OXIDATIVE STEAM REFORMING OF METHANOL OVER Au-BASED CATALYSTS: EFFECT OF SUPPORT COMPOSITION AND BIMETALLIC CATALYST

Achiraya Kumyam

A Thesis Submitted in Partial Fulfilment of the Requirements for the Degree of Master of Science The Petroleum and Petrochemical College, Chulalongkorn University in Academic Partnership with The University of Michigan, The University of Oklahoma, Case Western Reserve University, and Institut Français du Pétrole

2014

I28370259

Thesis Title:	Oxidative Steam Reforming of Methanol over Au-based
	Catalysts: Effect of Support Composition and Bimetallic
	Catalyst
By:	Achiraya Kumyam
Program:	Petrochemical Technology
Thesis Advisors:	Assoc. Prof. Apanee Luengnaruemitchai
	Dr. Stephan T. Dubas

Accepted by The Petroleum and Petrochemical College, Chulalongkorn University, in partial fulfilment of the requirements for the Degree of Master of Science.

. College Dean

(Asst. Prof. Pomthong Malakul)

Thesis Committee:

apen

(Assoc. Prof. Apanee Luengnaruemitchai)

.

(Dr. Stephan T. Dubas)

och it

(Assoc. Prof. Pramoch Rangsunvigit)

(Assoc. Prof. Vissanu Meeyoo)

ABSTRACT

5571001063: Petrochemical Technology Program

 Achiraya Kumyam: Oxidative Steam Reforming of Methanol over
 Au-based Catalysts: Effect of Support Composition and Bimetallic
 Catalyst.
 Thesis Advisors: Assoc. Prof. Apanee Luengnaruemitchai,
 and Dr. Stephan T. Dubas 108 pp.

 Keywords: Oxidative steam reforming/ Methanol/ Gold catalyst/ Hydrogen production/ CeO₂-ZrO₂

The catalytic activity of bimetallic Au-Cu/CeO₂-ZrO₂ câtalysts was studied for oxidative steam reforming of methanol (OSRM). Various variables, such as support composition (Ce/(Ce+Zr) atomic ratio), support preparation, Au/Cu atomic ratio, total metal loading, and calcination temperature were investigated. The catalysts were characterized by using Brunauer-Emmett-Teller (BET) surface area measurement, X-ray diffraction (XRD), temperature-programmed reduction (TPR), atomic absorption spectroscopy (AAS), FT-Raman spectroscopy, UV-visible, and temperature-programmed oxidation (TPO). Catalytic activity of the prepared catalysts was investigated under atmospheric pressure at a reaction temperature ranging from 200 °C to 400 °C. The 5 wt% 3Au1Cu/Ce_{0.75}Zr_{0.25}O₂ calcined at 300°C exhibited the highest catalytic activity with 99.6% methanol conversion and 62.4% hydrogen yield. Moreøver, the 5 wt% 3Au1Cu/Ce_{0.75}Zr_{0.25}O₂ showed stable catalytic performance at 350 °C for 21 h. This may be related to the Au-Cu alloy structure, as confirmed by XRD patterns.

บทคัดย่อ

อชิรญา คำแข้ม : กระบวนการผลิตก๊าซไฮโครเจนจากปฏิกิริยาเปลี่ยนรูปเมทานอลด้วยไอ น้ำและก๊าซออกซิเจนโคยใช้ตัวเร่งปฏิกิริยาทอง: ผลขององค์ประกอบของตัวรองรับและตัวเร่ง ปฏิกิริยาชนิคโลหะผสม (Oxidative Steam Reforming of Methanol over Au-based Catalysts: Effect of Support Composition and Bimetallic Catalyst) อ. ที่ปรึกษา : รศ. คร. อาภาณี เหลือง นฤมิตชัย และ คร. สเตฟาน ที. ดูบาส 108 หน้า

งานวิจัยนี้ศึกษากระบวนการผลิตก๊าซไฮโครเจนด้วยกระบวนการเปลี่ยนรูปเมทานอล ้ด้วยไอน้ำและก๊าซออกซิเจน โดยใช้ตัวเร่งปฏิกิริยาทอง ที่เตรียมด้วยวิธีการยึดเกาะควบคู่กับการ ตกผลึก (deposition-precipitation) โดยตัวรับรองบริสุทธิ์ (CeO₂ และ ZrO₂) และตัวรองรับผสม (CeO2-ZrO2) ถูกเตรียมด้วยวิธีการตกผลึกและการตกผลึกร่วมตามลำดับ สำหรับตัวแปรที่ศึกษา กับตัวเร่งปฏิกิริยาทอง เช่น อัตราส่วนโดยโมลของตัวรองรับ (0, 0.25, 0.5, 0.75 และ 1), วิธีการ เตรียมตัวรองรับ, อัตราส่วนของโลหะทองและคอปเปอร์ (3/1, 1/1 และ 1/3), ปริมาณของทองที่ใช้ ในการเตรียมตัวเร่งปฏิกิริยา และอุณหภูมิที่ใช้ในการเผาตัวเร่งปฏิกิริยา (calcination_temperature) ซึ่งศึกษาความว่องไวในการเกิคปฏิกิริยาในช่วงอุณหภูมิ 200 องศาเซลเซียส ถึง 400 องศาเซลเซียส ภายใต้ความดันบรรยากาศ ผลการศึกษาแสดงให้เห็นว่าตัวเร่งปฏิกิริยา 5 wt%3Au1Cu/Ce_{0.75}Zr_{0.25}O₂ เตรียมที่อุณหภูมิ 300 °C ให้ผลในการเกิดปฏิกิริยาสูงที่สุด โดยพบว่า conversion) มีค่าเป็นร้อยละ 99.6 และผลผลิต การเปลี่ยนแปลงของเมทานอล (methanol ไฮโครเจนร้อยละ (hydrogen yield) มีค่าเป็น 62.4 ยิ่งไปกว่านั้นยังพบว่าตัวเร่งปฏิกิริยา 5 wt%3Au1Cu/Ce $_{0.75}$ Zr $_{0.25}$ O $_2$ มีความเสถียรในการเกิดปฏิกิริยาสำหรับกระบวนการเปลี่ยนรูปเมทา ้นอลด้วยไอน้ำและก๊าซออกซิเจนที่อุณหภูมิ 350องศาเซลเซียส เป็นเวลา 21 ชั่วโมง ทั้งนี้อาจเกี่ยว เนื่องมาจากการเกิดอัลลอยระหว่างโลหะทองและคอปเปอร์

ACKNOWLEDGEMENTS

The author gratefully acknowledge for the scholarship and funding of the thesis work provided by The Petroleum and Petrochemical College, and by The Center of Excellence on Petrochemicals and Materials Technology, Thailand.

I would like to extend my sincerest to my advisors and member group. Especially Assoc. Prof. Apanee Luengnaruemitchai who provides suggestion and gives me an idea to troubleshoot problem, I am so appreciate to intimacy for teaching and helping me to understand and get the knowledge.

My sincere thank to Assoc. Prof. Pramoch Rangsunvigit and Assoc. Prof. Vissanu Meeyoo for being my thesis committee and comment. And this thesis would not have been possible without the knowledge received from all the lecturers and staffs at The Petroleum and Petrochemical College. Also for special senior students in The Petroleum and Petrochemical College, Mr. Chinchanop Pojanavaraphan and Ms. Warapun Nakaranuwattana for their kind of teaching and helping in laboratory.

Finally, I would like to thanks my family for spirit and finance during my study in the Petroleum and Petrochemical College along two years.

TABLE OF CONTENTS

Title Page	i
Abstract (in English)	iii
Abstract (in Thai)	iv
Acknowledgements	V
Table of Contents	vi
List of Tables	ix
List of Figures	Х

CHAPTER

.

I	INTRODUCTION	1
II	THEORETICAL BACKGROUND AND LITERATURE	
	REVIEW	3
	2.1 Background	3
	2.2 Hydrogen Production from Methanol (CH ₃ OH)	3
	2.2.1 Steam Reforming of Methanol (SRM)	5
	2.2.2 Partial Oxidation of Methanol (POM)	11
	2.2.3 Oxidative Steam Reforming of Methanol (OSRM)	15
	2.3 Gold Catalyst	20
	2.4 Bimetallic Catalyst	21
	2.4 Supports	25
Ш	EXPERIMENTAL	29
	3.1 Materials	29
	3.1.1 Reactants	29
	3.1.2 Gases	29
	3.1.3 Chemicals	29
	3.2 Equipment	30
	3.2.1 Liquid Feed System	31

-

IV

3.2.2 Gas Blending System	31
3.2.3 Catalytic Reactor	31
3.2.4 Analytical Instrument	31
3.3 Methodology	32
3.3.1 Preparation of Catalyst and Support	32
3.3.2 Catalyst Characterization	36
3.4 Activity Measurement	40
3.4.1 Effect of Support Composition (Atomic Ra	atio)
of Ce/(Ce+Zr)	40
3.4.2 Effect of Support Preparation Technique	40
3.4.3 Effect of Au/Cu Atomic Ratio	40
3.4.4 Effect of Total Metal loading	41
3.4.5 Effect of Calcination Tempaerature	41
3.4.4 Effect of DM and SRM Reactions	41
3.4.7 Deactivation Test	41
3.5 Calculation	42
3.5 Calculation	- 42
3.5 Calculation RESULTS AND DISCUSSION	42 - 44
3.5 CalculationRESULTS AND DISCUSSION4.1 Catalyst Characterization	42 - 44 44
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 	42 - 44 44 44
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 	42 44 44 44 47
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF) 	42 44 44 44 47 8) 54
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 	42 44 44 44 47 8) 54 58
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Raman) 	42 44 44 44 47 (1) 54 58 (1) 58 (1) 59
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Ra 4.1.6 Temperature-programmed Oxidation (TPC) 	42 44 44 44 47 (1) 54 58 (1) 58 (1) 59 (1) (1) 59 (1) (1) 59 (1) (1) 59
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Ra 4.1.6 Temperature-programmed Oxidation (TPC 4.1.7 UV-visible Spectroscopy 	42 44 44 44 47 (1) 54 58 (1) 58 (1) 59 (1) (1) 62 (3)
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Ra 4.1.6 Temperature-programmed Oxidation (TPC 4.1.7 UV-visible Spectroscopy 4.2 Catalytic activity 	42 44 44 44 47 8) 54 58 man) 59 0) 62 63 68
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Ra 4.1.6 Temperature-programmed Oxidation (TPC 4.1.7 UV-visible Spectroscopy 4.2 Catalytic activity 4.2.1 Effect of Support Composition (Ce/(Ce+Z)) 	42 44 44 44 47 8) 54 58 man) 59 0) 62 63 68 r)) 68
 3.5 Calculation RESULTS AND DISCUSSION 4.1 Catalyst Characterization 4.1.1 Surface Area Measurement 4.1.2 X-ray Diffraction 4.1.3 Temperature-programmed Reduction (TPF 4.1.4 Atomic Absorption Spectroscopy 4.1.5 Fourier Transform Raman Spectra (FT-Ra 4.1.6 Temperature-programmed Oxidation (TPC 4.1.7 UV-visible Spectroscopy 4.2 Catalytic activity 4.2.1 Effect of Support Composition (Ce/(Ce+Z) 4.2.2 Effect of Support Preparation 	 42 44 44 44 47 54 58 man) 59 () 62 63 68 r)) 68 72

1

.

•

V

-

viii

2	4.2.4	Effect of Stability between 3 wt% Au/Ce_{0.75}Zr_{0.25}O_2,	,
		3 wt% $3Au1Cu/Ce_{0.75}Zr_{0.25}O_2$, and	
		3 wt% Cu/Ce _{0.75} Zr _{0.25} O ₂ Catalysts	78
4	1.2.5	Effect of Total Metal Loading	81
2	4.2.6	Effect of Calcination Temperature	84
4	1.2.7	Effect of Side Reactions (Steam Reforming	
		and Methanol Decomposition (DM) Reaction)	87
CON	ICLU	USIONS AND RECOMMENDATIONS	90
5.1 (Concl	usions	90
5.2 F	Recoi	nmendations	91
REF	ERE	NCES	92
APP	END	ICES	102
Appe	endix	A Calibration Curve of Gas Products	102
Арре	endix	B Calibration Curve of Liquid Methanol	107
CUR	RIC	ULUM VITAE -	108

LIST OF TABLES

۲.

TABLE		PAGE
2.1	Mean diameter of metal particles for 5wt%-Au/CeO ₂	21
4.1	Chemical and physical properties of Au/CeO_2 -ZrO ₂ and	
	Au-Cu/CeO ₂ -ZrO ₂ catalysts 55	45
4.2	Crystallite sizes of the Au-Cu/Ce0.75Zr0.25O2 catalysts after	
	exposure to the reaction at 350 °C for 21 hours	50
4.3	The intensity ratio of Raman bands of $3wt\% Au/Ce_{0.75}Zr_{0.25}O_2$	
	and 3Au1Cu/Ce _{0 75} Zr _{0 25} O ₂ catalysts	60

ix

LIST OF FIGURES

FIGUR	E -	PAGE
2.1	Hydrogen: primary energy sources, energy converters and	
	applications.	4
2.2	The effect of the hydrogen-to-carbon atomic ratio in the	
	fuel on the theoretical fuel processing efficiency.	5
2.3	The different reaction pathways for SRM reaction.	7
2.4	Product gas composition and methanol conversion versus	
	reaction temperature during steam reforming of methanol	
	over catalyst CZ.	8
2.5	Effect of H ₂ O/CH ₃ OH molar ratio on catalytic activity.	9
2.6	Reaction mechanism of POM.	11
2.7	Effect of reaction temperature on CH ₃ OH conversion,	
	O ₂ conversion, H ₂ selectivity and CO selectivity for POM reaction.	13
2.8	The performance of Copper-Zinc oxides (CZ), Au _{4.3} CZ in various	
	O/M ratio of POM reaction at 200 °C	
	(a) Methanol conversion; (b) Hydrogen selectivity;	
	(c) Carbon monoxide selectivity.	14
2.9	Effect of calcination temperature in methanol conversion	
	and hydrogen selectivity for POM over Au/ZnO/Al ₂ O ₃ catalyst.	15
2.10	Reaction network under OSRM reactions.	16
2.11	(a) Methanol conversion and hydrogen yield; (b) conversions to	
	different products as a function of temperature under OSRM	
	conditions for the catalyst 2-Cu/Zn/Al, GHSV = 0.6×10^5 h ⁻¹ .	17
2.12	Effect of oxygen to methanol molar ratio over methanol conversion,	
	hydrogen rate and carbon monoxide formation for Cu(20)CeAl	

2

х

catalyst, (W/F =
$$15 \text{ kg}_{cat} \text{s mol}^{-1}_{methanol}$$
, T = 280 °C,
S/M = 1.5, P = 1 atm).

FIGURE

.4

-

PAGE

H_2 selectivity as a function of reaction temperature.		
$%S(H_2) = mol(H_2)/(mol(H_2+CO_2))*Xa;$		
$%S(CO_2) = mol(CO_2)/(mol(H_2+CO_2))*Xa;$		
Xa = %methanol conversion (mol%).	19	
CO level in the product gas versus methanol conversion		
during (•) steam reforming and (\circ) combined reforming		
of methanol over catalyst Cu/ZnO		
$(H_2O/CH_3OH = 1.3; O_2/CH_3OH = 0.2 M).$	19	
CO conversion over various catalysts as a function of temperature		
(1) Au/ α -Fe ₂ O ₃ (Au/Fe = 1/19, co-precipitation, 400 °C),		
(2) 0.5wt% Pd/ γ -Al ₂ O ₃ (impregnation, 300 °C),		
(3) Au fine powder,		
(4) Co ₃ O ₄ (carbonate, 400 °C),		
(5) NiO (hydrate , 200 °C),		
(6) α-Fe ₂ O ₃ (hydrate, 400 °C),		
(7) 5 wt% Au/ α -Fe ₂ O ₃ (impregnation, 200 °C), and		
(8) 5 wt% Au/ γ -Al ₂ O ₃ (impregnation, 200 °C).	20	
Examples of bimetallic nanoparticles structure.	22	
TPR profiles of: (a) Au/TiO ₂ (2 wt.%); (b) Cu/TiO ₂ (2 wt.%);		
(c) Au-Cu/TiO ₂ (1-1 wt.%) prepared at pH 7		
(uncalcined, dried at 373 K).	23	
Effect of Au/Cu atomic ratio on methanol conversion and product		
selectivity over 3 wt% Au-Cu/Ce_{0.75}Zr_{0.25}O_2 (reaction conditions:		
H ₂ O/CH ₃ OH, 2/1; calcination temperature, 400 °C).	24	
Catalytic performance of Au/TiO ₂ , Cu/TiO ₂ , and		
Au-Cu/TiO ₂ catalysts for CH ₃ OH conversion, H ₂ selectivity,		
	 H₂ selectivity as a function of reaction temperature. %S(H₂) = mol(H₂)/(mol(H₂+CO₂))*Xa; %S(CO₂) = mol(CO₂)/(mol(H₂+CO₂))*Xa; Xa = %methanol conversion (mol%). CO level in the product gas versus methanol conversion during (•) steam reforming and (°) combined reforming of methanol over catalyst Cu/ZnO (H₂O/CH₃OH = 1.3; O₂/CH₃OH = 0.2 M). CO conversion over various catalysts as a function of temperature (1) Au/α-Fe₂O₃ (Au/Fe = 1/19, co-precipitation, 400 °C), (2) 0.5wt% Pd/γ-Al₂O₃ (impregnation, 300 °C), (3) Au fine powder, (4) Co₃O₄ (carbonate, 400 °C), (5) NiO (hydrate , 200 °C), (6) α-Fe₂O₃ (hydrate, 400 °C), (7) 5 wt% Au/γ-Al₂O₃ (impregnation, 200 °C), and (8) 5 wt% Au/γ-Al₂O₃ (impregnation, 200 °C). Examples of bimetallic nanoparticles structure. TPR profiles of: (a) Au/TiO₂ (2 wt.%); (b) Cu/TiO₂ (2 wt.%); (c) Au-Cu/TiO₂ (1-1 wt.%) prepared at pH 7 (uncalcined, dried at 373 K). Effect of Au/Cu atomic ratio on methanol conversion and product selectivity over 3 wt% Au-Cu/Ce_{0.75}Zr_{0.25}O₂ (reaction conditions: H₂O/CH₃OH, 2/1; calcination temperature, 400 °C). Catalytic performance of Au/TiO₂, Cu/TiO₂, and Au-Cu/TiO₂ catalysts for CH₃OH conversion, H₂ selectivity, 	H2 selectivity as a function of reaction temperature.%S(H2) = mol(H2)/(mol(H2+CO2))*Xa;%S(CO2) = mol(CO2)/(mol(H2+CO2))*Xa;Xa = %methanol conversion (mol%).19CO level in the product gas versus methanol conversionduring (•) steam reforming and (•) combined reformingof methanol over catalyst Cu/ZnO(H2O/CH3OH = 1.3; O2/CH3OH = 0.2 M).CO conversion over various catalysts as a function of temperature(1) Au/α-Fe2O3 (Au/Fe = 1/19, co-precipitation, 400 °C),(2) 0.5wt% Pd/γ-Al2O3 (impregnation, 300 °C),(3) Au fine powder,(4) Co3O4 (carbonate, 400 °C),(5) NiO (hydrate, 200 °C),(6) α-Fe2O3 (hydrate, 400 °C),(7) 5 wt% Au/α-Fe2O3 (impregnation, 200 °C), and(8) 5 wt% Au/γ-Al2O3 (impregnation, 200 °C),(a) S wt% Au/γ-Al2O3 (impregnation, 200 °C),(c) Au-Cu/TiO2 (1-1 wt.%) prepared at pH 7(uncalcined, dried at 373 K).Effect of Au/Cu atomic ratio on methanol conversion and productselectivity over 3 wt% Au-Cu/Ce0 ₇₅ Zr _{0.25} O2 (reaction conditions:H2O/CH3OH, 2/1; calcination temperature, 400 °C).24Catalytic performance of Au/TiO2, Cu/TiO2, andAu-Cu/TiO2 catalysts for CH3OH conversion, H2 selectivity,

	and CO selectivity for POM.	25
2.20	Effect of the additives on the activity of CuO/CeO ₂ :	
	(\bullet) ZrO ₂ ; (\Box) Al ₂ O ₃ ; (\blacktriangle) Y ₂ O ₃ ; (\circ) none.	26

.

FIGURE

-

.

PAGE

-

2.21	XRD patterns of CeO ₂ , ZrO ₂ , and CeO ₂ -ZrO ₂ mixed oxide	
	(a) CeO_2 , (b) $Ce_{0.74}Zr_{0.26}O_2$, (c) $Ce_{0.41}Zr_{0.59}O_2$,	
-	(d) $Ce_{0.16}Zr_{0.84}O_2$, (e) ZrO_2 .	27
2.22	Catalytic activities of 3wt%Au/Ce _{1-x} Zr _x O ₂	
	(prepared by co-precipitation method).	28
3.1	Schematic for experimental system of oxidative steam reforming	
	of methanol.	30
4.1	XRD patterns of 3 wt% Au/CeO2-ZrO2 catalysts calcined at 400 °C:	
	(A) Effect of support composition (Ce/(Ce+Zr) atomic ratio)	
	(B) Effect of support preparation techniques;	
	co-precipitation (CP), and sonochemical (SN).	48
4.2	XRD patterns of 3 wt% Au-Cu/Ce0.75Zr0.25O2 catalysts with	
	various Au/Cu atomic ratios.	49
4.3	XRD patterns of the Au diffractions in the Au–Cu/Ce $_{0.75}$ Zr $_{0.25}$ O ₂	
	catalysts with various Au/Cu atomic ratios.	51
4.4	XRD patterns of (A) spent Au-Cu/Ce _{0.25} Zr _{0.75} O ₂ catalysts	
	with different Au/Cu atomic ratios after exposure to reaction	
	at 350 °C for21 hours. (B) Effect of total metal loading on	
	$3Au1Cu/Ce_{0.25}Zr_{0.75}O_2.$	52
4.5	XRD patterns of 5 wt% 3Au1Cu/Ce $_{0.75}$ Zr $_{0.25}$ O $_2$ catalysts with different	
	calcination temperatures.	53
4.6	TPR profiles of 3 wt% Au/CeO2-ZrO2 calcined at 400 °C	
	(A) Effect of support compositions.	
	(B) Effect of support preparation techniques	
	(CP: co-precipitaion, SN: sonochemical).	55
4.7	TPR profiles of Au-Cu/CeO _{0.75} ZrO _{0.25} O ₂ catalysts	

	(A) Effect of Au/Cu atomic ratios.	
	(B) Effect of total metal loading.	
	(C) Effect of calcination temperature.	56
FIGU	IRE	PAGE
4.8	Raman spectra of fresh and spent catalysts (A) $Au/Ce_{0.75}Zr_{0.25}O_2$.	
	(B) $3Au1Cu/Ce_{0.75}Zr_{0.25}O_2$.	61
4.9	TPO profiles of 3 wt% Au/Ce _{0 75} Zr _{0.25} O ₂ and	
	3 wt% 3Au1Cu/ Ce $_{0.75}$ Zr $_{0.25}$ O ₂ catalysts after exposure to	
	the reaction at 350 °C for 21 hours	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	63
4.10	Diffuse reflectance UV-vis spectra of the Au species on 3 wt%	
	Au/CeO ₂ -ZrO ₂ catalysts calcined at 400 °C with different support	
	compositions.	64
4.11	Diffuse reflectance UV-vis spectra of the Au species with various	
	support preparation techniques over 3 wt% Au/Ce0.75Zr0.25O2	
	catalysts calcined at 400 °C.	65
4.12	Diffuse reflectance UV-vis spectra of the Au species on	
	3 wt% Au-Cu/ Ce _{0.75} Zr _{0.25} O ₂ catalyst calcined at 400 °C	
	with different Au/Cu atomic ratios.	66
4.13	Diffuse reflectance UV-vis spectra of the Au species on	
	3Au1Cu/ Ce _{0.75} Zr _{0.25} O ₂ catalyst (A) Effect of total metal loading.	
	(B) Effect of calcination temperature.	67
4.14	Effect of support composition on the methanol conversion	
	and hydrogen yield over 3 wt% of Au/CeO_2 -ZrO ₂ catalysts	
	calcined at 400 °C	
	(Reaction condition: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	70
4.15	Effect of support composition on the concentration of H ₂ , CO, CO ₂ ,	
	and CH ₄ over 3 wt% of Au/CeO ₂ –ZrO ₂ catalysts calcined at 400 $^{\circ}$ C	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	71
4.16	Effect of support preparation on methanol conversion and	
	hydrogen yield over 3 wt% Au/Ce $_{0.75}$ Zr $_{0.2}$ 5O $_2$ catalysts with	

1

•

FIGURE

PAGE

•

4.17	Effect of support preparation on the concentration of H ₂ , CO,	
	CO ₂ over 3 wt% Au/Ce _{0.75} Zr _{0.25} O ₂ catalysts with co-precipitation	
	(CP), and sonochemical (SN) techniques	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	74
4.18	Effect of Au/Cu atomic ratio on the methanol conversion and	
	hydrogen yield over 3 wt% Au-Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts	
	calcined at 400 °C.	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	76
4.19	Effect of Au/Cu atomic ratio on the concentration of H_2 , CO, and	
	CO ₂ over 3 wt% Au-Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts	
	calcined at 400 °C	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	77
4.20	Stability testing of the Au/Ce _{0.75} Zr _{0.25} O ₂ ,	
	Au–Cu/Ce _{0.75} Zr _{0.25} O ₂ , and Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts at 350 $^{\circ}$ C	
	for 21 hours	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	80
4.21	Effect of total metal loading on the methanol conversion and	
	hydrogen yield over 3Au1Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts	
	calcined at 400 °C	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	82
4.22	Effect of total metal loading on the concentration of H ₂ , CO,	
	and CO ₂ over $3Au1Cu/Ce_{0.75}Zr_{0.25}O_2$ catalysts calcined at 400 °C	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	83
4.23	Effect of calcination temperature on the methanol conversion	
	and hydrogen yield over 3Au1Cu/Ce _{0 75} Zr _{0 25} O ₂ catalysts;	
	total metal loading = 5 wt%	

xiv

(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	85
(00

•

FIGURE

-

PAGE

.

4.24	Effect of calcination temperature on H ₂ , CO, and CO ₂	
	selectivity over 3Au1Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts;	
	total metal loading = $5 \text{ wt}\%$	
	(Reaction conditions: $O_2/H_2O/CH_3OH$ molar ratio = 0.6:2:1).	86
4.25	Effect of side reactions on the methanol conversion and	
	hydrogen yield over 3Au1Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts;	
	total metal loading = 5 wt\% .	88
4.26	Effect of side reactions on the concentration of H_2 and	
	CO over 3Au1Cu/Ce _{0.75} Zr _{0.25} O ₂ catalysts;	
	total metal loading = $5 \text{ wt}\%$.	89
Al	Calibration curve of hydrogen gas.	104
A2	Calibration curve of carbon monoxide gas.	105
A3	Calibration curve of carbon dioxide gas.	105
A4	Calibration curve of methane gas.	106
A5	Calibration curve of oxygen gas.	106
B1	Calibration curve of liquid methanol.	107

-

. .