
CHAPTER 2 

THEORY

2.1 Molecular Dynamics

Molecular dynamics (MD) simulations has become one of the important tools 

in the research areas of biology, chemistry and physics. It combines the principles of 

statistical mechanics and classical physics for the examination of molecular systems 

at atomic detail. MD is the time dependent integration of the classical equations of 

motion. The equations of motion are of sufficient complexity that the integration 

must be done numerically over a large number of very small discrete time-steps 

rather than analytically in a continuous fashion.26 The most common MD algorithm is 

relied on the numerical solution of Newton’s equation of motion, which allows both 

equilibrium thermodynamic and dynamical properties of a system at finite 

temperature to be computed.27

An important issue of simulation studies is the accessible time and length- 

scale covered by microscopic simulations. Figure 2.1,28 shows a schematic 

representation for different types of simulations in a length-time-diagram. It is clear 

that the more detailed a simulation technique operates, the smaller is the 

accessibility of long times and large length scales. Therefore quantum simulations, 

where fast motions of electrons are taken into account, are located in the lower left 

corner of the diagram and typical length and time.
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FIGURE 2.1 Schematic comparison of time- and length-scales, accessible to different 

types of simulation techniques (quantum simulations (QM), molecular dynamics 

(MD), Brownian dynamics (BD) and hydrodynamics/fluid dynamics (HD)). The black 

dots mark the longest (~ 1 ps) and the biggest (N > 5 X 109 , L « 0.4 pm molecular 

dynamics simulations).
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เท the MD simulation, the initial coordinates and velocities of each atom in 

the system are needed. เท order to calculate force acting on each particle, the 

classical equation of motion consisting of N particles (Eq2.1) needs to be solved. The 

second law of the classical Newton’s equation26 is given by

Where บ ( r  1 1 r 2 , ... , r N ) is the interatomic potential energy function of 

coordinate of N  particles which consist of energy and non-bonded energy, f j  is the 

force acting on f h atoms. กา; is the particle mass. To compute บ, it is known as the N- 

body problem which cannot be solved exactly. เท practice, the interatomic potential 

energy in Eq. 2.1 is commonly computed based on the two-body approximation. 

Particularly for large biomolecular systems, molecular mechanical (MM) force field 

method is employed rather than quantum mechanical (QM) approach.29

2.2 Molecular mechanics force fields

A force field is a mathematical expression describing the dependence of the 

energy of a system on the coordinates of its particles.30 Widely used mathematical 

model for the potential energy of a molecular system consists of six types of 

interactions.31

d 2  ท = fi =  - V r . £ / ( r 1 ; r 2 , .......1 rN) ( 2 . 1)

บ  =  V z /+  V EL+ V BS+V AB+ V pt +  V IT 
(2.2)

บ  non-bonded บ  bonded
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The non-bonded interaction represents the รนทา of pair-wise interaction 

energies of all possible interacting non-bonded between atom two atoms.32 The first 

represent V Lj  that the Lennard-Jones potential that has an attractive part 

representing the van der Waals energy and a repulsive part representing the Pauli 

repulsion

^ =  y . J > >

where, Ry is the distance between the atom i and atom j, e,j is the van der 

Waals dissociation energy, and CTjj is the collision diameter between atom i and atom 

j. Dissociation energy is equal to the amount of energy needed to pull a pair of 

atoms in the strongest van der Waals in the binding state. The power of the negative 

term that sometimes also called the London dispersion force. The collision diameter 

is approximately the distance at which a pair of atoms bounces off from each other 

in anormal, non-reacting condensed state.

VEL, is the electrostatic potential energy that describes the force resulting from 

the interaction between two partial charge particles q , and q j. The energy between 

atoms i  and j  is expressed according to Coulomb’s Law

V e l  - (2.4)

Where q, is the charge of the atom i. Compared with the van der Waals 

potential, the electrostatic potential is a stronger, more long-rang interaction.

The bonded interactions,32 which maintain the bond lengths, the bond angles 

and the dihedral angles so that chemical groups will remain sterically stable in an 

MD simulation.32 Which V BS, VAB, V p j and v/r are the bond stretching energy, angle­

bending energy, torsion energy, respectively. VBS is the bond-stretching energy 

standing for the elastic interaction between a pair of atoms connected by a covalent 

bond followed in Eq2.5.
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Vbs = \
mEbonds

Where, im is the distance between the two atoms of the m th bond, 1 is 

the equilibrium bond length, and k m  is the bond strength.

VAB is the angle-bending energy standing for the interaction among three covalently 

bonded atoms that form a stable angle

VAB= \
m E a n g le s

Where d m  is the m ,h angle between the two adjacent bonds that share a 

common atom, & m  is the equilibrium bond angle, and k m  is the strength of bond 

angle bending.

V p T and V j j  the proper and improper torsional energies standing for the 

interactions among four covalently-bonded atoms that form a stable proper and 

improper dihedral angle.

Vn =  -

mEtorsions

V,T = \
mEtorsions

Where, ù ) m  is m dihedral angle between the two adjacent angles that share 

a common bond, nm is the periodicity factor which determines the number of 

equilibrium dihedral angles in a 360° rotation, Ym is the phase shift, vm is the 

amplitude, Çm is the m improper dihedral angle among four atoms that are not 

bonded successively to one another, is the equilibrium improper dihedral angle,

and k ^ n  is the strength. Show in Figure 2.231

^  ki dm-  & ) 2  ( 2.8)

Kn [ 1  “T COS(jlmKm )] (2.7)

£  klntSmO2 (2.6)

kjn dm In) (2-8)
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FIGURE 2.2 Schematic representation of (A) Bond-stretching force, (B) Angle-bending 

force, (C) Proper torsional force and (อ) Improper torsional force.
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FIGURE 2.3 The potential energy function, บ. that potential energy of each term is 

the y - a x is .  (A) The interaction energy of two bonded atoms as a function of the 

distance of their atomic centers with ideal distance b0 as harmonic term. (B) The 

harmonic term, similar in form to (A), but of lower energy, that describes the 

interaction of two atoms bonded to a third atom as a function of the angle between 

them with the ideal angle 0O. (C) A typical periodic (ท=2) cosine term with a minimum 

<Po at 0 used to describe both in- and out-of-plane dihedral angle energies. Plots (A- 

c) share the same range for energy. (D) The van der Waals interaction energy of two 

atoms with £ and r0 the geometric mean of their respective £ and r0. (E) Three typical 

electrostatic interactions. The top line idealizes the interaction of charges with like 

signs while the bottom line idealizes the interaction of two charges with different 

signs. The sum of (D-E) constitutes the non-bonded interaction energy of two atomic 

centers.32
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2.3 Expansion based in teg ra tio n  a lgo rithm

A number of integration algorithms using finite difference techniques are 

available to solve the Newton’s equation for MD simulation in Equation 2.1. Basically, 

MD trajectory is divided into several small stages and small enough time step 5t. The 

simple class of integrators is called Verlet-Stormer integrator that expands the 

positions and velocities in a Taylor series as follows.33

V( t  +  St )  =  v ( t )  ±  a ( t ) S t  +  J b ( t ) S t 2 ±  ^ c ( t ) S t 3 +  . . . (2.9)

r ( t  +  St )  =  r ( t )  +  v ( t ) S t  + 1 a ( t ) S t 2 +  ^ b ( t ) S t 3 +  . . . (2.10)

Where a, b, c are the 2nd, 3rd and 4th time derivative of the coordinates. เท 

the same way, the expansion may be performed for 6t — » -  6t, which gives

r ( t  — St )  =  r ( t )  — v ( t ) S t  +  j a ( t ) S t 2 — i b ( t ) S t 3 ± 1 . .  (2.11) 

v ( t  — St )  =  v ( t )  — a ( t ) S t  +  - b ( t ) S t 2 — - c ( t ) S t 3 ± 1 . .  (2.12)
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Eqs 2.8 and 2.10 as well as Eqs 2.9 and 2.11, give for the new positions and 

velocities.

r ( t  +  St )  =  2  r ( t )  —  r ( t  —  St )  +  a ( t ) S t 2 +  0 ( S t 4) (2.13)

V ( t  +  5 t) =  2 v (t)  -  v ( t  -  5 t) +  b { t ) 8 t 2 +  0 (5 t4) (2.14)

(5tn + ท- th order method are truncation varies. Eq.2.12 and 2.13 are 

therefore of 3rd order. The drawback of Eq.13 is, however, that it requires the 3rd 

derivative of the coordinates with respect with to time which is not routinely 

calculated in MD simulations and thus introduces some additional computational 

and storage overhead. To overcome this drawback one can simply substract Eq2.10 

from Eq2.8, giving the central difference scheme for the velocity

V ( t )  =  — —  ( r ( t  +  St )  —  r ( t  —  St )  +  0 ( 8 t 3 )  (2.15)
2 St

Eq2.12 and 2.14 are not optimal, since information is required form positions 

not only at time t  but also at time t  -  6 1. Thus an equivalent algorithm, which stores 

only information from one time-step is the so called v e l o c i t y  v e r l e t  a l g o r i t h m :

r ( t  +  St )  =  r ( t )  +  v ( t ) 8 t  +  - a ( t ) S t 2 (2.16)

V ( t  +  t )  =  v ( t )  +  - 5 t ( a ( t )  +  a ( t  +  St ) ) (2.17)
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At the timestep t  +  ô t .  Eql6. can be divided into two steps, First calculate

V ( t +  Y )  =  v ( t ) + j 6 t a ( t ) (2.18)

And then computed the actual forces on the particles at time t  +  ô t  and finish the 

velocity calculation with

v ( t  +  ôt )  =  V + +  —  a ( t  +  St ) (2.19)

2.4 The Periodic boundary conditions (PBC)

Periodic boundary is a computational technique that introduces repeating 

unit cells into a simulation system. With PBC, the system which consists of only a 

few hundred atoms behave as if it was infinite in size. Due to the effect of the 

surface that any finite sample of matter must have, and which ensure that the 

internal structure of the sample is dominated by surface rather than bulk forces, 

Thus neccesaries to remove this effect. Primary cell is paticle are genarate in Volume 

V. All atoms in primary cell are replicated in all direction to form an infinite lattice of 

image cell (Figure 2.4). Image cells have the same size and shape of the primary cell. 

เท open boundaries, particles can freely enter or leave any cell. When a particle 

moves out of the cell, its image particle will enter the cell at the opposite site. The 

number of image cells needed depends on the range of intermolecular forces.34
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FIGURE 2.4 Periodic boundary condition in two dimensions with the primary cell 

surrounded by its image cells. Molecules that leave the cell will be replaced by their 

images entering the cell from the opposite side.34
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2.5 The Particle Mesh Ewald (PME)

Particle-mesh Ewald (PME)35 method is often employed to correct the long- 

range interactions in the simulation with PBC as well as to reduce the computational 

cost required in the calculation. The Particle Mesh Ewald method calculate direct- 

space interactions invole electrostatic interactions of macromolecules system using a 

modification of Coulomb's Law in periordic broundary condition and to build a 

"mesh" of charges, interpolated onto a grid using Fourier transform in reciprocal 

space. It is from this charge interpolation that long-range forces can be calculated 

and incorporated into the non-bonded interactions in a simulation system. PME 

concept that Poisson equation can be solved much more efficiently distribution of 

the charges in a mesh. Thus, the three dimension grid of particle mesh is created in 

the system over the distribution of the system charge. After that, the forces and 

potentials of atoms are determined from this charge. It’s note that the grid size 

should be not too small in order to reproduce accurately charge distribution. The 

basic idea of particle mesh Ewald summation is to replace the direct summation of 

interaction energies between point particles.

The PME method is best suited of systems, when physical systems require 

the imposition of periodic symmetry that can be simulated as infinite in spatial 

extent.
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