
CHAPTER IV
F-DUAL-CS-RICKART MODULES

In this chapter, we give the notions of F-dual-Rickart modules and F-dual-CS- 
Rickart modules. The concept of F-dual-Rickart modules are generalized from 
dual-Rickart modules given by Lee, Rizvi and Roman in [12]. We extend the idea 
of being a direct summand of f (M )  to / ( F )  for all /  G End(M ) after that the 
ideas of F-dual Rickart modules and dual-CS-Rickart modules, defined by Abyzov 
and Nhan in [1], module are combined. We integrate the idea of being a direct 
summand of / ( F )  from F-dual-Rickart modules and the idea of lying above some 
direct summand of f (M )  from dual-CS-Rickart modules for all /  G End(M ).

Several properties of F-dual-CS-Rickart modules and characterizations of those 
are investigated in Section 4.1. We show that the intersection of two direct sum
mands one of which contained in F  of an F-dual-CS-Rickart module lies above 
some direct summand. Moreover, we study when a submodule of F-dual-CS- 
Rickart module is also an F'-CS-Rickart module where F' is a fully invariant sub- 
module of that submodule. Relationships between F-dual-CS-Rickart modules 
and F-dual-Rickart modules as well as relationships between F-dual-CS-Rickart 
modules and dual-CS-Rickart modules are presented. Furthermore, we give a 
notion and a characterization of strongly F-dual-CS-Rickart modules which is a 
special case of F-CS-Rickart modules. Observe that the idea of F-dual-CS-Rickart 
modules considers the images of endomorphism on itself. So, in Section 3.2, we 
extend this idea to consider an image of a homomorphism which lies above some 
direct summands.
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4.1 Properties of F-dual-CS-Rickart Modules
First, we provide the definition of an F-dual-Rickart module. Then the notion of 
F-dual-CS-Rickart modules are given by extending the concept of F-dual-Rickart 
modules and dual-CS-Rickart modules. We show that the sum of two submodules 
of M  which lie above some direct summands lies above a direct summand of M  
if M  is an F-dual-CS-Rickart Module and one of those submodules is contained 
in F. One of main points is that any F-dual-CS-Rickart module can be written 
as a direct sum of two submodules one of which is contained in F  and the other 
one of which is a dual-CS-Rickart module.

Lee, Rizvi and Roman provided in [12] the concept of dual-Rickart modules in
2011. A module M  is a dual-Rickart module if / (M) is a direct summand of M  
for any /  G End(M ). Thus we are interested in when / ( F )  is a direct summand 
of M  for all /  G End(M ) and we call the modules satisfying this condition F- 
dual-Rickart modules.

D efin itio n  4 .1 .1 . Let F  be a fully invariant submodule of M . A module M  is 
an F-dual-Rickart module if / ( F )  is a direct summand of M  for any /  G End(M ).

Next, the notion of dual-CS-Rickart modules are introduced by Abyzov and 
Nhan in 2014. A module M  is a dual-CS-Rickart module if / (M) lies above direct 
summand of M  for any /  G End(M ). We combine the concepts of F-dual-Rickart 
modules and dual-CS-Rickart modules as follows.

D efin itio n  4 .1 .2 . Let F  be a fully invariant submodule of M . A module M  is 
an F-dual-CS-Rickart module if / ( F )  lies above a direct summand of M  for any 
/  G End(M ).

Note th a t M  is a dual-CS-Rickart module if and only if M  is an M-dual-CS- 
Rickart module.

P ro p o s itio n  4.1 .3 . Let M  be an F-dual-CS-Rickart module and f  G End(M ). 
The the following statements are equivalent.
(i) There is a direct summand N  of M  such that N  Ç / ( F )  and f ( F ) /N  <^ M /N .
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(ท) There is a direct summand N  of M  and a submodule K  of M  such that 
N  Ç / ( F ) ,  / ( F )  =  N  +  K  and K  <  M .
(in) There is a decomposition M  = N  ® K  with N  Ç / ( F )  and K  ก  / (F) <c K .
(iv) f (F )  =  eM  © (1 — e ) /(F )  and (1 — e ) /(F )  <§c M  for some e2 =  e G End(M ).

Proof. The proof follows from Proposition 2.3.7. □

For an F-dual-Rickart module M, any /  G End(M ), f (F) is a direct summand 
of M  so that / ( F )  lies above itself. Next, we show th at any F-dual-Rickart module 
is always an F-dual-CS-Rickart module.

P ro p o s itio n  4.1 .4 . Any F-dual-Rickart module is an F-dual-CS-Rickart module.

Proof. Let M  be an F-dual-Rickart module. Then / ( F )  =  eM  for some e2 =  
e G End(M ). So / ( F )  lies above eM. Therefore, M  is an F-dual-CS-Rickart 
module. □

Observe th at / ( F )  is a submodule of M  contained in F . So we can con
clude th a t M  is an F-dual-CS-Rickart module if and only if any submodule of 
M  contained in F  lies above a direct summand of M . Next, we give an example 
of F-dual-CS-Rickart modules which is not an F-dual-Rickart module for some 
given fully invariant submodule F  of M.

E x am p le  4 .1 .5. From Example 3.1.3, let M  be the Z-module z2 ® z8. Then 
the submodule K  =  z2 ® (4) is a fully invariant submodule of M . The following 
diagram describes all submodules of F 2 ๏ z 8. Each submodule contained in a 
box is a direct summand of M  but the others are not direct summands of M. 
Furthermore, if a submodule N  is a small submodule of M , we write N small, 
otherwise; we write N̂ mzcOL-

Observe from the diagram that all submodules of M  contained in K  are (ü, Ü) 1 
Ü ๏ (4), z2 ® Ü, (I, 4)Z and K .  Among these, only (ü, Ü), z2 ๏ Ü and (I, 4)z 
are direct summands of M , i.e., they lie above themselves, and only 0®  4 <  M  
but K  is not a direct summand and not a small submodule of M . Moreover, 
K  =  (z2 ๏ Ü) ๏ (Ü ๏ (4)) lies above z2 ® Ü because (Ü ๏ (4)) <^ M  by applying
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Proposition 2.3.7. We can see that any submodule of M  contained in K  lies above 
a direct summand of M. Thus M  is a if-dual-CS-Rickart module. However, M  is 
not a if-dual-Rickart module because 1 s(K ) = K  which is not a direct summand 
of M.

Z 2 © Z8

(5,0)
Proposition 4.1.4 together with Example 4.1.5 ensure th a t F-dual-CS-Rickart 

modules truly generalized F-dual-Rickart modules. We know th a t M  is a dual- 
CS-Rickart module if and only if M  is a M-dual-CS-Rickart module. For a given 
fully invariant submodule F  of M, “M  is an F-dual-CS-Rickart module” does not 
imply “M  is a dual-CS-Rickart module” . Example 4.1.5 shows th a t z2 © z8 is 
a (z2 ๏ (4))-dual-CS-Rickart module; however, z2 ๏ z8 is not a dual-CS-Rickart 
module shown in the next example.
Exam ple 4.1 .6 . From Exam ple 4.1.5, let M  be the  Z-m odule z 2 ๏  z 8. and
K  =  z 2 © z 2 © (4). We obtain  th a t M  is a F -dual-C S-R ickarโ; module. Let
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11 _ [ fo g[ \ ( End(Z2) Hom(Z8,Z 2) \ m . , -
/1 =  G =  End(z2 © z 8) where f o

\ f ô  92 )  \  Hom(Z2, Zg) End(Z8) )
is the zero homomorphism on z 2, / q is the zero homomorphism from z 2 into z 8,
g[(ÿ) = y and <72(ÿ) =  2y for all ÿ  G Zg. Then h{M ) — (1,2)Z which does not
lie above in all direct summands of M . Thus z 2 0  z 8 is not a dual-CS-Rickart
module.

Next, we provide some properties of F-dual-CS-Rickart modules.

P r o p o s i t io n  4 .1 .7 .  Let M be an F -dual-CS-Rickart module and p  be a module. 
I f  M is isomorphic to p  by an isomorphism p  : M —>■ p , then p  is a P(F)-dual- 
CS-Rickart module.

Proof. Assume th a t p is an isomorphism from p  to M. Let /  G End(P). Recall 
th a t 4>(F) < fully p .  So 4>~l f(f) G End(M ). Since M is an F-dual-CS-Rickart 
module, [4>~l f(p){F) lies above a direct summand of M. So there is a decompo
sition M — N  ® K  with N  Ç f(ffj[F) and K  ก f<fi)(F) -c  K . Note that 
p  = — 4>{N) © (j){K) so that f ( N )  <® p  and f ( K )  <® p .  It is clear that
4>(N) Ç 0 (0 _ 1 /0 ) ( F )  Ç f4>(F). Since K  ก f(jf)(F) <  ̂ K , it implies that 
K  ก (0 - 1  f( f){F )  <c M. By Proposition 2.3.6, (f)[K ก f(fi) (F)) =  p .

Thus 4> [K  ก (^_1/ 0 )  (E1)) <c f ( K )  because (p(Kr) (</>_1/</>) (F)) Ç 4>(K) and <f(K) 
is a direct summand of p .  Since (p is an isomorphism, (j){K ก ( p ^ f p )  (F)) =  
P{K) ก fp (F ) .  This forces that P(K) ก fp (F )  <F P(K). Therefore, fp (F )  lies 
above P(N) from Proposition 4.1.3. □

The sum of any two direct summands may not be a direct summand, nor
mally. However, dual-Rickart modules have property th at the sum of two direct 
summands turns to be a direct summand; moreover, dual-CS-Rickart modules 
possess property th at the sum of two direct summands lies above a direct sum
mand. Similarly, we are interested in the sum of two direct summands of an 
F-dual-CS-Rickart module. Next example presents th at there is the sum of two 
direct summands of an F-dual-CS-Rickart module which is not a direct summand 
but it lies above a direct summand.
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E x am p le  4 .1 .8. From Example 4.1.5, let M  — Z2©Zg and K  =  z 2® (4). Recall 
th a t M  is an AT-dual-CS-Rickart module. Note th at A = (1, 4)Z and B — Zg © 0 
are direct summands of M . Then A  +  B  — z 2 © (4) is not a direct summand of 
M  but A  +  B  =  z 2 © (4) lies above z 2 ๏ 0.

Nevertheless, an F-dual-CS-Rickart module M  satisfying some conditions con
firms th at the sum of two direct summands lies above a direct summand of M. 
The following lemma is necessary to prove this fact.

L em m a 4 .1 .9 . Let F  be a fully invariant submodule of M . Let h2 = h, g2 =  g G 
End(M ) and gM  ç  F. Then gF = gM  and hM  +  gM  =  hM  ๏ (1 — h)gM  — 
hM  ๏ (1 — h)gF.

Proof. It is clear th a t gF  Ç g M . Let X G gM  ç  F. Then X =  gx G g{F) so that 
gF = gM.

Let X G hM  +  gM . Then there are น,'ข G M  such that X =  h(u) +  g(v) =  
h(u) +  (hg(v) +  (1 — h)g(v)) =  h (น +  <7(น)) +  (1 — h)g{v) G hM  ๏ (1 — h)gM . 
Next, let X + y G hM  ๏ (1 — h)gM  where X G hM  and y G (1 — h)gM . Then 
X — hx  and y  =  (1 — h)g(w)  for some พ G M. So X + y = h{x) +  (1 — h)g(พ) — 
h(x  — g (พ)) +  <7('พ) G hM  +  g M . Thus hM  +  gM  = hM  ๏ (1 — h)g M . Therefore, 
hM  +  gM  = hM  ๏  (1 — h)gF  because gF = g M . □

P ro p o s itio n  4.1 .10. Let M  be an F-dual-CS-Rickart module. Then the following 
statements hold.
(i) For any direct summands N  and K  of M , if K  ç  F , then N  +  K  lies aboves 
M ' for some direct summand M ' of M .
(ท) For any submodules N  and K  of M , if there are direct summands Ml and M2 
of M  such that N  lies above Ml and K  lies above M 2 with M2 ç  F , then N  +  K  
lies above M ' for some direct summand M ' of M .
(in) For any f \ i  1 fn  G End(M ), there is a direct summand M ' of M  such that 
f i(F )  +  • • • +  fn (F ) lies above M '.

Proof, (i) Assume th at N  and K  are direct summands of M  and K  ç  F. Then 
N  =  hM  and K  = gM  for some h2 = h, g2 =  g G End(M ). From Lemma 4.1.9,
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N  + K  — hM  +  gM  = hM  ® (1 — h)gF. Since (1 — h)g G End(M ) and M  is 
an F-dual-CS-Rickart module, ( 1  — h)g{F) = eM  ® ^ (1  — e)(l — h)g(F)'j and 
(1 — e)(l — h)g(F) M  by applying Proposition 4.1.3. Thus

N  + K  = hM  ๏ eM  ® ^(1 -  e)(l -  % ( F ) ) .

Silice eM  ç  ( 1  — h)g(F) ç  ( 1  — h)M  and M  = eM  ๏ (1 — e)M , by Modular 
Law (1 — h)M  = eM  ® ((1 — e)M  ก (1 — h)M ) and applying Proposition 2.1.5, 
( l —e )M n ( l—h )M  =  (1—e )( l—h)M . We can conclude th at M  =  h M ® (l—h)M  = 
hM  ® eM  ๏ ( ( 1  — e)M  ก (1 — h)M ) = hM  ๏ eM  ๏  (1 — e)(l — h)M  so that 
hM  ® eM  <® M . Therefore, N  + K  lies above hM  ® eM.

(ii) Assume th at N  and K  are submodules of M  such th at N  lies above a 
direct summand hM  of M  and K  lies above a direct summand gM  of M  with 
gM  Ç F  for some h2 = h, g2 = g G End(M ), respectively. From Proposition 2.3.7, 
we obtain N  — hM ®  ( 1  — h)N  and (1 — h)N  <c M; moreover, K  — g M ® (1 — g)K  
and (1 — g)K  <  ̂ M. As the results of (i), hM  +  gM  = eM  ๏ (1 — e)(hM  +  gM ) 
and (1 — e){hM  +  gM ) <§c M  for some e2 =  e G End(M ). Thus

N  + K  =  (h M  ๏ (1 -  h)N^j +  (g M  ๏ (1 -  g)K^j 
= (h M  +  <?m ) +  ((1 -  h )N  +  (1 -  g)K^j 
= (eM  ๏ (1 -  e)(hM  +  gM Ÿj + ( ( 1  -  h)N  +  (1 -  9)k )
= eM  + ({ l -  e){hM  + gM ) +  (1 -  h )N  + (1 -  g ) .

Moreover, (1 — è)[hM  + gM ) + ((1 — h)M  ก N ) +  ((1 — g)M  ก K )  <c M  by 
applying Proposition 2.3.7. Therefore, N  + K  lies above eM.

(iii) Let fi  G End(M ) for all i G { 1 , . . . ,  ท}. Since M  is an F-CS-Rickart mod
ule, for each i, fi(F )  lies above Mi for some direct summand Mi of M. Applying
(ii) repeatedly, we obtain / 1 (F) -I----- 1- fn (F )  lies above direct summand M ' of M
because fi(F )  ç  F  for all i. □

A module M  is an SSP-d-CS module, given in [1 ], if the sum of two direct 
summands lies above a direct summand of M . The sum of two direct summands
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of an F-dual-CS-Rickart module lies above a direct summand of M  when one of 
which contained in F  shown from the previous proposition.

C o r o lla r y  4 .1 .1 1 .  Let M  be an F-dual-CS-Rickart module. Then M  is an SSP- 
d-CS module provided that for all direct summands of M  contained in F.

Next, we show that a direct summand of an F-dual-CS-Rickart module is 
also an .F-dual-CS-Rickart module where F' is a fully invariant submodule of this 
direct summand. This result is similar to property in F-CS-Rickart modules.

T h e o r e m  4 .1 .1 2 .  A module M  is an F-dual-CS-Rickart module i f  and only if  N  
is an (N  ก F)-dual-CS-Rickart module for any direct summand N  of M.

Proof. The sufficiency is clear because M is always a direct summand of M  itself.
For the necessity, let N  be a direct summand of M . Then N  =  eM  for 

some e2 =  e G End(M ) and F  ก F  is a fully invariant submodule of N . Let 
K  =  (1  — e)M . Then M  = N  ® K. Since M  = N  ® K  and F  < fully M , by 
Proposition 2.1.8, F  =  (N  ก F) ® (K  ก F). Let g G E nd(F ). So ge G End(M ). 
Since M  is an F-dual-CS-Rickart module, ge(F) =  e \M  © ((1 — ei)ge(F)) and 
(1 — ei)ge(F) <c M  for some (ei)2 =  e\ G End(M ). Since F  < fully M , we have 
N  ก F  =  e F  so th a t ge(F) =  g(N  ก F) ç  N . We obtain th a t e \M  <® N  
because e \M  <® M  and e \M  ç  ge(F) ç  N . As (1 — ei)ge(F) <c M  and 
(1—ei)ge(F) ç  ge(F) ç  N  which is a direct summand of M , so (1 — ef)ge(F) N  
by applying Proposition 2.3.4. Thus g(N  ก F ) =  e \M  ๏ ((1 — ei)^e(F)) which 
e \M  < ๑ N  and ( 1  — ei)ge(F) <^ N . This forces th a t g(N  ก F) lies above e \M . 
Therefore, N  is an (N  ก F)-dual-CS-Rickart module. □

A direct sum of F-dual-CS-Rickart modules when each summand is also a fully 
invariant submodule is examined in the following result.

T h e o r e m  4 .1 .1 3 .  Let Mj be a fully invariant submodule of 1 Mi and Fj 
be a fully invariant submodule of Mj fo r all j  G { 1 , . . . ,  ท}. Then 0 ”_ 1 Mi is 
a 0 ”= 1 Fi-dual-CS-Rickart module if  and only i f  Mj is an Fj-dual-CS-Rickart 
module for all j  G { 1, . . . .  ท}.
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Proof. For the necessity, assume that 0 " = 1 Mi is a 0 "= 1 Fj-dual-CS-Rickart mod
ule. Since each Mj <๑ 0 "=1 Mi, we obtain that Mj is an (Mj ก 0 "=1 Fj)-dual- 
CS-Rickart module by Theorem 4.1.12. Therefore, Mj is an Fj-dual-CS-Rickart 
module because M j ก 0 "= 1 Fi = Fj for all j  G { 1 ,... 1 ท}.

To show the sufficiency, assume that Mj is an Fj-dual-CS-Rickart module 
for all j  G  { 1 ,... , ท}. Let /  G E nd(0"=1 Mi) and (xi, . . . , x n) G  ®"= 1 Mj. 
Then / (x น . . . ,  xn) = f {x  + ••• + /  (0, . . . , x n) = f  1 (£1) + ••• + fn(xn)
where fj := f i j  : Mj —» ®£_ 1 Mi and ij is the inclusion map from Mj into 
0 iL i Mi for all j  G  ( 1 , . . . ,  ท}. As each Mj < f u l l y  0 " =1 Mi1 we obtain fj : Mj —» 
Mj and /j(F j) Ç Fj. Since each Mj is an Fj-dual-CS-Rickart module, fj{Fj) 
lies above £jMj for some e2j = ej G End(Mj). That is fj{Fj) = t jMj  ® (1 — 
Zj)fj(Fj) and (1 -  ej)fj(Fj) «ะ Mj for all j  G  { 1 , . . . ,ท}. Hence / (®"= 1 Fi) = 
© ”= 1 m )  =  ( © i . e - M . )  ©  ( ๏ ”= 1 ( 1  -  « ,) / , ( « ) )  and © ”, 1 ( 1  -  e , ) m )  «  
®"=1 Mi- Therefore, 1 Mi is a 0 " =1 Fj-dual-CS-Rickart module. □

We know that F-dual-Rickart modules are F-dual-CS-Rickart modules but the 
converse is not necessary true from Example 4.1.5.

As a result, we are interested in finding conditions th at make the converse 
valid true. A module M  is a T-noncosingular module1 given in [1], if for any 
/  G End(M ), if / (M) =  0 provided / (M) is a small submodule of M . We give a 
generalization of T-noncosingular modules as follows.

D efin itio n  4 .1 .1 4 .  A module M  is an F -T-noncosingular module, if for any 
nonzero /  G End(M ), if f ( F)  =  0 provided f ( F)  is a small submodule of M.

P ro p o s itio n  4 .1 .1 5 .  I f  M  is an F-dual-CS-Rickart module, then M  is an F -T -  
noncosingular module.

Proof. Assume th a t M  is an T-dual-CS-Rickart module. Let /  G End(M ) and 
/ ( F )  «ะ M . So / ( F )  =  eM  for some e2 =  e G End(M ). Thus / ( F )  =  0 by 
applying Proposition 2.3.1. Therefore, M  is an F-T-cononsingular module. □
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T h e o r e m  4 .1 .1 6 .  The following statements are equivalent.
(i) M  is an F-dual-CS-Rickart module and an F -T  - cononsingular module.
(ii) M  is an F-dual Rickart module.
Proof, (ii)—y (i) This follows from Proposition 4.1.4 and Proposition 4.1.15.

(i)—> (ii) Assume (i). Let /  G End(M ). Then f ( F)  = e M  ® (1 -  e ) /(F )  and 
(1 — e ) /(F )  <^ M  for some e2 =  e G End(M ). Hence (1 — e) f ( F)  — 0 because 
M  is an F -T -noncosingular module. Hence / ( F )  =  eM.  Therefore, M  is an 
F-dual-Rickart module. □

Similar to F-CS-Rickart modules, each F-dual-CS-Rickart module M  has a 
direct summand depending on each image of F . So, for any /  G End(M ), there 
is a submodule N  of M  such that M  = N  ® K  where / ( F )  lies above N.
T h e o r e m  4 .1 .1 7 .  I f  M  IS an F-dual-CS-Rickart module, then M  =  N ® K  where 
N  ç  F , K  ก F  <^ M  and N  is a dual CS-Rickart module. The converse holds if  
N  is a fully invariant submodule of M .
Proof. Assume th at M  is an F-dual-CS-Rickart module. Then F  =  1 5 (F) lies 
above N  for some N  <® M. So there is a submodule K  of M  such that M  = 
N  ® K , F  =  N  ® (K  ก F) and i f n f  <c M . Since A  <® M  and M  is an 
F-dual-CS-Rickart module, N  is an (ArCF)-dual-CS-Rickart module by applying 
Theorem 4.1.12. Thus A  is a dual-CS-Rickart module because N  ก F  =  N.

To show the converse is valid, assume that M  =  N  ๏  K  where N  ç  F , 
K(~]F <c M , N  is a dual-CS-Rickart module and A  is a fully invariant submodule 
of M . Thus F  =  A  ๏ (K  ก F) because A  ç  F . Let /  G End(M ). Then 
/ ( F )  =  / ( A  ® (K  ก F)) =  /(A )  +  f ( K  ก F) and f ( K  ก F) <  M  by Proposition
2.3.6. Since A  < fully M , we obtain f \N G End(A) so th at /|w (A ) =  /(A ) . As A  
is a dual-CS-Rickart module, f \N(A) =  Al ® (A2 ก / (A ))  and A 2 ก / (A )  <c A  
where A  =  A 1 ® A2. Thus

/ ( F )  =  / (A )  +  f ( K  ก F ) =  A1 +  ( (A 2 ก / (A ))  +  f ( K  ก F ) )

where Ni < ๑ M  and (A2 ก /(A ))  +  / ( A  ก F) <^ M. Hence / ( F )  lies above Al- 
Therefore, M  is an F-dual-CS-Rickart module. □
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Now, F-dual-CS-Rickart modules having two direct summands are considered.

P ro p o s itio n  4.1 .18. For every indecomposable F-dual-CS-Rickart module M, 
either M  is a dual-CS-Rickart module or F  <c M .

Proof. Assume M  is an indecomposable F-dual-CS-Rickart module. Then M  = 
N  © K  where N  ç  F , K  ก F  <c M  and N  is a dual CS-Rickart module. Since 
M  is an indecomposable module, N  =  0 or N  = M . In case N  = 0, it follows 
th at F  =  0 so th at K  = K  ก F  <c M; otherwise, N  = M  implying th a t M  is 
a dual CS-Rickart module. Therefore, either M  is a dual-CS-Rickart module of 
F  <  M . □

Recall th a t M  is a dual-CS-Rickart module if and only if M  is an M-dual- 
CS-Rickart module. Furthermore, we provide an example of F-dual-CS-Rickart 
modules which is not a CS-Rickart module in Example 4.1.6. So we are interested 
in studying when an F-dual-CS-Rickart module is a dual-CS-Rickart module, as 
well as, when a dual-CS-Rickart module is an F-dual-CS-Rickart module where 
f  /  0. Relationships between F-CS-Rickart modules and CS-Rickart modules 
are provided in the following series of propositions.

P ro p o s itio n  4.1 .19. I f M  is an F-dual-CS-Rickart module and f M / f F  
M / f F  for all f  G End(M ), then M  is a dual-CS-Rickart module.

Proof. Assume th at M  is an F-dual-CS-Rickart module and, for any /  G End(M ), 
/ ( M ) / / (F )  <c M // ( F ) .  Let /  G End(M ). Since M  is an F-dual-CS-Rickart 
module, there is e2 =  e G End(M ) such that / ( F )  =  eM  © (1 — e ) f ( F)  and 
( 1  — e ) / (F )  <$; M.  It forces that M  = e M  ® (1 — e ) M = / ( F )  +  (1 — e)M.  As 
/ (F) Ç / (M ), we obtain th at e M  Ç / (M) and (1 — e ) f ( M)  — (1 — e ) M  ก / (M). 
Note th a t M  — f ( F)  +  (1 — e) M and / ( F )  Ç f ( M) ,  applying Proposition 2.3.3, 
( / (M) ก (1 -  e ) M ) /( / ( F )  ก (1 -  e)M)  <  M /( / ( F )  ก (1 -  e)M) .  It follows 
that ( 1  -  e ) / (M ) /(  1  -  e) f (F)  «  M / ( 1 -  e ) /(F ) . Since (1 -  e ) / (F )  «  M, 
by Proposition 2.3.2, ( 1  -  e ) f ( M)  <  ̂ M.  Therefore, M  is a dual-CS-Rickart 
module. □
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P ro p o s itio n  4 .1 .20. I f  M  is a dual-CS-Rickart module and F  lies above M ' for 
some fully invariant direct summand M ' of M 1 then M  is an F -dual-CS-Rickart.

Proof. Assume that M  is a dual-CS-Rickart module and F  lies above M ' for some 
fully invariant direct summand M ' of M . Then M  = M ' © N  where M ' ç  F  and 
N  ก F  <c M. Since M ' < ๑ M  and M  is a dual-CS-Rickart module, M ' is a 
dual-CS'-Rickart module. As a consequence of the converse of Theorem 4.1.17, M  
is an F-dual-CS-Rickart module. □

Similar to F-CS-Rickart modules, the converse of Theorem 4.1.17, being fully 
invariant submodule of M ' is a necessary condition to force M  to be an F-dual- 
CS-Rickart module. So the images of F  which lie above a fully invariant direct 
summand are investigated.

D efin itio n  4 .1 .21. A module M  is a strongly F-dual-CS-Rickart module if for 
any /  G End(M ), there is a fully invariant direct summand M ' of M  such that 
/ ( F )  lies above M '.

It is clear that strongly F-dual-CS-Rickart modules are F-CS-Rickart modules. 
Next, we consider when a direct summand of a strongly F-dual-CS-Rickart module 
is also a strongly F'-dual-CS-Rickart module for some fully invariant submodule 
F' of this direct summand.

L em m a 4.1 .22. Let M  be a strongly F-dual-CS-Rickart module. Then N  is a 
strongly (N  ก F )-dual-CS-Rickart module for any direct summand N  of M.

Proof. The proof is similar to one of Theorem 4.1.12. Let N  be a direct summand 
of M  and N  =  eM  for some e2 =  e G End(M ). Let /  G End(iV). Then 
f e  G End(M ). Since M  is a strongly F-dual-CS-Rickart module, there is a fully 
invariant direct summand M ' of M  such th at f e ( F)  =  e'M  © ((1 — e')M  ก f e F ) 
and (1 — e')M  ก f e F  <c M  where M ' =  e'M  for some (e7)2 =  e' G End(M ). Note 
th at both e'M  and (1 — e')M  ก fe F  contained in N . This forces th a t e'M  is a 
fully invariant direct summand of N  and (1 — e')M  ก f e F  <  ̂ N . Thus f ( N  ก F) 
lies above the fully invariant direct summand e'M . □
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T h e o rem  4.1 .23. The following statements are equivalent.
(i) M  is a strongly F-dual-CS-Rickart module.
(ท) M  = A  © K  where A  ç F, N  < fully M , K  ก F  <  ̂ M  and A  is a strongly 
dual-CS-Rickart module.
(in) M  is an F-dual-CS-Rickart module and every direct summand of M  contained 
■ in F  is fully invariant.
(iv) M  — A  © A  where N  ç F , N  < fully M , A  ก F  <̂  M  and, for any 
f  G End(M ), / ( F )  ก A  lies above a fully invariant direct summand of N  .

Proof, (i)—»'(ii) Assume (i). Then M  =  A ©  A  where N  ç  F , A n F  <c M . Thus 
A is a strongly dual-CS-Rickart module by Lemma 4.1.22 because A  <® M  and 
A  ก F  =  A.

(ท)—»(i) The proof is similar to the proof of the converse of Theorem 4.1.17. 
Assume (ii). Thus F  =  A  ® (A ก F) because N  ç F . Let /  G End(M ). Then 
f (F )  = f ( N  0 IK  ก F)) =  f ( N )  +  f ( K  ก F ) and f ( K  ก F) «ะ M  by Proposition
2.3.6. Since N  < fully M , we obtain f\N G End(A) so th a t /|w (A ) =  f (N ) .  
As A  is a strongly dual-CS-Rickart module, /|w (A ) =  A 1 © (A 2 ก / (A ))  and 
A2 ก / (A )  <c Ar where A =  A1© A2 and Al is a fully invariant submodule of A. 
Thus

/ ( F )  =  / (A )  +  / ( A  ก F ) =  A 1+  ((A 2 ก / (A ) )  +  f ( K  ก F ) )

where Ni < ๑ M  and Ni <fully M  and (A2 ก /(A ))  +  / ( A  ท F ) «  ill. Hence 
/ (F) lies above Ai. Therefore, M  is a strongly F-dual-CS-Rickart module.

(i)—>(iii) Assume (i). Then M  is an F-dual-CS-Rickart module. Next, let L 
be a direct summand of M  and L ç  F. Then there is e2 =  e G End(M ) such that 
L =  eM, so th a t L = L ก F  = eM  ก F  =  eF  because F  < f u l l y  M . Since M  is a 
strongly F-dual-CS-Rickart module, eF  =  A  © (A  ก e(F)) and A  ก e(F) <gc M  
where A  is a fully invariant direct summand of M  and A  is a submodule of M.

Finally, in th is section, we focus on the image of the  iden tity  endom orphism
of F  which is equal to  F  and lies above some direct sum m and of M.  So each
F-dual-C S-R ickart module can be w ritten  as a direct sum depending on F.
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Since K  ก e(F) <® eF  = L  and L <® M, we obtain th at K  ก e(F) <® M. Thus 
K  ก e(F) =  0 because K  ก e(F) is both a small submodule and a direct summand 
of M. Therefore, N  — eF  — L  which is a fully invariant direct summand of M.

( i i i)  —> (i) Assume (iii). Let /  G End(M ). Then f (F )  ç  F  and f ( F )  lies above 
M ' for some direct summand M ' of M. By assumption, M ' < fully M . Therefore, 
M  is a strongly F-dual-CS-Rickart module.

(ท)-»(iv) Assume (ii) So F  = N  ® ( F  ก F). Let /  G End(M ). Thus f \ N G 
End (A) and /  (F) ก A  =  / | k (A  ก F) =  / | k (A) because A  <1 fully M  and N  ç  F. 
Silice F  is a strongly dual CS-Rickart module, / | k (A) lies above a fully invariant 
direct summand of N . Thus / (F) ก N  lies above a fully invariant direct summand 
of N.

(iv) —> (ii) Assume (iv). Thus F  =  N  ® (K  ก F). Let g G End(iV). Then
ฐ © Ok £ End(M ). Hence [g © Ok ) (F ) ก N  -= [g © Ok ) {N  ๏ (K  ก F )) ก N  = 
[g(N) + 0K; (K n F ))r \N  =  1g (N )r \N  =  g(N r\F ). By assumption, (#๏ 0พ )(F )© A  
lies above a fully invariant direct summand of N. This implies th a t g (N  ก F ) lies 
above a fully invariant direct summand of N . Therefore, A  is a strongly dual-CS- 
Rickart module. □

4.2 Relatively F-Dual-CS-Rickart Modules
In this section, we provide a notion of relatively F-dual-CS-Rickart modules 
which is generalized form F-dual-CS-Rickart modules by extended End(M ) to 
Hom(P, M ) where p  and M  are modules and M  is not necessary an F-dual-CS- 
Rickart module. Furthermore, a direct summand of relatively F-dual-CS-Rickart 
modules be a relatively F-dual-CS-Rickart module are proved.

D efin itio n  4 .2 .1. Let P, M  be modules and F  be a fully invariant submodule 
of p. Then p  is an F-dual-CS-Rickart module relative to M  (relatively F-dual- 
CS-Rickart module) if for any /  G Horn (F, M ), there is a direct summand M ' 
of M  such th at / ( F )  lies above M '.

I t  is c le a r  t h a t  M  is a n  F - d u a l-C S -R ic k a r t  m o d u le  if  a n d  o n ly  if  M  is a n
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F-dual-CS-Rickart module relative to M; moreover, p  is a P-dual-CS-Rickart 
module relative to M  if and only if p  is a dual-CS-Rickart module relative to 
M  given in [1]. Equivalent to Theorem 4.1.12, we examine direct summands of 
relatively F-dual-CS-Rickart modules.

T h e o rem  4.2 .2 . Let p, M be modules and F  be a fully invariant submodule of p . 
Then p  is an F-dual-CS-Rickart module relative to M  if  and only if  for any direct 
summand Pi of p  and any direct summand Ml of M , Pi is an (Pi ก F)-dual-CS- 
Rickart module relative to Ml.

Proof. The sufficiency is obvious because p  and M  are direct summands of itself.
Assume that p  is an F-dual-CS-Rickart module relative to M. Let Pi and 

Ml be direct summands of p  and M,  respectively. Then Pi ® F2 =  F  for some 
submodule F2 of p. Let g G Horn (Fl, Ml). Then /  := ฐ® Op2 G Hom(P, M).  Since 
F < f u l l y  M , it follows th a t F  =  (P iC F )® (P 2n F ) . So / ( F )  =  (ฐ®Op2) ((P iC F )®  
(p2 ก F )) =  g (Pi ก F ) ç  Ml- Since p  is an F-CS-Rickart module relative to M, 
/ ( F )  =  eM ®  (1 — e)f(F)  and (1 — e)f(F) <c M  for some e2 =  e G End (M). Since 
/ ( F )  Ç  Ml, we obtain eM < ๑ Ml and (1 — e)f(F)  << Ml. Thus ฐ(Pi ก F) lies 
above eM. Therefore, Pi is an (PiCF)-dual-CS-Rickart module relative to Ml. □

ff P  =  M  in Theorem 4.2.2, the following corollary is obtained.

C o ro lla ry  4 .2 .3. The following statements are equivalent.
(i) M  is an F-dual-CS-Rickart module.
(a) For any direct summands N  and K  of M, N  is an (N  ก F)-dual-CS-Rickart 
module relative to  K .

(in) For any direct summands N  and K  of M , for any f  G End(M ) there is a 
direct summand K ' of K  such that f\fir(N  ก F ) lies above K ' .

Proof, (i) (ii) This follows from Theorem 4.2.2 because M  is an F-dual-CS- 
Rickart module relative to M.

(ii) —> (iii) Assume (ii). Let N  and K  be direct summands M  and /  G 
Horn (M, A"). Then /|yv G Horn (N ,K ). So f \ f f1( N n F )  <651ร K ' for some direct
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summand K ' of K  by the definition of relatively F-CS-Rickart modules.
(iii) -¥ (i) This is clear because N  — M  — K. □
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