
CHAPTER 2

TH E O R E TIC A L B A C K G R O U N D

The purpose of this chapter is to briefly discuss quantum mechanical (QM) 

approaches that are three methods, which include semi-empirical, ab initio and 

density functional theory (DFT) methods. It can be widely used in computational 

studies to calculate molecular structures, chemical and physical properties of 

chemical systems and reactions. Prior to 1920s, E. Fermi and L. H. Thomas developed 

theirs work by using the concept of density functional, which is a function of total 

electron density for expressing the energy of the chemical system. Later, J. c. Slater 

generated the HF-Slater method to report the energy and other properties of the 

system, using the same concept into development of his method in 1951. These 

ideas were confirmed by p. Hohenberg and พ. Kohn. They published a theorem 

which uses the electron density of system to describe the ground state energy of a 

non-degenerate electronic system and the correspondent electronic properties. 

Recently, DFT has become known as an effective methodology for simulation of the 

chemical system.

2.1 The DFT method

The main problem of DFT concept [41] is difficult to explain kinetic energy 

systems of interacting electron. So, พ . Kohn and L. Sham introduced the way to 

solve this problem in 1965 [42].

2.1.1 The Kohn-Sham energy
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The kinetic energy functional of a system can be divided into two parts: one 

is the part of non-interacting particles that can be calculated exactly. The other is a 

small correction term for electron-electron interaction. The electronic energy of 

ground state of the system is followed by the Kohn-Sham formalism can be written 

as

dd-jiJrTJv-'t'.c,•>1 -ÉlyM'-.K, 4  JJ +£»p]

(2.1)

The system comprises ท electrons and N  nuclei. x¥i (/ = 1,2,3,...,«) are the 

Kohn-Sham orbitals, the kinetic energy of non-interacting electrons are accounted in 

the first term, the nuclear-electron interactions are shown in the second term, the 

Coulombic repulsions between the total charge distributions at r, and r2 are 

regarded in the third term, and the last term corresponds to the exchange- 

correlation which represents the correction of kinetic energy from electron-electron 

repulsion energy.

As set of one-electron orbitals, the ground state electron density p (r) at 

location r  can be written as

(2.2)

The Kohn-Sham orbitals are calculated by solving Kohn-Sham equations

= * 1- %  ('-1) (2.3)
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where /;, is the Kohn-Sham Hamiltonian, ร ' is the Kohn-Sham orbital energy

The Kohn-Sham Hamiltonian can be written as

h, = ~ v ? - J ^ -  + \B ^ d r2+Vxc{r,) (2.4)

เท equation (2.4), vxc is functional derivative of the exchange-correlation energy, 

given by

1,  VC โ _ ไ Æ h '^ T / o l
y \ p \ (2.5)

The exchange-correlation energy (E xc) consists of exchange term (e x ) and 

correlation term (E c ) which are functional of the electron density. The exchange 

term is represented interaction between electrons of the same spin, while 

correlation term is described interaction between electrons of opposite spin.

(2.6)

The exchange-correlation energy can be split into two groups which are local 

functional and gradient corrected.

2.1.1.1 Local Density Approxim ation

At any point in space, the local density approxim ation (LDA) depends

only on electron density. The exchange-correlation energy is a function o f the
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electron density at that point in space and can be given the same density in 

homogeneous electron gas. Thomas-Fermi-Dirac method is presented as LDA to the 

exchange energy which was employed together with the Thomas-Fermi model by p. 

A. M. Dirac, in 1930.

E ^ irac[p ] = -C x \p k r ) d r (2.7)

Cx is a constant that can be given by

cx " - f (2.8)

Whereas, the correlation energy is performed by using suitable formula which was 

calculated for a number of different densities in homogeneous electron gas. Many 

different formulations were developed such as Vosko -Wilk-Nuasir and Perdew.

2.1.1.2 Generalized Gradient Approxim ation

The generalized gradient approximation (GGA) [43] represents the 

exchange-correlation functional which depend not only on the electron density (/?), 

but also on its gradient, Ap (r). Perdew-Wang (PW), Becke88 (B88), Optx (O) were 

developed for using as exchange functional. Examples of the correlation functionals 

include Becke 88 (B88), Perdew 86 (P86), Perdew-Wang 91 (PW91) and Lee-Yang-Parr 

(LYP).
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2.1.1.3 Hybrid Density Functional Methods

The exchange-correlation of GGA method is increased with a term of

HF exchange calculated from HF theory, in the so-called hybrid density functional 

method (FI-GGA) [43], FHF orbital give an expression for the HF exchange energy that 

can be written as

For many molecule properties, FI-GGA has become an extremely popular option in 

quantum calculation and widely used because it has allowed an important 

improvement over GGA. Many different functionals were developed such as B3P86, 

B3PW91, 03LYP, B97-1, B97-2 and B3LYP.

2.2 Gaussian basis sets

The m olecular orbitals are created by using a set o f function called the basis

set, which is expanded as a linear com bination atom ic orb ita l w ith coefficient. There

are tw o  major types o f basis set which include m inim al and extended basis sets.

2.2.1 Minimal basis set
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Minimal basis set [44] is a basis set that is constructed by using one basis 

function for each atomic orbital in the atom to describe only the most aspects of 

orbitals. Commonly used minimal basis sets of this type are Slater type orbital (STO), 

and Gaussian type orbital (GTO).

2.2.1.1 Slater type o rb ita l (STO)

J. c. Slater developed the basis set which were fitted with linear least- 

square. The expression of STO basis function for s-orbital is given as

4>STO = N  - el~tr) (2 . 10)

where N  = f - f is normalization constant

ร is orbital exponent 

r  is a radius in angstrom unit

2.2.1.2 Gaussian type o rb ita l (GTO)

STOs can be approximated as linear combinations of Gaussian orbital 

that called Gaussian primitive. The product of its primitive can be obtained from the 

GTO o f r 2. The expression of GTO basis function for s-orbital is given as
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(1i)GTO =  N - e [ • 1 (2. 11)

where N  = —  
\  ท

is normalization constant

Y is orbital exponent

r  is a radius in angstrom unit

All basis set equations are in the form STO-nG (where ท represents the number of 

GTOs combined to the STO).

2.2.2 Extended basis sets

The extended basis set is basis set with more details. They accounted the 

higher orbital of the molecule and described for shape and size of molecular charge 

distributions. There are several types of extended basis sets consist of Double-Zeta, 

Triple-Zeta, Quadruple-Zeta, Split-Valence, Polarized Sets and Diffuse Sets [42, 45],

2.2.2.1 Double-Zeta, Triple-Zeta, Q uadruple-Zeta

Each atomic orbital, the double-zeta basis set is calculated by the 

sum of two STOs. The equation can be written as

( 2. 12)
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The zeta value (ç) shows diffusion of the orbital. The constant (d ) accounts for the 

number of each STO which counts to the last orbital. So, each STO shows a different 

size of the orbital because of the different of its zeta. เท the same way, the sum of 

three and four STOs is called as Triple-Zeta and Quadruple-Zeta, respectively.

Z2.2.2 Split-Valence

A split-valence basis set is the method that inner-shell electrons are 

considered to describe with a single STO. The examples of split-valence basis sets 

are 3-21G, 4-31G and 6-31G. เท case of 6-31G basis set, it comprise of 6 gaussians for 

inner-shell orbital, 3 gaussians for the first STO of valence orbital and 1 gaussian for 

the second STO.

2.2.23 Polarized Sets

Polarization effect can be occurred when some orbitals share qualities 

of its orbitals to each other. The charge distribution between positive and negative 

charge cause the distortion of the shape of atomic orbital. To solve this problem, 

polarized basis sets are utilized. One asterisk (*) at the end of basis set implies that 

polarized basis set has been taken into consider in the p orbital which was modified 

by adding a d orbital. Two asterisks (**) imply that polarized basis set has been taken 

into consider in the ร orbital which was modified by adding a p orbital.
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2.2.2A Diffuse Sets

The diffuse function is used to compensate the loosely bond electron 

when an atom is in an anion or in an excited state. One (+) implies that p orbital 

was being accounted, while (++) signs imply that both p and ร orbital was being 

accounted

2.2.2.5 Effective core potentials

Using of effective core potentials (ECP) have been the highly 

performance in the molecular orbital calculations that is suitable for transition 

metals. ECP is a group of potential functions that is used to replace the inner 

electrons of atomic and molecular systems, and calculate only the valence electrons 

explicitly in quantum molecular calculations. Following this approach, LanL2DZ (a 

split valence basis) is one of ECP basis sets which consist of double^zeta basis set 

and effective core potential for calculating valence electrons and inner shell 

electrons, respectively. This basis was confirmed the accuracy of calculation data 

comparing with experimental results as well as those from an expensive all electron 

basis sets.

2.3 The chemical indices

The chemical indices are obtained by density calculation. These indices show 

the specific properties of a chemical species [46],



The chemical potential of the DFT [47], which is variational the principle of 

equation (2.13), is a very smalt one-electron energy that is smaller than the total 

electronic energy. It gets into the variational principle of traditional quantum 

chemistry.

2.3.1 E lectron ic  chem ica l p o te n tia l

Where jU  is a electronic chemical potential, ๆ  is a chemical hardness and TV 

is a electron molecular system.

It has to solve this equation for every //, then taking the // value that makes 

the correct number of electrons for the system of interest. According to the 

Lagrangian multipliers, jj. determines how sensitive the extreme E is to change in TV

Approximate of JU can be computed by the equation (2.15) which ionization 

potential is IP  and electron affinity is EA.

^{£[7/(r)]-//[TV[«(r)]]} = 0 (2.13)

(2.14)

p ~ - \ ( i p + e a ) (2.15)
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2.3.2 M uUiken e le c tro n e g a tiv ity

The Milliken electronegativity {%) [46] is a negative of chemical potential in 

DFT, shown by equation as:

x = ~v (2.16)

2.3.3 C hem ica l hardness

The hardness {ๆ) [48-50] can be described of as a resistance to charge 

transfer. E versus N  plot is not straight lines but is generally convex upward. Their 

curvatures define another property of substantial importance.

ท =
(  d2E ไ

(2.17)

The finite-difference approximation is expressed in equation [67], It can be 

written as

ๆ * ~ { I P - E A ) (2.18)
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2.3.4 E lectrophiU city

The electrophilicity (&>) index [51] is used to describe a reliable property of a 

chemical system and may be used as quantum chemical descriptor. The operational 

definition is expressed by term of electrophilicity index may be written as

(2.19)

2.3.5 Dipole moment

The asymmetry of a charge distribution is determined by the physical 

property which is the dipole moment. The dipole moment is shown as the product 

of the total amount of positive or negative charge and the distance between their 

centroids. The unit for dipole moments is called a Debye.

2.4 Thermodynamic properties

The basic equations used to describe thermochemical quantities [52] such as 

enthalpy, free energy and rate of reaction.
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2.4.1 Enthalp ies and  Gibbs free  energies o f  reaction

The different of the sums of heats of formation is taken to calculate the 

enthalpies of reaction using this equation

A ,H '(2 9 8 * )  = I A , พ ; J 2 9 8 K ) -  พ ; „ „ ( 2 9 8 * )  (2201
p r o d  react

However, there is the way to simply take different of the sums of heats of 

formation for reactant and the products. Gaussian program provides the short cut to 

calculate the enthalpy of reaction is defined as

A , I f  (298/ 0 = + H mrr) -  2 > 0  + H ....)
p r o d p r o d (2 .21)

where £0 for the total electronic energy. H c0rr is correction to the enthalpy due to 

internal energy which can be calculated by

1= E,01 + k j
( 2.22)

where E101 (total internal energy) is the sum of £ 1,Er ,E v,Ee (internal energy due to 

translation, rotational, vibrational and electronic motion, respectively).

E„„ = £ 1+ £ 1 + £ 1.+ £ 1 (2.23)
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Likewise, Gibbs free energies of reaction can be calculated by the same short 

cut:

A ,.G * (2 9 8 /0 = 2 > o
p r o d

+ G ) - Y  (£0 +G  )corr /  /  1 V 0  c o n  /
p r o d  re a d  r e a d (2.24)

where the correction to the Gibbs free energy due to internal energy (Gc0rr) 

can be calculated by

Gc„rr = H corr-TS,L (2.25)

ร,o, = s , + s , + s r + s e (2.26)

where ร  101 (total internal entropy) is the sum of ร  1,ร  1.,ร  1,,ร e (entropy due to 

translation, rotational, vibrational and electronic motion, respectively).

2.4.2 Rate o f reaction

The rate of reaction (k(t )) is defined by equation:

k (T ) = ^ L e- ^  RT (2.27)

where kB is the Boltzmann’s constant, h is Plank’s constant, T is the 

absolute temperature, R is the gas constant, ๙  = 1 for the concentration.
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