CHAPTER III

F-CS-RICKART MODULES

In this chapter, we provide the concept of F-CS-Rickart modules. We would like to point out that the notion of F-CS-Rickart modules are extended from CS-Rickart modules by Abyzov and Nhan given in [1], and F-inverse split modules by Lee, Rizvi and Roman in [11]. We integrate the idea of being an essential submodule of some direct summand of $\operatorname{ker} f$ from CS-Rickart modules and the idea of being a direct summand of $f^{-1}(F)$ from F-inverse split modules for all $f \in \operatorname{End}(M)$.

Various properties of F-CS-Rickart modules and characterizations of those are investigated in Section 3.1. We show that the intersection of two submodules of an F-CS-Rickart module is essential in some direct summand where one of those two submodules contains F. Moreover, we study when a submodule of an F -CS-Rickart module is also an F^{\prime}-CS-Rickart module where F^{\prime} is a fully invariant submodule of that submodule. Relationships between F-CS-Rickart modules and F-inverse split modules, likewise, relationships between F-CS-Rickart modules and CS-Rickart modules are presented. Furthermore, we give a notion and a characterization of strongly F-CS-Rickart modules which is a special case of F -CS-Rickart modules. Observe that for F-CS-Rickart modules the inverse images of endomorphisms are considered. So, in Section 3.2, we extend to consider the inverse image of a homomorphism which is an essential submodule in some direct summand. In Section 3.3, we focus on specific fully invariant submodules, namely, singular submodules, second singular submodules and cosingular submodules. Finally, in Section 3.4, we concern any images of F-CS-Rickart projective modules satisfying C_{2} condition. We obtain that they can be written as a direct sum of two submodules one of which is a projective module and the other one of which is contain in F^{*}. In addition, we define a right I-CS-Rickart ring for a given ideal I of R. Then the free R-module $R^{(n)}$ is an $I^{(n)}$-CS-Rickart module if and only if
$M_{n}(R)$ is a right $M_{n}(I)$-CS-Rickart ring where $R^{(n)}$ and $I^{(n)}$ are the finite direct sum of n copies of R and I, respectively.

3.1 Properties of F-CS-Rickart Modules

First, we examine relationships between F-CS-Rickart modules and F-inverse split modules, as well as, relationships between F-CS-Rickart modules and CS-Rickart modules. Next, we are interested in when a submodule N of an F-CS-Rickart module is also an F^{\prime}-CS-Rickart module for some fully invariant submodule F^{\prime} of N. Later, characterizations of F-CS-Rickart modules are provided. One of main results is that any F-CS-Rickart module can be written as a direct sum of two submodules one of which is an essential extension of F and the other one of which is a CS-Rickart module

As we mentioned earlier, the concept of F-CS-Rickart modules are extended from CS-Rickart modules and F-inverse split modules. A module M is a CSRickart module, given in [1], if for any $f \in \operatorname{End}(M)$, there is a direct summand M^{\prime} of M such that ker $f \leq_{\text {ess }} M^{\prime}$; in addition, M is an F-inverse split module, given in [17], if for any $f \in \operatorname{End}(M), f^{-1}(F)$ is a direct summand of M. Now, we provide the definition of an F-CS-Rickart module by combining the main ideas of those as follows.

Definition 3.1.1. Let F be a fully invariant submodule of M. Then M is an F-CS-Rickart module if for any $f \in \operatorname{End}(M)$, there is a direct summand M^{\prime} of M such that $f^{-1}(F)$ is an essential submodule of M^{\prime}.

Note that M is a CS-Rickart module if and only if M is a 0 -CS-Rickart module.

Proposition 3.1.2. Any F-inverse split module is an F-CS-Rickart module.

Proof. Let M be an F-inverse split module. Then, for each $f \in \operatorname{End}(M)$, we obtain that $f^{-1}(F) \leq_{\text {ess }} f^{-1}(F) \leq{ }^{\oplus} M$. Therefore, M is an F-CS-Rickart module.

Observe that $f^{-1}(F)$ is a submodule of M containing F for any $f \in \operatorname{End}(M)$. So we can conclude that M is an F-CS-Rickart module if and only if any submodule of M cortaining F is an essential submodule of a direct summand of M. The following example shows an F-CS-Rickart module which is not an F-inverse split module for some given fully invariant submodule F of M.

Example 3.1.3. Let M be the \mathbb{Z}-module $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$. Let $N=\overline{0} \oplus\langle\overline{2}\rangle$. Then N is a fully invariant submodule of M obtained directly from the definition. The following diagram describes all submodules of $Z_{2} \oplus Z_{8}$. Each submodule contained in a box is a direct summand of M but the others are not direct summands of M. Furthermore, if a submodule N is an essential submodule of M, we write $N_{\text {ess }}$, otherwise; we write $N_{\text {. }}$.

Observe that, all submodules of M containing N are $N, \overline{0} \oplus \mathbb{Z}_{8}, \mathbb{Z}_{2} \oplus\langle\overline{2}\rangle$, $(\overline{1}, \overline{1}) \mathbb{Z}$ and M. Among these, only $\overline{0} \oplus \mathbb{Z}_{8},(\overline{1}, \overline{1}) \mathbb{Z}$ and M are direct summands of M, i.e., they are essential submodules of themselves, and only $\mathbb{Z}_{2} \oplus\langle\overline{2}\rangle$ is an
essential submodule of M but N is not a direct summand and not an essential submodule of M. Moreover, N is an essential submodule of $\overline{0} \oplus \mathbb{Z}_{8}$ which is a direct summand of M because all proper submodules of $\overline{0} \oplus \mathbb{Z}_{8}$ contained in N. As mention above, we can conclude that any submodule of M containing N is an essential submodule of a direct summand of M. This shows that M is an N-CS-Rickart module. However, M is not an N-inverse split module because $1_{S}^{-1}(N)=N$ is not a direct summand of M.

Proposition 3.1.2 together with Example 3.1.3 guarantee that F-CS-Rickart modules actually generalized F-inverse split modules. We know that M is a CSRickart module if and only if M is a 0 -CS-Rickart module. For a given fully invariant submodule F of $M, " M$ is an F-CS-Rickart module" does not imply " M is a CS-Rickart module", moreover, " M is a CS-Rickart module" does not imply " M is an F-CS-Rickart module". Example 3.1 .3 shows that $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ is a $\overline{0} \oplus\langle\overline{2}\rangle$-CS-Rickart module; however, $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ is not a CS-Rickart module shown in the next example.

Example 3.1.4. Let M be the \mathbb{Z}-module $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ and $N=\overline{0} \oplus\langle\overline{2}\rangle$. Then $\operatorname{End}\left(\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}\right) \cong\left(\begin{array}{cc}\operatorname{End}\left(\mathbb{Z}_{2}\right) & \operatorname{Hom}\left(\mathbb{Z}_{8}, \mathbb{Z}_{2}\right) \\ \operatorname{Hom}\left(\mathbb{Z}_{2}, \mathbb{Z}_{8}\right) & \operatorname{End}\left(\mathbb{Z}_{8}\right)\end{array}\right)$ from Proposition 2.1.13. Let $h=\left(\begin{array}{ll}f_{0} & g_{1}^{\prime} \\ f_{4}^{\prime} & g_{2}\end{array}\right)$ where f_{0} is the zero homomorphism on $\mathbb{Z}_{2}, f_{4}^{\prime}(\bar{x})=\overline{4 x}, g_{1}^{\prime}(\bar{y})=\bar{y}$ and $g_{2}(\bar{y})=\overline{2 y}$ for all $\bar{x} \in \mathbb{Z}_{2}$ and $\bar{y} \in \mathbb{Z}_{8}$. Then $\operatorname{ker} h=(\overline{1}, \overline{2}) \mathbb{Z}$ which is not an essential submodule of all direct summands of M shown in the diagram. Thus $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ is not a CS-Rickart module.

Next, we give an example of CS-Rickart modules which is not an F-CS-Rickart module for some fully invariant submodule F.

In [10], Lam provided that $Z(M)=\left\{x \in M \mid\left(0:_{R} x\right) \leq_{\text {ess }} R\right\}$ and $Z_{2}(M)=$ $\left\{x \in M \mid\left(Z(M):_{R} x\right) \leq_{\text {ess }} R\right\}$ are submodules of M. Moreover, they are fully invariant submodules of M.

Example 3.1.5. Let P be the set of prime integers. Consider the \mathbb{Z}-module $M=\prod_{p} \mathbb{Z}_{p}$. For the fully invariant submodule $Z_{2}(M)$, we show later that M is
a $Z_{2}(M)$-CS-Rickart module if and only if it is a $Z_{2}(M)$-inverse split module, see Proposition 3.3.2. Moreover, Example 2.12 in [18] shows that $Z(M)=Z_{2}(M)=$ $\bigoplus_{p} \mathbb{Z}_{p} \neq 0$ and M is not a $Z_{2}(M)$-inverse split module but M is a Rickart module. Since M is not a $Z_{2}(M)$-inverse split module, M is not a $Z_{2}(M)$-CS-Rickart module. In addition, M is a CS-Rickart module because M is a Rickart module by Lemma 2.7 in [1]. Therefore, M is not a $Z_{2}(M)$-CS-Rickart module but M is a CS-Rickart module.

For a given fully invariant submodule F of M, unlike F-inverse split modules and F-CS-Rickart module, CS-Rickart modules and F-CS-Rickart modules do not imply each other obtaining from Example 3.1.4 and Example 3.1.5. Next, we present some properties of F-CS-Rickart modules.

Proposition 3.1.6. Let M be an F-CS-Rickart module and P be a module. If M is isomorphic to P by isomorphism $\phi: M \rightarrow P$, then P is a $\phi(F)$-CS-Rickart module.

Proof. Assume that ϕ is an isomorphism from P onto M. Let $f \in \operatorname{End}(P)$. So $\phi^{-1} f \phi \in \operatorname{End}(M)$. Let $y \in \phi(F)$. Then $y=\phi(x)$ for some $x \in F$. Thus $\phi^{-1} f(y)=\phi^{-1} f \phi(x) \in F$ because $F \leq_{\text {fully }} M$. It forces that $f(y) \in \phi(F)$. Hence $\phi(F) \leq_{\text {fully }} P$. Since M is an F-CS-Rickart module, $\left(\phi^{-1} f \phi\right)^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{t} of M. Thus $\phi^{-1} f^{-1}(\phi(F)) \leq_{\text {ess }} \quad M^{\prime}$. Applying Proposition 2.2.6, $\phi\left(\phi^{-1} f^{-1}(\phi(F))\right)$ Less $\phi\left(M^{\prime}\right)$. Since M^{\prime} is a direct summand of M, there is a submodule K of M such that $M=M^{\prime} \oplus K$. This implies that, $P=\phi(M)=\phi\left(M^{\prime}\right) \oplus \phi(K)$ so that $\phi\left(M^{\prime}\right)$ is a direct summand of P. Thus $f^{-1}(\phi(F)) \leq_{\text {ess }} \phi\left(M^{\prime}\right)$. Therefore, P is a $\phi(F)$-CS-Rickart module.

In general, the intersection of two direct summands may not be a direct summand. However, the intersection of two direct summands of M turns out to be a direct summand provided M is a Rickart module; moreover, the intersection of two direct summands of M is an essential submodule of some direct summand of M if M is a CS-Rickart module. Similarly, we focus on the intersections of two direct summands of an F-CS-Rickart module. Next example shows that there is
the intersection of two direct summands of an F-CS-Rickart module which is not a direct summand but it is an essential submodule of some direct summand.

Example 3.1.7. Let M be the \mathbb{Z}-module $\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ and $N=\overline{0} \oplus\langle\overline{2}\rangle$. Then M is an N-CS-Rickart module, see Example 3.1.3. Moreover, $A=\overline{0} \oplus \mathbb{Z}_{8}$ and $B=(\overline{1}, \overline{1}) \mathbb{Z}$ are direct summands of M. Then $A \cap B=\overline{0} \oplus\langle\overline{2}\rangle$ is not a direct summand of M but $A \cap B=\overline{0} \oplus\langle\overline{2}\rangle \leq_{\text {ess }} A$.

However, if M is an F-CS-Rickart module satisfying some conditions, then it guarantees that the intersection of direct summands is an essential submodule of a direct summard of M. Nevertheless, the following lemma is needed.

Lemma 3.1.8. Let F be a fully invariant submodule of M. Let $h^{2}=h, g^{2}=g \in$ $\operatorname{End}(M)$ and $F \subseteq g M$. Then $g M=(1-g)^{-1}(F)$. Moreover, $((1-g) h)^{-1}(F)=$ $(h M \cap g M) \oplus(1-h) M$.

Proof. It is clear that, $(1-g) g M=0 \subseteq F$, so $g M \subseteq(1-g)^{-1}(F)$. Next, let $m \in(1-g)^{-1}(F)$. Then $(1-g) m \in F \subseteq g M$. Thus $(1-g) m \in g M \cap(1-g) M=0$ leading to $m \in \operatorname{ker}(1-g)=g M$ from Proposition 2.1.3. This shows that $g M=$ $(1-g)^{-1}(F)$.

Now, we let $x \in((1-g) h)^{-1}(F)$. Then $(1-g) h(x) \in F$ so that $h(x) \in$ $(1-g)^{-1}(F)=g M$. Thus $x=h(x)+(1-h)(x) \in(h M \cap g M) \oplus(1-h) M$. For the reverse of inclusion, let $x+y \in(h M \cap g M) \oplus(1-h) M$ where $x \in h M \cap g M$ and $y \in(1-h) M$. So $x=h(x)=g(x)$ and $y=(1-h)(y)$. Then $(1-g) h(x+y)=$ $(1-g) h(x)+(1-g) h(y)=0 \in F$. Hence $x+y \in((1-g) h)^{-1}(F)$. Therefore, the second result follows.

Proposition 3.1.9. Let M be an F-CS-Rickart module. Then the following statements hold.
(i) For any direct summands N and K of M, if $F \subseteq K$, then $N \cap K \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M.
(ii) For any submodules N and K of M, if there are direct summands M_{1} and M_{2} of M such that $N \leq_{\text {ess }} M_{1}$ and $F \subseteq K \leq_{\text {ess }} M_{2}$, then $N \cap K \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M.
(iii) For any $f_{1}, \ldots, f_{n} \in \operatorname{End}(M)$, there is a direct summand M^{\prime} of M such that $\bigcap_{i=1}^{n} f_{i}^{-1}(F) \leq_{\text {ess }} M^{\prime}$.

Proof. (i) Assume that N and K are direct summands of M and $F \subseteq K$. Then $N=h M$ and $K=g M$ for some $h^{2}=h, g^{2}=g \in \operatorname{End}(M)$. Since $F \subseteq K=g M$, Lemma 3.1.8 gives

$$
((1-g) h)^{-1}(F)=(h M \cap g M) \oplus(1-h) M
$$

Since M is an F-CS-Rickart module, $((1-g) h)^{-1}(F) \leq_{\text {ess }} e M$ for some $e^{2}=$ $e \in \operatorname{End}(M)$. Thus $(1-h) M \subseteq e M$. As $M=h M \oplus(1-h) M$ and $(1-h) M \subseteq e M$, we obtain $e M=M \cap e M=(h M \oplus(1-h) M) \cap e M=(h M \cap e M) \oplus(1-h) M$ by Modular Law. So $h M \cap e M \leq \oplus e M$ and

$$
(h M \cap g M) \oplus(1-h) M=((1-g) h)^{-1}(F) \leq_{e s s} e M=(h M \cap e M) \oplus(1-h) M .
$$

Therefore, $N \cap K=h M \cap g M \leq_{\text {ess }} h M \cap e M \leq M$.
(ii) Assume that N and K are submodules of M and $N \leq_{\text {ess }} M_{1}$ and $K \leq_{\text {ess }} M_{2}$ for some direct summands M_{1} and M_{2} of M such that $F \subseteq K$. By (i), we obtain $M_{1} \cap M_{2} \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M. Applying Proposition 2.2.4, $N \cap K \leq_{\text {ess }} M_{1} \cap M_{2} \leq_{\text {ess }} M^{\prime}$. Therefore, $N \cap K \leq_{\text {ess }} M^{\prime}$ by Proposition 2.2.3.
(iii) Let $f_{i} \in \operatorname{End}(M)$ for all $i \in\{1, \ldots, n\}$. Since M is an F-CS-Rickart module, for each $i, F \subseteq f_{i}^{-1}(F) \leq_{n} M_{i}$ for some direct summand M_{i} of M. Applying (ii) repeatedly, we obtain $\bigcap_{i=1} f_{i}^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M.

A module M is an SIP-CS module if the intersection of two direct summands is an essential submodule of a direct summand of M, see [1]. From the previous proposition, the intersection of two direct summands of an F-CS-Rickart module is essential in a direct summand of M when one of direct summands contains F.

Corollary 3.1.10. Let M be an F-CS-Rickart module. Then M is an SIP-CS module provided that F is contained in all direct summands of M.

Similar to CS-Rickart modules and F-inverse split modules, we investigate when a submodule N of an F-CS-Rickart module is also an F^{\prime}-CS-Rickart module for some fully invariant submodule F^{\prime} of this submodule N. We provide the following lemma using for obtaining the mentioned result.

Lemma 3.1.11. Let N and F be fully invariant submodules of M. If each endomorphism of N can be extended to an endomorphism of M, then $N \cap F$ is a fully invariant submodule of N. Moreover, for any $g \in \operatorname{End}(N)$, there is $f \in \operatorname{End}(M)$ such that $g=\left.f\right|_{N}$ and $g^{-1}(N \cap F)=N \cap f^{-1}(F)$.

Proof. Assume that each $g \in \operatorname{End}(N)$ can be extended to an $f \in \operatorname{End}(M)$. Let $g \in \operatorname{End}(N)$. Then there exists $f \in \operatorname{End}(M)$ such that $g=\left.f\right|_{N}$. Let $x \in N \cap F$. So $\left.f\right|_{N}(x)=g(x) \in N$ and $\left.f\right|_{N}(x)=f(x) \in F$. Thus $g(x)=\left.f\right|_{N}(x) \in N \cap F$. Therefore, $N \cap F \leq_{\text {fully }} N$.

Moreover, we claim that $g^{-1}(N \cap F)=N \cap f^{-1}(F)$. Let $x \in g^{-1}(N \cap F)$. Then $x \in N$ and $f(x)=g(x) \in N \cap F$, so $x \in N \cap f^{-1}(F)$. Next, let $y \in N \cap f^{-1}(F)$. Then $g(y)=f(y) \in F$ and $g(y) \in N$. So $y \in g^{-1}(N \cap F)$. Therefore, $g^{-1}(N \cap F)=$ $N \cap f^{-1}(F)$.

Proposition 3.1.12. Let M be an F-CS-Rickart module and N be a fully invariant submodule of M. If each endomorphism of N can be extended to an endomorphism of M, then N is an $(N \cap F)$-CS-Rickart module.

Proof. Assume that each $g \in \operatorname{End}(N)$ can be extended to an $f \in \operatorname{End}(M)$. Let $g \in$ $\operatorname{End}(N)$. Then $\left.f\right|_{N}=g$ for some $f \in \operatorname{End}(M)$ and $g^{-1}(N \cap F)=N \cap f^{-1}(F)$. Since M is an F-CS-Rickart module, $f^{-1}(F) \leq_{\text {ess }} e M$ for some $e^{2}=e \in \operatorname{End}(M)$. Thus $N \cap f^{-1}(F) \leq_{\text {ess }} N \cap e M$. Since $N \leq_{f u l l y} M$ and $\left(\left.e\right|_{N}\right)^{2}=\left.e\right|_{N} \in \operatorname{End}(N)$, $N \cap e M=\left.e\right|_{N}(N) \leq^{\oplus} N$. So $g^{-1}(N \cap F)=N \cap f^{-1}(F) \leq_{\text {ess }} N \cap e M \leq{ }^{\oplus} N$. Therefore, N is an $(N \cap F)$-CS-Rickart module.

Observe that the intersection of fully invariant submodules N and F of M needs not be a fully invariant submodule of N. However, the intersection of a direct summand N of M and a fully invariant submodule F of M is always
a fully invariant submodule of N from Proposition 2.1.8. So, now, we obtain one characterization of F-CS-Rickart modules.

Theorem 3.1.13. A module M is an F-CS-Rickart module if and only if N is an $(N \cap F)$-CS-Rickart module for any direct summand N of M.

Proof. The sufficiency is clear because M is always a direct summand of M itself.
For the necessity, let N be a direct summand of M. Then $N=e M$ for some $e^{2}=e \in \operatorname{End}(M)$ and $N \cap F$ is a fully invariant submodule of N. Let $g \in \operatorname{End}(N)$ and $K=(1-e) M$. From Lemma 2.1.10, $g^{-1}(N \cap F) \oplus K=\left(g \oplus 0_{K}\right)^{-1}(F)$. Since M is an F-CS-Rickart module, $\left(g \oplus 0_{K}\right)^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M. Since $M=N \oplus K$ and $K \subseteq\left(g \oplus 0_{K}\right)^{-1}(F) \subseteq M^{\prime}$, we obtain that $M^{\prime}=\left(N \cap M^{\prime}\right) \oplus K$. Thus $N \cap M^{\prime} \leq{ }^{\oplus} N$ because $N \cap M^{\prime} \leq{ }^{\oplus} M$ and $N \cap M^{\prime} \subseteq N$. This forces that $g^{-1}(N \cap F) \leq_{\text {ess }} N \cap M^{\prime}$ by Proposition 2.2.7. Therefore, N is an ($N \cap F)$-CS-Rickart module for any direct summand N of M.

A direct sum of F-CS-Rickart modules where each summand is also a fully invariant submodule is studied in the following theorem.

Theorem 3.1.14. Let M_{j} be a fully invariant submodule of $\bigoplus_{i=1}^{n} M_{i}$ and F_{j} be a fully invariant submodule of M_{j} for all $j \in\{1, \ldots, n\}$. Then $\bigoplus_{i=1}^{n} M_{i}$ is a $\bigoplus_{i=1}^{n} F_{i}$-CS-Rickart module if and only if M_{j} is an F_{j}-CS-Rickart module for all $j \in\{1, \ldots, n\}$.

Proof. Assume that $\bigoplus_{i=1}^{n} M_{i}$ is a $\bigoplus_{i=1}^{n} F_{i}$-CS-Rickart. Since each $M_{j} \leq \bigoplus_{i=1}^{n} M_{i}$, we obtain that each M_{j} is an $\left(M_{j} \cap \bigoplus_{i=1}^{n} F_{i}\right)$-CS-Rickart module by Theorem 3.1.13. Therefore, M_{j} is an F_{j}-CS-Rickart module because $M_{j} \cap \bigoplus_{i=1}^{n} F_{i}=F_{j}$ for all $j \in\{1, \ldots, n\}$.

For the converse, assume that M_{j} is an F_{j}-CS-Rickart module for all $j \in$ $\{1, \ldots, n\}$. Let $f \in \operatorname{End}\left(\bigoplus_{i=1}^{n} M_{i}\right)$. Let $\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} M_{i}$. Then

$$
f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, 0\right)+\cdots+f\left(0, \ldots, x_{n}\right)=f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right)
$$

where $f_{j}:=f i_{j}: M_{j} \rightarrow \bigoplus_{i=1}^{n} M_{i}$ and i_{j} is the inclusion map from M_{j} into $\bigoplus_{i=1}^{n} M_{i}$ for all $j \in\{1, \ldots, n\}$. Since each $M_{j} \leq_{f u l l y} \bigoplus_{i=1}^{n} M_{i}$, we get f_{j} : $M_{j} \rightarrow M_{j}$ and $f_{j}\left(F_{j}\right) \subseteq F_{j}$. Thus $f_{j}^{-1}\left(F_{j}\right) \leq_{\text {ess }} e_{j} M_{j}$ for some idempotent $e_{j} \in$ $\operatorname{End}\left(M_{j}\right)$ because each M_{j} is an F_{j}-CS-Rickart module. Applying Proposition 2.2.7, $\bigoplus_{i=1}^{n} f_{i}^{-1}\left(F_{i}\right) \leq_{\text {ess }} \bigoplus_{i=1}^{n} e_{i} M_{i}$. Note that

$$
\begin{aligned}
f^{-1}\left(\bigoplus_{i=1}^{n} F_{i}\right) & =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} M_{i} \mid f\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} F_{i}\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} M_{i} \mid f_{1}\left(x_{1}\right)+\cdots+f_{n}\left(x_{n}\right) \in \bigoplus_{i=1}^{n} F_{i}\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} M_{i} \mid f_{j}\left(x_{j}\right) \in F_{j} \text { for all } j \in\{1, \ldots, n\}\right\} \\
& =\left\{\left(x_{1}, \ldots, x_{n}\right) \in \bigoplus_{i=1}^{n} M_{i} \mid x_{j} \in f_{j}^{-1}\left(F_{j}\right) \text { for all } j \in\{1, \ldots, n\}\right\} \\
& =\bigoplus_{i=1}^{n} f_{i}^{-1}\left(F_{i}\right) .
\end{aligned}
$$

Hence $f^{-1}(F)=\bigoplus_{i=1}^{n} f_{i}^{-1}\left(F_{i}\right) \leq_{\text {ess }} \bigoplus_{i=1}^{n} e_{i} M_{i}$ and $\bigoplus_{i=1}^{n} e_{i} M_{i}$ is a direct summand of $\bigoplus_{i=1}^{n} M_{i}$. Therefore, $\bigoplus_{i=1}^{n} M_{i}$ is a $\oplus_{i=1}^{n} F_{i}$-CS-Rickart module.

Next, other characterizations of F-CS-Rickart modules are given. Let N be a submodule of M and I be a nonempty subset of End (M). Recall that $\left(N:_{M} I\right)=$ $\{x \in M \mid f(x) \in N$ for any $f \in I\}=\bigcap_{f \in I} f^{-1}(N)$. Moreover, if I is a principal left ideal of $\operatorname{End}\left(M\right.$! generated by f, then $(F: M I)=(F: M f)=f^{-1}(F)$.

Theorem 3.1.15. The following statements are equivalent.
(i) M is an F-CS-Rickart module.
(ii) For any finite nonempty subset I of $\operatorname{End}(M),\left(F:_{M} I\right)$ is an essential submodule of M^{\prime} for some direct summand M^{\prime} of M.
(iii) For any finitely generated left ideal I of $\operatorname{End}(M),\left(F:_{M} I\right)$ is an essential submodule of M^{\prime} for some direct summand M^{\prime} of M.

Proof. (i) \rightarrow (ii) Assume (i). Let I be a finite nonempty subset of $\operatorname{End}(M)$. Thus $\left(F:_{M} I\right)=\bigcap_{f \in I} f^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M by applying

Proposition 3.1.9 (iii).
(ii) \rightarrow (i) This is clear.
(i) \rightarrow (iii) Assume (i). Let $I=\left\langle f_{1}, \ldots, f_{n}\right\rangle$ be a finitely generated left ideal of $\operatorname{End}(M)$. We prove by induction on n. If $n=1$, the statement clearly holds. Suppose that the statement holds for $n-1$. Let $J=\left\langle f_{1}, \ldots, f_{n-1}\right\rangle$. We obtain that $\left(F:_{M} J\right) \leq_{\text {ess }} M_{n-1}$ for some direct summand M_{n-1} of M. It follows that $\left(F:_{M} I\right)=\left(F:_{M} J\right) \cap f_{n}^{-1}(F)$ and $f_{n}^{-1}(F) \leq_{\text {ess }} M_{n}$ for some direct summand M_{n} of M. Thus $(F: M J) \cap f_{n}^{-1}(F) \leq_{\text {ess }} M_{n-1} \cap M_{n}$. Since $\left(F:_{M} J\right)$ and $f_{n}^{-1}(F)$ contains F, by Proposition 3.1.9 (ii), $\left(F:_{M} J\right) \cap f_{n}^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M. Therefore, $(F: M I)$ fess M^{\prime}.
(iii) \rightarrow (i) This holds because for any $f \in \operatorname{End}(M),\left(F:_{M} I\right)=f^{-1}(F)$ where I is the principal left ideal of $\operatorname{End}(M)$ generated by f.

We know that F-inverse split modules are F-CS-Rickart modules but the converse is not necessary true from Proposition 3.1.2 and Example 3.1.3. As a result, finding conditions that make the converse valid is our next interest. Observe that I is an ideal of a ring R if and only if I is a fully invariant submodule of the right R-module R. We let $F_{S}=\{f \in \operatorname{End}(M) \mid f(M) \subseteq F\}$. Then F_{S} is an ideal of the ring $\operatorname{End}(M)$, so F_{S} is a fully invariant submodule of the module $\operatorname{End}(M)$. The set $\Delta(M)=\left\{f \in \operatorname{End}(M) \mid \operatorname{ker} f \leq_{\text {ess }} M\right\}$ given in [7] is a left ideal of $\operatorname{End}(M)$ and M is a \mathcal{K}-nonsingular module if $\Delta(M)=\{0\}$ given in [16]. In this research, we extend $f^{-1}(\{0\})=\operatorname{ker} f$ to $f^{-1}(F)$. So, we provide the set $\Delta_{F}(M)=\left\{f \in \operatorname{End}(M) f^{-1}(F) \leq_{\text {ess }} M\right\}$. Obviously, $\Delta_{F}(M)$ is a left ideal of $\operatorname{End}(M)$ and $F_{S} \subseteq \Delta_{F}(M)$. Next, we provide a generalization of \mathcal{K}-nonsingular module as follows.

Definition 3.1.16. A module M is an $F-\mathcal{K}$-nonsingular module if $\Delta_{F}(M)=F_{S}$.
One can see that, M is a \mathcal{K}-nonsingular module if and only if M is a $0-\mathcal{K}$ nonsingular module.

Proposition 3.1.17. If M is an F-inverse split module, then M is an $F-\mathcal{K}$ nonsingular module.

Proof. Assume that M is an F-inverse split module. Let $f \in \Delta_{F}(M)$. Then $f \in \operatorname{End}(M)$ and then $f^{-1}(F) \leq \oplus$ and $f^{-1}(F) \leq_{\text {ess }} M$ so that $f^{-1}(F)=M$. That is $f(M) \subseteq F$. Therefore, M is an F - \mathcal{K}-nonsingular module.

Next, we give an example of $F-\mathcal{K}$-nonsingular modules. However, a helpful lemma is given in order to show that a module M is an F-inverse split module, so that M is an $F-\mathcal{K}$-nonsingular module.

Lemma 3.1.18. ([17], Theorem 2.3) A module M is an F-inverse split module if and only if $M=F \oplus K$ where K is a Rickart module.

Example 3.1.19. Let $M=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right)$ be a module over itself. Then the submodule $N=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right)$ is both a fully invariant submodule and a direct summand of M. So $M=N \oplus K$ where $K=\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right) \cong \mathbb{Z}$. Note that \mathbb{Z} is a Rickart module because, for any $f \in \operatorname{End}(\mathbb{Z})$ there exists $n \in \mathbb{Z}$ such that $f(x)=n x$ for all $x \in \mathbb{Z}$, so that $\operatorname{ker} f=0$ or \mathbb{Z} which both are direct summands of \mathbb{Z}. This forces that K is a Rickart module. By applying Lemma 3.1.18, M is an N-inverse split module. Thus M is an $N-K$-nonsingular module.

Relationships between F-CS-Rickart modules and F-inverse split modules are ready to be investigated.

Theorem 3.1.20. The following statements are equivalent.
(i) M is an F-CS-Rickart module and an F-K-nonsingular module.
(ii) M is an F-inverse split module.

Proof. (ii) \rightarrow (i) This follows from Proposition 3.1.2 and Proposition 3.1.17.
(i) \rightarrow (ii) Assume (i). Let $f \in \operatorname{End}(M)$. Then $f^{-1}(F) \leq_{\text {ess }} e M$ for some $e^{2}=e \in \operatorname{End}(M)$. Thus $f^{-1}(F) \oplus(1-e) M \leq_{\text {ess }} e M \oplus(1-e) M=M$. Since $f^{-1}(F) \subseteq e M$ and $e(1-e) M=0$, we obtain $f e\left(f^{-1}(F) \oplus(1-e) M\right) \subseteq F$. It forces that $f^{-1}(F) \oplus(1-e) M \subseteq(f e)^{-1}(F)$. Next, let $x \in(f e)^{-1}(F)$. Then $f(e x)=$
$f e(x) \in F$ so that $e x \in f^{-1}(F)$. Hence $x=e x+(1-e) x \in f^{-1}(F) \oplus(1-e) M$. Then $(f e)^{-1}(F)=f^{-1}(F) \oplus(1-e) M \leq_{\text {ess }} M$. Since M is an F - \mathcal{K}-nonsingular module, $f e(M) \subseteq F$. This implies that $e M \subseteq f^{-1}(F)$. Thus $f^{-1}(F)=e M$. Therefore, M is an F-inverse split module.

The next example shows that there is an F-CS-Rickart module which is not an F - \mathcal{K}-nonsingular module.
Example 3.1.21. From Example 3.1.19, let $M=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right)$. A submodule $K=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & n \mathbb{Z}\end{array}\right)$ is a fully invariant submodule of M but is not a direct summand of M. By Lemma 3.1.18, M is not a K-inverse split module. Note that K is an essential submodule of M so that any submodule of M containing K is also an essential submodule of M applying Proposition 2.2.3. Thus M is a K-CS-Rickart module. By Theorem 3.1.20, M is not a $K-\mathcal{K}$-nonsingular module.

Observe from the definition that an F-CS-Rickart module M has a direct summand depending on each inverse image of F. In fact, there is a submodule N of M such that $M=N \oplus K$ where the inverse image of F is essential in N. Next, we focus on the inverse image of the identity endomorphism which is equal to F in the following result.

Theorem 3.1.22. If M is an F-CS-Rickart module, then $M=N \oplus K$ where F is an essential submodule of N and K is a CS-Rickart module. The converse holds if N is a fully invariant submodule of M.

Proof. First, assume that M is an F-CS-Rickart module. Then $F=1_{S}^{-1}(F) \leq_{\text {ess }} N$ for some $N \leq{ }^{\oplus} M$. So there is a submodule K of M such that $M=N \oplus K$. Since $K \leq{ }^{\oplus} M$ and M is an F-CS-Rickart module, K is a $(K \cap F)$-CS-Rickart module by applying Theorem 3.1.13. Thus K is a CS-Rickart module because $K \cap F=0$

To show that the converse is valid, assume that $M=N \oplus K$ where $F \leq_{\text {ess }} N$, K is a CS-Rickart module and N is a fully invariant submodule of M. Let $f \in \operatorname{End}(M)$ and $\pi_{K}: M \rightarrow K$ be the projection homomorphism. Then
$\left.\pi_{K} f\right|_{K} \in \operatorname{End}(K)$ and $f^{-1}(N)=N \oplus \operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right)$ by Proposition 2.1.11. Since K is a CS-Rickart module, $\operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right) \leq_{\text {ess }} K^{\prime}$ for some direct summand K^{\prime} of K. This forces that $N \oplus K^{\prime}$ is a direct summand of M and

$$
f^{-1}(F) \leq_{e s s} f^{-1}(N)=N \oplus \operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right) \leq_{e s s} N \oplus K^{\prime}
$$

Hence $f^{-1}(F) \leq_{\text {ess }} N \oplus K^{\prime}$. Therefore, M is an F-CS-Rickart module.
Now, F-CS-Rickart modules having two direct summands are considered.
Proposition 3.1.23. For every indecomposable F-CS-Rickart module M, either M is a CS-Rickart module or F is an essential submodule of M.

Proof. Assume M is an indecomposable F-CS-Rickart module. Then $M=N \oplus K$ where $F \leq_{\text {ess }} N$ and K is a CS-Rickart module. Since M is an indecomposable module, $N=0$ or $N=M$. In case $N=0$, it follows that $F=0$ so that M is a CS-Rickart module; otherwise, $N=M$, leading to $F \leq_{\text {ess }} M$. Therefore, either M is a CS-Rickart module or $F \leq_{\text {ess }} M$.

Recall that M is a CS-Rickart module if and only if M is a 0-CS-Rickart module. Moreover, we gave an example of F-CS-Rickart modules which is not a CS-Rickart module in Example 3.1.4, likewise, we provided an example of CSRickart modules which is not an F-CS-Rickart module in Example 3.1.5. So we are interested in studying when an F-CS-Rickart module is a CS-Rickart module, as well as, a CS-Rickart module is an F-CS-Rickart module where $F \neq 0$. The following series of propositions provide relationships between F-CS-Rickart modules and CS-Rickart modules.

Proposition 3.1.24. If M is an F-CS-Rickart module and $\operatorname{ker} f$ is an essential submodule of $f^{-1}(F)$ for any $f \in \operatorname{End}(M)$ which is not a monomorphism, then M is a CS-Rickart module.

Proof. Assume that M is an F-CS-Rickart module and $\operatorname{ker} f \leq_{\text {ess }} f^{-1}(F)$ for any $f \in \operatorname{End}(M)$ which is not a monomorphism. Let $f \in \operatorname{End}(M)$. Then $f^{-1}(F) \leq_{\text {ess }} \quad M^{\prime}$ for some direct summand M^{\prime} of M. Thus $\operatorname{ker} f \leq_{\text {ess }} \quad M^{\prime}$. Therefore, M is a CS-Rickart module.

Proposition 3.1.25. If M is a CS-Rickart module and F is an essential submodule of M^{\prime} for some fully invariant direct summand M^{\prime} of M, then M is an F-CS-Rickart module.

Proof. Assume that M is a CS-Rickart module and $F \leq_{\text {ess }} M^{\prime}$ for some fully invariant direct summand M^{\prime} of M. Then $M=N \oplus K$ where K is a CS-Rickart module. As a consequence of the converse of Theorem 3.1.22, M is an F-CSRickart module.

From Theorem 3.1.22, we obtain that if M is an F-CS-Rickart module, then $M=N \oplus K$ where $F \leq_{\text {ess }} N$ and K is a CS-Rickart module; in addition, the converse of this theorem holds if $N \leq_{\text {fully }} M$. One can see that being fully invariant submodule of M^{\prime} is a necessary condition to force M to be an F-CSRickart module. So the inverse images of F which are essential submodules of a fully invariant direct summand are investigated.

Definition 3.1.26. A module M is a strongly F-CS-Rickart module if for any $f \in$ End (M; there is a fully invariant direct summand M^{\prime} of M such that $f^{-1}(F)$ is an essential submodule of M^{\prime}.

It is clear that strongly F-CS-Rickart modules and F-inverse split modules are F-CS-Rickart modules shown in the following diagram.

Next example presents a module M which is an F-CS-Rickart module but is not an F-inverse split module and not a strongly F-CS-Rickart module.

Example 3.1.27. Let $M=\mathbb{Z}_{2} \oplus \mathbb{Z}_{8}$ and $N=\overline{0} \oplus\langle\overline{2}\rangle$ given in Example 3.1.3. Then M is an N-CS-Rickart module and M is not an N-inverse split module. Moreover,
let $f=\left(\begin{array}{cc}f_{1} & g_{1}^{\prime} \\ f_{0}^{\prime} & g_{2}\end{array}\right) \in \operatorname{End}(M)$ where f_{1} is the identity homomorphism, $f_{0}^{\prime}(\bar{x})=\overline{0}$, $g_{1}^{\prime}(\bar{y})=\bar{y}$ and $g_{2}(\bar{y})=\overline{2 y}$ for all $\bar{x} \in \mathbb{Z}_{2}$ and $\bar{y} \in \mathbb{Z}_{8}$. Then $f^{-1}(N)=(\overline{1}, \overline{1}) \mathbb{Z}$ which is a direct summand of M but is not a fully invariant submodule of M. Note that submodules of M containing $f^{-1}(N)$ are $(\overline{1}, \overline{1}) \mathbb{Z}$ and M. Since $(\overline{1}, \overline{1}) \mathbb{Z}$ is a direct summand of M, it is not an essential submodule of M by applying Proposition 2.2.2. We can conclude that $f^{-1}(F)$ is not an essential submodule of all fully invariant direct summands of M. Thus M is not a strongly N-CS-Rickart module.

Likewise Theorem 3.1.13, we investigate that a direct summand of a strongly F-CS-Rickart module is also a strongly F^{\prime}-CS-Rickart module for some fully invariant submodule F^{\prime} of this direct summand.

Lemma 3.1.28. Let M be a strongly F-CS-Rickart module. Then N is a strongly ($N \cap F$)-CS-Rickart module for any direct summand N of M.

Proof. The proof is similar to one of Theorem 3.1.13. Let N be a direct summand of M. Then there is a submodule K of M such that $N \oplus K=M$. Let $f \in \operatorname{End}(N)$. Thus $f \oplus 0_{K} \in \operatorname{End}(M)$ and

$$
f^{-1}(N \cap F) \oplus K=\left(f \oplus 0_{K}\right)^{-1}(F)
$$

Since M is a strongly F-CS-Rickart module, $\left(f \oplus 0_{K}\right)^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some fully invariant direct summand M^{\prime} of M. So $M^{\prime}=\left(N \cap M^{\prime}\right) \oplus K$ and $N \cap M^{\prime}$ is a fully invariant direct summand of N by Proposition 2.1.8 (i). This forces that $f^{-1}(N \cap F) \leq_{\text {ess }} N \cap M^{\prime}$. Therefore, N is a strongly $(N \cap F)$-CS-Rickart module.

In the following theorem, we focus on the inverse image of the identity endomorphism which is equal to F and is an essential submodule of some direct summand of M. So each F-CS-Rickart module can be written as a direct sum depending on F. We also provide characterizations of strongly F-CS-Rickart modules.

Theorem 3.1.29. The following statements are equivalent.
(i) M is a strongly F-CS-Rickart module.
(ii) $M=N \oplus K$ where F is an essential submodule of a fully invariant submodule N of M and K is a strongly CS-Rickart module.
(iii) M is an F-CS-Rickart module and every direct summand of M containing F is a fully invariant submodule.
(iv) $M=N \oplus K$ where F is an essential submodule of a fully invariant submodule N of M and, for any $f \in \operatorname{End}(M), f^{-1}(F) \cap K$ is an essential submodule of a fully invariant direct summand of K.

Proof. (i) \rightarrow (ii) Assume (i). Then $M=N \oplus K$ where $F=1^{-1}(F) \leq_{\text {ess }} N$ for some fully invariant direct summand N of M. Thus K is a strongly CS-Rickart module by Lemma 3.1.28 because $K \leq \oplus M$ and $K \cap F=0$.
(ii) \rightarrow (i) The proof is similar to the proof of the converse of Theorem 3.1.22. Assume (ii). Let $f \in \operatorname{End}(M)$. Since $N \leq$ fully M, by Proposition 2.1.11, $f^{-1}(N)=$ $N \oplus \operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right)$. Since K is a strongly CS-Rickart module, $\operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right) \leq_{\text {ess }} K^{\prime}$ for some fully invariant direct summand K^{\prime} of K. Thus $f^{-1}(F) \leq_{\text {ess }} f^{-1}(N)=$ $N \oplus \operatorname{ker}\left(\left.\pi_{K} f\right|_{K}\right) \leq_{\text {ess }} N \oplus K^{\prime}$ and $N \oplus K^{\prime}$ is a fully invariant direct summand of M.
(i) \rightarrow (iii) Assume (i). Then M is an F-CS-Rickart module. Next, let N be a direct summand of M and $F \subseteq N$. Then there is $e^{2}=e \in \operatorname{End}(M)$ such that $N=e M$. Let $x \in e M$. Then $(1-e) x=(1-e) e x=0 \in F$. So $x \in(1-e)^{-1}(F)$. On the other hand, let $x \in(1-e)^{-1}(F)$. Then $(1-e) x \in F \subseteq e M$. This implies that $(1-e) x=0$, so $x \in \operatorname{ker}(1-e)=e M$. Thus $e M=(1-e)^{-1}(F)$. By (i), $N=(1-e)^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some fully invariant direct summand M^{\prime} of M. Thus $N=M^{\prime}$ because N is both an essential submodule and a direct summand of M^{\prime}.
(iii) \rightarrow (i) Assume (iii). For any $f \in \operatorname{End}(M)$, we have $F \subseteq f^{-1}(F) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M. By assumption $M^{\prime} \leq_{f u l l y} M$. Thus M is a strongly F-CS-Rickart module.
(ii) \rightarrow (iv) Assume (ii). Let $f \in \operatorname{End}(M)$ and $K=e M$ for some $e^{2}=$
$e \in \operatorname{End}(M)$. Then $f^{-1}(F) \leq_{\text {ess }} f^{-1}(N)$. So $f^{-1}(F) \cap K \leq_{\text {ess }} f^{-1}(N) \cap K$. From Proposition 2.1.11, $f^{-1}(N) \cap K=f^{-1}(N) \cap e M=\operatorname{ker} e f e$. Since K is a strongly CS-Rickart module, ker efe $\leq_{\text {ess }} K^{\prime}$ for some fully invariant direct summand K^{\prime} of K. Thus $f^{-1}(F) \cap K \leq_{\text {ess }} K^{\prime}$.
(iv) \rightarrow (ii) Assume (iv). Let $h \in \operatorname{End}(K)$. Then $\left.0\right|_{N} \oplus h \in \operatorname{End}(M)$. Applying Lemma 2.1.10, $\left(0_{\left.\right|_{N}} \oplus h\right)^{-1}(F) \cap K=h^{-1}(K \cap F)=\operatorname{ker} h$ because $K \cap F=0$. By assumption, $\left(0_{l_{N}} \oplus h\right)^{-1}(F) \cap K \leq_{\text {ess }} K^{\prime}$ for some fully invariant direct summand K^{\prime} of K. This implies ker $h \leq_{\text {ess }} K^{\prime}$. Therefore, K is a strongly CS-Rickart module.

In the following example, we provide fully invariant submodules F and F^{\prime} of M such that M is both a strongly F-CS-Rickart module and an F-inverse split module; in addition, M is a strongly F^{\prime}-CS-Rickart module but M is not an F^{\prime}-inverse split module. We apply the previous theorem to prove next example.

Example 3.1.30. Let $M=\left(\begin{array}{ll}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & \mathbb{Z}\end{array}\right)$ be a module over itself. Then the submodules $N=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & 0\end{array}\right)$ and $K=\left(\begin{array}{cc}\mathbb{Z}_{2} & \mathbb{Z}_{2} \\ 0 & n \mathbb{Z}\end{array}\right)$ are fully invariant submodules of M. So $M=N \oplus L$ where $L=\left(\begin{array}{ll}0 & 0 \\ 0 & \mathbb{Z}\end{array}\right)$ and $L \cong \mathbb{Z}$ which is a Rickart module. Since N is a fuliy invariant direct summand of M, we obtain that M is both strongly N-CS-Rickart and N-inverse split form Theorem 3.1.29 and Proposition 3.1.18, respectively. Note that K is not a direct summand of M but $K \leq_{\text {ess }} M$. By Theorem 3.1.29, M is a strongly K-CS-Rickart module but M is not a K-inverse split module.

3.2 Relatively F-CS-Rickart modules

In this section, we extend $\operatorname{End}(M)$ in F-CS-Rickart modules to $\operatorname{Hom}(P, M)$ where P and M are modules and M is not necessary an F-CS-Rickart module. This leads us to define a relatively F-CS-Rickart module. Moreover, we show that a direct
summand of relatively F-CS-Rickart modules is also a relatively F-CS-Rickart module.

Definition 3.2.1. Let P, M be modules and F be a fully invariant submodule of M. Then P is an F-CS-Rickart module relative to M (relatively F-CS-Rickart module) if for any $f \in \operatorname{Hom}(P, M)$, there is a direct summand P^{\prime} of P such that $f^{-1}(F) \leq_{\text {ess }} P^{\prime}$.

It is clear that M is an F-CS-Rickart module if and only if M is an F-CSRickart module relative to M.

Equivalent to Theorem 3.1.13, we examine direct summands of relatively F -CS-Rickart modules.

Theorem 3.2.2. Let P, M be modules and F be a fully invariant submodule of M. Then P is an F-CS-Rickart module relative to M if and only if for any direct summand P_{1} of P and any direct summand M_{1} of M, P_{1} is an $\left(M_{1} \cap F\right)$-CSRickart module relative to M_{1}.

Proof. The sufficiency is obvious because P and M are direct summands of itself.
Assume that P is an F-CS-Rickart module relative to M. Let P_{1} and M_{1} be direct summands of P and M, respectively. Then $P_{1} \oplus P_{2}=P$ for some submodule P_{2} of P. Let $g \in \operatorname{Hom}\left(P_{1}, M_{1}\right)$. Then $f:=g \oplus 0_{P} \in \operatorname{Hom}(P, M)$. So $f^{-1}(F)=g^{-1}\left(M_{1} \cap F\right) \oplus P_{2}$. Since P is an F-CS-Rickart module relative to M, $f^{-1}(F) \leq_{\text {ess }} P^{\prime}$ for some direct summand P^{\prime} of P. It follows that $P^{\prime}=\left(P_{1} \cap P^{\prime}\right) \oplus$ P_{2} because $P_{2} \subseteq f^{-1}(F) \subseteq P^{\prime}$. Hence $g^{-1}\left(M_{1} \cap F\right) \oplus P_{2} \leq_{\text {ess }}\left(P_{1} \cap P^{\prime}\right) \oplus P_{2}$ and $P_{1} \cap P^{\prime}$ is a direct summand of P_{1}. Thus $g^{-1}\left(M_{1} \cap F\right) \leq_{\text {ess }} P_{1} \cap P^{\prime}$ by Proposition 2.2.7. Therefore, P_{1} is an $\left(M_{1} \cap F\right)$-CS-Rickart module relative to M_{1}.

If $P=M$ in Theorem 3.2.2, we obtain the following corollary.
Corollary 3.2.3. The following statements are equivalent.
(i) M is an F-CS-Rickart module.
(ii) For any direct summands N and K of M, N is an ($K \cap F)$-CS-Rickart module relative to K.
(iii) For any direct summands N and K of M, for any $f \in \operatorname{Hom}(M, K)$ there is a direct summand N^{\prime} of N such that $\left.f\right|_{N} ^{-1}(K \cap F) \leq_{\text {ess }} N^{\prime}$.

Proof. (i) \leftrightarrow (ii) This follows from Theorem 3.2.2 because M is an F-CS-Rickart module relative to M.
(ii) \rightarrow (iii) Assume (ii). Let N and K be direct summands of M and $f \in$ $\operatorname{Hom}(M, K)$. Then $\left.f\right|_{N} \in \operatorname{Hom}(N, K)$. So $\left.f\right|_{N} ^{-1}(K \cap F) \leq_{\text {ess }} N^{\prime}$ for some direct summand N^{\prime} of N by the definition of relatively F-CS-Rickart modules.
(iii) \rightarrow (i) This is clear because $N=M=K$.

$3.3 Z(M), Z_{2}(M)$ and $Z^{*}(M)$-CS-Rickart Modules

In this section, we focus on particular fully invariant submodules which are $Z(M)$, $Z_{2}(M)$ and $Z^{*}(M)$. The first subsection shows relationship between $Z(M)$-CSRickart modules and $Z_{2}(M)$-CS-Rickart modules. The other subsection shows specific properties of $Z^{*}(M)$-CS-Rickart modules.

3.3.1 $Z(M)$ and $Z_{2}(M)$-CS-Rickart modules

Recall that Lam provided, in $[10]$, that

$$
Z(M)=\left\{x \in M \mid\left(0:_{R} x\right) \leq_{e s s} R\right\}
$$

is the singular submodule of M and

$$
Z_{2}(M)=\left\{x \in M \mid\left(Z(M):_{R} x\right) \leq_{e s s} R\right\}
$$

is the second singular submodule of M.
A module M is a singular module if $Z(M)=M$, and a nonsingular module if $Z(M)=0$, given in [10]. Lam showed that the submodules $Z(M)$ and $Z_{2}(M)$ are fully invariant submodules of M; in addition, $Z_{2}(M)$ is a maximal essential extension of $Z(M)$, that is, $Z(M) \leq_{\text {ess }} Z_{2}(M)$ and for any submodule N of M, if $Z(M) \leq_{\text {ess }} N$ and $Z_{2}(M) \subseteq N$, then $Z_{2}(M)=N$.

By Proposition 3.1.2, $Z(M)$-inverse split modules are $Z(M)$-CS-Rickart modules; in addition, $Z_{2}(M)$-inverse split modules are $Z_{2}(M)$-CS-Rickart modules.

However, we can show that $Z_{2}(M)$-CS-Rickart modules are $Z_{2}(M)$-inverse split modules in the Eollowing proposition.

Lemma 3.3.1. For any $f \in \operatorname{End}(M), f^{-1}\left(Z_{2}(M)\right)$ is a maximal essential extension of $f^{-1}(Z(M))$.

Proof. Let $f \in \operatorname{End}(M)$. Note that $Z_{2}(M)$ is a maximal essential extension of $Z_{2}(M)$. Thus $f^{-1}(Z(M)) \leq_{\text {ess }} f^{-1}\left(Z_{2}(M)\right)$ from Proposition 2.2.6. Next, let N be a submodule of M such that $f^{-1}(Z(M)) \leq_{\text {ess }} N$ and $f^{-1}\left(Z_{2}(M)\right) \subseteq N$. Let $x \in N$. If $f(x)=0$, then $\left(Z(M):_{R} f(x)\right)=R \leq_{\text {ess }} R$ so that $f(x) \in Z_{2}(M)$, i.e., $x \in f^{-1}\left(Z_{2}(M)\right)$. Assume that $f(x) \neq 0$. Let $a \in R$ and $a \neq 0$. If $f(x) a=$ $0 \in Z(M)$, then $a l=a \in(Z(M) \cdot R f(x))$. Assume that $f(x) a \neq 0$. Then $x a \neq 0$ and $x a \in N$. Since $f^{-1}(Z(M)) \leq N$, there is $r \in R$ such that $0 \neq$ xar $\in f^{-1}(Z(M))$. So $f(x)$ ar $=f(x a r) \in Z(M)$. Then ar $\in\left(Z(M):_{R} f(x)\right)$. This implies that $\left(Z(M):_{R} f(x)\right) \leq_{\text {ess }} R$. Thus $f(x) \in Z_{2}(M)$ so that $x \in$ $f^{-1}\left(Z_{2}(M)\right)$. Hence $f^{-1}\left(Z_{2}(M)\right)=N$. Therefore, $f^{-1}\left(Z_{2}(M)\right)$ is a maximal essential extension of $f^{-1}(Z(M))$.

Proposition 3.3.2. A module M is a $Z_{2}(M)$-CS-Rickart module if and only if M is a $Z_{2}(M)$-inverse split module.

Proof. The necessary condition is clear from Proposition 3.1.2.
Next, assume that M is a $Z_{2}(M)$-CS-Rickart module. Let $f \in \operatorname{End}(M)$. Then $f^{-1}\left(Z_{2}(M)\right) \leq_{\text {ess }} M^{\prime}$ for some direct summand M^{\prime} of M. Since $f^{-1}\left(Z_{2}(M)\right)$ is a maximal essential extension of $f^{-1}(Z(M))$, we obtain that $f^{-1}\left(Z_{2}(M)\right)=M^{\prime}$. Therefore, M is a $Z_{2}(M)$-CS-Rickart module.

Unger, Halicioglu and Harmanci, in [17], presented that $Z(M)$-inverse split modules are $Z_{2}(M)$-inverse split modules and the converse is not true in general. A ring R is a right singular ring if $Z(R)=R$ as a right R-module, and a right nonsingular ring if $Z(R)=0$.

Lemma 3.3.3. ([17], Proposition 5.5) If M is a $Z(M)$-inverse split module, then M is a $Z_{2}(M)$-inverse split module. The converse holds if R is a right nonsingular ring.

Next, we provide a relationship between $Z(M)$-CS-Rickart modules and $Z_{2}(M)$ -CS-Rickart modules. Note that Lam showed in [10] that $Z(M) \cap N=Z(N)$ and $Z_{2}(M) \cap N=Z_{2}(N)$ for any submodule N of M.

Proposition 3.3.4. A module M is a $Z(M)$-CS-Rickart module if and only if M is a $Z_{2}(M)$-CS-Rickart module.

Proof. First, assume that M is a $Z(M)$-CS-Rickart module. Then $M=N \oplus K$ where $Z(M) \leq_{\text {ess }} N$ and K is a CS-Rickart module by applying Theorem 3.1.22. Thus $Z(M)=Z(M) \cap N=Z(N)$, so $Z(N) \leq_{\text {ess }} N$. Hence $Z_{2}(N)=N$ because $Z_{2}(N)$ is a maximal essential extension of $Z(N)$. Clearly, $Z_{2}(N) \subseteq Z_{2}(M)$. Since $Z(M) \subseteq N \subseteq Z_{2}(M)$ and $Z(M) \leq_{\text {ess }} Z_{2}(M)$, we obtain $N \leq_{\text {ess }} Z_{2}(M)$ by applying Proposition 2.2.3. Thus $N \leq{ }^{\oplus} Z_{2}(M)$ because $N \leq{ }^{\oplus} M$ and $N \subseteq$ $Z_{2}(M)$. Since N satisfies both $N \leq$ ess $Z_{2}(M)$ and $N \leq Z_{2}(M)$, it follows that $N=Z_{2}(M)$. Thus $M=Z_{2}(M) \oplus K$ where $Z_{2}(M) \leq_{\text {ess }} Z_{2}(M)$ and $Z_{2}(M)$ is a fully invariant direct summand of M and K is a CS-Rickart module. Therefore, M is a $Z_{2}(M)$-CS-Rickart module from the converse of Theorem 3.1.22.

Conversely, assume that M is a $Z_{2}(M)$-CS-Rickart module. Let $f \in \operatorname{End}(M)$. Then there is a direct summand M^{\prime} of M such that $f^{-1}\left(Z_{2}(M)\right) \leq_{\text {ess }} M^{\prime}$. Thus $f^{-1}\left(Z_{2}(M)\right)=M^{\prime}$ from Lemma 3.3.1 so that $f^{-1}(Z(M)) \leq_{\text {ess }} M^{\prime}$. Therefore, M is a $Z(M)$-CS-Rickart module.

The following is a diagram presenting a relationship among $Z(M)$-inverse split modules, $Z_{2}(M)$-inverse split modules, $Z(M)$-CS-Rickart modules and $Z_{2}(M)$-CSRickart modules.

3.3.2 $Z^{*}(M)$-CS-Rickart modules

Let $E M$ denote the injective hull of M. Unger, Halicioglu and Harmanci defined in [18] that

$$
Z^{*}(M)=\{m \in M \mid m R \ll E M\}
$$

is the cosingular submodule of M.
A module M is a cosingular module if $Z^{*}(M)=M$, and a noncosingular module if $Z^{*}(M)=0$ provided in [18]. Unger, Halicioglu and Harmanci also presented that the consingular submodule $Z^{*}(M)$ is a fully invariant submodule of M and $Z^{*}(M) \cap N=Z^{*}(N)$ for any submodule N of M. In addition, a ring R is a right cosingular ring if $Z^{*}(R)=R$ as a right R-module, and a right nonsingular ring if $Z^{*}(R)=0$.

Proposition 3.3.5. If M is a $Z^{*}(M)$-CS-Rickart module, then $M=N \oplus K$ where $Z^{*}(M) \leq_{\text {ess }} N$ and K is a noncosingular CS-Rickart module.

Proof. From Theorem 3.1.22, $M=N \oplus K$ where $Z^{*}(M) \leq_{\text {ess }} N$ and K is a CS-Rickart module. As $Z^{*}(K)=Z^{*}(M) \cap K=0$, so K is a noncosingular module.

Next, we consider when M is both an indecomposable module and a $Z^{*}(M)$ -CS-Rickart module.

Proposition 3.3.6. If M is an indecomposable $Z^{*}(M)$-CS-Rickart module, then either M is a noncosingular CS-Rickart module or $Z^{*}(M) \leq_{\text {ess }} M$.

Proof. Assume that M is an indecomposable $Z^{*}(M)$-CS-Rickart module. Then $M=N \oplus K$ where $Z^{*}(M) \leq_{\text {ess }} N$ and K is a CS-Rickart module. Since M is an indecomposable module, $N=0$ or $N=M$. If $N=0$, then $Z^{*}(M)=0$. So M is a noncosingular CS-Rickart module. If $N=M$, then $Z^{*}(M) \leq_{\text {ess }} M$. Therefore, either M is a noncosingular CS-Rickart module or $Z^{*}(M) \leq_{\text {ess }} M$.

3.4 Projective F-CS-Rickart Modules

Throughout this section, let P and M be modules, $S=\operatorname{End}(M)$ and $\operatorname{Hom}(P, M)$ be the set of all homomorphisms from P into M. For each submodule N of M, Lam provided in [10],

$$
N^{*}=\left\{x \in M \mid\left(N:_{R} x\right) \leq_{e s s} R\right\} .
$$

It is clear that $N \subseteq N^{*}$. Note that $\{0\}^{*}=Z(M)$ and $(Z(M))^{*}=Z_{2}(M)$.
In current section, we investigate being an F-CS-Rickart module of a projective module. Moreover, we provide a notion of right F-CS-Rickart ring R where F is a fully invariant submodule of the right module R over itself. Recall that all rings are projective right modules over itself.

The following lemma shows a nice relationship on projective modules between essential submodules and singular modules.

Lemma 3.4.1. ([13], Lemma 2.10) Let P be a projective module and K be a submodule of M. Then K <ess P if and only if P / K is a singular module. In particular, if P is both a projective module and a singular module, then $P=0$.

For a submodule N of M, we provide a relationship between N^{*} and singular submodule of M / N.

Proposition 3.4.2. Let N and L be submodules of M and $N \subseteq L$. Then $L \subseteq N^{*}$ if and only if L / N is a singular module.

Proof. First, assume that $L \subseteq N^{*}$. Let $x+N \in L / N$ where $x \in L$. Then $\left(N:_{R} x\right) \leq_{\text {ess }} R$ because $L \subseteq N^{*}$. Thus $\left(\{N\}:_{R} x+N\right)=\left(N:_{R} x\right) \leq_{e s s} R$. Hence $x+N \in Z(L / N)$. Therefore, L / N is a singular module

Next, assume that L / N is a singular module. Then $Z(L / N)=L / N$. Let $x \in L$. Then $x+N \in Z(L / N)$, i.e., $\left(\{N\}:_{R} x+N\right) \leq_{\text {ess }} R$. Note that $\left(N:_{R} x\right)=\left(\{N\}:_{R} x+N\right)$. Thus $\left(N:_{R} x\right) \leq_{e s s} R$ which implies that $x \in N^{*}$. Therefore, $L \subseteq N^{*}$.

Before we present the further main point of this section, the helpful properties are provided.

Proposition 3.4.3. Let P and M be modules and F be a fully invariant submodule of M. Let $f: P \rightarrow M$ be a homomorphism and $f^{-1}(F) \subseteq e P$ for some $e^{2}=e \in$ $\operatorname{End}(P)$. Then the following statements hold:
(i) $f P=f(1-e) P \oplus f e P$,
(ii) $(f P+F) / F=(f(1-e) P+F) / F \oplus(f e P+F) / F$,
(iii) $(f(1-e) P+F) / F \cong(1-e) P \cong f(1-e) P$, and
(iv) $e P / f^{-1}(F) \cong(f e P+F) / F$.

Proof. Note that $P=(1-e) P \oplus e P$.
(i) Notice that $f P=f(1-e) P+f e P$. Since $\operatorname{ker} f \subseteq f^{-1}(F) \subseteq e P$, it follows that $f P=f(1-e) P \oplus f e P$.
(ii) It is clear that $(f P+F) / F=(f(1-e) P+F) / F+(f e P+F) / F$. Let $m+F \in(f(1-e) P+F) / F \cap(f e P+F) / F$. Then $m+F=f(1-e) x+F=f e y+F$ for some $x, y \in P$. Thus $f((1-e) x-e y)=f(1-e) x-f e y \in F$. Then $(1-e) x-e y \in f^{-1}(F) \subseteq e P$, so $(1-e) x \in(1-e) P \cap e P=0$. This implies that $m+F=f(1-e) x+F=F$. Therefore, $(f P+F) / F=(f(1-e) P+F) / F \oplus$ $(f e P+F) / F$.
(iii) Define $\phi:(1-e) P \rightarrow(f(1-e) P+F) / F$ by $\phi(x)=f(x)+F$ for all $x \in(1-e) P$. It is clear that ϕ is well-defined. Then, ϕ is an epimorphism and

$$
\begin{aligned}
\operatorname{ker} \phi & =\{x \in(1-e) P \mid \phi(x)=F\}=\{x \in(1-e) P \mid f(x)+F=F\} \\
& =\{x \in(1-e) P \mid f(x) \in F\}=\left\{x \in(1-e) P \mid x \in f^{-1}(F)\right\} \\
& =(1-e) P \cap f^{-1}(F)=0 .
\end{aligned}
$$

By the first isomorphism theorem, $(1-e) P \cong(f(1-e) P+F) / F$. Moreover, define $\theta:(1-e\rangle P \rightarrow f(1-e) P$ by $\theta(x)=f(x)$ for all $x \in(1-e) P$. The proof is similar to the first part, we can conclude that $(1-e) P \cong f(1-e) P$.
(iv) Define $\beta: e P \rightarrow(f e P+F) / F$ by $\beta(x)=f(x)+F$ for all $x \in e P$. Then β is an epimorphism and

$$
\begin{aligned}
\operatorname{ker} \beta & =\{x \in e P \mid \beta(x)=F\}=\{x \in e P \mid f(x)+F=F\} \\
& =\{x \in e P \mid f(x) \in F\}=\left\{x \in e P \mid x \in f^{-1} F\right\} \\
& =e P \cap f^{-1}(F)=f^{-1}(F) .
\end{aligned}
$$

By the first isomorphism theorem, $e P / f^{-1}(F) \cong(f e P+F) / F$.
For a relatively F-CS-Rickart module P, we obtain that the inverse image of F is essential in a direct summand of P. Note that any direct summands of projective modules are projective modules. Hence if P is both a projective module and an relatively F-CS-Rickart module, then the inverse image of F is essential in a direct summand which is also a projective module. Thus, we are interested in studying the image of each relatively F-CS-Rickart projective module.

Theorem 3.4.4. Let P be a projective module, M be a module with a fully invariant submodule F. Then the following statements are equivalent.
(i) P is an F-CS-Rickart module relative to M.
(ii) For any $f \in \operatorname{Hom}(P, M),(f P+F) / F=N / F \oplus K / F$ where N / F is a projective module and K / F is a singular module.

Proof. (i) \rightarrow (ii) Assume (i). Let $f \in \operatorname{Hom}(P, M)$. Then $f^{-1}(F) \leq_{\text {ess }} e P$ for some $e^{2}=e \in \operatorname{End}(P)$. So $P=e P \oplus(1-e) P$ and by Proposition 3.4.3 (ii),

$$
\left({ }_{5}^{f} P+F\right) / F=(f(1-e) P+F) / F \oplus(f e P+F) / F
$$

From Proposition 3.4.3 (iv), we also obtain that $(f(1-e) P+F) / F \cong(1-e) P$ which is a projective module and $(f e P+F) / F \cong e P / f^{-1}(F)$ which is a singular module because $f^{-1}(F) \leq_{\text {ess }} e P$.
(ii) \rightarrow (i) Assume (ii). Let $f \in \operatorname{Hom}(P, M)$. Then $(f P+F) / F=N / F \oplus K / F$ where N / F is a projective module and K / F is a singular module. Define $g: P \rightarrow$ $(f P+F) / F$ by $g(x)=f(x)+F$ for any $x \in P$. Then g is an epimorphism and ker $g=f^{-1}(F)$. Since N / F is a projective module and πg is an epimorphism where π is the projection homomorphism from $(f P+F) / F \rightarrow N / F$, applying Proposition 2.4.4, leads to ker $\pi g=e P$ for some $e^{2}=e \in \operatorname{End}(P)$. Next, define $h: e P \rightarrow K / F$ by $h(x)=f(x)+F$ for any $x \in e P$. Then ker $h=e P \cap f^{-1}(F)=$ $f^{-1}(F)$. So $e P / f^{-1}(F) \cong K / F$ which is a singular module. This implies that $f^{-1}(F) \leq_{\text {ess }} e P$. Therefore, P is an F-CS-Rickart module relative to M.

The next corollary is an immediate consequence of Theorem 3.4.4 in case $P=M$.

Corollary 3.4.5. Let M be a projective module. Then the following statements are equivalent.
(i) M is an F-CS-Rickart module.
(ii) For any $f \in \operatorname{End}(M),(f M+F) / F=N / F \oplus K / F$ where N / F is a projective module and K / F is a singular module.

The following corollary is a consequence of Corollary 3.4 .5 when $F=0$.
Corollary 3.4.6. ([2], Proposition 3.3) Let M be a projective module. Then M is a CS-Rickart module if and only if every $f \in \operatorname{End}(M), f M=N \oplus K$ where N is a projective module and K is a singular module.

Next, we investigate the image of each relatively F-CS-Rickart projective module.

Proposition 3.4.7. Let P be a projective module, M be a module with a fully invariant submodule F. If P is an F-CS-Rickart module relative to M, then for any $f \in \operatorname{Hom}(P, M), f P=N \oplus K$ where N is a projective module and $K \subseteq F^{*}$. Proof. Assume that P is an F-CS-Rickart module relative to M. Moreover, let $f \in \operatorname{Hom}(P, M)$. Then $f^{-1}(F) \leq_{\text {ess }} e P$ for some $e^{2}=e \in \operatorname{End}(P)$. Applying Proposition 3.4.3 (i), $f P=f(1-e) P \oplus f e P$. Observe that $f(1-e) P \cong(1-e) P$ which is a projective module. Moreover, from Proposition 3.4.3 (iv), $(f e P+$ $F) / F \cong e P / f^{-1}(F)$ which is a singular module because $f^{-1}(F) \leq_{\text {ess }} e P$. Since $(f e P+F) / F$ is a singular module, $f e P+F \subseteq F^{*}$ by Proposition 3.4.2. Therefore, $f e P \subseteq F^{*}$ because $F \subseteq F^{*}$.

Next, a relationship between a projective module and an F-CS-Rickart module via the idea of relatively F-CS-Rickart modules when $P=M$ is examined.

Corollary 3.4.8. Let M be a projective module. If M is an F-CS-Rickart module, then, for any $f \in \operatorname{End}(M), f M=N \oplus K$ where N is a projective module and $K \subseteq F^{*}$.

Proof. The proof is similar to the proof of Proposition 3.4.7. Assume that M is an F-CS-Rickart module. Let $f \in \operatorname{End}(M)$. Then there is $e^{2}=e \in \operatorname{End}(M)$ such
that $f M=f(1-e) M \oplus f e M$ where $f(1-e) M \cong(1-e) M$ which is a projective module and $f e M \subseteq F^{*}$.

In the proof of Corollary 3.4.8, f(1-e)M is isomorphic to a direct summand of M. So, we are interested in when $f(1-e) M$ is actually a direct summand of M. A module M satisfies C_{2} condition, given in [17], if any submodule N of M such that $N \cong M^{\prime}$ for some direct summand M^{\prime} of M is a direct summand.

Corollary 3.4.9. Let M be a projective module. If M is an F-CS-Rickart module satisfying C_{2} condition, then every $f \in \operatorname{End}(M), f M=e M \oplus K$ where $e^{2}=e \in$ $\operatorname{End}(M)$ and $K \subseteq F^{*}$.

Proof. Assume that M is an F-CS-Rickart module satisfying C_{2} condition. Since $f(1-e) M \cong(1-e) M$ where $(1-e)^{2}=(1-e) \in \operatorname{End}(M)$ and M satisfies C_{2} condition, $f(1-e) M$ is a direct summand of M.

For $a \in R$, we denote l_{a} the module homomorphism from R into R with left multiplication by a, i.e., $l_{a}(r)=a r$ for all $r \in R$.

Proposition 3.4.10. Let R be a ring. Then $R \cong \operatorname{End}(R)$.
Proof. Define $\theta: R \rightarrow \operatorname{End}(R)$ by $\theta(a) \rightarrow l_{a}$ for all $a \in R$. It is clear that θ is well-defined and then is a module homomorphism. Let $f \in \operatorname{End}(R)$. Then $f(1) \in R$ and $l_{f(1)}(r)=f(1) r=f(r)$ for all $r \in R$. So θ is an epimorphism. Moreover,

$$
\begin{aligned}
\operatorname{ker} \theta & =\left\{a \in R \mid \theta(a)=0_{S}\right\}=\left\{a \in R \mid l_{a}=0_{S}\right\} \\
& =\left\{a \in R \mid l_{a}(r)=0_{R}\right\}=\left\{a \in R \mid a r=0_{R} \text { for all } r \in R\right\}=0_{R}
\end{aligned}
$$

where 0_{S} is the zero homomorphism of $\operatorname{End}(R)$ and 0_{R} is the zero element of R. By the first isomorphism theorem, $R \cong \operatorname{End}(R)$.

For now on, we let $S=\operatorname{End}(M)$. Then $\operatorname{End}(S) \cong S$. Recall from Section 3.1 that $F_{S}=\{f \in S \mid f(M) \subseteq F\}$. Then S is a right module over itself and F_{S} is a fully invariant submodule of S so that we apply Proposition 3.4.3 as follows.

Proposition 3.4.11. Let $\theta \in S$ and $\left(F_{S}:_{S} \theta\right) \subseteq e S$ for some $e^{2}=e \in S$. Then the following statements hold:
(i) $\theta S=\theta(1-e) S \oplus \theta e S$,
(ii) $\left(\theta S+F_{S}\right) / F_{S}=\left(\theta(1-e) S+F_{S}\right) / F_{S} \oplus\left(\theta e S+F_{S}\right) / F_{S}$,
(iii) $(\theta(1-e) S+F) / F_{S} \cong(1-e) S \cong \theta(1-e) S$, and
(iv) $e S /\left(F_{S}:_{S} \theta\right) \cong\left(\theta e S+F_{S}\right) / F_{S}$.

Proof. Note that $\theta \in S \cong \operatorname{End}(S)$ and $\left(F_{S}:_{s} \theta\right) \subseteq e S$ for some $e^{2}=e \in S$. We obtain $l_{\theta}: S \rightarrow S$ defined by $l_{\theta}(g)=\theta g$. Observe that

$$
\left(l_{\theta}\right)^{-1}\left(F_{S}\right)=\left\{g \in S \mid l_{\theta}(g) \in F_{S}\right\}=\left\{g \in S \mid \theta g \in F_{S}\right\}=\left(F_{S}: S \theta\right) \subseteq e S
$$

Moreover, $l_{\theta} S=\theta S, l_{\theta}(1-e) S=\theta(1-e) S$ and $l_{\theta}(e) S=\theta e S$. By applying Proposition 3.4.3 and the later statements, we can conclude (i), (ii), (iii) and (iv).

Next, we provide a relationship between projective F-CS-Rickart modules and their endomorphisms. Recall from Section 3.1 that $\Delta_{F}(M)=\{f \in \operatorname{End}(M) \mid$ $\left.f^{-1}(F) \leq_{\text {ess }} M\right\}$. Note that, for any $f \in S=\operatorname{End}(M)$, if there is $e^{2}=e \in S$ such that $f(M) \subseteq e M$, then $f=e f \in e S$.

Theorem 3.4.12. Let M be a projective module. If M is an F-CS-Rickart module, then for any $f \in S,\left(f S+F_{S}\right) / F_{S}=N / F_{S} \oplus K / F_{S}$ where N / F_{S} is a projective module and $K \subseteq \Delta_{F}(M)$.

Proof. Assume that M is an F-CS-Rickart module. Let $f \in S$. Then $F \subseteq$ $f^{-1}(F) \leq_{e s s} e M$ for some $e^{2}=\mathrm{e} \in S$. Note that $\left(F_{S}:_{S} f\right)=\left\{g \in S \mid f g \in F_{S}\right\}=$ $\{g \in S \mid f g(M) \subseteq F\}=\left\{g \in S \mid g(M) \subseteq f^{-1}(F)\right\}$. Since $g(M) \subseteq f^{-1}(F) \subseteq e M$ for each $g \in\left(F_{S}:_{S} f\right)$, it forces that $g=e g \in e S$ so that $\left(F_{S}:_{S} f\right) \subseteq e S$. Applying Proposition 3.4.11, we obtain that $\left(f S+F_{S}\right) / F_{S}=\left(f(1-e) S+F_{S}\right) / F_{S} \oplus(f e S+$ $\left.F_{S}\right) / F_{S}$ and $\left(f(1-e) S+F_{S}\right) / F_{S} \cong(1-e) S$ which is a projective module. Next, define $\phi: e M \rightarrow(f e M+F) / F$ by $\phi(x)=f(x)+F$ for all $x \in e M$. Then ϕ is an epimorphism and $\operatorname{ker} \phi=f^{-1}(F)$, so $e M / f^{-1}(F) \cong(f e M+F) / F \cong$ $M /(f e)^{-1}(F)$. Thus $(f e)^{-1}(F) \leq_{\text {ess }} M$ because $f^{-1}(F) \leq_{\text {ess }} e M$. Therefore, $f e \in \Delta_{F}(M)$ so that $f e S+F_{S} \subseteq \Delta_{F}(M)$.

Proposition 3.4.13. Let M be a projective module. If M is an F-CS-Rickart module, then for every $f \in S, f S=N \oplus K$ where N is a projective right ideal of S and K is a right ideal of S with $K \subseteq \Delta_{F}(M)$.

Proof. The proof follows from Theorem 3.4.12
The next corollary follows from the previous proposition by taking $F=0$. Recall that $\Delta(M)=\left\{f \in \operatorname{End}(M) \mid \operatorname{ker} f \leq_{\text {ess }} M\right\}$.

Corollary 3.4.14. ([2], Proposition 3.3) Let M be a projective module. If M is a CS-Rickart module, then for every $f \in S, f S=N \oplus K$ where N is a projective right ideal of S and K is a right ideal of S with $K \subseteq \Delta(M)$.

Note that I is an ideal of a ring R if and only if I is a fully invariant submodule of R as a right R-module R. Next, we give the definition of a right I-CS-Rickart ring. Since $\operatorname{End}(R) \cong R$, for any $\theta \in \operatorname{End}(R)$, there exists $a \in R$ such that $\theta=l_{a}$ so that $\theta^{-1}(I)=\{r \in R \mid \theta(r) \in I\}=\{r \in R \mid$ ar $\in I\}=\left(I:_{R} a\right)$. As a result, we define a right I-CS-Rickart ring as follows.

Definition 3.4.15. Let I be an ideal of a ring R. Then R is a right I-CS-Rickart ring if for any $a \in R$ there is a direct summand R^{\prime} of R such that $\left(I:_{R} a\right) \leq_{\text {ess }} R^{\prime}$.

A right 0-CS-Rickart ring R is also called a right ACS-ring, given in [13]. The following corollary is obtained from Corollary 3.4.5.

Corollary 3.4.16. Let I be an ideal of a ring R. Then R is a right I-CS-Rickart ring if and only if for any $a \in R,(a R+I) / I=N / I \oplus K / I$ where N / I is a projective right module and K / I is a singular right module.

Let I be an ideal of R and $J(R)$ be the Jacobson radical of R, that is, the intersection of all maximal right ideals of R. A ring R is a right I-semiregular ring, given in [13], if for any $a \in R, a R=e R \oplus A$ where $e^{2}=e \in R$ and $A \subseteq I$ is a right ideal of R; moreover, R is a left I-semiregular ring if for any $a \in R$, $R a=R e \oplus A$ where $e^{2}=e \in R$ and $A \subseteq I$ is a left ideal of R. In particular, A ring R is a semiregular ring if R is a right $J(R)$-semiregular ring and a left
$J(R)$-semiregular ring. A ring R satisfies right C_{2} condition if the R module over itself satisfies C_{2} condition.

Lemma 3.4.17. ([13], Proposition 1.4) Let I be an ideal of R and $I \subseteq J(R)$. Then R is a right I-semiregular ring if and only if R is a left I-semiregular ring.

Lemma 3.4.18. ([13], Proposition 2.3) If R satisfies right C_{2} condition, then $Z(R) \subseteq J(R)$.

Recall that R is a right ACS-ring if for any $a \in R$ there is a direct summand R^{\prime} of R such that $\left(0:_{R} a\right) \leq_{\text {ess }} R^{\prime}$. Nichoson and Yousif characterized right ACS-rings satisfying right C_{2} condition in [13].

Lemma 3.4.19. ([13], Theorem 2.4) The following statements are equivalent.
(i) R is a semiregular ring and $J(R)=Z(R)$.
(ii) R is a right $Z(R)$-semiregular ring.
(iii) For any $a \in R$, there is $e^{2}=e \in R$ such that $a R=e R \oplus K$ where K is a singular module.
(iv) R is a right ACS-ring and every principal projective right ideal of R is a direct summand of R.
(v) R is a right $A C S$-ring satisfying right C_{2} condition.

We now consider when R is a right I-CS-Rickart ring and R / I satisfies right C_{2} condition and apply the following lemma as a main idea.

Theorem 3.4.20. Let I be an ideal of a ring R. Then the following statements are equivalent.
(i) R / I is a semiregular ring and $J(R / I)=Z(R / I)$.
(ii) R / I is a right $Z(R / I)$-semiregular ring.
(iii) For any $a \in R$, there is $(e+I)^{2}=e+I \in R / I$ such that $(a R+I) / I=$ $(e+I)(R / I) \oplus K / I$ where K / I is a singular module.
(iv) R is a right I-CS-Rickart ring and every principal projective right ideal of R / I is a direct summand of R / I.
(v) R is a right I-CS-Rickart ring and R / I satisfies right C_{2} condition.

Proof. (i) \rightarrow (ii) \rightarrow (iii) These follow from Lemma 3.4.19.
(iii) \rightarrow (iv) Assume (iii). Let $a \in R$. Then there is $(e+I)^{2}=e+I \in R$ such that $(a R+I) / I=(e+I)(R / I) \oplus K / I$ where K / I is a singular module. Since $(e+I)(R / I) \leq{ }^{\oplus} R / I$ and R / I is a projective module, $(e+I)(R / I)$ is a projective module. Then R is a right I-CS-Rickart ring because of Corollary 3.4.16. Next, let L / I be a principal projective right ideal of R / I generated by $a+I$. Then $(a+I)(R / I)=(e+I)(R / I) \oplus K / I$ where $e^{2}+I=e+I \in R / I$ and K / I is a singular module. Since $K / I \leq{ }^{\oplus}(a+I)(R / I)$ and $(a+I)(R / I)$ is a projective module, K / I is also a projective module. Thus $K / I=I$ because K / I is both a singular module and a projective module. Thus $(a+I)(R / I)=(e+I)(R / I)$. Therefore, L / I is a direct summand of R / I.
(iv) \rightarrow (v) Assume (iv). Let K / I be a right ideal of R / I such that K / I is isomorphic to a direct summand of R / I. Then K / I is a principal projective right ideal of R / I. Thus K / I is a direct summand.
(v) \rightarrow (i) Assume (v). Let $a+I \in R / I$. Since R is a right I-CS-Rickart ring, by Corollary 3.4.16, $(a R+I) / I=N / I \oplus K / I$ where N / I is a projective module and K / I is a singular module, i.e., $K / I \subseteq Z(R / I)$. So N / I is isomorphic to a direct summand of R / I because N / I is a projective module. Since R / I satisfies right C_{2} condition, $N / I=(e+I)(R / I)$ where $(e+I)^{2}=e+I \in R / I$ and $Z(R / I) \subseteq J\left(R_{/}^{\prime} I\right)$ from Lemma 3.4.18. Thus $(a R+I) / I=(e+I)(R / I) \oplus K / I$ and $K / I \subseteq J(R / I)$, this forces that R / I is a right $J(R / I)$-semiregular ring. Applying Lemma 3.4.19, R / I is a left $J(R / I)$-semiregular ring so that R / I is a semiregular ring. Next, let $b+I \in J(R / I) \subseteq R / I$. Since R is a right I-CS-Rickart ring, $(b+I)\left(R_{l}^{\prime} I\right)=\left(\mathrm{e}^{\prime}+I\right)(R / I) \oplus K^{\prime} / I$ where $\left(e^{\prime}+I\right)^{2}=e^{\prime}+I \in R / I$ and $K^{\prime} / I \subseteq Z(R / I) \subseteq J(R / I)$. Hence e ${ }^{\prime}+I \in J(R / I)$. Since $J(R / I)$ does not contain any nonzero idempotents, $e^{\prime}+I=I$. Thus $(b+I)(R / I)=K^{\prime} / I \subseteq Z(R / I)$, so $b+I \in Z(R / I)$.

Let $R_{i}=R$ and $I_{i}=I$ be an ideal of R for all $i \in\{1, \ldots, n\}$. Let $R^{(n)}=$ $\bigoplus_{i=1}^{n} R_{i}$ and $I^{(n)}=\bigoplus_{i=1}^{n} I_{i}$ and $M_{n}(R)$ be the $n \times n$ matrix ring over R. From Proposition 2.1.14, $\operatorname{End}\left(R^{(n)}\right) \cong M_{n}\left(S_{R}\right)$ where $S_{R}=\operatorname{End}(R)$. Recall that
$\operatorname{End}(R) \cong R$ so that $\operatorname{End}\left(R^{(n)}\right) \cong M_{n}(R)$. Next, we consider $I_{S}=\{f \in$ $\left.\operatorname{End}\left(R^{(n)}\right) \mid f\left(R^{(n)}\right) \subseteq I^{(n)}\right\}$ which is isomorphic to the matrix ring over I.

Lemma 3.4.21. Let R be a ring and I be an ideal of R. Then the following statements holds.
(i) $\operatorname{Hom}(R, I) \cong I$.
(ii) $I_{S} \cong M_{n}(I)$.

Proof. (i) Observe that $\operatorname{Hom}(R, I)=\{f \in \operatorname{End}(R) \mid f(R) \subseteq I\} \cong\{a \in R \mid a R \subseteq$ $I\}=I$ because $\operatorname{End}(R) \cong R$.
(ii) Let $g \in I_{S}$. Then $g \in \operatorname{End}\left(R^{(n)}\right)$ and $g\left(R^{(n)}\right) \subseteq I^{(n)}$. Let $S_{I}=\operatorname{Hom}(R, I)$. Define $\phi: I_{S} \rightarrow M_{n}\left(S_{I}\right)$ by

$$
\phi(g) \leadsto\left(\begin{array}{ccc}
\pi_{1} g i_{1} & \ldots & \pi_{1} g i_{n} \\
\vdots & \pi_{i} g i_{j} & \vdots \\
\pi_{n} g i_{1} & \cdots & \pi_{n} g i_{n}
\end{array}\right)
$$

where $\pi_{i} g i_{j}: R \rightarrow I$ for all $i, j \in\{1, \ldots, n\}$. Then ϕ is an isomorphism so that $I_{S} \cong M_{n}\left(S_{I}\right)$. Therefore, $I_{S} \cong M_{n}(I)$ because $\operatorname{Hom}(R, I) \cong I$.

Observe that the set of all endomorphisms of $R^{(n)}$ and $M_{n}(R)$ are concerned as well as I_{S} and $M_{n}(I)$ are isomorphic. So we characterize the right $M_{n}(I)$-CSRickart rings and $M_{n}(R)$ for some given ideal I of R.

Theorem 3.4.22. Let I be an ideal of a ring R and $n \in \mathbb{N}$. Then the following statements are equivalent.
(i) The free R-module $R^{(n)}$ is an $I^{(n)}$-CS-Rickart module.
(ii) $\operatorname{End}\left(R^{(n)}\right)$ is a right I_{S}-CS-Rickart ring.
(iii) $M_{n}(R)$ is a right $M_{n}(I)$-CS-Rickart ring.
(iv)For any n-generated right ideal A of $R,(A+I) / I=N / I \oplus K / I$ where N / I is a projective module and K / I is a singular ring.
(v) The R-module $R^{(n)}$ is an I-CS-Rickart module relative to R.
(vi) For any n-generated submodule L of $R^{(n)},\left(L+I^{(n)}\right) / I^{(n)}=N_{1} / I^{(n)} \oplus \cdots \oplus$ $N_{n} / I^{(n)} \oplus K / I^{(n)}$ where each $N_{i} / I^{(n)}$ is a projective module and K / I is a singular module.

Proof. We let $S=\operatorname{End}\left(R^{(n)}\right)$.
(i) \rightarrow (ii) Assume that the free R-module $R^{(n)}$ is an $I^{(n)}$-CS-Rickart module with basis $\left\{a_{1}, \ldots, a_{n}\right\}$. Let $f \in S$. Then $f^{-1}\left(I^{(n)}\right) \leq_{\text {ess }} e R^{(n)}$ for some $e^{2}=$ $e \in S$. Let $g \in\left(I_{S}:_{s} f\right)$. So $f g \in I_{S}$ that is $f g\left(R^{(n)}\right) \subseteq I^{(n)}$. Hence $g\left(R^{(n)}\right) \subseteq$ $f^{-1}\left(I^{(n)}\right) \subseteq e R^{(n)}$ so that $g=e g$. Thus ($\left.I_{S}:_{s} f\right)$ is a submodule of $e S$. Next, let $e h \in e S$ and $e h \neq 0$. Then $e h\left(R^{(n)}\right) \neq 0$. Since $f^{-1}\left(I^{(n)}\right) \leq_{\text {ess }} e R^{(n)}$, we get $e h\left(R^{(n)}\right) \cap f^{-1}\left(I^{(n)}\right) \neq 0$. There is $x \neq 0$ such that $x=e h(y)$ for some $y \in R^{(n)}$ and $f(x) \in I^{(n)}$. We define a homomorphism $\theta \in \operatorname{End}\left(R^{(n)}\right)$ by $\theta\left(a_{1} r_{1}+\cdots+a_{n} r_{n}\right)=$ $y r_{1}$ for all $r_{1}, \ldots, r_{n} \in R$. Then $\operatorname{eh} \theta\left(a_{1}\right)=e h(y)=x$ and $\theta\left(R^{(n)}\right)=y R$, this forces that $\operatorname{eh} \theta \neq 0$ and $\operatorname{feh} \theta\left(R^{(n)}\right)=f \operatorname{ch}(y R)=f(x) R \subseteq I^{(n)} R \subseteq I^{(n)}$. So $f e h \theta \in I_{S}$, that is $e h \theta \in\left(I_{S} ; s f\right)$. Hence $\left(I_{S}: S f\right) \leq_{e s s} e S$. Therefore, $\operatorname{End}\left(R^{(n)}\right)$ is a right I_{S}-CS-Rickart ring.
(ii) \rightarrow (i) Assume (ii). Let $f \in S$. Then $\left(I_{S}: s f\right) \leq_{\text {ess }} e S$ for some $e^{2}=$ $e \in S$. Let $x \in f^{-1}\left(I^{(n)}\right)$. Then $f(x) \in I^{(n)}$. Similar to the argument of the proof (i) \rightarrow (ii), there is a homomorphism $\theta \in S$ such that $\theta\left(R^{(n)}\right)=x R$. So $f\left(\theta R^{(n)}\right)=f(x R) \subseteq I^{(n)}$, we obtain that $f \theta \in I_{S}$ that is $\theta \in\left(I_{S}\right.$:s $\left.f\right)$. Thus $\theta=e \theta$ because $\left(I_{S}:_{S} f\right) \subseteq e S$. Then $x \in x R=\theta\left(R^{(n)}\right)=e \theta\left(R^{(n)}\right) \subseteq e R^{(n)}$. This implies that $f^{-1}\left(I^{(n)}\right) \subseteq e R^{(n)}$. Next, let $m \in e R^{(n)}$ and $m \neq 0$. Then $m=e m$ so that $m R=e m R$. So there is a nonzero homomorphism $h \in S$ such that $h R^{(n)}=m R=e m R$, similar to the technique of the proof (i) \rightarrow (ii). Since $\left(I_{S}: s f\right) \leq_{\text {ess }} e S$, there is $g \in S$ such that $h g \neq 0$ and $f h g \in I_{S}$. So $0 \neq h g\left(R^{(n)}\right)$ and $f h g\left(R^{(n)}\right) \subseteq I^{(n)}$. Hence $0 \neq h g\left(R^{(n)}\right) \subseteq f^{-1}\left(I^{(n)}\right.$. This forces that $f^{-1}\left(I^{(n)}\right) \leq_{\text {ess }} e R^{(n)}$. Therefore, the free R-module $R^{(n)}$ is an $I^{(n)}$-CS-Rickart module.
(i) \rightarrow (v) This follows from Theorem 3.2.2.
(ii) $\leftrightarrow($ iii $)$ This is clear because $\operatorname{End}\left(R^{(n)}\right) \cong M_{n}(R)$ and $I_{S} \cong M_{n}(I)$.
(iv) \rightarrow (v) Assume (iv). Let $f \in \operatorname{Hom}\left(R^{(n)}, R\right)$. Then for any $x_{i} \in R$,

$$
f\left(x_{1}, \ldots, x_{n}\right)=f(1, \ldots, 0) x_{1}+\cdots+f(0, \ldots, 1) x_{n}
$$

So $f\left(R^{(n)}\right)$ is generated by $\{f(1, \ldots, 0), \ldots, f(0, \ldots, 1)\}$. By assumption, $\left(f\left(R^{(n)}\right)+\right.$ $I) / I=N / I+K / I$ where N / I is a projective module and K / I is a singular module.

From Theorem 3.4.4, $R^{(n)}$ is an I-CS-Rickart module relative to R.
(v) \rightarrow (iv) Assume (v). Let A be an n-generated right ideal of R such that $A=a_{1} R+\cdots+a_{n} R$ where $a_{1}, \ldots, a_{n} \in R$. Define $\phi: R^{(n)} \rightarrow R$ by $\phi\left(x_{1}, \ldots, x_{n}\right)=$ $a_{1} x_{1}+\cdots+a_{n} x_{n}$ for any $x_{1}, \ldots, x_{n} \in R$. Then ϕ is a module homomorphism and $\phi\left(R^{(n)}\right)=a_{1} R+\cdots+a_{n} R$. Therefore, $(A+I) / I=\left(\phi\left(R^{(n)}\right)+I\right) / I=N / I+K / I$ where N / I is a projective module and K / I is a singular module because $R^{(n)}$ is an I-CS-Rickart module relative to R.
(v) \rightarrow (vi) Assume (v). Let L be an n-generated submodule of $R^{(n)}$. Then $L=\left(x_{1}\right) R+\cdots+\left(x_{n}\right) R$ where $\left(x_{1}\right), \ldots,\left(x_{n}\right) \in R^{(n)}$ and $\left(x_{i}\right)=\left(x_{1 i}, \ldots, x_{n i}\right)$ for all $i \in\{1, \ldots, n\}$. So

Let $f=\left(\begin{array}{ccc}x_{11} & \ldots & x_{1 n} \\ \vdots & \ddots & \vdots \\ x_{n 1} & \ldots & x_{n n}\end{array}\right)\left(\begin{array}{c}a_{1} \\ \vdots \\ a_{n}\end{array}\right) \in M_{n}(R) \cong \operatorname{End}\left(R^{(n)}\right)$. Then $f \in S$ and $f\left(R^{(n)}\right)=L$. Let π_{i} be the projection map from $R^{(n)}$ to its i-th component and θ_{i} be the inclusion map form R to $R^{(n)}$ for any $i \in\{1, \ldots, n\}$. Since the R module $R^{(n)}$ is an I-CS-Rickart module relative to R and $\pi_{1} f \in \operatorname{Hom}\left(R^{(n)}, R_{1}\right)$, we obtain that $f^{-1}\left(I^{(n)}\right) \subseteq\left(\pi_{1} f\right)^{-1}(I) \leq_{\text {ess }} e_{1} R^{(n)}$ for some $e_{1}^{2}=e_{1} \in S$. So $R^{(n)}=P_{1} \oplus e_{1} R^{(n)}$ and P_{1} is a projective module because $P_{1} \leq R^{(n)}$ and $R^{(n)}$ is a projective module. Next, we consider the homomorphism $\pi_{1} f_{\mid e_{1} R^{(n)}}$. Since $e_{1} R^{(n)} \leq{ }^{\oplus} R^{(n)}$ and $\pi_{2} f_{\mid e_{1} R^{(n)}} \in \operatorname{Hom}\left(e_{1} R^{(n)}, R_{2}\right)$, applying Theorem 3.2.2, $f^{-1}\left(I^{(n)}\right) \subseteq\left(\pi_{2} f_{\mid e_{1} R^{(n)}}\right)^{-1}(I) \leq_{\text {ess }} e_{2} R^{(n)}$ for some $e_{2}^{2}=e_{2} \in S$. Since $e_{2} R^{(n)} \leq \oplus$ $R^{(n)}$ and $e_{2} R^{(n)} \subseteq e_{1} R^{(n)}$, from Proposition 2.1.4, $e_{2} R^{(n)} \leq{ }^{\oplus} e_{1} R^{(n)}$. Thus $e_{1} R^{(n)}=P_{2} \oplus e_{2} R^{(n)}$ and P_{2} is a projective module because $P_{2} \leq{ }^{\oplus} e_{1} R^{(n)}$. Hence $R^{(n)}=P_{1} \oplus P_{2} \oplus e_{2} R^{(n)}$. So we get e_{3}, \ldots, e_{n} such that $f^{-1}\left(I^{(n)}\right) \subseteq \pi_{j} f_{\mid e_{j-1} R^{(n)}} \leq_{\text {ess }}$ $e_{j} R^{(n)}$ for all $j \in\{3, \ldots, n\}$. Thus $f^{-1}\left(I^{(n)}\right)=\left(\pi_{1} f\right)^{-1}(I) \cap \cdots \cap\left(\pi_{n} f\right)^{-1}(I) \leq_{\text {ess }}$ $e_{1} R^{(n)} \cap \cdots \cap e_{n} R^{(n)}=e_{n} R^{(n)}$. Now, $R^{n}=P_{1} \oplus \cdots \oplus P_{n} \oplus e_{n} R^{(n)}$ where each P_{i} is a projective module. Hence $\left(K+I^{(n)}\right) / I^{(n)}=\left(f\left(R^{(n)}\right)+I^{(n)}\right) / I^{(n)}=$
$\left.\left(f\left(P_{1}\right)+I^{(n)}\right) / I^{(n)} \oplus \cdots \oplus\left(f\left(P_{n}\right)+I^{(n)}\right) / I^{(n)} \oplus f\left(e_{n} R^{(n)}\right)+I^{(n)}\right) / I^{(n)}$ where each $\left(f\left(P_{i}\right)+I^{(n)}\right) / I^{(n)} \cong P_{i}$ which is a projective module and $\left.f\left(e_{n} R^{(n)}\right)+I^{(n)}\right) / I^{(n)} \cong$ $e_{n} R^{(n)} / f^{-1}\left(I^{(n)}\right)$ which is a singular module.

Consequently, we obtain the following corollary when $F=0$.

Corollary 3.4.23. ([1], Theorem 4.3) Let $n \in \mathbb{N}$. Then the following statements are equivalent.
(i) The free R-module $R^{(n)}$ is a CS-Rickart module.
(ii) $M_{n}(R)$ is a right CS-Rickart ring.
(iii) For any n-generated right ideal A of $R, A=N \oplus K$ where N is a projective module and K is a singular module.
(iv) The R-module $R^{(n)}$ is a CS-Rickart module relative to R.
(v) For any n-generated submodule L of $R^{(n)}, L=N_{1} \oplus \cdots \oplus N_{n} \oplus K$ where each N_{i} is a projective module and K is a singular module.

