CHAPTER III

EXPERIMENTAL

3.1 Phenoxy acid methyl esters (PAMEs)

Forty-six PAMEs used in this study were previously synthesized by Rodthongkum [12]. Methyl 2-phenoxypropanoate (H) with no substitution on the aromatic ring was used as a reference analyte. Twenty-four mono-substituted PAMEs, eighteen di-substituted PAMEs and other three substituted PAMEs at different position of the aromatic ring were included to study the effect of number and position of substitution towards enantioselectivity. Structures and abbreviations of all PAMEs used in this study are shown in Table 3.1.

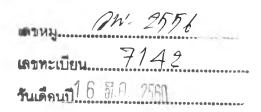
Table 3.1 Structures and abbreviations of PAMEs

chemical structure	abbreviation	compound name		
	Н	methyl 2-phenoxypropanoate		
		[CAS: 2065-24-9]		
mono-substituted PAMEs				
Joha.	2F	methyl 2-(2'-fluorophenoxy)propanoate		
F	3F	methyl 2-(3'-fluorophenoxy)propanoate		
F	4F	methyl 2-(4'-fluorophenoxy)propanoate		
	2Cl	methyl 2-(2'-chlorophenoxy)propanoate		
CI	3Cl	methyl 2-(3'-chlorophenoxy)propanoate		

chemical structure	abbreviation	compound name
CI	4Cl	methyl 2-(4'-chlorophenoxy)propanoate
Br	2Br	methyl 2-(2'-bromophenoxy)propanoate
Br	3Br	methyl 2-(3'-bromophenoxy)propanoate
Br	4Br	methyl 2-(4'-bromophenoxy)propanoate
	2Me	methyl 2-(2'-methylphenoxy)propanoate
	3Me	methyl 2-(3'-methylphenoxy)propanoate
	4Me	methyl 2-(4'-methylphenoxy)propanoate
OME O	20Me	methyl 2-(2'-methoxyphenoxy)propanoate
MeO	30Me	methyl 2-(3'-methoxyphenoxy)propanoate
MeO	40Me	methyl 2-(4'-methoxyphenoxy)propanoate
NO ₂	2NO ₂	methyl 2-(2'-nitrophenoxy)propanoate
O ₂ N O O	3NO ₂	methyl 2-(3'-nitrophenoxy)propanoate
O ₂ N O	4NO ₂	methyl 2-(4'-nitrophenoxy)propanoate

chemical structure	abbreviation	compound name
CN O	2CN	methyl 2-(2'-cyanophenoxy)propanoate
NC O	3CN	methyl 2-(3'-cyanophenoxy)propanoate
NC O	4CN	methyl 2-(4'-cyanophenoxy)propanoate
CF3 O	2CF ₃	methyl 2-(2'-(trifluoromethyl)phenoxy) propanoate
F ₃ C 0	3CF ₃	methyl 2-(3'-(trifluoromethyl)phenoxy) propanoate
F ₃ C	4CF ₃	methyl 2-(4'-(trifluoromethyl)phenoxy) propanoate
di-substituted PAMEs		
F	2,3F	methyl 2-(2',3'-difluorophenoxy)propanoate
FOO	2,4F	methyl 2-(2',4'-difluorophenoxy)propanoate
FOO	2,5F	methyl 2-(2',5'-difluorophenoxy)propanoate
FO	2,6F	methyl 2-(2',6'-difluorophenoxy)propanoate
F O O	3,4F	methyl 2-(3',4'-difluorophenoxy)propanoate
FO	3,5F	methyl 2-(3',5'-difluorophenoxy)propanoate

chemical structure	abbreviation	compound name
CI	2,3Cl	methyl 2-(2',3'-dichlorophenoxy)propanoate
CI O O	2,4Cl	methyl 2-(2',4'-dichlorophenoxy)propanoate
CI O	2,5Cl	methyl 2-(2',5'-dichlorophenoxy)propanoate
CI	2,6Cl	methyl 2-(2',6'-dichlorophenoxy)propanoate
CI	3,4Cl	methyl 2-(3',4'-dichlorophenoxy)propanoate
CI	3,5Cl	methyl 2-(3',5'-dichlorophenoxy)propanoate
	2,3Me	methyl 2-(2',3'-dimethylphenoxy) propanoate
	2,4Me	methyl 2-(2',4'-dimethylphenoxy) propanoate
	2,5Me	methyl 2-(2',5'-dimethylphenoxy) propanoate
	2,6Me	methyl 2-(2',6'-dimethylphenoxy) propanoate
	3,4Me	methyl 2-(3',4'-dimethylphenoxy) propanoate
	3,5Me	methyl 2-(3',5'-dimethylphenoxy) propanoate


other substituted PAMEs				
F	2,4,6F	methyl 2-(2',4',6'-trifluorophenoxy) propanoate		
CI	2,4,6Cl	methyl 2-(2',4',6'-trichlorophenoxy) propanoate		
F F F	pentaF	methyl 2-(2',3',4',5',6'-pentafluorophenoxy) propanoate		

3.2 Gas chromatographic analyses

All GC separations were done on an Agilent 6890 series gas chromatograph equipped with a split injector and a flame ionization detector. Both injector and detector were set at 250 °C. Hydrogen was used as a carrier gas at an average linear velocity of 50 cm/s. Capillary columns of 0.25 mm i.d coated with 0.25 μ m thick film of stationary phase were used. Two types of CD derivatives mixed with polysiloxane OV-1701 were used as CSPs.

- column ASiAc : 15.76 m long, contain 30.2% hexakis(2,3-di-O-acetyl-6-O-tert-butyldimethylsilyl)- α -CD in OV-1701
- column GSiAc : 15.19 m long, contain 36.6% octakis(2,3-di-*O*-acetyl-6-*O*-tert-butyldimethylsilyl)-γ-CD in OV-1701

Each PAME was dissolved in dichloromethane (10-20 mg/mL). Approximately 0.2-0.4 μ L of solution was injected at least 2 times with a split ratio of 100:1. All separations were performed isothermally at every 10 °C from 90 °C to 220 °C. Each PAME was analyzed at least at 5 different temperatures. Retention factors (k') and enantioselectivities (α) of all analytes were calculated from GC chromatograms.

