
CHAPTER III
F-CS-RICKART MODULES

In this chapter, we provide the concept of F-CS-Rickart modules. We would like to 
point out th a t the notion of F-CS-Rickart modules are extended from CS-Rickart 
modules by Abyzov and Nhan given in [1], and F-inverse split modules by Lee, 
Rizvi and Roman in [11]. We integrate the idea of being an essential submodule 
of some direct summand of ker /  from CS-Rickart modules and the idea of being 
a direct summand of / _1(F) from F-inverse split modules for all /  € End(M ).

Various properties of F-CS-Rickart modules and characterizations of those are 
investigated in Section 3.1. We show th at the intersection of two submodules of 
an F-CS-Rickart module is essential in some direct summand where one of those 
two submodules contains F. Moreover, we study when a submodule of an F- 
CS-Rickart module is also an F'-CS-Rickart module where F' is a fully invariant 
submodule of th at submodule. Relationships between F-CS-Rickart modules and 
F-inverse split modules, likewise, relationships between F-CS-Rickart modules 
and CS-Rickart modules are presented. Furthermore, we give a notion and a 
characterization of strongly F-CS-Rickart modules which is a special case of F- 
CS-Ric,kart modules. Observe that for F-CS-Rickart modules the inverse images 
of endomorphisms are considered. So, in Section 3.2, we extend to consider the 
inverse image of a homomorphism which is an essential submodule in some direct 
summand. In Section 3.3, we focus on specific fully invariant submodules, namely, 
singular submodules, second singular submodules and cosingular submodules. Fi­
nally, in Section 3.4, we concern any images of F-CS-Rickart projective modules 
satisfying C2 condition. We obtain that they can be written as a direct sum of 
two submodules one of which is a projective module and the other one of which 
is contain in F*. In addition, we define a right /-CS-Rickart ring for a given ideal 
/  of R. Then the free F-module is an F nRCS-Rickart module if and only if
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M n(R ) is a right M n(I)-CS-Rickart ring where R and are the finite direct 
sum of ท copies of R  and I, respectively.

3.1 Properties of F-CS-Rickart Modules
First, we examine relationships between F-CS-Rickart modules and F-inverse split 
modules, as well as, relationships between F-CS-Rickart modules and CS-Rickart 
modules. Next, we are interested in when a submodule N  of an F-CS-Rickart 
module is also an F'-CS-Rickart module for some fully invariant submodule F' 
of N . Later, characterizations of F-CS-Rickart modules are provided. One of 
main results is th a t any F-CS-Rickart module can be w ritten as a direct sum of 
two submodules one of which is an essential extension of F  and the other one of 
which is a CS-Rickart module.

As we mentioned earlier, the concept of F-CS-Rickart modules are extended 
from CS-Rickart modules and F-inverse split modules. A module M  is a CS- 
Rickart module, given in [1], if for any /  G End(M ), there is a direct summand 
M ' of M  such th at ker f  <esร AF; in addition, M  is an F-inverse split module1 
given in [17], if for any /  € End(M ), / -1 (F) is a direct summand of M . Now, we 
provide the definition of ail F-CS-Rickart module by combining the main ideas of 
those as follows.

D efin itio n  3 .1 .1 . Let F  be a fully invariant submodule of M . Then M  is an 
F-CS-Rickart module if for any /  G End(M ), there is a direct summand AF of M  
such th a t / _1(F) is an essential submodule of AF.

Note th at M  is a CS-Rickart module if and only if M  is a O-CS-Rickart module.

P ro p o s itio n  3.1.2. Any F-inverse split module is an F-CS-Rickart module.

Proof. Let M  be an F-inverse split module. Then, for each /  G End(M ), we 
obtain th a t / _1(F) <ess / -1 (F) <® M . Therefore, M  is an F-CS-Rickart module.

□
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Observe th a t / -1 (F) is a submodule of M  containing F  for any /  G End(M ). 
So we can conclude th at M  is an F-CS-Rickart module if and only if any sub- 
module of M  containing F  is an essential submodule of a direct summand of M. 
The following example shows an F-CS-Rickart module which is not an F-inverse 
split module for some given fully invariant submodule F  of M .

E x a m p le  3.1.3. Let M  be the Z-module z 2 © z 8. Let N  =  0 © (2). Then N  
is a fully invariant submodule of M  obtained directly from the definition. The 
following diagram describes all submodules of z 2® z 8- Each submodule contained 
in a box is a direct summand of M  but the others are not direct summands of M. 
Furthermore, if a submodule N  is an essential submodule of M , we write N ess, 
otherwise; we write N-£g£.

Z2 © z 8

Observe that, all submodules of M  containing N  are N , 0 © z 8, z 2 ๏  (2),
(1,1)Z and M . Among these, only 0 ๏ z 8, ( I ,T)z and M  are direct summands 
of M, i.e.5 they are essential submodules of themselves, and only z 2 ๏ (2) is an
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essential submodule of M  but N  is not a direct summand and not an essential 
submodule of M . Moreover, N  is an essential submodule of 0 © z 8 which is a 
direct summand of M  because all proper submodules of Ü ® z 8 contained in N. 
As mention above, we can conclude th at any submodule of M  containing N  is 
an essential submodule of a direct summand of M. This shows th a t M  is an 
A-CS-Rickart module. However, M  is not an A-inverse split module because 
li t1 (A) =  A  is not a direct summand of M.

Proposition 3.1.2 together with Example 3.1.3 guarantee th a t F-CS-Rickart 
modules actually generalized F-inverse split modules. We know th a t M  is a CS- 
Rickart module if and only if M  is a O-CS-Rickart module. For a given fully 
invariant submodule F  of M , “M is an F-CS-Rickart module” does not imply 
“M  is a CS-Rickart module” ; moreover, “M  is a CS-Rickart module” does not 
imply “M  is an F-CS-Rickart module” . Example 3.1.3 shows th a t Z 2 ® z 8 is a 
0 ๏ (2)-CS-Rickart module; however, Z 2 © z 8 is not a CS-Rickart module shown 
in the next example.
E x a m p le  3.1.4. Let M be the Z-module Z 2 ๏ z 8 and A  =  0 ๏ (2). Then

and g2 (ใ/) =  2y  for all X  G Z2 and ÿ  G z 8. Then ker h  =  (1, 2 )z  which is not an 
essential submodule of all direct summands of M  shown in the diagram. Thus 
Z2 ๏ z 8 is not a CS-Rickart module.

Next, we give an example of CS-Rickart modules which is not an F-CS-Rickart 
module for some fully invariant submodule F.

In [10], Lam provided th at Z (M )  =  {x 6 M  I (0 \ft x) <esร F} and Z2(M) =  
{x  e  M  \ (Z (M ) \R X) < 655 R } are submodules of M . Moreover, they are fully 
invariant submodules of M.
E x a m p le  3 .1 .5 .  Let p  be the set of prime integers. Consider the Z-module 
M — ท pz p. For the fully invariant submodule Z2(M), we show later th at M is
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a Z2(M)-CS-Rickart module if and only if it is a Z2(M)-inverse split module, see 
Proposition 3.3.2. Moreover, Example 2.12 in [18] shows th a t Z (M ) =  Z 2(M ) = 
0 p  Zp ^  0 and M  is not a Z2(M)-inverse split module but M  is a Rickart module. 
Since M  is not a Z2(M )-inverse split module, M  is not a Z2(A7)-CS-Rickart 
module. In addition, M  is a CS-Rickart module because M  is a Rickart module 
by Lemma 2.7 in [1]. Therefore, M  is not a Z2(M)-CS-Rickart module but M  is 
a CS-Rickart module.

For a given fully invariant submodule F  of M, unlike F-inverse split modules 
and F-CS-Rickart module, CS-Rickart modules and F-CS-Rickart modules do 
not imply each other obtaining from Example 3.1.4 and Example 3.1.5. Next, we 
present some properties of F-CS-Rickart modules.

P ro p o s itio n  3 .1 .6. Let M  be an F-CS-Rickart module and p  be a module. If 
M  is isomorphic to p  by isomorphism <f> : M  —» p , then p  is a (j)(F)-CS-Rickart 
module.

Proof. Assume th a t 0 is an isomorphism from p  onto M . Let /  € End(F). 
So 0 _1/ 0  e End(M ). Let y e 0(F). Then y — 0(x) for some X e  F. Thus 
0_1/(y )  =  0 _1/0 (^ )  G F  because F  <fully M. It forces th a t f (y )  G 0(F ). Hence 
0(F ) <fully p . Since M  is an F-CS-Rickart module, (0 _1/0 )  l (F) <ess M ' 
for some direct summand M ' of M . Thus 0 _1/ _1(0(A1)) <ess M '. Applying 
Proposition 2.2.6, 0 ^ 0 -1/ -1 (0 (F )) j  <ess 0(A f). Since M ' is a direct summand 
of M, there is a submodule K  of M  such that M  =  M ' © K . This implies that, 
p  =  0(M ) =  0(M ') ® 0 (F )  so that 0(M ') is a direct summand of p . Thus 
/ _1(0(F )) <6ss 0(M '). Therefore, p  is a 0(F)-CS-Rickart module. □

In general, the intersection of two direct summands may not be a direct sum­
mand. However, the intersection of two direct summands of M  turns out to be 
a direct summand provided M  is a Rickart module; moreover, the intersection of 
two direct summands of M  is an essential submodule of some direct summand 
of M  if M  is a CS-Rickart module. Similarly, we focus on the intersections of two 
direct summands of an F-CS-Rickart module. Next example shows th a t there is
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the intersection of two direct summands of an F-CS-Rickart module which is not 
a direct summand but it is an essential submodule of some direct summand.

E x am p le  3.1.7. Let M  be the Z-module z 2© z8 and N  = Ü ©(2). Then M  is an 
IV-CS-Rickart module, see Example 3.1.3. Moreover, A  =  0 © z 8 and B — (I, T)Z 
are direct summands of M . Then A  ก B  ะ= Ü © (2) is not a direct summand of 
M  but A  ก B  = Ü © (2) < 655 A.

However, if M  is an F-CS-Rickart module satisfying some conditions, then it 
guarantees th a t the intersection of direct summands is an essential submodule of 
a direct summand of M . Nevertheless, the following lemma is needed.

L em m a 3.1.8. Let F  be a fully invariant submodule of M . Let h2 — h, g2 =  g E 
End(M ) and F  ç  g M. Then gM  =  (1 — g)~1(F). Moreover, ((1 — g)lij 1(F) = 
(1h M n g M ) © (1 -  h)M.

Proof. It is clear that, (1 — g)gM  =  0 ç  F , so gM  ç  (1 — g)~1(F). Next, let 
m  E (1 — ig)_1(F). Then (1 — g)m  E F  Ç gM . Thus (1 —g)m E g M ก (1 — 1g)M  = 0 
leading to m e  ker(l — g) = gM  from Proposition 2.1.3. This shows th a t gM  = 
(1 - 9 ) - \ F ) .

Now, we let X E ((1 — g)h) 1(F). Then (1 — g)h(x) E F  so th at h(x) E 
(1 — #)-1 (F) =  gM . Thus X = h(x) + (1 — h)(x) E {hM  ก gM ) © (1 — h)M . For 
the reverse of inclusion, let X + y E [hM  ก g M ) © (1 — h) M  where X E hM  ก g M  
and y E (1 — h)M . So X = h(x) = g[x) and y =  (1 — h)(y). Then (1 — g)h(x + y) =  
(1 — g)h(x) +  (1 — g)h(y) =  0 G F. Hence x  +  y E ((1 — g)h) 1(F). Therefore, 
the second result follows. □

P ro p o s itio n  3.1.9. Let M  be an F-CS-Rickart module. Then the following state­
ments hold.
(i) For any direct summands N  and K  of M 1 if F  ç  K , then N  n  K  <6รร M ' for 
some direct summand M ' of M .
(a) For any submodules N  and K  of M , if there are direct summands Ml and M2 
of M such that N  <esร Ml and F  ç  K  <6ss M2, then N  r\ K  <esร M' fo r some 
direct summand M' of M .
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(in) For any / l , . . .  , /n  € End(M ), there is a direct summand M ' of M  such that
C ] fr \F )  < „ , น'.

Proof, (i) Assume th at N  and K  are direct summands of M  and F  ç  K . Then 
N  =  hM  and K  = gM  for some h2 =ะ h, g1 =  g G End(M ). Since F  ç  K  — gM, 
Lemma 3.1.8 gives

((1 -  g )h )~ \F )  =  (hM  ก gM ) ๏ (1 -  h)M .

Since M  is an F-CS-Rickart module, ((1 — g)h)~1(F ) < 65ร eM  for some e2 =  
e G End(M ). Thus (1—h)M  ç  eM. As M  = h M ® (l—h)M  and (1—h)M  Ç eM, 
we obtain eM  — M  ก eM  = (hM  © (1 — h)M ) ก eM  — (hM  ก eM) © (1 — h)M  
by Modular Law. So hM  ก eM  < ๑ eM  and

(hM  ก gM ) ๏ (1 — h)M  — ((1 -  g)h) : (F) < 655 eM =  (hM  ก eM ) © (1 — h)M .

Therefore, N  D K  = hM  ก gM  < 655 hM  ก eM <® M.
(ii) Assume th a t N  and K  are submodules of M and N  < 655 Ml and K  < 655 M2 

for some direct summands M l and M2 of M such th at F  ç  K. By (i), we obtain 
Ml ก M2 < 655 M' for some direct summand M 1 of M. Applying Proposition 2.2.4, 
N  n  K  < 655 Ml ก M2 < 655 M '. Therefore, N  n  K  < 655 M ' by Proposition 2.2.3.

(iii) Let f i  G End(M ) for all i G { 1 , . . . ,ท}. Since M  is an F-CS-Rickart 
module, for each i, F  Ç /j_1(F) < 655 Mi for some direct summand Mi of M.ท
Applying (ii) repeatedly, we obtain P j / j -1 (F) < 655 M 7 for some direct summand 
M ' of M. 1=1 □

A module M  is an SIP-CS  module if the intersection of two direct summands 
is an essential submodule of a direct summand of M, see [1]. From the previous 
proposition, the intersection of two direct summands of an F-CS-Rickart module 
is essential in a direct summand of M when one of direct summands contains F.

C o ro lla ry  3 .1 .10. Let M  be an F-CS-Rickart module. Then M  is an SIP-CS 
module provided that F  is contained in all direct summands o f M .
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Similar to  CS-Rickart modules and F-inverse split modules, we investigate 
when a submodule A  of an F-CS-Rickart module is also an F'-CS-Rickart mod­
ule for some fully invariant submodule F' of this submodule A. We provide the 
following lemma using for obtaining the mentioned result.

L em m a 3.1 .11. Let A  and F  be fully invariant submodules of M. I f  each endo­
morphism of A  can be extended to an endomorphism of M , then A  ก F  is a fully 
invariant submodule of N . Moreover, for any g G End(A ), there is f  G End(M ) 
such that g = f \ f f  and g_1(A ก F) =  A  ก / _1(F).

Proof. Assume th a t each g G End (A) can be extended to an /  G End(M ). Let 
g G End(A ). Then there exists /  G End(M ) such th a t g =  f  เพ. Let X G A  ก F. 
So f \ N{x) =  g(x) G A  and f \ N(x) =  f ( x )  G F. Thus g(x) = / | at(x) g a  ก  F. 
Therefore, A  ก F  < fully N.

Moreover, we claim that g~l (N r\F ) — A n / -1 (F). Let X G g~1(N n F ) .  Then 
X G N  and / (x) =  g(x) e N  p\ F, so X e  N  n  f ~ 1(F). Next, let y G A  ก f ~ 1(F). 
Then g(y) — f(y )  G F a n d y (y )  G A. Soy G g~1(N n F ). Therefore, y_1(A n F ) =  
A  ก / - 1 (F). □

P ro p o s itio n  3 .1 .12. Let M  be an F -CS-Rickart module and A  be a fully in­
variant submodule of M . I f  each endomorphism of A  can be extended to an 
endomorphism of M 1 then A  is an (A  ก F)-CS-Rickart module.

Proof. Assume th a t each g G End(A) can be extended to an /  G End(M ). Let g G 
End(A). Then /|jv  =  g for some /  G End(M ) and g~ 1(A n F ) =  A n / -1 (F). Since 
M  is an F-CS-Rickart module, / _1(F) < 655 eM  for some e2 =  e G End(M ). 
Thus A  ก / _1(F) < 655 A  ก eM . Since A  <fully M  and (e\N)2 =  e\N G End(A ), 
A  ก eM  — e|/v(A) <® A. So g - \ N  ก F) =  A  ก / _1(F) < 655 A  ก eM  <® A. 
Therefore, A  is an (A  ก F)-CS-Rickart module. □

Observe th a t the intersection of fully invariant submodules A  and F  of M  
needs not be a fully invariant submodule of A. However, the intersection of 
a direct summand A  of M  and a fully invariant submodule F  of M  is always
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a fully invariant submodule of N  from Proposition 2.1.8. So, now, we obtain one 
characterization of F-CS-Rickart modules.

T h e o rem  3 .1 .1 3 .  A module M  is an F-CS-Rickart module if  and only if  N  is 
an (N  ก F)-CS-Rickart module for any direct summand N  o f M.

Proof. The sufficiency is clear because M  is always a direct summand of M  itself.
For the necessity, let N  be a direct summand of M. Then N  =  eM  for some 

e2 =  e G End(M ) and IV ก F  is a fully invariant submodule of 1V. Let g G End(iV) 
and K  =  (1 — e)M . From Lemma 2.1.10, g~x(N  ก F) © K  — (g (B 0x )~ 1(F). 
Since M  is an F-CS-Rickart module, (g ® 0k )~1(F) <ess M ' for some direct 
summand M ' of M. Since M  =  N  ® K  and K  ç  [g ® 0x )~ l (F) ç  M ', we 
obtain th a t M ' = (N  ก M ') ๏ K . Thus N  ก M ' <® N  because N  ก M ' <® M  
and N  n  M ' ç  N . This forces that g~l (N  ก F) <esร N  ก M 1 by Proposition
2.2.7. Therefore, N  is an (N  ก F)-CS-Rickart module for any direct summand N  
of M. □

A direct sum of F-CS-Rickart modules where each summand is also a fully 
invariant submodule is studied in the following theorem.

T h e o re m  3 .1 .1 4 .  Let Mj be a fully invariant submodule of 0 " =1 Mi and Fj be 
a fully invariant submodule of Mj for all j  G { 1 , . . . ,  ท}. Then ®™_ 1 Mi is a 
® "_1 Fi-CS-Rickart module if  and only i f  Mj is an Fj-CS-Rickart module for all 
j  e  { 1 , . . . ,ท}.

Proof. Assume that ® "= 1 Mi is a ® "=1 Fj-CS-Rickart. Since each Mj < ๑ ® "= 1 Mj, 
we obtain th a t each Mj is an (Mj ก 1 Fj)-CS-Rickart module by Theorem 
3.1.13. Therefore, Mj is an Fj-CS-Rickart module because Mj ท ® "=1 Fj =  Fj for 
all j  G { 1 , . . . ,  ท}.

F o r th e  c o n v e rse , a s su m e  t h a t  Mj is a n  F j-C S -R ic k a r t  m o d u le  fo r a ll j  G 
( 1 , . . . ,  ท}. L e t /  G E n d ( ® " = 1 M j) . L e t ( x i , . . . ,  x n) G ® " = 1 M j. T h e n

f i x  1 , . . . , x n) = f ( x  1, . . . , 0) +  • • ■ +  / (0, . . . , ! „ )  =  /l(x i)  +  • • • +  fn (xn)
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where f j  := f i j  : Mj  —» 0 ”= 1 Mj and ij is the inclusion map from Mj into
0 ”= 1 Mi for all j  G { 1 ,. . . ,  ท}. Since each Mj < fully 0 * = 1 Mj, we get f j  :
Mj —> Mj and fj(F j)  Ç Fj. Thus f f l {Fj) < 6,ร .ร  ejM j for some idempotent 6j G 
End(M j) because each Mj is an Fj-CS-Rickart module. Applying Proposition
2.2.7, ® "=1 f ~ l {Ff) <655 ® "= 1 dM i. Note that

/  1 ( Fi) =  j ( x i , . . . ,  x n) G Mj I /  (x 1 , . . . ,  xn) € Fj j

=  { ( x i , . . . ,  xn) G ^  Mi I / i(x i)  +•••• +  fn {xn) G Ft I

=  { ( x i , . . .  1 x„) G 0 M j  I f j ( x j ) G Fj for all j  G {1 ,.. . 1 ท}}
i=l

=  [ ( x i , . . .  ,x n) G 0 M j  I Xj G f ~ 1(Fj) for all j  G { 1 , . . . ,  ท} J

= © / i " W

Hence =  ® " = 1 /i-1 (-Fi) ©"=1 ejMj and ® "= 1 ejMj is a direct sum­
mand of 0 ”= 1 Mj. Therefore, 0 " =1 Mj is a ®”= 1 Fj-CS-Rickart module. □

Next, other characterizations of F-CS-Rickart modules are given. Let A  be a 
submodule of M  and /  be a nonempty subset of End(M ). Recall th a t (A  :M I)  =  
{x  G M  I / (x) G A  for any /  G /} =  P ) / _1(A). Moreover, if /  is a principal left
ideal of End(M ) generated by / ,  then (F  \M I) = (F  ะM / )  =  / ~ 1(F).

T h e o re m  3.1.15. The following statements are equivalent.
(i) M  is an F-C S-R ickart module.
(พ) For any finite nonempty subset I  o fE nd (M ), (F  :m I) is an essential sub- 
module of M ' fo r some direct summand M ' of M .
{in) For any finitely generated left ideal I  of End(M ), (F  : M I) is an essential 
submodule of M ' fo r some direct summand M ' of M .

Proof, (i)—> (ii) Assume (i). Let /  be a finite nonem pty subset of E nd(M ). Thus
(F  ■ M I)  =  1̂ 1 / _1(F ) < 655 M '  for some direct sum m and M '  of M  by applying

f e i
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Proposition 3.1.9 (iii).
(ท)-* (i) This is clear.
(i)—> (iii) Assume (i). Let I  = ( f  1, , . , 1/ ท) be a finitely generated left ideal 

of End(M ). We prove by induction on ท. If ท =  1, the statem ent clearly holds. 
Suppose that the statem ent holds for ท — 1. Let J  = ( / 1, . . . ,  / n_ 1). We obtain 
th a t (F  :m j ) <ess Mn_i for some direct summand Mn_1 of M. It follows that 
(F  ะAf /)  =  (F  J)  ก f 'ทิ1 (F) and f ~ l (F) < 655 Mn for some direct summand 
M„ of M. Thus (F  \M J) ท f n l (F ) < 655 Mn_1 ก Mn. Since (F  :M J ) and /T 1 (F) 
contains F , by Proposition 3.1.9 (ii), (F  :M J) ก f ■ ทิ1 (F) < 655 AF for some direct 
summand AF of M . Therefore, (F  :M /)  < 655 AF.

(iii)—>■ (i) This holds because for any /  e  End(M ), (F  :M /)  =  / _1(F) where 
/  is the principal left ideal of End(M ) generated by / .  □

We know th a t F-inverse split modules are F-CS-Rickart modules but the con­
verse is not necessary true from Proposition 3.1.2 and Example 3.1.3. As a result, 
finding conditions th at make the converse valid is our next interest. Observe that 
/  is an ideal of a ring R  if and only if I  is a fully invariant submodule of the 
right F-module R. We let Fs — { f  e  End (M) I / (M) ç  F}. Then Fs is an 
ideal of the ring End(M ), so Fs is a fully invariant submodule of the module 
End(M ). The set A(M ) =  { /  G End(M ) I ker /  < 655 M }  given in [7] is a left 
ideal of End(M ) and M  is a JC-nonsingular module if A(M ) =  {0} given in [16]. 
In this research, we extend / -1({0}) =  ker /  to / -1 (F). So, we provide the set 
A f {M) =  { /  g End(M ) I / _1(F) < 655 M }. Obviously, A f {M) is a left ideal of 
End(M ) and Fs A Next, we provide a generalization of /C-nonsingular
module as follows.

D efin itio n  3 .1 .16. A module M  is an F -K,-nonsingular module if  A p{M )  =  Fs-
One can see that, M  is a }C-nonsingular module if and only if M  is a 0-/C- 

nonsingular module.

P ro p o s itio n  3.1.17. I f  M  is an F-inverse split module, then M  is an F-/C- 
nonsingular module.
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Proof. Assume th at M  is an F-inverse split module. Let f  G A p(M ). Then 
/  G End(M ) and then f ~ 1(F ) < ๑ M  and / _1(F ) <es:s M  so that f ~ 1{F) = M. 
T hat is f ( M )  ç  F. Therefore, M  is an F-/C-nonsingular module. □

Next, we give an example of F-,/C-nonsingular modules. However, a helpful 
lemma is given in order to show that a module M  is an F-inverse split module, 
so that M  is an F-/C-nonsingular module.

L em m a 3.1 .18. ([17], Theorem 2.3) A module M  is an F-inverse split module if  
and only i f  M  = F  ® K  where K  is a Rickart module.

submodule N  =

( z 2 z 2Let ร; II

( o  z
Z 2 z 2 ไ is both a
0 0 j

be a module over itself. Then the

is both a fully invariant submodule and a direct

summand of M . So M  =  N  © K  where K  = QË z. Note that z
is a Rickart module because, for any /  G End(Z) there exists n  G z  such that 
/ (x) =  n x  for all X G z, so th at ker /  =  0 or z  which both are direct summands 
of z. This forces th a t K  is a Rickart module. By applying Lemma 3.1.18, M  is 
an AMnverse split module. Thus M  is an A-ZC-nonsingular module.

Relationships between F-CS-Rickart modules and F-inverse split modules are 
ready to be investigated.

T h e o re m  3.1.20. The following statements are equivalent.
(i) M  is an F-CS-Rickart module and an F -K-nonsingular module.
(ท) M  is an F-inverse split module.

Proof. (ท)—> (i) This follows from Proposition 3.1.2 and Proposition 3.1.17.
(i)—> (ii) Assume (i). Let /  G End(M ). Then / _1(F) <esร eM  for some 

e2 — e G End(M ). Thus / _1(F) ® (1 -  e)M  <ess eM  ® (1 -  e)M  =  M . Since 
/ _1(F) Ç eM  and e(l — e)M  = 0, we obtain / e ( / -1 (F) ® (1 — e)M ) ç  F. It forces 
th a t f - \ F )  ® (1 -  e)M  Ç ( /e )_1(F). Next, let X G ( / e ) - 1(F). Then /(ex ) -
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fe (x )  E F  so that ex E / _1(F). Hence X = ex +  (1 — e)x E f ~ 1(F) ® (1 — e)M. 
Then ( /e ) -1 (F) =  / _1(F) ® (1 — e)M  <6รร M. Since M  is an F-/C-nonsingular 
module, fe (M )  ç  F. This implies that eM  Ç / _1(F). Thus / -1 (F) =  eM. 
Therefore, M  is an F-inverse split module. □

The next example shows th at there is an F-CS-Rickart module which is not 
an F-/C-nonsingular module.

/
E x am p le  3.1.21. From Example 3.1.19, let M  —

(
\

Z2 Z2

0 z . A submodule

K  - is a fully invariant submodule of M  but is not a direct sum-
V

Z2 Z2

0 77.Z
mand of M. By Lemma 3.1.18, M  is not a A-inverse split module. Note that K  is 
an essential submodule of M  so that any submodule of M  containing K  is also an 
essential submodule of M  applying Proposition 2.2.3. Thus M  is a A-CS-Rickart 
module. By Theorem 3.1.20, M  is not a A-/C-nonsingular module.

Observe from the definition that an F-CS-Rickart module M  has a direct 
summand depending on each inverse image of F . In fact, there is a submodule N  
of M  such that M  = N  ® A  where the inverse image of F  is essential in N . Next, 
we focus on the inverse image of the identity endomorphism which is equal to F  
in the following result.

T h e o re m  3.1.22. I f  M  is an F-CS-Rickart module, then M  =  N  © A  where 
F is an essential submodule of N  and A  is a CS-Rickart module. The converse 
holds i f  N  is a fully invariant submodule of M .

Proof. First, assume that M  is an F-CS-Rickart module. Then F  =  1^1(F) < 6SS N  
for some N  <® M . So there is a submodule A  of M  such that M  -= A ©  A. Since 
A  <® M  and M  is an F-CS-Rickart module, A  is a (A  ก F)-CS-Rickart module 
by applying Theorem 3.1.13. Thus A  is a CS-Rickart module because A  ก F  =  0 

To show th at the converse is valid 1 assume that M  = A ®  A  where F  <651ร N, 
A  is a CS-Rickart module and A is a fully invariant submodule of M . Let 
/  E End (M ) and TTK : M  —» A  be the projection homomorphism. Then
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Kk I I k  £ E nd (F ) and / _1(N ) =  /V ® ker(7Ttf/|/f) by Proposition 2.1.11. Since K  
is a CS-Rickart module, ker^/sr/l/c) <ess K ' for some direct summand K ' of K. 
This forces th a t N  ® K ' is a direct summand of M  and

r \ F )  <633 r \ N )  = N ®  ker(nKf \ K) <63.3 N  ๏ K '.

Hence / _1(F) <633 N  ® K '. Therefore, M  is an F-CS-Rickart module. □

Now, F-CS-Rickart modules having two direct summands are considered.

P ro p o s itio n  3.1 .23. For every indecomposable F-CS-Rickart module M, either 
M  is a CS-Rickart module or F  is an essential submodule o f M .

Proof. Assume M  is an indecomposable F-CS-Rickart module. Then M  =  N (B K  
where F  <633 N  and K  is a CS-Rickart module. Since M  is an indecomposable 
module, N  = 0 or N  = M . In case N  = 0, it follows th a t F  =  0 so th at M  is a 
CS-Rickart module; otherwise, N  = M , leading to F  <633 M . Therefore, either 
M  is a CS-Rickart module or F  <633 M . □

Recall th a t M  is a CS-Rickart module if and only if M  is a 0-CS-Rickart 
module. Moreover, we gave an example of F-CS-Rickart modules which is not 
a CS-Rickart module in Example 3.1.4, likewise, we provided an example of CS- 
Rickart modules which is not an F-CS-Rickart module in Example 3.1.5. So we 
are interested in studying when an F-CS-Rickart module is a CS-Rickart mod­
ule, as well as, a CS-Rickart module is an F-CS-Rickart module where F /  0. 
The following series of propositions provide relationships between F-CS-Rickart 
modules and CS-Rickart modules.

P ro p o s itio n  3.1 .24. I f  M  is an F-CS-Rickart module and ker /  is an essential 
submodule of / _1(F) for any f  E End(M ) which is not a monomorphism, then 
M  is a CS-Rickart module.

Proof. Assume th at M  is an F-CS-Rickart module and ker /  <633 / _1(F) for 
any /  € End (M ) which is not a monomorphism. Let /  G End(M ). Then 
/ _1(F) <633 M ' for some direct summand M ' of M . Thus ker /  <633 M '. 
Therefore, M  is a CS-Rickart module. □
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P ro p o s itio n  3 .1 .25. I f  M  is a CS-Rickart module and F  is an essential sub- 
module of M' for some fully invariant direct summand M' of M , then M is an 
F -CS-Rickart module.

Proof. Assume th a t M is a CS-Rickart module and F <esร M' for some fully 
invariant direct summand M ' of M . Then M — N © K  where K  is a CS-Rickart 
module. As a consequence of the converse of Theorem 3.1.22, M  is an F -CS- 
Rickart module. □

Prom Theorem 3.1.22, we obtain that if M is an F-CS-Rickart module, then 
M — N © K  where F  <ess N and A  is a CS-Rickart module; in addition, the 
converse of this theorem holds if N < fully M. One can see th a t being fully 
invariant submodule of M' is a necessary condition to force M to be an F-CS- 
Rickart module. So the inverse images of F  which are essential submodules of a 
fully invariant direct summand are investigated.

D efin itio n  3 .1 .26. A module M is a strongly F-CS-Rickart module if for any 
/  G End (M) there is a fully invariant direct summand M' of M such that 
/ _1(F) is an essential submodule of M'.

It is clear th a t strongly F-CS-Rickart modules and F-inverse split modules are 
F-CS-Rickart modules shown in the following diagram.

F-CS-Rickart modules

Next example presents a module M  which is an F-CS-Rickart module but is 
not an F-inverse split module and not a strongly F-CS-Rickart module.

E x am p le  3 .1 .27. Let M  = z 2© z 8 and N  =  Ü ©(2) given in Example 3.1.3. Then 
M  is an iV-CS-Rickart module and M  is not an A-inverse split module. Moreover,
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let /  = G End(M ) where f l  is the identity homomorphism, /o (x ) =  Ü,

g[{โ/) = V  and g2{y) = 2y for all X  G z 2 and ÿ  G z 8. Then / _1 (TV) =  ( I ,I )Z  
which is a direct summand of M but is not a fully invariant submodule of M. 
Note th a t submodules of M containing f ~ 1(N) are (1,1)Z and M. Since (1 ,1)Z 
is a direct summand of M, it is not an essential submodule of M by applying 
Proposition 2.2.2. We can conclude that / _1(F) is not an essential submodule of 
all fully invariant direct summands of M. Thus M is not a strongly IV-CS-Rickart 
module.

Likewise Theorem 3.1.13, we investigate that a direct summand of a strongly 
F-CS-Rickart module is also a strongly F'-CS-Rickart module for some fully in­
variant submodule F' of this direct summand.

L em m a 3.1.28. Let M  be a strongly F-CS-Rickart module. Then N  is a strongly 
(N  ก F)-CS-Rickart module for any direct summand N  of M.

Proof. The proof is similar to one of Theorem 3.1.13. Let N  be a direct summand 
of M. Then there is a submodule K  of M  such that N @ K  = M . Let /  G End(Ar). 
Thus /  © 0/f G End(M ) and

/ - 1( iV n F ) © R  =  ( / 0 O ^ ) - 1(F).

Since M  is a strongly F-CS-Rickart module, ( /  ® 0/c)_1(F) < 6,ร . ร  M' for some 
fully invariant direct summand M' of M. So M' — (N ก M ') ® K  and N  ก M'  
is a fully invariant direct summand of N  by Proposition 2.1.8 (i). This forces 
that f _1(N  ก F) <es3 N  ก M' . Therefore, N  is a strongly (N ก F)-CS-Rickart 
module. □

In the following theorem, we focus on the inverse image of the identity en­
domorphism which is equal to F  and is an essential submodule of some direct 
summand of M. So each F-CS-Rickart module can be written as a direct sum 
depending on F . We also provide characterizations of strongly F-CS-Rickart 
modules.
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T h e o re m  3.1.29. The following statements are equivalent.
(i) M  is a strongly F-CS-Rickart module.
(ii) M  =  N  © K  where F  is an essential submodule of a fully invariant submod­
ule N  of M  and K  is a strongly CS-Rickart module.
(iii) M  is an F-CS-Rickart module and every direct summand of M  containing 
F  is a fully invariant submodule.
(พ) M  = N  © K  where F  is an essential submodule of a fully invariant submod­
ule N  of M  and, for any f  £ End(M ), / _ 1 (F) ก K  is an essential submodule of 
a fully invariant direct summand of K  .

Proof, (i)—> (ii) Assume (i). Then M  — N  © K  where F  =  1_1 (F) <esร N  for 
some fully invariant direct summand N  of M. Thus K  is a strongly CS-Rickart 
module by Lemma 3.1.28 because K  <® M  and K  ก F  =  0.

(ii) —»(i) The proof is similar to the proof of the converse of Theorem 3.1.22. As­
sume (ii). Let /  £ End(M ). Since N  < fully M, by Proposition 2.1.11, f ~ l (N) — 
N  ® ker(7T ^ /|^ ) . Since K  is a strongly CS-Rickart module, ker(7T ^ /|^ )  <esร K ' 
for some fully invariant direct summand K ' of K . Thus / _ 1 (F) <ess f ~ l (N) — 
N  © ker(7TK/|k ) <ess N  0  K ' and N  0  K ' is a fully invariant direct summand 
of M.

(i) —> (iii) A ssu m e  (i). T h e n  M  is a n  F -C S - R ic k a r t  m o d u le . N e x t, le t  N  b e  
a  d ir e c t  s u m m a n d  o f M  a n d  F ç  N. T h e n  th e r e  is e2 =  e £  E n d ( M )  su c h  t h a t  
N =  e M . L e t X £  eM.  T h e n  (1 — e)x =  (1 — e)ex =  0 £  F .  So X £  (1 — e ) _ 1 ( F ) .  
O n  th e  o th e r  h a n d , le t X £  (1 — e ) _1 ( F ) .  T h e n  (1 — e)x £  F  Ç  eM.  T h is  im p lie s  
t h a t  (1 — e)x — 0, so X £  k e r ( l  — e) =  eM.  T h u s  eM — (1 — e ) _1 ( F ) .  B y  (i), 
N  — (1 — e ) _ 1 ( F )  < esร M'  fo r so m e fu lly  in v a r ia n t  d ir e c t  s u m m a n d  M'  o f M.  
T h u s  N — M'  b e c a u s e  N  is b o th  a n  e s se n tia l  s u b m o d u le  a n d  a  d i r e c t  s u m m a n d  
o f M'.

(iii) —> (i) Assume (iii). For any /  £ End(M ), we have F  ç  / _1 (F) < ess M ' 
for some direct summand M ' of M. By assumption M ' < f u l l y  M . Thus M  is a 
strongly F-CS-Rickart module.

(ii) —»(iv) Assume (ii). Let /  £ End(M ) and K  = eM  for some e2 =
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e G End(M ). Then f - '{ F )  <ess f - \ N ) .  So f - ^ F )  ก K  <ess f - \ N ) ก K . 
From Proposition 2.1.11, / _ 1 (A) ก K  = / - 1 (A) ก eM  = k e re /e . Since K  is a 
strongly CS-Rickart module, ker e fe  <ess K ' for some fully invariant direct sum­
mand K ' of F .  Thus f - \ F )  ก K  <ess K '.

(iv)—> (ii) Assume (iv). Let h G E nd(F ). Then 0|AT©/r G End(M ). Applying 
Lemma 2.1.10, (0|N © h) 1(F) ก K  =  /i_1( F  ก F) =  ker h because K  ก F  =  0. 
By assumption, (0|N © K) 1(F) ก K  <ess K ' for some fully invariant direct sum­
mand K ' of K. This implies ker h <1',SS K '. Therefore, K  is a strongly CS-Rickart 
module. □

In the following example, we provide fully invariant submodules F  and F' 
of M  such that M  is both a strongly F-CS-Rickart module and an F-inverse 
split module; in addition, M  is a strongly F'-CS-Rickart module but M  is not an 
F'-inverse split module. We apply the previous theorem to prove next example.

Rickart module. Since N  is a fully invariant direct summand of M, we obtain 
that M  is both strongly A-CS-Rickart and A-inverse split form Theorem 3.1.29 
and Proposition 3.1.18, respectively. Note that K  is not a direct summand of M  
but K  <ess M . By Theorem 3.1.29, M  is a strongly F-CS-Rickart module but 
M  is not a F-inverse split module.

3.2 Relatively F-CS-Rickart modules
In this section, we extend End(M ) in F-CS-Rickart modules to Hom(F, M ) where 
p  and M  are modules and M  is not necessary an F-CS-Rickart module. This leads 
us to define a relatively F-CS-Rickart module. Moreover, we show th at a direct
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D efin itio n  3 .2 .1. Let P ,M  be modules and F  be a fully invariant submodule 
of M . Then F  is an F-CS-Rickart module relative to M  (relatively F-CS-Rickart 
module) if for any /  G Hom(F, M ), there is a direct summand P' of p  such that 
f - \ F )  <ess P'.

It is clear th at M  is an F-CS-Rickart module if and only if M  is an F-CS- 
Rickart module relative to M.

Equivalent to Theorem 3.1.13, we examine direct summands of relatively F- 
CS-Rickart modules.

T h e o re m  3.2.2. Let p, M  be modules and F  be a fully invariant submodule o f M . 
Then p  is an F-CS-Rickart module relative to M  if  and only i f  for any direct 
summand Pi o f p  and any direct summand M l of M , Pi is an (M l ก F)-CS- 
Rickart, module relative to M l.

Proof. The sufficiency is obvious because F  and M  are direct summands of itself.
Assume th a t F  is an F-CS-Rickart module relative to M .  Let P i  and M l  

be direct summands of p  and M ,  respectively. Then P i  © F2 =  F  for some 
submodule F2 of F. Let g  G Hom(Fi, Ml). Then /  := g ®  Op G Hom(F, M). So 
/ _ 1 (F) =  g ~ l ( M i  ก F ) © F2. Since p  is an F-CS-Rickart module relative to M, 
f ~ 1(F) <esร  P '  for some direct summand P '  of F. It follows th a t P '  — ( P i C P 1) © 
F2 because F2 ç  / _ 1 (F) ç  P '. Hence g ~ l ( M i  ก F) © F2 <esร  ( P i  ก F ') ๏ p2 and 
P i  ก F ' is a direct summand of P i .  Thus g ~ l ( M i  ก F) < 6,,,ร P i  ก P '  by Proposition
2.2.7. Therefore, F] is an ( M l  ก F)-CS-Rickart module relative to M l .  □

If F  =  M  in Theorem 3.2.2, we obtain the following corollary.

C o ro lla ry  3 .2 .3. The following statements are equivalent.
(i) M  is an F-CS-Rickart module.
(ii) For any direct summands N  and K  of M , N  is an (K (iF )-C S-R ickart module 
relative to K .

sum m and of relatively F-C S-R ickart m odules is also a relatively F-C S-R ickart
module.



34

(ill) For any direct summands N  and K  of M , for any f  G H om (M , K ) there is 
a direct summand N 1 of N  such that f \ f f ( K  ก  F) <esร N ' .

Proof, (i) (ท) This follows from Theorem 3.2.2 because M  is an F-CS-Rickart
module relative to M .

(ii) —» (iii) Assume (ii). Let N  and K  be direct summands of M  and /  G 
Horn(M ,K ). Then /|/v  G Hom(A, K). So f \ f / ( K  ก  F) < 6:ss N'  for some direct 
summand N'  of N  by the definition of relatively F-CS-Rickart modules.

(iii) —> (i) This is clear because N  — M  = K. □

3.3 Z(M), Z2{M) and Z*(M)-CS-Rickart Modules
In this section, we focus on particular fully invariant submodules which are Z (M ), 
Z 2(M ) and Z*(M ). The first subsection shows relationship between Z(M )~CS- 
Rickart modules and Z2(M)-CS-Rickart modules. The other subsection shows 
specific properties of Z*(M)-CS-Rickart modules.

3.3.1 Z(M)  and Z2 (M)-CS-Rickart modules
Recall th a t Lam provided, in [10], that

Z{M ) =  {x  G M  I (0 :R x) <ess R]

is the singular submodule of M  and

Z 2{M) = {x  G M  I (Z(M ) ะ* x) <£SS R}

is the second singular submodule of M.
A module M  is a singular module if Z (M ) — M , and a nonsingular module 

if Z (M )  =  0, given in [10]. Lam showed that the submodules Z (M )  and Z 2(M) 
are fully invariant submodules of M; in addition, Z 2(M ) is a maximal essential 
extension of Z (M ), th a t is, Z (M ) <ess Z 2(M) and for any submodule N  of M, if 
Z{M ) <esร N  and Z2{M) ç  N , then Z 2[M) = N.

By Proposition 3.1.2, Z(M )~ inverse split modules are Z(M )-CS-Rickart mod­
ules; in addition, Z 2(M)~inverse split modules are Z2(M)-CS-Rickart modules.
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However, we can show that Z2(M)-CS-Rickart modules are Z 2(M )-inverse split 
modules in the following proposition.

L e m m a  3.3.1. For any f  G End(M ), f ~ 1(Z2(M )) is a maximal essential exten­
sion of f ~ l {Z (M )).

Proof. Let /  G End(M ). Note th at Z 2(M ) is a maximal essential extension of 
Z 2(M ). Thus f ~ 1(Z (M )) <6รร / - 1 (Z2(M)) from Proposition 2.2.6. Next, let N  
be a submodule of M  such th at / _ 1 (Z(M )) < 6S S  N  and / - 1 ( z 2(M )) ç  N . Let 
X  G yv . If / ( x) —  0, then (Z (M ) \ R  f{x ))  —  R  < e s s  R  so th a t f (x) G Z2 (M),
i.e., X G f ~ 1 (Z2(M)). Assume th at f(x ) ^  0. Let a G A and a 7̂  0. If f ( x )a  = 
0 G Z (M ), then a l — a G (Z (M ) : r  f ( x ) ) .  Assume th a t f ( x )a  ^  0. Then 
xa  ^  0 and xa  G N . Since f ~ 1(Z (M )) <ess N , there is r  G 1? such that 0 ^  
xar G f ~ 1(Z (M )). So f(x )a r  =  f(x a r)  G Z (M ). Then ar G (Z (M ) \R f (x)). 
This implies th at (Z(M ) \R f{x ))  <ess R. Thus f ( x )  G Z2{M) so that X G 
f ~ 1(Z2(M )). Hence f ~ 1(Z2(M )) =  IV. Therefore, f ~ l (Z2(M )) is a maximal 
essential extension of f ~ l (Z (M )). □
P r o p o s i t io n  3.3.2. A module M  is a Z 2{M )-CS-Rickart module i f  and only if  
M  is a Z 2(M )-inverse split module.
Proof. The necessary condition is clear from Proposition 3.1.2.

Next, assume th at M  is a Z2(M )-C S -Rickart module. Let /  G End(M ). Then 
f ~ 1(Z2(M )) <ess M ' for some direct summand M ' of M. Since f ~ 1(Z2(M )) is 
a maximal essential extension of / _ 1 (Z(M )), we obtain th at f ~ l (Z2(M )) = M '. 
Therefore, M  is a Z2(M )-C S -Rickart module. □

Unger, Halicioglu and Harmanci, in [17], presented that Z(M)-inverse split 
modules are Z2 (M)-inverse split modules and the converse is not true in general. 
A ring A is a right singular ring if Z(R ) = R  as a right R-module, and a right 
nonsingular ring if Z (R ) — 0.
L e m m a  3.3.3. ([17], Proposition 5.5) I f  M  is a Z(M )-inverse split module, then 
M  is a Z 2{M)-inverse split module. The converse holds i f  R  is a right nonsingular
ring.
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Next, we provide a relationship between Z(M )-CS-Rickart modules and Z 2(M)~ 
CS-Rickart modules. Note that Lam showed in [10] th a t Z (M ) ก N  = Z ( N ) and 
Z 2(M ) ก N  = Z 2(N ) for any submodule N  of M.

P ro p o s itio n  3 .3 .4. A module M  is a Z (M )-C S-R ickart module if  and only if 
M  is a Z 2{M)-C'S-Rickart module.

Proof. First, assume th at M  is a Z(M)-CS-Rickart module. Then M  — N  © K  
where Z (M ) <6SS N  and K  is a CS-Rickart module by applying Theorem 3.1.22. 
Thus Z (M ) = Z (M )  ก N  = Z (N ), so Z (N ) <6SS N . Hence Z 2(N ) =  N  because 
Z2(N) is a maximal essential extension of Z (N ). Clearly, Z 2(N ) Ç Z 2(M ). Since 
Z (M )  Ç N  Ç Z 2{M) and Z (M ) < ess  Z2(M ), we obtain N  <ess Z 2(M ) by 
applying Proposition 2.2.3. Thus N  < ๑ Z 2(M ) because N  <® M  and N  Ç 
Z 2{M). Since N  satisfies both N  <ess Z 2(M ) and N  <๑ Z 2(M ), it follows that 
N  =  Z 2(M ). Thus M  — Z2{M) © K  where Z2{M) <ess Z 2(M ) and Z 2{M) is a 
fully invariant direct summand of M  and K  is a CS-Rickart module. Therefore, 
M  is a Z2(M)-CS-Rickart module from the converse of Theorem 3.1.22.

Conversely, assume th at M is a Z2(M)-CS-Rickart module. Let /  G End(M ). 
Then there is a direct summand M1 of M such that / _ 1 (Z2(M )) <esร M' . Thus 
/ _ 1 (Z2(M )) =  M1 from Lemma 3.3.1 so that / - 1 (Z (M )) <eรร M'. Therefore, 
M is a Z(M)-CS-Rickart module. □

The following is a diagram presenting a relationship among Z(Af)-inverse split 
modules, Z2(M)-inverse split modules, Z(M)-CS-Rickart modules and Z 2(M)~CS- 
Rickart modules.

Z (M )  -inv erse  split m odules
i 1

Lemma 3.3.3

Proposition 3.1.2

Z {M )  -C S -R ickart m odules
i เ

Proposition 3.3.4

' '
Z 2{M ) -C S -R ickart m odulesZ 2{M ) -inv erse  split m odules -

Proposition 3.3.2
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3.3.2 Z*(M)-CS-Rickart modules
Let E M  denote the injective hull of M . Unger, Halicioglu and Harmanci defined 
in [18] that

Z*{M) = {m  £ M  \ m R  -c  E M }  
is the cosingular submodule of M.

A module M  is a cosingular module if Z*(M ) — M , and a noncosingular module 
if Z*(M ) = 0 provided in [18]. Unger, Halicioglu and Harmanci also presented 
that the consingular submodule Z*(M ) is a fully invariant submodule of M  and 
Z*(M ) ก N  =  Z*(N) for any submodule N  of M . In addition, a ring R  is a right 
cosingular ring if Z*(R) = R  as a right A-module, and a right nonsingular ring if 
Z*{R) =  0 .

P ro p o s itio n  3.3.5. I f  M  is a Z*(M )-CS-Rickart module, then M  = N  © K  
where Z*(M ) <ess N  and K  is a noncosingular CS-Rickart module.

Proof. Prom Theorem 3.1.22, M  =  N  © K  where Z*(M ) <ess N  and K  is a 
CS-Rickart module. As Z *(K ) =  Z*(M ) n  K  =  0, so K  is a noncosingular 
module. □

Next, we consider when M  is both an indecomposable module and a Z*(M)~ 
CS-Rickart module.

P ro p o s itio n  3.3.6. I f  M  is an indecomposable Z*(M )-CS-Rickart module, then 
either M  is a noncosingular CS-Rickart module or Z*{M) <esร M .

Proof. Assume th a t M  is an indecomposable Z*(M)-CS-Rickart module. Then 
M  =  N  ® K  where Z*(M ) <ess N  and A' is a CS-Rickart module. Since M  is an 
indecomposable module, N  =  0 or N  =  M. If N  = 0, then Z*{M ) =  0. So M  is 
a noncosingular CS-Rickart module. If N  — M , then Z*(M ) <ess M . Therefore, 
either M  is a noncosingular CS-Rickart module or Z*(M ) <6รร M . □
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3.4 Projective F-CS-Rickart Modules
Throughout this section, let p  and M  be modules, ร  =  End(M ) and Hom(P, M ) 

be the set of all homomorphisms from p  into M . For each submodule N  of M, 
Lam provided in [10],

N* = {x £ M \ { N : r x ) < 6ss R}.

It is clear th a t N  ç  N*. Note that {0}* =  Z (M )  and (Z(M ))* =  Z2(M).
In current section, we investigate being an F-CS-Rickart module of a projective 

module. Moreover, we provide a notion of right F-CS-Rickart ring R  where F  is 
a fully invariant submodule of the right module R  over itself. Recall th a t all rings 
are projective right modules over itself.

The following lemma shows a nice relationship on projective modules between 
essential submodules and singular modules.
L em m a 3.4.1. ([13], Lemma 2.10) Let p  be a projective module and K  be a 
submodule of M . Then K  <esร p  if and only if p / K  is a singular module. In 
particular, if  p  is both a projective module and a singular module, then p  — 0 .

For a submodule N  of M , we provide a relationship between N* and singular 
submodule of M /N .
P ro p o s itio n  3.4.2. Let N  and L be submodules of M  and N  ç  L. Then L ç  N* 
if and only i f  L /N  is a singular module.
Proof. First, assume that L ç  N*. Let X -f N  G L /N  where X  G L. Then 
(N  :R x) <esร R  because L ç  N*. Thus ({N } -,R X +  N ) = (N  :R x) <ess R. 
Hence X  +  N  G Z {L /N ). Therefore, L /N  is a singular module

Next, assume that L /N  is a singular module. Then Z (L /N )  =  L /N .  Let 
X  G L. Then X  +  N  G Z (L /N ), i.e. ,  ({N } :R X +  IV) <esร R. Note that 
(N  :R x) — ({N }  :R X + N ). Thus (N  :R x) <ess R  which implies th at X  G N*. 
Therefore, L ç  N*. □

Before we present the further main point of this section, the helpful properties 
are provided.
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P ro p o s itio n  3 .4 .3. Let p  and M  be modules and F  be a fully invariant submodule 
of M . Let f  : p  —» M  be a homomorphism and f ~ 1(F) Ç eP  for some e2 =  e G 
End(P). Then the following statements hold:
(i) f P  = f (  1 -  e)P  © fe P ,
(ท) ( f P  + F ) /F  = ( f ( l - e ) P  + F ) / F ® ( f e P  + F ) /F ,
(in) ( / (1 -  e)P  +  F ) / F  =  (1 -  e)P  ร  / ( I  -  e)P , and 
(พ) e P / f~ 1(F) = ( je P  + F )/F .
Proof. Note th a t p  =  (1 — è)P  ® eP.

(i) Notice th a t f p  =  / ( I  — e)P  +  fe P .  Since ker /  ç  / _ 1 (F) c  eP, it follows 
that f p  =  / ( I  — e)P  © fe P .

(ii) It is clear th a t ( / p  +  p )  / F  =  ( / (1 — e)P  +  p )  / p  +  ( fe P  + p )  / p .  Let 
m + p  € ( / (1 —e ) p + p ) /F p )  ( / e P + P ) /p .  Then m + F  =  / (1 —e )x + p  =  fe y + F  
for some G p . Thus / ( (  1 — e)x — ey) =  / ( I  — e)x — fe y  G p . Then 
(1 — e)x — ey G / _ 1 (p ) ç  eP, so (1 — e)x G (1 — e )p  ก eP  =  0. This implies that 
m  + F  = f { l - e ) x  + F =  F. Therefore, (f P  + F ) / F =  ( / (1 -  e )P  +  p ) / p  0  

( /e P  +  F ) /F .
(hi) Define (j) : (1 — e)P  —> ( / (1 — e )p  + p ) / p  by <f>(x) = f ( x )  + F  for ail 

X G (1 — e)P . It is clear that (f) is well-defined. Then, 4> is an epimorphism and
ker 4> — {x  G (1 — e )p  I f{x )  =  p}  =  {x G (1 — e )p  I / (x) +  p  =  F}

=  { x  G (1 — e)P  I / (x) G F} =  {x G (1 — e )p  I X G / _ 1 (P)}
=  ( l - e ) P n r : (P) =  0 .

B y the first isomorphism theorem, (1 — e )p  =  ( / (1 — e )p  +  p ) / p .  Moreover, 
define 0 : (1 — e )p  -4- / ( I  — e )p  by 0 (x ) =  / (x ) for all X G (1 — e)p . The proof is 
similar to the first part, we can conclude that (1 — e)P  =  / ( I  — e)P.

(iv) Define /3 : eP  —> ( fe P  +  p ) / F  by (3(x) =  / (x ) +  p  for all X G eP. Then 
p  is an epimorphism and

ker /3 =  { x  G eP  I p{x) =  p}  =  { x  G eP  I / (x) +  p  =  p}
=  { x  G eP  I / (x ) G P} =  { x  G eP  I X G / _1p }

=  eP  ก / - 1 (P) =  r 1 (P).
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For a relatively F-CS-Rickart module p , we obtain th a t the inverse image 
of p  is essential in a direct summand of p . Note that any direct summands of 
projective modules are projective modules. Hence if p  is both a projective module 
and an relatively F-CS-Rickart module, then the inverse image of F  is essential 
in a direct summand which is also a projective module. Thus, we are interested 
in studying the image of each relatively F-CS-Rickart projective module.
T h e o re m  3.4.4. Let p  be a projective module, M  be a module with a fully in­
variant submodule F. Then the following statements are equivalent.
(i) p  is an F-CS-Rickart module relative to M .
(ท) For any f  G Horn (P, M ), ( / P  +  F ) /F  =  N y F  ® K  เ  F  where N /F  is a projec­
tive module and K /F  IS a singular module.
Proof, (i)—> (ii) Assume (i). Let /  G Horn (P, M). Then / _ 1 (F) <ess eP  for some 
e2 =  e G End(P). So p  =  eP  © (1 — e)P  and by Proposition 3.4.3 (ii),

( / P  +  F ) / F  =  ( / (1 -  e)P  +  F ) / F  © ( fe P  +  F ) /F .
From Proposition 3.4.3 (iv), we also obtain that ( / (1 — e)P  +  F ) / F  =  ( 1  — e)P  
which is a projective module and ( /e P  +  F ) / F  =  e P / / - 1 (F) which is a singular 
module because / _ 1 (F) <esร eP.

(ii)—> (i) Assume (ii). Let /  G Hom(P, M ). Then ( / P  +  F ) / F  =  N / F  ๏ K เ F  
where N /F  is a projective module and K /F  is a singular module. Define g : p  —» 
( / P  +  F ) / F  by g(x) = f(x )  +  F  for any X E p . Then g is an epimorphism and 
kerg = / _ 1 (F). Since N /F  is a projective module and 7xg is an epimorphism 
where 7T is the projection homomorphism from ( / p  +  F ) / F  —> N / F , applying 
Proposition 2.4.4, leads to ker 71g — eP  for some e2 =  e G End(P). Next, define 
h  : eP —> K /F  by h(x) — f( x )  +  F  for any X G eP. Then ker h =  eP  ก f ~ 1(F) = 
/ _ 1 (F). So e P / f~ 1(F ) =  K /F  which is a singular module. This implies that 
/ _ 1 (F) <es3 eP. Therefore, p  is an F-CS-Rickart module relative to M . □

By the  first isom orphism  theorem , e P / / -1 (F ) =  ( / e P  +  F ) / F .  □

T he next corollary is an im m ediate consequence of Theorem  3.4.4 in case
P  =  M .
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C o r o lla r y  3 .4 .5 .  Let M  be a projective module. Then the following statements 
are equivalent.
(i) M  is an F -CS-Rickart module.
(ท) For any f  G End(M ), ( fM  +  F )/F  = N /F  ® K /F  where N /F  is a projective 
module and K /F  is a singular module.

The following corollary is a consequence of Corollary 3.4.5 when F — 0.

C o r o lla r y  3 .4 .6 .  ([2], Proposition 3.3) Let M  be a projective module. Then M  
is a CS-Rickart module if  and only if every f  G End(M ), f M  — N  ® K  where N  
is a projective module and K  is a singular module.

Next, we investigate the image of each relatively F -CS-Rickart projective mod­
ule.

P r o p o s i t io n  3 .4 .7 .  Let p  be a projective module, M  be a module with a fully 
invariant submodule F. I f  p  is an F-CS-Rickart module relative to M , then for 
any f  G Hom(P, M ), f p  — N  © K  where N  is a projective module and K  ç  F*.

Proof. Assume th a t p  is an F-CS-Rickart module relative to M . Moreover, let 
/  G Horn (F, M ). Then / - 1 (F) <ess eP  for some e2 =  e G End(F). Applying 
Proposition 3.4.3 (i), f P  =  / (1 — e )P © /e P . Observe that / ( 1  — e)P  =  ( 1  — e)P  
which is a projective module. Moreover, from Proposition 3.4.3 (iv), (fe P  +  
F ) / F  =  e P j / - 1 (F) which is a singular module because f ~ 1(F) <esร eP. Since 
( /e F  +  F ) / F  is a singular module, fe P  + F  ç  F* by Proposition 3.4.2. Therefore, 
fe P  ç  F* because F  ç  F*. □

Next, a relationship between a projective module and an F-CS-Rickart module 
via the idea of relatively F-CS-Rickart modules when p  = M  is examined.

C o r o lla r y  3 .4 .8 .  Let M  be a projective module. I f  M  is an F-CS-Rickart module, 
then, fo r any f  G End(M ), f M  =ะ N  © K  where N  is a projective module and 
K  Ç F*.

Proof. T he proof is sim ilar to  the proof of Proposition 3.4.7. Assume th a t M  is
an F -C S-R ickart module. Let /  G E nd(M ). T hen  there  is e2 =  e G E nd(M ) such
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th a t f M  =  / ( I  — e)M  ® f e M  where / ( I  — e)M  =  (1 — e)M  which is a projective 
module and fe M  ç  F*. □

In the proof of Corollary 3.4.8, / ( I  — e)M  is isomorphic to a direct summand 
of M . So, we are interested in when / ( I  — e)M  is actually a direct summand 
of M . A module M  satisfies C2 condition, given in [17], if any submodule N  of M  
such th at N = M ' for some direct summand M ' of M  is a direct summand.

C o r o lla r y  3 .4 .9 .  Let M  be a projective module. I f  M  is an F-CS-Rickart module 
satisfying C2 condition, then every f  G End(M ), f M  = eM  ® K  where e2 = e G 
End (M ) and K  ç  F*.

Proof. Assume that M  is an F-CS-Rickart module satisfying c *2 condition. Since 
/ (1 — e)M  =  (1 — e)M  where (1 — e)2 =  (1 — e) G End(M ) and M  satisfies C2 

condition, / ( I  — e)M  is a direct summand of M. □

For a G R, we denote la the module homomorphism from R  into R  with left 
multiplication by a, i.e., la(r) = ar for all r  G R.

P r o p o s i t io n  3 .4 .1 0 . Let R  be a ring. Then R  — E n d (F ).

Proof. Define 6 : R  —> End(jR) by 9(a) —> la for all a G R. It is clear th a t 6 

is well-defined and then is a module homomorphism. Let /  G End (F). Then 
/ (1) G R  and lf(\)(r) =  / ( l ) r  =  / (r) for all r  G F. So 9 is an epimorphism. 
Moreover,

ker# =  {a G R  I 6(a) =  Os} =  {a G R  I la = Os}
=  {a G R  I la(r) =  Oh} =  {a G R  I ar = Or for ail r G R} =  Oh

where 0ร is the zero homomorphism of End(F) and Or is the zero element of R. 
By the first isomorphism theorem, R = End(F). □

For now on, we let ร  =  End(M ). Then End(F) =  ร. Recall from Section 3.1 
that Fs = { /  G ร  I f (M )  Ç F}. Then F is a right module over itself and Fs is a 
fully invariant submodule of ร  so th at we apply Proposition 3.4.3 as follows.
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P ro p o s itio n  3.4.11. Let 9 G ร  and (Fs ■ .ร 9) Ç eS fo r some e2 =  e G ร. Then 
the following statements hold:
(i) 6S = 6( 1 -  e) ร  e  9eS,
(ท) (9S + Fs)/Fs = (9(1 -  e)S + Fs)/Fs ๑ (9eS + Fs)/Fs,
(ill) (9(1 -  e) ร  + F ) /F s  =  (1 -  e) ร  = 9(1 -  e)S, and
(iv) eS /(F s ■ .ร 6) (9eS +  Fs ) /F s .
Proof. Note th a t 6 G ร = End(S') and (Fs ■ .ร 9) ç  eS  for some e2 = e e ร. We 
obtain Ig : ร, —)-ร defined by l g (g) — 9g. Observe that

( l e y^Fs )  = {9 6 ร] lg(g) G Fs} = {9 e s  \ 9g e Fs } = (Fs ■.ร 9) Ç eS.
Moreover, IgS = 9 S 1 lg(l -  e)ร' =  9(1 -  e)ร  and lg(e)ร  = 6eS. By applying 
Proposition 3.4.3 and the later statements, we can conclude (i), (ii), (iii) and (iv).

□

Next, we provide a relationship between projective F-CS-Rickart modules and 
their endomorphisms. Recall from Section 3.1 th at A p (M )  =  { /  £ End(M ) I 
f ~ l (F ) <63ร M }. Note that, for any /  G ร  = End(M ), if there is e2 =  e G ร  such 
th at / (M ) Ç eM , then f  = e f  e eS.
T h e o re m  3.4.12. Let M  be a projective module. I f  M  is an F-CS-Rickart mod­
ule, then fo r any f  e  ร, ( f S  + Fs )/F s = N /F S ® K /F S where N /F s  IS a projective 
module and K  Ç A f (M ).
Proof. Assume th at M  is an F-CS-Rickart module. Let /  G ร. Then F  ç  
f ~ 1(F ) < esร eM  for some e2 =  e e ร. Note that (Fs :ร ''/) ะ= {9 E ร' I fg  e  Fs} — 
{ g e s \  fg ( M ) Ç F} =  {9 G ร I g(M ) ç  f - \ F ) } .  Since g(M ) ç  f - '{ F )  ç  eM  
for each g e  (Fs : ร / ) ,  it forces that 9 = eg e  eS so th a t (Fs ะ ร / )  ç  รร. Applying 
Proposition 3.4.11, we obtain th at ( / ร  +  F s ) /F s  =  ( / ( 1 — e)ร +  F s ) /F s®  ( fe S  + 
F s ) /F s  and ( / ( 1  — e)F +  F s ) /F s  — (1 — e)F which is a projective module. Next, 
define (/ : eM  —> ( fe M  +  F ) / F  by f ( x )  = f( x )  +  F  for all X G eM. Then 
4> is an epimorphism and k e r /  =  / _1 (F), so e M / /_1 (F) =  ( fe M  +  F ) / F  =  
M /( /e ) _ 1 (F). Thus (fe )~ l (F ) < 655 M  because f ~ l (F ) < 655 eM. Therefore, 
/e  e A f (M) so that /e F  +  Fs Ç A f(M). □
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P ro p o s itio n  3 .4 .13. Let M  be a projective module. I f  M  is an F-CS-Rickart 
module, then fo r every f  G ร, f s  = N  ® K  where N  is a projective right ideal 
of ร  and K  is a right ideal of ร  with K  Ç A jf(M).

Proof. The proof follows from Theorem 3.4.12 □

The next corollary follows from the previous proposition by taking F  = 0. 
Recall tha t A (M) =  {1/’ G End(M ) I ker f  <6รร M }.

C o ro lla ry  3 .4 .14. ([2], Proposition 3.3) Let M  be a projective module. I f  M  is 
a CS-Rickart module, then for every f  G ร, f S  = N  © K  where Ar is a projective 
right ideal of s and K  is a right ideal of s with K  ç  A (M ).

Note th a t I  is an ideal of a ring R  if and only if /  is a fully invariant submodule 
of R  as a right A-module R. Next, we give the definition of a right /-CS-Rickart 
ring. Since End(A) =  R 1 for any 6 G End(A), there exists a G R  such that 6 = la 
so that d~1(I) =  {r G R  I 9(r) G 1} =  {r G R  I ar G 1} =  ( /  \R a). As a result, 
we define a right /-CS-Rickart ring as follows.

D efin itio n  3 .4 .15. Let I  be an ideal of a ring R. Then R  is a right I-CS-Rickart 
ring if for any a G R  there is a direct summand R! of R  such th a t ( /  :R a) <esร R!.

A  right 0-CS-Rickart ring R  is also called a right ACS-ring, given in [13]. The 
following corollary is obtained from Corollary 3.4.5.

C o ro lla ry  3 .4 .16. Let I  be an ideal of a ring R. Then R  is a right I-CS-Rickart 
ring if  and only if  for any a G R, (aR  +  / ) / /  =  N / 1 © K / 1 where N / I  is a 
projective right module and K / I  is a singular right module.

Let /  be an ideal of R  and J(R )  be the Jacobson radical of R, th a t is, the 
intersection of all maximal right ideals of R. A ring R  is a right I-semiregular 
ring, given in [13], if for any a G R, aR = eR ®  A where e2 =  e G R  and A ç  I  
is a right ideal of R] moreover, A is a left I-semiregular ring if for any a G A, 
Ra = Re ๏ A  where e2 =  e G A and A ç  I  is a left ideal of A. In particular, 
A ring A is a semiregular ring if A is a right J(A)-semiregular ring and a left
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L em m a 3.4.17. ([13], Proposition 1.4) Let I  be an ideal o f R  and I  Ç J(R ). 
Then R  is a right I-semiregular ring if  and only if R  is a left I-semiregular ring.

L em m a 3.4.18. ([13], Proposition 2.3) I f  R  satisfies right C2 condition, then 
Z(R ) Ç J(R ).

Recall th a t R is a right ACS-ring if for any a 6  R  there is a direct summand 
R  of R  such that (0 \R a) <esร R .  Nichoson and Yousif characterized right 
ACS-rings satisfying right c *2 condition in [13].

L em m a 3.4.19. ([13], Theorem 2.4) The following statements are equivalent.
(i) R  is a semiregular ring and J(R ) — Z(R ).
(ท) R  is a right Z(R)-semiregular ring.
(in) For any a G R, there is e2 =  e G R such that aR  = eR@  K  where K  is a 
singular module.
(iv) R is a right ACS-ring and every principal projective right ideal of R  is a direct 
summand of R.
(v) R  is a right ACS-ring satisfying right c *2 condition.

We now consider when A is a right /-CS-Rickart ring and R / I  satisfies right 
C2 condition and apply the following lemma as a main idea.

T h e o rem  3.4.20. Let I  be an ideal of a ring R. Then the following statements 
are equivalent.
(i) R / I  is a semiregular ring and J ( R / I ) =  Z (R /I ) .
(a) R / I  is a right Z{R/1)-semiregular ring.
(in) For any a £ R, there is (e +  I ) 2 — e +  /  6  R / I  such that (aR  +  / ) / /  =  
(e +  I ) { R /I )  © K / I  where K / I  is a singular module.
(iv) R is a right I-CS-Rickart ring and every principal projective right ideal of 
R / I  is a direct summand of R /I .
(v) R  is a right I-CS-Rickart ring and R / I  satisfies right C2 condition.

J (R )-sem iregular ring. A ring R  satisfies right C l condition  if the  R  module over
itself satisfies C 2 condition.
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Proof, (i)—»(ท)--)' (iii) These follow from Lemma 3.4.19.
(iii) —>■ (iv) Assume (iii). Let a G R. Then there is (e +  7)2 =  e +  7 G R  such 

th at (aR  +  / ) / /  =  (e +  7) (72/7) © K / I  where K / I  is a singular module. Since 
(e + 7)(72/1) <® R / I  and R / I  is a projective module, (e +  7) (72//) is a projective 
module. Then R  is a right /-CS-Rickart ring because of Corollary 3.4.16. Next, 
let L / I  be a principal projective right ideal of R / I  generated by a +  7. Then 
(a +  I ) ( R / I )  -= (e +  7) (72/7) ๏ K / I  where e2 +  7 =  e +  7 G  72/7 and K / I  is a 
singular module. Since K / I  < ๑ (a +  I) ( R / I ) and (a +  7) (72/7) is a projective 
module, K / I  is also a projective module. Thus K / I  — I  because K / I  is both 
a singular module and a projective module. Thus (a +  I){R /1 )  =  (e +  I ) (R /I ) .  
Therefore, L / I  is a direct summand of R /I .

(iv) —» (v) Assume (iv). Let K / I  be a right ideal of R / I  such th a t K / I  is 
isomorphic to a direct summand of R /I .  Then K / I  is a principal projective right 
ideal of R /I .  Thus K / I  is a direct summand.

(v) ->(i) Assume (v). Let a +  I  G R /I .  Since A is a right 7-CS-Rickart ring,
by Corollary 3.4.16, (aR + I ) / I  = N / I @ K / I  where 77/7 is a projective module 
and K / I  is a singular module, i.e., K /I  Ç 2(72/7). So 77/7 is isomorphic to a 
direct summand of R / I  because 77/7 is a projective module. Since R / I  satisfies 
right c 2 condition, N /I  =  (e +  7)(72/7) where (e +  7)2 =  e +  7 G R / I  and 
2(72/7) Ç J(72/7) from Lemma 3.4.18. Thus (aR + 7)/7 =  (e +  7)(72/7) ® K / I  
and K / I  Ç J(72/7), this forces that 72/7 is a right J(72/7)-semiregular ring. 
Applying Lemma 3.4.19, 72/7 is a left J(72/7)-semiregular ring so th a t 72/7 is a 
semiregular ring. Next, let 6 +  7 G .7(72/7) Ç 72/7. Since 72 is a right 7-CS-Rickart 
ring, (6 +  7)(72/7) =  (e' +  7)(72/7) 0  K ' / 7 where (e' +  7)2 =  e' +  7 G 72/7 and 
K 'เ I  ç  Z (R /I )  Ç J ( R / I ). Hence e' +  7 G >7(72/7). Since J(72/7) does not contain 
any nonzero idempotents, e! +  7 =  7. Thus (6 +  7)(72/7) =  K 'เ I  Ç Z (R /I ) ,  so 
6 +  7 G 2(72/7). □

Let 72j =  72 and 7j =  7 be an ideal of 72 for all i G { 1 , . . .  1 ท}. Let 72̂ n) =
0Z=1 72i and 7^T =  0 " = 1 7j and M n(R) be the ท X ท m atrix  ring over 72. From
Proposition 2.1.14, End(72<'n )̂ — M n(Sft) where Aft =  End(72). Recall th a t
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End(R) =  R  so that End(/?(T) =  M n(R). Next, we consider I ร = { /  G 
E n d (ü ^ )  I / ( R ^ )  ç  /O)} which is isomorphic to the m atrix ring over /.

L em m a 3.4 .21. Let R  be a ring and I  be an ideal of R. Then the following 
statements holds.
(i) Hom(R, I) = I.
(ท) Is = Mn{I).
Proof, (i) Observe that Hom(/?, I) — { /  e End(-R) I f (R )  Ç /}  =  {a <E R  \ aR  Ç 
1} = I because End(R) =  R.

(ii) Let g  e  Is. Then g <E End(i?W) and g ( R ^ )  Ç /("). Let S j  = Horn( R , I ) .  

Define f  : Is —» M n ( S j ) by

7̂ท gil • • • 7โ1 gin']
7Tigij ;

\JtnQl 1 ••• ^n9^nj
where 7Tigij : / ? —> /  for all i , j  6  { 1 , . . . ,  ท}. Then <f) is an isomorphism so that 
/ร =  Mn(ร/). Therefore, /ฐ =  M n(I) because Horn (R, I)  =  I. □

Observe that the set of all endomorphisms of R (T and M n(R) are concerned 
as well as Is  and M n(I) are isomorphic. So we characterize the right Mn(/)-CS- 
Rickart rings and M n(R) for some given ideal I  of R.

T h e o rem  3.4.22. Let I  be an ideal of a ring R and ท 6  N. Then the following 
statements are equivalent.
(i) The free R-module 7?0 ) is an J (ท)-CS-Rickart module.
(ท) E n d (R ^ ) is a right Is-CS-Rickart ring.
(Hi) M n(R) is a right M n(I)-CS-Rickart ring.
(iv)For any n-generated right ideal A of R, (A +  I ) /1  =  N / I  ® K / I  where N / I  
is a projective module and K / I  is a singular ring.
(V) The R-module R (T is an I-CS-Rickart module relative to R.
(vi) For any n-generated submodule L of R^n\  (L +  j ( n) y j ( ท) — _/V1/ / (n) 0  . . .  0  

Nn/ l W ® K / l W  where each N i/I™  is a projective module and K / I  is a singular
module.
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Proof. We let ร  = End(R.W).
(i)—* (ii) Assume that the free A-module is an /bb-CS-Rickart module 

with basis { a i , . . . , a n}. Let f £ s. Then / - 1 (/bb) < 655 eR ^  for some e2 =  
e £ s. Let g £ (1ร ■ .ร / ) .  So fg  £ Is  that is fg (R ^n'>) Ç /bb. Hence g (A(rb) Ç 
y -i( /h b )  c  eR ^  so that g = eg. Thus (1ร ■ .ร / )  is a submodule of eS. Next, 
let eh £ eS  and eh 0. Then e h ( R ^ )  7̂  0 . Since / _ 1 (/bb) <esร eR^n\  we get 
e /i(A bb)n /-i(/(n )) 0. There is X  7̂  0 such th at X  — eh(y) for some y £ R bb and
/ (x) £ /bb. We define a homomorphism 9 £ End (Abb) by 9(airI 4-----+  anrn) =
yri for all r \ , . . . , r n £ R. Then eh9(ai) =  eh(y) =  X  and 9(R;bb) =  yR , this 
forces th a t eh6 0 and fe h 9 (R ('n)) =  fe h (y R ) =  f ( x ) R  Ç / bb/£ c  /bb. So 
/e/i0  € / 5 , th a t is e/ฟ £ (Is ■ .ร / ) .  Hence (Iร ■ .ร f  ) < 6,รร eS1. Therefore, End(i?(n)) 
is a right / ร-CS-Rickart ring.

(ท)—)-(i) Assume (ii). Let f  £ s .  Then (Iร ■ .ร / )  <esร eS  for some e2 =  
e £ ร. Let X  £ / - 1 (/bb). Then f ( x )  £ /bb. Similar to the argument of the 
proof (i) —» (ท), there is a homomorphism 9 £ ร  such th a t 9(R 'n')) =  xR . So 
/ (#/?bb) =  f(xR .) Ç /bb 1 we obtain th at f9  £ Is th a t is 9 £ (1ร ■ .ร / ) .  Thus 
9 = e9 because ( I ร ■ .ร f )  ç  eS. Then X  £  x R  — 9 (R b1)) = e9(R bb) ç  e/?bb. 
This implies th a t / - 1 (/bb) c  e-Rbb. Next, let m  £ e/?bb ancj 777, ^  0. Then 
m  =  em so that m R  = emR. So there is a nonzero homomorphism h £ s  
such th a t h-Rbb =  171R  =  emA, similar to the technique of the proof (i) —» (ii). 
Since ( /5  :ร / )  < 65ร eA, there is g £ ร  such th a t hg 0 and fh g  £ 1ร. So 
0 ^  hg(RW ) and f h g ( R ^ )  Ç /bb. Hence 0 ^  hg (Abb) ç  / - ! ( / ( " ) .  This forces 
th a t / _ 1  ( / (n)) < 65ร eAbb. Therefore, the free A-module A^) is an /bb-CS-Rickart 
module.

(i) —>(v) This follows from Theorem 3.2.2.
(ii) 'H-(iii) This is clear because End(Abb) =  Mn(R ) and Is  = Mn(I).
(iv)-»(v) Assume (iv). Let /  £ Horn(Abb, A). Then for any X i £ A,

f ( x  1 , . . . ,  x 71) =  / ( 1 , . . .  1 0)xi +  • • • +  / (0 , . . . ,  l ) x n.

So /(A bb) is generated by { / ( 1 , . . . ,  0 ) , . . . ,  / ( 0 , . . . ,  1)}. By assumption, ( / (Abb)+ 
/ ) / /  — N / I + K / I  where jV // is a projective module and K / I  is a singular module.
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From Theorem 3.4.4, R (n) is an I-CS-Rickart module relative to R.
(v)—>(iv) Assume (v). Let A  be an n-generated right ideal of R such that

A  =  UiP-l------hanR  where Û1 , . . . ,  an G R. Define (ft : p (n) —>• R  by . . . ,  xn) =
OjXi H-------hanx„ for any X i , . . . , xn G R. Then 0 is a module homomorphism and
cfi(RW) ะ= a 1 R  + --- + anR. Therefore, (A  +  / ) / / =  (</>(Æ(n)) +  / ) / /  =  N / I  + K / I  
where N / 1 is a projective module and K/ I  is a singular module because R is 
an I-CS-Rickart module relative to R.

(v)->(vi) Assume (v). Let L be an n-generated submodule of p (n). Then 
L — (xi)R + • • • +  (xn)R where (x i) , . . . ,  (xn) G R ^  and (Xi) = (xii, . . . ,  xni) for 
all i G { 1 ,.. .  1 ท}. So
/ Xn

\Xn l

X\n d d

y a 71J

Ad
y-Al J

ท1 +  • • •  +

f  % In ̂

y X n n  J

a71 G (x i)P  +  • • • +  (x n)R .

Xn X \ f a  \2-171 a i

Let /  = G M n(R) “  E n d (A ^ ). Then /  G ร  and
y x n i . . . xnnJ yQnJ

f ( R ^ )  =  L. Let 7Tj be the projection map from p (”) to its i-th  component and 
9i be the inclusion map form R  to R for any i  G { 1 , . . . ,  ท}. Since the P- 
module R ^  is an /-CS-Rickart module relative to R  and 7Ti/ G Hom(p(n\  P i), 
we obtain th at / - 1 ( /พ )  c  (7r1/ ) ~ 1(/) < 655 eiP^n) for some é\ =  ei G 5. So 
^ (ท) _  P 1 0  6 1^ (ท) and p x is a projective module because Pi <® p (n) and 
R(n) is a  p ro je c t iv e  m o d u le . N e x t, w e c o n s id e r  th e  h o m o m o rp h is m  7 T i / | 6 l f t (ท ) . 

S in ce  ร 1  p ( n) <®  p ( n) a n d  7T2/ | e 1ft(ท) G H o m ( e iP ( n), p 2), a p p ly in g  T h e o re m  3.2.2, 
/ _ 1 ( / ( n)) Ç  (7T2/ | 61 ft(ท))-1  ( / )  < 655 e 2P (n) fo r so m e  Ô2  =  e 2 G ร. S in c e  e2P (n) <® 
R ^  a n d  e2p ( n) Ç e\R^n\  f ro m  P ro p o s i t io n  2.1.4, e 2p ( n) <®  e i p ( nL T h u s  
e i P ^  =  p 2 ® e 2P (n) a n d  p 2 is a  p ro je c tiv e  m o d u le  b e c a u s e  p 2 <®  e i p ( nL H en ce  
p (n) =  P i ® P 20 e 2p (n). S o  w e g e t e 3, . . .  1 en su c h  t h a t  / _ 1 ( / (n)) Ç  7Tj/|ej_ 1f t (ท) < 655 
e ,R(n) fo r a ll j  G { 3 , . . . ,  ท}. T h u s  =  {ท 1 f ) - \ I )  ก • • • ก  (ttJ ) - ' ( I )  < 655
e i p (n) ก • • • ก  e 7j P (n) ะ= enR(n\  N ow , p n =  P i ®  - - - ®  Pn ®  en P (n) w h e re  each  
Pi is a  p ro je c t iv e  m o d u le . H en ce  (K  +  / พ ) / / ( ท) =  (1/ ' ( p M )  - f  /( " )  ) / / ( " )  ะ=
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i f  {Pi) +  / (n)) / / (n) ® • ■ • ® ( / {Pn) +  /(n)) / / (n) ๏ / (eni?(n)) +  /W ) /J (n) where each 
(/(Pi) + /("))//(") ร  Pi which is a projective module and / (enphd) +  /("))//(") SÉ 
enP ^ / / _ 1 ( / ^ )  which is a singular module.

□

Consequently, we obtain the following corollary when p  =  0.

C o ro lla ry  3.4.23. ([1], Theorem 4.3) Pei ท 6  N. p/ien f/ie following statements 
are equivalent.
(i) The free R-module phd js <2 CS-Rickart module.
(ท) M n(R ) is a right CS-Rickart ring.
(iii) For any ท-generated right ideal A of R, A = N @ K  where N is a projective 
module and K  is a singular module.
(iv) The R-module phd is a CS-Rickart module relative to R.
(v) For any ท-generated submodule L of L =  Ail ® • - - © Nn ๏ K  where each 
Ni is a projective module and K  is a singular module.
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