CHAPTER IV SHAFT(n,1)

In this chapter, we show that a prism-like graph constructed from two copies of wheel graphs W_n joining at the middle, which is denoted by $\mathrm{Shaft}(n,1)$, is an edge-odd graceful graph whenever $n \geq 3$ is an odd integer.

Definition 4.1 Let $n \ge 3$ and W_n be a wheel graph with $V(W_n) = \{u_1, u_2, u_3, \dots, u_n, u\}$ and W'_n be a copy of W_n with the corresponding $V(W'_n) = \{u'_1, u'_2, u'_3, \dots, u'_n, u'\}$. Define Shaft(n, 1) by joining u of W_n to the corresponding vertex u' of W'_n . That is,

$$E(\operatorname{Shaft}(n,1)) = E(W_n) \cup E(W'_n) \cup \{uu' \mid u \in W_n \text{ and } u' \in W'_n\}.$$

Example 4.1 From Definition 4.1, Shaft(3,1) is shown in Figure 4.1.

Figure 4.1 Shaft(3,1).

Next, we give an algorithm for labeling the edges of Shaft(n, 1), where $n \ge 3$ is an odd integer.

Let $n \geq 3$ be an odd integer and G denote $\operatorname{Shaft}(n,1)$. Then, q=4n+1. Define $f\colon E(G)\to \{1,3,5,\ldots,8n+1\}$ by

1.1
$$f(uu') = 8n + 1;$$

1.2
$$f(u_1u_n) = 2n-1;$$

1.3
$$f(u_i u_{i+1}) = 2i - 1$$
, for $i \in \{1, 2, 3, ..., n - 1\}$;

1.4
$$f(u_1u) = 2n + 1;$$

1.5
$$f(u_i u) = 4n - 2i + 3$$
, for $i \in \{2, 3, 4, ..., n\}$;

1.6
$$f(u_1'u_n') = 6n - 1;$$

1.7
$$f(u_i'u_{i+1}') = 4n + 2i - 1$$
, for $i \in \{1, 2, 3, ..., n-1\}$;

1.8
$$f(u'_1u') = 6n + 1;$$

1.9
$$f(u_i'u') = 8n-2i+3$$
, for $i \in \{2, 3, 4, ..., n\}$.

Example 4.2 From Algorithm 4.1, we can label each edge of Shaft(5,1) as shown in Figure 4.2.

Figure 4.2 Edge-labeling for Shaft(5,1).

กาหมู 2W- 255 6 กาทะเบียน 7 28) รับเมือนปี 25 ก.ย. 2560

Next, we show that if $n \ge 3$ and n is an odd integer, then Shaft(n, 1) is an edge-odd graceful graph.

Theorem 4.1 Shaft(n,1) is an edge-odd graceful graph whenever $n \ge 3$ is odd.

Proof. To prove that f in Algorithm 4.1 is a bijection from E(G) to $\{1, 3, 5, ..., 8n + 1\}$, we consider the followings. From Algorithm 4.1(1.1), we have

$$A = \{f(uu')\} = \{8n + 1\}.$$

From Algorithm 4.1(1.2 and 1.3), we have

$$B = \{ f(u_i u_{i+1}), f(u_1 u_n) \mid i \in \{1, 2, 3, ..., n-1\} \}$$
$$= \{1, 3, 5, ..., 2n - 3, 2n - 1\}.$$

From Algorithm 4.1(1.4 and 1.5), we have

$$C = \{f(u_1u), f(u_iu) \mid i \in \{2, 3, 4, ..., n\}\}$$
$$= \{2n + 1, 2n + 3, 2n + 5, ..., 4n - 1\}.$$

From Algorithm 4.1(1.6 and 1.7), we have

$$D = \{f(u'_i u'_{i+1}), f(u'_1 u'_n) \mid i \in \{1, 2, 3, ..., n-1\}\}$$
$$= \{4n+1, 4n+3, 4n+5, ..., 6n-3, 6n-1\}.$$

From Algorithm 4.1(1.8 and 1.9), we have

$$E = \{f(u_i'u'), f(u_1'u') \mid i \in \{2, 3, 4, ..., n\}\}$$
$$= \{6n + 1, 6n + 3, 6n + 5, 6n + 7, ..., 8n - 1\}.$$

We can see clearly that A, B, C, D and E are disjoint and

$$f(E(Shaft(n, 1))) = A \cup B \cup C \cup D \cup E = \{1, 3, 5, ..., 8n + 1\}.$$

Next, we will show that the induced vertex-labels from edge-labels using Algorithm 4.1 are in $\{0, 1, 2, ..., 8n + 1\}$ and all distinct. From Algorithm 4.1, we have

$$f^{+}(u) = \left(\sum_{i=2}^{n} f(u_{i}u) + f(u_{1}u) + f(uu')\right) \pmod{8n+2}$$

$$= \left(\sum_{i=2}^{n} (4n - 2i + 3) + (2n+1) + (8n+1)\right) \pmod{8n+2}$$

$$= \left((4n^{2} - (n^{2} + n) + 3n - 4n + 2 - 3) + 2n + 1 + 8n + 1\right)$$

$$\pmod{8n+2}$$

$$= (3n^{2} - 2n - 1 + 2n + 1 + 8n + 1) \pmod{8n+2}$$

$$= (3n^{2} + 8n + 1) \pmod{8n+2}$$

$$= (3n^{2} - 1) \pmod{8n+2}$$

$$f^{+}(u') = \left(\sum_{i=2}^{n} f(u'_{i}u') + f(u'_{1}u') + f(uu')\right) \pmod{8n+2}$$

$$= \left(\sum_{i=2}^{n} (8n-2i+3) + (6n+1) + (8n+1)\right) \pmod{8n+2}$$

$$= \left((8n^{2} - (n^{2} + n) + 3n - 8n + 2 - 3) + 6n + 1 + 8n + 1\right)$$

$$\pmod{8n+2}$$

$$= (7n^{2} - 6n - 1 + 6n + 1 + 8n + 1) \pmod{8n+2}$$

$$= (7n^{2} + 8n + 1) \pmod{8n+2}$$

$$= (7n^{2} - 1) \pmod{8n+2}$$

$$f^{+}(u_{1}) = (f(u_{1}u_{n}) + f(u_{1}u_{2}) + f(u_{1}u)) \pmod{8n+2}$$

$$= ((2n-1) + 1 + (2n+1)) \pmod{8n+2}$$

$$= 4n+1;$$

$$f^{+}(u_{i}) = (f(u_{i-1}u_{i}) + f(u_{i}u_{i+1}) + f(u_{i}u)) \pmod{8n+2}$$
$$= ((2i-3) + (2i-1) + (4n-2i+3)) \pmod{8n+2}$$

$$= 4n + 2i - 1$$
, for $i \in \{2, 3, 4, ..., n - 1\}$;

$$f^{+}(u_{n}) = (f(u_{1}u_{n}) + f(u_{n-1}u_{n}) + f(u_{n}u)) \pmod{8n+2}$$

$$= ((2n-1) + (2n-3) + (2n+3)) \pmod{8n+2}$$

$$= 6n-1;$$

$$f^{+}(u'_{1}) = (f(u'_{1}u'_{n}) + f(u'_{1}u'_{2}) + f(u'_{1}u')) \pmod{8n+2}$$

$$= ((6n-1) + (4n+1) + (6n+1)) \pmod{8n+2}$$

$$= (16n+1) \pmod{8n+2}$$

$$= 8n-1;$$

$$f^{+}(u'_{2}) = (f(u'_{1}u'_{2}) + f(u'_{2}u'_{3}) + f(u'_{2}u')) \pmod{8n+2}$$

$$= ((4n+1) + (4n+3) + (8n-1)) \pmod{8n+2}$$

$$= (16n+3) \pmod{8n+2}$$

$$= 8n+1;$$

$$f^{+}(u'_{i}) = (f(u'_{i-1}u'_{i}) + f(u'_{i}u'_{i+1}) + f(u'_{i}u')) \pmod{8n+2}$$

$$= ((4n+2i-3) + (4n+2i-1) + (8n-2i+3))$$

$$\pmod{8n+2}$$

$$= (16n+2i-1) \pmod{8n+2}$$

$$= 2i-5, \text{ for } i \in \{3,4,5,...,n-1\};$$

$$f^{+}(u'_{n}) = (f(u'_{1}u'_{n}) + f(u'_{n-1}u'_{n}) + f(u'_{n}u')) \pmod{8n+2}$$

$$= ((6n-1) + (6n-3) + (6n+3)) \pmod{8n+2}$$

$$= (18n-1) \pmod{8n+2}$$

$$= 2n - 5$$

We can see that

$$\{f^{+}(u_{i}) \mid i \in \{1, 2, 3, ..., n\}\}$$

$$= \{4n + 1\} \cup \{4n + 3, 4n + 5, 4n + 7, ..., 6n - 3\} \cup \{6n - 1\}$$

$$= \{4n + 1, 4n + 3, 4n + 5, ..., 6n - 1\}$$

and

$$\begin{aligned} & \left\{ f^{+}(u_{i}') \mid i \in \{1, 2, 3, ..., n\} \right\} \\ & = \left\{ 8n - 1 \right\} \cup \left\{ 8n + 1 \right\} \cup \left\{ 1, 3, 5, ..., 2n - 7 \right\} \cup \left\{ 2n - 5 \right\} \\ & = \left\{ 1, 3, 5, ..., 2n - 5 \right\} \cup \left\{ 8n - 1 \right\} \cup \left\{ 8n + 1 \right\}. \end{aligned}$$

It is clear that if n is an odd integer and $n \geq 3$, these two sets are disjoint and both are subsets of $\{0,1,2,...,8n+1\}$. We can see that the vertex-labeling of vertices $\{u_1,u_2,u_3,...,u_n\}$ and $\{u_1',u_2',u_3',...,u_n'\}$ are odd integers. However, the vertex-labeling of vertices $\{u,u'\}$ are even integers. Thus they are disjoint from the vertex-labeling of $\{u_1,u_2,u_3,...,u_n\}$ and $\{u_1',u_2',u_3',...,u_n'\}$. Finally, we need to show that $f^+(u)$ and $f^+(u')$ are distinct under modulo 8n+2. Suppose in a contrary that

$$f^+(u) \equiv f^+(u') \pmod{8n+2}.$$

Then, $3n^2-1\equiv 7n^2-1\ (\text{mod }8n+2)$. That is, $2n^2\equiv 0\ (\text{mod }4n+1)$. Thus, there exists an integer k such that $2n^2=(4n+1)k$. Since $2n^2$ is even and 4n+1 is odd, k is even and $2n^2-4nk-k=0$.

By the quadratic formula, we have

$$n = \frac{4k \pm \sqrt{16k^2 + 8k}}{4} = k \pm \frac{\sqrt{4k^2 + 2k}}{2}$$

Since k is even, there exists an integer l such that k = 2l. Then,

$$n = 2l \pm \frac{\sqrt{16l^2 + 4l}}{2}$$

Thus, the function f defined in Algorithm 4.1 is an edge-odd graceful labeling and Shaft(n, 1) is an edge-odd graceful graph for n is odd and $n \ge 3$.

Example 4.3 From the edge-labeling in Example 4.2, the induced vertex-labeling of Shaft(5, 1) is shown in Figure 4.3.

Figure 4.3 The vertex-labeling is induced from the edge-labeling in Example 4.2.

Conjecture We may extend the investigation by trying to find an algorithm for edge-labeling that makes $\operatorname{Shaft}(n,1)$ to be an edge-odd graceful graph for even integer n with $n \geq 4$. However, we still cannot construct a general algorithm for labeling such graph. Figures 4.4 and 4.5 show some examples of labeling that make $\operatorname{Shaft}(4,1)$ and $\operatorname{Shaft}(6,1)$ become edge-odd graceful graphs. Here, we make a conjecture that $\operatorname{Shaft}(n,1)$ is an edge-odd graceful graph for every integer $n \geq 3$.

Figure 4.4 Edge-labelings for Shaft(4,1) and Shaft(6,1).

Figure 4.5 The vertex-labelings are induced from the edge-labelings in Figure 4.4.