การพัฒนาอนุพันธ์โบรอน-ไดพิร์โรมีทีนที่มีส่วนขยายสำหรับการประยุกต์

ทางอิเล็กทรอนิกส์เชิงแสง

นางสาวจิตติกานต์ ส่งข่าว

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ คณะวิทยาศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2556 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

DEVELOPMENT OF EXTENDED BORON-DIPYRROMETHENE DERIVATIVES FOR OPTOELECTRONIC APPLICATIONS

Miss Jittikarn Songkhao

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science Program in Petrochemistry and Polymer Science Faculty of Science Chulalongkorn University Academic Year 2013 Copyright of Chulalongkorn University

Thesis Title	DEVELOPMENT OF EXTENDED BORON-
	DIPYRROMETHENE DERIVATIVES FOR
	OPTOELECTRONIC APPLICATIONS
Ву	Miss Jittikarn Songkhao
Field of Study	Petrochemistry and Polymer Science
Thesis Advisor	Assistant Professor Patchanita Thamyongkit, Ph.D.
Thesis Co-Advisor	Assistant Professor Rojrit Rojanathanes, Ph.D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

. AmmongheraDean of the Faculty of Science

(Professor Supot Hannongbua, Dr.rer.nat.)

THESIS COMMITTEE

Warmhan Chaving Chairman (Assistant Professor Warinthorn Chavasiri, Ph.D.) Patchanita T. Thesis Advisor (Assistant Professor Patchanita Thamyongkit, Ph.D.) Rent Roll Thesis Co-Advisor (Assistant Professor Rojrit Rojanathanes, Ph.D.) W-Tachesupruh Examiner (Associate Professor Wimonrat Trakarnpruk, Ph.D.) S. Boorgen_____External Examiner

(Assistant Professor Supakorn Boonyuen, Ph.D.)

จิตติกานต์ ส่งข่าว : การพัฒนาอนุพันธ์โบรอน-ไดพิร์โรมีทีนที่มีส่วนขยายสำหรับการ ประยุกต์ทางอิเล็กทรอนิกส์เชิงแสง. (DEVELOPMENT OF EXTENDED BORON-DIPYRROMETHENE DERIVATIVES FOR OPTOELECTRONIC APPLICATIONS) อ.ที่ ปรึกษาวิทยานิพนธ์หลัก: ผศ. ดร.พัชณิตา ธรรมยงค์กิจ, อ.ที่ปรึกษาวิทยานิพนธ์ร่วม: ผศ. ดร.โรจน์ฤทธิ์ โรจนธเนศ, 110 หน้า.

งานวิจัยนี้อธิบายการสังเคราะห์สารประกอบเบนโซบอดีพีที่มีการแทนที่ของหมู่ไทโอฟัน จำนวน 1 และ 2 วงบนตำแหน่งมีโซ และศึกษาสมบัติทางกายภาพเชิงแสงกับสารประกอบบอดีพี อื่น ที่มีการแทนที่ของเฟนิลบนตำแหน่งมีโซ ไทโอฟันจำนวน 1 และ 2 วงถูกเพิ่มเข้าไปในบอดิพีที่ มีการขยายระบบไพเพื่อขยายระบบคอนจูเกต ให้มีความสามารถในการละลายเพิ่มขึ้นและ ปรับปรุงสมบัติกายภาพเชิงแสงให้ดีขึ้น สารประกอบที่สังเคราะห์ได้ทั้งหมดสามารถยืนยันได้ด้วย เอ็นเอ็มอาร์สเปกโตรสโกปี แมสสเปกโตรเมทรี การดูดกลืนแสงและการคายแสง ข้อมูลทางสเปก โตรสโคปีแสดงให้เห็นค่าการดูดกลืนแสงและการคายแสงสูงสุดของบอดิพีเป้าหมายเคลื่อนที่ไป ทางช่วงแสงสีแดงอย่างมีนัยสำคัญ เมื่อเปรียบเทียบกับบอดีพีมาตรฐานชนิดอื่นๆ เมื่อมีจำนวนวง ไทอีนิลและขยายระบบไพของบอดิพีเพิ่มขึ้น ซึ่งจากผลการทดลองซี้ให้เห็นแนวทางการพัฒนา สารประกอบโมเลกุลขนาดเล็กเชิงแสงสำหรับอุปกรณ์อิเล็กทรอนิกส์เชิงไฟฟ้า

สาขาวิชา ปิโตรเคมีและวิทยาศาสตร์พอลิเมอร์ ปีการศึกษา 2556 ลายมือชื่อนิสิต <u>จิตสัตนท์ ส่งว่าว</u> ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์หลัก พริการร ลายมือชื่อ อ.ที่ปรึกษาวิทยานิพนธ์ร่วม Fatter

5471930023 : MAJOR PETROCHEMISTRY AND POLYMER SCIENCE KEYWORDS: BODIPY / OPTOELECTRONIC

JITTIKARN SONGKHAO: DEVELOPMENT OF EXTENDED BORON-DIPYRROMETHENE DERIVATIVES FOR OPTOELECTRONIC APPLICATIONS. ADVISOR: ASST. PROF. PATCHANITA THAMYONGKIT, Ph.D., CO-ADVISOR: ASST. PROF. ROJRIT ROJANATHANES, Ph.D., 110 pp.

This research describes the synthesis of benzo-BODIPYs compounds bearing mono- and bithienyl unit on their meso position and investigation of their photophysical properties in comparison with those of meso phenyl substituted ones. Mono- and bithienyl were introduced into pi-extended BODIPYs in order to extend the conjugated system, enhance the solubility and improve photophysical properties. All synthesized compounds were confirmed by NMR spectroscopy, mass spectrometry, and absorption and emission spectroscopy. The spectroscopic data revealed that the absorption and emission maxima of the target BODIPYs exhibited significant red shifts compared to those of the benchmark BODIPYs when the number of the thienyl rings and pi-extension of BODIPY unit were increased. This observation is a useful guideline for the development of other small-molecule photoactive compounds for optoelectronic applications.

Field of Study: Petrochemistry and Polymer Science Academic Year: 2013

Student's Signature	Jittikarn Songkhuno
Advisor's Signature	Patchaite T.
Co-Advisor's Signatu	re Et BAS

ACKNOWLEDGEMENTS

I would like to begin by thanking Assistant Professor Dr. Patchanita Thamyongkit and Assistant Professor Dr. Rojrit Rojanathanes for being the best advisors anyone could ever ask for. There are no words that can express the depth of gratitude that I have toward them. They have supported me in everything that I set out to improve the synthetic skills, believe in me even at the moment of my life when I was down and help me to get back on my feet.

I am also grateful to Assistant Professor Dr. Warinthorn Chavasiri, for serving as the chairman, Associate Professor Dr. Wimonrat Trakarnpruk and Assistant Professor Dr. Supakorn Boonyuen for serving as the members of my thesis committee, respectively, for their valuable suggestion and comments.

I would like to thank the 90th Anniversary of Chulalongkorn University Fund (Ratchadaphiseksomphot Endowment Fund) and Graduate School of Chulalongkorn university for partial financial support of this research.

Finally, I am grateful to my family and my friends for their love, understanding and great encouragement throughout the entire course of my study.

CONTENTS

Pa	age
THAI ABSTRACTiv	V
ENGLISH ABSTRACT	v
ACKNOWLEDGEMENTS	/i
CONTENTSvi	ii
LIST OF CHARTS	×
LIST OF FIGURESx	ki
LIST OF TABLES	V
LIST OF SCHEMES	/i
LIST OF ABBREVITIONSxvi	ii
CHAPTER I INTRODUCTION 1	1
1.1 Objectives of this research	3
1.2 Scope of this research	4
CHAPTER II THEORY AND LITERATURE REVIEWS	5
2.1 Optoelectronic applications	5
2.2 Molecular design of organic photosensitizers	9
2.3 Jablonski energy diagram of organic molecule	0
2.4 4,4-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)11	1
2.4.1 Fundamental properties11	1
2.4.2 Synthesis of BODIPY13	3
2.4.2.1 Basic procedure13	3
2.4.2.2 Structural modification of BODIPY	4
2.5 Extension of pi-electron conjugation of BODIPYs	4
2.5.1 Overview	4
2.5.2 Benzo-BODIPY synthesis	6
2.6 Thiophene	7
CHAPTER III EXPERIMENTAL	1
3.1 Chemicals	1

3.2 Analytical Instruments	22
3.3 Experimental procedure	22
3.3.1 Synthesis of compound 1	22
3.3.2 Synthesis of compound 2	23
3.3.3 Synthesis of 2H-isoindole-4,5,6,7-tetrahydro-1-carboxylic ethyl ester (5	5). 24
3.3.4 Synthesis of compound 3a	25
3.3.5 Synthesis of compound 3b	27
3.3.6 Synthesis of compound 3c	29
3.3.7 Synthesis of compound 4b	31
CHAPTER IV RESULTS AND DISCUSSION	33
4.1 Synthesis and characterization	33
4.1.1 Synthesis and characterization of BODIPY-thiophene derivatives	33
4.1.2 Synthesis and characterization of benzo-BODIPY thiophene derivatives	s . 34
4.2 Investigation of photophysical properties	38
4.2.1 UV-Vis absorption spectra	40
4.2.2 Emission spectra	42
4.2.3. Energy gap	44
4.2.4 Fluorescence quantum yields	46
CHAPTER V CONCLUSION	47
REFERENCES	48
APPENDICES	54
APPENDIX A	55
APPENDIX B	91
VITA	.110

Page

viii

LIST OF CHARTS

Chart 1-1:	The general structures of benzo-BODIPY and TBP
Chart 1-2:	Target BODIPYs
Chart 2-1:	Molecular structures of trans-polyacetylene (PA), poly(p-
	phenylenevinylene) (PPV), a poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-
	1,4-phenylene vinylene] (MDMO-PPV), and a poly[3-hexylthiophene]
	(P3HT)
Chart 2-2:	Polyacetylenes containing BODIPY pendants reported by Bin L. et al 8
Chart 2-3:	Numbering systems in BODIPY, dipyrromethene and dipyrromethane
	cores
Chart 2-4:	Structure of thiophene
Chart 2-5:	BODIPY-bithienyl derivatives reported by Daniel, C. et al
Chart 4-1:	Structures of BODIPYs, benzo-BODIPYs, dipyrrins and
	fused-cyclohexenyl BODIPYs synthesized in this work

LIST OF FIGURES

Figure 2-1:	a) In a bulk-heterojunction organic photovoltaic design, b) light		
	absorption generates electrons and holes that travel through th		
	donor and acceptor phases, c) the energy level diagram	8	
Figure 2-2:	Chemical structure of [6,6]-phenyl C_{61} -butyrric acid methyl ester		
	(PCBM)	9	
Figure 2-3:	Simplified Jablonski diagram	10	
Figure 2-4:	Zwitterionic structures of BODIPYs		
Figure 2-5: A corresponding schematic representation of their degene		ial	
	reorganization in (a) visible form and (b) vis-silent form	20	
Figure 4-1:	Normalized UV-Vis spectra of BODIPYs 1-4	40	
Figure 4-2:	Normalized UV-Vis spectra of dipyrins 14a-c and		
	benzo-BODIPYs 3a-c	42	
Figure 4-3:	Normalized emission spectra of the solution of BODIPYs 1-4		
Figure 4-4:	Normalized absorption (solid line) and emission (dashed line) spect	ra	
	of (a) BODIPY 1 (b) BODIPY 2 (c) BODIPY 3a (d) BODIPY 3b (e) BODIP	Y	
	3c (f) BODIPY 4b in toluene	45	
Figure A-1:	¹ H-NMR spectrum of compound 1	56	
Figure A-2:	MALDI-TOF-MS spectrum of compound 1	57	
Figure A-3:	¹ H-NMR spectrum of compound 2	58	
Figure A-4:	¹³ C-NMR spectrum of compound 2	59	
Figure A-5:	HR-ESI-mass spectrum of compound 2	60	
Figure A-6:	¹ H-NMR spectrum of compound 3a	61	
Figure A-7:	¹³ C-NMR spectrum of compound 3a	62	
Figure A-8:	MALDI-TOF-mass spectrum of compound 3a	63	
Figure A-9:	¹ H-NMR spectrum of compound 3b	64	
Figure A-10:	¹³ C-NMR spectrum of compound 3b	65	
Figure A-11:	HR-ESI-mass spectrum of compound 3b	66	
Figure A-12:	¹ H-NMR spectrum of compound 3c	67	
Figure A-13:	¹³ C-NMR spectrum of compound 3c	68	
Figure A-14:	HR-ESI-mass spectrum of compound 3c	69	

	1	
Figure A-15:	¹ H-NMR spectrum of compound 4b	70
Figure A-16:	¹³ C-NMR spectrum of compound 4b	71
Figure A-17:	HR-ESI-mass spectrum of compound 4b	72
Figure A-18:	¹ H-NMR spectrum of compound 13a	73
Figure A-19:	¹³ C-NMR spectrum of compound 13a	74
Figure A-20:	¹ H-NMR spectrum of compound 13b	75
Figure A-21:	¹³ C-NMR spectrum of compound 13b	76
Figure A-22:	HR-ESI-mass spectrum of compound 13b	77
Figure A-23:	¹ H-NMR spectrum of compound 13c	78
Figure A-24:	¹³ C-NMR spectrum of compound 13c	79
Figure A-25:	HR-ESI-mass spectrum of compound 13c	80
Figure A-26:	¹ H-NMR spectrum of compound 5	81
Figure A-27:	¹ H-NMR spectrum of compound 14a	82
Figure A-28:	¹³ C-NMR spectrum of compound 14a	83
Figure A-29:	MALDI-TOF-mass spectrum of compound 14a	84
Figure A-30:	¹ H-NMR spectrum of compound 14b	85
Figure A-31:	¹³ C-NMR spectrum of compound 14b	86
Figure A-32:	HR-ESI-mass spectrum of compound 14b	87
Figure A-33:	¹ H-NMR spectrum of compound 14c	88
Figure A-34:	¹³ C-NMR spectrum of compound 14c	89
Figure A-35:	HR-ESI-mass spectrum of compound 14c	90
Figure B-1:	Absorption spectrum of compound 1 in toluene	92
Figure B-2:	Calibration curve for determining a molar absorptivity of	
	compound 1 in toluene (λ_{abs} = 503 nm)	92
Figure B-3:	Emission spectrum of compound 1 in toluene (λ_{ex} = 470 nm)	93
Figure B-4:	Relationship between absorbance and integrated intensity of	
	compound 1 in toluene	93
Figure B-5:	Absorption spectrum of compound 2 in toluene	94
Figure B-6:	Calibration curve for determining a molar absorptivity of	
	compound 2 in toluene (λ_{abs} = 514 nm)	94
Figure B-7:	Emission spectrum of compound 2 in toluene (λ_{ex} = 480 nm)	95
-	· · ·	

Figure B-8:	Relationship between absorbance and integrated intensity of		
	compound 2 in toluene	95	
Figure B-9:	Absorption spectrum of compound 3a in toluene	96	
Figure B-10:	Calibration curve for determining a molar absorptivity of		
	compound 3a in toluene (λ_{abs} = 642 nm)	96	
Figure B-11:	Emission spectrum of compound 3a in toluene (λ_{ex} = 600 nm)	97	
Figure B-12:	Relationship between absorbance and integrated intensity of		
	compound 3a in toluene	97	
Figure B-13:	Absorption spectrum of compound 3b in toluene	98	
Figure B-14:	Calibration cure for determining a molar absorptivity of		
	compound 3b in toluene (λ_{abs} = 656 nm)	98	
Figure B-15:	Emission spectrum of compound 3b in toluene (λ_{ex} = 600 nm)	99	
Figure B-16:	Relationship between absorbance and integrated intensity		
	compound 3b in toluene	99	
Figure B-17:	Absorption spectrum of compound 3c in toluene	100	
Figure B-18:	Calibration curve for determining a molar absorptivity of		
	compound 3c in toluene (λ_{abs} = 658 nm)	100	
Figure B-19:	Emission spectrum of compound 3c in toluene (λ_{ex} = 600 nm)	101	
Figure B-20:	Relationship between absorbance and integrated intensity of		
	compound 3c in toluene	101	
Figure B-21:	Absorption spectrum of compound 4b in toluene	102	
Figure B-22:	Calibration curve for determining a molar absorptivity of		
	compound 4b in toluene (λ_{abs} = 556 nm)	102	
Figure B-23:	Emission spectrum of compound 4b in toluene (λ_{ex} = 500 nm)	103	
Figure B-24:	Relationship between absorbance and integrated intensity of		
	compound 4b in toluene	103	
Figure B-25:	Absorption spectrum of compound 13a in toluene	104	
Figure B-26:	Calibration curve for determining a molar absorptivity of		
	compound 13a in toluene (λ_{abs} = 289 nm)	104	
Figure B-27:	Absorption spectrum of compound 13b in toluene	105	
Figure B-28:	Calibration cure for determining a molar absorptivity of		

	compound 13b in toluene (λ_{abs} = 288 nm)	
Figure B-29:	Absorption spectrum of compound 13c in toluene	
Figure B-30:	Calibration curve for determining a molar absorptivity of	
	compound 13c in toluene (λ_{abs} = 289 nm)	
Figure B-31:	Absorption spectrum of compound 14a in toluene	
Figure B-32:	Calibration cure for determining a molar absorptivity of	
	compound 14a in toluene (λ_{abs} = 574 nm)	
Figure B-33:	Absorption spectrum of compound 14b in toluene	
Figure B-34:	Calibration curve for determining a molar absorptivity of	
	compound 14b in toluene (λ_{abs} = 579 nm)	
Figure B-35:	Absorption spectrum of compound 14c in toluene	
Figure B-36:	Calibration curve for determining a molar absorptivity of	
	compound 14c in toluene (λ_{abs} = 589 nm)	

LIST OF TABLES

Table 4-1:	Spectral properties of BODIPYs 1-4, dipyrrins 14a-c and BODIPY 15 in	
	toluene at room temperature	39
Table 4-2:	The estimated optical E _{gap}	44

LIST OF SCHEMES

Scheme 2-1:	General synthetic pathway of symmetric BODIPY dyes	13
Scheme 2-2:	General synthetic pathway of asymmetric BODIPY dyes	14
Scheme 2-3:	Synthetic routes of benzo-BODIPYs	15
Scheme 2-4:	Synthesis of benzo-BODIPY B from isoindole A	16
Scheme 2-5:	Synthesis of benzo-BODIPY D from 2-acylacetophenone C	17
Scheme 2-6:	Synthesis of benzo-BODIPYs described by Timsy, U. et al	19
Scheme 4-1:	Synthesis of BODIPY 1	33
Scheme 4-2:	Synthesis of BODIPY 2	34
Scheme 4-3:	Retrosynthetic route of benzo-BODIPYs 3a-c	34
Scheme 4-4:	Synthesis of benzo-BODIPY derivatives	35

LIST OF ABBREVITIONS

λ_{abs}	÷.	absorption wavelength
λ_{ex}	:	excitation wavelength
λ_{em}	:	emission wavelength
δ	:	chemical shift
J	÷	coupling constant
°C	÷.	degree Celsius
Е	:	molar absorptivity
BF₃•Et₂O	1.1	Boron triflouride diethyletherate
calcd	÷	calculated
cm ⁻¹	:	unit of wavenumber (IR)
¹³ C-NMR	:	carbon-13 nuclear magnetic resonance spectroscopy
d	;	doublet (NMR)
DBU	4	1,8-diazabicyclo (5,4,0) undec-7-ene
DDQ	:	2,3-dichloro-5,6-dicyano benzoquinone
g	ŝ.	gram (s)
h	- ÷	hour (s)
¹ H-NMR	1 de 1	proton nuclear magnetic resonance spectroscopy
Hz	:	hertz (s)
m	1	multiplet (NMR)
MALDI-MS	t	matrix-assisted laser desorption ionization mass
MgSOd		Anhydrous magnesium sulfate
min	1	minute
mL	4	milliliter (s)
mmol	: 10	millimole (s)
MS	:	mass spectrometry

xvi

NaHCO ₃	•	Sodium bicarbonate
NEt ₃	:	Triethylamine
NIR	:	Near infrared spectroscopy
nm	:	nanometer
NMR	:	nuclear magnetic resonance spectroscopy
Na_2SO_4	:	Anhydrous sodium sulfate
Obsd	:	observed
PCBM	:	Phenyl-C ₆₁ -butyric acid methyl ester
PEDOT:PSS	:	Polyethylenedioxythiophene:polystyrenesulfonate
P3HT	:	poly(3-hexyl thiophene)
ppm	:	parts per million
t	:	triplet (NMR)
TFA	:	Trifluoroacetic acid
UV-Vis	:	ultraviolet and visible spectroscopy