3	102	115	145			
SD	0.58	1.17	1.67	1.65	0.46			

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	73.1	91.6	109	120	146			
2	76.5	90.6	109	120	142			
3	74.4	90.6	107	120	145			
Mean	74.7	90.9	109	120	145			
SD	1.70	0.55	0.38	0.38	2.21			

Table B-25 Crosslink densities of N990 filled NR vulcanizates with thermal aging at ${\rm tc}_{\rm _{100}}$

Table B-26 Crosslink densities of gN330 filled NR vulcanizates with thermal aging at $tc_{\rm _{90}}$

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	73.8	92.4	106	122	143			
2	76.1	94.3	105	125	142			
3	75.3	91.6	108	122	145			
Mean	75.1	92.8	106	123	143			
SD	1.16	1.35	1.29	0.10	0.81			

Table B-27 Crosslink densi	ies of gN330 filled NF	R vulcanizates with	thermal aging at tc100
----------------------------	------------------------	---------------------	------------------------

Sample	Crosslink density (mol/m ³)							
	10 phr	20 phr	30 phr	40 phr	50 phr			
1	74.8	91.3	107	123	143			
2	76.3	93.0	107	122	140			
3	75.8	92.7	106	126	143			
Mean	75.59	92.3	107	124	142			
SD	0.76	0.93	0.33	2.26	1.66			

APPENDIX C

TENSILE PROPERTIES OF NR COMPOUNDS

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.68	1.10	1.65	21.0	740	25.2
2	0.72	1.15	1.66	20.3	712	26.5
3	0.75	1.17	1.55	20.6	724	25.4
4	0.73	1.16	1.68	21.0	740	26.2
5	0.71	1.14	1.64	20.7	728	23.9
Mean	0.72	1.14	1.63	20.7	729	25.4
SD	0.03	0.02	0.05	0.29	11.8	1.00

Table C-1 Tensile properties of gum NR vulcanizates at $\mathrm{tc}_{\mathrm{90}}$

Table C-2 Tensile properties of N330 filled NR vulcanizates with TU phr at tc_{90}
--

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.80	1.37	2.30	18.5	640	24.2
2	0.90	1.54	2.47	19.5	680	25.6
3	0.78	1.42	2.35	19.0	660	23.5
4	0.90	1.54	2.47	18.3	632	25.0
5	0.79	1.45	2.30	18.7	648	26.1
Mean	0.83	1.47	2.38	18.8	652	24.9
SD	0.06	0.07	0.08	0.47	18.8	1.06

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.15	2.28	4.11	18.5	640	27.7
2	1.10	2.27	4.14	18.5	640	29.7
3	1.13	2.27	3.86	18.8	652	29.1
4	1.04	1.91	3.29	18.0	620	28.7
5	1.11	1.89	3.49	16.0	540	21.6
Mean	1.11	2.12	3.78	18.0	618	27.4
SD	0.04	0.20	0.38	1.13	45.3	3.31

Table C-3 Tensile properties of N330 filled NR vulcanizates with 20 phr at $\ensuremath{\text{tc}_{\text{90}}}$

Table C-4 Tensile properties of N330 filled NR vulcanizates with 30 phr a	it tc ₉₀
---	---------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.48	2.92	5.22	17.0	580	28.5
2	1.40	3.00	5.32	17.5	600	29.3
3	1.44	2.86	5.20	17.0	580	29.4
4	1.63	3.15	5.65	18.0	620	30.1
5	1.63	3.07	5.46	17.5	600	29.3
Mean	1.52	3.00	5.37	17.4	596	29.3
SD	0.11	0.12	0.19	0.42	16.7	0.56

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.78	4.52	8.16	16.0	540	30.8
2	1.99	4.45	8.68	14.5	480	31.4
3	1.76	3.97	7.75	16.0	540	29.1
4	1.94	4.30	8.32	16.0	540	30.3
5	2.01	4.99	8.76	15.5	520	30.2
Mean	1.89	4.45	8.33	15.6	524	30.4
SD	0.12	0.37	0.41	0.65	26.1	0.84

Table C-5 Tensile properties of N330 filled NR vulcanizates with 40 phr at $tc_{\rm _{90}}$

Table C-6 Tensile properties	of N330 filled N	NR vulcanizates v	with 50 phr at tc_{90}
------------------------------	------------------	-------------------	--------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.56	6.23	11.0	13.0	420	28.2
2	2.33	5.38	9.74	14.0	460	28.3
3	3.28	6.70	11.5	13.5	440	28.6
4	3.52	6.21	14.1	14.0	460	28.8
5	2.77	5.94	11.4	13.5	440	28.6
Mean	2.89	6.09	11.6	13.6	444	28.5
SD	0.50	0.48	1.61	0.42	16.7	0.25

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.52	3.88	8.37	12.5	400	13.9
2	1.72	3.89	8.14	12.0	380	8.49
3	1.42	3.14	7.20	13.0	420	12.1
4	1.47	3.41	6.94	12.0	380	9.03
5	1.48	3.46	7.05	13.0	420	12.7
Mean	1.52	3.56	7.54	12.5	400	11.3
SD	0.11	0.32	0.66	0.50	20.0	2.37

Table C-7 Tensile properties of N550 filled NR vulcanizates with 10 phr at $tc_{\rm _{90}}$

Table C-8 Tensile properties of N550 filled NR vulcanizates with 20 phr at $tc_{\rm 90}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.26	5.98	12.3	11.0	340	12.8
2	2.36	6.54	12.0	10.5	320	12.5
3	2.12	6.12	N/A	9.50	280	9.60
4	2.40	6.59	12.0	10.5	320	12.6
5	2.05	5.96	N/A	9.50	280	11.3
Mean	1.34	2.99	6.31	18.5	642	27.0
SD	0.20	0.20	0.24	0.51	20.5	0.76

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.63	4.39	9.48	16.7	568	25.8
2	1.82	4.63	9.89	16.3	552	26.4
3	1.96	5.10	9.24	16.6	564	25.8
4	2.11	6.79	10.9	16.7	568	26.0
5	1.99	4.98	10.1	16.4	556	25.9
Mean	1.90	5.18	9.92	16.5	562	26.0
SD	0.18	0.94	0.63	0.18	7.27	0.24

Table C-9 Tensile properties of N550 filled NR vulcanizates with 30 phr at $tc_{\rm 90}$

Table C-10 Tensile properties of N550 filled NR vulcanizates with 40 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.65	7.28	13.7	14.2	468	26.2
2	2.44	7.87	13.4	15.1	504	25.6
3	3.09	7.41	13.5	14.9	496	25.7
4	2.88	7.31	14.2	14.9	496	25.6
5	2.88	6.95	13.2	15.3	512	25.9
Mean	2.79	7.36	13.6	14.9	495	25.8
SD	0.25	0.33	0.36	0.41	16.6	0.23

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	4.04	11.3	17.9	12.8	412	24.2
2	3.72	9.82	16.8	14.3	472	25.5
3	3.87	9.66	17.7	13.1	424	23.9
4	3.78	10.4	17.2	14.1	464	25.5
5	3.75	9.76	16.4	13.6	444	23.9
Mean	3.83	10.2	17.2	13.6	443	24.6
SD	0.13	0.67	0.64	0.64	25.5	0.86

Table C-11 Tensile properties of N550 filled NR vulcanizates with 50 phr at $tc_{\rm _{90}}$

Table C-12 Tensile properties of N77	6 filled NR vulcanizates w	h 10 phr at tc ₉₀
--------------------------------------	----------------------------	------------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.95	2.01	3.02	18.2	628	18.7
2	1.01	2.07	3.24	18.9	656	24.5
3	1.01	2.01	3.29	20.2	708	27.6
4	0.99	2.00	3.32	20.0	700	25.8
5	-	-	-	-	-	_
Mean	0.99	2.02	3.22	19.3	673	24.1
SD	0.03	0.03	0.14	0.94	37.7	3.85

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.25	2.30	5.07	18.8	652	26.5
2	1.38	2.72	4.70	18.6	644	26.2
3	1.32	2.51	4.78	18.3	632	25.0
4	1.36	2.43	4.69	18.2	628	23.3
5	1.21	2.36	4.82	17.9	616	23.4
Mean	1.30	2.46	4.81	18.4	634	24.9
SD	0.07	0.16	0.15	0.35	14.0	1.50

Table C-13 Tensile properties of N776 filled NR vulcanizates with 20 phr at $tc_{_{90}}$

Table C-14 Tensile properties of N776 filled	NR vulcanizates with 30 phr at tc ₉
--	--

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.67	3.42	7.70	16.8	572	25.5
2	1.78	3.61	7.68	17.0	580	24.9
3	1.69	3.76	8.02	16.0	540	22.4
4	1.96	3.58	8.05	17.3	592	25.8
5	1.64	3.99	7.02	16.2	548	22.6
Mean	1.75	3.67	7.69	16.7	566	24.2
SD	0.13	0.22	0.41	0.55	21.8	1.61

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.98	4.41	10.3	16.8	572	26.6
2	1.98	5.50	10.6	16.9	576	27.2
3	1.98	5.22	10.8	16.6	564	26.1
4	2.05	5.40	10.7	16.1	544	25.1
5	1.86	4.29	8.00	17.1	584	25.4
Mean	1.97	4.96	10.1	16.7	568	26.1
SD	0.07	0.57	1.17	0.38	15.2	0.84

Table C-15 Tensile properties of N776 filled NR vulcanizates with 40 phr at $tc_{\rm _{90}}$

Table C-16 Tensile prop	erties of N776 filled	NR vulcanizates	with 50	phr at $\mathrm{tc}_{_{90}}$
-------------------------	-----------------------	-----------------	---------	------------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.31	6.72	13.3	14.5	480	23.8
2	2.54	5.87	12.4	14.4	476	22.8
3	2.82	6.96	12.5	15.2	508	23.8
4	2.34	7.20	13.0	14.3	472	22.7
5	2.68	7.77	13.7	14.9	496	24.2
Mean	2.54	6.90	13.0	14.7	486	23.5
SD	0.22	0.70	0.55	0.38	15.1	0.69

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.00	1.63	2.60	20.5	720	25.2
2	0.87	1.58	2.46	20.6	724	25.9
3	0.96	1.57	2.58	21.3	752	26.9
4	0.72	1.35	2.33	20.5	720	25.3
5	1.01	1.81	2.61	21.1	744	28.3
Mean	0.91	1.59	2.52	20.8	732	26.3
SD	0.12	0.17	0.12	0.37	15.0	1.29

Table C-17 Tensile properties of N990 filled NR vulcanizates with 10 phr at $tc_{\rm 90}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.88	1.87	3.29	19.8	692	26.5
2	1.06	1.93	3.38	19.7	688	27.1
3	0.88	1.83	3.01	20.6	724	26.9
4	0.93	1.73	2.97	20.3	712	25.6
5	1.05	1.75	3.21	20.2	708	26.9
Mean	0.96	1.82	3.17	20.1	705	26.6
SD	0.09	0.08	0.18	0.37	14.8	0.62

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.10	2.13	3.89	18.7	648	25.4
2	1.19	2.14	3.94	18.6	644	26.8
3	1.13	1.93	3.91	19.1	664	26.6
4	1.03	2.01	3.87	18.3	632	25.0
5	1.05	2.00	3.79	19.0	660	25.3
Mean	1.10	2.04	3.88	18.7	650	25.8
SD	0.06	0.09	0.06	0.32	12.8	0.82

Table C-19 Tensile properties of N990 filled NR vulcanizates with 30 phr at $tc_{\rm _{90}}$

Table C-20 Tensile properties	of N990 filled NR	vulcanizates with	40 phr at tc ₉₀
-------------------------------	-------------------	-------------------	----------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.13	2.34	4.79	18.4	636	22.6
2	1.31	2.62	4.43	18.5	640	24.3
3	1.22	2.27	4.58	17.9	616	22.7
4	1.31	2.46	4.63	18.5	640	24.9
5	1.25	2.39	4.81	18.1	624	23.2
Mean	1.24	2.42	4.65	18.3	631	23.5
SD	0.07	0.13	0.15	0.27	10.7	1.04

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.37	2.91	5.86	18.3	632	22.8
2	1.34	2.94	6.22	17.7	608	22.2
3	1.35	2.93	5.79	17.3	592	22.0
4	1.46	2.84	5.64	17.7	608	23.6
5	1.53	2.95	6.17	17.3	592	22.4
Mean	1.41	2.91	5.94	17.7	606	22.6
SD	0.08	0.04	0.25	0.41	16.4	0.62

Table C-21 Tensile properties of N990 filled NR vulcanizates with 50 phr at $tc_{\rm 90}$

Table C-22 Tensile properties	of gN330	filled NR	vulcanizates	with	10 pł	nr at	tc_{90}
-------------------------------	----------	-----------	--------------	------	-------	-------	-----------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.73	1.39	2.19	20.5	720	25.2
2	0.83	1.41	2.36	21.5	760	25.6
3	0.80	1.38	2.10	22.0	780	24.0
4	0.83	1.37	2.00	22.5	800	27.2
5	0.82	1.41	2.08	21.5	760	24.2
Mean	0.80	1.39	2.15	21.6	764	25.2
SD	0.04	0.02	0.14	0.74	29.7	1.28

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	0.93	1.55	2.41	25.0	900	28.7
2	1.02	1.73	2.48	22.0	780	28.2
3	1.08	1.68	2.46	23.0	820	28.0
4	0.99	1.53	2.49	21.0	740	27.1
5	-	-	-	-	-	-
Mean	1.01	1.62	2.46	22.8	810	28.0
SD	0.06	0.10	0.04	1.71	68.3	0.69

Table C-23 Tensile properties of gN330 filled NR vulcanizates with 20 phr at $tc_{\rm _{90}}$

Table C-24 Tensile properties	of gN330	filled NR v	ulcanizates/	with	30	phr	at	tc_{90}
-------------------------------	----------	-------------	--------------	------	----	-----	----	-----------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.07	1.98	2.96	20.5	720	25.2
2	1.27	2.11	3.38	21.0	740	28.5
3	1.03	1.81	2.72	22.0	780	28.5
4	1.23	1.94	3.02	19.0	660	26.6
5	1.24	2.02	2.89	19.5	680	29.7
Mean	1.17	1.97	3.00	20.4	716	27.7
SD	0.11	0.11	0.24	1.19	47.8	1.80

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.42	2.36	3.54	21.0	740	25.4
2	1.37	2.30	3.76	21.0	740	25.7
3	1.33	2.14	3.10	21.0	740	26.1
4	1.26	2.27	3.81	21.0	740	26.9
5	1.47	2.45	3.76	20.0	700	26.2
Mean	1.37	2.31	3.60	20.8	732	26.1
SD	0.08	0.11	0.30	0.45	17.9	0.58

Table C-25 Tensile properties of gN330 filled NR vulcanizates with 40 phr at $tc_{\rm _{90}}$

Table C-26 Tensile properties	of gN330	filled NR vulcanizates	with 5) phr	at $tc_{_{90}}$
-------------------------------	----------	------------------------	--------	-------	-----------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.71	2.70	4.29	20.0	700	24.8
2	1.62	2.64	3.83	20.0	700	25.3
3	1.73	3.02	4.27	20.0	700	25.1
4	1.73	2.74	4.18	20.0	700	25.9
5	1.65	2.51	3.81	19.5	680	25.2
Mean	1.69	2.72	4.07	19.9	696	25.2
SD	0.05	0.19	0.24	0.22	8.94	0.40

APPENDIX D

THERMAL AGING PROPERTIES OF NR COMPOUNDS

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.71	4.33	N/A	8.50	240	10.7
2	1.57	3.64	N/A	12.5	400	10.5
3	1.69	3.90	N/A	10.0	300	12.1
4	1.76	3.97	N/A	9.50	280	11.8
5	-	_	-	-	-	_
Mean	1.68	3.96	N/A	10.1	305	11.3
SD	0.08	0.28	N/A	1.70	68.1	0.80

Table D-1 Thermal aging properties of gum NR vulcanizates at $\mathrm{tc}_{\mathrm{90}}$

Table D-2 Thermal aging properties	s of N330 filled NR	vulcanizates with 1	0 phr at tc ₉₀
------------------------------------	---------------------	---------------------	---------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.71	4.33	N/A	8.50	240	5.37
2	1.57	3.64	N/A	12.5	400	9.74
3	1.69	3.90	N/A	10.0	300	9.33
4	1.76	3.97	N/A	9.50	280	7.66
5	1.80	4.41	N/A	6.00	140	5.04
Mean	1.71	4.05	N/A	9.30	272	7.43
SD	0.09	0.32	N/A	2.36	94.5	2.18

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.13	6.44	N/A	10.0	300	10.6
2	2.26	6.53	N/A	8.50	240	8.66
3	2.43	6.56	N/A	8.00	220	7.53
4	2.61	6.50	N/A	9.00	260	11.9
5	-	-	_	_	-	-
Mean	2.36	6.51	N/A	8.88	255	9.67
SD	0.21	0.05	N/A	0.85	34.2	1.96

Table D-3 Thermal aging properties of N330 filled NR vulcanizates with 20 phr at $\ensuremath{\text{tc}_{\text{90}}}$

.

Table D-4 Thermal aging properties of N330 filled NR vulcanizates with 30 phr at $tc_{\rm 90}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	4.27	11.5	N/A	9.00	260	15.8
2	3.72	9.87	N/A	8.50	240	12.5
3	4.31	11.5	N/A	7.50	200	12.1
4	3.95	10.2	N/A	8.50	240	14.0
5	-	-	-	-	-	_
Mean	4.06	10.7	N/A	8.38	235	13.6
SD	0.28	0.85	N/A	0.63	25.2	1.70

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	4.87	N/A	N/A	8.50	240	15.9
2	5.49	N/A	N/A	7.50	200	15.7
3	5.20	N/A	N/A	8.50	240	18.5
4	5.01	N/A	N/A	9.00	260	18.3
5	-	-	-	-	-	_
Mean	5.14	N/A	N/A	8.38	235	17.1
SD	0.27	N/A	N/A	0.63	25.2	1.50

Table D-5 Thermal aging properties of N330 filled NR vulcanizates with 40 phr at $tc_{\rm _{90}}$

Table D-6 Thermal aging properties of N330 filled NR vulcanizates with 50 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	7.37	17.2	N/A	8.00	220	18.9
2	7.15	15.0	N/A	6.50	160	15.5
3	7.02	16.4	N/A	7.00	180	16.9
4	6.51	N/A	N/A	6.00	140	13.9
5	7.31	15.7	N/A	7.50	200	16.3
Mean	7.07	16.1	N/A	7.00	180	16.3
SD	0.34	0.97	N/A	0.79	31.6	1.83

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.56	2.99	7.41	17.5	600	13.5
2	1.30	3.43	7.11	13.0	420	12.5
3	1.39	3.40	6.48	14.0	460	18.3
4	1.50	3.51	6.90	14.0	460	19.4
5	-	~	-	-	-	_
Mean	1.44	3.33	6.97	14.6	485	15.9
SD	0.12	0.23	0.39	1.97	79.0	3.40

Table D-7 Thermal aging properties of N550 filled NR vulcanizates with 10 phr at $tc_{\rm _{90}}$

Table D-8 Thermal aging properties of N550 filled NR vulcanizates with 20 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.38	6.40	12.4	10.5	320	15.5
2	2.39	6.37	11.9	12.0	380	14.6
3	2.39	5.91	12.8	12.5	400	18.1
4	2.36	6.61	12.5	12.5	400	19.7
5	2.46	6.83	12.2	12.0	380	16.0
Mean	2.40	6.42	12.4	11.9	376	16.8
SD	0.04	0.34	0.36	0.82	32.9	2.09

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	3.09	10.5	17.7	11.0	340	19.3
2	3.74	9.53	16.4	9.50	280	17.5
3	3.60	10.7	18.5	11.0	340	20.6
4	3.35	10.3	N/A	9.50	280	16.4
5	3.99	9.10	16.8	11.0	340	19.5
Mean	3.56	10.0	17.3	10.4	316	18.7
SD	0.35	0.67	0.93	0.82	32.9	1.70

Table D-9 Thermal aging properties of N550 filled NR vulcanizates with 30 phr at $tc_{\rm _{90}}$

Table D-10 Thermal aging properties of N550 filled NR vulcanizates with 40 phr at $tc_{\rm 90}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	4.82	12.9	N/A	9.50	280	20.0
2	4.74	12.3	19.4	10.0	300	20.0
3	4.58	12.9	20.0	10.0	300	20.7
4	3.73	11.6	N/A	9.50	280	19.1
5	5.02	14.6	N/A	9.00	260	23.2
Mean	4.58	12.8	19.7	9.60	284	20.6
SD	0.50	1.09	0.40	0.42	16.7	1.58

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	7.58	18.3	N/A	7.50	200	18.6
2	7.34	16.4	N/A	8.50	240	19.1
3	6.77	15.7	N/A	9.00	260	20.7
4	8.35	17.4	N/A	8.50	240	19.8
5	7.67	16.8	N/A	9.00	260	19.7
Mean	7.54	16.9	N/A	8.50	240	19.6
SD	0.57	0.98	N/A	0.61	24.5	0.82

Table D-11 Thermal aging properties of N550 filled NR vulcanizates with 50 phr at $tc_{\rm _{90}}$

Table D-12 Thermal aging properties of N776 filled NR vulcanizates with 10 phr at $tc_{_{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.44	3.23	6.12	16.2	548	21.9
2	1.53	3.42	5.83	15.5	520	16.4
3	1.35	2.78	5.39	14.9	496	16.5
4	1.47	3.07	5.55	15.2	508	16.3
5	1.48	2.96	4.88	16.7	568	20.7
Mean	1.45	3.09	5.55	15.7	528	18.4
SD	0.07	0.25	0.47	0.74	29.5	2.72

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.80	3.87	8.76	14.2	468	19.2
2	1.91	4.42	8.86	15.2	508	22.3
3	1.72	4.83	8.56	14.3	472	23.2
4	1.67	4.31	9.79	14.5	480	20.1
5	1.87	4.32	8.51	14.8	492	19.9
Mean	1.79	4.35	8.90	14.6	484	20.9
SD	0.10	0.34	0.52	0.41	16.3	1.72

Table D-13 Thermal aging properties of N776 filled NR vulcanizates with 20 phr at $tc_{\rm _{90}}$

Table D-14 Thermal aging properties of N776 filled NR vulcanizates with 30 phr at $tc_{_{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.55	5.62	11.5	12.0	380	16.5
2	2.33	5.92	12.6	13.7	448	21.7
3	2.88	6.36	12.3	13.5	440	20.7
4	2.77	5.68	11.3	13.8	452	21.0
5	2.53	5.89	12.5	13.7	448	22.9
Mean	2.61	5.89	12.0	13.3	434	20.6
SD	0.22	0.29	0.58	0.76	30.3	2.45

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	3.59	8.72	15.4	11.6	364	19.1
2	3.09	8.81	16.0	11.4	356	18.3
3	3.28	7.66	15.3	12.4	396	21.1
4	3.07	8.88	16.2	12.2	388	20.1
5	2.46	9.18	16.6	11.8	372	20.2
Mean	3.10	8.65	15.9	11.9	375	19.8
SD	0.41	0.58	0.55	0.41	16.6	1.09

Table D-15 Thermal aging properties of N776 filled NR vulcanizates with 40 phr at $tc_{_{90}}$

Table D-16 Thermal aging properties of N776 filled NR vulcanizates with 50 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	3.59	11.5	N/A	8.30	232	14.0
2	3.61	11.3	N/A	8.60	244	13.0
3	4.44	12.1	18.1	10.0	300	18.4
4	3.79	11.3	20.1	10.4	316	20.3
5	3.53	10.9	N/A	8.10	224	15.8
Mean	3.79	11.4	19.1	9.08	263	16.3
SD	0.38	0.41	1.41	1.05	41.9	3.04

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.41	2.30	4.06	15.0	500	19.3
2	1.21	2.31	4.21	14.5	480	18.7
3	1.17	2.48	4.32	15.0	500	19.5
4	1.24	2.52	4.72	16.0	540	17.8
5	1.22	2.33	4.51	14.5	480	15.3
Mean	1.25	2.39	4.35	15.0	500	18.1
SD	0.09	0.10	0.27	0.61	24.5	1.69

Table D-17 Thermal aging properties of N990 filled NR vulcanizates with 10 phr at $tc_{\rm _{90}}$

Table D-18 Thermal aging properties of N990 filled NR vulcanizates with 20 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.49	3.00	6.34	16.0	540	21.3
2	1.30	2.60	6.00	16.4	556	23.8
3	1.47	2.83	5.68	16.9	576	26.7
4	1.32	2.75	6.08	16.8	572	24.7
5	1.32	2.68	5.79	16.2	548	24.9
Mean	1.38	2.77	5.98	16.5	558	24.3
SD	0.10	0.15	0.26	0.38	15.4	1.96

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	-	-	_	-	-	-
2	1.59	3.21	7.14	14.9	496	22.0
3	1.38	3.57	6.94	16.5	560	22.7
4	1.46	3.51	6.98	16.0	540	20.0
5	1.59	3.51	7.21	15.9	536	23.9
Mean	1.50	3.45	7.07	15.8	533	22.2
SD	0.10	0.16	0.13	0.67	26.8	1.63

Table D-19 Thermal aging properties of N990 filled NR vulcanizates with 30 phr at $tc_{\rm _{90}}$

Table D-20 Thermal aging properties of N990 filled NR vulcanizates with 40 phr at $tc_{\rm 90}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.80	4.78	9.17	15.9	536	23.8
2	1.84	4.06	8.97	14.5	480	20.3
3	1.77	4.35	9.39	15.3	512	22.6
4	1.86	4.13	8.71	14.7	488	20.4
5	1.94	4.38	8.70	16.4	556	23.6
Mean	1.84	4.34	8.99	15.4	514	22.1
SD	0.07	0.28	0.30	0.80	32.0	1.71

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.26	5.25	10.4	14.2	468	19.5
2	2.53	5.04	10.1	14.6	484	19.3
3	2.17	5.40	10.8	14.1	464	18.6
4	2.42	5.44	10.7	14.5	480	19.3
5	2.02	4.78	11.0	13.2	428	17.2
Mean	2.28	5.18	10.6	14.1	465	18.8
SD	0.20	0.28	0.36	0.55	22.2	0.95

Table D-21 Thermal aging properties of N990 filled NR vulcanizates with 50 phr at $tc_{\rm _{90}}$

Table D-22 Thermal aging properties of gN330 filled NR vulcanizates with 10 phr at $tc_{\rm _{90}}$

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.04	1.88	2.94	19.0	660	22.9
2	1.16	1.89	2.84	18.5	640	22.6
3	0.92	1.84	2.70	18.5	640	24.2
4	1.06	1.90	3.41	19.0	660	23.3
5	1.15	1.91	2.87	19.0	660	24.8
Mean	1.07	1.88	2.95	18.8	652	23.6
SD	0.10	0.03	0.27	0.27	11.0	0.92

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.27	2.20	4.09	14.5	480	17.6
2	1.22	2.43	3.87	16.0	540	20.7
3	1.27	2.32	3.71	17.5	600	26.0
4	1.14	2.23	3.65	19.0	660	24.9
5	1.42	2.36	3.82	18.5	640	23.9
Mean	1.26	2.31	3.82	17.1	584	22.6
SD	0.11	0.09	0.17	1.85	74.0	3.44

Table D-23 Thermal aging properties of gN330 filled NR vulcanizates with 20 phr at $tc_{_{90}}$

Table D-24 Thermal aging properties	of gN330 filled	d NR vulcanizates	with 30 p	phr at tc ₉₀
-------------------------------------	-----------------	-------------------	-----------	-------------------------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.50	2.91	5.05	17.5	600	23.5
2	1.79	3.11	5.13	18.0	620	27.8
3	1.49	3.10	5.20	17.5	600	23.3
4	1.53	2.97	5.20	14.0	460	15.5
5	1.66	3.05	4.95	17.0	580	25.4
Mean	1.59	3.03	5.10	16.8	572	23.1
SD	0.13	0.08	0.11	1.60	64.2	4.63

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	1.86	3.26	5.84	16.0	540	22.2
2	2.21	3.94	6.68	16.0	540	20.7
3	1.79	3.24	5.42	16.0	540	20.2
4	1.89	4.13	6.84	15.0	500	21.7
5	1.88	3.77	7.29	17.0	580	24.3
Mean	1.93	3.66	6.41	16.0	540	21.8
SD	0.16	0.40	0.77	0.71	28.3	1.60

Table D-25 Thermal aging properties of gN330 filled NR vulcanizates with 40 phr at $\ensuremath{\text{tc}_{\text{90}}}$

Table D-26 Thermal aging properties of	gN330 filled NR vulcanizates	with 50	phr at	tc_{90}
--	------------------------------	---------	--------	-----------

	100%	200%	300%	Elongation		Tensile
Sample	Modulus	Modulus	Modulus	at break	% Elongation	strength
	(MPa)	(MPa)	(MPa)	(cm)		(MPa)
1	2.05	4.09	6.96	16.5	560	19.8
2	2.21	4.07	6.69	16.0	540	20.7
3	2.45	4.96	7.95	16.0	540	18.8
4	2.36	4.38	6.88	16.0	540	19.0
5	2.55	4.72	7.39	16.0	540	21.2
Mean	2.32	4.44	7.17	16.1	544	19.9
SD	0.20	0.39	0.50	0.22	8.94	1.04

BIOGRAPHY

Miss. Wisullaya Phasook was born in Lopburi, Thailand on May 28, 1985. She received the Degree of the Bachelor of Engineering Program in Petrochemical and Ploymeric Materials, Slipakorn University in 2008. Then, she continued her post graduate study in Applied Polymer Science and Textile Technology Major at the Department of Materials Science, Faculty of Science, Chulalongkorn University and ultimately completed the Degree of the Master of Science in Applied Polymer Science and Textile Technology in October 2010.

