
CHAPTER III
F-CS-RICKART MODULES

In this chapter, we provide the concept of F-CS-Rickart modules. We would like to 
point out th a t the notion of F-CS-Rickart modules are extended from CS-Rickart 
modules by Abyzov and Nhan given in [1], and F-inverse split modules by Lee, 
Rizvi and Roman in [11]. We integrate the idea of being an essential submodule 
of some direct summand of ker /  from CS-Rickart modules and the idea of being 
a direct summand of / _1(F) from F-inverse split modules for all /  € End(M ).

Various properties of F-CS-Rickart modules and characterizations of those are 
investigated in Section 3.1. We show th at the intersection of two submodules of 
an F-CS-Rickart module is essential in some direct summand where one of those 
two submodules contains F. Moreover, we study when a submodule of an F- 
CS-Rickart module is also an F'-CS-Rickart module where F' is a fully invariant 
submodule of th at submodule. Relationships between F-CS-Rickart modules and 
F-inverse split modules, likewise, relationships between F-CS-Rickart modules 
and CS-Rickart modules are presented. Furthermore, we give a notion and a 
characterization of strongly F-CS-Rickart modules which is a special case of F- 
CS-Ric,kart modules. Observe that for F-CS-Rickart modules the inverse images 
of endomorphisms are considered. So, in Section 3.2, we extend to consider the 
inverse image of a homomorphism which is an essential submodule in some direct 
summand. In Section 3.3, we focus on specific fully invariant submodules, namely, 
singular submodules, second singular submodules and cosingular submodules. Fi
nally, in Section 3.4, we concern any images of F-CS-Rickart projective modules 
satisfying C2 condition. We obtain that they can be written as a direct sum of 
two submodules one of which is a projective module and the other one of which 
is contain in F*. In addition, we define a right /-CS-Rickart ring for a given ideal 
/  of R. Then the free F-module is an F nRCS-Rickart module if and only if
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M n(R ) is a right M n(I)-CS-Rickart ring where R and are the finite direct 
sum of ท copies of R  and I, respectively.

3.1 Properties of F-CS-Rickart Modules
First, we examine relationships between F-CS-Rickart modules and F-inverse split 
modules, as well as, relationships between F-CS-Rickart modules and CS-Rickart 
modules. Next, we are interested in when a submodule N  of an F-CS-Rickart 
module is also an F'-CS-Rickart module for some fully invariant submodule F' 
of N . Later, characterizations of F-CS-Rickart modules are provided. One of 
main results is th a t any F-CS-Rickart module can be w ritten as a direct sum of 
two submodules one of which is an essential extension of F  and the other one of 
which is a CS-Rickart module.

As we mentioned earlier, the concept of F-CS-Rickart modules are extended 
from CS-Rickart modules and F-inverse split modules. A module M  is a CS- 
Rickart module, given in [1], if for any /  G End(M ), there is a direct summand 
M ' of M  such th at ker f  <esร AF; in addition, M  is an F-inverse split module1 
given in [17], if for any /  € End(M ), / -1 (F) is a direct summand of M . Now, we 
provide the definition of ail F-CS-Rickart module by combining the main ideas of 
those as follows.

D efin itio n  3 .1 .1 . Let F  be a fully invariant submodule of M . Then M  is an 
F-CS-Rickart module if for any /  G End(M ), there is a direct summand AF of M  
such th a t / _1(F) is an essential submodule of AF.

Note th at M  is a CS-Rickart module if and only if M  is a O-CS-Rickart module.

P ro p o s itio n  3.1.2. Any F-inverse split module is an F-CS-Rickart module.

Proof. Let M  be an F-inverse split module. Then, for each /  G End(M ), we 
obtain th a t / _1(F) <ess / -1 (F) <® M . Therefore, M  is an F-CS-Rickart module.

□
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Observe th a t / -1 (F) is a submodule of M  containing F  for any /  G End(M ). 
So we can conclude th at M  is an F-CS-Rickart module if and only if any sub- 
module of M  containing F  is an essential submodule of a direct summand of M. 
The following example shows an F-CS-Rickart module which is not an F-inverse 
split module for some given fully invariant submodule F  of M .

E x a m p le  3.1.3. Let M  be the Z-module z 2 © z 8. Let N  =  0 © (2). Then N  
is a fully invariant submodule of M  obtained directly from the definition. The 
following diagram describes all submodules of z 2® z 8- Each submodule contained 
in a box is a direct summand of M  but the others are not direct summands of M. 
Furthermore, if a submodule N  is an essential submodule of M , we write N ess, 
otherwise; we write N-£g£.

Z2 © z 8

Observe that, all submodules of M  containing N  are N , 0 © z 8, z 2 ๏  (2),
(1,1)Z and M . Among these, only 0 ๏ z 8, ( I ,T)z and M  are direct summands 
of M, i.e.5 they are essential submodules of themselves, and only z 2 ๏ (2) is an
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essential submodule of M  but N  is not a direct summand and not an essential 
submodule of M . Moreover, N  is an essential submodule of 0 © z 8 which is a 
direct summand of M  because all proper submodules of Ü ® z 8 contained in N. 
As mention above, we can conclude th at any submodule of M  containing N  is 
an essential submodule of a direct summand of M. This shows th a t M  is an 
A-CS-Rickart module. However, M  is not an A-inverse split module because 
li t1 (A) =  A  is not a direct summand of M.

Proposition 3.1.2 together with Example 3.1.3 guarantee th a t F-CS-Rickart 
modules actually generalized F-inverse split modules. We know th a t M  is a CS- 
Rickart module if and only if M  is a O-CS-Rickart module. For a given fully 
invariant submodule F  of M , “M is an F-CS-Rickart module” does not imply 
“M  is a CS-Rickart module” ; moreover, “M  is a CS-Rickart module” does not 
imply “M  is an F-CS-Rickart module” . Example 3.1.3 shows th a t Z 2 ® z 8 is a 
0 ๏ (2)-CS-Rickart module; however, Z 2 © z 8 is not a CS-Rickart module shown 
in the next example.
E x a m p le  3.1.4. Let M be the Z-module Z 2 ๏ z 8 and A  =  0 ๏ (2). Then

and g2 (ใ/) =  2y  for all X  G Z2 and ÿ  G z 8. Then ker h  =  (1, 2 )z  which is not an 
essential submodule of all direct summands of M  shown in the diagram. Thus 
Z2 ๏ z 8 is not a CS-Rickart module.

Next, we give an example of CS-Rickart modules which is not an F-CS-Rickart 
module for some fully invariant submodule F.

In [10], Lam provided th at Z (M )  =  {x 6 M  I (0 \ft x) <esร F} and Z2(M) =  
{x  e  M  \ (Z (M ) \R X) < 655 R } are submodules of M . Moreover, they are fully 
invariant submodules of M.
E x a m p le  3 .1 .5 .  Let p  be the set of prime integers. Consider the Z-module 
M — ท pz p. For the fully invariant submodule Z2(M), we show later th at M is
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a Z2(M)-CS-Rickart module if and only if it is a Z2(M)-inverse split module, see 
Proposition 3.3.2. Moreover, Example 2.12 in [18] shows th a t Z (M ) =  Z 2(M ) = 
0 p  Zp ^  0 and M  is not a Z2(M)-inverse split module but M  is a Rickart module. 
Since M  is not a Z2(M )-inverse split module, M  is not a Z2(A7)-CS-Rickart 
module. In addition, M  is a CS-Rickart module because M  is a Rickart module 
by Lemma 2.7 in [1]. Therefore, M  is not a Z2(M)-CS-Rickart module but M  is 
a CS-Rickart module.

For a given fully invariant submodule F  of M, unlike F-inverse split modules 
and F-CS-Rickart module, CS-Rickart modules and F-CS-Rickart modules do 
not imply each other obtaining from Example 3.1.4 and Example 3.1.5. Next, we 
present some properties of F-CS-Rickart modules.

P ro p o s itio n  3 .1 .6. Let M  be an F-CS-Rickart module and p  be a module. If 
M  is isomorphic to p  by isomorphism <f> : M  —» p , then p  is a (j)(F)-CS-Rickart 
module.

Proof. Assume th a t 0 is an isomorphism from p  onto M . Let /  € End(F). 
So 0 _1/ 0  e End(M ). Let y e 0(F). Then y — 0(x) for some X e  F. Thus 
0_1/(y )  =  0 _1/0 (^ )  G F  because F  <fully M. It forces th a t f (y )  G 0(F ). Hence 
0(F ) <fully p . Since M  is an F-CS-Rickart module, (0 _1/0 )  l (F) <ess M ' 
for some direct summand M ' of M . Thus 0 _1/ _1(0(A1)) <ess M '. Applying 
Proposition 2.2.6, 0 ^ 0 -1/ -1 (0 (F )) j  <ess 0(A f). Since M ' is a direct summand 
of M, there is a submodule K  of M  such that M  =  M ' © K . This implies that, 
p  =  0(M ) =  0(M ') ® 0 (F )  so that 0(M ') is a direct summand of p . Thus 
/ _1(0(F )) <6ss 0(M '). Therefore, p  is a 0(F)-CS-Rickart module. □

In general, the intersection of two direct summands may not be a direct sum
mand. However, the intersection of two direct summands of M  turns out to be 
a direct summand provided M  is a Rickart module; moreover, the intersection of 
two direct summands of M  is an essential submodule of some direct summand 
of M  if M  is a CS-Rickart module. Similarly, we focus on the intersections of two 
direct summands of an F-CS-Rickart module. Next example shows th a t there is
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the intersection of two direct summands of an F-CS-Rickart module which is not 
a direct summand but it is an essential submodule of some direct summand.

E x am p le  3.1.7. Let M  be the Z-module z 2© z8 and N  = Ü ©(2). Then M  is an 
IV-CS-Rickart module, see Example 3.1.3. Moreover, A  =  0 © z 8 and B — (I, T)Z 
are direct summands of M . Then A  ก B  ะ= Ü © (2) is not a direct summand of 
M  but A  ก B  = Ü © (2) < 655 A.

However, if M  is an F-CS-Rickart module satisfying some conditions, then it 
guarantees th a t the intersection of direct summands is an essential submodule of 
a direct summand of M . Nevertheless, the following lemma is needed.

L em m a 3.1.8. Let F  be a fully invariant submodule of M . Let h2 — h, g2 =  g E 
End(M ) and F  ç  g M. Then gM  =  (1 — g)~1(F). Moreover, ((1 — g)lij 1(F) = 
(1h M n g M ) © (1 -  h)M.

Proof. It is clear that, (1 — g)gM  =  0 ç  F , so gM  ç  (1 — g)~1(F). Next, let 
m  E (1 — ig)_1(F). Then (1 — g)m  E F  Ç gM . Thus (1 —g)m E g M ก (1 — 1g)M  = 0 
leading to m e  ker(l — g) = gM  from Proposition 2.1.3. This shows th a t gM  = 
(1 - 9 ) - \ F ) .

Now, we let X E ((1 — g)h) 1(F). Then (1 — g)h(x) E F  so th at h(x) E 
(1 — #)-1 (F) =  gM . Thus X = h(x) + (1 — h)(x) E {hM  ก gM ) © (1 — h)M . For 
the reverse of inclusion, let X + y E [hM  ก g M ) © (1 — h) M  where X E hM  ก g M  
and y E (1 — h)M . So X = h(x) = g[x) and y =  (1 — h)(y). Then (1 — g)h(x + y) =  
(1 — g)h(x) +  (1 — g)h(y) =  0 G F. Hence x  +  y E ((1 — g)h) 1(F). Therefore, 
the second result follows. □

P ro p o s itio n  3.1.9. Let M  be an F-CS-Rickart module. Then the following state
ments hold.
(i) For any direct summands N  and K  of M 1 if F  ç  K , then N  n  K  <6รร M ' for 
some direct summand M ' of M .
(a) For any submodules N  and K  of M , if there are direct summands Ml and M2 
of M such that N  <esร Ml and F  ç  K  <6ss M2, then N  r\ K  <esร M' fo r some 
direct summand M' of M .
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(in) For any / l , . . .  , /n  € End(M ), there is a direct summand M ' of M  such that
C ] fr \F )  < „ , น'.

Proof, (i) Assume th at N  and K  are direct summands of M  and F  ç  K . Then 
N  =  hM  and K  = gM  for some h2 =ะ h, g1 =  g G End(M ). Since F  ç  K  — gM, 
Lemma 3.1.8 gives

((1 -  g )h )~ \F )  =  (hM  ก gM ) ๏ (1 -  h)M .

Since M  is an F-CS-Rickart module, ((1 — g)h)~1(F ) < 65ร eM  for some e2 =  
e G End(M ). Thus (1—h)M  ç  eM. As M  = h M ® (l—h)M  and (1—h)M  Ç eM, 
we obtain eM  — M  ก eM  = (hM  © (1 — h)M ) ก eM  — (hM  ก eM) © (1 — h)M  
by Modular Law. So hM  ก eM  < ๑ eM  and

(hM  ก gM ) ๏ (1 — h)M  — ((1 -  g)h) : (F) < 655 eM =  (hM  ก eM ) © (1 — h)M .

Therefore, N  D K  = hM  ก gM  < 655 hM  ก eM <® M.
(ii) Assume th a t N  and K  are submodules of M and N  < 655 Ml and K  < 655 M2 

for some direct summands M l and M2 of M such th at F  ç  K. By (i), we obtain 
Ml ก M2 < 655 M' for some direct summand M 1 of M. Applying Proposition 2.2.4, 
N  n  K  < 655 Ml ก M2 < 655 M '. Therefore, N  n  K  < 655 M ' by Proposition 2.2.3.

(iii) Let f i  G End(M ) for all i G { 1 , . . . ,ท}. Since M  is an F-CS-Rickart 
module, for each i, F  Ç /j_1(F) < 655 Mi for some direct summand Mi of M.ท
Applying (ii) repeatedly, we obtain P j / j -1 (F) < 655 M 7 for some direct summand 
M ' of M. 1=1 □

A module M  is an SIP-CS  module if the intersection of two direct summands 
is an essential submodule of a direct summand of M, see [1]. From the previous 
proposition, the intersection of two direct summands of an F-CS-Rickart module 
is essential in a direct summand of M when one of direct summands contains F.

C o ro lla ry  3 .1 .10. Let M  be an F-CS-Rickart module. Then M  is an SIP-CS 
module provided that F  is contained in all direct summands o f M .
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Similar to  CS-Rickart modules and F-inverse split modules, we investigate 
when a submodule A  of an F-CS-Rickart module is also an F'-CS-Rickart mod
ule for some fully invariant submodule F' of this submodule A. We provide the 
following lemma using for obtaining the mentioned result.

L em m a 3.1 .11. Let A  and F  be fully invariant submodules of M. I f  each endo
morphism of A  can be extended to an endomorphism of M , then A  ก F  is a fully 
invariant submodule of N . Moreover, for any g G End(A ), there is f  G End(M ) 
such that g = f \ f f  and g_1(A ก F) =  A  ก / _1(F).

Proof. Assume th a t each g G End (A) can be extended to an /  G End(M ). Let 
g G End(A ). Then there exists /  G End(M ) such th a t g =  f  เพ. Let X G A  ก F. 
So f \ N{x) =  g(x) G A  and f \ N(x) =  f ( x )  G F. Thus g(x) = / | at(x) g a  ก  F. 
Therefore, A  ก F  < fully N.

Moreover, we claim that g~l (N r\F ) — A n / -1 (F). Let X G g~1(N n F ) .  Then 
X G N  and / (x) =  g(x) e N  p\ F, so X e  N  n  f ~ 1(F). Next, let y G A  ก f ~ 1(F). 
Then g(y) — f(y )  G F a n d y (y )  G A. Soy G g~1(N n F ). Therefore, y_1(A n F ) =  
A  ก / - 1 (F). □

P ro p o s itio n  3 .1 .12. Let M  be an F -CS-Rickart module and A  be a fully in
variant submodule of M . I f  each endomorphism of A  can be extended to an 
endomorphism of M 1 then A  is an (A  ก F)-CS-Rickart module.

Proof. Assume th a t each g G End(A) can be extended to an /  G End(M ). Let g G 
End(A). Then /|jv  =  g for some /  G End(M ) and g~ 1(A n F ) =  A n / -1 (F). Since 
M  is an F-CS-Rickart module, / _1(F) < 655 eM  for some e2 =  e G End(M ). 
Thus A  ก / _1(F) < 655 A  ก eM . Since A  <fully M  and (e\N)2 =  e\N G End(A ), 
A  ก eM  — e|/v(A) <® A. So g - \ N  ก F) =  A  ก / _1(F) < 655 A  ก eM  <® A. 
Therefore, A  is an (A  ก F)-CS-Rickart module. □

Observe th a t the intersection of fully invariant submodules A  and F  of M  
needs not be a fully invariant submodule of A. However, the intersection of 
a direct summand A  of M  and a fully invariant submodule F  of M  is always
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a fully invariant submodule of N  from Proposition 2.1.8. So, now, we obtain one 
characterization of F-CS-Rickart modules.

T h e o rem  3 .1 .1 3 .  A module M  is an F-CS-Rickart module if  and only if  N  is 
an (N  ก F)-CS-Rickart module for any direct summand N  o f M.

Proof. The sufficiency is clear because M  is always a direct summand of M  itself.
For the necessity, let N  be a direct summand of M. Then N  =  eM  for some 

e2 =  e G End(M ) and IV ก F  is a fully invariant submodule of 1V. Let g G End(iV) 
and K  =  (1 — e)M . From Lemma 2.1.10, g~x(N  ก F) © K  — (g (B 0x )~ 1(F). 
Since M  is an F-CS-Rickart module, (g ® 0k )~1(F) <ess M ' for some direct 
summand M ' of M. Since M  =  N  ® K  and K  ç  [g ® 0x )~ l (F) ç  M ', we 
obtain th a t M ' = (N  ก M ') ๏ K . Thus N  ก M ' <® N  because N  ก M ' <® M  
and N  n  M ' ç  N . This forces that g~l (N  ก F) <esร N  ก M 1 by Proposition
2.2.7. Therefore, N  is an (N  ก F)-CS-Rickart module for any direct summand N  
of M. □

A direct sum of F-CS-Rickart modules where each summand is also a fully 
invariant submodule is studied in the following theorem.

T h e o re m  3 .1 .1 4 .  Let Mj be a fully invariant submodule of 0 " =1 Mi and Fj be 
a fully invariant submodule of Mj for all j  G { 1 , . . . ,  ท}. Then ®™_ 1 Mi is a 
® "_1 Fi-CS-Rickart module if  and only i f  Mj is an Fj-CS-Rickart module for all 
j  e  { 1 , . . . ,ท}.

Proof. Assume that ® "= 1 Mi is a ® "=1 Fj-CS-Rickart. Since each Mj < ๑ ® "= 1 Mj, 
we obtain th a t each Mj is an (Mj ก 1 Fj)-CS-Rickart module by Theorem 
3.1.13. Therefore, Mj is an Fj-CS-Rickart module because Mj ท ® "=1 Fj =  Fj for 
all j  G { 1 , . . . ,  ท}.

F o r th e  c o n v e rse , a s su m e  t h a t  Mj is a n  F j-C S -R ic k a r t  m o d u le  fo r a ll j  G 
( 1 , . . . ,  ท}. L e t /  G E n d ( ® " = 1 M j) . L e t ( x i , . . . ,  x n) G ® " = 1 M j. T h e n

f i x  1 , . . . , x n) = f ( x  1, . . . , 0) +  • • ■ +  / (0, . . . , ! „ )  =  /l(x i)  +  • • • +  fn (xn)
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where f j  := f i j  : Mj  —» 0 ”= 1 Mj and ij is the inclusion map from Mj into
0 ”= 1 Mi for all j  G { 1 ,. . . ,  ท}. Since each Mj < fully 0 * = 1 Mj, we get f j  :
Mj —> Mj and fj(F j)  Ç Fj. Thus f f l {Fj) < 6,ร .ร  ejM j for some idempotent 6j G 
End(M j) because each Mj is an Fj-CS-Rickart module. Applying Proposition
2.2.7, ® "=1 f ~ l {Ff) <655 ® "= 1 dM i. Note that

/  1 ( Fi) =  j ( x i , . . . ,  x n) G Mj I /  (x 1 , . . . ,  xn) € Fj j

=  { ( x i , . . . ,  xn) G ^  Mi I / i(x i)  +•••• +  fn {xn) G Ft I

=  { ( x i , . . .  1 x„) G 0 M j  I f j ( x j ) G Fj for all j  G {1 ,.. . 1 ท}}
i=l

=  [ ( x i , . . .  ,x n) G 0 M j  I Xj G f ~ 1(Fj) for all j  G { 1 , . . . ,  ท} J

= © / i " W

Hence =  ® " = 1 /i-1 (-Fi) ©"=1 ejMj and ® "= 1 ejMj is a direct sum
mand of 0 ”= 1 Mj. Therefore, 0 " =1 Mj is a ®”= 1 Fj-CS-Rickart module. □

Next, other characterizations of F-CS-Rickart modules are given. Let A  be a 
submodule of M  and /  be a nonempty subset of End(M ). Recall th a t (A  :M I)  =  
{x  G M  I / (x) G A  for any /  G /} =  P ) / _1(A). Moreover, if /  is a principal left
ideal of End(M ) generated by / ,  then (F  \M I) = (F  ะM / )  =  / ~ 1(F).

T h e o re m  3.1.15. The following statements are equivalent.
(i) M  is an F-C S-R ickart module.
(พ) For any finite nonempty subset I  o fE nd (M ), (F  :m I) is an essential sub- 
module of M ' fo r some direct summand M ' of M .
{in) For any finitely generated left ideal I  of End(M ), (F  : M I) is an essential 
submodule of M ' fo r some direct summand M ' of M .

Proof, (i)—> (ii) Assume (i). Let /  be a finite nonem pty subset of E nd(M ). Thus
(F  ■ M I)  =  1̂ 1 / _1(F ) < 655 M '  for some direct sum m and M '  of M  by applying

f e i
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Proposition 3.1.9 (iii).
(ท)-* (i) This is clear.
(i)—> (iii) Assume (i). Let I  = ( f  1, , . , 1/ ท) be a finitely generated left ideal 

of End(M ). We prove by induction on ท. If ท =  1, the statem ent clearly holds. 
Suppose that the statem ent holds for ท — 1. Let J  = ( / 1, . . . ,  / n_ 1). We obtain 
th a t (F  :m j ) <ess Mn_i for some direct summand Mn_1 of M. It follows that 
(F  ะAf /)  =  (F  J)  ก f 'ทิ1 (F) and f ~ l (F) < 655 Mn for some direct summand 
M„ of M. Thus (F  \M J) ท f n l (F ) < 655 Mn_1 ก Mn. Since (F  :M J ) and /T 1 (F) 
contains F , by Proposition 3.1.9 (ii), (F  :M J) ก f ■ ทิ1 (F) < 655 AF for some direct 
summand AF of M . Therefore, (F  :M /)  < 655 AF.

(iii)—>■ (i) This holds because for any /  e  End(M ), (F  :M /)  =  / _1(F) where 
/  is the principal left ideal of End(M ) generated by / .  □

We know th a t F-inverse split modules are F-CS-Rickart modules but the con
verse is not necessary true from Proposition 3.1.2 and Example 3.1.3. As a result, 
finding conditions th at make the converse valid is our next interest. Observe that 
/  is an ideal of a ring R  if and only if I  is a fully invariant submodule of the 
right F-module R. We let Fs — { f  e  End (M) I / (M) ç  F}. Then Fs is an 
ideal of the ring End(M ), so Fs is a fully invariant submodule of the module 
End(M ). The set A(M ) =  { /  G End(M ) I ker /  < 655 M }  given in [7] is a left 
ideal of End(M ) and M  is a JC-nonsingular module if A(M ) =  {0} given in [16]. 
In this research, we extend / -1({0}) =  ker /  to / -1 (F). So, we provide the set 
A f {M) =  { /  g End(M ) I / _1(F) < 655 M }. Obviously, A f {M) is a left ideal of 
End(M ) and Fs A Next, we provide a generalization of /C-nonsingular
module as follows.

D efin itio n  3 .1 .16. A module M  is an F -K,-nonsingular module if  A p{M )  =  Fs-
One can see that, M  is a }C-nonsingular module if and only if M  is a 0-/C- 

nonsingular module.

P ro p o s itio n  3.1.17. I f  M  is an F-inverse split module, then M  is an F-/C- 
nonsingular module.
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Proof. Assume th at M  is an F-inverse split module. Let f  G A p(M ). Then 
/  G End(M ) and then f ~ 1(F ) < ๑ M  and / _1(F ) <es:s M  so that f ~ 1{F) = M. 
T hat is f ( M )  ç  F. Therefore, M  is an F-/C-nonsingular module. □

Next, we give an example of F-,/C-nonsingular modules. However, a helpful 
lemma is given in order to show that a module M  is an F-inverse split module, 
so that M  is an F-/C-nonsingular module.

L em m a 3.1 .18. ([17], Theorem 2.3) A module M  is an F-inverse split module if  
and only i f  M  = F  ® K  where K  is a Rickart module.

submodule N  =

( z 2 z 2Let ร; II

( o  z
Z 2 z 2 ไ is both a
0 0 j

be a module over itself. Then the

is both a fully invariant submodule and a direct

summand of M . So M  =  N  © K  where K  = QË z. Note that z
is a Rickart module because, for any /  G End(Z) there exists n  G z  such that 
/ (x) =  n x  for all X G z, so th at ker /  =  0 or z  which both are direct summands 
of z. This forces th a t K  is a Rickart module. By applying Lemma 3.1.18, M  is 
an AMnverse split module. Thus M  is an A-ZC-nonsingular module.

Relationships between F-CS-Rickart modules and F-inverse split modules are 
ready to be investigated.

T h e o re m  3.1.20. The following statements are equivalent.
(i) M  is an F-CS-Rickart module and an F -K-nonsingular module.
(ท) M  is an F-inverse split module.

Proof. (ท)—> (i) This follows from Proposition 3.1.2 and Proposition 3.1.17.
(i)—> (ii) Assume (i). Let /  G End(M ). Then / _1(F) <esร eM  for some 

e2 — e G End(M ). Thus / _1(F) ® (1 -  e)M  <ess eM  ® (1 -  e)M  =  M . Since 
/ _1(F) Ç eM  and e(l — e)M  = 0, we obtain / e ( / -1 (F) ® (1 — e)M ) ç  F. It forces 
th a t f - \ F )  ® (1 -  e)M  Ç ( /e )_1(F). Next, let X G ( / e ) - 1(F). Then /(ex ) -
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fe (x )  E F  so that ex E / _1(F). Hence X = ex +  (1 — e)x E f ~ 1(F) ® (1 — e)M. 
Then ( /e ) -1 (F) =  / _1(F) ® (1 — e)M  <6รร M. Since M  is an F-/C-nonsingular 
module, fe (M )  ç  F. This implies that eM  Ç / _1(F). Thus / -1 (F) =  eM. 
Therefore, M  is an F-inverse split module. □

The next example shows th at there is an F-CS-Rickart module which is not 
an F-/C-nonsingular module.

/
E x am p le  3.1.21. From Example 3.1.19, let M  —

(
\

Z2 Z2

0 z . A submodule

K  - is a fully invariant submodule of M  but is not a direct sum-
V

Z2 Z2

0 77.Z
mand of M. By Lemma 3.1.18, M  is not a A-inverse split module. Note that K  is 
an essential submodule of M  so that any submodule of M  containing K  is also an 
essential submodule of M  applying Proposition 2.2.3. Thus M  is a A-CS-Rickart 
module. By Theorem 3.1.20, M  is not a A-/C-nonsingular module.

Observe from the definition that an F-CS-Rickart module M  has a direct 
summand depending on each inverse image of F . In fact, there is a submodule N  
of M  such that M  = N  ® A  where the inverse image of F  is essential in N . Next, 
we focus on the inverse image of the identity endomorphism which is equal to F  
in the following result.

T h e o re m  3.1.22. I f  M  is an F-CS-Rickart module, then M  =  N  © A  where 
F is an essential submodule of N  and A  is a CS-Rickart module. The converse 
holds i f  N  is a fully invariant submodule of M .

Proof. First, assume that M  is an F-CS-Rickart module. Then F  =  1^1(F) < 6SS N  
for some N  <® M . So there is a submodule A  of M  such that M  -= A ©  A. Since 
A  <® M  and M  is an F-CS-Rickart module, A  is a (A  ก F)-CS-Rickart module 
by applying Theorem 3.1.13. Thus A  is a CS-Rickart module because A  ก F  =  0 

To show th at the converse is valid 1 assume that M  = A ®  A  where F  <651ร N, 
A  is a CS-Rickart module and A is a fully invariant submodule of M . Let 
/  E End (M ) and TTK : M  —» A  be the projection homomorphism. Then
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Kk I I k  £ E nd (F ) and / _1(N ) =  /V ® ker(7Ttf/|/f) by Proposition 2.1.11. Since K  
is a CS-Rickart module, ker^/sr/l/c) <ess K ' for some direct summand K ' of K. 
This forces th a t N  ® K ' is a direct summand of M  and

r \ F )  <633 r \ N )  = N ®  ker(nKf \ K) <63.3 N  ๏ K '.

Hence / _1(F) <633 N  ® K '. Therefore, M  is an F-CS-Rickart module. □

Now, F-CS-Rickart modules having two direct summands are considered.

P ro p o s itio n  3.1 .23. For every indecomposable F-CS-Rickart module M, either 
M  is a CS-Rickart module or F  is an essential submodule o f M .

Proof. Assume M  is an indecomposable F-CS-Rickart module. Then M  =  N (B K  
where F  <633 N  and K  is a CS-Rickart module. Since M  is an indecomposable 
module, N  = 0 or N  = M . In case N  = 0, it follows th a t F  =  0 so th at M  is a 
CS-Rickart module; otherwise, N  = M , leading to F  <633 M . Therefore, either 
M  is a CS-Rickart module or F  <633 M . □

Recall th a t M  is a CS-Rickart module if and only if M  is a 0-CS-Rickart 
module. Moreover, we gave an example of F-CS-Rickart modules which is not 
a CS-Rickart module in Example 3.1.4, likewise, we provided an example of CS- 
Rickart modules which is not an F-CS-Rickart module in Example 3.1.5. So we 
are interested in studying when an F-CS-Rickart module is a CS-Rickart mod
ule, as well as, a CS-Rickart module is an F-CS-Rickart module where F /  0. 
The following series of propositions provide relationships between F-CS-Rickart 
modules and CS-Rickart modules.

P ro p o s itio n  3.1 .24. I f  M  is an F-CS-Rickart module and ker /  is an essential 
submodule of / _1(F) for any f  E End(M ) which is not a monomorphism, then 
M  is a CS-Rickart module.

Proof. Assume th at M  is an F-CS-Rickart module and ker /  <633 / _1(F) for 
any /  € End (M ) which is not a monomorphism. Let /  G End(M ). Then 
/ _1(F) <633 M ' for some direct summand M ' of M . Thus ker /  <633 M '. 
Therefore, M  is a CS-Rickart module. □
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P ro p o s itio n  3 .1 .25. I f  M  is a CS-Rickart module and F  is an essential sub- 
module of M' for some fully invariant direct summand M' of M , then M is an 
F -CS-Rickart module.

Proof. Assume th a t M is a CS-Rickart module and F <esร M' for some fully 
invariant direct summand M ' of M . Then M — N © K  where K  is a CS-Rickart 
module. As a consequence of the converse of Theorem 3.1.22, M  is an F -CS- 
Rickart module. □

Prom Theorem 3.1.22, we obtain that if M is an F-CS-Rickart module, then 
M — N © K  where F  <ess N and A  is a CS-Rickart module; in addition, the 
converse of this theorem holds if N < fully M. One can see th a t being fully 
invariant submodule of M' is a necessary condition to force M to be an F-CS- 
Rickart module. So the inverse images of F  which are essential submodules of a 
fully invariant direct summand are investigated.

D efin itio n  3 .1 .26. A module M is a strongly F-CS-Rickart module if for any 
/  G End (M) there is a fully invariant direct summand M' of M such that 
/ _1(F) is an essential submodule of M'.

It is clear th a t strongly F-CS-Rickart modules and F-inverse split modules are 
F-CS-Rickart modules shown in the following diagram.

F-CS-Rickart modules

Next example presents a module M  which is an F-CS-Rickart module but is 
not an F-inverse split module and not a strongly F-CS-Rickart module.

E x am p le  3 .1 .27. Let M  = z 2© z 8 and N  =  Ü ©(2) given in Example 3.1.3. Then 
M  is an iV-CS-Rickart module and M  is not an A-inverse split module. Moreover,
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let /  = G End(M ) where f l  is the identity homomorphism, /o (x ) =  Ü,

g[{โ/) = V  and g2{y) = 2y for all X  G z 2 and ÿ  G z 8. Then / _1 (TV) =  ( I ,I )Z  
which is a direct summand of M but is not a fully invariant submodule of M. 
Note th a t submodules of M containing f ~ 1(N) are (1,1)Z and M. Since (1 ,1)Z 
is a direct summand of M, it is not an essential submodule of M by applying 
Proposition 2.2.2. We can conclude that / _1(F) is not an essential submodule of 
all fully invariant direct summands of M. Thus M is not a strongly IV-CS-Rickart 
module.

Likewise Theorem 3.1.13, we investigate that a direct summand of a strongly 
F-CS-Rickart module is also a strongly F'-CS-Rickart module for some fully in
variant submodule F' of this direct summand.

L em m a 3.1.28. Let M  be a strongly F-CS-Rickart module. Then N  is a strongly 
(N  ก F)-CS-Rickart module for any direct summand N  of M.

Proof. The proof is similar to one of Theorem 3.1.13. Let N  be a direct summand 
of M. Then there is a submodule K  of M  such that N @ K  = M . Let /  G End(Ar). 
Thus /  © 0/f G End(M ) and

/ - 1( iV n F ) © R  =  ( / 0 O ^ ) - 1(F).

Since M  is a strongly F-CS-Rickart module, ( /  ® 0/c)_1(F) < 6,ร . ร  M' for some 
fully invariant direct summand M' of M. So M' — (N ก M ') ® K  and N  ก M'  
is a fully invariant direct summand of N  by Proposition 2.1.8 (i). This forces 
that f _1(N  ก F) <es3 N  ก M' . Therefore, N  is a strongly (N ก F)-CS-Rickart 
module. □

In the following theorem, we focus on the inverse image of the identity en
domorphism which is equal to F  and is an essential submodule of some direct 
summand of M. So each F-CS-Rickart module can be written as a direct sum 
depending on F . We also provide characterizations of strongly F-CS-Rickart 
modules.
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T h e o re m  3.1.29. The following statements are equivalent.
(i) M  is a strongly F-CS-Rickart module.
(ii) M  =  N  © K  where F  is an essential submodule of a fully invariant submod
ule N  of M  and K  is a strongly CS-Rickart module.
(iii) M  is an F-CS-Rickart module and every direct summand of M  containing 
F  is a fully invariant submodule.
(พ) M  = N  © K  where F  is an essential submodule of a fully invariant submod
ule N  of M  and, for any f  £ End(M ), / _ 1 (F) ก K  is an essential submodule of 
a fully invariant direct summand of K  .

Proof, (i)—> (ii) Assume (i). Then M  — N  © K  where F  =  1_1 (F) <esร N  for 
some fully invariant direct summand N  of M. Thus K  is a strongly CS-Rickart 
module by Lemma 3.1.28 because K  <® M  and K  ก F  =  0.

(ii) —»(i) The proof is similar to the proof of the converse of Theorem 3.1.22. As
sume (ii). Let /  £ End(M ). Since N  < fully M, by Proposition 2.1.11, f ~ l (N) — 
N  ® ker(7T ^ /|^ ) . Since K  is a strongly CS-Rickart module, ker(7T ^ /|^ )  <esร K ' 
for some fully invariant direct summand K ' of K . Thus / _ 1 (F) <ess f ~ l (N) — 
N  © ker(7TK/|k ) <ess N  0  K ' and N  0  K ' is a fully invariant direct summand 
of M.

(i) —> (iii) A ssu m e  (i). T h e n  M  is a n  F -C S - R ic k a r t  m o d u le . N e x t, le t  N  b e  
a  d ir e c t  s u m m a n d  o f M  a n d  F ç  N. T h e n  th e r e  is e2 =  e £  E n d ( M )  su c h  t h a t  
N =  e M . L e t X £  eM.  T h e n  (1 — e)x =  (1 — e)ex =  0 £  F .  So X £  (1 — e ) _ 1 ( F ) .  
O n  th e  o th e r  h a n d , le t X £  (1 — e ) _1 ( F ) .  T h e n  (1 — e)x £  F  Ç  eM.  T h is  im p lie s  
t h a t  (1 — e)x — 0, so X £  k e r ( l  — e) =  eM.  T h u s  eM — (1 — e ) _1 ( F ) .  B y  (i), 
N  — (1 — e ) _ 1 ( F )  < esร M'  fo r so m e fu lly  in v a r ia n t  d ir e c t  s u m m a n d  M'  o f M.  
T h u s  N — M'  b e c a u s e  N  is b o th  a n  e s se n tia l  s u b m o d u le  a n d  a  d i r e c t  s u m m a n d  
o f M'.

(iii) —> (i) Assume (iii). For any /  £ End(M ), we have F  ç  / _1 (F) < ess M ' 
for some direct summand M ' of M. By assumption M ' < f u l l y  M . Thus M  is a 
strongly F-CS-Rickart module.

(ii) —»(iv) Assume (ii). Let /  £ End(M ) and K  = eM  for some e2 =
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e G End(M ). Then f - '{ F )  <ess f - \ N ) .  So f - ^ F )  ก K  <ess f - \ N ) ก K . 
From Proposition 2.1.11, / _ 1 (A) ก K  = / - 1 (A) ก eM  = k e re /e . Since K  is a 
strongly CS-Rickart module, ker e fe  <ess K ' for some fully invariant direct sum
mand K ' of F .  Thus f - \ F )  ก K  <ess K '.

(iv)—> (ii) Assume (iv). Let h G E nd(F ). Then 0|AT©/r G End(M ). Applying 
Lemma 2.1.10, (0|N © h) 1(F) ก K  =  /i_1( F  ก F) =  ker h because K  ก F  =  0. 
By assumption, (0|N © K) 1(F) ก K  <ess K ' for some fully invariant direct sum
mand K ' of K. This implies ker h <1',SS K '. Therefore, K  is a strongly CS-Rickart 
module. □

In the following example, we provide fully invariant submodules F  and F' 
of M  such that M  is both a strongly F-CS-Rickart module and an F-inverse 
split module; in addition, M  is a strongly F'-CS-Rickart module but M  is not an 
F'-inverse split module. We apply the previous theorem to prove next example.

Rickart module. Since N  is a fully invariant direct summand of M, we obtain 
that M  is both strongly A-CS-Rickart and A-inverse split form Theorem 3.1.29 
and Proposition 3.1.18, respectively. Note that K  is not a direct summand of M  
but K  <ess M . By Theorem 3.1.29, M  is a strongly F-CS-Rickart module but 
M  is not a F-inverse split module.

3.2 Relatively F-CS-Rickart modules
In this section, we extend End(M ) in F-CS-Rickart modules to Hom(F, M ) where 
p  and M  are modules and M  is not necessary an F-CS-Rickart module. This leads 
us to define a relatively F-CS-Rickart module. Moreover, we show th at a direct
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D efin itio n  3 .2 .1. Let P ,M  be modules and F  be a fully invariant submodule 
of M . Then F  is an F-CS-Rickart module relative to M  (relatively F-CS-Rickart 
module) if for any /  G Hom(F, M ), there is a direct summand P' of p  such that 
f - \ F )  <ess P'.

It is clear th at M  is an F-CS-Rickart module if and only if M  is an F-CS- 
Rickart module relative to M.

Equivalent to Theorem 3.1.13, we examine direct summands of relatively F- 
CS-Rickart modules.

T h e o re m  3.2.2. Let p, M  be modules and F  be a fully invariant submodule o f M . 
Then p  is an F-CS-Rickart module relative to M  if  and only i f  for any direct 
summand Pi o f p  and any direct summand M l of M , Pi is an (M l ก F)-CS- 
Rickart, module relative to M l.

Proof. The sufficiency is obvious because F  and M  are direct summands of itself.
Assume th a t F  is an F-CS-Rickart module relative to M .  Let P i  and M l  

be direct summands of p  and M ,  respectively. Then P i  © F2 =  F  for some 
submodule F2 of F. Let g  G Hom(Fi, Ml). Then /  := g ®  Op G Hom(F, M). So 
/ _ 1 (F) =  g ~ l ( M i  ก F ) © F2. Since p  is an F-CS-Rickart module relative to M, 
f ~ 1(F) <esร  P '  for some direct summand P '  of F. It follows th a t P '  — ( P i C P 1) © 
F2 because F2 ç  / _ 1 (F) ç  P '. Hence g ~ l ( M i  ก F) © F2 <esร  ( P i  ก F ') ๏ p2 and 
P i  ก F ' is a direct summand of P i .  Thus g ~ l ( M i  ก F) < 6,,,ร P i  ก P '  by Proposition
2.2.7. Therefore, F] is an ( M l  ก F)-CS-Rickart module relative to M l .  □

If F  =  M  in Theorem 3.2.2, we obtain the following corollary.

C o ro lla ry  3 .2 .3. The following statements are equivalent.
(i) M  is an F-CS-Rickart module.
(ii) For any direct summands N  and K  of M , N  is an (K (iF )-C S-R ickart module 
relative to K .

sum m and of relatively F-C S-R ickart m odules is also a relatively F-C S-R ickart
module.
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(ill) For any direct summands N  and K  of M , for any f  G H om (M , K ) there is 
a direct summand N 1 of N  such that f \ f f ( K  ก  F) <esร N ' .

Proof, (i) (ท) This follows from Theorem 3.2.2 because M  is an F-CS-Rickart
module relative to M .

(ii) —» (iii) Assume (ii). Let N  and K  be direct summands of M  and /  G 
Horn(M ,K ). Then /|/v  G Hom(A, K). So f \ f / ( K  ก  F) < 6:ss N'  for some direct 
summand N'  of N  by the definition of relatively F-CS-Rickart modules.

(iii) —> (i) This is clear because N  — M  = K. □

3.3 Z(M), Z2{M) and Z*(M)-CS-Rickart Modules
In this section, we focus on particular fully invariant submodules which are Z (M ), 
Z 2(M ) and Z*(M ). The first subsection shows relationship between Z(M )~CS- 
Rickart modules and Z2(M)-CS-Rickart modules. The other subsection shows 
specific properties of Z*(M)-CS-Rickart modules.

3.3.1 Z(M)  and Z2 (M)-CS-Rickart modules
Recall th a t Lam provided, in [10], that

Z{M ) =  {x  G M  I (0 :R x) <ess R]

is the singular submodule of M  and

Z 2{M) = {x  G M  I (Z(M ) ะ* x) <£SS R}

is the second singular submodule of M.
A module M  is a singular module if Z (M ) — M , and a nonsingular module 

if Z (M )  =  0, given in [10]. Lam showed that the submodules Z (M )  and Z 2(M) 
are fully invariant submodules of M; in addition, Z 2(M ) is a maximal essential 
extension of Z (M ), th a t is, Z (M ) <ess Z 2(M) and for any submodule N  of M, if 
Z{M ) <esร N  and Z2{M) ç  N , then Z 2[M) = N.

By Proposition 3.1.2, Z(M )~ inverse split modules are Z(M )-CS-Rickart mod
ules; in addition, Z 2(M)~inverse split modules are Z2(M)-CS-Rickart modules.



35

However, we can show that Z2(M)-CS-Rickart modules are Z 2(M )-inverse split 
modules in the following proposition.

L e m m a  3.3.1. For any f  G End(M ), f ~ 1(Z2(M )) is a maximal essential exten
sion of f ~ l {Z (M )).

Proof. Let /  G End(M ). Note th at Z 2(M ) is a maximal essential extension of 
Z 2(M ). Thus f ~ 1(Z (M )) <6รร / - 1 (Z2(M)) from Proposition 2.2.6. Next, let N  
be a submodule of M  such th at / _ 1 (Z(M )) < 6S S  N  and / - 1 ( z 2(M )) ç  N . Let 
X  G yv . If / ( x) —  0, then (Z (M ) \ R  f{x ))  —  R  < e s s  R  so th a t f (x) G Z2 (M),
i.e., X G f ~ 1 (Z2(M)). Assume th at f(x ) ^  0. Let a G A and a 7̂  0. If f ( x )a  = 
0 G Z (M ), then a l — a G (Z (M ) : r  f ( x ) ) .  Assume th a t f ( x )a  ^  0. Then 
xa  ^  0 and xa  G N . Since f ~ 1(Z (M )) <ess N , there is r  G 1? such that 0 ^  
xar G f ~ 1(Z (M )). So f(x )a r  =  f(x a r)  G Z (M ). Then ar G (Z (M ) \R f (x)). 
This implies th at (Z(M ) \R f{x ))  <ess R. Thus f ( x )  G Z2{M) so that X G 
f ~ 1(Z2(M )). Hence f ~ 1(Z2(M )) =  IV. Therefore, f ~ l (Z2(M )) is a maximal 
essential extension of f ~ l (Z (M )). □
P r o p o s i t io n  3.3.2. A module M  is a Z 2{M )-CS-Rickart module i f  and only if  
M  is a Z 2(M )-inverse split module.
Proof. The necessary condition is clear from Proposition 3.1.2.

Next, assume th at M  is a Z2(M )-C S -Rickart module. Let /  G End(M ). Then 
f ~ 1(Z2(M )) <ess M ' for some direct summand M ' of M. Since f ~ 1(Z2(M )) is 
a maximal essential extension of / _ 1 (Z(M )), we obtain th at f ~ l (Z2(M )) = M '. 
Therefore, M  is a Z2(M )-C S -Rickart module. □

Unger, Halicioglu and Harmanci, in [17], presented that Z(M)-inverse split 
modules are Z2 (M)-inverse split modules and the converse is not true in general. 
A ring A is a right singular ring if Z(R ) = R  as a right R-module, and a right 
nonsingular ring if Z (R ) — 0.
L e m m a  3.3.3. ([17], Proposition 5.5) I f  M  is a Z(M )-inverse split module, then 
M  is a Z 2{M)-inverse split module. The converse holds i f  R  is a right nonsingular
ring.
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Next, we provide a relationship between Z(M )-CS-Rickart modules and Z 2(M)~ 
CS-Rickart modules. Note that Lam showed in [10] th a t Z (M ) ก N  = Z ( N ) and 
Z 2(M ) ก N  = Z 2(N ) for any submodule N  of M.

P ro p o s itio n  3 .3 .4. A module M  is a Z (M )-C S-R ickart module if  and only if 
M  is a Z 2{M)-C'S-Rickart module.

Proof. First, assume th at M  is a Z(M)-CS-Rickart module. Then M  — N  © K  
where Z (M ) <6SS N  and K  is a CS-Rickart module by applying Theorem 3.1.22. 
Thus Z (M ) = Z (M )  ก N  = Z (N ), so Z (N ) <6SS N . Hence Z 2(N ) =  N  because 
Z2(N) is a maximal essential extension of Z (N ). Clearly, Z 2(N ) Ç Z 2(M ). Since 
Z (M )  Ç N  Ç Z 2{M) and Z (M ) < ess  Z2(M ), we obtain N  <ess Z 2(M ) by 
applying Proposition 2.2.3. Thus N  < ๑ Z 2(M ) because N  <® M  and N  Ç 
Z 2{M). Since N  satisfies both N  <ess Z 2(M ) and N  <๑ Z 2(M ), it follows that 
N  =  Z 2(M ). Thus M  — Z2{M) © K  where Z2{M) <ess Z 2(M ) and Z 2{M) is a 
fully invariant direct summand of M  and K  is a CS-Rickart module. Therefore, 
M  is a Z2(M)-CS-Rickart module from the converse of Theorem 3.1.22.

Conversely, assume th at M is a Z2(M)-CS-Rickart module. Let /  G End(M ). 
Then there is a direct summand M1 of M such that / _ 1 (Z2(M )) <esร M' . Thus 
/ _ 1 (Z2(M )) =  M1 from Lemma 3.3.1 so that / - 1 (Z (M )) <eรร M'. Therefore, 
M is a Z(M)-CS-Rickart module. □

The following is a diagram presenting a relationship among Z(Af)-inverse split 
modules, Z2(M)-inverse split modules, Z(M)-CS-Rickart modules and Z 2(M)~CS- 
Rickart modules.

Z (M )  -inv erse  split m odules
i 1

Lemma 3.3.3

Proposition 3.1.2

Z {M )  -C S -R ickart m odules
i เ

Proposition 3.3.4

' '
Z 2{M ) -C S -R ickart m odulesZ 2{M ) -inv erse  split m odules -

Proposition 3.3.2
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3.3.2 Z*(M)-CS-Rickart modules
Let E M  denote the injective hull of M . Unger, Halicioglu and Harmanci defined 
in [18] that

Z*{M) = {m  £ M  \ m R  -c  E M }  
is the cosingular submodule of M.

A module M  is a cosingular module if Z*(M ) — M , and a noncosingular module 
if Z*(M ) = 0 provided in [18]. Unger, Halicioglu and Harmanci also presented 
that the consingular submodule Z*(M ) is a fully invariant submodule of M  and 
Z*(M ) ก N  =  Z*(N) for any submodule N  of M . In addition, a ring R  is a right 
cosingular ring if Z*(R) = R  as a right A-module, and a right nonsingular ring if 
Z*{R) =  0 .

P ro p o s itio n  3.3.5. I f  M  is a Z*(M )-CS-Rickart module, then M  = N  © K  
where Z*(M ) <ess N  and K  is a noncosingular CS-Rickart module.

Proof. Prom Theorem 3.1.22, M  =  N  © K  where Z*(M ) <ess N  and K  is a 
CS-Rickart module. As Z *(K ) =  Z*(M ) n  K  =  0, so K  is a noncosingular 
module. □

Next, we consider when M  is both an indecomposable module and a Z*(M)~ 
CS-Rickart module.

P ro p o s itio n  3.3.6. I f  M  is an indecomposable Z*(M )-CS-Rickart module, then 
either M  is a noncosingular CS-Rickart module or Z*{M) <esร M .

Proof. Assume th a t M  is an indecomposable Z*(M)-CS-Rickart module. Then 
M  =  N  ® K  where Z*(M ) <ess N  and A' is a CS-Rickart module. Since M  is an 
indecomposable module, N  =  0 or N  =  M. If N  = 0, then Z*{M ) =  0. So M  is 
a noncosingular CS-Rickart module. If N  — M , then Z*(M ) <ess M . Therefore, 
either M  is a noncosingular CS-Rickart module or Z*(M ) <6รร M . □
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3.4 Projective F-CS-Rickart Modules
Throughout this section, let p  and M  be modules, ร  =  End(M ) and Hom(P, M ) 

be the set of all homomorphisms from p  into M . For each submodule N  of M, 
Lam provided in [10],

N* = {x £ M \ { N : r x ) < 6ss R}.

It is clear th a t N  ç  N*. Note that {0}* =  Z (M )  and (Z(M ))* =  Z2(M).
In current section, we investigate being an F-CS-Rickart module of a projective 

module. Moreover, we provide a notion of right F-CS-Rickart ring R  where F  is 
a fully invariant submodule of the right module R  over itself. Recall th a t all rings 
are projective right modules over itself.

The following lemma shows a nice relationship on projective modules between 
essential submodules and singular modules.
L em m a 3.4.1. ([13], Lemma 2.10) Let p  be a projective module and K  be a 
submodule of M . Then K  <esร p  if and only if p / K  is a singular module. In 
particular, if  p  is both a projective module and a singular module, then p  — 0 .

For a submodule N  of M , we provide a relationship between N* and singular 
submodule of M /N .
P ro p o s itio n  3.4.2. Let N  and L be submodules of M  and N  ç  L. Then L ç  N* 
if and only i f  L /N  is a singular module.
Proof. First, assume that L ç  N*. Let X -f N  G L /N  where X  G L. Then 
(N  :R x) <esร R  because L ç  N*. Thus ({N } -,R X +  N ) = (N  :R x) <ess R. 
Hence X  +  N  G Z {L /N ). Therefore, L /N  is a singular module

Next, assume that L /N  is a singular module. Then Z (L /N )  =  L /N .  Let 
X  G L. Then X  +  N  G Z (L /N ), i.e. ,  ({N } :R X +  IV) <esร R. Note that 
(N  :R x) — ({N }  :R X + N ). Thus (N  :R x) <ess R  which implies th at X  G N*. 
Therefore, L ç  N*. □

Before we present the further main point of this section, the helpful properties 
are provided.
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P ro p o s itio n  3 .4 .3. Let p  and M  be modules and F  be a fully invariant submodule 
of M . Let f  : p  —» M  be a homomorphism and f ~ 1(F) Ç eP  for some e2 =  e G 
End(P). Then the following statements hold:
(i) f P  = f (  1 -  e)P  © fe P ,
(ท) ( f P  + F ) /F  = ( f ( l - e ) P  + F ) / F ® ( f e P  + F ) /F ,
(in) ( / (1 -  e)P  +  F ) / F  =  (1 -  e)P  ร  / ( I  -  e)P , and 
(พ) e P / f~ 1(F) = ( je P  + F )/F .
Proof. Note th a t p  =  (1 — è)P  ® eP.

(i) Notice th a t f p  =  / ( I  — e)P  +  fe P .  Since ker /  ç  / _ 1 (F) c  eP, it follows 
that f p  =  / ( I  — e)P  © fe P .

(ii) It is clear th a t ( / p  +  p )  / F  =  ( / (1 — e)P  +  p )  / p  +  ( fe P  + p )  / p .  Let 
m + p  € ( / (1 —e ) p + p ) /F p )  ( / e P + P ) /p .  Then m + F  =  / (1 —e )x + p  =  fe y + F  
for some G p . Thus / ( (  1 — e)x — ey) =  / ( I  — e)x — fe y  G p . Then 
(1 — e)x — ey G / _ 1 (p ) ç  eP, so (1 — e)x G (1 — e )p  ก eP  =  0. This implies that 
m  + F  = f { l - e ) x  + F =  F. Therefore, (f P  + F ) / F =  ( / (1 -  e )P  +  p ) / p  0  

( /e P  +  F ) /F .
(hi) Define (j) : (1 — e)P  —> ( / (1 — e )p  + p ) / p  by <f>(x) = f ( x )  + F  for ail 

X G (1 — e)P . It is clear that (f) is well-defined. Then, 4> is an epimorphism and
ker 4> — {x  G (1 — e )p  I f{x )  =  p}  =  {x G (1 — e )p  I / (x) +  p  =  F}

=  { x  G (1 — e)P  I / (x) G F} =  {x G (1 — e )p  I X G / _ 1 (P)}
=  ( l - e ) P n r : (P) =  0 .

B y the first isomorphism theorem, (1 — e )p  =  ( / (1 — e )p  +  p ) / p .  Moreover, 
define 0 : (1 — e )p  -4- / ( I  — e )p  by 0 (x ) =  / (x ) for all X G (1 — e)p . The proof is 
similar to the first part, we can conclude that (1 — e)P  =  / ( I  — e)P.

(iv) Define /3 : eP  —> ( fe P  +  p ) / F  by (3(x) =  / (x ) +  p  for all X G eP. Then 
p  is an epimorphism and

ker /3 =  { x  G eP  I p{x) =  p}  =  { x  G eP  I / (x) +  p  =  p}
=  { x  G eP  I / (x ) G P} =  { x  G eP  I X G / _1p }

=  eP  ก / - 1 (P) =  r 1 (P).
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For a relatively F-CS-Rickart module p , we obtain th a t the inverse image 
of p  is essential in a direct summand of p . Note that any direct summands of 
projective modules are projective modules. Hence if p  is both a projective module 
and an relatively F-CS-Rickart module, then the inverse image of F  is essential 
in a direct summand which is also a projective module. Thus, we are interested 
in studying the image of each relatively F-CS-Rickart projective module.
T h e o re m  3.4.4. Let p  be a projective module, M  be a module with a fully in
variant submodule F. Then the following statements are equivalent.
(i) p  is an F-CS-Rickart module relative to M .
(ท) For any f  G Horn (P, M ), ( / P  +  F ) /F  =  N y F  ® K  เ  F  where N /F  is a projec
tive module and K /F  IS a singular module.
Proof, (i)—> (ii) Assume (i). Let /  G Horn (P, M). Then / _ 1 (F) <ess eP  for some 
e2 =  e G End(P). So p  =  eP  © (1 — e)P  and by Proposition 3.4.3 (ii),

( / P  +  F ) / F  =  ( / (1 -  e)P  +  F ) / F  © ( fe P  +  F ) /F .
From Proposition 3.4.3 (iv), we also obtain that ( / (1 — e)P  +  F ) / F  =  ( 1  — e)P  
which is a projective module and ( /e P  +  F ) / F  =  e P / / - 1 (F) which is a singular 
module because / _ 1 (F) <esร eP.

(ii)—> (i) Assume (ii). Let /  G Hom(P, M ). Then ( / P  +  F ) / F  =  N / F  ๏ K เ F  
where N /F  is a projective module and K /F  is a singular module. Define g : p  —» 
( / P  +  F ) / F  by g(x) = f(x )  +  F  for any X E p . Then g is an epimorphism and 
kerg = / _ 1 (F). Since N /F  is a projective module and 7xg is an epimorphism 
where 7T is the projection homomorphism from ( / p  +  F ) / F  —> N / F , applying 
Proposition 2.4.4, leads to ker 71g — eP  for some e2 =  e G End(P). Next, define 
h  : eP —> K /F  by h(x) — f( x )  +  F  for any X G eP. Then ker h =  eP  ก f ~ 1(F) = 
/ _ 1 (F). So e P / f~ 1(F ) =  K /F  which is a singular module. This implies that 
/ _ 1 (F) <es3 eP. Therefore, p  is an F-CS-Rickart module relative to M . □

By the  first isom orphism  theorem , e P / / -1 (F ) =  ( / e P  +  F ) / F .  □

T he next corollary is an im m ediate consequence of Theorem  3.4.4 in case
P  =  M .
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C o r o lla r y  3 .4 .5 .  Let M  be a projective module. Then the following statements 
are equivalent.
(i) M  is an F -CS-Rickart module.
(ท) For any f  G End(M ), ( fM  +  F )/F  = N /F  ® K /F  where N /F  is a projective 
module and K /F  is a singular module.

The following corollary is a consequence of Corollary 3.4.5 when F — 0.

C o r o lla r y  3 .4 .6 .  ([2], Proposition 3.3) Let M  be a projective module. Then M  
is a CS-Rickart module if  and only if every f  G End(M ), f M  — N  ® K  where N  
is a projective module and K  is a singular module.

Next, we investigate the image of each relatively F -CS-Rickart projective mod
ule.

P r o p o s i t io n  3 .4 .7 .  Let p  be a projective module, M  be a module with a fully 
invariant submodule F. I f  p  is an F-CS-Rickart module relative to M , then for 
any f  G Hom(P, M ), f p  — N  © K  where N  is a projective module and K  ç  F*.

Proof. Assume th a t p  is an F-CS-Rickart module relative to M . Moreover, let 
/  G Horn (F, M ). Then / - 1 (F) <ess eP  for some e2 =  e G End(F). Applying 
Proposition 3.4.3 (i), f P  =  / (1 — e )P © /e P . Observe that / ( 1  — e)P  =  ( 1  — e)P  
which is a projective module. Moreover, from Proposition 3.4.3 (iv), (fe P  +  
F ) / F  =  e P j / - 1 (F) which is a singular module because f ~ 1(F) <esร eP. Since 
( /e F  +  F ) / F  is a singular module, fe P  + F  ç  F* by Proposition 3.4.2. Therefore, 
fe P  ç  F* because F  ç  F*. □

Next, a relationship between a projective module and an F-CS-Rickart module 
via the idea of relatively F-CS-Rickart modules when p  = M  is examined.

C o r o lla r y  3 .4 .8 .  Let M  be a projective module. I f  M  is an F-CS-Rickart module, 
then, fo r any f  G End(M ), f M  =ะ N  © K  where N  is a projective module and 
K  Ç F*.

Proof. T he proof is sim ilar to  the proof of Proposition 3.4.7. Assume th a t M  is
an F -C S-R ickart module. Let /  G E nd(M ). T hen  there  is e2 =  e G E nd(M ) such
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th a t f M  =  / ( I  — e)M  ® f e M  where / ( I  — e)M  =  (1 — e)M  which is a projective 
module and fe M  ç  F*. □

In the proof of Corollary 3.4.8, / ( I  — e)M  is isomorphic to a direct summand 
of M . So, we are interested in when / ( I  — e)M  is actually a direct summand 
of M . A module M  satisfies C2 condition, given in [17], if any submodule N  of M  
such th at N = M ' for some direct summand M ' of M  is a direct summand.

C o r o lla r y  3 .4 .9 .  Let M  be a projective module. I f  M  is an F-CS-Rickart module 
satisfying C2 condition, then every f  G End(M ), f M  = eM  ® K  where e2 = e G 
End (M ) and K  ç  F*.

Proof. Assume that M  is an F-CS-Rickart module satisfying c *2 condition. Since 
/ (1 — e)M  =  (1 — e)M  where (1 — e)2 =  (1 — e) G End(M ) and M  satisfies C2 

condition, / ( I  — e)M  is a direct summand of M. □

For a G R, we denote la the module homomorphism from R  into R  with left 
multiplication by a, i.e., la(r) = ar for all r  G R.

P r o p o s i t io n  3 .4 .1 0 . Let R  be a ring. Then R  — E n d (F ).

Proof. Define 6 : R  —> End(jR) by 9(a) —> la for all a G R. It is clear th a t 6 

is well-defined and then is a module homomorphism. Let /  G End (F). Then 
/ (1) G R  and lf(\)(r) =  / ( l ) r  =  / (r) for all r  G F. So 9 is an epimorphism. 
Moreover,

ker# =  {a G R  I 6(a) =  Os} =  {a G R  I la = Os}
=  {a G R  I la(r) =  Oh} =  {a G R  I ar = Or for ail r G R} =  Oh

where 0ร is the zero homomorphism of End(F) and Or is the zero element of R. 
By the first isomorphism theorem, R = End(F). □

For now on, we let ร  =  End(M ). Then End(F) =  ร. Recall from Section 3.1 
that Fs = { /  G ร  I f (M )  Ç F}. Then F is a right module over itself and Fs is a 
fully invariant submodule of ร  so th at we apply Proposition 3.4.3 as follows.
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P ro p o s itio n  3.4.11. Let 9 G ร  and (Fs ■ .ร 9) Ç eS fo r some e2 =  e G ร. Then 
the following statements hold:
(i) 6S = 6( 1 -  e) ร  e  9eS,
(ท) (9S + Fs)/Fs = (9(1 -  e)S + Fs)/Fs ๑ (9eS + Fs)/Fs,
(ill) (9(1 -  e) ร  + F ) /F s  =  (1 -  e) ร  = 9(1 -  e)S, and
(iv) eS /(F s ■ .ร 6) (9eS +  Fs ) /F s .
Proof. Note th a t 6 G ร = End(S') and (Fs ■ .ร 9) ç  eS  for some e2 = e e ร. We 
obtain Ig : ร, —)-ร defined by l g (g) — 9g. Observe that

( l e y^Fs )  = {9 6 ร] lg(g) G Fs} = {9 e s  \ 9g e Fs } = (Fs ■.ร 9) Ç eS.
Moreover, IgS = 9 S 1 lg(l -  e)ร' =  9(1 -  e)ร  and lg(e)ร  = 6eS. By applying 
Proposition 3.4.3 and the later statements, we can conclude (i), (ii), (iii) and (iv).

□

Next, we provide a relationship between projective F-CS-Rickart modules and 
their endomorphisms. Recall from Section 3.1 th at A p (M )  =  { /  £ End(M ) I 
f ~ l (F ) <63ร M }. Note that, for any /  G ร  = End(M ), if there is e2 =  e G ร  such 
th at / (M ) Ç eM , then f  = e f  e eS.
T h e o re m  3.4.12. Let M  be a projective module. I f  M  is an F-CS-Rickart mod
ule, then fo r any f  e  ร, ( f S  + Fs )/F s = N /F S ® K /F S where N /F s  IS a projective 
module and K  Ç A f (M ).
Proof. Assume th at M  is an F-CS-Rickart module. Let /  G ร. Then F  ç  
f ~ 1(F ) < esร eM  for some e2 =  e e ร. Note that (Fs :ร ''/) ะ= {9 E ร' I fg  e  Fs} — 
{ g e s \  fg ( M ) Ç F} =  {9 G ร I g(M ) ç  f - \ F ) } .  Since g(M ) ç  f - '{ F )  ç  eM  
for each g e  (Fs : ร / ) ,  it forces that 9 = eg e  eS so th a t (Fs ะ ร / )  ç  รร. Applying 
Proposition 3.4.11, we obtain th at ( / ร  +  F s ) /F s  =  ( / ( 1 — e)ร +  F s ) /F s®  ( fe S  + 
F s ) /F s  and ( / ( 1  — e)F +  F s ) /F s  — (1 — e)F which is a projective module. Next, 
define (/ : eM  —> ( fe M  +  F ) / F  by f ( x )  = f( x )  +  F  for all X G eM. Then 
4> is an epimorphism and k e r /  =  / _1 (F), so e M / /_1 (F) =  ( fe M  +  F ) / F  =  
M /( /e ) _ 1 (F). Thus (fe )~ l (F ) < 655 M  because f ~ l (F ) < 655 eM. Therefore, 
/e  e A f (M) so that /e F  +  Fs Ç A f(M). □
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P ro p o s itio n  3 .4 .13. Let M  be a projective module. I f  M  is an F-CS-Rickart 
module, then fo r every f  G ร, f s  = N  ® K  where N  is a projective right ideal 
of ร  and K  is a right ideal of ร  with K  Ç A jf(M).

Proof. The proof follows from Theorem 3.4.12 □

The next corollary follows from the previous proposition by taking F  = 0. 
Recall tha t A (M) =  {1/’ G End(M ) I ker f  <6รร M }.

C o ro lla ry  3 .4 .14. ([2], Proposition 3.3) Let M  be a projective module. I f  M  is 
a CS-Rickart module, then for every f  G ร, f S  = N  © K  where Ar is a projective 
right ideal of s and K  is a right ideal of s with K  ç  A (M ).

Note th a t I  is an ideal of a ring R  if and only if /  is a fully invariant submodule 
of R  as a right A-module R. Next, we give the definition of a right /-CS-Rickart 
ring. Since End(A) =  R 1 for any 6 G End(A), there exists a G R  such that 6 = la 
so that d~1(I) =  {r G R  I 9(r) G 1} =  {r G R  I ar G 1} =  ( /  \R a). As a result, 
we define a right /-CS-Rickart ring as follows.

D efin itio n  3 .4 .15. Let I  be an ideal of a ring R. Then R  is a right I-CS-Rickart 
ring if for any a G R  there is a direct summand R! of R  such th a t ( /  :R a) <esร R!.

A  right 0-CS-Rickart ring R  is also called a right ACS-ring, given in [13]. The 
following corollary is obtained from Corollary 3.4.5.

C o ro lla ry  3 .4 .16. Let I  be an ideal of a ring R. Then R  is a right I-CS-Rickart 
ring if  and only if  for any a G R, (aR  +  / ) / /  =  N / 1 © K / 1 where N / I  is a 
projective right module and K / I  is a singular right module.

Let /  be an ideal of R  and J(R )  be the Jacobson radical of R, th a t is, the 
intersection of all maximal right ideals of R. A ring R  is a right I-semiregular 
ring, given in [13], if for any a G R, aR = eR ®  A where e2 =  e G R  and A ç  I  
is a right ideal of R] moreover, A is a left I-semiregular ring if for any a G A, 
Ra = Re ๏ A  where e2 =  e G A and A ç  I  is a left ideal of A. In particular, 
A ring A is a semiregular ring if A is a right J(A)-semiregular ring and a left
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L em m a 3.4.17. ([13], Proposition 1.4) Let I  be an ideal o f R  and I  Ç J(R ). 
Then R  is a right I-semiregular ring if  and only if R  is a left I-semiregular ring.

L em m a 3.4.18. ([13], Proposition 2.3) I f  R  satisfies right C2 condition, then 
Z(R ) Ç J(R ).

Recall th a t R is a right ACS-ring if for any a 6  R  there is a direct summand 
R  of R  such that (0 \R a) <esร R .  Nichoson and Yousif characterized right 
ACS-rings satisfying right c *2 condition in [13].

L em m a 3.4.19. ([13], Theorem 2.4) The following statements are equivalent.
(i) R  is a semiregular ring and J(R ) — Z(R ).
(ท) R  is a right Z(R)-semiregular ring.
(in) For any a G R, there is e2 =  e G R such that aR  = eR@  K  where K  is a 
singular module.
(iv) R is a right ACS-ring and every principal projective right ideal of R  is a direct 
summand of R.
(v) R  is a right ACS-ring satisfying right c *2 condition.

We now consider when A is a right /-CS-Rickart ring and R / I  satisfies right 
C2 condition and apply the following lemma as a main idea.

T h e o rem  3.4.20. Let I  be an ideal of a ring R. Then the following statements 
are equivalent.
(i) R / I  is a semiregular ring and J ( R / I ) =  Z (R /I ) .
(a) R / I  is a right Z{R/1)-semiregular ring.
(in) For any a £ R, there is (e +  I ) 2 — e +  /  6  R / I  such that (aR  +  / ) / /  =  
(e +  I ) { R /I )  © K / I  where K / I  is a singular module.
(iv) R is a right I-CS-Rickart ring and every principal projective right ideal of 
R / I  is a direct summand of R /I .
(v) R  is a right I-CS-Rickart ring and R / I  satisfies right C2 condition.

J (R )-sem iregular ring. A ring R  satisfies right C l condition  if the  R  module over
itself satisfies C 2 condition.
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Proof, (i)—»(ท)--)' (iii) These follow from Lemma 3.4.19.
(iii) —>■ (iv) Assume (iii). Let a G R. Then there is (e +  7)2 =  e +  7 G R  such 

th at (aR  +  / ) / /  =  (e +  7) (72/7) © K / I  where K / I  is a singular module. Since 
(e + 7)(72/1) <® R / I  and R / I  is a projective module, (e +  7) (72//) is a projective 
module. Then R  is a right /-CS-Rickart ring because of Corollary 3.4.16. Next, 
let L / I  be a principal projective right ideal of R / I  generated by a +  7. Then 
(a +  I ) ( R / I )  -= (e +  7) (72/7) ๏ K / I  where e2 +  7 =  e +  7 G  72/7 and K / I  is a 
singular module. Since K / I  < ๑ (a +  I) ( R / I ) and (a +  7) (72/7) is a projective 
module, K / I  is also a projective module. Thus K / I  — I  because K / I  is both 
a singular module and a projective module. Thus (a +  I){R /1 )  =  (e +  I ) (R /I ) .  
Therefore, L / I  is a direct summand of R /I .

(iv) —» (v) Assume (iv). Let K / I  be a right ideal of R / I  such th a t K / I  is 
isomorphic to a direct summand of R /I .  Then K / I  is a principal projective right 
ideal of R /I .  Thus K / I  is a direct summand.

(v) ->(i) Assume (v). Let a +  I  G R /I .  Since A is a right 7-CS-Rickart ring,
by Corollary 3.4.16, (aR + I ) / I  = N / I @ K / I  where 77/7 is a projective module 
and K / I  is a singular module, i.e., K /I  Ç 2(72/7). So 77/7 is isomorphic to a 
direct summand of R / I  because 77/7 is a projective module. Since R / I  satisfies 
right c 2 condition, N /I  =  (e +  7)(72/7) where (e +  7)2 =  e +  7 G R / I  and 
2(72/7) Ç J(72/7) from Lemma 3.4.18. Thus (aR + 7)/7 =  (e +  7)(72/7) ® K / I  
and K / I  Ç J(72/7), this forces that 72/7 is a right J(72/7)-semiregular ring. 
Applying Lemma 3.4.19, 72/7 is a left J(72/7)-semiregular ring so th a t 72/7 is a 
semiregular ring. Next, let 6 +  7 G .7(72/7) Ç 72/7. Since 72 is a right 7-CS-Rickart 
ring, (6 +  7)(72/7) =  (e' +  7)(72/7) 0  K ' / 7 where (e' +  7)2 =  e' +  7 G 72/7 and 
K 'เ I  ç  Z (R /I )  Ç J ( R / I ). Hence e' +  7 G >7(72/7). Since J(72/7) does not contain 
any nonzero idempotents, e! +  7 =  7. Thus (6 +  7)(72/7) =  K 'เ I  Ç Z (R /I ) ,  so 
6 +  7 G 2(72/7). □

Let 72j =  72 and 7j =  7 be an ideal of 72 for all i G { 1 , . . .  1 ท}. Let 72̂ n) =
0Z=1 72i and 7^T =  0 " = 1 7j and M n(R) be the ท X ท m atrix  ring over 72. From
Proposition 2.1.14, End(72<'n )̂ — M n(Sft) where Aft =  End(72). Recall th a t
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End(R) =  R  so that End(/?(T) =  M n(R). Next, we consider I ร = { /  G 
E n d (ü ^ )  I / ( R ^ )  ç  /O)} which is isomorphic to the m atrix ring over /.

L em m a 3.4 .21. Let R  be a ring and I  be an ideal of R. Then the following 
statements holds.
(i) Hom(R, I) = I.
(ท) Is = Mn{I).
Proof, (i) Observe that Hom(/?, I) — { /  e End(-R) I f (R )  Ç /}  =  {a <E R  \ aR  Ç 
1} = I because End(R) =  R.

(ii) Let g  e  Is. Then g <E End(i?W) and g ( R ^ )  Ç /("). Let S j  = Horn( R , I ) .  

Define f  : Is —» M n ( S j ) by

7̂ท gil • • • 7โ1 gin']
7Tigij ;

\JtnQl 1 ••• ^n9^nj
where 7Tigij : / ? —> /  for all i , j  6  { 1 , . . . ,  ท}. Then <f) is an isomorphism so that 
/ร =  Mn(ร/). Therefore, /ฐ =  M n(I) because Horn (R, I)  =  I. □

Observe that the set of all endomorphisms of R (T and M n(R) are concerned 
as well as Is  and M n(I) are isomorphic. So we characterize the right Mn(/)-CS- 
Rickart rings and M n(R) for some given ideal I  of R.

T h e o rem  3.4.22. Let I  be an ideal of a ring R and ท 6  N. Then the following 
statements are equivalent.
(i) The free R-module 7?0 ) is an J (ท)-CS-Rickart module.
(ท) E n d (R ^ ) is a right Is-CS-Rickart ring.
(Hi) M n(R) is a right M n(I)-CS-Rickart ring.
(iv)For any n-generated right ideal A of R, (A +  I ) /1  =  N / I  ® K / I  where N / I  
is a projective module and K / I  is a singular ring.
(V) The R-module R (T is an I-CS-Rickart module relative to R.
(vi) For any n-generated submodule L of R^n\  (L +  j ( n) y j ( ท) — _/V1/ / (n) 0  . . .  0  

Nn/ l W ® K / l W  where each N i/I™  is a projective module and K / I  is a singular
module.
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Proof. We let ร  = End(R.W).
(i)—* (ii) Assume that the free A-module is an /bb-CS-Rickart module 

with basis { a i , . . . , a n}. Let f £ s. Then / - 1 (/bb) < 655 eR ^  for some e2 =  
e £ s. Let g £ (1ร ■ .ร / ) .  So fg  £ Is  that is fg (R ^n'>) Ç /bb. Hence g (A(rb) Ç 
y -i( /h b )  c  eR ^  so that g = eg. Thus (1ร ■ .ร / )  is a submodule of eS. Next, 
let eh £ eS  and eh 0. Then e h ( R ^ )  7̂  0 . Since / _ 1 (/bb) <esร eR^n\  we get 
e /i(A bb)n /-i(/(n )) 0. There is X  7̂  0 such th at X  — eh(y) for some y £ R bb and
/ (x) £ /bb. We define a homomorphism 9 £ End (Abb) by 9(airI 4-----+  anrn) =
yri for all r \ , . . . , r n £ R. Then eh9(ai) =  eh(y) =  X  and 9(R;bb) =  yR , this 
forces th a t eh6 0 and fe h 9 (R ('n)) =  fe h (y R ) =  f ( x ) R  Ç / bb/£ c  /bb. So 
/e/i0  € / 5 , th a t is e/ฟ £ (Is ■ .ร / ) .  Hence (Iร ■ .ร f  ) < 6,รร eS1. Therefore, End(i?(n)) 
is a right / ร-CS-Rickart ring.

(ท)—)-(i) Assume (ii). Let f  £ s .  Then (Iร ■ .ร / )  <esร eS  for some e2 =  
e £ ร. Let X  £ / - 1 (/bb). Then f ( x )  £ /bb. Similar to the argument of the 
proof (i) —» (ท), there is a homomorphism 9 £ ร  such th a t 9(R 'n')) =  xR . So 
/ (#/?bb) =  f(xR .) Ç /bb 1 we obtain th at f9  £ Is th a t is 9 £ (1ร ■ .ร / ) .  Thus 
9 = e9 because ( I ร ■ .ร f )  ç  eS. Then X  £  x R  — 9 (R b1)) = e9(R bb) ç  e/?bb. 
This implies th a t / - 1 (/bb) c  e-Rbb. Next, let m  £ e/?bb ancj 777, ^  0. Then 
m  =  em so that m R  = emR. So there is a nonzero homomorphism h £ s  
such th a t h-Rbb =  171R  =  emA, similar to the technique of the proof (i) —» (ii). 
Since ( /5  :ร / )  < 65ร eA, there is g £ ร  such th a t hg 0 and fh g  £ 1ร. So 
0 ^  hg(RW ) and f h g ( R ^ )  Ç /bb. Hence 0 ^  hg (Abb) ç  / - ! ( / ( " ) .  This forces 
th a t / _ 1  ( / (n)) < 65ร eAbb. Therefore, the free A-module A^) is an /bb-CS-Rickart 
module.

(i) —>(v) This follows from Theorem 3.2.2.
(ii) 'H-(iii) This is clear because End(Abb) =  Mn(R ) and Is  = Mn(I).
(iv)-»(v) Assume (iv). Let /  £ Horn(Abb, A). Then for any X i £ A,

f ( x  1 , . . . ,  x 71) =  / ( 1 , . . .  1 0)xi +  • • • +  / (0 , . . . ,  l ) x n.

So /(A bb) is generated by { / ( 1 , . . . ,  0 ) , . . . ,  / ( 0 , . . . ,  1)}. By assumption, ( / (Abb)+ 
/ ) / /  — N / I + K / I  where jV // is a projective module and K / I  is a singular module.
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From Theorem 3.4.4, R (n) is an I-CS-Rickart module relative to R.
(v)—>(iv) Assume (v). Let A  be an n-generated right ideal of R such that

A  =  UiP-l------hanR  where Û1 , . . . ,  an G R. Define (ft : p (n) —>• R  by . . . ,  xn) =
OjXi H-------hanx„ for any X i , . . . , xn G R. Then 0 is a module homomorphism and
cfi(RW) ะ= a 1 R  + --- + anR. Therefore, (A  +  / ) / / =  (</>(Æ(n)) +  / ) / /  =  N / I  + K / I  
where N / 1 is a projective module and K/ I  is a singular module because R is 
an I-CS-Rickart module relative to R.

(v)->(vi) Assume (v). Let L be an n-generated submodule of p (n). Then 
L — (xi)R + • • • +  (xn)R where (x i) , . . . ,  (xn) G R ^  and (Xi) = (xii, . . . ,  xni) for 
all i G { 1 ,.. .  1 ท}. So
/ Xn

\Xn l

X\n d d

y a 71J

Ad
y-Al J

ท1 +  • • •  +

f  % In ̂

y X n n  J

a71 G (x i)P  +  • • • +  (x n)R .

Xn X \ f a  \2-171 a i

Let /  = G M n(R) “  E n d (A ^ ). Then /  G ร  and
y x n i . . . xnnJ yQnJ

f ( R ^ )  =  L. Let 7Tj be the projection map from p (”) to its i-th  component and 
9i be the inclusion map form R  to R for any i  G { 1 , . . . ,  ท}. Since the P- 
module R ^  is an /-CS-Rickart module relative to R  and 7Ti/ G Hom(p(n\  P i), 
we obtain th at / - 1 ( /พ )  c  (7r1/ ) ~ 1(/) < 655 eiP^n) for some é\ =  ei G 5. So 
^ (ท) _  P 1 0  6 1^ (ท) and p x is a projective module because Pi <® p (n) and 
R(n) is a  p ro je c t iv e  m o d u le . N e x t, w e c o n s id e r  th e  h o m o m o rp h is m  7 T i / | 6 l f t (ท ) . 

S in ce  ร 1  p ( n) <®  p ( n) a n d  7T2/ | e 1ft(ท) G H o m ( e iP ( n), p 2), a p p ly in g  T h e o re m  3.2.2, 
/ _ 1 ( / ( n)) Ç  (7T2/ | 61 ft(ท))-1  ( / )  < 655 e 2P (n) fo r so m e  Ô2  =  e 2 G ร. S in c e  e2P (n) <® 
R ^  a n d  e2p ( n) Ç e\R^n\  f ro m  P ro p o s i t io n  2.1.4, e 2p ( n) <®  e i p ( nL T h u s  
e i P ^  =  p 2 ® e 2P (n) a n d  p 2 is a  p ro je c tiv e  m o d u le  b e c a u s e  p 2 <®  e i p ( nL H en ce  
p (n) =  P i ® P 20 e 2p (n). S o  w e g e t e 3, . . .  1 en su c h  t h a t  / _ 1 ( / (n)) Ç  7Tj/|ej_ 1f t (ท) < 655 
e ,R(n) fo r a ll j  G { 3 , . . . ,  ท}. T h u s  =  {ท 1 f ) - \ I )  ก • • • ก  (ttJ ) - ' ( I )  < 655
e i p (n) ก • • • ก  e 7j P (n) ะ= enR(n\  N ow , p n =  P i ®  - - - ®  Pn ®  en P (n) w h e re  each  
Pi is a  p ro je c t iv e  m o d u le . H en ce  (K  +  / พ ) / / ( ท) =  (1/ ' ( p M )  - f  /( " )  ) / / ( " )  ะ=
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i f  {Pi) +  / (n)) / / (n) ® • ■ • ® ( / {Pn) +  /(n)) / / (n) ๏ / (eni?(n)) +  /W ) /J (n) where each 
(/(Pi) + /("))//(") ร  Pi which is a projective module and / (enphd) +  /("))//(") SÉ 
enP ^ / / _ 1 ( / ^ )  which is a singular module.

□

Consequently, we obtain the following corollary when p  =  0.

C o ro lla ry  3.4.23. ([1], Theorem 4.3) Pei ท 6  N. p/ien f/ie following statements 
are equivalent.
(i) The free R-module phd js <2 CS-Rickart module.
(ท) M n(R ) is a right CS-Rickart ring.
(iii) For any ท-generated right ideal A of R, A = N @ K  where N is a projective 
module and K  is a singular module.
(iv) The R-module phd is a CS-Rickart module relative to R.
(v) For any ท-generated submodule L of L =  Ail ® • - - © Nn ๏ K  where each 
Ni is a projective module and K  is a singular module.
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