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CHAPTER V

CROSS PRISM OF Cn

this chapter, we define a prism-like graph, called the cross prism of a cycle

¢ . We can show that this graph is an edge-odd graceful graph for every > 3.

Definition 5.1 let > 3and( beann-cycle 12 :mmn 1 Let €l= "1 72
‘3eem 'n 'l be a copy of ¢ . Define XPrism(( ), called the cross prism of ( , by a

graph that consists of P(XPrism(( )) =y ( ) I™C,i) and
{1; 22 393..1f1-/"1 ; ™1, ;+1),Uj+2 j+2,

Uj+3uj+3 ee=wu } O E{€1) E{€W,

£,(XPrism(Cn)) = - forj G{1,2,3,.... -1},

1,1 ,22 334 ;. 1%} ()

E {&{D, forj =
Let us call UjUj+1, juj+1 ifj E (1,2,31..., —1} and 1 ' , [ WLifj -=, cross
bridges.

Example 5.1 From Definition 5.1, we have XPrism(C4), shown in Figure 5.1.

'
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| =
u iy

Figure 5.1 XPrism (C4).
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The cycles CN and Cn in Definition 5.1 allow the “cross bridges” to be
occurred at any corresponding consecutive pair. However, we can rename the
vertices in such a way that it is easy for labeling. Thus, in our algorithms, we will fixed

cross bridges at some given consecutive pair.

First, Figure 5.2 shows one example on edge-labeling of XPrism (C3).

Figure 5.2 Edge-labeling for XPrism (C3).

Next, for any > 3, we can label the edges of XPrism(Cn) by using the following

algorithm.

Algorithm 5.1

Let > 3 be an odd integer. Let G denote XPrism(Cn) where 1 2 and 2 {are its

cross bridges. Then, q = 3 . Define /: E(G) -* {1,3,5,...,6 —

11 /o01%) = L
12 423 = 2 =1
13 (¢ )y = 2 —2i+3foriG{345,.1}%

14 /( 12 4 - 1
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15 f(; [+) = 2 +21—3,foriE {2,3,4,..., —1}
16 /(11) = 4 —3
17 f(['2) = 6 —1
18 /( - ¥#) = 4 +21—1,for{G{2,3,4,.., —1}
19 f('1'n) = 4n+ L

Example 5.2 From Algorithm 5.1, we can label each edge of XPrism(C5) as shown

in Figure 5.3.
27
21
9
11
‘ S
19

Figure 5.3 Edge-labeling for XPrism(C5).
Algorithm 5.2
Let > 4 be an even integer. Let G denote XPrism (Cn) where Ug+1 |42 and

Ung/Un are its cross bridges. Then, g = 3 . Define f-E(G) > {1,3,5,..., 6n —1}

[ |
21 /(1) = 1

22 I1( ;) = 2 —2i+3

fori e {2,3,4..... 3 U{2+32 +4'f+5...... 4
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2.3 = F 1

2.4 = - 11

25 f& i i+1) = 2n +2i —1,forie {1,2,3 , -
2.7 2) = 4 + 1

2.8 = 4n + 3;

29 f (i i+i) = 4 +2i+ 1 forie{2,3,4,..,}
210 f( [ [+D o 4n F 2i —1,

for £E {- F2,- £3,- F4, .., —'

211 /(1) - 6n — 1

Example 5.3 From Algorithm 5.2, we can label each edge of XPrism(C5) as shown

in Figure 5.4.

Figure 5.4 Edge-labeling for XPrism (C6).
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Lemma 5.1 Let > 3 be an odd integer. XPrism(Cn) is an edge-odd

graceful graph.

Proof. From Figure 5.2, we can see immediately that the induced vertex-labeling is

shown in Figure 5.5.

(a7)

(1)

St

A(

(5) (3)

Figure 5.5 The vertex-labeling is induced from the edge-labeling in Figure 5.2.

Therefore, it is obvious from Figure 5.5 that XPrism(C3) is an edge-odd graceful

graph.

Let > 4 be an odd integer. We first prove that the function / defined in
Algorithm 5.1 is a bijection from E(G) to {1, 3,5,..., 6n — 1} From Algorithm 5.1(1.1

and 1.2), we have

A = if(12,f(2D}= {l2n- 13
From Algorithm 5.1(1.3), we have

B = {/(; Dli 6(3,45,..., Jy={2n—3,2n—52n—7,..., 3}
From Algorithm 5.1(L.4, 1.5 and 1.6), we have

C =(1pulfcr<ayie{234... -3 [f(1ly

={4 -1} 2 +12 +32 +5,.,4 -5 4 —3.
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From Algorithm 5.1(1.7, 1.8 and 1.9), we have

D

if([ 2y {/C; ;#+DI1i G{2,3,4,.... -1}} [f('1"')}

{# -1} {4 +3,4 +5,4 +17,., 6 - 3 {4 + 1}
We can see clearly that A, B, C and D are disjoint and
/ (E(XPrism(Cn))) =A B C D ={13,5,.., en - 1}

Next, we will show that the induced vertex-labels from the edge-labels using

Algorithm 5.1 are in {0,1, 2,..., 6 - 1} and all distinct. From Algorithm 5.1, we have

f+( i) = (/('"2+F(C 1 2+/( " )) (mods )

= (IlF@4 —1)+ (4 —3)) (modsn)

2 —3

f+( 2 = (f(2N+f( ! 2+f(2 ) (mod6n)
= (2 —1)+ (@ —1)+(2n-F1)) (mods )

=2 —1;

/+0a) = (/( £ 1) +/ (Ui-lUi) +/( / t+1)) (mod 6n)
= (2 —2I F£3) F(n F 2t —5) F (2n -F 2f —3)) (mod 6n)
= (671 F2i —5) (mod 6 )

= 2i —5, fort G {3,4,5,..., — 1}

/+( ) = (f( "Yy+f( - )Y+f( ! )) (mods )

B3F@ —5 +@ —3)) (mods )

( —5) (mod s )
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f+ 1) = (/(2M)+/( 2)+/K O ) (mod6 )

= ((2 —1)+((6n—1)+ (4 + 1)) (mod 6n)

(12 —1) (mod 6 )

= 6n —1,;

/404)  =(/( 12 +/( 2)+/( ) (mod 6n)

(Il +(® —1)+ (4n + 3)) (mod 6n)

¢10?1 + 3) (mod 6n)

=4 +3

f+( D = (/( ) +/( !- )+/( T )) (mod 6 )
= (2 —2i+3)+@n+2i —3) +(4n + 2i — 1)) (mod 6n)
= (IOn + 2i — 1) (mod 6n)
=4 +2—1forie{345,, —1k

[+ ) = (.1 )+/(<-1 )+f( )) (mod 6 )

= 3+((® —3)+ (@4 + 1)) (mod6 )

(10 + 1) (mod 6 )

—4 +1
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We can see that
U+ )1 e {1,23.... }
={n-3 (@n- 1} (1,35..2 -7 {2n- 5
= {1,35,...,2n —52n—3,2 —1}
and
O+ 11 6{1,2,3,...., B
={6 —1} {4 +3) {4 +54 +7.4 +9,..,6 —3} {4 +1}

={4 +14 +34 +5,...,6 —3,6 —1}

It is clear that if > 4 and is odd, these two sets are disjoint and both are
subsets of {0,1, 2,..., ¢ — 1}. Therefore, the function / defined in Algorithm 5.1 is

an edge-odd graceful labeling. m

Lemma 5.2 Let >4 be on even integer. xpPrism (Cn) is an edge-odd

graceful graph.

Proof. Let > 4 be an even integer. From Algorithm 5.2(2.1 and 2.2), we have

E IC: 1ic {23,410y {f+3,f+ 4,3+ 5. 1
{2 —1,2 —3,2 —=5,.., + 3, —3 —5 —7,.13}
{1}

From Algorithm 5.2(2.3 and 2.4), we have

F = {/( 4+1 |+)] {/(™ +2u|+D] =o0o*+ 1}u (n- 1}
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From Algorithm 5.2C2.5 and 2.6), we have

G = {/(; ;+D)ie{1.2,3,.... -1} [f( 1 .,D}

(2 +12 +3 2 +5..,4 -3 {4 -1}

From Algorithm 2.2(2.7, 2.8, 2.9), we have

T
Il

{/(uX)Yy {7 mv1 n4D] {/( ; :+D)'i € {2,3,4,...,0 ]

{4n F1} {4n-F3} {4 F54 F7,4 F9,., + 1k
From Algorithm 2.2(2.10, 2.11), we have
I = {/( ; ;#D) |te {f+ +3,| +4....n-1}Ju{/( X)}
= { +3, +5, o=, 6 —3} {6 —1)
We can see clearly that E, F, G, H and / are disjoint and

f (e(xprism (c3)) =FUFUCUHU/ = {1,35...6n- 1}

Next, we will show that the induced vertex-labels from the edge-labels using

Algorithm 5.2 are in {0,1, 2,..., 6 — 1} and all distinct. From Algorithm 5.2, we have

/+X) = /(1)+/(12+/(1 ) (mod )
= (1F@2 -F1-F@ —1)) (mod6 )
= ( + 1) (mod )
=1

f+ ) =/CC)+/C_1LD)yF/(C; ;+)) (mod )

= ((2 -2i+3)F@ F2i-3)+ (@2 +2t- 1)

(mod )



f+( +1)

/ +(«f+2)

/ +(« )

/(1)

= 20- 1,

for te {2,3,4... {1+3.f+4,] + 5. -1y

(1( £+1 #2) +1 (u|ua+i) + 1 ( +um+2") (mod s )

= +D+( -DHD+( +1)(mod6 )
= (7 + 1)(modse )

= +1;

/7 | ¥2WM+D) +/ (un+iMs+2)+ / ( | +2 +3))

(mod 6 )

C« —D+(C +H+( 4 )) (mod6 )
(7 + )(mode )

— 7+ 3

= (0 )+t0 A )0ty (mod )
(+(@ —=3)+ (@1—-1)) (mod )

= (821 —1) (mod )

=2 —1,

=fc¢rm+rcr2+f("1T")) (mod )
=@A+@ +1)+( —1) (modsr1)

= (10 +1)(mod )

=4 +1

35



/ +0 2)

/ +(ui)

/+( +1)

f* (4.

=(f(22)+fm2us) +/(
= ((2n —1) + (4n + 5) + (
= (10n + 5) (mod 6n)

= 4n + 5

(CEDY+/( ;1D +F

) (moid 6n)

4 4- 1)) (mod 6 )

(u[u'i+1)) (mod 6n)

= [(2 —2i+3)+ @ +2i- + @ +2i+ 1N

(mod 6 )

= (10 + 2i + 3) (mod 6n)

= 4n + 2i + 3, fori G [3,4,5,

= (/ ( 2+2U]+i) +f (“

= (( =D+ +H~+@
= (10 +3) (mod 6 )

=4 + 3

= (f (uE+1u’ﬂ+2) + f(u'g+2
2 2 2

(mod 6 )
= (( + D+ +3)+ (4
= (10 + 7) (mod 67?i)

=4 +7

»+1) +/ (U[+1U]+2)) (

+ 3)) (mod 6 )

/ ! !
ug+3) ) (ugﬂu%«»z))

+ 3)) (mod 6 )
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f+(") = (/({H+fC 1) +/( - D)) (mod )
= (2 —2i+3)4 @4 42t—3)4 (@4 42i—1))
(mod en)

= (10 +2t-1) (mod )

— 4n +2£ — 1, fori 6 4 3,—4'4,—+ 5,..., n—I|;

/+«<) ={f( ')Y+f(* 1" )+f("T" ) (mods )
= (346 —3)+ (6 —1)) (mods )
= (12 —1)(modse )

= 6 —1.

We can see that

{7+l £{1,2,3,..., P

= {1} {3,57,... —1 4-5 +7, 4-9,...2 —3} { 4-1} { +3}
{2 - 1}

= {1,3,5...2 —1}

and

U+ ) e{1.23.. B

={4 413 {4 45 {4 49,4 4114 413,.,5 +3} {4 43}
4 +7% { 45 47, +9,..s —3 { —1}

= {4 4-1471+ 3,4714- ,..,621 —5, —3,  —1}
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It is clear that if > 4 and is even, these two sets are disjoint and both are

subsets of {0,1,2, ...,6 —1). Therefore, the function f defined in Algorithm 5.2 is

an edge-odd graceful labeling. [

Hence, from Lemmas 51 and 5.2, we conclude our result as in the following

theorem.
Theorem 5.1 Forn > 3, XPrism (Cn) is on edge-odd graceful graph.

Example 5.4 From the edge-labeling in Example 5.2, the induced vertex-labeling of

XPrism(C5) is shown in Figure 5.6.

2

(3)
(1) / 29)
(9) (7)

Figure 5.6 The vertex-labeling is induced from the edge-labeling in Example 5.2.

Example 5.5 From the edge-labeling in Example 5.3, the induced vertex-labeling of

XPrism(C6) is shown in Figure 5.7.



Figure 5.7 The vertex-labeling is induced from the edge-labeling in Example 5.3.
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