
CHAPTER II
PRELIMINARIES

In this chapter, we provide elementary results tha t will be used in Chapter III 
and Chapter IV. First, we recall basic definitions and properties in module theory, 
for instance, direct summands and fully invariant submodules. Next, we focus on 
essential submodules, small submodules and projective modules.

2.1 Sums of Modules
We begin this section by giving elementary results of the sum of submodules, 
essential submodules and fully invariant submodules. Then we discuss a rela­
tionship between direct summands and idempotent elements. Moreover, we study 
properties of the intersections of direct summands and fully invariant submodules. 
Finally, we provide another form of the set of all endomorphisms of finite direct 
sum of modules.

In general, for any submodules N , K  and L of M, (N  + K ) f] L  ç  N  + (K n L ) .

P ro p o s itio n  2.1.1. [ModularLaw) Let N ,K  and L be submodules of M  such 
that N  C L . Then (N  +  K ) ก L = N  + {K  ก L).

Proof. It is clear th a t (N  +  K ) ก L ç  N  + (K  ก L) because N  ç  L.
For the reverse of inclusion, let m  6 [N  +  K ) ก L. Then m  = X + y for

some X € N  and y G K . So y = m  — X E L, and then y E K  ก L. Hence
m  — x + y E N  + (K  ก L). Therefore, (N  + K ) ก L ç  N  +  (.K  ก L). □

A submodule A  of M  is a direct summand of M , denoted by N  <® M, if there 
is a submodule K  oî M  such that N  +  K  =  M  and N  D K  =  0. We abbreviate 
this property as N  © K  = M. Then every element m  G M  can be written uniquely 
as m  =  X +  y for some X G N  and y E K. An element e of R  is an idempotent
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element of R  if e2 =  e. Moreover, the phrase “e2 =  e £ E nd(M )” means that e is 
an idempotent element of R.

P ro p o s itio n  2.1.2. Let N  be a submodule of M. Then N  is a direct summand 
of M  if  and only if  N  — eM  for some e2 =  e 6 End(M ). Moreover, if  e2 =  e G 
End(M), then X — ex for any X £ eM .

Proof. First, assume that e2 =  e € End(M ) and let X £ eM . Then X = ey for 
some y G M . Thus X =  ey =  e2(y) =  e(e(y)) = ex. Therefore, X = ex for any 
X G eM.

F o r th e  su ffic ien cy , a s su m e  e 2 =  e G E n d ( M ) .  T h e n  i t  is c le a r  t h a t  M  =  eM  +  
(1 — e)M . N e x t, le t  X G e M  ก (1 — e)M . T h e n  X =  ex a n d  X =  (1 — e)x — X — ex. 
T h u s  ex =  X — ex so t h a t  ex — e(x — ex) = ex — ex =  0, i.e .,  X =  0. T h e re fo re , 
M  =  e M  ®  (1 — e)M . T o  sh o w  th e  n ecess ity , a s su m e  t h a t  N  is a  d i r e c t  s u m m a n d  
of M . T h e n  th e r e  is a  su b m o d u le  K  of M  su c h  t h a t  N  ®  K  =  M . D efin e  
e G E n d ( M )  by, fo r e a c h  m  G M , e(m) =  X w h e re  m  =  X +  y fo r so m e  X £ N  
a n d  y G K.  L e t m  £ M . T h e n  e 2(m ) =  e (e (m ))  =  e (x )  =  e (x  +  0) =  X =  e (m ) . 
T h is  sh o w s t h a t  e 2(m ) =  e (m )  a n d  e (m ) = X G N  fo r a n y  m. £ M  w ith  ทท, = x + y 
w h e re  X G N  a n d  y £ K.  T h u s  e 2 =  e a n d  e M  ç  N . N e x t, fo r n £ N , it fo llow s 
t h a t  ท =  e (ท +  0) G e (M ) .  i.e ., N  ç  eM. T h e re fo re , N  =  e M . □

P ro p o s itio n  2.1.3. Let e be an idempotent in End(M ). Then M  =  eM ® kere 
and ker e =  (1 — e)M.

Proof. Clearly, e(l — e)M  =  0. So (1 — e)M  Ç kere. Next, let X G kere. Then 
ex =  0. It follows that X =  (1 — e)x G (1 — e)M. Thus kere ç  (1 — e)M. As a 
result, ker e =  (1 — e)M. Therefore, M  =  eM  ® (1 — e)M  = eM  © ker e. □

P ro p o s itio n  2.1.4. Let N  and L be submodules of M. I f  N  <1® M  and N  ç  L, 
then N  <® L

Proof. Assume that N  <® M  and N  ç  L. Then M  =  N  ๏ K  for some sub- 
module K  of M . By Modular Law and I V n L  =  0, we obtain L = M  ก L = 
{N  ๏ K ) n L  = N @ ( K n L ) .  This forces th at N  <® L. □
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P r o p o s i t io n  2.1.5. Let M  = N  © K . Then the following statements holds.
(i) There is e2 =  e G End(M ) such that N  = eM  and kere — K  = ( 1 — e )M .
(ท) I f K  ç L for some submodule L of M , then there is e2 =  e G End(M ) such 
that N  = eM  and N  ก L — eL.

Proof, (i) From the proof of Proposition 2.1.2, there is e2 =  e G End(M ) such 
that N  = eM  where e(m) =  X with m  = x + y , x E N  and y G K . So K  Ç kere 
because e(y) = e(0 +  y) =  0 for all y G K . Let X  +  y G kere where X e  N  and 
y G K . Then 0 = e(x  +  y) = X,  it implies that X  + y — y G K . Thus ker e ç K  so 
that K  — kere. Furthermore, K  =  (1 — e)M  from Proposition 2.1.3.

(ii) Assume th at K  ç L  for some submodule L  of M . From (i), there is 
e2 =  e G End(M ) such that N  = eM  and kere =  Kโ =  (1 — e)M . Since K  ç L, it 
follows th a t L =  (eM  © (1 — e)M ) ก L — ((eM  ก i )  ® (1 — e)M . Let X  G eM  ก L. 
Then X — ex = e(ex) G eL. So N  ก L Ç eL. Next, let X  G eL. Thus X = ey for 
some y G L so that y = u +  v  where น = eu G eM ก !/ and V = (1 — e ) v  G (1 — e)M. 
Hence X  = ey = e(น +  'ข) =  e(eu +  (1 — e)ü) =  eu G eM ก L, this forces that 
eL Ç eM  ก L. Therefore, N  ก L =  eM ก L =  eL. □

P r o p o s i t io n  2.1.6. Let N, K  and L be submodules of M . I f  M  = N @ K  =  N ® L, 
then K  = L.

Proof. Assume that M  =  N  ๏ K  = N  ® L. From Proposition 2.1.5, there is 
e2 =  e G End(M ) such that L =  eM and kere =  N . Then e is an epimorphism 
from N  © L onto L. Notice that ei is a homomorphism from K  to  L where i is the 
inclusion homomorphism from K  to M. Let X, y G AT be such th a t ei(x) = ei(y). 
Then e(x) = e(y). So X — y G kere =  N . Thus X — y E N  n  K  — 0 implies 
that X =  y. Hence ei is a monomorphism. Next, let โท G L. Then m  = em  and 
m  =  X +  y for some X G N  and y G A. So m  =  ex +  ey =  ey =ะ (ez)(y) because 
ker e — N . Hence ei is an epimorphism. Therefore, K  = L. □

The next corollary is an immediate result from Proposition 2.1.6.

Corollary 2.1.7. L e t N , K  and L be submodules of M . I f M  = N ® K  = N @ L
and K  ç  L, then K  = L.
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A submodule F  of M  is called a fully invariant submodule of M, denoted by 
F  < f u l l y  M , if / ( F )  ç  F  for all /  G End(M ).

P r o p o s i t io n  2.1.8. Let N  be a direct summand of M  and F  be a fully invariant 
submodule of M . Then
(i) N  ก F  is a fully invariant submodule of N ,
( a )  A  ก F  IS a direct summand of F 1 and 
(ill) F  =  (A  ก F ) ® (K  ก F) if  M  = A  0  K .

Proof, (i) Let N  = eM  for some e2 = e G End(M ). Then eM  n F  ç eF  because 
ex =  e(ex) G eF  for any ex G eM  ก F. Moreover, eF  ç  eM  ก F  because 
F  < f u l l y  M. Thus A n  F  = eM  D F  = eF. Let g G End (A). Then ge G End (M). 
So g(N  nF) = g(eF) = ge(F) ç  F, i.e., g(N  D F) ç N  D F . Therefore, A  ก F  is 
a fully invariant submodule of N.

(ii) There is a submodule K  of M  such that M  = A  © K . Then A  =  eM  and 
K  = f M  where e2 =  e, f 2 = /  G End(M ). From the proof of (i), we obtain that 
eF = N  ก F  and f F  =  K  ก F . Then F  =  eF  0  / F  =  (A ก F ) 0  (K  ก F ). Thus 
A ก F  is a direct summand of F.

(iii) This follows from the proof of (ii). □

Let M  =  A © K.  The homomorphism 7T/V : M  —> A  defined by 7Tjv(a: +  y) =  X 
for all X G A  and y G K  is an epimorphism and (7T/v)2 =  and is called the pro­
jection homomorphism from M  onto A. Moreover, the projective homomorphism  
7Tx from M  onto K  can be defined similarly. Note that a submodule which is 
both a fully invariant submodule and a direct summand is called a fully invariant 
direct summand.

P r o p o s i t io n  2.1.9. Let M  =  A ©  K  and A  be a fully invariant submodule of M. 
I f K ' is a fully invariant direct summand of K 1 then A  © K ' is a fully invariant 
direct summand of M.

Proof. Assume that K ' is a fully invariant submodule of K. Let /  G End(M ), 
X G A  and y G K '. Then / (x) G A  because A  < f u l l y  M . Note th at f (y )  = น +  V 
for some U G A  and V G K . Observe that U +  V =  7Tyv ('น +  v) +  TTK (ท +  v)- So
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f (y )  =  u + v  =  7Tjv(/(y)) ®'ïïK(f(y ))  and 7Tk (/Ü/)) =  7Tk ( / (î k Ü/))) where Zk is the 
identity homomorphism on if . Moreover, 7TKf i K{y) £ i f '  as y £ if ',  i f ' < fully i f  
&ndnKf i K £ End (if). Thus / (x+y) =  / (x )+ /(y )  = f  (x )+ n Nf(y )® n Kf i K(y) £ 
IV ® if '.  Therefore, iV ® i f ' is a fully invariant direct summand of M  because i f ' 
is a direct summand of i f  and M  =  N  © if . □

Let M  =  IV®if and g £ End(IV). Define g® 0x ■ M  —> M  by (yGOtf) (x+y) = 
y(x)+0/c(y), i.e., (y©0/c) (x+y) =  y(x) for all X £ iV and y £ K . Let h £ End(if). 
Then ô v © h can be defined similar to g © Ok- and Ojv ๏ h £ End(Ai).
L em m a 2.1 .10. Let M  — N  ๏ K  and F  be a fully invariant submodule of M . 
Let g £ End(fV) and h £ End(if). Then the following statements hold.
( i ) g - \ N n F ) =  {g ® 0 Ky \ F )  ก N .
(ท) g - \ N  ก F) © K  = ( 9 ® 0k ) ~ \ f ).
(lit) h - \ K  ก F) = (Ok ® h ) ~ \F )  ก K .
(IV) N  ๏ h r l (K  ก F) = (0N ® h )~ \F ) .
Proof, (i) Let X £ g~1(N  ก F). Then X £ N  and (g ๏ Ok ) (x ) =  g(x) £ N  ก F. So 
X £ (y © Ok )-1 (F) ก N . For the reverse of inclusion, let X £ (g ๏ 0k ) 1(F) ท N. 
Then (g ๏ Ok ) (x ) £ F  and X £ N  so that g(x) = (g ๏ 0k )(x) e n  D F. Thus 
X £ g~l (N  ก F). Therefore, (g ๏ Ok ) l (F) ก N  =  ก F).

(ii) It is clear th a t g~1(N ก F ) n K  = 0 because g~1(NC\F) ç  N  and N n K  = 0. 
Next, let X +  y £ g~1(N  ก F) ๏ K  where X £ y-1 (N  ก F) and y £ K . Then 
g(x) £ N  ก F, so (y ๏ 0k ) (x +  y) =  g(x) £ F. Thus X +  y £ (y © 0k )_1(-F)- 
For the reverse of inclusion, let X +  y £ (y © 0k )~1(F) where X £ N  and y £ if. 
Then g(x) £ N  30 th a t g(x) =  (9 ® Ok ) (x +  y) £ iV ก F . Thus X £ g~l (N  ก F). 
Hence X +  y £ g~1(N  n  F) ® K. Therefore, g~l (N  ก F ) ๏ i f  =  (g ๏  Ok ) L(F).

The proofs of (iii) and (iv) can be shown similarly to ones of (i) and (ii), 
respectively. □
P ro p o s itio n  2 .1 .11. Let M  = N  © i f  and f  £ End (M ). Then the following 
statements hold.
(i) f ~ \ N )  ก K  = ker(TCKf \ K).
(ท) I f  N  is a fully invariant submodule of M , then f ~ 1(N) =  N  ®kei('KKf \ K).
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Proof, (i) Since TXx : M  —> K  is the projection homomorphism, kern x  = A . Let 
X G / - 1 ( A ) ก K . Then f ( x )  G A  and X G K. So 7T/c/|/c(cc) =  7 T ^ /(x ) =  0. Thus 
X G ker(7T/c/|/sr). On the other hand, let X G ker(nKf \ K). Then X G A  and 
TTi<f {ท =  'KKf \ K{x) =  0 so that / (.t ) g kerTT/c =  A ,  i.e., X G / _1(A ) .  Thus 
X G / - ^ A )  ก  A .

(ii) Assume that A  is a fully invariant submodule of M . Then N  Ç f ~ l (N). 
Applying the Modular Law gives A©ker(7T/</|K-) =ะ A © ( /_1(A )ก A ) =  f ~ l (N )ก 
(A ®  K )  ะ= / - 1( A ) n M  =  / - 1(A). □

Let A  be a submodule of M  and X G M . Recall that

(A :R x) = {a G R  I xa G A}.

Next, we consider the quotient submodule M /N . Then

({A} :R X +  A) =  {a G A I (x +  N )a  G {A}}
=  {a G A I xa +  A  =  A}
=  {a G R  I xa G A}
= (N-.R x).

Let /  be a nonempty subset of End(M ). Then

(A  :M I) ะ= {x G M  I / (x) G A  for all /  G /}
=  {x G M  I X G / -1(A) for all /  G /}
= ก / - 1พ .

In particular, if /  G End(M ), then (A  \M / )  =  (A  '.น { /}) =  {x G M  I X G 
/ - 1 (A)} =  / _ 1 (A). Denote 5 /  a left ideal of ร' =  End(M ) generated by /  where 
/  G End(M ).

P ro p o s itio n  2 .1 .12. Let f , h  G End(M ) and F  be a fully invariant submodule 
of M. Then the following statements hold.
(i) (F  :M / )  =  (F  :m ร ท
(ท) (F  :m 5 /  +  Sh) = (F  :M ร ท  ก (F  :M T/i).
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Proof, (i) Since F  is a fully invariant submodule of M  and End(M ) has the iden­
tity, we obtain th at

(F  \M S f  ) =  {x G M  I g{x) G F  for all g G ร,/}
=  {x G M  I h f ( x ) G F  for all h G ร}
=  {x G M  I f i x )  G F}
= (F  :M /) .

(ii) Let X G (F  ะAf ร /  +  ร/!). Then { g i f  P  g i h ) { x )  G F  for any 01,02 e  ร -  

In particular, / (x) G F and /i(x) G F so that X G (F :m / )  =  (F ะAf ร / )  and 
X E  { F  \M  h )  — (F ะM ร/!), respectively. On the other hand, let X G (F :m 
ร /)  ก (F :M ร/!) =  (F :M / )  ก (F :M  h ) .  Then / (x) G F and /i(x) G F. Thus, for 
any 0 1 , 0 2  e  F, (0 1 /  +  0 2 /1 ) (z) =  0 1 / ( 3 ) +  0 2 /1 (3 ) e  F because F M. Hence 
3' G { F  :M  S f  +  S h ). Therefore, (F :M ร /  +  ร/!) =  (F :M  ร / )  ก (F :M ร/!)- □
P ro p o s itio n  2 .1 .13. [15] Le£ Ml and M2 be R-m.odules. Then

(
End (Mi e  M2) = End (Ml) Hom(M2,M 1)

^Hom(M1,M 2) End(M 2)

f g'Moreover, any evimorphism  m E nd(M i® M 2) can be written as I '  " I where
f  0

/  G End(M i), / '  G Hom (M i,M 2), 0 ' G Hom(M2,M ]) and 0  G End(M 2).
P ro p o s itio n  2 .1 .14. [15] Let Mi be an R-module for  a l l i e  { 1 , . . . เท}. F/ien

/
End(M i® M 20- • •๏Mn) =

End (Mi) Hom(M2, Mj) 
H om (M i,M 2) End(M 2)

Hom(Mn, Ml) 
Hom(Mn, M2)

\

yHom(Mi,M„) Hom(M2, Mn) . . .  End(M n) j

2.2 Essential Submodules
A submodule Ar of M is an essential submodule of M , denoted by jV <ess M, if 
i V n i l  7  ̂ 0 for any nonzero submodule K  of M. Moreover, M  is an essential 
extension of N  if N  <ess M.
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P r o p o s i t io n  2 .2 .1 .  [3] Let N  be a submodule of M . Then N  is an essential
submodule of M  if  and only i f  for any nonzero element X G M , there is r G R
such that 0 7  ̂ xr G N .
P r o p o s i t io n  2 .2 .2 .  Let N  be a submodule of M . I f  N  is both a direct summand 
and an essential submodule of M , then N  = M .
Proof. Assume that N  is à direct summand of M  and an essential submodule 
of M . Then there is a submodule K  of M  such th a t M  =  N  © K . So N  ก K  — 0. 
Thus K  = 0 because N  <6รร M . Therefore, N  = M . □
P r o p o s i t io n  2 .2 .3 .  [3] Let N  and L be submodules of M  and N  ç  L. Then
N  < ess M  if and only if  N  <ess L and L <ess M .
P r o p o s i t io n  2 .2 .4 .  Let N , K , L and p  be submodules of M  such that N  and 
K  are submodules of L and p , respectively. I f  N  <esร L and K  <ess p , then 
N n K  <esร L n P .
Proof. Assume th at N  <esร L and K  <esร p . Let A be a nonzero submodule of 
L n P .  Then A is a nonzero submodule of both L and P. Since K  <ess p  and 
A is a nonzero submodule of p , it follows that K  n  A hๆ 0. Since N  <esร L  and 
A ก A is a nonzero submodule of L, we obtain th at N  ก (K  ก A) ^  0 so that 
(N  ก K ) ก A 7  ̂ 0. Therefore, N n K  <6รร L n P .  □
C o r o lla r y  2 .2 .5 .  [3] Let N  and K  be submodules of M . Then N  <6SS M  and 
K  <eSS M  i f  and only if  N  ก K  <ess M .
P r o p o s i t io n  2 .2 .6 .  Let p  and M  be modules and f  ■. p  —* M  be a homomor­
phism. For any submodules N  and L of M , if  N  <esร L, then f ~ l (N ) <esร f ~ 1(L).
Proof. Let N  and L be submodules of M . Assume th a t N  <esร L. Let 0 jh 
X € / _1(L). If f ( x )  =  0, then X e f ~ l (N). Assume th at 0 ^  f ( x )  G L. Since 
N  <6รร L, there is r G R  such that 0 7̂  / (xr) G N . So 0 7  ̂ xr G f ~ 1(N). 
Therefore, f ~ l {N ) < 6รร f ~ l {L). □
P r o p o s i t io n  2 .2 .7 .  [3] Let p  and M  be modules. Let N  be a submodule of M , L 
be a submodule of p  and M  ก p  =  0. Then N  <ess M  and L <esร p  if  and only 
if N  ® L <6รร M  @ p .
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2.3 Small Submodules
A submodule N  of M  is a small submodule of M , denoted by N  -c  M, if N  + 
K  — M  implies K  = M  for any submodule K  of M .

P ro p o s itio n  2.3.1. Let N  be a submodule of M . I f  N  is both a direct summand 
and a small submodule of M , then N  =  0.

Proof. Assume th a t N  is a direct summand of M  and a small submodule of M. 
Then there is a submodule K  of M  such that M  = N  © K . So N  + K  =  M . Thus 
K  = M  because N  <ess M . This forces th at N  = 0. □

P ro p o s itio n  2.3.2. [7] Let N  and L be submodules of M  and N  c  L. Then 
L <  ̂ M  if and only i f  N  <§c M  and L /N  M /N .

P ro p o s itio n  2.3.3. [7] Let N ,K  and L be submodules of M . I f  M  = L + K  and 
N  ç  L, then (L ก N )/(L  ก K ) = M /(L  ก 70-

P ro p o s itio n  2.3.4. [7] Let N  be a submodule of M . Then N  <c M  if  and only 
i f  N  <  ̂ L fo r all direct summand L of M  containing N .

P ro p o s itio n  2.3.5. [7] Let N  and L be submodules of M . Then N  <^ M  and 
L -c  M  if and only if N  +  L -c  M .

P ro p o s itio n  2 .3 .6. [7] Assume that N  -c  M  and f  : M  —ï p  is a homomor­
phism. Then f ( N )  <  ̂ p .

A submodule L  of M  lies above a direct summand of M , given by Clark et al. 
in [7], if there is a direct summand N  of M  such th a t N  ç  L  and L /N  <§c M /N . 
Observe th at every direct summand of M  always lies above itself; moreover, every 
small submodules of M  always lies above the zero submodule. Next, we provide 
equivalent definitions of lying above a direct summand.

P ro p o s itio n  2.3.7. [7] Let L be a submodule of M . Then the following statements 
are equivalent.
(i) L lies above a direct summand of M .
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(ท) There is a direct summand N  of M  and a submodule K  of M  such that N  ç L, 
L = N  + K  and K  M .
(Hi) There is a decomposition M  = N  © K  with N  ç L and K  C\ L  <  ̂ K .
(พ) L =  eM  © (1 — e)L and (1 — e)L M  for some e2 =  e G End(M ).

2.4 Projective Modules
A module p  is a projective module if for any modules M  and Q any epimorphism 
g : M  —> Q and any homomorphism /  : p  —> Q, there is a homomorphism 
h : p  —» M  such th at /  =  gh (see the following diagram).

M Q ----- - 0
A module M is a free module if M is a module with basis. Moreover, every 
ring is both a free module and a projective module over itself. Note th at all of 
propositions in this section are from [15].

P ro p o s itio n  2.4.1. Let p  be a module. Then p  is a projective module i f  and 
only if p  is isomorphic to a direct summand of a free module.

P ro p o s itio n  2 .4 .2. Let p  be a projective module. Then N  is a projective module 
for any direct summand N  of p .

P ro p o s itio n  2.4.3. Let Mi be a module for all i G { 1 , . . . , ท}. Then Mi is a 
projective module for all i G { 1 ,. . . ,  ท} i f  and only if  Ml ® M2 ® • • • ® Mn is a 
projective module.

P ro p o s itio n  2.4.4. Let p  and M be modules and M be a projective modules. 
Then ker g is a direct summand of p  for any epimorphism g : p  —> M .
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