CHAPTER IV
EXPLICIT CONTINUED FRACTION EXPANSIONS

In this chapter, we work on the field Fq((x-1)) of formal Laurent series over the
finite field F9, where g is a prime power, equipped by a degree valuation l+1o0- The
first section deals with notation and preliminaries. The explicit Ruban continued
fraction expansions of e and other interesting elements in Fg((a;_1)) are given in
the last section.

4.1 Notation and preliminaries

It is known from Chapter 2, every element £ GF¢((x-1)) can be uniquely written
as a Ruban continued fraction expansion of the form

1 1 1

1+ 2+ 3+

£— D+

where a0 € Fg[x] and an € Ffi[x] \ F¢ (> 1), and that the continued fraction
expansion of £ is finite if and only if £ GF,(.t). In this chapter we use the notation

KiAM1®0 3 oo« [doil alll, 21) 3iesdl

for the above continued fraction expansion and <" for its -z convergent.
By induction, we have

Proposition 4.1. Forany > 1 let[ao;ai, 2...,an]= 2A Then we get
(1) [a,:;a,_i,.. .182,ai] = ——1f0r al >,

(2) [a,;an_1... ,a3a2= :A—lfor all >z, ifa0=o.
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Let a0 6 Fgfx] and {0t}j>1 be a sequence of nonzero polynomial over Fg, and
let X n denote the word (X, oz, *.., an. We put

[«O; ] [OO; nQ ¥ **) N ] T

[foi A1 [foi 1 eeel A1
[doi ] KAt Il .«.171])

and
[0; r] [*G Ath Al Al

The notation and basic results follow closely those in Carlitz [4]. For a positive
integer I, let

l —xg—X anddo:= L di:= [t]di L (4.1)

It is known that [] is the product of monic irreducible polynomials in Fg[x] of

degree dividing i, and di is the product of all monic polynomials in Fo[.r] of degree
)

Remark 4.2, From recursive definition (4.1), for alli > 1, we have the following
two identities.

@d=m..[i\didil..df:L

(2) 4 = [*][t-1], [I-2]*a---[2]«“a[l],i" -
Let

N *

known as the exponential element for Fo[:r]l For brevity, put e := ¢(l). For
many analogies with the properties of the classical exponential, we refer to [29]

The following result gives the continued fraction expansion for Y=o ET If the

continued fraction expansion for Y"t:oﬁr is known. In particular, the continued
fraction expansion for e in F2((.r-1)) is shown as follows:



51

Proposition 4.3. Define a sequence xn with X\ = [0:2_%1]] and if
Xn—[doltti,... ]@n—j then set

_2-'?n()(in+1
#n+l — K ; Ol 1sela2n-1i ——-J? y_az2n-1) ese)—all-

We have .
il

In particular, e(z) = z + limn~ coXn and for g—2,

=[5 [ ip [3aaiM2MI), [4]51,[2),00],:3). 011, (2], 1. )

(More explicitly, for . 0 the hpartial quotient is 27 - x with  being the
exponent of the highest power of 2 dividing 2 ).

In 1996, Thakur [30] gave the pattern in the general case which is more subtle
when (= 2.

Prgposition 4.4. Let g = 2. Then for m > 2, with X(m) defined through
-2

’;:-O' Jix = f0, x (M we have’
- vy 1 m 1=t Yy 196™ M)AV premem g,
/Eso, with x denote the word Xo+ 1,x, X+ 1, we have

3 =1[0;X, X2,X ,x\X, X2,X,xu,...].

In this chapter, we give explicit Ruban continued fraction expansions of
where m & N and / (x) is a nonconstant monic polynomial over a finite ﬁeﬁd&q
satisfying / (x) 1[a], Since

1] = Xg- X

= x (X1 =)
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= X(X — 1) (Xqr2+ X3 + eeo+ |) |

this leads naturally to consider the polynomials appearing in the following table.

f(x) (m>2) 4=2 q>3

X Corollary 49  Corollary 4.9
xm Thakur (1996)  Corollary 4.10
X+l - 1 Corollary 49  Corollary 4.9
(x*-1- Dm Theorem 412 Corollary 4.11
X—1 Corollary 4.9  Corollary 4.9
(*- m Theorem 4.12  Corollary 4.10
X(r2+ X3 H--+ 1 Thakur (1992)  Corollary 4.9
(Xq-2+ XQ-3+ ---+ )m ~ Thakur (1992) Corollary 4.11
X(x —1) Corollary 49 Corollary 4.9
(X (x-i)r Theorem 413 Corollary 4.10
X(X0r2+ Xo-3 + seet ] Corollary 49  Corollary 4.9
(X{xer2+xor3+ 1+ 1))m Thakur (1996) Corollary 4.11
[1] Corollary 49 Corollary 4.9
[m Theorem 4.13  Corollary 4.11

4.2 Main results

In this section, we find explicit Ruban continued fraction expansions of fm'
where m £ N and 17(x) are polynomials appearing in the above table. The proofs
of our works are based on calculation abstracted in the following lemma.

Lemma 4.5. Letye Fqlx]\ {0} and ° [0 1 2. .1 J= [0 X1 Then

@ X0 i1 =]+ G D
Dl[y+ Dn -

@ p-XNY,-xn=" + (Dlﬁ)y"-



Proof. By Propositions 4.1, 2.1 and 2.2, we get (1)

[Q y '/V-I]—[QO\,@?"- O"-)y101)"2 ‘o0 O]
[0 &2)wwe A 5y " 30 ]

(y+ti) cli+c"~
= '|'.|.'|'2 Du+ iV‘
02+ rBCn + DnCn-\
Dny + ¢, Dn+ DnDn- 1
ny+Cn)Cn+ CnA,-i+ (_!)u
(Dny + Cn)Dn + DnDn_s
cn DNy + Cn+ Doy + - 1y
Dn'(Dny + Cn+ Dn-1)
+ (—Cl)'-'l- D
DA [y + nDnn-l

a

and (2)
[do! 2) ] — [0 di, d2, . -5
—[0:ai,02,,,)on,y w ]
(y-"p)cnten
={y-£6 ) D +D:-1
_ ny—Ai-i;Cn+ DnCn-1
Dny —Dn-1) Dn+ DnDn-1

_(Dny —¢* -1)Cn + CnDn-\ + (~1)n
(Dny —Dn_1) Dn+ DnD11
n

Cn(Dny) +{-1)
( yeDnyS )
=d;l+ {D"-
This proves our lemma,

Lemma 4.5 (2) known as the Folding Lemma, first appeared in [19]
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Lemma 4.6. Let m,t ¢ N. Iff(x) is a nonconstant monic polynomial over the
finite field Fg, where q is a prime power, such that f(x) 1{1], then

ged (dt+ -+ 2+t A og [(x)mdt) = 1
Proof. Suppose that
ged (dt+ 1 + 1 +ue+ A+ 2 /Cr)mdt) A 1.
Then there exists a prime P GFg[x] such that
pi(dt+ ™+ d---t A1 and P IH(X)mdt,
We have from Remark 4.2 (1) that & — (117 --- [ A ---dz .
Since P I/ (x)mdt, we get

PIf(x) or P I[7) for some 1< 1 <torPldsforsome 1< <t—1
Again, Remark 4.2 (1) leads to

dt+df+ dt+|n+ -ﬂl h1

= ([le]. [«-"c "Ca v )+ ([d2]--[tK -ur
+ (1021 ---m c ‘c le 11" C 1) + o'

+ ([ili2]...i(Jdr,c ,---c4cl) + i-

If P 1/ (x) or P I[r] for some 1< r <t, then P 11 which is a contradiction.
Assume that P Ids for some 1< <t —1 We treat two separate cases.

» case (>3 : WegetP 11, which is a contradiction.

» case (= 2 Then the above equation becomes

1 gt dt 1
d'+1 +1 + “gtg T

= ([[2] - --[t]did2d3---0t- 1) + ([U[2] ---[] 234 ---dt-1)
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+ ([a][2] o [E] 15 20" dt-2dt-\) + eoot ([1][2) oo- [t]d\d2**0dit-2) + 1-

| f1<5<i —2and since di Idi+1foralli >0, then p | 1 which is a
contradiction.

Assume that =t —1 We apply Remark 4.2 (1) again and get » | [r] for
some 1<r<t—Llorp lds for some 1< <t —2which is impossible,

ged Adt O — + 00+ ——z 1 f(X)mdtY = 1.
Thus the proof of Lemma 4.6 is completed. I
Our first objective here is to extend Proposition 4.4 of Thakur by proving

Theorem 4.7. Let be a sequence of nonconstant monic polynomials over
the finite field Fy, where g is a prime power. Assume that there exists N e Nu{0}
such that

0)
Q:Q: m Qj+11Qj+2 for all j >N (4.2)

and
() IfN > 1 then

ged ((( 20++Qn+1) + (QSeeeQntn) + oot Qnas + 11Q:1Q2 doeqarri) —1- (43)

IFETT* n1 E [0;al,a2..., akg] (> 1), then

VIV2 ses

N+e+l .
. () keQN+i+1
Q\Q2 444Q| [d) 172i ---ld«lQle ."Qn_l_Ey'Okl', -)—02, —ctl].
Proof. For t > 1, let e = [0;  be the kftlconvergent of the continued

fraction expansion of Ez=i" A\ A543 QT

Qoz™



56

We observe that both Ckt and Dke are monic. Consider

N+e n

(ang (1 (e Q0.0
(( 2( 3‘0'Qn+) + (( X 4“an+) + oeed Qn+ +1
Q\Q2 -++Qn+

We assert that

gcd ((Q:Qs1"'Qnt) + (3 4'11Qnt) + eoet Qnt + h (1( 2001Qn+) = 1

If N> 1and £—1, then it is obvious from assumption (4.3).
Next, we treat the other two cases.
Suppose there exists a prime p € F:r] such that

o 1((Q203 ++'Qn+) + (QzQa1’+Qn+) + 11+ Qn+ + 2 and e 1Q1Q2 +++Qn+-

case N = o : By (4.2), we have Q102 ---Qi 1Qi+L for all i GN.

Since Pl ((1(2---qey, P 1ok forsome1<«<iandsoer |QjQj+t mamqe
forall 2 < j < « SINCE ( 1@z wmmak 1 Qs+t fOr all 1 < ¢ < + —k, W have
ok ok Mgt forall 1 <t <£—« and 50 P I orse MMqe for all 1< ¢ < | —k.

SINCE P 1 ((( 203 -mmQe) + (( (4++=( () + +== + qt + 1), then we get p 1 1, which
is a contradiction. Thus

god ((( 23+"'Qe) + (3 47Qe)+ 1+ Qe T(1Q2001Qe) = 2

case N > Land £>2:Since PI(( !( 2---Qn+), P IQk forsome 1< k <N + .
IfP 1Qn+, since P 1((( 2 3+1Qn+) + (( 341Qn+) + ¢se+ Qn+ + 1 !then
P I Iwhich is a contradiction.

Assume that P | ok for some | < k <N +£—2 Using (4.2) when | =
N+£-2>N, W get (!Q2---Qn+-1 1 Qn+, Which implies that p 1 Qn+,
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again we have a contradiction. Thus

e ((Q2Q3 +++Qn#g) + (Q3Q4 ++' Qg + wev+ Qnt + 1. QIQ2+++Qut) = 1

Since Ckt and Dk( are relatively prime, and all Qi are monic, then Dkt =

Q1Q2-..Qn+tc QN

Fori > 1, using (4.2) whenj = N+£—L> N, we get 0102, Onu e folx]\{o}.
Applying Lemma 4.5 (2), we get
[ 1, 21ee1) )é—llQ)Zkf(ir\Heﬂ cee5 "Ijl
(= i) oQjy+f+i
kiQ\Q2 ---Qn+
ck
(QiQ2---Qn+*)2 éiagt.QweH
1
"1 Q102141Qi T Q1Q2 +#+Qn+Qn+CH
Nre+l 1
A QiQ2--Qi
and the proof is complete. I

Theorem 4.7 is contained in the following proposition which appeared in [21].
However, for convenience, we use the version of Theorem 4.7,

Proposition 4.8. Let | be afixed positive integer, {fc;}j>1 a sequence of positive
integers, {Ci}"1 a sequence of nonzero polynomials over ¥1i subject to the condi-
tion that if | = 1 then ci and those ci (i > 2) for which ki —2 are nonconstant
polynomials over Fg, Let the sequence §HJ te defined by

Pi —T Po.Ps,..., Pl 6 FOH\ FJ.

Pu=cu_1pwt Pt=f---Pu- ' ¢ >1 + 1),
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and let
E = E Jf («6 N).

Assume that
() ifI > 2, then F2 [P3 1--- | -P;
(2Q ki > 2for alli> /,
IfE(u) = [a0;ai,a2,...,a,] ( >/ + 1), £lzen ifzere exzsis 3GF¢\ {0} such that

Efll 1) [oint)seBeeer X QIL.., "1 Mji

iEfcu-l
PI’Y?/
Now we apply Theorem 47to show the explicit Ruban continued fraction

expansions of , where fix) be a nonconstant monic polynomial such that

where

Z m

Corollary 4.9. Lei f(x) be a nonconstant monic polynomial over the finite field
Fg, where q is a prime power, |f fix) [[Z], then

if) = L Tt O fig—T fix—
Proof. Let Qi —f{x) and Qi+l= ajlf— for all i GN. For i E N, we consider

di
dd 1

Qi+1 =w zl eFg[x]\Fg,
s0 Qi E Fglx] \Fg. Since Q: ~ di =[dand / (x) J[A Qi I( 2-Forz> 2 consider

Q:Q2Qs**qQi = fo ) ---n = f{X)dt-,
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and Qi+1= TR

04 didi-1 MR _MRA
QQQere&=T70) 1-1= 70) 212 70)

We treat two separate cases.

case >3 Since 7O) I[1] and [1] Idi for all i e N, 7O) Idi for all i & N which
implies that Q1Q2Q3 Qi [ Qi+l
case (=2 Consider

[ = X2—X=x(x—-1)
B=X2- X= X(X21- 1) = x(x - (X224 X2 3H—F X+ 1)
[q= - X=x(BL- D)= x(x- )(x282+ X33 H—f x+ )

so [1] I{i] for all i GN, which implies that / (x) I[i], Then we get Q:Q:Q: 11 Qi
Qi+1'
Applying Theorem 4.7 when V= 0, we get

70) = [0,70)|
= [0 w  rhj,-1(*)]
70) t 70) 1
: -2 ) a1l
70)+70)1170)2 h [0|/O)>/\2, 70), f(.L) ,f(’L)70)1_70)]
Consequently,
. , {2r7?-2
70) [0:/(")>")>-1(®)» 10) )

This completes the proof. O

Using Corollary 4.9, we get explicit Ruban continued fraction expansions of
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e e e e e e
x'x9-1 —1"X —1"Xo-2+ Xo-3 + o0+ 1'X(X —1) " (Xo-2+ Xo-3+ eee+ 1)
— for a prime power ¢ > 2. Next, we find explicit Ruban continued fraction

expansions of for the remaining polynomials by treating three appropriate
partitions of pOSitive integers.

4.2.1 Partition 1

In this subsection, applying Theorem 4.7, we determine explicit Ruban continued
fraction exp_ansmns of 4r S - and 7—7—e §|7 for a prime power g > 3
and m E N>2-

For a prime power ¢ > 3, let

Li=2 Ri=q-1

L2=q R2=q2-

Lz = g2-¢q A3 @ @ q~ 1

Tv = gVt N2 RN = gN - g N~1 ------- g-1 ( >3).

Observe that N>2 = ( v.. [Ln,Rn])n N and [Tv,Rv] n [Lm,Rm]= 0 for all
Mz N.

Let 771 be a fixed positive integer greater than 1. Then there exists a unique
W in N such that m E [TvaRv] -

Corollary 4.10. Let g be a prime power greater than 2. We have

(1
M E)XKL L X2 2XE1 U, XE, 5. 1]

where Xk! defined by [o;X fcj := YAilo  an
(-1 )*[N + qajiit-i

u( := lor EGN,;
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2)

) — [0 Y KDV\ Y kI A2t Y KD Vit A fi)a3)eed)
(ST PR

where Y ki defined by [0; Y *1] := EilO y- _ ‘1omd. and

o
(x(x-i)y —QZurw Zwt2Yu L Zu Y
where Z ki defined by [o;~2*]]:= E =0 X0 d)md and

(-1)r +2ENV L1 7.1
W = 8X(X-1)I’ 11 N

Proof. (1) Let Qi =xm and Qi1 = a[hfor | GN. For i GN, we consider
Qi+l = E = AH—I = -'1e Fe X

50 Qi Grg[{]\ Fg foralli> 1.
Forj > N, we write j = N +h where h >0, so we get

N _
QN+HH2 "+ __dm+h+i/djv+h [N+ h+ Tdbh
Q:Q2---QN+h+l xmdls.  dN#h XmaN-+1 Xm
dodi  dr+h,

First, we show that xm I[N+ h+ [JdE+i f'r "~ —0
By Remark 4.2 (2), we have

[N+hH]Porh= [N+ /H-1] ([N+ h][N+h-1}g[N+ h -2 f m[l]]iINg~iy~2

Since X I[f] for all i GN,
X ((t2) (ONHh-"+ N *+-+0H)+ TN+ 2+ \]dordh
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For all h >0, since

(0- 2) (QNHL+ Quen-24 oot g+ 1) + 1> (g 2) (QN~1+ gN~2+ soot g+ 1) + 1

we have xm \ [N + h + 1]dg'L2 which implies that Qi satisfy (4.2).
Using Lemma 4.6, we get

ged ((Q2031eeQn+1) + (Q3Q 4111Qn+2) + o004 Qnis + 10102 Mo+

d\ do AN \ [ dedo du ¥
:ng + ..+ *L+1,

ad\ div-1/ \did2  dyv-1/ «JV-1 do “1 Jiv-l
du :
d + + 1,deIV 1= 1.

a MK+ T +di V-1

For £> 1, consider

CLKQN+M _ CDy<fv+ i]*-y 1

Qi<32"-Q/v+f =

Applying Theorem 4.7, we get

IR/ M (DL[IV + )
iE:I 1Q2 **Qj Voo =[0; Xrei) £.-S h|
Consequently,

XLt AL 2AEL 1, XEL 5]

Xxm

The proofs of (2) and (3) are done by similar arguments but setting ( 1= (x—I)m
and Qi — (x(x —I))m, respectively. I
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4.2.2 Partition 2

In this subsection, we determine explicit Ruban continued fraction expansions of

(*F1-0ir (Xo2+ Xo-3+ ..+ 1)m’ (X (Ix’_‘-2+ XI~3+ 1+ 1))mand w™ for
a prime power ¢ > 3 and 71€ N>z, by applying Theorem 4.7,

For a prime power ¢ > 3, let

£i=1 71 = g_z

£2=9g- 1 ''2=02- 29

£3 = (J2—20+ 1 3= q3- 2g2

t = g -1- qu~2+ 1 N=gN- 2gw 1 (Al > 3).

Observe that N = (UN>1 [EN,720]) Nand [E 72 ] [Em)*m] = 0 fo ail
M A AL

Let m be a fixed positive integer greater than 1. Then there exists a unique
N in N such that m € [£ , T/n].

Corollary 4.11. Let q be a prime power greater than 2. We have
(2)

N VA B (AU il I m 'Wklin3iredl
where kL defined by [o; fcj := Y& (- I 1 and

t:= ( - n eN;

(xg-2 + xq~3J_L :DA ,Xh1, VI, - Aliy S—i

(VS (/A "

where X K defined by [0:x kg = Y2y o , Y034 vert . &

-1 )kl + gadlU 1 _
V= (924 x93+ wes T M1 N
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()
(X(Z*-2+ X3+ -+ i)r = [0z A WZZA w22 A - LTI

where Y i defined by [o;y fej := and

(X (X0r2+ Xg_3 + oo+ I))mdi

_ CDKIN+ e]dise. .
Vr=(y (xq2+ xg-3+ ---ill))r for £GN;
)
[0; Zhayl, zmY2, ZKL, Y\, Zfyyas1ds

7 a7

Mere z i e/meh by [o; Zfcd = Y)iLo and

yi. t1 AN A <BW.

Proof. (1) Let Qi = (Xga- I)mand Qi+1 = R for i GN. For ! e N, we
consicer '
=HClie F[z] XF,

Civr= 4l =
1-1 -1

s0 Qi e Fg[x] \ ¥qforalli> 1
For j > N, we write j =N + h where h > 0, so we get

IN+h+1
QN+h+2 N+h
Q1Q2 ---Qn 1+ (X<7-1—I)m—o— ... O\

1 AT+/1-1
tIV+ZiH/  +/!
@7 1- hm T+
iV+h+ 1dglh

(xg=l = \)r

First, we show that (201 —l)m I[N+ h+ 1] ~+/aforall h >0,
By Remark 4.2 (2), we have

[IN+h+1]dg = [N+h+Q([N+h][N+h- 1]9[y +h -2 f ena[IfHdy



Since (Te 1—1) 1[1],
K 1- )('2"rtT [A'+fc+W +V
For ail h > 0, since
(@ —2)aNH~1> (g~ 2)gN~I = N —2gv 1> 7,

then (ro.x —I)m I [TV+ h+ [d/7+/i, which implies that ( , satisfy (4.2).
Using Lemma 4.6, we get

ged ((( 2 3I°IQn+|) (QsQa eseQnta) + 1oet ( w1+ L ( ( 2001Qn+)

(( \ 1 du -\ - \mds de dw
= ged i ; c+ Py +LUVE - ) L
ged (dN + NN 4 (> )" =L

For f > 1, consider

(-1) '<3,+,+1 = (-1) <[ +"~,_ 1

QiQi ---Qn+ ~  (xrl - "  ~Ut
Applying Theorem 4.7, we get

©1QiQ2---Ql =" {x h -V ) mdi =[O0 1

=0: Wk Fhd" 2 -Wk)
(x ™ -7 '

Finally, we have

A= [0 kL LWk, 2Wka- ! -LFfGe 3],

65

The proofs of (2), (3) and (4) follow via similar arguments but setting (! =
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(z9-2 + 293 H--—--- FI)m1(! = (z (z9.2+ Z9-3 H--—--- El))mand (! = [Ilm, re-

spectively. 0

4.2.3 Partition 3

In this subsection, explicit Ruban continued fraction expansions of o ) and
‘4| for g =2 and m GN>z, are determined. The proof of Theorem 4.12

and 4.13 are extended to become Proposition 4.4,
Let

Li=2 Ri =2

L2=2+1 R2= 22

L3= 22t 1 R3= 23

Lw= 2N~ + 1 Rn=2n (N>2).

Observe that N>z = (Uftti [Lw,RjM) N and [LjwyRjM [Lm,Rjw = o for all
M N,

Let m be a fixed positive integer greater than 1. Then there exists a unique
N in N such that m G [Ljv,Riv] «

Theorem 4.12. Letq=2. IfYli=ol 3+ nd- =: x k* fOr™  then

1 O[N] 1
A (x+ mdi = B XKE {x+ m+ (c+ hyma "Xk

In particular,

[-n+ 1] oo+ 21 1

F m=[ SI(x+ Dm @+ Do a(rem (x+ hm 1"

Proof. For £ > 1 let — := [O;Xch] be the kf' convergent of the continued

Dke
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fraction expansion of xA=o1~ | p Yjmd  Consider

(N 1 1 1 1 1
2 X+ D)mdi (x+ Dm+ (cFDm U+ (x+Dmd2+ 4 (4 Dmd(y i

dv-n+ (DL O
|

( + |)|’Tﬂ( 1)+

(V-)+E£ +

Using Lemma 4.6 and since Cke and Dke are relatively prime, rf(iv-I#E + "f*l
: (T'!)+* oL ONDH 4 ang (x+ I)md( -1)+£ are monic polynomials over

« =D+ «-!
F2, we get ¢
Ckt=d( -D+'+ (N'i1)+e 0/ ) h A G - R

= ( -1)+r (/I + ]’1+ 122 P A ‘].-'(""_'j;.;.ﬁ_! h“( -N+E and

Dke — (X + 1ymd( -)+£-
We now claim that Dke-1= (X + 1) ¢ - 2+ + Cke for all i> \.
Forall£> 1, let Q = (x+ ldpv-i)+r + Cke an p = ~~q~ — Then
PPicE- QU= ) £ - QCke =1

We first show that P G F2[x]. Note that, from Remark 4.2 (2) and since (x+ 1) 1]
for all 1 GN, we have

(X + hy2<a Idi for all iGN, (4.4)

Now we consider

p_ 1. CkeQ
Dke
1+ Cke ((X+ 1) ( -D+*+ Cke)
Dke
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1tl+ (1 + 1)dfN_1)+e V1+ ol 112H f m\}\/_l)_i_/\_l f- "i("_?)+r/

+ (JV_1)+£\1+ - T_ZH ------- h- (—_|)+£_it—|)+£/1 j /(z + 1)md(N- D+e

e e e (gt AL T (T

+dlv_ 1+ 1+ 724 72+ -+ 72

- 7 ) + 1} J(x + ymd( -1)+*
\ al a2 “( -1)-nr-1/ J

|[(x + 1) ( -!)-I—ﬁvl + .7? + j' Lo f 7( _!)7_!_*_! f 7(7_7!)_!_*/

+ (D f1+ 7+ 77+ 0+ 72 7 1) 1 /0e+ 1)m
\ al a2 ( -n+n-1/

{(1+ D)<V-D)« (L +21 +5 +'"1'+ d(,_0Dt,_1+

+ (v-,R<+ di~r P % + - '+ }

By (4.4), it follows that for all | > 1,
(X + Dd(jv-i)tf —o  mod (x+2)A W

and

- e d(ND+
( 1)dj( ) d(N,l_), ((X+ 1) + 1]

4TTA ((1+1)4- '+%))

fe tti (12. + 7

(X+if
o mod (x+ )2Av HE

forall] G{1,2,..., (V- 1)+ £}.
Since m <2N < 2(N~D# for all f GN, we get P GFalx].
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Now PDkt - QCk = 1and we have Ckt-\DK —Dke 1ck( = 1 Then

PDke . QCkt = Cki-iDke —DKI-iCk(,
cki (Dkf-1-Q) = Dke (Ck- 1- ).

We know CKand Dkt are relatively prime and by (4.5)
degp = deg d(jv-ijtr + 1- [l< deg d(N\)"Q- 1 < deg d(Ni)'|e:deg CH.
By definition, the degree of Cki-1 —p is less than that of CkL Thus
C.. =P sooke1= Q- (X+1)d(/v_1)J_£+

and the claim is proved.
Next, we show that » — e ~2 [\ {0} forall { > 1 Consider

v+ ] L IN+G+{x+ 1)
(x+m+ x+ o=z (X+1m
(XN +xj + (X + 1)
(x+ Nm
X2'E+ 1
(x+)m
(X+ 1)2N+
= x+l)m”’

since 2N+e > 2N+L > m forall i > 1, which implies that » + (— mis
Fop \ {0} forall | > 1
Applying Lemma 4.5 (1), we get

[,V A 1 v 1
(i+ N (rt+1)" -1 XKklI'

ACE 2 1 [V o 1 \ (Ct,+D
kt\\(x + i)m  X+1nrv  V bk )
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Ck 1
Dke n2 ( + 1] 1 Dke + (" + |)d(N D+e + Ckt\
eV (X+ m+ (X+ 1t Dkt )

(Feges ™ ir“é“r*rfh L+ (f 14

LTI s S MR

t(x+ 1)md’1\|_1)+e[N +¢
De + (x+ird\N o+H[(N-i) + (i+ 1]

Cfr 1 1
Dke + 1) md(7V-1)+HM1)
N\ 1+e 1

e I+ (s DmiQelym)
=E (+

t=0

Thus

(x + I)md| B (IXN++|)1 (x+1 *-" 1

Consequently,

e AW ] 1 ™ [+ 2 1 1
(x+1)m _1 x4+ 1) (x+ Dmlt (x4 1)1 (x+1)"*-1n

This completes the proof. L]
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Theorem 4.13. Letq=2. IfYli=&I+£ (3 t\) %-=:  Xk]fort- !"then

(TV-13+M-L VRN
s e i 8 GG E e K
In particular,
e MV [N+t + [na [N+2]+M 1
(x(x+ 1))m=[ (x(x+1))m O " (x(x+7a)))" "™ 7

Proof. For i > 1, let -jy- := [0 Xke] be the kf' convergent of the continued

fraction expansion of X"i:oJ‘ﬁE(X(XJr\) N -Cons.der

( ! 1
5  wE(z+nrdi T+ ) KT+ D)Mo o+ 4+ (x(x + 1)) mrf(N-)+f
(Ut (N-)te+ 1 1 d(N-i)+e +1
1

d(N-i)+e 1- ( -D-M-1

(x(x + I))?n (N-i)+e

Using Lemma 4.6 and since Cke and Dkt are relatively prime, (v 1)+ + [ '1!)+£
o O g ' | |

; & bd(rW)%-'l + Land (x(x + 1))m (V_I+e are monic polynomials
over F2, we get

dN-)re (- a( e
1 e )|

=4, D(1+1 +4 + +

DKt = fix + 1)) md(N-1)+-

ck= Qv+

We now claim that Dke- 1= [ ( 4+ Ckefor all £ > 1.
Forall | > 1, let Q = [Mftw=<H£+ Cif and p = A K~~150 we get

- QCfx= (1+z0 - ) fjfc, - = 1
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We first show that P G IRz[2] Note that, for ¢ = 2

* We have
X(x + 1) 1[i] forall i GN. (4.6)

» From Remark 4.2 (2) and since X(x + 1) I[g for all i GN, we have

(X(x + Iyz-a2l 1 forall 1GN, (4.7

Now we consider

—1. Ckt
p Dth
o (V] () + Ok)

- {0+ h-%i+ At (TW W )
AV D4+ oot T +*) (2@ D)md( - DHe
= b1+ [N] gLt 37+ 3 H N __7]+A!

N|+r(1+32+3% +5,(2 _!)'!'3_1} +I3I}/ (X(x+ 1) ao_ipse

=0T (L + g+ ey 33w
+ -!)+!’(1 + 3( + 3i+ ‘let 3% _|)3+“7‘_‘|/)} [(x(x + 1))m

( « «

= YIVIC MG+ + G e L
h /\U( NER i a4, (E-l- e +1 (V\ﬁ(zf)-lf Fons ? TV£11/ Jf 7} %
(48

Forafixedi > landj G{1,2,... (77 =1) + £} , we get

XN+xv =0 mod (x(x+a)> ™"
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and
2N_| t . . . :.
2(v-iybr _ 23 2 {r4) = (N if min{fV j}=]
2(N-+e _ = oewif min{N,j} =N
> 2n. (4.9)

By (4.6), (4.7) and (4.9), it follows that for all | > 1,
[IVldpv it*= 0 mod (x(x+I))X

and

[AMd(yv-i)+r d(N-i)+e

. /
i & (vi+ )

< A2t + D)+ {x" + 1))

N2+ 12)
o mod {x{x+ 12

forallj G{1,2,..., (AT—1) + &5 . Hence we see that p G F2[a]
Now PDkt - qckt = 1and we have Cke-iD ke - Dkt-\Ckt = 1, s0

PDKt — QCk, = Cki-iDkf — DK(-iCk(
CKok- - o) - pk(ck- - P)

We know Ck and DK arc relatively prime and by (4.8)
deg P = degd(A/_I+E + 2W- 22n < degd(V-i)+{- 2 < deg (M I+ = degCfc,.
By definition, the degree of Cl{'l—p IS less than that of ClcE. Thus

ckc1—p so D1 =Q —[afjdv-1* + c K
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and the claim is proved.

Next, we show that N+ g+ Y GFRalx] \ {0} forail | > 1. Consider
M IT

[N+ 1+ [N]
(@ + 1)m

[

(x(c+1))m

(x2' A D+1)
5 10 ———
(X(c+ 1))m

Since2 —1> Lforall£> Land 2N > m, then "(
all £>1,
Applying Lemma 4.5 (1), we get

K( ] ) GFax]\ {0} for

Dke 2 (([N+t\+m \ 1(Cr+Dk"w
K xx+)T )+ 1\ Dk )

[

N + | N]  Me<+ [N]d(/
(*

I+ (
&+ )M D

ey v R (R 1)

-1)+1+ Cfef\
J

2
*V

_§<

akf
-+
he A ;
AEETOY SN e Y D L aa )y F (xxe 1)) 7
~ot, + + \))mdIN_IHt{N +1}

of, + (x(X + 1)) 4«-1)«[(N -!) + («+1)]
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- DK (x(x + 1))md(tf D)

(N-i)+e 1

A et )Imdi + et D))mAVE L)

(N-i)+e+i

x{x + [))mai

Consequently,

by R "

I (z(z+1))m "' K" (x

(i(1 + 1)) g

This completes the proof, O
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