## CHAPTER IV

## RESULTS AND DISCUSSIONS

- 4.1 Determination of counting conditions.
- 4.1.1 Determination of optimum gain setting of liquid scintillation spectrometer for radon counting.

The results of counting a radon sample at different gain setting are shown in Table 4.1 and plotted in Figure 4.1.

> Table 4.1 Variation of count rate as a function of gain. Conditions : Activities of standard radium-226 1031 Pci

| ingrowth factor               | 0.90  | 52                                |
|-------------------------------|-------|-----------------------------------|
| flow rate of nitrogen         | 150   | cm <sup>3</sup> mim <sup>-1</sup> |
| de-emanation time             | 50    | minutes                           |
| particle size of silica gel   | 30-70 | mesh                              |
| weight of silica gel          | 2.5   | g                                 |
| warm up time                  | 5     | minuțes                           |
| warm up temperature           | 0     | °c                                |
| volume of liquid scintillator | 15    | cm <sup>3</sup>                   |
| desorption temperature        | 30    | °c                                |
| Counting time                 | 4     | minutes                           |

| gain% | count rate of<br>standard Ra-226<br>(cpm) | Background<br>count rate<br>(cpm) | Net Count rate<br>of standard (cpm) |
|-------|-------------------------------------------|-----------------------------------|-------------------------------------|
| 0.2   | 3394.3                                    | 23.3+2.4*                         | 3371.0                              |
| 0.4   | 4229.9                                    | 31.9+2.8                          | 4198.0                              |
| 0.6   | 4861.8                                    | 39.3+3.1                          | 4822.5                              |
| 0.8   | 5018.3                                    | 47.8+3.4                          | 4970.5                              |
| 1.0   | 5372.5                                    | 57.5 <u>+</u> 3.8                 | 5315.0                              |
| 1.2   | 5300.9                                    | 56.9+3.8                          | 5244.0                              |
| 1.4   | 5408.3                                    | 57.8+3.8                          | 5350.5                              |
| 1.6   | 4886.9                                    | 55.9+3.7                          | 4831.0                              |
| 1.8   | 4753.9                                    | 53.8+3.7                          | 4700.0                              |
| 2.0   | 4494.1                                    | 50.1+3.5                          | 4444.0                              |
| 3.0   | 2372.0                                    | 19.5+2.2                          | 2352.5                              |
| 4.0   | 1975.8                                    | 17.3+2.1                          | 1958.5                              |
| 5.0   | 1757.8                                    | 16.8+2.0                          | 1741.0                              |
| 6.0   | 1582.3                                    | 16.3+2.0                          | 1566.0                              |
| 7.0   | 1460.5                                    | 13.0+1.8                          | 1447.5                              |
| 8.0   | 1297.3                                    | 12.3+1.7                          | 1285.0                              |
| 9.0   | 1168.9                                    | 11.9+1.7                          | 1157.0                              |
| 10.0  | 1071.9                                    | 9.9+1.5                           | 1062.0                              |

\* Standard deviation  $=\sqrt{\frac{N}{T}}$  where N = total count and T = Counting time From the results above, the maximum count rate is therefore obtained by setting the gain of the scintillation counter at 1 per cent



Figure 4.1 Variation of the count rate as a function of gain

4.1.2 The determination of discrimination levels for radon counting.

The viriation of count rate as a function of discriminator levels was studied by counting the sample prepared under section 4.1.1. The gain of the spectrometer was set at the optimum of 1 per cent. The results are tabulated in Table 4.2 and graphically shown in Figure 4.2. Table 4.2 Variation of count rate as a function of discriminator levels.

| Conditions : | Activities of standard radium-226 | 1031   | Pci                               |
|--------------|-----------------------------------|--------|-----------------------------------|
|              | ingrowth factor                   | C.9052 |                                   |
|              | flow rate of nitrogen             | 150    | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                 | 50     | minutes                           |
|              | particle size of silica gel       | 35-70  | mesh                              |
|              | weight of silica gel              | 2.5    | g                                 |
|              | warm up time                      | 5      | minutes                           |
|              | warm up temperature               | 0      | °<br>C                            |
|              | volume of liquid scintillator     | 15     | cth <sup>3</sup>                  |
|              | desorption temperature            | 30     | с                                 |
|              | counting time for sample          | 4      | minutes                           |
|              | counting time for background      | 20     | minutes                           |

| discriminator<br>levels | Count rate of<br>standard<br>Ra-226 (cpm) | Background<br>count rate<br>(cpm) | Net count rate<br>of standard<br>(cpm) |
|-------------------------|-------------------------------------------|-----------------------------------|----------------------------------------|
| 0-50                    | 461.5                                     | 20.5+1.0                          | 441.0                                  |
| 50-100                  | 577.7                                     | 13.2+0.8                          | 564.5                                  |
| 100-150                 | 501.0                                     | 9.0+0.7                           | 492.0                                  |
| 150-200                 | 300.8                                     | 6.3+0.6                           | 294.5                                  |
| 200-250                 | 250.8                                     | 3.8+0.7                           | 247.0                                  |
| 250-300                 | 244.5                                     | 4.5+0.5                           | 240.0                                  |
| 300-35 <b>0</b>         | 472.3                                     | 1.3+0.2                           | 471.0                                  |
| 350-400                 | 819.7                                     | 0.7+0.2                           | 819.0                                  |
| 400-450                 | 817.3                                     | 0.8+0.2                           | 316.5                                  |
| 450-500                 | 418.9                                     | 0.9+0.2                           | 418.0                                  |
| 500-550                 | 177.0                                     | 1.0+0.2                           | 176.0                                  |
| 550-600                 | 178.9                                     | 0.4+0.1                           | 178.5                                  |
| 600-650                 | 269.8                                     | 0.3+0.1                           | 289.5                                  |
| 650-700                 | 380.8                                     | 0.8+0.2                           | 380.0                                  |
| 700-750                 | 257.7                                     | 0.7+0.2                           | 257.0                                  |
| 750-800                 | 50.6                                      | 1.1+0.2                           | 49.5                                   |
| 800-850                 | 43.5                                      | 1.0+0.2                           | 42.5                                   |
| 8 <b>5</b> 0-900        | 31.8                                      | 2.3+0.3                           | 29.5                                   |
| 900-950                 | 21.8                                      | 3.3+0.4                           | 18.5                                   |
| 950-1000                | 21.1                                      | 4.1+0.4                           | 17.0                                   |



Figure 4.2 Variation of count rate as a function of discriminator levels.

The best conditions for counting is obtained when the figure of merit or the function (efficiency)<sup>2</sup>/background is at a maximum. (17) Table 4.3 shows the figure of merit obtained by setting the discriminators at various levels.

| Discri<br>lower<br>level | minator<br>Upper<br>level | Count rate<br>of standard<br>Ra-226<br>(cpm) | Background<br>count<br>rate<br>(cpm) | Net count<br>rate of<br>standard<br>(cpm) | Effici <i>e</i> ncy<br>(cpmFci <sup>-1</sup> ) | E <sup>2</sup> / <sub>Bg</sub> |
|--------------------------|---------------------------|----------------------------------------------|--------------------------------------|-------------------------------------------|------------------------------------------------|--------------------------------|
| 0                        | 1000                      | 6317.5                                       | 76.0+2.0                             | 6241.5                                    | 6.69                                           | 48.64                          |
| 50                       | 1000                      | 5856.0                                       | 55.5+1.7                             | 5800.5                                    | 6.22                                           | 57.52                          |
| 300                      | 650                       | 3173.9                                       | 5.4+0.5                              | 3168.5                                    | 3.40                                           | 176.41                         |
| 300                      | 800                       | 3863.0                                       | 8.0+0.6                              | 3855.0                                    | 4.13                                           | 176.26                         |
| 000                      | 1000                      | 3981.2                                       | 18.7+1.0                             | 3962.5                                    | 4.24                                           | 79.67                          |

Table 4.3 Figure of Merit at various discriminator levels.

If the three alpha-particles and the two beta-particles were counted with 100 per cent efficiency, 11 counts  $\min^{-1}\text{Pci}^{+1}$  would be the maximum attainable over-all efficiency. In practice, when the gain and discriminator controls of the liquid scintillator spectrometer are set to detect the maximum number of particles, the highest efficiency observed is 6.69 counts  $\min^{-1}\text{Pci}^{-1}$  of radon. At these discriminator settings (0-1000) the background is, however, high at 76.0+2.0 counts  $\min^{-1}$ . The discrimination levels between 300-650 were chosen. At these optimum discriminator settings the over-all efficiency is 3.40 counts  $\min^{-1}$  Pci<sup>-1</sup> of radon and the background is 5.4 + 0.5 counts  $\min^{-1}$ .

The activity of a radon sample counted at different time are given in Table 4.4 and graphically illustrated in Figure 4.3.

Table 4.4 Variation of count rates as a function of decay time after de-emanation.

| Conditions : | Activities of radium-226 standard Solution | 104     | Pci                               |
|--------------|--------------------------------------------|---------|-----------------------------------|
|              | ingrowth factor                            | 0.7185  |                                   |
|              | flow rate of nitrogen gas                  | 150     | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                          | 50      | minutes                           |
|              | particle size of silica gel                | 35-70   | mesh                              |
|              | weight of silica gel                       | 2.5     | g                                 |
|              | warm up time                               | 5       | minutes                           |
|              | warm up temperature                        | 0       | °<br>C                            |
|              | volume of liquid scintillator              | 15      | $cm^3$                            |
|              | desorption temperature                     | 30      | °c                                |
|              | gain                                       | 1       | per cent                          |
|              | discriminator levels                       | 300-650 |                                   |
|              | counting time                              | 20      | minutes                           |
|              |                                            |         |                                   |

| decay time after<br>de-emanation<br>(min) | <b>Cou</b> nt rate of<br>standard<br>Ra-226 (cpm) | Background<br>count rate<br>(cpm) | Net count rate<br>of standard<br>(cpm) |
|-------------------------------------------|---------------------------------------------------|-----------------------------------|----------------------------------------|
| 20                                        | 189.6                                             | 3.1+0.4                           | 186.5                                  |
| 40                                        | 222.7                                             | 2.5+0.3                           | 220.2                                  |
| 60                                        | 235.6                                             | 3.8+0.4                           | 231.8                                  |
| 80                                        | 256.3                                             | 4.3+0.5                           | 252.0                                  |
| 100                                       | 269.3                                             | 4.0+0.4                           | 265.3                                  |
| 120                                       | 283.4                                             | 4.5+0.5                           | 278.9                                  |
| 140                                       | 274.C                                             | 4.5+0.5                           | 269.5                                  |
| 160                                       | 281.4                                             | 4.0+0.4                           | 277.4                                  |
| 180                                       | 284.3                                             | 4.8+0.5                           | 279.5                                  |
| 200                                       | 285.3                                             | 5.0+0.5                           | 280.3                                  |
| 220                                       | 286.3                                             | 5.1+0.5                           | 281.2                                  |
| 240                                       | 284.3                                             | 5.3+0.5                           | 279.0                                  |
| 260                                       | 292.1                                             | 5.2+0.5                           | 276.9                                  |
| 280                                       | 286.0                                             | 5.0+0.5                           | 281.0                                  |
| 300                                       | 283.7                                             | 5.2+0.5                           | 278.5                                  |
| 320                                       | 281.0                                             | 5.1+0.5                           | 275.9                                  |
|                                           | 1                                                 |                                   |                                        |

From Figure 4.3, it is obvious that radioactive equilibrium is established within 3 hours after de-emanation.

In order to confirm that a pure radon sample was obtained from the de-emanation, a sample of 111 Fci Ra-226 was de-emanated and the radon sample obtained was counted after the radicactive equilibrium



Figure 4.3 Ingrowth of radon-222

between radon and its daughters had been established.

The results and the decay curve are shown in Table 4.5 and Figure 4.4 respectively

Table 4.5 Count rate as a function of decay time.

| Conditions : | Activities of standard radium 226 | 111    | Pci              |
|--------------|-----------------------------------|--------|------------------|
|              | ingrowth factor                   | 0.5156 |                  |
|              | flow rate of nitrogen             | 150    | $cm^{3}min^{-1}$ |
|              | de-emanation time                 | 50     | minutes          |
|              | particle size of silica gel       | 35-70  | mesh             |
|              | weight of silica gel              | 2.5    | g                |
|              | warm up time                      | 5      | minutes          |
|              | warm up temperature               | 0      | °<br>C           |
|              | volume of liquid scintillator     | 15     | cm <sup>3</sup>  |
|              | desorption temperature            | 30     | ັດ               |
|              | counting time                     | 20     | minutes          |

| decay time<br>after de-emanation<br>(hr) | Count rate of<br>standard Ra-226<br>(cpm) | Background<br>count rate<br>(cpm) | Net count rate<br>of standard<br>(cpm) |
|------------------------------------------|-------------------------------------------|-----------------------------------|----------------------------------------|
| 4.16                                     | 183.3                                     | 5,2+0.5                           | 178.1                                  |
| 29.33                                    | 162.7                                     | 5.0+0.5                           | 157.7                                  |
| 58.16                                    | <b>1</b> 27.7                             | 4.0+0.4                           | 123.1                                  |
| 76.58                                    | 213.4                                     | 4.0+0.4                           | 109.4                                  |
| 14 3.16                                  | 70.9                                      | 3.5+0.4                           | 67.4                                   |
| 167.58                                   | 57.8                                      | 3,9+0.4                           | 54.5                                   |
| 176.42                                   | 55.3                                      | 3,5+0.4                           | 52.1                                   |
| 181.50                                   | 52.2                                      | _3.2+0.4                          | 49.0                                   |
| 193.33                                   | 45.5                                      | _3.1+0.4                          | 42.4                                   |

From the decay curve, an approximate half-life of 92 hours was abtained which was in good agreement with the half-life of radon-222.

4.3 Determination of de-emanation conditions.

4.3.1 Effect of de-emanation time on efficiency.

The efficiency; or the specific count rate, obtained at different de-emanation times when the nitrogen gas flow rate was varied between 100 and 250  $\text{cm}^3 \text{min}^{-1}$  is given in Table 4.6 and graphically shown in Figure 4.5

| •              |            | THU:           |        |                                                                                                                      | - J  | 1        |         | T. I   | 1912 |     | 14 |     |     |       | F.T. | 1.1           | 1.7 |     |      | [E] | 1049         | n:)  | in:                |          |      |      | 1   | 10   |              |        | 12.1        | Ţ                                     |     |     |
|----------------|------------|----------------|--------|----------------------------------------------------------------------------------------------------------------------|------|----------|---------|--------|------|-----|----|-----|-----|-------|------|---------------|-----|-----|------|-----|--------------|------|--------------------|----------|------|------|-----|------|--------------|--------|-------------|---------------------------------------|-----|-----|
| •              |            | ini.           |        |                                                                                                                      | 1.   |          |         |        |      |     |    |     |     | +<br> |      |               |     |     |      |     | 144 - 1<br>1 |      | 41. (1)<br>41. (1) |          |      |      |     |      |              |        | 1.1         | ····.                                 |     |     |
| v              |            | la del<br>Filh |        |                                                                                                                      | 1 -  |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              | a la   |             | la g                                  |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
| ` -    '+.<br> |            |                |        |                                                                                                                      | 4C   |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
| ·              |            | Figu           | ire    | 4.4                                                                                                                  | De   | cay      | of      | rad    | lon  | aft | er | est | abl | ish   | men. | t of          | equ | ili | lbri | um  | bet          | weet | n r                | ador     | n ar | nd i | its | dai  | ught<br>ught | ters   | algid<br>S. | i i i i i i i i i i i i i i i i i i i |     |     |
|                | $ v _{tr}$ | marin          | pan pa | -<br>The second se |      |          | 0.000   | anse.  | umaa | n n |    | 1   |     |       |      | en per series |     |     |      | pq  |              | 1-21 |                    | 1.4-2-44 |      |      |     |      |              | a 1400 | mare        |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     | 4.    |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       | 144  |               |     | 11  |      |     | 1            |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                | 11     |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      | -    |     |      |              |        |             | -                                     |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     | - 1. |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      | 1.   |     |      |              |        | 17          |                                       |     |     |
|                |            | 7.4            |        |                                                                                                                      |      | <u>.</u> |         |        |      |     |    |     |     |       | 1    |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     | 14  |
| •              |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               | 4   |     |      |     | •            |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              | *    | •                  | 1        |      |      |     |      |              |        |             |                                       |     |     |
| 1              |            |                |        |                                                                                                                      |      |          | H H     |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      | High |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              | and i  |             |                                       |     |     |
|                |            |                | arl.   | •                                                                                                                    |      |          |         |        |      |     |    |     |     |       |      |               |     |     |      |     |              |      |                    |          |      | 1    |     |      |              |        |             |                                       |     |     |
|                |            |                |        |                                                                                                                      |      |          |         |        |      |     |    |     | Т., | 19    |      |               |     |     |      |     |              |      |                    |          |      |      |     |      |              |        |             |                                       |     |     |
| , Lilli        | 111        | 1-00100        | 1:1:1: | that!                                                                                                                | 1.00 | r. I     | tiplet. | - Inst | 11   |     | 1  |     |     | -     | 1    | 11            | 199 | 1   |      | 1.1 |              | 124  | 0.11               |          |      | J.   |     | 1    |              | 1      | 14:50       | 1.171.11                              | ASS | 111 |

Table 4.6 Effect of de-emanation time on efficiency at nitrogen flow rate between 100 and 250  $\text{cm}^3 \text{min}^{-1}$ 

| conditions : | Activities of standard radium 226 | 263     | Pci                               |
|--------------|-----------------------------------|---------|-----------------------------------|
|              | flow rate of nitrogen gas         | 100-250 | cm <sup>3</sup> min <sup>-1</sup> |
|              | particle size of silica gel       | 35-70   | mesh                              |
|              | weight of silica gel              | 2       | g                                 |
|              | warm up time                      | 5       | minutes                           |
|              | warm up temperature               | 0       | c                                 |
|              | volume of liquid scintillator     | 15      | cm <sup>3</sup>                   |
|              | desorption temperature            | 30      | °c                                |
|              | counting time                     | 100     | minutes                           |

4

4.9

| VN <sub>2</sub> gas | De-emanation                   |                  | Efficie | ency (cpmPc | i <sup>-1</sup> )                     |  |  |  |  |
|---------------------|--------------------------------|------------------|---------|-------------|---------------------------------------|--|--|--|--|
| Vde-<br>emanation   | time (min)                     | Expt.1           | Expt.2  | Expt.3      | Average                               |  |  |  |  |
| nitrogen flo        | ow rate 100 cm <sup>3</sup> mi | in <sup>-1</sup> |         |             |                                       |  |  |  |  |
| 5                   | 15                             | 2.30             | 2.35    | 2.16        | 2.27+0.09                             |  |  |  |  |
| 10                  | 30                             | 2.66             | 2.87    | 2.75        | 2.76+0.11                             |  |  |  |  |
| 15                  | 45                             | 3.33             | 3.43    | 3.73        | 3.51+0.19                             |  |  |  |  |
| 20                  | 60                             | 3.43             | 3.48    | 3.54        | 3.48+0.06                             |  |  |  |  |
| 30                  | 90                             | 3.88             | 3.69    | 3.40        | 3.66+0.24                             |  |  |  |  |
| nitrogen flo        | w rate 150 $cm^3$ mi           | 1                |         |             | · · · · · · · · · · · · · · · · · · · |  |  |  |  |
| 5                   | 10                             | 2.22             | 2.17    | 2.20        | 2.19+0.02                             |  |  |  |  |
| 10                  | 20                             | 2.€0             | 2.64    | 2.70        | 2.65+0.05                             |  |  |  |  |
| 15                  | 30                             | 3.49             | 3.61    | 3.75        | 2.62+0.13                             |  |  |  |  |
| 22.5                | 45                             | 3,38             | 3.35    | 3.34        | 3.36+0.02                             |  |  |  |  |
| 30                  | 60                             | 3.44             | 3.56    | 3.50        | 3.50+0.06                             |  |  |  |  |
| nitrogen flo        | w rate 250 cm <sup>3</sup> mi  | .n <sup>-1</sup> |         |             |                                       |  |  |  |  |
|                     |                                |                  |         |             |                                       |  |  |  |  |
| 5                   | 6                              | 2.08             | 2.23 -  | 2.33        | 2.21+0.13                             |  |  |  |  |
| 10                  | 12                             | 2.88             | 2.76    | 2.81        | 2.82+0.06                             |  |  |  |  |
| 15                  | 18                             | 3,69             | 3.32    | 3.80        | 3.60+0.25                             |  |  |  |  |
| 20                  | 24                             | 3.60             | 3.75    | 3.50        | 3.62+0.13                             |  |  |  |  |
|                     | 0.0                            | 0.05             | 0.70    | 2.62        | 2 75+0 11                             |  |  |  |  |

· · · ·



Figure 4.5. Effect of de-commution time an efficiency at nitrogen flow rate between 100 and 250  $\text{cm}^3 \text{min}^{-1}$ 

- : mitrogen flow rate of 100 cm<sup>3</sup>min<sup>-1</sup>
- **n** : nitrogen flow rate of 150 cm<sup>3</sup>min<sup>-1</sup>
- : nitrogen flow rate of 250  $\mathrm{cm}^3 \mathrm{min}^{-1}$

From the results it is seen that, a maximum efficiency was obtained at approximately  $3.57\pm0.18$  cpmPci<sup>-1</sup> when a volume of nitrogen gas equals to 15 times that of the de-emanation solution has been passed. No difference was abserved when the flow rate was varied between 100 and 250 cm<sup>3</sup>min<sup>-1</sup>.

4.3.2 Effect of nitrogen flow rate on efficiency.

The influence of nitrogen flow rate was investigated by fixing the volume of gas at 15 times that of the volume of the de-emanation solution. The results of the investigation are shown in Table 4.7 Table 4.7 Effect of nitrogen flow rate on efficiency at a ratio of 15 between the volume of nitrogen to the volume of the de-emanation solution conditions : conditions were similar to those described under section

| -4 | • | 3 | • | 1 |
|----|---|---|---|---|
|    |   |   |   |   |

| Nitrogen<br>flow nate             | De-emana- | Efficiency (cpmPci <sup>-1</sup> ) |        |        | *         |
|-----------------------------------|-----------|------------------------------------|--------|--------|-----------|
| (cm <sup>min<sup>-1</sup></sup> ) | (min)     | Expt.1                             | Expt.2 | Expt.3 | Average   |
| 100                               | 45        | 3.38                               | 3.43   | 3.73   | 3.51+0.19 |
| 150                               | 30        | 3.49                               | 3.61   | 3.75   | 3.61+0.13 |
| 250                               | 18        | 3.69                               | 3.32   | 3.80   | 3.60+0.25 |
| 300                               | 15        | 3.59                               | 3.38   | 3,50   | 3.49+0.10 |
| 400                               | 11.25     | 2.51                               | 2.66   | 2.57   | 2.57+0.08 |



Figure 4.6 Effect of nitrogen flow rate on efficiency at a ratio of 15 between the volume of nitrogen to the volume of de-emanation solution.

The effect of nitrogen flow rate on efficiency is graphically shown in Figure 4.6. A constant efficiency of  $3.57\pm0.18$  cpmPci<sup>-1</sup> was obtained when the gas flow-rate was under 300 cm<sup>3</sup>min<sup>-1</sup>. Further increase of the flow resulted in a decrease in the efficiency. At high nitrogen flow-rate the particles of silica gel moved inside the topological trap and radon could not be adsorbed quantitatively.

The results of the present investigation support the results obtained by Jacobi (30) which indicated that radon might be effectively swept out of an aqueous solution at room temperature provided that the sweeping gas passed through the solution as a stream of small bubbles, and the total volume of gas was large compared with the volume of the de-emanation solution. This, however, disagreed with the result of Moran and Evan (10) which showed that the quantitative removal of radon from an agneous solution could be achieved by prolonged boiling only.

4.3.3 Effect of particle size of silica gel on efficiency.

The results of the investigation are given in Table 4.8

Table 4.8 Effect of particle size of silica gel on efficiency.

| conditions: | Activities of standard radium-226 | 263 | Pci                               |
|-------------|-----------------------------------|-----|-----------------------------------|
|             | flow rate of nitrogen             | 150 | cm <sup>3</sup> min <sup>-1</sup> |
|             | de-emanation time                 | 30  | minutes                           |
|             | weight of silica gel              | 2   | ę                                 |
|             | warm up time                      | 5   | minutes                           |
|             | warm up temperature               | 0   | °c                                |
|             | desorption temperature            | 30  | °c                                |
|             | volume of liquid scintillator     | 15  | cm <sup>3</sup>                   |

| particle<br>size of | Efficiency (cpmPci <sup>-1</sup> ) |        |        |           |
|---------------------|------------------------------------|--------|--------|-----------|
| gel (mesh)          | Expt.1                             | Expt.2 | Expt.3 | Average   |
| 16-30               | 3.66                               | 3.48   | 3.03   | 3.29+0.32 |
| 35-70               | 3.49                               | 3.61   | 3.75   | 3.62+0.13 |
| 85-200              | 2.61                               | 2.19   | 2.23   | 2.01+0.71 |

According to Darral et. al. (17) the particle size of silica gel should be small enough to permit 100 per cent adsorption of radon but large enough to be stable (not flowing) at high nitrogen flow rate and could be easily transferred. The obtained results from this study indicated that the particle size of 85-200 mesh was too small. However, the difference between 16-30 and 35-70 mesh was not significant. Hence, in the subsequent experiments, the particle size of 35-70 mesh was chosen. 4.3.4 Effect of weight of silica gel on efficiency.

The result of the effect of weight of silica gel used as radon adsorber is shown in Table 4.9 and the efficiency as a function of weight is also plotted in Figure 4.7. The results indicated that, increasing the weight of silica gel from 1.0 to 2.0 g increased the efficiency to a maximum of 3.62 cpmPci<sup>-1</sup>. Further increase of the weight of adsorber gave a decrease in effciency. Since silica gel did not dissolve in liquid Scintillator; two layers would be formed in the counting vial. The liquid scintillator with all the dissolved radon (31) would be in the upper layer. Apparently, when the weight of silica gel was increased to more than 2 g, the scintillator layer is above the optimum geometry. Consequently, this made a decrease in the efficiency.

Table 4.9 Effect of weight of silica gel on efficiency.

| Conditions : | Activities of standard radium-226 | 263   | Pci             |
|--------------|-----------------------------------|-------|-----------------|
|              | flow rate of nitrogen             | 150   | $cm^3min^{-1}$  |
|              | de-emanation time                 | 30    | minutes         |
|              | particle size of silica gel       | 35-70 | mesh            |
|              | warm up time                      | 5     | minutes         |
|              | warm up temperature               | 0     | •<br>C          |
|              | volume of liquid scintillator     | 15    | cm <sup>3</sup> |
|              | dessorption temperature           | 30    | °c              |



Figure 4.7 Effect of weight of silica gel on efficiency.

| weight of |        |        |        |           |
|-----------|--------|--------|--------|-----------|
| (g)       | Expt.1 | Expt.2 | Expt.3 | Average   |
| 1.0       | 0.51   | 0.47   | 0.42   | 0.47+0.05 |
| 1.5       | 2.64   | 2.41   | 2.51   | 2.52+0.12 |
| 2.0       | 3.49   | 3.61   | 3.75   | 3.62+0.13 |
| 2.5       | 3.43   | 3.80   | 3.46   | 3.56+0.21 |
| 3.0       | 3.11   | 3.02   | 3.22   | 3.12+0.10 |

4.3.5 Effect of warm up time on efficiency.

The effect of warm up time on efficiency is given in Table 4.10 and graphically shown in Figure 4.8. No significant increase in efficiency was observed when the warm up time was kept longer than 5 minutes.

Table 4.10 Effect of warm up time on efficiency.

| Conditions : | Activities of standard radium 226 | 263   | Pci                               |
|--------------|-----------------------------------|-------|-----------------------------------|
|              | flow rate of nitrogen             | 150   | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                 | 30    | minutes                           |
|              | particle size of silica gel       | 35-70 | mesh                              |
|              | weight of silica gel              | 2     | <u>g</u>                          |
|              | warm up temperature               | 0     | °C                                |
| ţ            | volume of liquid scintillator     | 15    | cm <sup>3</sup>                   |
|              | desorption temperature            | 30    | °C                                |

| warm up | Efficiency (cpmPci <sup>-1</sup> ) |        |        |           |  |  |
|---------|------------------------------------|--------|--------|-----------|--|--|
| (min)   | Expt.1                             | Expt.2 | Expt.3 | Average   |  |  |
| 0       | 2.70                               | 2.93   | 2.77   | 2.80+0.12 |  |  |
| 5       | 3.49                               | 3.61   | 3.75   | 3.62+0.13 |  |  |
| 10      | 3.12                               | 3.61   | 3.49   | 3.41+0.26 |  |  |
| 20      | 3.98                               | 3.42   | 3.37   | 3.59+0.34 |  |  |

4.3.6 Effect of warm up temperature on efficiency.

The results are given in Table 4.11 and graphically shown in Figure 4.9. It is found that the efficiency decreases at higher temperature. This might happen as a result of the release of radon from the adsorber at higher temperature.

Table 4.11 Effect of warm up temperature on efficiency.

| Conditions : | Activities of standard radium-226 | 263   | Pci                               |
|--------------|-----------------------------------|-------|-----------------------------------|
|              | flow rate of nitrogen             | 150   | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                 | 30    | minutes                           |
|              | particle size cf silica gel       | 35-70 | mesh                              |
|              | weight of silica gel              | 2     | g                                 |
|              | warm up time                      | 5     | minutes                           |
|              | volume of liquid scintillator     | 15    | cm <sup>3</sup>                   |
|              | desorption temperature            | 30    | °<br>C                            |



Figure 4.8 Effect of warm up time on efficiency.

| warm up |        | Efficie | ncy (cpmPci | 1)        |
|---------|--------|---------|-------------|-----------|
| ( c)    | Expt.1 | Expt.2  | Expt.3      | Average   |
| 0       | 3.49   | 3.61    | 3.75        | 3.62+0.13 |
| 15      | 3.53   | 3.11    | 3.47        | 3.37+0.23 |
| 30      | 2.99   | 3.18    | 2.68        | 2.95+0.25 |
| 50      | 2.71   | 2.71    | 3.14        | 2.85+0.25 |

4.3.7 Effect of volume of liquid scintillator on efficiency.

The results of the investigation are tabulated in Table 4.12 and the efficiency as a function of volume of liquid scintillator is plotted in Figure 4.10. The results indicated that, increasing the volume of liquid scintillator from 10 to 15cm<sup>3</sup> increases the efficiency to 3.62 cpmPci<sup>-1</sup>. Further increase of liquid scintillator causes no significant change in efficiency

Table 4.12 Effect of volume of liquid scintillator on efficiency.

| Conditions : | Activities of standard radium-226 | 269        | Pci                               |
|--------------|-----------------------------------|------------|-----------------------------------|
|              | flow rate of nitrogen             | 150        | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                 | 30         | minutes                           |
|              | particle size of silica gel       | 35-70      | mesh                              |
|              | weight of silica gel              | 2          | £                                 |
|              | warm up time                      | 5          | minutes                           |
|              | warm up temperature               | 0          | °c                                |
|              | desorption temperature            | 3 <b>0</b> | °c                                |



Figure 4.9 Effect of warm up temperature on efficiency.

.

| volume of<br>liquid  | Efficiency (cpmPci <sup>-1</sup> ) |        |        |           |  |
|----------------------|------------------------------------|--------|--------|-----------|--|
| scintillator<br>(cm) | Expt.1                             | Expt.2 | Expt.3 | Average   |  |
| 10                   | 1.35                               | 1.62   | 1.75   | 1.57+0.22 |  |
| 13                   | 2.87                               | 2.60   | 2.85   | 2.77+0.15 |  |
| 15                   | 3.49                               | 3.61   | 3.75   | 3.62+0.13 |  |
| 18                   | 3.72                               | 3.69   | 3.89   | 3.77+0.11 |  |

4.3.8 Effect of desorption temperature on efficiency.

The results are given in Table 4.13 and graphically shown in Figure 4.11. It is obvious that the count rate is independent on the desorption temperature.

Table 4.13 Effect of desorption temperature on efficiency.

| Conditions : | Activities of standard radium 226 | 263.  | Pci                               |
|--------------|-----------------------------------|-------|-----------------------------------|
|              | flow rate of nitrogen             | 150   | cm <sup>3</sup> min <sup>-1</sup> |
|              | de-emanation time                 | 30    | minutes                           |
|              | particle size of silica gel       | 35-70 | mesh                              |
|              | weight of silica gel              | 2     | g,                                |
|              | warm up time                      | 5     | minutes                           |
|              | warm up temperature               | . 0   | °C                                |
|              | volume of liquid scintillator     | 15    | cm <sup>3</sup>                   |



Figure 4.10 Effect of volume of liquid scintillator on efficience.



Figure 4.11 Effect of desorption temperature on efficiency.

×

| Desorption | Efficiency (cpmPci <sup>-1</sup> ) |        |        |           |  |  |  |  |  |  |
|------------|------------------------------------|--------|--------|-----------|--|--|--|--|--|--|
| (°c)       | Expt.1                             | Expt.2 | Expt.3 | Average   |  |  |  |  |  |  |
|            |                                    |        |        |           |  |  |  |  |  |  |
| 4          | 3.35                               | 3.63   | 3.49   | 3.55+0.07 |  |  |  |  |  |  |
| 30         | 3.49                               | 3.61   | 3.75   | 3.62+0.15 |  |  |  |  |  |  |
| 50         | 3.55                               | 3.45   | 3.39   | 3.46+0.08 |  |  |  |  |  |  |

The optimum conditions for de-emanation and counting of radon are summarized in Table 4.14.

Table 4.14 Optimum conditions for de-emanation and counting of radon.

| flow rate of nitrogen         | 150              | cm <sup>3</sup> min <sup>-1</sup> |
|-------------------------------|------------------|-----------------------------------|
| de-emanation time             | 30 🐰             | minutes                           |
| particle size of silica gel   | 35-70            | mesh                              |
| weight of silica gel          | 2                | g .                               |
| warm up time                  | 5                | minutes                           |
| warm up temperature           | 0                | °.                                |
| volume of liquid scintillator | 15               | cm <sup>3</sup>                   |
| Descrption temperature        | 30               | °<br>C                            |
| gain                          | · 1              | per cent                          |
| discriminator levels          | 3 <b>00</b> -650 |                                   |

4.4 Determination of detection limit.

Standard radium-226 solutions of various activities were prepared. After de-emanation under the optimum conditions as listed in Table 4.13., their activities were measured and the specific activity or efficiency,E.

.

was evaluated. The results are shown in Table 4.15. The content of radium which gives a specific count rate deviated from 3.50+0.12 cpmpci<sup>-1</sup> was considered to be outside the dynamic range of the detection. Table 4.15 Detection limit.

| standard<br>radium-226 | Efficiency (cpmPci <sup>-1</sup> ) |        |        |           |  |  |  |  |  |  |
|------------------------|------------------------------------|--------|--------|-----------|--|--|--|--|--|--|
| activity<br>(Pci)      | Expt.1                             | Expt.2 | Expt.3 | Average   |  |  |  |  |  |  |
| 0.50                   | 3.00                               | 2.68   | 2.39   | 2.69+0.31 |  |  |  |  |  |  |
| 0.70                   | 3.18                               | 2.90   | 2.63   | 2.91+0.27 |  |  |  |  |  |  |
| 1.1                    | 3.28                               | 3.67   | 3.79   | 3.58+0.27 |  |  |  |  |  |  |
| 3.2                    | 3.52                               | 3.36   | 3.80   | 3.56+0.22 |  |  |  |  |  |  |
| 5.2                    | 3.34                               | 3.65   | 3.19   | 3.39+0.23 |  |  |  |  |  |  |
| 10.4                   | 3.19                               | 3.51   | 3.46   | 3.39+0.17 |  |  |  |  |  |  |
| 31.2                   | 3.34                               | 3.53   | 3.48   | 3.45+0.10 |  |  |  |  |  |  |
| 52.0                   | 3.17                               | 3.43   | 3.29   | 3.30+0.13 |  |  |  |  |  |  |
| 72.8                   | 3.13                               | 3 48   | 3.53   | 3.38+0.22 |  |  |  |  |  |  |
| 104.0                  | 3.75                               | 3.63   | 3.50   | 3.63+0.13 |  |  |  |  |  |  |
| 263.0                  | 3.49                               | 3.61   | 3.75   | 3.63+0.11 |  |  |  |  |  |  |
| 520.0                  | 3. <b>65</b>                       | 3.72   | 3,51   | 3.63+0.11 |  |  |  |  |  |  |
| <b>728.</b> 0          | 3.58                               | 3.49   | 3.71   | 3.59+0.11 |  |  |  |  |  |  |

Conditions : as summarized in Table 4.14

A constant efficiency of 3.50+0.12 cpmPci<sup>-1</sup> was obtained from a radium activity ranged between 1.1-728 Pci. Lower contents of radium-226 gave significantly lower efficiency. For the developed method, a detection limit of 1 Pci could be assumed.

4.5 Determination of content of radium-226 in standard uranium cre.

The accuracy of the method was determined by analysing the total radium-226 contents in a standard uranium ore with different sample weights. The results are shown in Table 4.16

Table 4.16 Radium-226 content in a standard uranium ore. Conditions : as summarized in Table 4.14.

| Standard Reference ur <b>avil</b> um<br>ore (NBL 74 A) |                          |                                   |                    | Experiment          | 1                          | E                  | xperiment 2         | Average<br>Ra-226          | g Ra                  | Uarnium<br>content         | Recovery                    |                      |
|--------------------------------------------------------|--------------------------|-----------------------------------|--------------------|---------------------|----------------------------|--------------------|---------------------|----------------------------|-----------------------|----------------------------|-----------------------------|----------------------|
| weight<br>(g)                                          | Uranium<br>content<br>g) | Fadium<br>226<br>content<br>(Fci) | ingrowth<br>factor | Count rate<br>(cpm) | Ra-226<br>content<br>(Pci) | ingrwoth<br>factor | count rate<br>(cpm) | Ra-226<br>content<br>(Pci) | content<br>(Fci)      | e,                         | feund<br>. (g)              | for<br>Ra-226<br>(%) |
| 0.1197                                                 | 1.23X10 <sup>-4</sup>    | 42.3                              | 0.7195             | 101.1               | 40.19                      | 0.6528             | 101.9               | 43.89                      | 42.04+<br>2.62        | 3.41X<br>10 <sup>-7</sup>  | 1.22X<br>10 <sup>-4</sup>   | 99.39                |
| 0.2003                                                 | 2.09X10 <sup>-4</sup>    | 71.5                              | 0.7185             | 183.6               | 73.01                      | 0.6528             | 164.2               | 70.80                      | 71.9 <u>+</u><br>1.55 | 3.46X<br>10 <sup>-7</sup>  | 2.09X<br>10 <sup>-4</sup>   | 100.56               |
| 0.3240                                                 | 3.35X10 <sup>-4</sup>    | 115.6                             | 0.7185             | 266.2               | 113.80                     | 0.5579             | 269.1               | 115.02                     | 114,91+<br>1.57       | ים, בע<br>10 <sup>-7</sup> | а, зих<br>10 <sup>- 4</sup> | ðð'nÚ                |
| 0.4024                                                 | 4.18X10 <sup>-4</sup>    | 143.8                             | 0.7185             | 354.1               | 140.82                     | 0.6529             | 335.3               | 144.52                     | 142.67+<br>2.62       | 3. 11x<br>10 <sup>-7</sup> | 4.15X<br>10 <sup>-4</sup> - | 99.21                |
| 0.5311                                                 | 5.52X1C <sup>-4</sup>    | 169.9                             | 0.7185             | 487.5               | 193.89                     | 0.5578             | 423.4               | 185.10                     | 189.50+<br>6.22       | 3.43X<br>10 <sup>-7</sup>  | 5.51X<br>10 <sup>-4</sup>   | 9,79                 |

NO.

.

÷

The results indicate that the developed method is very effcitive for the determination of radium-226 contents. If the uranium in the ore is in the radioactive equilibrium with its daughters, the uranium content in the ore could be precisely determined.

4.6 Determination of radium-226 content in monazite samples.

The radium-226 contents in 15 monazite samples were investigated. Analyses were performed at the optimum conditions as described in Table 4.14. The results are given in Table 4.17.

Table 4.17. Radium 226 content in monazite samples.

Conditions : as summarized in Table 4.14

|        |         | Ε        | xpt.1  |                       | E        | xpt.2 |                     | Pa-226 content              | (1)            | (3)                |                       |
|--------|---------|----------|--------|-----------------------|----------|-------|---------------------|-----------------------------|----------------|--------------------|-----------------------|
| sample | weight  | ingrowth | count  | Ra-226                | ingrowth | count | Ra-226              | (experment)                 | U-content when | U-content*         | Ра                    |
|        | (g)     | factor   | rate   | found                 | factor   | rate  | found               | (Feig <sup>-1</sup> sample) | equilibrium ia | from detayed       | R <sub>()</sub>       |
|        |         |          | (cpm)  | (Feig <sup>-1</sup> ) |          | (mgm) | (Feig <sup>-1</sup> |                             | assumed        | neutron enalysis   | (delayed)             |
|        | _       |          |        |                       |          |       |                     |                             |                |                    |                       |
| FG2    | 3.0039  | 0.6628   | 285.0  | 40.90                 | 0.6628   | 308.7 | 14.30               | 42.30+1.44                  | 0.0127         | 0,50+0,03          | 0.09×10 <sup>-7</sup> |
|        | 3.0122  | 0.6528   | 292.1  | 41.80                 | 0.6628   | 294.7 | 42.18               | -                           |                |                    |                       |
| FG3    | 3.0061  | 0.5526   | 119.0  | 17.19                 | 0.6628   | 09.U  | 14.25               | 15.02+1.28                  | 0.0048         | 0.35+0.02          | 0.04×10 <sup>-7</sup> |
|        | 3.0050  | 0.6528   | 116.1  | 16.65                 | 0.6628   | 111.4 | 15.98               |                             |                |                    |                       |
| FG U   | 3.0070  | 0.6628   | 2.97.1 | 41.16                 | 0.6528   | 270.7 | 38.90               | 39.59+ 2.55                 | 0.0116         | 0.3 <b>3</b> +0.02 | 0,00×10 <sup>-7</sup> |
|        | 3.0128  | 0.6528   | 245.1  | 35.07                 | 0.6528   | 274.5 | 39.28               |                             |                |                    |                       |
| RN1    | 2.6581  | 0.7653   | 103.7  | 14.51                 | 0.5958   | 77.8  | 13.99               | 13.30+1.22                  | 0.0040         | 0.3040.02          | 0.03×10 <sup>-7</sup> |
|        | 3.0045  | 0.7653   | 76.0   | 11.74                 | 0.5958   | 81.1  | 12.95               |                             |                |                    |                       |
| PN2    | 3.0615  | 0,6528   | 114.0  | 16.05                 | 0.6628   | 101.8 | 14.34               | 14.02+1.25                  | 0,0045         | 0.3010.02          | 0.05x10 <sup>-7</sup> |
|        | 3.0358  | 0.6528   | 93.5   | 13.29                 | 0.6629   | 109.8 | 15,59               |                             |                |                    |                       |
| RN 3   | 3.0885  | 0.6628   | 139.0  | 19.40                 | 0,6628   | 125.4 | 17.50               | 18.55+0.83                  | 0.0055         | 0.25+0.02          | 0.07×10-7             |
|        | 3.0481  | 0.5528   | 129.7  | 18.34                 | 0.6628   | 134.4 | 19.01               |                             | 1              |                    |                       |
| R)IU   | .3.0088 | 0.6528   | 215.2  | 30.97                 | 0.5958   | 182.0 | 29.01               | 30,05+1,36                  | 0.0090         | 0.2512.02          | 0.12x10 <sup>-7</sup> |
|        | 3.0055  | 0.5529   | 719.5  | 31,47                 | 0.5958   | 180.5 | 28.78               |                             |                |                    |                       |
| RNE    | 3,0248  | 0.6628   | 213.0  | 30.07                 | 0.5959   | 178.9 | 28.37               | 27.07+2.93                  | 0.0091         | 0.32+0.02          | 0.08×10 <sup>-7</sup> |
|        | 4.0015  | 0.6528   | 164.5  | 23.63                 | 0.5958   | 152.0 | 25.89               |                             |                |                    |                       |

| Sample | Sample weight. |          | Expt.1     |                       |          | Expt.2     |                     |                             | U-content when | U-content*   | 8 <sub>pa</sub>       |
|--------|----------------|----------|------------|-----------------------|----------|------------|---------------------|-----------------------------|----------------|--------------|-----------------------|
|        | (g)            | ingrowth | count rate | Ra-226                | ingrowth | count rate | Ra-226              | (experiment)                | equilibrium    | from delayed |                       |
|        |                | factor   | (cpm)      | found                 | factor   | (cpm)      | found               | (Pcig <sup>-1</sup> sample) | le assumed     | neutron(%)   | BU                    |
|        |                |          |            | (Peig <sup>-1</sup> ) | x.       |            | (Peig <sup>-1</sup> |                             |                |              | (delayed)             |
|        |                |          |            |                       | 1.1      |            |                     |                             |                |              | -7                    |
| K118   | 3.0057         | 0,6628   | 183,9      | 26.38                 | 0.7185   | 102.5      | 24,15               | 24.53+1.80                  | 0.0074 2       | 0.30+0.02    | 0.08×10               |
|        | 3.0063         | 0.6620   | 154.8      | 22.19                 | 0.7185   | 191.9      | 25.38               |                             |                |              |                       |
| TVI    | 2,4985         | 0.7185   | 942.2      | 149,96                | 0,5950   | £27.0      | 120.34              | 131.57+13.01                | 0.0395         | 0.46+0.03    | 0.29×10 <sup>-1</sup> |
| 111    | 2.7682         | 0.7185   | 570.2      | 125.00                | 0,5950   | 756.1      | 130.98              |                             |                |              |                       |
| 7.20   | 2.9349         | 0.7185   | 701.7      | 95.08                 | 0.5958   | 592.2      | 95 <b>.76</b>       | 95.13+2.88                  | 0.0029         | 0.30+0.02    | 0.37×10 <sup>-7</sup> |
| 162    | 3.0008         | 0.7185   | 7=8.3      | 97,57                 | 0.5958   | 571.6      | 91.10               |                             |                |              |                       |
|        | 2.9940         | 0.5958   | 36.1       | 5.78                  | 0,5958   | 42.2       | 3.76                | 6,34+0,41                   | 0.0019         | 0.25+0.02    | 0.07×10 <sup>-7</sup> |
| 1K3    | 3.0010         | 5,5958   | 40.1       | 6.41                  | 0.5958   | 40.1       | 6,41                |                             |                |              |                       |
|        | 2.9951         | 0.5958   | 139.8      | 22,38                 | 0.5958   | 131.8      | 21.10               | 22.80+1.45                  | 0.0069         | 0.29+0.02    | 0.08×10-7             |
| 165    | 3.0077         | 0.5958   | 145.2      | 23.15                 | 0.5958   | 154.0      | 24.55               |                             |                |              |                       |
|        | 3.0165         | 0.6628   | 168.2      | 26.90                 | 0.7653   | 230.5      | 20.53               | 28.20+1.40                  | 0.0085         | 0.37+0.02    | 0.08×10 <sup>-7</sup> |
| TK7    | 3.0016         | 0.6628   | 190.3      | 27.33                 | 0.7653   | 241.4      | 30.02               |                             | 1              |              |                       |
|        | 3.0018         | 0.6628   | 419.2      | 59.91                 | 0.7653   | 500.5      | 62.25               | 61,05+1,23                  | 0,0184         | 0.89+0.05    | 0.07×10-7             |
| TKO    | 3.0112.        | 0.6628   | 419.7      | 60,08                 | 0,7653   | 499.9      | 61.98               |                             |                |              |                       |

Department of Chemistry, the Office of Atomic Thergy for Peace,

.

As already mentioned under section 4.5., if the uranium ore is in radioactive equilibrium, the weight ratio of radium to uranium should be  $3.44 \times 10^{-7}$ . The uranium content in the monazite samples were analyzed by the technique of delay-meutron counting. The results obtained clearly show that the ores are not in equilibrium.