CHAPTER II
PRELIMINARIES

In this chapter, we provide elementary results that will be used in Chapter Il
and Chapter IV. First, we recall basic definitions and properties in module theory,
for instance, direct summands and fully invariant submodules. Next, we focus on
essential submodules, small submodules and projective modules.

2.1 Sums of Modules

We Dbegin this section by giving elementary results of the sum of submodules,
essential submodules and fully invariant submodules. Then we discuss a rela-
tionship hetween direct summands and idempotent elements. Moreover, we study
properties of the intersections of direct summands and fully invariant submodules.
Finally, we provide another form of the set of all endomorphisms of finite direct
sum of modules.

In general, for any submodules N, K and L of M, (N +K)fJL ¢ N +(KnL).

Proposition 2.1.1. [ModularLaw) Let N,K and L be submodules of M such
that N CL. Then (N+K) L=N+{K L)

Proof. It is clear that (N + K) LGN+ (K |_) because N { L.

For the reverse of inclusion, let m 6 [N+ K) L. Thenm = X+y for
some X€ N andy GK. Soy=m—XEL, and theny E K L.Hence
m—x+yEN + (K L) Therefore, (N +K) LGN+ (K L) I

A submodule A of M is a direct summand of M , denoted by N <® M, if there
is a submodule K of M such that N + K = M and N DK = 0. We abbreviate
this property as N ©K = M. Then every elementm G M can be written uniquely
asm = X+yfor some XGN and y E K. An element ¢ of R is an idempotent
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element of R if 2= e. Moreover, the phrase “e2= e £ End(M)” means that e is
an idempotent element of R,

Proposition 2.1.2. Let N be a submodule of M. Then N is a direct summand
of M if and only if N —eM for some e2= e 6 End(M). Moreover, ife2= ¢ G
End(M), then X —ex for any X £ eM.

Proof. First, assume that e2= e € End(M) and let X £ eM. Then X = ey for
some y G M. Thus X = ey = e2(y) = e(e(y)) = ex. Therefore, X = ex for any
XGeM.

For the sufficiency, assume e2 = € GEnd(M). Then it is clear that M = eM +
(1—e)M. Next, let XGeM (1 —€)M. Then X= ex and X= (1 —e)x —X—ex.
Thus ex = X—eX so that ex —e(x —ex) = ex —ex = 0, i.e., X= 0. Therefore,
M = eM ® (1 —e)M. To show the necessity, assume that N is a direct summand
of M. Then there is a submodule K of M such that N ® K = M. Define
e GEnd(M) by, for each m GM, e(m) = X where m = X+ Y for some X£ N
and y GK. Letm £ M. Then e2(m) = e(e(m)) = e(x) = e(x + 0) = X= ¢(m).
This shows that e2(m) = e(m) and e(m) = XGN forany m £ M with ,=Xx+y
where XGN and y £ K. Thus e2= e and eM § N. Next, for n £ N, it follows
that = e( +0) Ge(M). ie, N G eM. Therefore, N = eM, I

Proposition 2.1.3. Let e be an idempotent in End(M). Then M = eM ® kere
and kere = (1 —)M.

Proof. Clearly, e(l —e)M = 0. So (1 —e)M C kere. Next, let X G kere. Then
ex = 0. It follows that X = (1 —e)x G (1 —e)M. Thus kere ¢ (1 —e)M. As a
result, kere = (1 —e)M. Therefore, M = eM ® (1 —e)M =eM ©kere. [

Proposition 2.1.4. Let N and L be submodules of M. IfN <®M and N ¢ L,
then N <® L

Proof. Assume that N <® M and N ¢ L. Then M = N K for some sub-
module K of M. By Modular Law and 1VnL =0, weobtain L =M L =
{N K)nL =N@ (KnL). This forces that N <® L. [



Proposition 2.1.5. Let M =N ©K. Then the following statements holds.

(i) There is 2= e GEnd(M) such that N = eM and kere —K = (1—e)M.
() 1fK C L for some submodule L of M, then there is e2 = e GEnd(M) such
that N =eM andN L —el.

Proof, (i) From the proof of Proposition 2.1.2, there is e2 = e G End(M) such
that N = eM where e(m) = Xwithm = x +y,xEN andy GK. So K C kere
because e(y) = e(0+y) = 0 for all y GK. Let x +y Gkere where x e N and
y GK. Then 0=e(x +y) =x, It implies that « +y —y GK. Thus kere ¢ K so
that K —kere. Furthermore, K = (1 —e)M from Proposition 2.1.3.

(i) Assume that K G L for some submodule L of M. From (i), there is
e2= ¢ GEnd(M) such that N = eM and kere = K = (1 —)M. Since K G L, it
follws that L = (eM © (1—e)M) L —((eM i) ®(L—e)M. Letx GeM L.
Then x —ex = e(ex) GeL. SoN L Cel. Next, let x GeL. Thus x = ey for
somey GLsothaty = u+vwhere =euGeM !Vandv= (1—ep GL—e)M.
Hence « = ey = e( +') = e(eu+ (L —e)i) = eu GeM L, this forces that
eLCeM L Therefore, N L=eM L=eL I

Proposition 2.1.6. Let N, K and L be submodules of M. IfM = N@K = N®L,
then K = L.

Proof. Assume that M = N K = N ® L. From Proposition 2.1.5, there is
e2= ¢ GEnd(M) such that L = eM and kere = N. Then e is an epimorphism
from N ©L onto L. Notice that ei is a homomorphism from K to L where i is the
inclusion homomorphism from K to M. Let Xy G AT he such that ei(x) = ei(y).
Then e(x) = e(y). So x —y Gkere = N. Thus X—y E N n K — 0 implies
that x =y. Hence ei is a monomorphism. Next, let G L. Thenm = em and
m=X+yforsome XGN andy GA. Som = ex+ey=ey= (ez)(y) because
kere —N. Hence ei is an epimorphism. Therefore, K = L. I

The next corollary is an immediate result from Proposition 2.1.6.

Corollary 2.1.7. LetN,K and L be submodules of M. ITM = N®K =N@L
and K ¢ L, thenK = L.
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A submodule F of M s called a fully invariant submodule of M, denoted by
F <ty M, if /(F) ¢ F forall / GEnd(M).

Proposition 2.1.8. Let N be a direct summand of M and F be afully invariant
submodule of M. Then

() N F is afully invariant submodule of N,

(a) A F 15 adirect summand of F1 and

(ihF=(A F)®(K F)ifM=A0K,

Proof, (i) Let N = eM for some e2= e GEnd(M). Then eM n F G eF because
ex = e(ex) G eF for any ex G eM F. Moreover, eF ¢ eM F because
F <ty M. Thus An F =eM DF =¢F. Let g GEnd(A). Then ge GEnd(M).
Sog(N nF) =g(eF) = ge(F) ¢ F, ie, g(N DF) ¢ N DF. Therefore, A F is
a fully invariant submodule of N.

(ii) There is a submodule K of M such that M = A©K . Then A = eM and
K =fM where e2= ¢ 2=/ GEnd(M). From the proof of (i), we obtain that
eF=N FandfF =K F. ThenF=eFO/F=(A F)0 (K F). Thus
A F is adirect summand of F.

(iil) This follows from the proof of (ii). I

Let M = A©K. The homomorphism 7ivV: M —A defined by Tva+y) = X
forall XGA andy GK is an epimorphism and (T2 = and is called the pro-
jection homomorphism from M onto A. Moreover, the projective homomorphism
x from M onto K can be defined similarly. Note that a submodule which is
both a fully invariant submodule and a direct summand is called a fully invariant
direct summand.

Proposition 2.1.9. LetM = A© K and A be afully invariant submodule of M.
If K" is afully invariant direct summand of K Lthen A © K" is afully invariant
direct summand of M.

Proof. Assume that K' is a fully invariant submodule of K. Let / G End(M),
XGA andy GK". Then / (x) G A because A <fully M. Note that f(y) = +V
for some UG A and VG K. Observe that U+ V= Tw( + v) + TK( +v)- So
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f(y) = u+v = TTjv((y)) ®iK(f(y)) and Tk (/UN)) = T (/(ik UN)) where Z is the
identity homomorphism on if. Moreover, TKfiK{y) £ if' asy £ if', if' <fully if
&ndnKfiK £ End(if). Thus/ (x+y) =/ (x)+/(y) = f (x)+nNf(y)®@nKfiK(y) £
IV®if'. Therefore, IV®if"is a fully invariant direct summand of M because if'
is a direct summand of if and M = N ©if. I

Let M = IV®if and g £ End(IV). Define g®0x 1M —M by (yGOtf) (x+y) =
y(x)+0/c(y), i.e., (yOOIc) (x+y) = y(x) forall X£ iVandy £ K. Let h £ End(if).
Then ov©h can be defined similar to g© Ok-and Qv h £ End(Ai).

Lemma 2.1.10. Let M —N K and F be afully invariant submodule of M.
Let g £ End(fV) and h £ End(if). Then the following statements hold.
(1)g-\NnF)= {g®0Ky\F) N.

()g-\N F)OK =(9®0k)~\f).

(lit) h-\K  F) = (k®h)~\F) K.

(MN hri(K F)=(ON®h)~\F).

Proof, (i) Let X£ g~(N F). Then XE N and (g o)(x)=g(x) EN F. So
XE (yOOk)-L(F) N. Forthe reverse of inclusion, let X (g Ok) 1(F) N.
Then (9 o)(x) £ F and X£ N sothat g(x) = (g Ok)(x) e n DF. Thus
XE£ g~I(N F). Therefore, (g o) I(F) N = F).

(il) It is clear that g~L(N F)nK = 0because g~1(NC\F) ¢ N and NnK =0,
Next, let X+y £ g~I(N F) K where X£y-I(N F) andy £ K. Then
gx) £ N F so(y Ok)(x+y)=g(x) £F. Thus X+y£ (y©O0k) 1-F-
For the reverse of inclusion, let X+ y £ (y© 0k)~1(F) where X£ N and y £ if.
Then g(x) £ N that g(x) = O®0)(x+ y) £ IV F. Thus X£ g~I(N F).
Hence X+y £ g~1(N n F) ® K. Therefore, g~I(N F) if=(g &) LF).

The proofs of (iii) and (iv) can be shown similarly to ones of (i) and (ii),
respectively. I
Proposition 2.1.11. Let M = N ©if and f £ End(M). Then the following
statements hold.

() f~\N) K = ker(TCKf\K).
() IfN is afully invariant submodule of M, then f~1(N) = N ®kei('KKf\K).
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Proof, (i) Since T : M —K is the projection homomorphism, kernx = A. Let
XG /-1(A) K. Thenf(x) GA and XG K. So 7T/c/|/c(cc) = 7TA(x) = 0. Thus
X G ker(7T/c/fsr). On the other hand, let X G ker(nKf\K). Then XG A and
€| = KAK{x) = o sothat /() g keTTlc = A, i.e.,, XG/ _1(A). Thus
XG/-"A) A,

(i) Assume that A is a fully invariant submodule of M. Then N C f~I(N).
Applying the Modular Law gives ACker(7T/</|K-) = A© (/_1(A) A) = f~I(N)
(A® K) =/-1(A)nM =/-1A). 0

Let A be a submodule of M and X G M. Recall that
(A Rx)={aGR IxacA}
Next, we consider the quotient submodule M /N. Then

({A} RX+ A)={aGcAl(x+ N)ac{A}
={acAlxat+ A=A}
={aGR IxaGA}
= (N-.Rx).

Let / be a nonempty subset of End(M). Then

(AMD ={xeMI/(x) cAforal/ G/}
={xGM IXG/-1(A) forall / G/}
= /-1

In particular, if / G End(M), then (AWM /) = (A" {/}) = {x6 M IXG
[-1(A)} =1 1(A). Denote 5/ a left ideal of '= End(M) generated by / where
| G End(M).

Proposition 2.1.12. Let f,h G End(M) and F be a fully invariant submodule
of M. Then the following statements hold.

() (F M) = (Fm

()(Fm5/+Sh)=(FM (F MTh).
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Proof, (i) Since F is a fully invariant submodule of M and End(M) has the iden-
tity, we obtain that
(FWST)= {x GM Ig{x) GF forall g G ,}
= {x GM Ihf(x) GF forall h G }
= {x GM Ifix) GF}
= (F :MJ).
(i) Let XG(F A [+ [l). Then {gif p gih){x) G F for any 01,02 ¢ -
In particular, / (x) 6 F and /i(x) 6 F so that X6 (F :m /) = (F A /) and
X E (F W n) — (F M /1), respectively. On the other hand, let X 6 (F m
N (FM )= (FMI) (Fmn). Then/(x) 6 F and/i(x) 6 F. Thus, for
any o102 & F, (o1/ +02h)(z2) = 0t/(3) + 02/i(s) & F because F M. Hence
3Gi{r mst+sh) Therefore, (FM [+ M=(Fwm /) (FMN) 1
Proposition 2.1.13. [15] Lef MI and M2 be R-m.odules. Then

(" End(MI)  Hom(M2MY)

End(Mi e M2) =
e M= ommiM2  Endv2

Moreover, any evimorphism mEnd(Mi®M?2) can be written as | f 'gl where
f 0

[ GEnd(Mi), /' GHom(Mi,M2), o' GHom(M2,M]) and o GEnd(M2).

Proposition 2.1.14. [15] Let Mi be an R-module for allie {1,... }. Flien

| EndMi)  Hom(M2Mj)  Hom(Mn, MI)\

End(MieM2- oo M) = TOMMIMZ) - End(M2) Hom(Mn,M2)

yHom(MiM,) Hom(M2Mn) ... End(Mn) |

2.2 Essential Submodules

A submodule Arof M is an essential submodule of M, denoted by |V <ess M, if
iV nil 740 for any nonzero submodule K of M. Moreover, M is an essential
extension of N if N <ess M.
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Proposition 2.2.1. [3 LetN be a submodule of M. Then N is anessential
submodule of M if and only if for any nonzero elementX G M, there isr G R
such that 0 7*xr GN ,

Proposition 2.2.2. Let N be a submodule of M. If N is both a direct summand
and an essential submodule of M, then N = M.

Proof. Assume that N is a direct summand of M and an essential submodule
of M. Then there is a submodule K of M suchthat M = NOK.SoN K —0.
Thus K = 0 becauseN <6 M. Therefore, N = M. I

Proposition 2.2.3. [3 LetN and L be submodules ofM andN ¢ L. Then
N <essM if and only if N <essL and L <ess M.

Proposition 2.2.4. Let N, K, L and p be submodules of M such that N and
K are submodules of L and p, respectively. |f N <es L and K <ess p, then
NnK <es LnP.

Proof. Assume that N <es L and K <es p. Let A be a nonzero submodule of
LnP. Then Ais a nonzero submodule of hoth L and P. Since K <es p and
A is a nonzero submodule of p, it follows that K n A h 0. Since N <es L and
A Ais a nonzero submodule of L, we obtain that N (K A) * 0 so that
(N K) A0 Therefore, NnK <6 LnP. [

Corollary 2.2.5. [3 Let N and K be submodules of M. Then N <65 M and
K <eSM ifand only if N~ K <essM.

Proposition 2.2.6. Let p and M be modules and f tp —*M be a homomor-
phism. For any submodules N and L ofM, if N <es L, thenf~I(N) <es f~1(L).

Proof. Let N and L be submodules of M. Assume that N <es L. Let 0 jh
X€ [ 1L). Iff(x) =0 then Xe f~I(N). Assume that 0 f(x) GL. Since
N <6 L, there isr G R such that 0 7/ (xr) GN. So 0 7 xr G f~1(N).
Therefore, f~I{N) <6 f~I{L). I

Proposition 2.2.7. [3 Let p and M be modules. Let N be a submodule of M, L
be a submodule ofp and M p = 0. Then N <essM and L <es p if and only
ifN®L<6 M @p.
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2.3 Small Submodules

A submodule N of M is a small submodule of M, denoted by N -c M, if N +
K — M implies K =M for any submodule K of M.

Proposition 2.3.1. Let N be a submodule of M. If N is both a direct summand
and a small submodule of M, then N = 0.

Proof. Assume that N is a direct summand of M and a small submodule of M.
Then there is a submodule K of M such that M = N©OK. SoN +K = M. Thus
K = M because N <ess M. This forces that N = 0. I

Proposition 2.3.2. [7] Let N and L be submodules of M and N ¢ L. Then
L <M ifand only ifN €M and LIN ~ MIN.,

Proposition 2.3.3. [7] Let N,K and L be submodules of M. IfM = L +K and
N¢L then(L N)/(L K)=M/L 70-

Proposition 2.3.4. [7] Let N be a submodule of M. Then N <c M if and only
ifN <ML for all direct summand L of M containing N.

Proposition 2.3.5. [7] Let N and L be submodules of M. Then N <* M and
L-c M ifand only ifN +L-c M.

Proposition 2.3.6. [7] Assume that N -c M and f : M — p is @ homomor-
phism. Then f(N) <*p.

A submodule L of M lies above a direct summand of M, given by Clark et al.
in [7], if there is a direct summand N of M such that N ¢ L and L/N € M/N.
Observe that every direct summand of M always lies above itself, moreover, every
small submodules of M always lies above the zero submodule. Next, we provide
equivalent definitions of lying above a direct summand.

Proposition 2.3.7. [7] Let L be a submodule of M. Then the following statements
are equivalent,
(1) L lies above a direct summand of M.
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() There is a direct summand N of M and a submodule K ofM such thatN G L,
L=N+KandK M.

(Hi) There is a decomposition M =N ©K with N ¢ L and K QL <*K.
()L=eMO(l—e)L and (1 —e)L M for some e2= e GEnd(M).

2.4 Projective Modules

A module p is a projective module if for any modules M and Q any epimorphism
g :M —Q and any homomorphism / : p —Q, there is a homomorphism
h:p —M such that / = gh (see the following diagram).

A module M is a free module if M is a module with basis. Moreover, every
ring is both a free module and a projective module over itself. Note that all of
propositions in this section are from [15].

Proposition 2.4.1. Let p be a module. Then p is a projective module if and
only if p is isomorphic to a direct summand of a free module.

Proposition 2.4.2. Letp be aprojective module. Then N is a projective module
for any direct summand N of p.

Proposition 2.4.3. Let Mi ke a module for all i G {1,..., }. Then Mi is a
projective module for all i G {1...., } if and only if Ml ® M2® s++® Mn is a
projective module.

Proposition 2.4.4. Let p and M he modules and M he a projective modules.
Then kerg is a direct summand of p for any epimorphism g :p —M.
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