CHAPTER 5

CONCLUSION

The DFT/B3LYP-optimized structures of closed-end armchair (3,3), (4,4) and (5,5) SWCNTs and their platinum-clusters (Pt_n, n=1 to 4) decorated structures were obtained and their binding energies are reported. The binding abilities of single platinum atom to SWCNTs based on the most favorable configurations are in order: (3,3) SWCNT > (4,4) SWCNT > (5,5) SWCNT. The polynomial equation fitted for plot of their binding energies (kcal/mol) and their diameters (nm) of $\Delta E_{binding} = -159.6+350.602d- 212.32d^2$ was obtained.

Adsorption energies for hydrogen adsorbed to platinum atom on Pt_n-decorated (3,3), (4,4) and (5,5) SWCNTs were obtained and reported. As hydrogen molecule likely adsorbed to platinum atom on Pt₄-decorated (3,3), (4,4) and (5,5) SWCNTs were identified, the ZPE energetic, thermodynamic properties and equilibrium constants for hydrogen adsorptions on them were determined and reported. All hydrogen adsorptions are exothermic reaction at 298 K. Only hydrogen adsorptions on the Pt_a/(3,3)SWCNT (ΔG_{298} =-20.47 kcal/mol) and Pt_a/(5,5)SWCNT (ΔG_{298} =-10.03 kcal/mol) are spontaneous processes. Equilibrium constant of hydrogen adsorption on the Pt_a/(3,3)SWCNT (K_{298} =1.02×10¹⁵) is very large and 4.51×10⁷ times larger than on the Pt_a/(5,5)SWCNT (K_{298} =2.26×10⁷). The hydrogen storage on platinum atom of Pt₄ decorated closed-end (3,3)SWCNTs can be expected.

All adsorption of CO, NO₂, O₂, NH₃, N₂, SO₂, N₂O and H₂O adsorbed on platinum atom of Pt_n -decorated (3,3), (4,4) and (5,5)SWCNTs are strong except for CO₂.

 Pt_{4} /SWCNT is the most stable structure for H₂ adsorption on the (3,3)SWCNT, while Os₄/SWCNT is the most stable structure for H₂ adsorption on (4,4) and (5,5)SWCNTs.