CHAPTER III
F-CS-RICKART MODULES

In this chapter, we provide the concept of F-CS-Rickart modules. We would like to
point out that the notion of F-CS-Rickart modules are extended from CS-Rickart
modules by Abyzov and Nhan given in [1], and F-inverse split modules by Lee,
Rizvi and Roman in [11]. We integrate the idea of being an essential submodule
of some direct summand of ker/ from CS-Rickart modules and the idea of being
a direct summand of / _1(F) from F-inverse split modules for all / € End(M).
Various properties of F-CS-Rickart modules and characterizations of those are
investigated in Section 3.1. We show that the intersection of two submodules of
an F-CS-Rickart module is essential in some direct summand where one of those
two submodules contains F. Moreover, we study when a submodule of an F-
CS-Rickart module is also an F'-CS-Rickart module where F' is a fully invariant
submodule of that submodule. Relationships between F-CS-Rickart modules and
F-inverse split modules, likewise, relationships between F-CS-Rickart modules
and CS-Rickart modules are presented. Furthermore, we give a notion and a
characterization of strongly F-CS-Rickart modules which is a special case of F-
CS-Rickart modules. Observe that for F-CS-Rickart modules the inverse images
of endomorphisms are considered. So, in Section 3.2, we extend to consider the
inverse image of a homomorphism which is an essential submodule in some direct
summand. In Section 3.3, we focus on specific fully invariant submodules, namely,
singular submodules, second singular submodules and cosingular submodules. Fi-
nally, in Section 3.4, we concern any images of F-CS-Rickart projective modules
satisfying Cz condition. We obtain that they can be written as a direct sum of
two submodules one of which is a projective module and the other one of which
is contain in F*. In addition, we define a right /-CS-Rickart ring for a given ideal
| of R. Then the free F-module is an FnRCS-Rickart module if and only if
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Mn(R) is a right Mn(l)-CS-Rickart ring where R~ and are the finite direct
sum of copies of R and I, respectively.

3.1 Properties of F-CS-Rickart Modules

First, we examine relationships between F-CS-Rickart modules and F-inverse split
modules, as well as, relationships between F-CS-Rickart modules and CS-Rickart
modules. Next, we are interested in when a submodule N of an F-CS-Rickart
module is also an F'-CS-Rickart module for some fully invariant submodule F'
of N. Later, characterizations of F-CS-Rickart modules are provided. One of
main results is that any F-CS-Rickart module can be written as a direct sum of
two submodules one of which is an essential extension of F and the other one of
which is a CS-Rickart module.

As we mentioned earlier, the concept of F-CS-Rickart modules are extended
from CS-Rickart modules and F-inverse split modules. A module M is a CS-
Rickart module, given in [1], if for any / G End(M), there is a direct summand
M' of M such that kerf <es AF; in addition, M is an F-inverse split modulel
given in [17], if for any / € End(M), / -1(F) is a direct summand of M. Now, we
provide the definition of ail F-CS-Rickart module by combining the main ideas of
those as follows.

Definition 3.1.1. Let F be a fully invariant submodule of M. Then M s an
F-CS-Rickart module if for any / G End(M), there is a direct summand AF of M
such that / _1(F) is an essential submodule of AF.

Note that M is a CS-Rickart module if and only if M is a O-CS-Rickart module.
Proposition 3.1.2. Any F-inverse split module is an F-CS-Rickart module.

Proof. Let M be an F-inverse split module. Then, for each / G End(M), we
obtain that / _1(F) <es/-1(F) <® M. Therefore, M is an F-CS-Rickart module.

(|
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Observe that /-1(F) is a submodule of M containing F for any / GEnd(M).
So we can conclude that M is an F-CS-Rickart module if and only if any sub-
module of M containing F is an essential submodule of a direct summand of M.
The following example shows an F-CS-Rickart module which is not an F-inverse
split module for some given fully invariant submodule F of M.

Example 3.1.3. Let M be the Z-module 22028, Let N = 00 (2). Then N
is a fully invariant submodule of M obtained directly from the definition. The
following diagram describes all submodules of z2®z 8- Each submodule contained
in a box is a direct summand of M but the others are not direct summands of M.
Furthermore, if a submodule N is an essential submodule of M, we write Ness,
otherwise; we write N-EGE

720128
0@ Zs Zo & (2) 1,1)Z

(0,0)
Observe that, all submodules of M containing N are N, 0028 22 (2),

(1,1)Z and M. Among these, only 0 8, (1,T)z and M are direct summands
of M, i.e.5they are essential submodules of themselves, and only 22 (2) is an
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essential submodule of M but N is not a direct summand and not an essential
submodule of M. Moreover, N is an essential submodule of 0 © z 8 which is a
direct summand of M because all proper submodules of U® z8 contained in N.
As mention above, we can conclude that any submodule of M containing N is
an essential submodule of a direct summand of M. This shows that M is an
A-CS-Rickart module. However, M is not an A-inverse split module hecause
lit1(A) = A is not a direct summand of M.

Proposition 3.1.2 together with Example 3.1.3 guarantee that F-CS-Rickart
modules actually generalized F-inverse split modules. We know that M is a CS-
Rickart module if and only if M is a O-CS-Rickart module. For a given fully
invariant submodule F of M, “M is an F-CS-Rickart module” does not imply
“M is a CS-Rickart module”; moreover, “M is a CS-Rickart module™ does not
imply “M is an F-CS-Rickart module”. Example 3.1.3 shows that Z2® 28 s a
0 (2)-CS-Rickart module; however, Z2© 2 8is not a CS-Rickart module shown
in the next example.

Example 3.1.4. Let M be the Z-module Z2 z8and A = 0 (2). Then
End(Z,)  Hom(Zg, Z,)
Hom(Z,;Zg)  End(Zs)

I

End(Z, & Zs) ) from Proposition 2.1.13. Let

fo 92
and g2(/) = 2y for all x GZ2 and y Gz 8 Then kerh = (1, 2)z which 1S not an

essential submodule of all direct summands of M shown in the diagram. Thus
Z2 78isnot a CS-Rickart module.

h= g fo g where fj is the zero homomorphism on Z,, fi(Z) = 4z, ¢{(¥) =¥
0

Next, we give an example of CS-Rickart modules which is not an F-CS-Rickart
module for some fully invariant submodule F.

In [10], Lam provided that Z(M) = {x 6 M 1 (0 \ftx) <es F} and Z2(M) =
{x e M \(Z(M)RX) <@ R} are submodules of M. Moreover, they are fully
invariant submodules of M.

Example 3.1.5. Let p be the set of prime integers. Consider the Z-module
M — pzp. For the fully invariant submodule Z2(M), we show later that M is
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a Z2(M)-CS-Rickart module if and only if it is @ Z2(M)-inverse split module, see
Proposition 3.3.2. Moreover, Example 2.12 in [18] shows that Z(M) = Z2(M) =
Op Zp™ Oand M isnot a Z2(M)-inverse split module but M is a Rickart module.
Since M is not a Z2(M)-inverse split module, M is not a Z2(AT7)-CS-Rickart
module. In addition, M is a CS-Rickart module because M is a Rickart module
by Lemma 2.7 in [1]. Therefore, M is not a Z2(M)-CS-Rickart module but M is
a CS-Rickart module.

For a given fully invariant submodule F of M, unlike F-inverse split modules
and F-CS-Rickart module, CS-Rickart modules and F-CS-Rickart modules do
not imply each other obtaining from Example 3.1.4 and Example 3.1.5. Next, we
present some properties of F-CS-Rickart modules.

Proposition 3.1.6. Let M be an F-CS-Rickart module and p be a module. If
M is isomorphic to p by isomorphism €M —»p, then p is a (j)(F)-CS-Rickart
module.

Proof. Assume that 0 is an isomorphism from p onto M. Let / € End(F).
S0 0 1/0 e End(M). Lety € 0(F). Theny —0(x) for some X e F. Thus
0 1/(y) = 0_1/0(") GF because F <fully M. It forces that f(y) GO(F). Hence
O(F) <fully p. Since M is an F-CS-Rickart module, (0 1/0) I(F) <ess M'
for some direct summand M" of M. Thus 0 1/ 1(0(AD) <ess M". Applying
Proposition 2.2.6, 0"0-1/-1(0(F))] <ess 0(Af). Since M" is a direct summand
of M, there is a submodule K of M such that M = M" © K. This implies that,
p = 0(M) = 0(M") ® 0(F) so that O(M") is a direct summand of p. Thus
| _1(0(F)) <6s 0(M"). Therefore, p is a 0(F)-CS-Rickart module. I

In general, the intersection of two direct summands may not be a direct sum-
mand. However, the intersection of two direct summands of M turns out to he
a direct summand provided M is a Rickart module; moreover, the intersection of
two direct summands of M is an essential submodule of some direct summand
of M if M is a CS-Rickart module. Similarly, we focus on the intersections of two
direct summands of an F-CS-Rickart module. Next example shows that there is
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the intersection of two direct summands of an F-CS-Rickart module which is not
a direct summand but it is an essential submodule of some direct summand.

Example 3.1.7. Let M be the Z-module 22©z8and N = U©(2). Then M is an
|V-CS-Rickart module, see Example 3.1.3. Moreover, A= 0©z8and B — (I, T)Z
are direct summands of M. Then A B =U ©(2) is not a direct summand of
MbutA B=U0() <A

However, if M is an F-CS-Rickart module satisfying some conditions, then it
guarantees that the intersection of direct summands is an essential submodule of
a direct summand of M. Nevertheless, the following lemma is needed.

Lemma 3.1.8. Let F be afully invariant submodule of M. Let h2—h,g2=gE
End(M) and F ¢ gM. Then gM = (1 —g)~1(F). Moreover, ((1 —q)lij 1(F) =
(BMngM)© (L- h)M.

Proof. It is clear that, (1 —g)gM = 0¢ F, so gM ¢ (L —g)~1(F). Next, let
mE (1—g) L(F). Then (1—g)m EF C gM. Thus (L—g)m EgM (1—4)M =0
leading to m e ker(l —g) = gM from Proposition 2.1.3. This shows that gM =
(1-9)-\F).

Now, we let x E ((1 —g)h) 1(F). Then (L —g)h(x) E F so that h(x) E
(L —#)-1(F) = gM. Thus x = h(x) + (L =h)(x) E {hAM gM) © (1 —h)M. For
the reverse of inclusion, let x +y E [hM gM) © (L —h)M where x EhM  gM
andy E (L—h)M. Sox=h(x) =g[x) and y = (L—h)(y). Then (L—g)h(x+y) =
(L—g)h(x) + (L—g)h(y) = 0G F. Hence x +y E ((1 —q)h) 1(F). Therefore,
the second result follows. I

Proposition 3.1.9. Let M be an F-CS-Rickart module. Then the following state-
ments hold.

(1) For any direct summands N and K of M LifF ¢ K, then NnK <6 M for
some direct summand M' of M .

(a) For any submodules N and K of M, if there are direct summands Ml and M2
of M such that N <es MI and F ¢ K <Gs M2 then N NK <es M' for some
direct summand M* of M.,
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(in) For any /1,... ,/n € End(M), there is a direct summand M" of M such that
C]tr\F) <,,, g’

Proof, (i) Assume that N and K are direct summands of M and F ¢ K. Then
N = hM and K = gM for some h2=h,g1= g GEnd(M). Since F ¢ K —gM,
Lemma 3.1.8 gives

((L- g)h)~\F) = (AMgM) (1- h)M.

Since M is an F-CS-Rickart module, ((1 —g)h)~1(F) <& eM for some €2 =
e G End(M). Thus (1-h)M ¢ eM. AsM = hM® (I-h)M and (1-)M C eM,
we obtain eM —M  eM = ("M O (L —h)M) eM —(hM eM) © (1 —h)M
by Modular Law. So hM  eM < eM and

(M gM)  (L—h)M —((L- g)h) :(F) <@eM= ("M M) © (L —h)M.

Therefore, NDK =hM gM <@hM eM <@ M.

(ii) Assume that N and K are submodules of M and N <6% MI and K < &b M2
for some direct summands MI and M2of M such that F ¢ K. By (i), we obtain
Ml M2<@b M' for some direct summand M Lof M. Applying Proposition 2.2.4,
NnK<@BM M2<6bM:' Therefore, N.n K <6 M" by Proposition 2.2.3.

(i) Let fi G End(M) for all i G {1,..., }. Since M is an F-CS-Rickart
module, for each i, F C 4 1@ <@ Mi for some direct summand Mi of M.
Applying (ii) repeatedly, we obtain Pj/j-1(F) <6b M7for some direct summand

M" of M. =1 [

A module M is an SIP-CS module if the intersection of two direct summands
is an essential submodule of a direct summand of M, see [1]. From the previous
proposition, the intersection of two direct summands of an F-CS-Rickart module
is essential in a direct summand of M when one of direct summands contains F.

Corollary 3.1.10. Let M be an F-CS-Rickart module. Then M is an SIP-CS
module provided that F is contained in all direct summands of M.
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Similar to CS-Rickart modules and F-inverse split modules, we investigate
when a submodule A of an F-CS-Rickart module is also an F'-CS-Rickart mod-
ule for some fully invariant submodule F' of this submodule A. We provide the
following lemma using for obtaining the mentioned result.

Lemma 3.1.11. Let A and F befully invariant submodules of M. If each endo-
morphism of A can be extended to an endomorphism of M, then A F is afully
invariant submodule of N. Moreover, for any g G End(A), there is f G End(M)
such that g = f\ff and g 1(A F)=A [ _1(F).

Proof. Assume that each g G End(A) can be extended to an / G End(M). Let
g GEnd(A). Then there exists / GEnd(M) such thatg=1f . Let XGA F.
So fAN{x) = g(x) G A and fAN(x) = f(x) GF. Thus g(x) = /|at{x) g a F.
Therefore, A F <fully N.

Moreover, we claim that g~I(Nr\F) —A n/-1(F). Let XGg~L(NnF). Then
XGN and /(x) = g(x) e Np\F, so Xe N nf~1(F). Next, lety G A f~1(F).
Then g(y) —f(y) G Fandy(y) G A. Soy Gg~1(NnF). Therefore, y 1(AnF) =
A - 1(F). 0

Proposition 3.1.12. Let M be an F-CS-Rickart module and A be a fully in-
variant submodule of M. "If each endomorphism of A can be extended to an
endomorphism of M Lthen A is an (A F)-CS-Rickart module,

Proof. Assume that each g GEnd(A) can be extended to an/ GEnd(M). Letg G
End(A). Then/|jv = gforsome/ G End(M) and g~1(AnF) = A n/-1(F). Since
M is an F-CS-Rickart module, / _1(F) <6 eM for some e2= e G End(M).
Thus A [ 1(F) <@bA eM. Since A <fully M and (e\N)2= e\N G End(A),
A eM —ellv(A) <® A. Sog-\N F)=A [ I(F) <@®bA eM <@ A,
Therefore, A isan (A F)-CS-Rickart module, I

Observe that the intersection of fully invariant submodules A and F of M
needs not be a fully invariant submodule of A. However, the intersection of
a direct summand A of M and a fully invariant submodule F of M is always
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a fully invariant submodule of N from Proposition 2.1.8. So, now, we obtain one
characterization of F-CS-Rickart modules.

Theorem 3.1.13. A module M is an F-CS-Rickart module if and only if N i
an (N F)-CS-Rickart module for any direct summand N of M.

Proof. The sufficiency is clear because M is always a direct summand of M itself.

For the necessity, let N be a direct summand of M. Then N = eM for some
e2=eGEnd(M) and IV F isa fully invariant submodule of V. Let g G End(iV)
and K = (1 —e)M. From Lemma 2.L.10, g~x(N F) © K — (g B 0x)~1(F).
Since M is an F-CS-Rickart module, (g ® Ok)~1(F) <ess M" for some direct
summand M" of M. Since M = N ® K and K ¢ [g®0x)~I(F) ¢ M, we
obtain that M' = (N M") K. Thus N M'<® N because N M' <®@ M
and N .n M" ¢ N. This forces that g~I(N F) <es N MZ1by Proposition
2.2.1. Therefore, N isan (N F)-CS-Rickart module for any direct summand N
of M. I

A direct sum of F-CS-Rickart modules where each summand is also a fully
invariant submodule is studied in the following theorem.

Theorem 3.1.14. Let Mj be afully invariant submodule of 0" =L Mi and Fj ke
a fully invariant submodule of Mj for all j G {1,..., }. Then @™ 1Mi is a
®"_1Fi-CS-Rickart module if and only if Mj is an Fj-CS-Rickart module for all

je{l,. }

Proof. Assume that ®"=1Mi isa ®"=1Fj-CS-Rickart. Since each Mj < ®"=1M],
we obtain that each Mj is an (M] 1Fj)-CS-Rickart module by Theorem
3.1.13. Therefore, Mj is an Fj-CS-Rickart module because Mj ®"=1Fj = Fj for
allj G{1,... }

For the converse, assume that |\/|j is an Fj-CS-Rickart module for all | G
(1,..., }. Let/ GEnd(®"=1M]). Let (xi,..., Xn) G @"=1M]. Then

fixt,...,xn)=f(xL...,00+ e+ [(0,....1,) = [l(xi) + eoe+ fn(xn)
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where fj:= fij : Mj =0 =1Mj and ij is the inclusion map from Mj into
0 =IMi forall j G {1,..., }. Since each Mj<fully 0*=1Mj, we getfj :
Mj —Mj and fj(Fj) C Fj. Thus ffI{Fj) <6 ejM] for some idempotent 6 G
End(Mj) because each Mj is an Fj-CS-Rickart module. Applying Proposition
22,1, ®"=1f~{Ff) <@ ®"=1dMi. Note that

[ F) = (XD X)) G M (X, X0) € Fj
= {(Xi,..., xn) G Milfi(xi) +oe + ffxn) G FtI
={(xi,... ) GOi:'\l/l J j(xj) GFj forall j G{1,...1 }}
= [(Xi,... Xn)GOM j 1 Gf~1(Fj) for all j G{1,... }

=0 [i"W

Hence = 9= 1/I-1(-F) ©"=1ejMj and ®"=1ejMj is a direct sum-
mand of 0 "=1Mj. Therefore, 0" =1 Mj is a ®"=1Fj-CS-Rickart module. I

Next, other characterizations of F-CS-Rickart modules are given. Let A be a
submodule of M and / be a nonempty subset of End(M). Recall that (A M) =
{x GM I/ (x) GA forany / G/} = P)/ _1(A). Moreover, if/ is a principal left

ideal of End(M) generated by /, then (F WM1) = (F M/) = [~ 1(F).

Theorem 3.1.15. The following statements are equivalent.

() M is an F-CS-Rickart module.

() For any finite nonempty subset | ofEnd(M), (F :m 1) is an essential sub-
module of M" for some direct summand M" of M,

{in) For any finitely generated left ideal | of End(M), (F :M 1) is an essential
submodule of M"* for some direct summand M" of M .

Proof, (i)—>(ii) Assume (i). Let / be a finite nonempty subset of End(M). Thus

(FIM 1) = fl"_l/_l(F) <@ M" for some direct summand M' of M by applying
ei
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Proposition 3.L.9 (iii).

(1 )-* (1) This is clear.

()= (iii) Assume (i). Let | = (f1,,.,1/ ) be a finitely generated left ideal
of End(M). We prove by induction on . If = 1 the statement clearly holds.
Suppose that the statement holds for —1 Let J = (/1,..., /n_1). We obtain
that (F :m j) <ess Mn_i for some direct summand Mn_1of M. It follows that
(F AN =(F J) f 1F) and f~I(F) <% Mn for some direct summand
M, of M. Thus (F WM J) fnl(F)<@Mn_1 Mn. Since (F :MJ)and /T1(F)
contains F, by Proposition 3.9 (ii), (F :MJ) fi 1(F) <6 AF for some direct
summand AF of M. Therefore, (F :M/) <& AF.

(ili)—® (1) This holds because for any / ¢ End(M), (F :M/) = [ 1(F) where
| is the principal left ideal of End(M) generated by /. [

We know that F-inverse split modules are F-CS-Rickart modules but the con-
verse is not necessary true from Proposition 3.1.2 and Example 3.1.3. As a result,
finding conditions that make the converse valid is our next interest. Observe that
[ is an ideal of a ring R if and only if I is a fully invariant submodule of the
right F-module R. We let Fs —{f e End(M) I/ (M) ¢ F}. Then Fs is an
ideal of the ring End(M), so Fs is a fully invariant submodule of the module
End(M). The set A(M) = {/ G End(M) Tker/ <@ M} given in [7] is a left
ideal of End(M) and M is a JC-nonsingular module if A(M) = {0} given in [16].
In this research, we extend /-1({0}) = ker/ to /-1(F). So, we provide the set
Af{M) = {/ g End(M) I/ _1(F) <6 M}. Obviously, Af{M) is a left ideal of
End(M) and Fs A Next, we provide a generalization of /C-nonsingular
module as follows.

Definition 3.1.16. A module M is an F-K,-nonsingular module if Ap{M) = Fs-

One can see that, M is a }C-nonsingular module if and only if M is a 0-/C-
nonsingular module.

Proposition 3.1.17. If M is an F-inverse split module, then M is an F-/C-
nonsingular module.
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Proof. Assume that M is an F-inverse split module. Let f G Ap(M). Then
| GEnd(M) and then f~1(F) < M and / 1(F) <es M so that f~ 1{F) = M.
That is f(M) ¢ F. Therefore, M is an F-/C-nonsingular module. [

Next, we give an example of F-/C-nonsingular modules. However, a helpful
lemma is given in order to show that a module M is an F-inverse split module,
so that M is an F-/C-nonsingular module.

Lemma 3.1.18. ([17], Theorem 2.3) A module M is an F-inverse split module if
and only ifM = F ® K where K is a Rickart module.

Let - = ((022 12 be a module over itself. Then the
Z
submodule N = L2 202_ is both a fully invariant submodule and a direct
J
summand of M. SoM = NOK where K = [ © © ) @z Note that z
0 Z

is a Rickart module because, for any / G End(Z) tnere exists n G Z such that
[ (x) = nx for all X Gz, sothat ker/ = 0or Z which both are direct summands
of z. This forces that K is a Rickart module. By applying Lemma 3.1.18, M is
an AMnverse split module. Thus M is an A-ZC-nonsingular module.

Relationships between F-CS-Rickart modules and F-inverse split modules are
ready to be investigated.

Theorem 3.1.20. The following statements are equivalent.
() M is an F-CS-Rickart module and an F-K-nonsingular module.
(1) M is an F-inverse split module.

Proof. ( )—(i) This follows from Proposition 3.1.2 and Proposition 3.1.17.
()= (ii) Assume (i). Let / G End(M). Then / 1(F) <es eM for some
e2—e G End(M). Thus/ 1(F) ® (1- e)M <eseM ® (1- e)M = M. Since
| 1(F) C eM and e(l —e)M =0, we obtain /e (/-1(F) ® (L—)M) ¢ F. It forces
that f-\F ) ® (1- ¢)M C (/e) L(F). Next, let X G (/e)-1(F). Then /(ex) -
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fe(x) EF sothat ex E/ 1(F). Hence X=ex+ (1 —e)x E f~1(F) ® (1 —e)M.
Then (/e)-1(F) = [ 1(F) ® (L —e)M <6 M. Since M is an F-/C-nonsingular
module, fe(M) ¢ F. This implies that eM C / L(F). Thus /-1(F) = eM.
Therefore, M is an F-inverse split module. [

The next example shows that there is an F-CS-Rickart module which is not
an F-/C-nonsingular module.

/7, L
\ 0

is a fully invariant submodule of M but is not a direct sum-

Example 3.1.21. From Example 3.1.19, let M — . A submodule

i (ZZ z2

mand of M. By Lemma 3.1.18, M is not a A-inverse split module. Note that K is
an essential submodule of M so that any submodule of M containing K is also an
essential submodule of M applying Proposition 2.2.3. Thus M is a A-CS-Rickart
module. By Theorem 3.1.20, M is not a A-/C-nonsingular module.

Observe from the definition that an F-CS-Rickart module M has a direct
summand depending on each inverse image of F. In fact, there is a submodule N
of M such that M = N ® A where the inverse image of F is essential in N. Next,
we focus on the inverse image of the identity endomorphism which is equal to F
in the following result,

Theorem 3.1.22. If M is an F-CS-Rickart module, then M = N © A where
F is an essential submodule of N and A is a CS-Rickart module. The converse
holds if N is afully invariant submodule of M .

Proof. First, assume that M is an F-CS-Rickart module. Then F = 171(F) <s N
for some N <® M. So there is a submodule A of M such that M =A®© A. Since
A <® M and M is an F-CS-Rickart module, A isa (A F)-CS-Rickart module
by applying Theorem 3.1.13. Thus A is a CS-Rickart module because A F =0

To show that the converse is valid 1assume that M = A® A where F <@ N,
A is a CS-Rickart module and A is a fully invariant submodule of M. Let
| E End (M) and TK : M — A Dbe the projection homomorphism. Then
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Kkllk £ End(F) and / _1(N) = N®ker(7Ttf/|/f) by Proposition 2.L.11. Since K
is a CS-Rickart module, ker*/sr/lic) <ess K" for some direct summand K" of K.
This forces that N ® K" is a direct summand of M and

r\F) <68r\N ) = N® ker(nKf\K) <63N K"
Hence / 1(F) <63N ®K". Therefore, M is an F-CS-Rickart module. I
Now, F-CS-Rickart modules having two direct summands are considered.

Proposition 3.1.23. For every indecomposable F-CS-Rickart module M, either
M is a CS-Rickart module or F is an essential submodule of M .

Proof. Assume M is an indecomposable F-CS-Rickart module. Then M = N(BK
where F <68 N and K is a CS-Rickart module. Since M is an indecomposable
module, N =0or N = M. Incase N =0, it follows that F = 0 so that M is a
CS-Rickart module; otherwise, N = M, leading to F <68 M. Therefore, either
M is a CS-Rickart module or F <63 M. I

Recall that M is a CS-Rickart module if and only if M is a 0-CS-Rickart
module. Moreover, we gave an example of F-CS-Rickart modules which is not
a CS-Rickart module in Example 3.1.4, likewise, we provided an example of CS-
Rickart modules which is not an F-CS-Rickart module in Example 3.15. So we
are interested in studying when an F-CS-Rickart module is a CS-Rickart mod-
ule, as well as, a CS-Rickart module is an F-CS-Rickart module where F / 0.
The following series of propositions provide relationships between F-CS-Rickart
modules and CS-Rickart modules.

Proposition 3.1.24. 1f M is an F-CS-Rickart module and ker/ is an essential
submodule of / _1(F) for any f E End(M) which is not a monomorphism, then
M is a CS-Rickart module.

Proof. Assume that M is an F-CS-Rickart module and ker/ <63/ 1(F) for
any / € End(M) which is not a monomorphism. Let / G End(M). Then
[ 1(F) <68 M" for some direct summand M"' of M. Thus ker/ <638 M',
Therefore, M is a CS-Rickart module. 0
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Proposition 3.1.25. If M is a CS-Rickart module and F is an essential sub-
module of M" for some fully invariant direct summand M* of M, then M is an
F-CS-Rickart module.

Proof. Assume that M is a CS-Rickart module and F <es M' for some fully
invariant direct summand M' of M. Then M —N © K where K is a CS-Rickart
module. As a consequence of the converse of Theorem 3.1.22, M is an F-CS-
Rickart module. I

Prom Theorem 3.1.22, we obtain that if M is an F-CS-Rickart module, then
M —N © K where F <ess N and A is a CS-Rickart module; in addition, the
converse of this theorem holds if N <fully M. One can see that being fully
invariant submodule of M" is a necessary condition to force M to be an F-CS-
Rickart module. So the inverse images of F which are essential submodules of a
fully invariant direct summand are investigated.

Definition 3.1.26. A module M is a strongly F-CS-Rickart module if for any
| G End (M) there is a fully invariant direct summand M of M such that
| _1(F) is an essential submodule of M",

It is clear that strongly F-CS-Rickart modules and F-inverse split modules are
F-CS-Rickart modules shown in the following diagram.

F-CS-Rickart modules

strongly F'-CS-Rickart modules +"I = F-inverse split modules

Next example presents a module M which is an F-CS-Rickart module but is
not an F-inverse split module and not a strongly F-CS-Rickart module.

Example 3.1.27. Let M =z20z8and N = U©(2) given in Example 3.1.3. Then
M is an iV-CS-Rickart module and M is not an A-inverse split module. Moreover,
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let | = ? %) g End(M) where I is the identity homomorphism, fo(x) = U
a 92

gtn =vand gy) = 2y forall x Gz2and y Gz8 Then/ 1(TV) = (I,1)Z
which is a direct summand of M but is not a fully invariant submodule of M.
Note that submodules of M containing f~ 1(N) are (1,1)Z and M. Since (1,1)Z
is a direct summand of M, it is not an essential submodule of M by applying
Proposition 2.2.2. We can conclude that / _1(F) is not an essential submodule of
all fully invariant direct summands of M. Thus M is not a strongly IV-CS-Rickart
module.

Likewise Theorem 3.1.13, we investigate that a direct summand of a strongly
F-CS-Rickart module is also a strongly F'-CS-Rickart module for some fully in-
variant submodule F' of this direct summand.

Lemma 3.1.28. Let M be astrongly F-CS-Rickart module. Then N is a strongly
(N F)-CS-Rickart module for any direct summand N of M.

Proof. The proof is similar to one of Theorem 3.1.13. Let N be a direct summand
of M. Then there is a submodule K of M such that N@K = M. Let/ G End(Ar).
Thus / ©0/f G End(M) and

[-1(iVF)OR = (100 )-1(F).

Since M is a strongly F-CS-Rickart module, (/ ® 0/c) 1(F) <6 M’ for some
fully invariant direct summand M' of M. SoM' —(N M) ®K and N M
is a fully invariant direct summand of N by Proposition 2.1.8 (i). This forces
that f 1(N F) <3N M". Therefore, N is a strongly (N F)-CS-Rickart
module. I

In the following theorem, we focus on the inverse image of the identity en-
domorphism which is equal to F and is an essential submodule of some direct
summand of M. So each F-CS-Rickart module can be written as a direct sum
depending on F. We also provide characterizations of strongly F-CS-Rickart
modules.
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Theorem 3.1.29. The following statements are equivalent.

() M is a strongly F-CS-Rickart module.

(i) M = N ©K where F is an essential submodule of afully invariant submod-
ule N of M and K is a strongly CS-Rickart module.

(il) M is an F-CS-Rickart module and every direct summand of M containing
F is afully invariant submodule.

()M =NOK where F is an essential submodule of afully invariant submod-
ule N of M and, for any f £ End(M), / 1(F) K is an essential submodule of
afully invariant direct summand ofK .

Proof, (i)—> (i) Assume (i). Then M —N © K where F = 1 1(F) <es N for
some fully invariant direct summand N of M. Thus K is a strongly CS-Rickart
module by Lemma 3.1.28 because K <@ M and K F = 0,

(i) —»(i) The proof is similar to the proof of the converse of Theorem 3.1.22. As-

sume (if). Let/ £ End(M). Since N <fully M, by Proposition 2.1.11, f~1(N) —
N ®ker(zT*/|"). Since K is a strongly CS-Rickart module, ker(;T*/|") <es K
for some fully invariant direct summand K' of K. Thus / 1(F) <es f~I(N) —
N ©ker(;TK/|k) <ess N o K" and N o K' is a fully invariant direct summand
of M.

(I) —> (iii) Assume (i). Then M is an F-CS-Rickart module. Next, let N be

a direct summand of M and F ¢ N. Then there is e2= ¢ £ End(M) such that
N =eM. Let Xt eM. Then (1—e)Xx= (1—e)ex=0£ F. So X£ (1 —e)_1(F).
On the other hand, let X£ (1—e)_1(F). Then (L—€)X £ F C eM. This implies
that (1 —e)x —0, so X£ ker(l —e) = eM. Thus eM —(1 —e)_1(F). By (i),
N — (1 —e) 1(F) <es M" for some fully invariant direct summand M' of M.
Thus N —M" because N is both an essential submodule and a direct summand
of M',

(i) — () Assume (iii). For any / £ End(M), we have F ¢ / _1(F) <es M
for some direct summand M of M. By assumption M" <tuty M. Thus M is a
strongly F-CS-Rickart module.

(if) —»(iv) Assume (ii). Let / £ End(M) and K = eM for some e2 =
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e G End(M). Then f-'{F) <es f-\N). So f-"F) K <esf-\N) K.
From Proposition 2.1.11, / 1(A) K =/-1(A) eM = kere/e. Since K is a
strongly CS-Rickart module, kerefe <ess K* for some fully invariant direct sum-
mand K' of F. Thus f-\F) K <esK'.

(iv)— (i) Assume (iv). Let h G End(F). Then OJATOIr G End(M). Applying
Lemma 2.L.10, (ON©h) LF) K = /i I(F F) = kerh because K F = 0.
By assumption, (ONOK) L(F) K <es K" for some fully invariant direct sum-
mand K' of K. This implies kerh <TSK". Therefore, K is a strongly CS-Rickart
module. I

In the following example, we provide fully invariant submodules F and F'
of M such that M is both a strongly F-CS-Rickart module and an F-inverse
split module; in addition, M is a strongly F'-CS-Rickart module but M is not an
F-inverse split module. We apply the previous theorem to prove next example.

Ly Zs
Example 3.1.30. Let M = 0 s be a module over itself. Then the
0 Z
Zg Zz ZZ Z2 ¢ ‘
submodules N = and K = are fully invariant sub-
0 0 0 nZ
0 0 -y
modules of M. So M = N & L where L = and L = Z which is a
0 Z

Rickart moaule. Since N 1S & Tully Invariant direct summand or M, we obtain
that M is both strongly A-CS-Rickart and A-inverse split form Theorem 3.1.29
and Proposition 3.1.18, respectively. Note that K is not a direct summand of M
but K <ess M. By Theorem 3.1.29, M is a strongly F-CS-Rickart module but
M is not a F-inverse split module.

3.2 Relatively F-CS-Rickart modules

In this section, we extend End(M) in F-CS-Rickart modules to Hom(F, M) where
p and M are modules and M is not necessary an F-CS-Rickart module. This leads
us to define a relatively F-CS-Rickart module. Moreover, we show that a direct
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summand of relatively F-CS-Rickart modules is also a relatively F-CS-Rickart
module.

Definition 3.2.1. Let P,M be modules and F be a fully invariant submodule
of M. Then F is an F-CS-Rickart module relative to M (relatively F-CS-Rickart
module) if for any / GHom(F, M), there is a direct summand P' of p such that
f-\F) <esP',

It is clear that M is an F-CS-Rickart module if and only if M is an F-CS-
Rickart module relative to M.

Equivalent to Theorem 3.1.13, we examine direct summands of relatively F-
CS-Rickart modules.

Theorem 3.2.2. Letp, M bemodules and F be afully invariant submodule ofM .
Then p is an F-CS-Rickart module relative to M if and only if for any direct
summand Pi of p and any direct summand MI of M, Pi is an (Ml F)-CS-
Rickart, module relative to M1,

Proof. The sufficiency is obvious because F and M are direct summands of itself.

Assume that F is an F-CS-Rickart module relative to m. Let pi and M
be direct summands of p and m, respectively. Then pi © F2 = F for some
submodule F2 of F. Let ¢ GHom(Fi, MI). Then / := ge Op GHom(F, M). So
| 1(F) = g~1(mi F) ©F2 Since p is an F-CS-Rickart module relative to M,
f~1(F) <es p* for some direct summand p* of F. It follows that p* —(PicP)©
F2 because F2¢ / 1(F) ¢ P". Hence g~1(Mi F) ©F2<es (pi F') p2and
pi F'isadirect summand of pi. Thus g~I(Mi F) <6, Pi P by Proposition
2.2.1. Therefore, F] isan (v F)-CS-Rickart module relative to mi. I

If F = M in Theorem 3.2.2, we obtain the following corollary.

Corollary 3.2.3. The following statements are equivalent,

() M is an F-CS-Rickart module.

(if) For any direct summands N and K of M, N is an (K(iF)-CS-Rickart module
relative to K .
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(ill) For any direct summands N and K of M, for any f G Hom(M,K) there is
a direct summand N1of N such that f\ff(K F) <es N,

Proof, () () This follows from Theorem 3.2.2 because M is an F-CS-Rickart
module relative to M.

(ii) —» (iii) Assume (ii). Let N and K be direct summands of M and /| G
Horn(M ,K). Then /|lv G Hom(A, K). So f\f/(K F) <es N' for some direct
summand N' of N by the definition of relatively F-CS-Rickart modules.

(i) = (i) This is clear because N —M = K, I

33 Z(M), ZXM) and Z*(M)-CS-Rickart Modules

In this section, we focus on particular fully invariant submodules which are Z(M),
Z2M) and Z*(M). The first subsection shows relationship hetween Z(M)~CS-
Rickart modules and Z2(M)-CS-Rickart modules. The other subsection shows
specific properties of Z*(M)-CS-Rickart modules.

3.3.1 Z(M) and Z(M)-CS-Rickart modules
Recall that Lam provided, in [10], that
Z{M) = {x GM 1(0 Rx) <esR]
i the singular submodule of M and
Z4M) = {x GM 1(Z(M) *x) <ESR}

is the second singular submodule of M.

A module M is a singular module if Z(M) — M, and a nonsingular module
if Z(M) = 0, given in [10]. Lam showed that the submodules Z(M) and Z2(M)
are fully invariant submodules of M; in addition, Z2(M) is a maximal essential
extension of Z(M), that is, Z(M) <ess Z2(M) and for any submodule N of M, if
Z{M) <es N and Z2{M) ¢ N, then Z2[M) = N.

By Proposition 3.1.2, Z(M)~inverse split modules are Z(M)-CS-Rickart mod-
ules; in addition, Z2(M)~inverse split modules are Z2(M)-CS-Rickart modules.
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However, we can show that Z2(M)-CS-Rickart modules are Z2(M )-inverse split
modules in the following proposition.

Lemma 3.3.1. Forany f GEnd(M), f~1(Z2(M)) is a maximal essential exten-
sion of f~1{Z(M)).

Proof. Let / G End(M). Note that Z2(M) is a maximal essential extension of
Z2(M). Thus f~1(Z(M)) <6 [-1(Z2(M)) from Proposition 2.2.6. Next, let N
be a submodule of M such that / _1(Z(M)) <es N and /-1(z2(M)) ¢ N. Let
« G yv. If/(x) = 0, then (Z(M) «« f{X)) — R <c.. R sothat f(x) G Z2(M),
e, X G f~1(Z2(M)). Assume that f(x) » 0. Leta GAand a0 Iff(x)a =
0G Z(M), then al —a G (Z(M) .. f(x)). Assume that f(x)a » 0. Then
xa » 0and xa GN. Since f~1(Z(M)) <ess N, there is r G 1? such that 0 *
xar G f~1(Z(M)). So f(x)ar = f(xar) G Z(M). Then ar G (Z(M) R f(x)).
This implies that (Z(M) R #{x)) <ess R. Thus f(x) G ZZM) so that X G
f~1(Z2(M)). Hence f~1(Z2(M)) = IV. Therefore, f~1(Z2(M)) is a maximal
essential extension of f~1(Z(M)). I

Proposition 3.3.2. A module M is a ZZ{M)-CS-Rickart module if and only if
M is a Z2(M)-inverse split module.

Proof. The necessary condition is clear from Proposition 3.1.2.

Next, assume that M isa Z2(M)-CS-Rickart module. Let / G End(M). Then
f~1(Z2(M)) <ess M* for some direct summand M' of M. Since f~1(Z2(M)) is
a maximal essential extension of / _1(Z(M)), we obtain that f~1(Z2(M)) = M",
Therefore, M is a Z2(M)-CS-Rickart module. I

Unger, Halicioglu and Harmanci, in [17], presented that Z(M)-inverse split
modules are Z2(M)-inverse split modules and the converse is not true in general.
Aring A is a right singular ring if Z(R) = R as a right R-module, and a right
nonsingular ring if Z(R) —0.

Lemma 3.3.3. ([17], Proposition 5.5) IfM is a Z(M)-inverse split module, then
M is a Z2{M)-inverse split module. The converse holds if R is a right nonsingular
ring.
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Next, we provide a relationship between Z(M)-CS-Rickart modules and Z2(M)~
CS-Rickart modules. Note that Lam showed in [10] that Z(M) N =Z(N) and
Z2AM) N = Z2(N) for any submodule N of M.

Proposition 3.3.4. A module M is a Z(M)-CS-Rickart module if and only if
M is a ZZ{M)-C'S-Rickart module,

Proof. First, assume that M is a Z(M)-CS-Rickart module. Then M —N ©K
where Z(M) <65 N and K is a CS-Rickart module by applying Theorem 3.1.22,
Thus Z(M) = Z(M) N =Z(N), so Z(N) <6SN. Hence Z2(N) = N because
Z2(N) is a maximal essential extension of Z(N). Clearly, Z2(N) C Z2(M). Since
Z(M) C N C ZAM) and Z(M) <ess Z2(M), we obtain N <es Z2(M) hy
applying Proposition 223. Thus N < Z2(M) because N <® M and N C
Z®M). Since N satisfies both N <ess Z2(M) and N < Z2(M), it follows that
N = Z2(M). Thus M —Z2{M) © K where Z2{M) <ess Z2(M) and ZA{M) is a
fully invariant direct summand of M and K is a CS-Rickart module. Therefore,
M is a Z2(M)-CS-Rickart module from the converse of Theorem 3.1.22.
Conversely, assume that M is a Z2(M)-CS-Rickart module. Let/ G End(M).
Then there is a direct summand MZ1of M such that / 1(Z2(M)) <es M'. Thus
| 1(Z2(M)) = M1from Lemma 3.3.1 so that /-1(Z(M)) <e M. Therefore,
M is a Z(M)-CS-Rickart module. I

The following is a diagram presenting a relationship among Z(Af)-inverse split
modules, Z2(M)-inverse split modules, Z(M)-CS-Rickart modules and Z2(M)~CS-
Rickart modules.

Proposition 3.1.2

Z(M) -inverse split modules ———=—> Z{M) -CS-Rickart modules
i1 i

Lemma 3.3.3 Proposition 3.3.4

ZAM) -inverse split modules - Z2{M) -CS-Rickart modules

Proposition 3.3.2
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332 Z*(M)-CS-Rickart modules

Let EM denote the injective hull of M. Unger, Halicioglu and Harmanci defined
in [18] that
ZX{M) ={m £ M \mR -c EM}

I the cosingular submodule of M.

A module M is a cosingular module if Z*(M) —M, and a noncosingular module
if Z*(M) = 0 provided in [18]. Unger, Halicioglu and Harmanci also presented
that the consingular submodule Z*(M) is a fully invariant submodule of M and
Z*(M) N = Z*(N) for any submodule N of M. In addition, a ring R is a right
cosingular ring if Z*(R) = R as a right A-module, and a right nonsingular ring if
Z*{R) = o.

Proposition 3.3.5. If M is a Z*(M)-CS-Rickart module, then M = N © K
where Z*(M) <ess N and K is a noncosingular CS-Rickart module.

Proof. Prom Theorem 3.1.22, M = N © K where Z*(M) <ess N and K is a
CS-Rickart module. As Z*(K) = Z*(M)n K = 0, so K is a noncosingular
module. I

Next, we consider when M is both an indecomposable module and a Z*(M)~
CS-Rickart module.

Proposition 3.3.6. If M is an indecomposable Z*(M)-CS-Rickart module, then
either M is a noncosingular CS-Rickart module or Z*{M) <es M.

Proof. Assume that M is an indecomposable Z*(M)-CS-Rickart module. Then
M =N ®K where Z*(M) <ess N and A"is a CS-Rickart module. Since M is an
indecomposable module, N = 0 or N = M. If N =0, then Z*{M) = 0. So M is
a noncosingular CS-Rickart module. If N —M, then Z*(M) <ess M. Therefore,
either M is a noncosingular CS-Rickart module or Z*(M) <6 M. I
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34 Projective F-CS-Rickart Modules

Throughout this section, let p and M be modules, = End(M) and Hom(P, M)
be the set of all homomorphisms from p into M. For each submodule N of M,
Lam provided in [10],

N¥ = {x EM \{N :r x) <BsR}.

It is clear that N ¢ N*. Note that {0}* = Z(M) and (Z(M))* = Z2(M).

In current section, we investigate being an F-CS-Rickart module of a projective
module. Moreover, we provide a notion of right F-CS-Rickart ring R where F is
a fully invariant submodule of the right module R over itself. Recall that all rings
are projective right modules over itself.

The following lemma shows a nice relationship on projective modules between
essential submodules and singular modules.

Lemma 3.4.1. ([13], Lemma 2.10) Let p be a projective module and K be a
submodule of M. Then K <es p if and only if p/K is a singular module. In
particular, if p is both a projective module and a singular module, then p —o.

For a submodule N of M, we provide a relationship between N* and singular
submodule of M/N.

Proposition 3.4.2. LetN and L be submodules of M and N ¢ L. ThenL ¢ N*
if and only if L/N s a singular module.

Proof. First, assume that L ¢ N*. Let x -fN G L/N where x G L. Then
(N Rx) <es R because L ¢ N*. Thus ({N} Rx+N) = (N Rx) <esR.
Hence x + N G Z{L/N). Therefore, L/N is a singular module

Next, assume that L/N is a singular module. Then Z(L/N) = L/N. Let
X GL Thenx+N 6 Z(LIN), ie. (N} Rx+ V) <es R. Note that
(N Rx) — ({N} Rx+N). Thus (N Rx) <ess R which implies that x G N*.
Therefore, L ¢ N*. I

Before we present the further main point of this section, the helpful properties
are provided.
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Proposition 3.4.3. Letp and M bemodules and F be afully invariant submodule
of M. Letf :p — M be a homomorphism and f~1(F) C eP for some e2= ¢ G
End(P). Then the following statements hold:

() fP =f(1- e)P OfeP,

() (fP +F)/F =(f(l-e)P +F)/F® (feP +F)/F,

(in) (/(L- e)P+F)/F =(1L-¢)P J(I - ¢)P, and

()eP/f~1F) = (jeP + F)IF.

Proof. Note that p = (1 —€)P ®¢P.

(i) Notice that fp = /(1 —)P + feP. Since ker/ ¢ / 1(F) ¢ eP, it follows
that fp = /(1 —e)P OfeP,

(ii) It is clear that (/p + p)/F = (/(L—e)P + p)/p + (feP +p)/p. Let
m+p € (/(1—)p+p)/Fp) (/eP+P)/p. Thenm+F = [ (1—e)x+p = fey+F
for some Gp. Thus /((1—ex —ey) = /(I —e)x —fey G p. Then
(1—e)x —ey G/ 1(p) ¢ eP, s0 (L —e)x G(L—e)p eP = 0. This implies that
m+F=1f{l-e)x +F= F. Therefore, (fP +F)/F= (/(L- e)P+p)/p o
(leP + F)IF.

(hi) Define () : (1 —e)P = ([{L—e)p +p)/p by $K = f(x) + F for ail
X G (1 —e)P. It is clear that ) is well-defined. Then, 4is an epimorphism and

ker>—{x G(L—e)p [f{x)= p}={xGL—e)p I/ (x) +p = F}
={x G(L—e)PI/(x)6 F} = {xc(l—e)p IxG/ 1(P)}
=(l-e)Pnr:P)=o.
By the first isomorphism theorem, (1 —e)p = (/(L —e)p + p)/p. Moreover,
define 0: (L —e)p 4 /(1 —&)p by 0(x) = / (x) for all x G (L —e&)p. The proof is
similar to the first part, we can conclude that (1 —e)P = /(1 —e)P.
(iv)  Define 3:eP — (feP + p)/F by (3(x) = / (x) + p for all X G eP. Then
p is an epimorphism and
ker/3={x GeP Ip{x)= p} =
={x GeP I/ (x)G P}
=eP /-1(P) =1 1(P

xGeP I/ (x)+p=p}
{x GeP IX G/ _1p}

)
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By the first isomorphism theorem, eP //-1(F) = (/eP + F)/F. I

For a relatively F-CS-Rickart module p, we obtain that the inverse image
of p is essential in a direct summand of p. Note that any direct summands of
projective modules are projective modules. Hence if p is both a projective module
and an relatively F-CS-Rickart module, then the inverse image of F is essential
in a direct summand which is also a projective module. Thus, we are interested
in studying the image of each relatively F-CS-Rickart projective module.

Theorem 3.4.4. Let p be a projective module, M be a module with afully in-
variant submodule F. Then the following statements are equivalent.

() p is an F-CS-Rickart module relative to M.

() Foranyf GHom(P,M), (/P +F)/F = NyF ®K F where N/F is a projec-
tive module and K /F IS a singular module.

Proof, (i)—>(ii) Assume (i). Let/ G Horn(P, M). Then/ 1(F) <ess eP for some
e2= e GEnd(P). Sop =eP © (1L —e)P and by Proposition 3.4.3 (ii),

(IP+F)F=(/(L- e)P+F)FO(feP + F)/F.

From Proposition 3.4.3 (iv), we also obtain that (/(1 —e)P + F)/F = 1 —e)P
which is a projective module and (/eP + F)/F = eP//-1(F) which is a singular
module because / 1(F) <es eP.

(i) (i) Assume (ii). Let/ ¢ Hom(P,M). Then (/P +F)/F = N/F K F
where N/F is a projective module and K/F is a singular module. Define g :p —»
(/P +F)/F by g(x) =f(x) + F for any XE p. Then g is an epimorphism and
kerg =/ _1(F). Since N/F is a projective module and g is an epimorphism
where 7Tis the projection homomorphism from (/p + F)/F —N/F, applying
Proposition 2.4.4, leads to ker ag — eP for some e2 = e G End(P). Next, define
h :eP —K/F by h(x) —f(x) + F for any x GeP. Then kerh = eP f~1(F) =
| 1(F). So eP/f~1(F) = K/F which is a singular module. This implies that
| 1(F) <es3eP. Therefore, p is an F-CS-Rickart module relative to M. [

The next corollary is an immediate consequence of Theorem 3.4.4 in case
P =M,
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Corollary 3.4.5. Let M be a projective module. Then the following statements
are equivalent.

() M is an F-CS-Rickart module.

() Forany f G End(M), (fM + F)/F = N/F ®K/F where N/F is a projective
module and K /F is a singular module.

The following corollary is a consequence of Corollary 3.4.5 when F —0.

Corollary 3.4.6. ([2], Proposition 3.3) Let M be a projective module. Then M
is a CS-Rickart module if and only if every f G End(M),fM —N ® K where N
IS a projective module and K is a singular module.

Next, we investigate the image of each relatively F-CS-Rickart projective mod-
Ule.

Proposition 3.4.7. Let p be aprojective module, M be a module with a fully
invariant submodule F. Ifp is an F-CS-Rickart module relative to M, then for
any f GHom(P, M), fp —N ©K where N is a projective module and K § F*.

Proof. Assume that p is an F-CS-Rickart module relative to M. Moreover, let
| G Horn(F, M). Then /-1(F) <ess eP for some e2 = e G End(F). Applying
Proposition 3.4.3 (i), fP =/ (1—e)P©/eP. Observe that / 1 —)P = ¢ —)P
which is a projective module. Moreover, from Proposition 3.4.3 (iv), (feP +
F)IF = ePj/-1(F) which is a singular module because f~1(F) <es eP. Since
(/eF +F)/F isasingular module, feP +F ( F* by Proposition 3.4.2. Therefore,
feP G F* because F { F*, D

Next, a relationship between a projective module and an F-CS-Rickart module
via the idea of relatively F-CS-Rickart modules when p = M is examined.

Corollary 3.4.8. Let M be aprojective module. 1fM is an F-CS-Rickart module,
then, for any f G End(M), fM = N © K where N is a projective module and
K CF*

Proof. The proof is similar to the proof of Proposition 3.4.7. Assume that M is
an F-CS-Rickart module. Let / GEnd(M). Then there is e2= e GEnd(M) such
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that fM = /(1 —e)M ®feM where /(1 —)M = (1—e)M which is a projective
module and feM ¢ F*, 0

In the proof of Corollary 3.4.8, /(I —e)M is isomorphic to a direct summand
of M. So, we are interested in when /(1 —e)M s actually a direct summand
of M. A module M satisfies C2 condition, given in [17], if any submodule N of M
such that N = M" for some direct summand M' of M is a direct summand.

Corollary 3.4.9. Let M be aprojective module. IfM is an F-CS-Rickart module
satisfying C2 condition, then every f G End(M), fM =eM ® K where e2=1¢ G
End(M) and K ¢ F*,

Proof. Assume that M is an F-CS-Rickart module satisfying ¢ condition. Since
[ (L —e)M = (1L —e)M where (1 —€)2= (1 —e) GEnd(M) and M satisfies C2
condition, /(1 —e)M is a direct summand of M. I

For a G R, we denote la the module homomorphism from R into R with left
multiplication by a, i.e., la(r) = ar forall r GR.

Proposition 3.4.10. Let R be aring. Then R —End(F).

Proof. Define 6 : R — End(jR) by 9(a) —>la for all a G R. It is clear that 6
is well-defined and then is a module homomorphism. Let / G End(F). Then
I(1) 6 Rand If(\)(r) = /()r = [(r) forall r G F. So 9 is an epimorphism.
Moreover,

ker# = {a GR 16(a) = Os} = {a GR Ila = Os}
= {aGR Ila(r) = O} = {a GR lar = Or for ail r GR} = On

where 0 is the zero homomorphism of End(F) and Or is the zero element of R.
By the first isomorphism theorem, R = End(F). I

For now on, we let = End(M). Then End(F) = . Recall from Section 3.1
that Fs = {/ G 1f(M) C F}. Then F is a right module over itself and Fs is a
fully invariant submodule of  so that we apply Proposition 3.4.3 as follows.
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Proposition 3.4.11. Let9G and (Fs 1. 9) C eS for some e2=¢e G . Then
the following statements hold:

() 6S=6(1- € e %S,

(1) (9S+Fs)/Fs=(9(1- e)S+Fs)/Fs (%S + Fs)/Fs,

(i) L-¢ +F)Fs=(-¢ =91- ¢S, and

(iv) eS/(Fs1.6) (%S+ Fs)/Fs.

Proof. Note that 6 G = End(S) and (Fs1. 9) ¢ €S for some e2=ee . We
obtain Ig: ,—- defined by lg(g) —99. Observe that

(ley"Fs) ={96 ] lg(g) GFs} ={9es\9eFs}=(Fsn 9 CeS.

Moreover, 1gS = 9S:1g(l - ) "= 9(L - ¢) and Ig(e) = 6eS. By applying
Proposition 3.4.3 and the later statements, we can conclude (i), (ii), (iii) and (iv).
0

Next, we provide a relationship between projective F-CS-Rickart modules and
their endomorphisms. Recall from Section 3.1 that Ap(M) = {/ £ End(M) |
f~1(F) <@ M}. Note that, forany / G = End(M), ifthere ise2=¢ G such
that / (M) C eM, then f = ef e &S.

Theorem 3.4.12. Let M e a projective module. IfM is an F-CS-Rickart mod-
ule, thenfor anyf e , (fS+Fs)/Fs = N/FS®K/FS where N/Fs IS a projective
module and K C Af(M).

Proof. Assume that M is an F-CS-Rickart module. Let /| G . Then F ¢
f~1(F) <es eM for somee2=ee . Notethat (Fs: ") ={9E 'Ifg e Fs} —
{ges\ fg(M)CF}={9G Ig(M) ¢ f-\F)}. Since g(M) ¢ f-'{F) ¢ eM
foreachge (Fs: /), itforcesthat 9=-ege eSsothat (Fs /) ¢ . Applying
Proposition 3.4.11, we obtain that (/ +Fs)/Fs = (/(1—) +Fs)/Fs® (feS+
Fs)/Fs and (/1 —€)F + Fs)/Fs —(1 —e)F which is a projective module. Next,
define (/ : eM — (feM + F)/F by f(x) = f(x) + F for all X G eM. Then
&is an epimorphism and ker/ =/ 1(F), so eM// 1(F) = (feM + F)/F =
M/(/e) 1(F). Thus (fe)~I(F) <em M because f~I(F) <6 eM. Therefore,
le ¢ AF(M) so that /eF + Fs C AF(M). 0
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Proposition 3.4.13. Let M be a projective module. 1f M is an F-CS-Rickart
module, then for every f G ,fs = N ® K where N is a projective right ideal
of and K is a right ideal of with K C Ajf(M).

Proof. The proof follows from Theorem 3.4.12 [

The next corollary follows from the previous proposition by taking F = 0.
Recall that A(M) = {I'GEnd(M) Ikerf <6 M}.

Corollary 3.4.14. ([2], Proposition 3.3) Let M be a projective module. If M is

a CS-Rickart g)dule then for every f G =NOK where Ar is a projective
right ideal of Qand K is a right ideal of vath K¢AM

Note that | is an ideal of aring R if and only if / is a fully invariant submodule
of R as a right A-module R. Next, we give the definition of a right /-CS-Rickart
ring. Since End(A) = R1for any 6 GEnd(A), there exists a GR such that 6 = la
so that d~1(1) = {r GR 19(r) G1} = {r GR lar G1} = (/ \R a). As a result,
we define a right /-CS-Rickart ring as follows,

Definition 3.4.15. Let | be an ideal of a ring R. Then R is a right I-CS-Rickart
ring if for any a GR there is a direct summand R! of R such that (/ :R a) <es R!.

A right 0-CS-Rickart ring R is also called a right ACS-ring, given in [13]. The
following corollary is obtained from Corollary 3.4.5.

Corollary 3.4.16. Let | bean ideal ofaring R. Then R is a right I-CS-Rickart
ring if and only iffor any a GR, (@R + /)// = N/1©K/1 where N/I is a
projective right module and K /1 is a singular right module.

Let / be an ideal of R and J(R) be the Jacobson radical of R, that is, the
intersection of all maximal right ideals of R. A ring R is a right I-semireqular
ring, given in [13], if for any a GR, aR = eR® A where e2= e GR and A ¢ |
is a right ideal of R] moreover, A is a left I-semiregular ring if for any a G A,
Ra=Re Awheree2=2eGAandA ¢ | isaleft ideal of A. In particular,
A ring A is a semiregular ring if A is a right J(A)-semiregular ring and a left
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J(R)-semireqular ring. A ring R satisfies right CI condition if the R module over
itself satisfies C. condition.

Lemma 3.4.17. ([13], Proposition 14) Let | be an ideal of R and | C J(R).
Then R is a right I-semireqular ring if and only if R is a left I-semireqular ring.

Lemma 3.4.18. ([13], Proposition 2.3) If R satisfies right C2 condition, then
Z(R) C J(R).

Recall that R is a right ACS-ring if for any a 6 R there is a direct summand
R of R such that (0 \R @) <es R. Nichoson and Yousif characterized right
ACS-rings satisfying right ¢+ condition in [L3].

Lemma 3.4.19. ([13], Theorem 2.4) The following statements are equivalent.

() R is asemiregular ring and J(R) —Z(R).

() R is aright Z(R)-semiregular ring.

(in) For any a G R, there ise2= e GR such that aR = eR@ K where K is a
singular module.

(iv) R is a right ACS-ring and every principal projective right ideal of R is a direct
summand of R,

(V) R is a right ACS-ring satisfying right ¢ condition.

We now consider when A is a right /-CS-Rickart ring and R/ satisfies right
C2 condition and apply the following lemma as a main idea.

Theorem 3.4.20. Let | be an ideal of a ring R. Then the following statements
are equivalent.

() R/I is a semiregular ring and J(R/1) = Z(R/1).

(a) R/1 is aright Z{R/1)-semiregular ring.

(in) Foranya £ R, there is &+ 1)2—e+ /[ 6 R/l such that (aR +/)// =
e+ D{R/I) ©K /I where K/I is a singular module.

(iv) R is a right [-CS-Rickart ring and every principal projective right ideal of
R/1 is a direct summand of R/I.

(V) R is a right I-CS-Rickart ring and R/ satisfies right C2 condition.
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Proof, (i)—=( )-) (iii) These follow from Lemma 3.4.19.

(ii) =¥ (iv) Assume (iii). Let a GR. Then thereis (e+ 7)2= e+ 7 GR such
that (@R + /)// = (e + 7)(72[7) © K/l where K /I is a singular module. Since
(e+7)(72/1) <® R/1 and R /I is a projective module, (e + 7)(72//) is a projective
module. Then R is a right /-CS-Rickart ring because of Corollary 3.4.16. Next,
let L/ be a principal projective right ideal of R/l generated by a + 7. Then
@+ )(RM) =(+7)(72/7) K/l where e2+ 7=1¢+7G 72/7 and K/I is a
singular module. Since K/I < (a+ 1)(R/I) and (a+ 7)(72/7) is a projective
module, K/l is also a projective module. Thus K/I — I because K/l is both
a singular module and a projective module. Thus (a+ D{R/1) = (e + 1)(R/I).
Therefore, L/1 is a direct summand of R/I.

(iv)  —» (v) Assume (iv). Let K/I be a right ideal of R/I such that K/I is
isomorphic to a direct summand of R/I. Then K /I is a principal projective right
ideal of R/I. Thus K /I is a direct summand.

(v) ->(i) Assume (v). Leta+ | GR/I. Since A is a right 7-CS-Rickart ring,
by Corollary 3.4.16, (aR + 1)/1 = N/I@ K /I where 77/7 is a projective module
and K/1 is a singular module, i.e., K/1 C 2(72/7). So 77/7 is isomorphic to a
direct summand of R/l because 77/7 is a projective module. Since R /I satisfies
right ¢ 2 condition, N/I = (e + 7)(72[7) where (e+ )2 = e+ 7 G R/l and
2(727) C J(72/7) from Lemma 34.18. Thus (aR + 7)/7 = (e + 7)(72/7) ® K /I
and K/I C J(72/7), this forces that 72/7 is a right J(72/7)-semiregular ring.
Applying Lemma 3.4.19, 72/7 is a left J(72/7)-semireqular ring so that 72/7 is a
semireqular ring. Next, let e+ 7 G.7(72/7) C 72/7. Since 72is a right 7-CS-Rickart
ring, 6+ 7)(727) = (&'+ 7)(727) o K'/7 where (¢'+ Ty2 = ¢+ 7 G 72/7 and
K'I'¢ Z(R/I) CJ(R/I). Hence e'+7 G >7(72/7). Since J(72/7) does not contain
any nonzero idempotents, el + 7= 7. Thus @+ 7)(72/7) = K' | C Z(R/), s0
6+ 7G2(72/7). I

Let 7 = T2and 7j = 7 be an ideal of 22 for all i G {1,... 1 }. Let 1) =
0Z=172 and 7T = 0" =17 and Mn(R) be the X matrix ring over 72 From
Proposition 2.1.14, End(729" — Mn(Sft) where Aft = End(72). Recall that
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End(R) = R so that End(/2(T) = Mn(R). Next, we consider | = {/ G
End(0”) 1/(R") ¢ /O)} which is isomorphic to the matrix ring over /.

Lemma 3.4.21. Let R be aring and | be an ideal of R. Then the following
statements holds.

(i) Hom(R,I)=1.

() 1s=Mn{l).

Proof, (i) Observe that Hom(/?, 1) —{/ e End(-R) If(R) C/} = {a €R \aR C
1} = | because End(R) = R.

(ii) Let g e IS. Then g €End(i?W) and g(R~) C /("). Let sj = Hor(Rr,1).
Define f 1 1S =M n(Sj) by

gl oo T1gin’]
Tmigij
\JQIL - eee  An92nj
where Tigij :/?—/ for alli,j 6 {1,..., }. Then 4is an isomorphism so that
[ = Mn( /). Therefore, / = Mn(l) because Horn(R, 1) = 1. [

Observe that the set of all endomorphisms of R (T and Mn(R) are concerned
as well as Is and Mn(l) are isomorphic. So we characterize the right Mn(/)-CS-
Rickart rings and Mn(R) for some given ideal | of R.

Theorem 3.4.22. Let | be an ideal of aring R and 6 N. Then the following
statements are equivalent.

(i) The free R-module 7% ) is an J( }-CS-Rickart module.

(1) End(R") is a right Is-CS-Rickart ring.

(Hi) Mn(R) is a right Mn(l)-CS-Rickart ring.

(iv)For any n-generated right ideal A of R, (A + 1)/1 = N/I ® K/I where N/I
IS a projective module and K /1 is a singular ring.

(V) The R-module R(T is an I-CS-Rickart module relative to R.

(vi) For any n-generated submodule L of R\ (L + j(n)yj( ) —M/{n)o ... 0
Nn/IW ® K /IW where each Ni/l™ s a projective module and K /1 is a singular
module.
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Proof. We let = End(R.W).

(i) (i) Assume that the free A-module is an /bb-CS-Rickart module
with asis {ai....an}. Let T& S Then /-1(bb) <es eR™ for some ez =
ef Qletgf (1 1 /). Sofg £ Is that is fy(R"n3 C /bb. Hence g(A(b) C
y-i(/hb) ¢ eR™ sothat g = eg. Thus (1 1 /) is a submodule of eS. Next,
let eh £ eS and eh 0. Then eh(R”) 7 o. Since / _1(/bb) <es eR™\ we get
e/i(Abb)n/-i(/(n)) 0. There isx #*0such that x —eh(y) for somey £ Rbb and
[ (x) £ [ob. We define @ homomorphism 9 £ End (Abb) by 9(airl 4----+ anrn) =
yri for all r\,...;rn £ R. Then eh9(ai) = eh(y) = x and 9(R;bb) = yR, this
forces that en6 0 and feh9(R{n) = feh(yR) = f(x)R C /bb/E ¢ /bh. So
[eli0 € [5,thatise/ £ (Is 1. /). Hence (I 1 f) <6 eSL Therefore, End(i?(n)
is a right / -CS-Rickart ring.

( )-Hi) Assume (ii). Letf £ s. Then (I 1. /) <es eS for some e2 =
ef . Letx £ /-1(/bb). Then f(x) £ /bb. Similar to the argument of the
proof (i) —» (), there is a homomorphism 9 £  such that 9(R'n)) = xR. So
| (#/70h) = f(xR.) C /bb1we obtain that f9 £ IS thatis 9 £ (1 1. /). Thus
9= e9because (1 1. f) G eS. Then« ¢ XR —9(Rb)) = e9(Rbb) ( e/?bb.
This implies that /-1(/bb) ¢ e-Rob. Next, let m £ e/%b ancj 7, » 0. Then
m = em so that mR = emR. So there is a nonzero homomorphism h £ s
such that h-Rbb = I7R = emA, similar to the technique of the proof (i) —» (ii).
Since (/5 : [) <@ eA there isg £ such that hg Oand fhg £ 1. So
0" hg(RW) and fhg(R") C /ob. Hence 0" hg(Abb) G /-1(/("). This forces
that 7 _1(/(n)) <es eAbb. Therefore, the free A-module A") is an /bb-CS-Rickart
module.

(i) =(v) This follows from Theorem 3.2.2.

(i) "H-(iit) This is clear because End(Abb) = Mn(R) and Is = Mn(l).

(iv)-»(v) Assume (iv). Let / £ Horn(Abb, A). Then for any xi £ A,

f(X 1, XD = [(1,... 10)Xi + o0t [ (0,..., )xn,

So/(Abb) isgenerated by {/(1,..., 0),..., /(0,..., 1)}. By assumption, (/(Abb)+
[YII—N/1+ K /I where jV// is a projective module and K /1 is a singular module.
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From Theorem 3.4.4, R() is an I-CS-Rickart module relative to R.

(v)—>(iv) Assume (v). Let A be an n-generated right ideal of R such that
A = UiP-l-—hanR where U, ..., an GR. Define tt:p(n)=>Rby ..., xn)=
Q0jXi H------hanx,, for any xi,...,Xn GR. Then 0 is a module homomorphism and
cfi(RW) =aiR +--- +anR. Therefore, (A+/)//= (XEn)+/)// = N/l +K/I
where N/1 is a projective module and K/I is a singular module because R is
an |-CS-Rickart module relative to R.

(v)->(vi) Assume (v). Let L be an n-generated submodule of p(n). Then
L — (XI)R + e+ (Xn)R where (xi),..., (xn) GR™ and (Xi) = (xil,..., xni) for
alli G{1,...1 } So

/Xn Xn dd Ad f odnA

Foeen s alG (Xi)P + eeet (xn)R.
\Xnl yall y-AlJ yXnnJ
xn X\ fai\
Let | = G Mn(R) “ End(A%). Then/ G and
yxni ... xmJ yQnd

f(R™) = L. Let 71 be the projection map from p(”) to its i-th component and
9 be the inclusion map form R to R for any i G {1,..., }. Since the P-
module R* is an /-CS-Rickart module relative to R and 7Ti/ G Hom(p(n\ Pi),
we obtain that /-1(/ ) ¢ (7U)~1(/) <ex eiP"n) for some é\ = ei G 5. So
M) _ Pro et™() and pxis a projective module because Pi <® p(n) and
R(n) is a projective module. Next, we consider the homomorphism 77insis( ).
Since :p(n) <® p(n) and T/|e1ft() G Hom (eiP(n), p 2), applying Theorem 3.2.2,
| _1(/(n)) C (mm2/|6Lft( ))-1(/) <6% e2P (n) for some . = e2 G . Since e2P (n) <®
R™ and e2p(n) C e\R™\ from Proposition 2.14, e2p(n) <® eip(nL Thus
eiP" = p2®e2P (n) and p2is a projective module because p2 <® eip(nL Hence
p()=Pi®P20e2p (n). Sowegete3,... 1€Nsuch that / _1(/(n)) C 7Tjllej_1tt() < 6H
e,R(n forall ] G{3,..., }. Thus ={ H)-\1) eee (wd)-"(1) <65
eip(n) +++ &P () =enR(M Now, pn= Pi®---® Pn® enP (n) where each
Pi is a projective module. Hence (K + / )/I() = (L'(pM) -FI")I(") =
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LE{PI) + /() [(0) @ ene® (/{Pn) + [(n))[](n) [ (eni?(n))+ /W )/J(n) where each
(/(PV) + /(")II(")  Pi which is a projective module and / (enphd) + /("))/I(") E
enP~ 77 _1(/™) which is a singular module.

O
Consequently, we obtain the following corollary when p = 0.

Corollary 3.4.23. ([1], Theorem 4.3) Pei 6 N. plien ffie following statements
are equivalent.

(i) The free R-module phd js < CS-Rickart module.

(1) Mn(R) is a right CS-Rickart ring.

(iii) For any -generated right ideal A of R, A =N @K where N is a projective
module and K is a singular module.

(iv) The R-module phd is a CS-Rickart module relative to R.

(v) For any -generated submodule L of L= Al®+--ONn K where each
Ni is a projective module and K is a singular module.
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