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ABSTRACT

In quantum field theory, the probability of outcomes of a scattering process can be calcu-
lated through scattering amplitudes. The scattering amplitudes can be calculated using
the Feynman diagrams approach. However, the Feynman diagrams approach can become
too di�cult for beyond five particles. Focusing on the amplitude of Yang-Mills theory, the
spinor-helicity formalism was used to help calculate the amplitude, resulting in a simple
formula for an n particle scattering event with two negative helicity particles.

For general helicity configuration, we focus on the work of Witten and Roiban, Spradlin,
and Volovich (RSVW) that incorporated twistor theory to their formulation. This re-
sults in a formula on twistor space for general helicity configuration of tree level gluon
scattering, localized on constraint equations known as the refined scattering equations.
The number of solutions to these constraints are observed to be the Eulerian numbers
E(n�3, k�2), where k is the number of negative helicity particles. In this project, we will
review the formulation of the tree level amplitude including the spinor-helicity formalism,
twistor theory, and RSVW formula. Then, we proved that the number of solutions to
the constraints to RSVW formula are the Eulerian numbers by establishing a recursion
relation for the number of solutions, using the method of dominance balance.

Recently, a twistor formula for one loop amplitude was published, and the number of
solutions to these constraints – the loop polarized scattering equations– are still unknown.
In order to be prepared for finding the number of solutions for the loop polarized scattering
equations, we reproduce the proof for the number of solutions to the constraints of another
one-loop formula, which is an extension of a formula proposed by Cachazo, He, and Yuan
(CHY). The methods that were used to establish a recursion relation for the number
of solutions to the one loop CHY’s constraints were then applied to the loop polarized
scattering equations. Up to this point, we found that this recursion relation possesses
some similar features to those of one loop CHY constraints.
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Chapter 1

Introduction

Physics is a study of natural phenomena by inferring a general theory from some ob-
servations. Not only that the theory must provide some explanation for the observed
phenomena, it should be able to make some predictions for other phenomena too. Classi-
cal physics require measurements of position, momentum, and other measurable quantities
to predict other unknown or un-measurable quantities. An outcome of a classical colli-
sion can be predict by knowing the mass and velocity of the incoming objects. However,
quantum mechanical measurement is di↵erent.

Quantum mechanics describe nature as probabilistic and one can only measure the
“chance” of several possible outcomes in an event. Knowing the position and momen-
tum of an incoming quantum particle is not enough to exactly predict the outcome of
a scattering event, we can only calculate the chances of outcome being so and so. The
experimentally measurable quantities of quantum mechanical scattering events is the to-
tal cross-section �, being the ratio of the number of particles scattered out (N) and the
incoming flux � over a period of time T , i.e. � = N/(T�), giving the outcome of the
event at all angle [1]. Another quantity that can also be measured is the di↵erential
cross-section d�/d⌦, in which the measurement is done only in a certain solid angle ⌦.

In quantum field theory, the di↵erential cross-section can be calculated by looking at
the quantity called the S-matrix, which is a matrix connecting the incoming and outgoing
state in a given interaction. The S-matrix encoded the details of the interactions, whether
it is possible and how likely it is to happen. The S-matrix is calculated perturbatively
around a free theory, where particles have no interactions. The quantities that are calcu-
lated are then the non-trivial elements of the S-matrix, i.e. the event with interactions,
called the scattering amplitudes.

The calculation of scattering amplitudes can be done by looking at the particular
income and outcome and the interaction from the Lagrangian, or the correlation func-
tions, which are integrals over Green functions determined from the Lagrangian. Feynman
realized that these calculations can be pictorially represented by graphs, called the Feyn-
man diagrams, where each external line, vertex, and internal line represent mathematical
calculations.

Feynman diagrams are powerful tools in quantum field theory in calculating scatter-
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ing amplitudes. But using them beyond 4-5 particles can cause the calculation to be a
nightmare, as the number of possible diagrams increases drastically, to the point that it is
impossible for humans and quite di�cult for modern computers. In a scattering of gluons,
which are gauge bosons described by Yang-Mills theory, a similar situation occurs that
the number of diagrams grows drastically if there are more external particles [2]. There
are so many diagrams required to be calculated, but what’s special is that most diagrams
vanish, and the final cross-section looks remarkably simple.

Complicated calculation simplifying into some elegant and compact equation leads to
the doubt that maybe calculating the Yang-Mills amplitude using Feynman diagrams is
hiding something and that there exists another simple way to look at these amplitudes.
In [3], a simple formula was given by Parke and Taylor for an n particle scattering with
two negative/positive and n� 2 positive/negative helicity gluons. This formula uses the
polarizations of the gluons and the decomposition of the spin-1 massless vector into the
spinorial fundamental representation. This is called the spinor-helicity formalism [2],[4] .

General helicity configuration amplitudes can be studied by finding the connection of
the general helicity as the Parke-Taylor formula, and there are methods that use super-
symmetric calculation to study the NMHV. This project is interested in a method achieved
in the work of Witten [5] and Roiban, Spradlin, and Volovich [6], that a general scatter-
ing amplitude of tree level Yang-Mills theory was given as a formula on a special space
called twistor space, now known as the RSVW formula. Twistor theory was proposed by
Roger Penrose in 1967 [7]. The theory provides a framework for describing information on
4d-spacetime as geometric objects on another space with some special properties called
twistor space, such that there exists a one-to-one correspondence between the two spaces.
The property that makes twistor space special is that it describes the conformal structure
of a light cone with a holomorphic structure. With this correspondence, a point in twistor
space corresponds with a light ray on spacetime, and a line in twistor space corresponds
to a point in spacetime. This allows us to describe massless objects on spacetime in a
simpler way on twistor space.

The RSVW formula is a formula on twistor space that is localized on some constraint
equations. These constraint equations are known as the refined scattering equation, where
the “refinement” is the number of negative helicity particles, k. The number of solutions
for the refined scattering equation at tree level was conjectured to have the pattern of
Eulerian numbers E(n� 3, k � 2) where n is the number of external particles [8]. In this
project, we will prove this conjecture by solving for the recursion relation for the number
of solutions of the refined scattering equation. This is done mathematically by using the
method of dominance balance.

Despite an earlier proposal for an extension [9], it has remained a problem since.
Later, Cachazo, He, and Yuan found a tree-level formula in arbitrary dimension [10]. It is
a formula over the support of some remarkably simple constraints known as the scattering
equations. The loop level of the CHY formula was extended in [11], where the formula is
calculated on a nodal sphere on the support of the loop scattering equations. The number
of solutions to the loop scattering equation were shown in [12]. This project shows that
the number of solutions for the one loop CHY is what obtained in [12] and [13] in more
detail using the method of dominance balance.
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The progress on CHY inspired new works on the one-loop amplitude. In [14], by
using a twistor theory in six dimensions, a formula was found for one loop. This formula
is supported on constraints known as the loop polarized scattering equations, and the
number of solutions is still unknown for these constraints. This project presents some work
in progress on finding the number of solutions of the loop polarized scattering equations.

Since the number of solutions of the constraints in one loop twistor formula are still
unknown, the aim of this project is to find them by establishing a recursion relation for
the number of solutions in the soft limit using the method of dominance balance. This
requires reviewing the mathematical and physical concepts of the twistor theory and its
implication of calculating the scattering amplitude. We start by proving for the tree level
RSVW formula that the number of solutions to its constraints are the Eulerian numbers.
Then, to prepare for one loop calculation, we reproduce a proof of the number of solutions
for the one loop scattering equations in[12] and [13], and present another proof using the
method of dominance balance. Finally, after knowing what to expect of one loop level,
we begin to develop a proof for the number of solutions of the one loop twistor formula.

The structure of this project is arranged as follows. In chapter 2 of this project,
the di�culty of calculating Yang-Mills amplitude and the spinor-helicity formalism will
be reviewed to lay the foundation for the next chapters. Then, in chapter 3, a brief
introduction to the twistor theory and the construction of the massless fields on the
twistor space are presented. The RSVW formula is presented in chapter 4, and the proof
of the conjecture that the number of solutions to the constraints of RSVW formula are
the Eulerian numbers will be presented in chapter 5.

The next two sections constitute the second half of the project, which is still work
in progress, presenting the proofs for the loop-level number of solutions. In chapter 6,
the CHY formula and its one-loop extension will be briefly illustrated, followed by the
calculation that shows the recursion relation of the number of solutions in this theory.
The last chapter (7) will provide some background on the 6d twistor amplitude and the
loop polarized scattering equations. We present an attempt to find the recursion relation
for the number of solutions. We make some remarks on the unexpected results for the
work in progress.
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Chapter 2

Amplitudes

The scattering processes that this project is concerned about are the scattering of gluons
in super Yang-Mills theory, where the external particles are all gluons. The scattering
amplitudes of gluons are not, however, directly measured in experiments. 1 Although the
gluon scattering amplitudes will not be used in calculating real-experiments cross sections,
it could show us the nature of Yang-Mills theory and tell us more of the structure that
we have not previously seen in the non-perturbative level.

This section will start from introducing the Feynman diagrams approach of the gluons
amplitude and complications that arise from the approach. The spinor-helicity formalism
will allow us to simplify the calculation of the amplitude and show us that some of the
amplitude can be determined by the helicity of the external particles. This section follows
closely the first chapter of Elvang and Huang [2], with some additional comments from
Schwartz’s [1] and Srednicki’s [15] textbooks.

2.1 Feynman Diagrams

The Yang-Mills Lagrangian in a mostly plus signature is given by

L = �1

4
TrFµ⌫F

µ⌫ , (2.1)

where Fµ⌫ = @µA⌫ � @⌫Aµ � ig
p
2
[Aµ, A⌫ ] and the gauge fields are in the adjoint represen-

tation of SU(3), Aµ = Aa
µT

a, with a running from 1 to 8. The normalization of the gen-
erators are given by Tr(T aT b) = �ab and they satisfied the Lie algebra [T a, T b] = ifabcT c.
The standard method in calculating the scattering amplitudes is to use the Feynman di-
agrams approach. The diagrams represent the interaction of the particles in the theory,
where each components such as the external lines, vertices, and the propagator can be
extracted by fixing the gauge redundancy and read-o↵ from the Lagrangian. A choice of
gauge that leaves the Feynman rule simple and friendly for calculating the amplitudes is

1
They are observed as jets of hadrons.
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the Gervais-Neveu gauge. In this gauge, the gauge fixing term is

Lgf = �1

2
Tr(Hµ

µ )
2 , (2.2)

where Hµ⌫ = @µA⌫ � ig
p
2
AµA⌫ . With this choice of Hµ⌫ , the field strength tensor is

observed to be the anti-symmetric part of Hµ⌫ :

Fµ⌫ = Hµ⌫ �H⌫µ . (2.3)

Adding the gauge fixing term to the Yang-Mills Lagrangian yields

L = �1

4
TrFµ⌫F

µ⌫ � 1

2
Tr(Hµ

µ )
2

= �1

2
Tr
�
Hµ⌫Hµ⌫ �Hµ⌫H⌫µ +HµµH⌫⌫

�
. (2.4)

Consider the terms with two derivatives from the second and the third term, one can do
integration-by-parts to cancel them:

�Tr (@µA⌫@⌫Aµ � @µAµ@
⌫A⌫)

= �Tr
�
@⌫(@

µA⌫Aµ)� Aµ@
µ@⌫A

⌫ � @µ(Aµ@
⌫A⌫) + Aµ@

µ@⌫A⌫

�
= 0 ,

in which the total derivative term vanishes at the boundary.
The terms with no derivative from the second and third term cancel by using the cyclic
property of the trace, and for the term with one derivative, we integrate-by-parts the last
term:

Tr
�
@µA⌫AµA⌫ � @µA⌫A⌫Aµ + @µAµA

⌫A⌫

�

= Tr
�
@µA⌫AµA⌫ � @µA⌫A⌫Aµ � Aµ@

µ(A⌫A⌫)
�

= Tr
�
@µA⌫AµA⌫ � @µA⌫A⌫Aµ � Aµ@

µ(A⌫)A⌫)� AµA
⌫@µ(A⌫)

�

= �2Tr
�
@µA⌫A⌫Aµ

�
.

Combining all of them will find that the gauge fixed Lagrangian, ignoring the ghosts, is

L = Tr
�
� 1

2
@µA⌫@µA⌫ � i

p
2g@µA⌫A⌫Aµ +

1

4
g2AµA⌫AµA⌫

�
. (2.5)

The propagator can be obtained from the Fourier transform of the kinetic term of the
Lagrangian, taking the form of

a;µ b; ⌫ =
gµ⌫

p2 + i✏
�ab , (2.6)

while the vertices from the interaction terms will involve the color factors fabc and fabef ecd

plus their permutations. We can simplify this by separating the color factors out and deal
only with the kinematic structures. Using the identity

ifabc = Tr([T a, T b]T c) = Tr(T aT bT c)� Tr(T bT aT c) , (2.7)

and the Fierz identity X

a

(T a)ji (T
a)lk = �li�

j
k �

1

N
�ji �

l
k , (2.8)
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Figure 2.1: The four-point vertex, s-channel, t-channel, and u-channel.

one can re-write those products of generator-traces in the amplitude. As an illustration,
the four external particle scattering amplitude consists of four main channel: the four-
point vertex, and the s, t, and u channel. and these can be translate into equation by
using the Feynman rule. However, if we look at one of them, the s-channel, which has
two incoming particles labeled 1 and 2, and two outgoing particles labeled 3 and 4, the
scattering amplitude is of the form

⇠ g2

(�p1 � p2)2
fa1a2ef ea3a4(...) (2.9)

where (...) will be determined from the vertex, which we will explicitly show shortly in
this chapter. If we look at the colour factors for the s-channel, using the identities in (2.7)
and (2.8), it can be re-written as

fa1a2ef ea3a4 = �Tr([T a1 , T a2 ]T e) Tr([T a3 , T a4 ]T e)

= �Tr([T a1 , T a2 ][T a3 , T a4 ]) +
1

N
Tr([T a1 , T a2 ]) Tr([T a3 , T a4 ])

= �Tr([T a1 , T a2 ][T a3 , T a4 ])

= �Tr(T a1T a2T a3T a4) + Tr(T a1T a2T a4T a3)

� Tr(T a1T a3T a4T a2) + Tr(T a1T a4T a3T a2). (2.10)

where at the second line, the product of two traces cancels using the cyclic property. The
resulting object are the permutation of the generators with one generator fixed, here it is
the permutation of (234). This mean that colour factors can be rewritten in terms of sum
of the trace of permutation of generators. We can pull these traces out of each amplitudes
and this leave us with the partial amplitude that have no colour factors. For 4-points, as

6



an example, this is expressed as 2

Atree

4
= g2

⇣
A4[1234] Tr(T

a1T a2T a3T a4) + permutations of (234)
⌘
. (2.11)

The ordering of the external particles in the partial amplitudes are fixed up to the trace
factor, so they are also called the colour-ordered amplitudes. For n particles, we can write

Atree

n = gn�2
X

perms�

An[1�(2...n)] Tr
�
T a1T �(a2 ...T an)

�
(2.12)

with the coupling constants are pulled out so that they will not be contained in the
partial amplitudes. Thus, in the Gervais-Neveu gauge, the vertex rules for the 3-gluons
and 4-gluons colour-ordered amplitudes are:

iVµ⌫⇢(p, q, r) = �i
p
2[gµ⌫p⇢ + g⌫⇢qµ + g⇢µr⌫ ] , (2.13)

and

iVµ⌫⇢� = �i[gµ⇢g⌫�] . (2.14)

After having the expression of the colour-ordered vertices, the amplitude can be calculate
by just contracting the vertex with the polarization vectors ✏µ, and for more complicated
amplitudes the usual rule of gluing vertices to internal propagator can be used.
For example, the triple vertex gives the amplitude

A3[123] = ✏1µ✏2⌫✏3⇢Vµ⌫⇢(p, q, r)

= �
p
2
⇣
✏1 · ✏2✏3 · p+ ✏2 · ✏3✏1 · q + ✏2 · ✏3✏1 · r

⌘
. (2.15)

The 4-point amplitudes is slightly more complicate since there are four diagrams: the
4-gluons vertex and the s, t, u channels. The 4-gluons vertex is directly obtained by
contracting the polarization vectors, giving ✏2 · ✏3✏1 · ✏4. However, the s-channel is not as
simple as the 4-gluons vertex 3

As[12! 34] =
2

s

⇣
✏1 · ✏2✏q · p1 + ✏q · ✏2✏1 · p2 + ✏q · ✏1✏2 · q

⌘

⇥
⇣
✏⇤
3
· ✏⇤

4
✏q · p3 + ✏q · ✏⇤4✏⇤3 · p4 + ✏q · ✏⇤3✏⇤4 · q

⌘
, (2.16)

where q = p1 + p2, s = �q2 = �(p1 + p2)2 and ✏q is the polarization vector of the
propagating particle. This is not a trivial calculation and one can slightly simplify the

2
The amplitude in this convention is written as A[1234] and not A[12 ! 34] since we take all the

particle to be outgoing for the convenience of expressing the identity. This exchange of incoming and

outgoing particles will be explained in details in the next subsection.
3
Here, the amplitude is written as the usual two incoming and two outgoing s channel.
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structure by specifying the polarizations, but there are still a lot of terms for only this
specific colour-ordered s-channel. After completing all colour-ordering of the s-channel,
we have two more channels to go. In [1], the resulting cross section after all the calculation
is remarkably simple and given by

1

256

X

pols.

colours

|A4|2 = g4
9

2

⇣
3� tu

s2
� su

t2
� st

u2

⌘
, (2.17)

where t = �(p1 � p3)2 and u = �(p1 � p4)2.

With a lot of time and patience, the 4-point amplitude could be calculated. However,
the number of terms grows quickly as the number of external particles are increased. Just
by having one more external particle, there are 25 diagrams for the five points amplitude,
containing 10000 terms, but most of the terms vanish due to the dot products of the
polarization vectors. Since most of the terms are zero and the number of terms grow
rapidly, and the resulting cross section looks suspiciously simple, maybe this method of
Feynman diagram might not be the best way. A new method in calculating the amplitude
was then introduced in the framework of the spinor-helicity variable.

2.2 Spinor-Helicity

The spinor-helicity formalism help us to organize the amplitude by the spin of the external
particles by changing the basis of our calculation into the helicity basis as we are looking
at gluons which are massless.4 A strong suggestion that we need to consider working with
the helicity or spin is that they are the main contributor of the vanishing of the terms in
the amplitude. To see how the the “spinors” and “helicity” works, first, we would need
to look at the Dirac spinors. The Lagrangian for the spinors is given by

L = i ̄�µ@µ �m ̄ (2.18)

where  ̄ =  ⇤�0, and the field equations for this Lagrangian are the Dirac equations

(�i�µ@µ +m) = 0 (2.19)

by doing integration by parts, we obtain the field equation for the conjugate  ̄

 ̄(�i �@ µ�
µ +m) = 0 (2.20)

where the left arrow indicating that the partial derivative acts to its left. Acting on the
Dirac equation with (�i�µ@µ+m), or take a “square”, we get the Klein-Gordon equation

(�@2 +m2) = 0. (2.21)

The solution to the Klein-Gordon is a wave solution, given by

 (x) ⇠ u(p)eip·x + v(p)e�ip·x, (2.22)

4
This helicity basis also works with other high energy fermions, as they also behave as if they are

massless at high energy.
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and we find the conditions that make the plane wave solution satisfies the Dirac equation
by substituting the plane wave into the Dirac equation[[1]]. This give two conditions:

(�µpµ +m)u(p) = 0 and (��µpµ +m)v(p) = 0. (2.23)

Solving the first condition in the rest frame by letting p = (m, 0, 0, 0) will yield two
independent solutions for each equations, which are the two spin states:

us(p) =

 
⇠s
⇠s

!
and vs(p) =

 
⌘s
�⌘s

!
. (2.24)

with s = 1, 2, the spin-up and spin-down. In general frame, they are

us(p) =

 p
p · �⇠sp
p · �̄⇠s

!
and vs(p) =

 p
p · �⌘s

�pp · �̄⌘s

!
. (2.25)

and for the conjugate  ̄ we can have a similar result, which are the Dirac conjugates

ūs(p) = u†

s(p)�0 and v̄s(p) = v†s(p)�0. (2.26)

where ūs(p)us0(p) = 2m�ss0 and v̄s(p)vs0(p) = �2m�ss0 .
The general solution for the free field expansion of  and  ̄ is given by

 (x) =
X

s=±

Z
d3p

(2⇡)32Ep

h
bs(p)us(p)e

ip·x + d†s(p)vs(p)e
�ip·x

i

 ̄(x) =
X

s=±

Z
d3p

(2⇡)32Ep

h
bs(p)

†ūs(p)e
�ip·x + ds(p)v̄s(p)e

ip·x
i
, (2.27)

and by quantizing, the operators b±(p), d±(p) and b†±(p), d
†

±(p) become fermionic annihila-
tion and creation operators. Then the annihilation operator is used to define the vacuum
state such that b±(p)|0

↵
= d±(p)|0

↵
= 0. This leads to the Feynman rules for the external

fermions:

incoming fermion = us(p) outgoing fermion = ūs(p)

incoming anti-fermion = vs(p) outgoing anti-fermion = v̄s(p). (2.28)

For the massless particles, which we are interested in, the ± denotes the helicity of the
particle, as the solution to the free equations of motion are the eigenstate of the helicity

operator:
~S·~p
|~p|  = ± . The two helicities (negative and positive) can be viewed as left-

handed and right-handed, as for the one with positive helicity, its spin and momentum are
in the same direction (following the right-hand rule). These two spinors transform and
live independently. These two helicity eigenstates are in the irreducible representations
of the Lorentz group i.e. the two SU(2)s from looking at the double cover of the Lorentz
group. We can separate the two helicity spinors by giving them di↵erent indices: positive
helicity/right-handed with the dotted index and negative helicity/left-handed with the
undotted index.

9



In this framework of the spinors-helicity eigenstates, we can rewrite the momentum
by the contracting the four-momentum to the gamma matrices and the resulting object
is a matrix:

�µpµ =

 
0 pµ(�µ)↵�̇

pµ(�̄µ)↵̇� 0

!
(2.29)

=

 
0 p↵�̇
p↵̇� 0

!
, (2.30)

with

p↵̇� =

 
�p0 � p3 �p1 + ip2

p1 � ip2 �p0 + p3

!
, (2.31)

where det p = �pµpµ = m2. These p↵�̇ and p↵̇� are called the momentum bi-spinors as
they live in the (1

2
, 1
2
) representation.

For massless particles, the Dirac equations became

�µpµv±(p) = 0 and ū±(p)�
µpµ = 0 , (2.32)

and we focus on ū± and v± as they are the outgoing fermions and antifermions, and the
incoming particles can be expressed as their conjugates. Due to the crossing symme-
try, that is, incoming positive helicity (anti-)fermion is equivalent to outgoing negative
helicity (anti-)fermion and vice versa, the u’s and v’s are related as u± = v⌥ and ū± = v̄⌥.

As mentioned above that the two helicity bases live in two di↵erent representation –
the left-handed and right-handed – the two solutions to the massless Dirac equations can
be written as

v+(p) =

 
�̃↵̇

0

!
and v�(p) =

 
0

�↵

!
, (2.33)

and
ū+(p) =

⇣
�̃↵̇ 0

⌘
and ū�(p) =

⇣
0 �↵

⌘
, (2.34)

where the � and �̃ are 2-component commuting spinors wielding the undotted and dotted
index of the 2 SU(2)s. Substituting these back into the Dirac equation will show that
these spinors satisfy the Weyl equation:

p↵̇��̃↵̇ = 0, �↵p↵�̇ = 0, �̃�̇p↵�̇ = 0, p↵̇��� = 0. (2.35)

Using the spin-sum completeness relation for massless spinors, one can show that

��µpµ = u�ū� + u+ū+ = �↵�̃↵̇ + �↵�̃↵̇ (2.36)

= p↵↵̇ + p↵̇↵ , (2.37)

where the 2⇥2 matrices p↵↵̇ and p↵̇↵ lies in the o↵-diagonal block of the 4⇥4 matrix �µpµ.
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This decomposition of a massless momentum into two spinors is not a coincidence, it
can be done due to the fact that the norm of a vector vµ mapped into the SL(2,C) is
given by the determinant det(v↵↵̇). We can see that the determinant vanishes for any null
vector, and if the determinant of a matrix is zero then its rank must be lower than its
dimension (which is two). Therefore, any null vector can be written as

v↵↵̇ = a↵ã↵̇ , (2.38)

for some spinors a↵ and ã↵̇.
The raising and lowering of the indices can be done by using the two-dimensional Levi-
Cevita symbol,

✏↵� =

 
0 1

�1 0

!
= ✏↵̇�̇ , (2.39)

where its inverse is ✏↵�✏�� = �↵� and ✏↵�✏↵� = 2. Its anti-symmetry requires us to fix a
convention for raising and lowering the index. We use the convention of “lower to the
right, raise to the left” or what some might called the “Northwest - Southeast” convention:

a↵ = a�✏�↵ and a↵ = ✏↵�a� . (2.40)

The dual vector can then be obtained by

v↵↵̇ = v��̇✏�↵✏�̇↵̇ , (2.41)

and the inner product of the vectors is

v↵↵̇v↵↵̇ = det(v↵↵̇) . (2.42)

The inner products of the spinors are denoted by the angle and square brackets:

⌦
ab
↵
= a↵b↵ = a↵b�✏↵�, and

⇥
ãb̃
⇤
= ã↵̇b̃↵̇ = ã↵̇b̃�̇✏↵̇�̇ , (2.43)

where
⌦
ab
↵
= �

⌦
ba
↵
and

⌦
aa
↵
= 0 =

⇥
ãã
⇤
. 5 In this notation, the inner product of two

null vectors vnull = ⌫↵⌫̃↵̇ and wnull = !↵!̃↵̇ is given by

vnull · wnull =
1

2
⌫↵⌫̃↵̇!↵!̃↵̇ =

1

2

⌦
⌫!
↵⇥
⌫̃!̃
⇤
. (2.44)

2.3 Calculating the Amplitude

The last ingredient we need before calculating the amplitude is the polarization vectors.
The polarization vectors satisfies the condition that ✏± ·✏± = 0, ✏± ·✏⌥ = �1, and ✏± ·p = 0.
Following the spinor-helicity formalism, the polarization vector can be decompose into
two spinors. The last condition ✏± · p = 0 suggests that for p↵↵̇ = �↵�̃↵̇ and a reference
momentum r↵↵̇ = ⇣↵⇣̃ ↵̇

[✏�p (r)]
↵↵̇ =

p
2
�↵⇣̃ ↵̇

[�̃⇣̃]
and [✏+p (r)]

↵↵̇ =
p
2
⇣↵�̃↵̇

⌦
�⇣
↵ , (2.45)

5
This reflects that they are commuting spinors and not the Grassmannian spinors since the spinors

that satisfies  ↵��
= ��� ↵

will have a symmetric inner product
⌦
 �
↵
=
⌦
 �
↵
.
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where the denominators and the
p
2 are for the normalization to satisfies ✏± · ✏⌥ = �1.6

The subscript denote the momentum the this polarization is associated, and the argument
denote the reference momentum.
For our further convenience, we might as well calculate the dot products between di↵erent
polarization vectors:

✏�
1
(i) · ✏�

2
(j) =

⌦
12
↵⇥
ji
⇤

[1i][2j]
, ✏+

1
(i) · ✏+

2
(j) =

⌦
ij
↵⇥
21
⇤

⌦
i1
↵⌦
j2
↵ , ✏�

1
(i) · ✏+

2
(j) =

⌦
1j
↵⇥
2i
⇤

[1i]
⌦
2j
↵ , (2.46)

✏�
1
(i) · p2 =

1p
2

⌦
12
↵
[2i]

[1i]
and ✏+

1
(i) · p2 =

1p
2

[12]
⌦
2i
↵

⌦
i1
↵ (2.47)

Another useful identity of manipulating the spinor helicity variables is called the Schouten
identity. This follows from the fact that in 2d, there cannot be more than 2 independent
vectors. So we can always write a vector into a linear combination of the others:

|k
↵
= a|i

↵
+ b|j

↵
. (2.48)

Since we know that the product
⌦
ii
↵
vanishes, we can find a and b by dotting in

⌦
j| and⌦

i|, respectively. The result is

|k
↵
=

⌦
jk
↵

⌦
ji
↵ |i
↵
+

⌦
ik
↵

⌦
ij
↵ |j
↵
, (2.49)

and by dotting in another spinor we have a beautiful Schouten identity:

⌦
ri
↵⌦
jk
↵
+
⌦
rj
↵⌦
ki
↵
+
⌦
rk
↵⌦
ij
↵
= 0. (2.50)

After we have laid down the foundation for the spinor-helicity formalism, we can go back
to the s-channel amplitude from the previous section using the spinor-helicity variable.
Recall the s-channel amplitude,

As[12! 34] =
2

s

⇣
✏1 ·✏2✏q ·p1+✏q ·✏2✏1 ·p2+✏q ·✏1✏2 ·q

⌘
⇥
⇣
✏⇤
3
·✏⇤

4
✏q ·p3+✏q ·✏⇤4✏⇤3 ·p4+✏q ·✏⇤3✏⇤4 ·q

⌘
,

(2.51)
the amplitude in any channel depends on the products of polarization, so we need to
specify the helicity of each particle in order to calculate the amplitude. For the amplitude
with all positive helicity external particles, by selecting the reference momentum to be
some arbitrary momentum r for all external particles, we have that

✏+
1
(r) · ✏+

2
(r) =

⌦
⇣⇣
↵⇥
21
⇤

⌦
⇣1
↵⌦
⇣2
↵ = 0 , (2.52)

and therefore
A[1+2+3+4+] = 0 , (2.53)

for whatever channel we are looking at, and the same argument goes for the all minus
helicity:

A[1�2�3�4�] = 0 . (2.54)

6
The condition p · ✏ = 0 came from the field equation @A = 0 while the normalization is conventional.
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If one of the external particle has a di↵erent helicity, let’s say 1st has negative helicity.
We can select the reference momentum for the first particle to be some momentum k,
and for the positive helicity particles we choose them to be p1. All the products of the
polarization vectors with the same helicity vanish, and since

✏�
1
(k) · ✏+

2
(p1) =

⌦
11
↵⇥
2k
⇤

[1k]
⌦
21
↵ = 0 , (2.55)

the amplitude vanishes
A[1�2+3+4+] = 0 , (2.56)

and the same goes for the opposite helicity:

A[1+2�3�4�] = 0 . (2.57)

So now we are left with A[� � ++] and its permutations. We can select the reference
momenta to be p3 for particle 1 and 2 and p2 for particle 3 and 4. (Diagram of s-channel,
t-channel, and 4-gluons) The four-gluons vertex is given by

⇠ (✏1 · ✏3)(✏2 · ✏4) ,

and this vanishes since ✏�
1
(p3) · ✏+3 (p2) = 0. For the t-channel diagram, the 23q vertex is

of the form
V(2, 3, q) ⇠ ✏�

2
· ✏+

3
✏q · p2 + ✏q · ✏+3 ✏�2 · p3 + ✏q · ✏�2 ✏+3 · q , (2.58)

where ✏q is just a placeholder for the internal polarization. It can be seen that ✏�
2
· ✏+

3
= 0

so the first term vanish, also since q = �p2 � p3 and the reference momenta of particle
2 is p3 and vice versa, the products q · ✏+

3
and q · ✏�

2
vanish. Therefore, the only diagram

contributing to (��++) is the s-channel.
The amplitude for this channel can be calculate by gluing the two vertices together with
the propagator. Here the internal polarizations are given by ✏q and ✏q0 , where they would
be replace by the propagator as we glue them

A[��++] = 2
⇣
✏�
1
· ✏�

2
✏q · p1 + ✏q · ✏�2 ✏1 · p2 + ✏q · ✏�1 ✏2 · q

⌘

⇥
⇣
✏+
3
· ✏+

4
✏q · p3 + ✏q0 · ✏+4 ✏+3 · p4 + ✏q0 · ✏+3 ✏+4 · q0

⌘
,

= 2
⇣
✏q · ✏�2 ✏�1 · p2 + ✏q · ✏�1 ✏�2 · q

⌘
⇥
⇣
✏q0 · ✏+4 ✏+3 · p4 + ✏q0 · ✏+3 ✏+4 · q0

⌘
. (2.59)

The first term of both vertices vanishes, and by gluing the vertices together we will take
the internal polarizations to be the propagator: ✏µq ✏

⌫
q0 ! gµ⌫ :

A[��++] =
2

s

⇣
✏+
4
· ✏�

2
✏�
1
· p2✏+3 · p4 + ✏�

2
· ✏+

3
✏�
1
· p2✏+4 · q0

+ ✏+
4
· ✏�

1
✏�
2
· q✏+

3
· p4 + ✏+

3
· ✏�

1
✏�
2
· q✏+

4
· q0
⌘

=
2

s

⇣
(✏+

4
· ✏�

1
)(✏�

2
· q)(✏+

3
· p4)

⌘
, (2.60)

since ✏+
4
(p2) · ✏�2 (p3) = 0 = ✏�

2
(p3) · ✏+3 (p2) = ✏�

1
(p3) · ✏+3 (p2). Using the formula we have

written above, q = �p1 � p2, and s = (�p1 � p2)2 =
⌦
12
↵
[21]

A[��++] =
1

s

 ⌦
12
↵⇥
43
⇤

[13]
⌦
24
↵
! 
�
⌦
21
↵
[13]

[23]

! 
[34]
⌦
42
↵

⌦
23
↵
!

=

⌦
12
↵⇥
34
⇤2

[21]
⌦
23
↵
[23]

. (2.61)
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Using the conservation of momentum,
⌦
12
↵
[21] =

⌦
34
↵
[43],

⌦
12
↵⇥
34
⇤2

[21]
⌦
23
↵
[23]

=

⌦
12
↵2⇥

34
⇤

⌦
23
↵⌦
43
↵
[23]

,

and using the conservation of momentum identity
P

j

⌦
ij
↵
[jk] = 0 for i = 1, k = 3, we

have that
⌦
12
↵
[23] +

⌦
14
↵
[43] = 0 so [43]

[32]
=

⌦
12

↵
⌦
14

↵ , we can write the amplitude as

A[1�2�3+4+] =

⌦
12
↵4

⌦
12
↵⌦
23
↵⌦
34
↵⌦
41
↵ . (2.62)

For other color-ordering that the negative helicity are adjacent, we can use the cyclic
symmetry to yield

A[1+2�3�4+] =

⌦
23
↵4

⌦
12
↵⌦
23
↵⌦
34
↵⌦
41
↵ . (2.63)

To obtain the amplitude for A[1�2+3�4+], we must first consider an important identity
called the U(1)-decoupling identity. This is by taking a generator to be proportional to
the identity matrix, then the group correspond to a U(N) rather than an SU(N) with
that identity being the generator of the extra U(1), commuting with the other SU(N)
generators. Then if we write a tree level amplitude with one of the generator replaced by
the identity matrix, the result must be zero:

Atree

n

���
U(1) decouples

= 0 = gn�2
X

perms�

An[1�(2...n)] Tr
�
1T �(a2 ...T an)

�
(2.64)

This identity is also reflected in the vanishing of the term with 1/N in calculating the
Fierz identity of fa1a2ef ea3a4 .
Using this identity with T a4 = 1, the amplitude A[1�2+3�4+] is

A[1�2+3�4+] = �A[2+3�1�4+]� A[3�1�2+4+]

= �
⌦
13
↵4

⌦
23
↵⌦
31
↵⌦
14
↵⌦
42
↵ �

⌦
13
↵4

⌦
31
↵⌦
12
↵⌦
24
↵⌦
43
↵

=

⌦
13
↵4

⌦
31
↵⌦
24
↵
"⌦

12
↵⌦
43
↵
�
⌦
14
↵⌦
23
↵

⌦
14
↵⌦
23
↵⌦
12
↵⌦
43
↵
#

=

⌦
13
↵4

⌦
12
↵⌦
23
↵⌦
34
↵⌦
41
↵ . (2.65)

where we have used the Schouten identity
⌦
12
↵⌦
34
↵
+
⌦
14
↵⌦
23
↵
= �

⌦
13
↵⌦
42
↵
.

The form of all amplitudes with two negative and two positive helicity particles have a
similar feature, that we can write the amplitudes as the inner product of the two negative
helicities on top of the cyclic terms. We can also write this amplitude in terms of the
other helicity spinors:

A[1�2�3+4+] =
[34]4

[12][23][34][41]
, (2.66)
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by using the momentum conservation relations. In fact, this is a special case of a formula
called the Parke-Taylor formula for an amplitude with 2 opposite helicity external particles
[3]. For the opposite helicity chosen to be negative, the Parke-Taylor formula for n external
particles is

An[1
+...i�...j�....n+] =

⌦
ij
↵4

⌦
12
↵⌦
23
↵
...
⌦
n1
↵ . (2.67)

We shall not prove nor derive this formula here but we can use a fundamental property
of the amplitude, that is counting the little group scaling, to see that this formula holds.

2.4 Little Group Scaling and MHV Classification

A massless momentum can always be written in a frame that the z-axis is aligned with
the direction of motion: pµ = (E, 0, 0, E). We can see that this momentum is invariant
under rotation in the xy�plane. This is called the little group scaling, as it is a smaller
set of transformation that leaves the (on-shell) momentum invariant.
If we look at the mapping of the momentum into two spinors, we can see that the mo-
mentum is left invariant under the transformation

�↵ ! t�↵ and �̃↵̇ ! t�1�̃↵̇. (2.68)

The little group transformation is now realized as a scaling of the spinors in the decom-
position.
Under this little group scaling of massless particles, we can see that the scalars remain
invariant, while the spinors with helicity h = ±1

2
scale as t�2h, and vectors such as the

spin-1 polarization vectors scale as t�2h for h = ±1. The scattering amplitudes are com-
posed of these variables, so if we scale the ith particle’s variable under little group we
know that we must have a factor of t�2hi

i . Thus, the amplitude of massless particles scales
as

An[(�1, �̃1, h1), ..., (ti�i, t
�1

i �̃i, hi), ...] = t�2hi
i An[(�1, �̃1, h1), ..., (�i, �̃i, hi), ...] . (2.69)

Under the little group transformation of the scattering amplitude, we can look at the
three particle amplitude as an example, and as we shall see, the little group scaling will
fix the structure of the amplitudes. Let us suppose that the amplitude consists only of
the angled brackets, a general form for the amplitude is

A3(1
h12h23h3) = c

⌦
12
↵x12
⌦
13
↵x13
⌦
23
↵x23 . (2.70)

The little group scaling fixes the exponents to satisfy

� 2h1 = x12 + x13, �2h2 = x12 + x23, and � 2h3 = x13 + x23 , (2.71)

and this gives

x12 = h3 � h1 � h2, x13 = h2 � h1 � h3, and x23 = h1 � h2 � h3 . (2.72)

The amplitude then depends on the helicities of the particles:

A3(1
h12h23h3) = c

⌦
12
↵h3�h1�h2

⌦
13
↵h2�h1�h3

⌦
23
↵h1�h2�h3 . (2.73)

15



This gives an expression for an amplitude up to an overall factor. We can see that for 2
negative helicity and 1 positive helicity, the amplitude is

A3[1
�2�3+] = c

⌦
12
↵3

⌦
13
↵⌦
23
↵ = c

⌦
12
↵4

⌦
12
↵⌦
23
↵⌦
31
↵ , (2.74)

matching the Parke-Taylor and what we have calculated before. However, if we assume
that the amplitude must consists of all square brackets, we will instead have

A3[1
�2�3+] = c

⇥
13
⇤⇥
23
⇤

⇥
12
⇤3 . (2.75)

This is a valid amplitude under the little group scaling, but if we look at the mass di-
mension of the amplitude (i.e. each spinors has mass dimension 1), the amplitude with
angle bracket is a (mass)1 and this one with square bracket is a (mass)�1. The mass
dimension reflects the term in the Lagrangian that it came from. So, the angle brackets
with (mass)1 is compatible with the fact that it is from the term AA@A, but the (mass)�1

term said that it must be from AA @
⇤A. This term is not present in a local Lagrangian,

so this amplitude of square bracket is unphysical and must be discard. The moral of the
story is that we can determine the amplitude from the little group scaling and locality.

Another point that must be aware of is that the Yang-Mill coupling g is dimensionless,
but for the AA @

⇤A term, we must have a coupling g0 with dimension (mass)2 (such that
the mass dimension is (mass)4). This means that the amplitude that we have derived all
have dimension (mass)1. In fact, the amplitude for n external particle in four dimension
must have mass dimension 4� n.

This scaling will allow us to see why the Parke-Taylor formula works. An amplitude
consists of vertices on the numerator and the propagators at the denominator. In Yang-
Mills theory, we can only have trivalent graphs i.e. graphs built from three-point vertices.
7 Every time another external line is added, a vertex and a propagator must be added
to the graph to keep it trivalent. So the number of vertex and propagator grows with
n. Since the first vertex took three particles, number of vertex grows as n� 2, and thus
creating the first propagator at two vertices (four particles), the number of propagators
then grow as n � 3. The cubic vertices is of (mass)1 and the propagator is (mass)2, and
the dimension of the amplitude is then

[An] ⇠
(mass)n�2

(mass2)n�3
⇠ (mass)4�n . (2.76)

First, recall that the amplitudes for all-plus and all-minus helicity particles vanish due to
the fact that the dot products of the polarization vectors are all zero. Next, an amplitude
with all-except-one minus/plus helicity particles An[1±....i⌥...n±] also vanishes by choos-
ing the reference momentum of the majority to be the momentum of the di↵erent one pi,
thus ✏±j · ✏±k = 0 and ✏±i · ✏±k = 0 for all j and k.

7
As we have shown in the last section, the four-point vertex vanishes.
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For the two flipped helicities An[1�2�3+...n+], we can choose the reference momentum
as r1 = r2 = pn and r3 = ... = rn = p1, and this results in the vanishing of all dot products
of polarization vectors except ✏�

2
· ✏+i for i = 3, ..., n � 1. Schematically, this amplitude

takes the form of

An[1
�2�3+...n+] ⇠

X

diagrams

P
(✏�

2
· ✏+i )(✏j · kl)n�2

Q
P 2

I

, (2.77)

where P 2

I are the square of the propagators. The mass dimension of the numerator is n�2,
agreeing with the dimensional analysis. Also, since tree level diagrams for An[1�2�3+...n+]
are all trivalent, these n� 2 factors of ✏j · kl reflect the fact that all vertices are trivalent.
At this stage, we can see that An[1�2�3+...n+] is the first8 non-vanishing amplitude. The
amplitudes with two negative helicities and n � 2 positive helicities are called the Max-
imally Helicity Violating (MHV) amplitude, where the one with two positive and n � 2
negative are called the anti-MHV or MHV.

The helicity violation can be seen if we flip some of the outgoing particle to be an
incoming particle with opposite helicity. The two outgoing negative helicities can be
viewed as two incoming positive helicities. The vanishing amplitudes with all plus/minus
and with one plus/minus helicities in this crossing over became 1�2� ! 3+...n+ and
1�2+ ! 3+...n+, which could be seen right away that they violate the helicity conser-
vation. The MHV amplitude can then be written as 1+2+ ! 3+...n+. Since it is the
next order and non-vanishing, we say this is the most we can violate the helicity conser-
vation. We can also look at the other processes with two flipped helicities, for example,
An[1+2+3�4�...n+], flipped to 1�2� ! 3�4�...n+, that they do not vanish. So, to con-
clude, these amplitudes all violate helicity conservation, but the MHV is the most we can
violate.

The amplitude of the MHV are given by the Parke-Taylor formula, as given by (2.67),

An[1
+...i�...j�....n+] =

⌦
ij
↵4

⌦
12
↵⌦
23
↵
...
⌦
n1
↵ , (2.78)

and the anti-MHV is

An[1
�...i+...j+....n�] =

⇥
ij
⇤4

⇥
12
⇤⇥
23
⇤
...
⇥
n1
⇤ . (2.79)

The Parke-Taylor formula scales properly under the little group scaling and has the cor-
rect mass dimension of 4� n.

From supersymmetry, one can obtain the Parke-Taylor formula from the superampli-
tude (C.14) given in the appendix A

AMHV

n =
�8(Q̃)�4(

Pn
i=1

↵
i ̃

↵̇
i )

h12i h23i ... hn1i ,

8
First in the sense that we ordered the amplitudes according to the number of negative helicity

particles.
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by applying derivatives with respect to the Grassmannian variables ⌘iA and ⌘jA. Here, Q̃
is the total supercharge Q̃↵

A :=
P

i=1n
↵
i ⌘iA, and the delta function is given in (C.12) as

�(8)(Q̃) =
1

24

4Y

A=1

nX

i,j=1

hiji ⌘iA⌘jA .

One may ask about the other amplitudes between MHV and anti-MHV. Certainly, the
amplitudes with three negative helicities and n � 3 positive helicities are non-vanishing,
but they might not look so simple like the MHVs. These amplitudes are called the
Next-to-MHV amplitudes or Nk�2 MHV, with k being the number of negative helicity
gluons. There are many di↵erent ways of studying the Nk�2 MHV amplitudes, one of
them is to look at the pole structure of the amplitude under some limit. These poles will
correspond to the internal propagator which will factorize an amplitude into two, allowing
us to write a recursion relation, known as the BCFW recursion relations. The MHV and
NMHV amplitudes were studied using the twistor formalism in [5] and was found that
the scattering amplitude can be generalized as an integral supported over curves of degree
d = k � 1.
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Chapter 3

Twistor Theory

Twistor theory aims to describe light rays in a compact way, by making a correspondence
between the conformal structure of a light cone with a holomorphic Riemann sphere, with
the polarization of the light rays encoded in the spinorial structure. In a simple picture,
a point in twistor space corresponds to a null ray on Minkowski space, and, for the other
way round, a point in Minkowski space corresponds to a line (or Riemann sphere) on the
twistor space.

In this project, one of the modern application of twistor theory – in studying scattering
amplitudes – will be explored. In particular, the formula given by Roiban, Spradlin,
Volovich, and Witten that will be introduced in the next chapter, uses the twistor space
as the framework in calculating the MHV and NMHV amplitudes. Therefore, some aspects
of twistor theory essential to the RSVW formula will be covered in this chapter. We follow
an introduction to the twistor theory by Adamo [16] to introduce the twistor space and
how to describe the massless fields on the twistor space using the Penrose transform.

3.1 Twistor Space

The twistor formalism uses the complex structures to describe the conformal structure
of spacetime, so it requires the complexification of the Minkowski space. The complex-
ification is to allow the coordinates xµ to take complex value instead of just real, and
extend the metric gµ⌫ holomorphically (in a way that it does not depends on the conju-
gate variables). The complexified Minkowski space MC can later recover the signature of
spacetime by consider a slice of MC by imposing the reality conditions.

The benefit of complexification is that it allows us to look at the complexified Lorentz
group SO(4,C) instead of the usual Lorentz with specified signature. The complexified
Lorentz group is locally isomorphic to SL(2,C)⇥ SL(2,C). This meant that a vector on
MC can be mapped into the representation of SL(2,C)⇥SL(2,C), and can be described
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using a pair of SL(2,C) index.

v↵↵̇ :=
�↵↵̇
ap
2
va =

1p
2

 
v0 + v3 v1 � iv2

v1 + iv2 v0 � v3

!
. (3.1)

Similar to the spinor-helicity construction, any tensor can be mapped into this representa-
tion by contracting with the Pauli matrices, resulting in an object with each vector index
replaced with a pair of spinor indices. In this section, we normalized the representation
of the vector in SL(2,C) with a factor of 1/

p
2, so that vnull · wnull =

⌦
⌫!
↵⇥
⌫̃!̃
⇤
.

From this point, one can retrieve the SU(2) spinors by selecting a slice of Lorentzian
real Minkowski space inside of MC. This is done by selecting all component of the
coordinate (x0, x1, x2, x3) to be real, equivalent to having the matrix x↵↵̇ being Hermitian,
with

x↵↵̇† =
1p
2

 
x̄0 + x̄3 x̄1 � ix̄2

x̄1 + ix̄2 x̄0 � x̄3

!
. (3.2)

The Hermitian conjugate includes the transpose, so the positive and negative chirality
parts are exchanged under the conjugation. Explicitly, the conjugation acts on each
spinor as

↵ = (a, b)! ̄↵̇ = (ā, b̄) and !̃↵̇ = (c, d)! ¯̃!↵ = (c̄, d̄) , (3.3)

and thus a real null vector can be written as ↵̄↵̇ for some spinor ↵. 1

After complexifying the Minkowski space, we can now introduce the twistor space.
The twistor space PT of the complexified Minkowski space is defined as an open subset of
the complex projective space CP

3 2. This CP
3 is described by homogeneous coordinates

ZA = (Z1, Z2, Z3, Z4), in which the coordinates could never all vanish ZA 6= (0, 0, 0, 0) ,
and is invariant under projective rescaling rZA ⇠ ZA for all non-zero r 2 C.

The coordinate of the twistor space is chosen to be the two spinors with opposite
chirality:

ZA = (µ↵̇,�↵) . (3.4)

The next step is to define a relationship between the twistor space and the complexified
Minkowski space. This is called the twistor correspondence, as it is not a “map” by its
non-locality. The relation that link the coordinates of these two spaces together is

µ↵̇ = x↵↵̇�↵ , (3.5)

known as the incidence relation.

The incidence relation tell us that by fixing a point x 2MC, the “matrix” x↵↵̇ is a
coe�cient in a linear equation relating µ↵̇ and �↵. Since PT is a projective space, this

1
For other signature, see [16].

2
The selection of the open subset of CP

3
depends on the signature of spacetime.
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Figure 3.1: A picture showing the correspondence between a point x 2 MC to a CP
1
line

X 2 PT, the two rays in Minkowski space is represented by two points on the twistor space,

connected by the line X.

“plane” we have fixed is actually a CP
1 line or a Riemann sphere 3. So a point in the

complexified Minkowski space corresponds to a linearly (and holomorphic, since there is
no conjugation) embedded Riemann sphere in twistor space. Note that this relationship
is non-local as a point is described by an extended object.
For the other way round, we can ask about what the point in twistor space is corre-

sponding to. A point Z 2 PT can be described by the intersection of two lines X and Y ,
described by the incidence relations

X ! µ↵̇ = x↵↵̇�↵ and Y ! µ↵̇ = y↵↵̇�↵ , (3.6)

for x, y 2MC. The intersection of these two equations yield

(x� y)↵↵̇�↵ = 0 , (3.7)

meaning that (x � y)↵↵̇ = 0 or (x � y)↵↵̇ must be proportional to �↵. So if x and y are
two di↵erent points on MC, the di↵erence must obey

(x� y)↵↵̇ = �̃↵̇�↵ , (3.8)

where the spinor �̃↵̇ is arbitrary. This mean that the separation is null-like. Therefore,
the lines in twistor space will intersect if and only if their corresponding points in MC are
null-separated. The arbitrary spinor �̃↵̇ traces out a plane that every vector tangent to the
plane is null. We can now see that the non-locality is reflected in both ways. The point
in MC corresponds to a line in PT, and an intersection of two lines in PT captures the
lightcone structure in MC as the intersection indicates that the points are null-separated.
Thus the conformal structures (lightcones) in MC is encoded by holomorphic structures
(Riemann spheres) in PT.

3
A Riemann sphere can be obtained by a stereographic projection of a complex plane with a point at

infinity C
2 [ {1}. The resulting object is a complex projective line CP

1
, where the additional point at

infinity makes it compact and have the same topology with a sphere, so CP
1
is also called the Riemann

sphere. See [17] for more mathematical details.
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Figure 3.2: A picture showing the correspondence between an intersection of CP
1
line X and Y

on PT and the null-like points on the light cone in MC

3.2 Penrose Transform

Now that we have the framework of the twistor theory to work with and understanding
MHV and anti-MHV amplitudes requires some notion of fields, this section will discuss
how the description the massless free fields on the twistor space is obtained.

For the spin one field, we can write the gauge field Aµ into an object with two spinor
indices A↵↵̇. The field strength tensor in the spinor indices is then

F↵↵̇��̇ = @↵↵̇A��̇ � @��̇A↵↵̇ , (3.9)

and is antisymmetric under (↵↵̇) $ (��̇). If we want the antisymmetry under the ex-
change of separated spinor index (e.g. ↵ $ � and ↵̇ $ �̇ , we can achieve this anti-
symmetry by having the antisymmetry under the exchange of ↵ and � and symmetric
under ↵̇ and �̇, or the other way round. This suggest that the field strength tensor can
be decompose into two contributions

F↵↵̇��̇ =
1

2
✏↵�F

�

↵̇��̇
+

1

2
✏↵̇�̇F

�̇
↵ ��̇ (3.10)

one antisymmetric under ↵ $ � and the other under ↵̇ $ �̇ due to the ✏’s. Meanwhile,
the leftover of F are now symmetric under the exchange of the uncontracted indices, so
we can define

F̃↵̇�̇ :=
1

2
F �

↵̇��̇
, and F↵� :=

1

2
F �̇
↵ ��̇ , (3.11)

which are the self-dual (SD) and anti-self-dual (ASD) parts of the field strength tensor.
The field strength tensor can then be written as

F↵↵̇��̇ = ✏↵�F̃↵̇�̇ + ✏↵̇�̇F↵� . (3.12)

The ‘self-duality’ and ‘anti-self-duality’ come from the eigenvalue of each term under the
duality operation, which is to contract Fµ⌫ with a four-dimensional Levi-Cevita symbol
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to yield the dual field strength tensor. By contracting and changing the indices to spinor
indices (µ, ⌫, ⇢, � ! ↵↵̇, ��̇, ��̇, ��̇),

1

2
✏µ⌫⇢�Fµ⌫ =

1

2

�
✏↵�✏��✏↵̇�̇✏�̇�̇ � ✏↵�✏��✏↵̇�̇✏�̇�̇)(✏↵�F̃↵̇�̇ + ✏↵̇�̇F↵�) = ✏��F̃ �̇�̇ � ✏�̇�̇F �� , (3.13)

in which the self-dual has the same sign and anti-self-dual becomes negative under this
operation.

The Maxwell equations and the Bianchi identity for the decomposed field strength
tensor are

@↵̇
� F̃↵̇�̇ + @↵

�̇
F↵� = 0 and @↵̇

� F̃↵̇�̇ � @↵
�̇
F↵� = 0 . (3.14)

Since the Bianchi identity must be satisfied for any field strength, this suggest that purely
SD (F↵� = 0) or purely ASD (F̃↵̇�̇ = 0) are consistent solutions to the equation of
motion. The purely SD sector is identified with the positive helicity polarization and the
purely ASD with the negative helicity polarization. A symmetric SD/ASD component
will describe a Maxwell field if they satisfy

@↵̇
� F̃↵̇�̇ = 0 and @↵

�̇
F↵� = 0 , (3.15)

respectively. These are called the zero-rest-mass (z.r.m.) equations for the spin-1 fields.
This procedure can be repeated to the field with any spin. In general, the z.r.m. equation
of a field with helicity h is given by a linear partial di↵erential equation with the field
containing 2|h| spinor indices:

h > 0 �̃↵̇1...↵̇2|h| , @�↵̇1�̃↵̇1...↵̇2|h| = 0 ,

h = 0 � , ⇤� = @↵↵̇@↵↵̇� = 0 ,

h < 0 �↵1...↵2|h| , @↵1�̇�↵1...↵2|h| = 0 . (3.16)

The Penrose transform is a way to transform the z.r.m. fields to an object on the twistor
space. Let us first look at the fields with negative helicity. The correspondence of the
twistor space and spacetime is non-local, so the first thing that we want to ensure under
the correspondence of fields on twistor space is locality. We know that a point in MC

corresponds to a CP
1 line in PT, and since the field is local, we need to integrate out the

CP
1 corresponding to the point on spacetime

�↵1...↵2s(x) =

Z

CP1

⌦
�d�

↵
... ,

where s = |h| and
⌦
�d�

↵
is the natural measure on CP

1. Next, we want the index structure
of the field, so inside the integral we must have a product of 2s-lambdas:

�↵1...↵2s(x) =

Z

CP1

⌦
�d�

↵
�↵1 ...�↵2s(...) .

By having 2s of the � variables and the measure, the CP
1 weight of scaling � ! r� is

2s + 2. In order for the integral to be well-defined, the resulting object that we want
must be independent of these CP

1 scaling, so the integrand that we need must be some
function of weight �2s� 2. Moreover, the measure is a complex (1, 0)-form. In order for
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this to be integrated over CP
1, the integrand is required to be a (1, 1)-form. We can now

write the integral as

�↵1...↵2s(x) =

Z

CP1

⌦
�d�

↵
�↵1 ...�↵2sf(�, �̃) ,

where the function f(�, �̄) is of weight �2s� 2 and is a (0, 1)-form:

f(�, �̄) = f ↵̇(�, �̄)d�̄↵̇ and f(r�, r�̄) = r�2s�2f(�, �̄) (3.17)

and the �̄ is the conjugate of �. The restriction of f(�, �̄) on a CP
1 line X is given by

f(Z, Z̄)
���
X
= f(x�↵̇��,�↵, x̄

�̇↵�̄�̇, �̄↵̇) . (3.18)

Imposing the equation of motion yields

@↵1�̇�↵1...↵2|h| =

Z

X

⌦
�d�

↵
�↵1 ...�↵2s

⇣
�↵1

@f

@µ�̇
+ �̄�̇ @f

@µ̄↵1

⌘
= 0 , (3.19)

where the first term vanishes by �↵1�
↵1 = 0 and the second term will vanish if f is

holomorphic (does not depend on the conjugate variables). Written in the language of
complex geometry, f must satisfies @̄f = 0.4 And if f = @̄g for some function g, the
field will directly vanish (� = 0) by using a similar argument. This mean that f is some
(0, 1)-form with weight �2s � 2 obeying @̄f = 0 and f 6= @̄g. f is said to be in the
cohomology group of weight �2s� 2 on the twistor space.
The fields of other helicity are construct similarly, and they belongs to the cohomology
group of weight 2h� 2 [16]. They are given by

h > 0 �̃↵̇1...↵̇2h
=

Z

CP1

⌦
�d�

↵ @

@µ↵̇1
...

@

@µ↵̇2h
f(�, �̃)|X ,

h = 0 �(x) =

Z

CP1

⌦
�d�

↵
f(�, �̃)|X ,

h < 0 �↵1...↵2|h|(x) =

Z

CP1

⌦
�d�

↵
�↵1 ...�↵2sf(�, �̃)|X . (3.20)

Now that we have the general construction for the Penrose transformation, we can look
at the momentum eigenstates, which is the simplest case and it will be useful in the next
chapters.

3.3 Momentum Eigenstates

A momentum eigenstate of a massless scalar field is given by

�(x) = eik·x . (3.21)

In the twistor theory, a momentum eigenstate of a field with helicity h can be obtained
by the Penrose transform of the a twistor representative function f [h](Z). The twistor
representative function is given by

f [h](Z) =

Z

C⇤

ds

s2h�1
�̄2(↵ � s�↵) exp(is[µ̃]) , (3.22)

4
The @̄ is the Dolbeault operator, where its form on the twistor space is @̄ = dZ̄Ā @

@Z̄Ā .
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where ↵ and ̃↵̇ are constant spinors, and the delta function is defined by

�̄2(�↵) =
^

↵=0,1

@̄
⇣ 1

�↵

⌘
. (3.23)

To see that the twistor representative given above have the correct scaling of the twistor,
we scale Z ! cZ. The scaling will appear in the delta function and the exponential, and
the argument of these function must scale as 1, so we must treat the s with weight �1.
Doing so, the integral is observed to have a weight of 2h � 2 from the measure. This
representative can be checked that it belongs to the cohomology class of weight 2h � 2,
by checking that it satisfies @̄f = 0 and cannot be written as @̄g for some function g.
The first condition @̄f = 0 can be directly seen by just applying the derivative :

@̄f [h](Z) = dZ̄Ā@f
[h](Z)

@Z̄Ā
=
⇣
d�̄↵ @

@�̄↵
+ dµ̄↵̇ @

@µ̄↵̇

⌘Z

C⇤

ds

s2h�1
�̄2(↵ � s�↵)e

(is[µ̃]) = 0 ,

(3.24)
where the since the representative is independent of µ̄ and the wedge product of d�̄ into
the delta function vanishes since the delta function also carry a (0, 2)- form. The second
condition can be seen by writing the Penrose transform of a derivative of a function, this
will cause the field to become zero directly.
Before doing a Penrose transform, the delta function can be written in a more convenient
way by choosing a normalize basis for the (0, 1) form as

e↵
0
= ↵ and e↵

1
=

a↵

hai , (3.25)

for some constant spinor a↵. With this choice of basis, the delta function can be rewritten
as

�̄2(↵ � s�↵) =
^

↵=0,1

@̄
⇣ 1

↵ � s�↵

⌘
= @̄

✓
1

�s h�i

◆
@̄

 
1

�1 + s ha�i
hai

!

=
1

s
�̄
�⌦
�
↵�
�̄

✓
s� haiha�i

◆
hai
ha�i . (3.26)

For a scalar field, the Penrose transform of the twistor representative is given by

�(x) =

Z

CP1

⌦
�d�

↵
f [0](�, �̃)|X , (3.27)

substituting the twistor representative gives

�(x) =

Z

CP1

⌦
�d�

↵ Z

C⇤

sds �̄2(↵ � s�↵) exp(is[µ̃])|X . (3.28)

On the support of the delta functions, s�↵ = ↵ and under the restriction on X, the
twistor variable satisfies the incidence relation µ↵̇ = x↵↵̇�↵, and on the support this gives

exp(ix↵↵̇↵̃↵̇) = exp(ik · x) ,
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for k↵↵̇ = p↵p̃↵̇. So now we have

=

Z

CP1

⌦
�d�

↵ Z

C⇤

sds �̄2(↵ � s�↵) exp(ik · x)

=

Z

CP1

⌦
�d�

↵ Z

C⇤

sds
1

s
�̄
�⌦
�
↵�
�̄

 
s�

⌦
a
↵

⌦
a�
↵
!
hai
ha�i exp(ik · x)

= exp(ik · x)
Z

CP1

⌦
�d�

↵
�̄
�⌦
�
↵�hai
ha�i . (3.29)

Evaluating this integral can be done by choosing a basis � = (1, z), this simplifies the
integral into

Z

CP1
dz�̄
�
z0 � 1

�
⌦
a
↵

a0z � a1
=

Z

CP1
dz�̄
⇣
z � 1

0

⌘ ⌦
a
↵

0(a0z � a1)
= 1 (3.30)

This gives the spin zero momentum eigenstate

�(x) = eik·x . (3.31)

For negative helicity, the Penrose transform of the twistor representative into z.r.m. field
is given by

�↵1...↵2|h|(x) =

Z

CP1

⌦
�d�

↵
�↵1 ...�↵2sf

[h](�, �̃)|X , (3.32)

substituting the twistor representative in gives

�↵1...↵2|h|(x) =

Z

X

⌦
�d�

↵
�↵1 ...�↵2s

Z

C⇤

ds

s2h�1
�̄2(↵ � s�↵) exp(is[µ̃])|X

=

Z

X

⌦
�d�

↵
sds↵1 ...↵2s �̄

2(↵ � s�↵) exp(ik · x)

= ↵1 ...↵2s exp(ik · x)
Z

X

⌦
�d�

↵
sds �̄2(↵ � s�↵) . (3.33)

The integral is the same for the spin zero field, giving

�↵1...↵2|h| = ↵1 ...↵2s exp(ik · x) (3.34)

For positive helicity,

�̃↵̇1...↵̇2h
=

Z

CP1

⌦
�d�

↵ @

@µ↵̇1
...

@

@µ↵̇2h
f [h](�, �̃)|X

= ̃↵̇1 ...̃↵̇2h
exp(ik · x)

Z

CP1

⌦
�d�

↵
sds �̄2(↵ � s�↵)

= ̃↵̇1 ...̃↵̇2h
exp(ik · x) . (3.35)

This shows the construction of z.r.m. fields from twistor space for arbitrary helicity, which
will be crucial for the next chapter.
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Chapter 4

RSVW formula

The formula for general helicity amplitude is obtained using the twistor theory by [5] and
[6]. In this chapter, a brief review of the RSVW formula will be presented, followed by a
derivation of the refined scattering equation from the constraints in the RSVW.

Before directly jumping into the RSVW formula, let us look at the motivation Witten
gave in [5] that allow us to look at the MHV amplitude on the twistor space. First, recall
the n-points MHV superamplitude obtained using the Grassmannian variable in (C.14),

AMHV

n =
�8(Q̃)�4(

Pn
i=1

↵
i ̃

↵̇
i )

h12i h23i ... hn1i

where �8(Q̃) = 1

24

Q
4

A=1

Pn
i,j=1

⌦
ij
↵
⌘iA⌘jA. We can obtain the Parke-Taylor formula by

applying the derivatives with respect to ⌘i and ⌘j on the superamplitude.

On twistor space, the transformation of the variables under the projective scaling are
of the form

�↵ ⇠ t�↵ and µ↵̇ ⇠ tµ↵̇ , (4.1)

but for the momentum, the little group scaling scale the momentum’s spinor component,
pi = �i↵�̃i↵̇, as

�↵ ⇠ t�↵ and �̃↵̇ ⇠ t�1�̃↵̇ . (4.2)

The right-handed is o↵ by the inverse of the scaling, but under a twistor Fourier transform:

�̃↵̇ !
@

@µ↵̇
, and

@

@�̃↵̇

! µ↵̇ , (4.3)

the scaling now match the scaling of the twistors. Performing a twistor Fourier transform
on the amplitude, (C.14) becomes

AMHV

n

���
PT

=

Z nY

i=1

d2�̃i

(2⇡)2
ei

Pn
i=1[µi�̃i]�4

 
nX

i=1

�i↵�̃i↵̇

!
�8(Q̃)⌦

12
↵
...
⌦
n1
↵ . (4.4)

The delta functions �4(
Pn

i=1
�i↵�̃i↵̇) can be written as an integral form:

(2⇡)4�4(
nX

i=1

�i↵�̃i↵̇) =

Z
d4x↵↵̇e

�ix↵↵̇
Pn

i=1 �i↵�̃i↵̇ , (4.5)
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which can be combined with the other exponential factor and result in a delta function

AMHV

n

���
PT

=

Z nY

i=1

d2�̃i

(2⇡)2
ei

Pn
i=1[µi�̃i]

1

(2⇡)4

Z
d4x↵↵̇e

�ix↵↵̇
Pn

i=1 �i↵�̃i↵̇
�8(Q̃)⌦

12
↵
...
⌦
n1
↵

=

Z nY

i=1

d2�̃i

(2⇡)6
d4x↵↵̇e

i(
Pn

i=1[µi�̃i]�x↵↵̇
Pn

i=1 �i↵�̃i↵̇)
�8(Q̃)⌦

12
↵
...
⌦
n1
↵

=
1

(2⇡)4

Z
d4x↵↵̇

nY

i=1

�̄2(µ↵̇
i � x↵↵̇�i↵)

�8(Q̃)⌦
12
↵
...
⌦
n1
↵ . (4.6)

This tell us that the MHV amplitude is supported on a linear equation, that is the
incidence relation for each particle. This degree one curve in twistor space is a feature
that is realized to be important and extended further. The resulting amplitude formula,
the RSVW formula, has shown that the Nk�2 MHV at tree-level corresponds to a genus
zero, degree k � 1 curve on twistor space.

4.1 RSVW Formula

Now that we have seen that the MHV amplitude is an integral on the support of a degree
1 curve.The general expression of n particle scattering amplitudes at tree-level for gauge
theory as given in [5] and [6] is

An =

Z

M0,n

Qn
i=1

d�i

vol(SL(2,C)⇥ U(1))

Z

Z(�)

dY

r=0

d4|N ⇠Ir
1

�12...�n1

nY

i=1

ai(Z(�i)) , (4.7)

where the integration over �i is taken over the moduli space M0,n of the Riemann sphere
with n marked points1 2, with the ith marked point denoted �i, and the iIr are the parame-
ters or “moduli” of the curve Z(�) of degree d. The �ij are just a short-hand notation for
�i��j, which will appear frequently in this work. The ai’s are the momentum eigenstates
on twistor space given by (3.22)

ai(Z(�i)) =

Z
dti
ti
�̄2(i � ti�(�i))e

i[µ(�i)̃i]ti , (4.8)

with the momentum k↵↵̇
i = ↵

i ̃
↵̇
i and the twistor Z is now a function mapping the

Riemann sphere to the twistor space Z(�) = (µ↵̇(�),�↵(�), �A(�)) 3. The factor of
vol(SL(2,C)⇥U(1)) denotes the quotient of the SL(2,C) Mobius invariance of �’s on the
Riemann sphere and U(1) re-scaling invariance of the t’s.

1
the parameter space of the n-marked point sphere a.k.a the di↵erent ways we can move those marked

points on the sphere
2
Here, the marked Riemann sphere comes from the original derivation of the formula that uses a

worldsheet model, where the worldsheet is compactified into a marked Riemann sphere. This worldsheet

model is a maximally supersymmetric string theory in twistor space, called the twistor string theory. See

[5] and [18].
3
This is, in fact, the map from a worldsheet to twistor space as its target space in the twistor string

theory.
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The twistor curve that is integrated over is a degree d curve expressed by

ZI(�) =
dX

r=0

⇠IrCr(�) , (4.9)

where ⇠Ir are the parameters of the curve and Cr(�) are the degree r polynomials ⇠ �r

that forms a basis of the curve. Here, the curve that we want to express is the curve of
twistor on the Riemann sphere, where the parameters in ⇠Ir are defined as

⇠Ir = (µ↵̇
r , ⇢r↵,�

A
r ) , (4.10)

and

µ↵̇(�) =
dX

r=0

µ↵̇
rCr(�) , �↵(�) =

dX

r=0

⇢r↵Cr(�) , and �A(�) =
dX

r=0

�A
r Cr(�) . (4.11)

Using this expression for the “twistor” variables, we can write (4.7) as

An =

Z

M0,n

Qn
i=1

d�idti/ti
vol(SL(2,C)⇥ U(1))

Z

Z(�)

dY

r=0

d2⇢rd
2µrd

0|N�r
Tr(...)

�12...�n1

⇥
"

nY

j=1

�̄2
�
↵
j � tj�

↵
�
�j)) exp(i([µ(�i)̃i] + �(�i)

A�Ai)ti)

#

=

Z

M0,n

Qn
i=1

d�idti/ti
vol(SL(2,C)⇥ U(1))

Z

Z(�)

dY

r=0

d2⇢r
Tr(...)

�12...�n1

⇥
"

nY

j=1

�̄2
�
↵
j � tj�

↵
�
�j))

dY

a=0

�̄2|N
� nX

i=1

ti̃
↵̇
i Ca(�i)|

nX

i=1

ti�ACa(�i)
�
#
. (4.12)

As a sanity check, we can see that there are n+n+2(d+1)� (3+ 1) = 2n+2(d+1)� 4
integration variable coming from �’s, t’s, and ⇢’s, respectively, and the �(3 + 1) are
from the invariance of the variables. Meanwhile we have a total of 2n + 2(d + 1) delta
function constraints (not counting the supersymmetric). So we are left with exactly 4
delta functions, which after evaluation they are the momentum conservation.

In the next part, the constraints of the RSVW formula will be simplified into nicer
and more managable equations. For simplicity, the supersymmetric part will be omitted
for now, since the supersymmetric extension is straightforward. It is true that the RSVW
formula is derived for a supersymmetric theory, but since we are looking at the bosonic tree
level amplitudes with gluons as external particles, it restricted fermions to not contribute.

4.2 Refined Scattering Equations

The RSVW formula can be simplified using the link variables as presented in [19]. The
choice of Cr(�) were made to be

Ci�1(�) =
kY

l 6=i
l=1

� � �l

�il
, (4.13)
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where k is the number of negative helicity particles and k = d+ 1, such that

Ci�1(�j) =

(
�ij ; j = 1, ..., k ,
Qk

l 6=i
l=1

�jl

�il
; j = k + 1, ..., n .

(4.14)

This allow us to simplify the constraints further. For convenience, consider only the
constraints of �(�) under this choice of Cr(�). The product from 1 to n can be split into
1, ..., k and k + 1, ..., n:

nY

j=1

�̄2
�
↵
j � tj�

↵
�
�j)) =

kY

j=1

�̄2
�
↵
j � tj⇢

↵
j�1

)
nY

p=k+1

�̄2
�
↵
p � tp�

↵
�
�p)) . (4.15)

Integrating the delta functions with j indices constraints the variable ⇢↵j�1
=

↵
j

tj
and this

integration gives a Jacobian factor of J =
Qk

j=1
t�2

j , making the RSVW formula becomes

An =

Z

M0,n

Qn
i=1

d�idti/ti
vol(SL(2,C)⇥ U(1))

Tr(...)

�12...�n1
J

nY

p=k+1

�̄2
⇣
↵
p � tp

kX

i=1

↵
i

ti

Qk
l 6=i �pl

Qk
l 6=i �il

⌘

⇥
kY

i=1

�̄2|N
⇣
ti̃

↵̇
i +

nX

p=k+1

tp̃
↵̇
p

Qk
l 6=i �pl

Qk
l 6=i �il

⌘
. (4.16)

With a change of variable

for i = 1, ..., k : ui =
1

ti
Qk

l 6=i �il

and for p = k + 1, ..., n : up =
kY

l=1

�pltp , (4.17)

the constraints become

nY

p=k+1

�̄2
⇣
↵
p � tp

kX

i=1

↵
i

ti

Qk
l 6=i �pl

Qk
l 6=i �il

⌘ kY

i=1

�̄2|N
⇣
ti̃

↵̇
i +

nX

p=k+1

tp̃
↵̇
p

Qk
l 6=i �pl

Qk
l 6=i �il

⌘

=
nY

p=k+1

�̄2
⇣
↵
p � tp

kX

i=1

↵
i

ti

Qk
l=1

�pl

�pi

Qk
l 6=i �il

⌘ kY

i=1

t�2

i �̄2|N
⇣
̃↵̇
i +

nX

p=k+1

tp
̃↵̇
p

ti

Qk
l=1

�pl

�pi

Qk
l 6=i �il

⌘

= J
nY

p=k+1

�̄2
⇣
↵
p � up

kX

i=1

ui↵
i

�pi

⌘ kY

i=1

�̄2|N
⇣
̃↵̇
i + ui

nX

p=k+1

up̃↵̇
p

�pi

⌘
. (4.18)

Thus, the RSVW formula becomes

An =

Z

M0,n

Qn
i=1

d�idui/ui

vol(SL(2,C)⇥ U(1))

kY

i=1

�̄2
�
̃↵̇
i �ui�̃

↵̇
i (�i)

� nY

p=k+1

�̄2|N
�
↵
p�up�

�
�p))J 2

⇣ Tr(...)

�12...�n1

⌘
,

(4.19)
where

�̃↵̇(�) =
nX

p=k+1

up̃↵̇
p

� � �p
and �↵(�) =

kX

i=1

ui↵
i

� � �i
. (4.20)

The Jacobian factor J 2 cancels if we are in an N = 4 SYM theory, due to the fact that
the supersymmetric delta function of the supersymmetric part gives a factor of

Qk
i=1

t4i
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when pulling the ti’s out. We can write this in a more compact form by defining the
measure and the constraints as the ‘reduced measure’

dµn,k :=

Qn
i=1

d�idui/ui

vol(SL(2, C)⇥ U(1))

kY

i=1

�̄2
�
̃i

↵̇�ui�̃(�i)
� nY

p=k+1

�̄2|4
�
↵
p �up�(�p)

���p�up�(�p)
�
,

(4.21)
and the RSVW is now just

An =

Z
dµn,k

Tr(...)

�12...�n1
. (4.22)

Note that it does not matter which specific particle is negative helicity, since the formula
is invariant under which k particle would be negative helicity. Therefore the formula only
depends on the number be of particles in each sector. This observation will be useful and
explored in details for the next chapter.

The constraints of RSVW formula will be the point of focus in the next section. They
are called the refined scattering equations as they are “refined” according to their MHV
degree

Ẽ ↵̇
i = ̃i

↵̇ � ui�̃
↵̇(�i) and E↵

p = ↵
p � up�

↵(�p) . (4.23)

The name “scattering equations” came from another formalism by Cachazo, He, and Yuan
(the CHY) where the amplitude is an integral over some constraints, and those constraints
are called the scattering equations. This formalism will be discussed and made contact
with in Chapter 6.

The refined scattering equation can be dotteds with ̃i and p. Doing so gives the
relation h

̃i�̃(�i)
i
= 0 and

D
p�(�p)

E
= 0 , (4.24)

implying that � and �̃ defined on the Riemann sphere are parallel to the external spinors
at the marked points.

On the support of the refined scattering equations, the momentum conservation is also
satisfied:

nX

i=1

k↵↵̇
i =

kX

i=1

↵
i ̃

↵̇
i +

nX

p=k+1

↵
p ̃

↵̇
p

=
kX

i=1

↵
i ui�̃

↵̇
i (�i) +

nX

p=k+1

up�
↵
p (�p)̃

↵̇
p

=
X

i,p

uiup

�ip
↵
i ̃

↵̇
p (1� 1) = 0 . (4.25)

which is the momentum conservation in the four delta functions that is left when we count
the number of delta functions.

The evaluation of this formula gives the sum of all solution of the constraints (refined
scattering equation) that gives n-point amplitude with some Jacobian factors J :

An =
X

solutions

1

J

Tr(...)

�12...�n1
. (4.26)

31



Another point that is worth a remark is that the general form of the formula can be
extend to other theory by changing the integrand, for example, in 4d, the other possible
theory is maximal supergravity:

Mn =

Z

M0,n

dµn,k det
0 H , (4.27)

where the reduced measure is now defined with N = 8 and H is a block diagonal matrix

H =

 
H 0

0 H̃

!
, (4.28)

with

Hij =

D
ij
E

�ij
, Hii = �

kX

j=1,j 6=i

Hij , (4.29)

H̃pq =

h
pq
i

�pq
, H̃pp = �

kX

j=1,j 6=i

H̃pq , (4.30)

for i, j 2 1, ..., k and p, q 2 k + 1, ..., n and det0 is the reduced determinant where one
takes the determinant of H with a row and a column removed from each of H and H̃ [20].

32



Chapter 5

Number of Solutions at tree level

The number of solutions for the refined scattering equations in the RSVW formula of
SYM was conjectured to be the Eulerian number E(n� 3, k� 2) in [8] and the procedure
to proof it was suggested in [21]. This was initially observed through directly counting
the number of the solutions of each n and k. This chapter will provide some background
on what the Eulerian numbers are, find the recursion relation for the refined scattering
equations, prove that the number of solutions at tree level are the Eulerian numbers.

5.1 Eulerian Numbers

The Eulerian numbers E(m, l) are defined as the number of permutations of n numbers
with k descents, with 0  l  m [22]. As an illustration, given a sequence of 3 numbers,
1,2,3, there are 4 permutations with 1 descents: 132, 312, 213, and 231. For 4 numbers,
there are 11 permutations with 1 descents: 1243, 1324, 1342, 1423, 2134, 2314, 2341,
2413, 3124, 3412, and 4123. The Eulerian numbers for n = 1� 6 is given by the following
table.

m \l 0 1 2 3 4 5

1 1

2 1 1

3 1 4 1

4 1 11 11 1

5 1 26 66 26 1

6 1 57 302 302 52 1

Table 5.1: The Eulerian numbers E(m, l) for m = 1, ..., 6, adapted from [22].

The Eulerian numbers satisfy a number of properties:

1. E(m, 0) = E(m,m� 1) = 1,

33



2. E(m,m) = 0,

3. It is symmetric under changing m to m� l : E(m, l) = E(m,m� l),

4.
Pn

l=0
E(m, l) = m!, and

5. It satisfies the recursion relation

E(m, l) = (m� l)E(m� 1, l � 1) + (l + 1)E(m� 1, l) . (5.1)

The number of solutions to the refined scattering equations are observed to satisfies prop-
erties 1 to 4, with m = n � 3 and l = k � 2. The RSVW formula can be evaluate for
the MHV and anti MHV sector, giving the MHV amplitude as in (C.14). The number
of solutions for RSVW formula satisfy the first property as there are only one solution
for MHV and anti-MHV. The second property can be seen directly from the fact that all
plus/minus amplitude vanishes. The third property comes from the symmetry in switch-
ing negative and positive helicity particles. It is also known in [21] that for n particle
amplitude, there are a total of (n� 3)! solutions, thus satisfy the fourth property. In this
chapter, we will prove that the number of solutions for the refined scattering equations
satisfy the same recursion relation for the Eulerian numbers.

5.2 Eulerian Numbers and the Number of Solutions
for the Refined Scattering Equations

This section presents the proof that the number of solutions for the refined scattering
equations are the Eulerian numbers. This will be shown by taking the soft limit of the nth

particle – taking the momentum pn ! 0 – in the refined scattering equation. Then, the
expression for �n and un is solved asymptotically using the method of dominance balance.1

Counting the number of solution for each dominance balance gives a recursion relation for
the number of solution, which is expected to be the Eulerian number’s recursion relation.

Theorem 1. The number of solutions for the constraint equations from the RSVW for-
mula,

Ẽ ↵̇
i =

nX

p=k+1

uiup

�ip
̃↵̇
p � ̃↵̇

i = 0 and E↵
p =

kX

i=1

upui

�pi
↵
i � ↵

p , (5.2)

for an n particles process with k negative helicity particles, are the Eulerian numbers
E(n� 3, k � 2).

The general strategy in proving the theorem is to construct a recursion relation for
the constraints equation by looking at the soft limit of the nth particle, explicitly this is

1
See Appendix A for more detail of the method
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given by taking n ! ✏n and ̃n ! ✏̃n, and ✏ ! 0. Thus the equation (5.2) can be
written as

8i = 1, ..., k : Ẽi =
n�1X

p=k+1

uiup

�ip
̃p + ✏

uiun

�in
̃n � ̃i , (5.3)

8p = k + 1, ..., n� 1 : Ep =
kX

i=1

upui

�pi
i � p , (5.4)

En =
kX

i=1

unui

�ni
i � ✏n , (5.5)

under the rescaling of n and ̃n, and En were written separately for convenience. Under
the limit ✏! 0, the refined scattering equations for i 2 1, .., n� 1 will drop the term with
̃n, thus behave like the refined scattering equations for n�1 particles. The nth particle’s
equation can then be solved for �n and un in each dominance balances.

Proof. In order to see the dominance balances explicitly, we can label the constraint
equations as follows:

Ẽi =
n�1X

p=k+1

uiup

�ip
̃p

| {z }
A

+ ✏
uiun

�in
̃n

| {z }
B

� ̃i|{z}
C

. (5.6)

We can see that for each choice of dominance balance, only two of them gives a solution
for un and �n:

1. A ⇠ 1, B ⇠ ✏, and C ⇠ 1

2. A ⇠ 1, B ⇠ 1, and C ⇠ 1

3. A ⇠ ✏�1, B ⇠ ✏�1, and C ⇠ 1:
This can be achieved by having un ⇠ ✏�1 and ui ⇠ ✏�1. At the order of ✏�1, we have

n�1X

p=k+1

uiup

�ip
̃↵̇
p +

uiun

�in
̃↵̇
n = 0 ,

for ↵̇ = 0̇, 1̇. As homogeneous equations of variable un and �in, we can see that its
only solution is un = 0 and �in = 0, so �i = �n, therefore not a solution.

4. A ⇠ ✏, B ⇠ 1, and C ⇠ 1:
This can be achieved having un ⇠ ✏�2 and ui ⇠ ✏. At the leading order, we can see
that this gives a relation implying that ̃↵̇

n is proportional to ̃↵̇
i . Since this must

holds for all i, this imply that ki · kn = 0. Therefore this dominance balance does
not give a solution.

Now we have to prove that the two dominance balances give the same recursion relation
for the number of solutions to the Eulerian numbers.
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Balance 1 This choice of dominance balance can be achieved by un = ✏ũn. The refined
scattering equations for i 6= n under the limit ✏ ! 0 look like the refined scattering
equation for n� 1 particle

8i = 1, ..., k : Ẽi =
n�1X

p=k+1

uiup

�ip
̃p + ✏

uiun

�in
̃n � ̃i !

n�1X

p=k+1

uiup

�ip
̃p � ̃i (5.7)

8p = k + 1, ..., n� 1 : Ep =
kX

i=1

upui

�pi
i � p , (5.8)

and they are independent of n, thus determine all the variables ui, up, �i and �p. We can
use the nth particle equation,

E↵
n = ✏

 
ũn

kX

i=1

ui

�ni
↵
i � ↵

n

!
, (5.9)

to solve for the two variables �n and un as a function of the known variables, i.e. those ui

and �i of the n� 1 particles. Notice that (5.9) is actually two equations in two variables,
i.e. the equation E0

n and E1

n, so we can separate them into two equations. We can solve
for �n by dotting in

Pk
j=1

uj�njj:

0 = E0

n

⇣ kX

j=1

uj�nj
1

j

⌘
� E1

n

⇣ kX

j=1

uj�nj
0

j

⌘

= ũn

 
kX

i,j

uiuj0

i
0

j

�ni�nj
(1� 1)

!
� 0

n

kX

j=1

ui�ni
1

i + 1

n

kX

j=1

ui�ni
0

i

=
kX

i

ui

⌦
ni

↵

�in
. (5.10)

This can be rewritten to see that it is a (k � 1) degree polynomial in �n:

0 =
kX

i

ui

⌦
ni

↵Y

j 6=i

�jn . (5.11)

For the other equation, we can simply dotting in ↵
k to (5.9), giving

ũn =
hkni

Pk�1

i=1

ui
�in
hkii

. (5.12)

Since all the variable on the right hand side is known, they uniquely determine a ũn for
a �n.

Here, the behaviour of the constraint equations of n particle under the soft limits will
reduce to n� 1 particle with k negative helicity particles, and there are k� 1 solution for
�n. Therefore in the recursion relation for the number of solutions, we pick up the term

(k � 1)N (n� 1, k) . (5.13)
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Balance 2 The second choice of dominance balance is not so obvious to see. We can
use the result of the following lemma to rewrite (5.5) in a more convenience way.

Lemma 1. The measure dµn,k is invariant of the choice of negative helicity particle and
depend on just the number of negative helicity particle.

Proof. See Appendix B.

Using lemma 1, the particle label k and n can be switched using (B.4) and (B.7) as

�p = up
�pn

�pk
�n =

�nk

un
,

�i = ui
�ik

�in
�k =

�nk

uk
,

so that particle n has negative helicity and k has positive helicity. The refined scattering
equations under the switch are

Ẽ ↵̇
i =

n�1X

p=k

�i�p
�ip

̃↵̇
p � ̃↵̇

i , (5.14)

8i = n, 1, ..., k � 1 and

E↵
p =

k�1X

i=n

�p�i
�pi

↵
i � ↵

p , (5.15)

8p = k, ..., n� 1. The index of the summation is written from n to k � 1 since the index
is cyclic, and the variable ui under the switch are denoted as �i.
Now, taking the soft limit of n and ̃n, the equations become

Ẽ ↵̇
n =

n�1X

p=k+1

�n�p
�np

̃↵̇
p +

�n�k
�nk

̃↵̇
k � ✏̃↵̇

n , (5.16)

8i = 1, ..., k � 1 : Ẽ ↵̇
i =

n�1X

p=k+1

�i�p
�ip

̃↵̇
p +

�i�k
�ik

̃↵̇
k � ̃↵̇

i , (5.17)

E↵
k =

k�1X

i=1

�k�i
�ki

↵
i + ✏

�k�n
�kn

↵
n � ↵

p , (5.18)

8p = k + 1, ..., n� 1 : E↵
p =

k�1X

i=1

�p�i
�pi

↵
i + ✏

�p�n
�pn

↵
n � ↵

p . (5.19)

We can see that under the limit ✏ ! 0, (5.18) and (5.19) will just drop the term with
nth particle out, and behave like constraint equations for n� 1 particle. We can now use
(5.16) to determine the number of solution of �n like in the proof above. The dominance
balance can be acheived by having �n = ✏�̃n, making (5.16) become

Ẽ ↵̇
n = ✏

 
n�1X

p=k+1

�̃n�p
�np

̃↵̇
p +

�̃n�k
�nk

̃↵̇
k � ̃↵̇

n

!
. (5.20)
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The two equations in (5.20) can be separated to solve for �̃n and �n using the same trick.
The equation for �n can be separate by dotting in ̃↵̇

n to (5.20), giving the relation

0 =
n�1X

p=k

�̃n�p
�np

⇥
̃p̃n

⇤
, (5.21)

that can be rewritten as an n� k � 1 degree polynomial in �n

0 =
n�1X

p=k

�̃n�p
⇥
̃p̃n

⇤Y

q 6=p

�nq . (5.22)

For the expression of �̃n, we can dot in ̃↵̇
k and yield

�̃n =
[kn]

Pn�1

p=k+1

�p
�np

[kp]
. (5.23)

It can be seen that �n can be uniquely determine for each �n. The behaviour of the
constraint equations of n particle under the soft limits will reduce to n � 1 external
particles with k � 1 negative helicity particles, with n� k � 1 solution for �n. Therefore
in the recursion relation for the number of solution, we pick up the term

(n� k � 1)N (n� 1, k � 1) . (5.24)

Under the mapping (B.7) and (B.4), the choice of having �n = ✏�̃ corresponds to un ⇠ ✏�1.
In the original configuration, this corresponds to having all the terms in (5.3) behave like
order ⇠ 1, which is the second dominance balance.

The recursion relation for number of the solutions for the refined scattering equations
with n external particles with k particles of negative helicity is

N (n, k) = (n� k � 1)N (n� 1, k � 1) + (k � 1)N (n� 1, k) . (5.25)

This recursion relation starts at N (4, 2) = 1 which is the same initial value as the Eulerian
number E(1, 0), identifying m = n�3, l = k�2. Since it starts on the same value and has
the same recursion relation, the number of solutions to the refined scattering equations
are the Eulerian numbers.

From the result above, the reduced measure of n particle with k negative helicity
particle can be written as

dµn,k =dµ0

n�1,k�1

 
d�n

d�n
�n

�̄
⇣ n�1X

p=k

�n�p
�np

[kp]� [kn]
⌘
�̄
⇣ n�1X

p=k

�n�p
⇥
pn
⇤ n�1Y

q 6=p

�nq

⌘
Jk�1

!

+ dµn�1,k

 
d�n

dun

un
�̄
⇣ k�1X

i=1

uiun

�in

⌦
ki
↵
�
⌦
kn
↵⌘

�̄
⇣ kX

i=1

uiun

⌦
ni
↵ kY

j 6=i

�jn

⌘
Jk

!
,

(5.26)
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where Jk and Jk�1 are the factors obtained by pulling out the products in the delta
functions:

Jk =
kY

j=1

�jn , and Jk�1 =
n�1Y

q=k

�qn . (5.27)

In conclusion, we have proved explicitly that the number of solutions for the refined
scattering equations are the Eulerian numbers by using the method of dominance balance
to establish the recursion relation. The results also give us the recursion relation for the
reduced measure, where the two terms are localized on an n � k � 1 and k � 1 degree
curve.
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Chapter 6

Number of Solutions at One-Loop 1:
CHY

Extending the RSVW formula to loop level is not so simple. It was proposed by Dolan
and Goddard in [9] to use the genus g curve for a g loop amplitude, but this does not
simply give us pure Yang-Mills 1. The RSVW formula uses spinors in 4d, meaning that
the formula is manifestly on-shell in 4d, thus it is not clear how one would incorporate the
o↵-shell loop-momentum. In this project, two formalism that will generalize the RSVW
formula to describe o↵-shell loop momentum will be discussed: the Cachazo, He, and Yuan
(CHY) formalism, which will be the subject of this chapter, and the spinorial formalism
which will be the subject of the next chapter.

6.1 CHY formalism

The motivation for CHY formalism is that we want a generalization of RSVW formula to
general dimension. To begin with, we want to look at the general structure of the refined
scattering equation.
The general structure of the refined scattering equations are the pole structure summing
over 1/(���i), and the spinors of the momentum at those marked points in the numerator.
If we were to have a formula for arbitrary dimension, the first thing that need to be
changed is the spinor, since the structure of the spinors would change significantly for the
other dimensions. So we want the numerator to be some function of the momenta. The
constraint equations that the CHY formalism proposed in [10] are the so-called scattering
equations

Ei =
X

j 6=i

ki · kj
�ij

= 0 . (6.1)

1
This is due to the fact that RSVW came from twistor string theory, in which the theory include the

coupling to conformal gravity at the loop level. Although, this project will not be focusing on twistor

string and conformal gravity
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One can see that these satisfy the general structure that is required. Moreover, the
scattering equations are implied by the refined scattering equations since

ki ·
 
X

j 6=i

↵
j

�ij
Ẽ ↵̇
j +

X

p

̃↵̇
p

�ip
E↵
p

!
=

kX

j=1 6=i

[ij] hiji
�ij

+
kX

p=k+1

[ip] hipi
�ip

=
X

j 6=i

ki · kj
�ij

= 0 , (6.2)

on the support of the refined scattering equation for some momentum kj with j 2 1, ..., k,
and the same argument works for j 2 k + 1, ..., n. The number of solutions for the
scattering equations are given in [21] as

N (0)

CHY
(n) = (n� 3)! . (6.3)

This can be proven by taking the soft limit of the nth particle. The rest of the scattering
equation drops the term containing kn, reducing into scattering equations for n� 1 par-
ticles. The nth equation gives (n� 3) solutions for �n.

The formula for arbitrary dimension Yang-Mills scattering amplitude is presented as

An =

Z
dn�

volSL(2,C)

Y0

a

�

 
X

b6=a

ka · kb
�ab

!
In({k, ✏, �})
�12...�n1

, (6.4)

where
Y0

a

�

 
X

b6=a

ka · kb
�ab

!
= �ij�jk�ki

Y

a6=i,j,k

�

 
X

b6=a

ka · kb
�ab

!
,

from fixing three points on the SL(2,C) invariant Riemann sphere and In({k, ✏, �}) is a
permutation invariant function of �a, momenta kµ

a and polarization vectors ✏µa . Explicitly,
it is the reduced Pfa�an2 of a 2n⇥ 2n antisymmetric matrix

 =

 
A �CT

C B

!
, (6.5)

with

Aab =

8
<

:

ka · kb
�ab

a 6= b ,

0 a = b ,
Bab =

8
<

:

✏a · ✏b
�ab

a 6= b ,

0 a = b ,
and Cab =

8
>>><

>>>:

✏a · kb
�ab

a 6= b ,

�
X

c6=a

✏a · kc
�ac

a = b .

(6.6)
The Pfa�an of  vanishes since the first n rows of  are linearly independent. The
reduced Pfa�an, however, does not vanish, and it is permutation invariant in the sense
that it is independent of the choice of i and j. It was shown in [23] and [24] that the CHY
formula in 4d is equivalent to the RSVW where the constraints and the reduced Pfa�an
Pf 0 are equal to the RSVW constraints.

2
Reduced Pfa�an is a Pfa�an of the matrix with two rows and columns removed. Explicitly, the

reduced Pfa�an with rows i, j and columns i, j removed is defined as Pf
0
 := 2

(�1)i+j

�ij
Pf( 

ij
ij).
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The one loop formula for the Yang-Mill scattering amplitude in the CHY formalism
was given in [11] as

A(1)

n =

Z
d�+d��dn�

volSL(2,C)

Y0

i

� (Ei) � (E+) � (E�) Iloop . (6.7)

where the constraints are given by

Ei =
⇣X

j

ki · kj
�ij

+
l · ki
�i+
� l · ki

�i�

⌘
E± = ±

⇣X

j

l · kj
�±j

⌘
, (6.8)

for loop momentum l. This formula proposed that the loop amplitude can be evaluated
on a Riemann sphere with a node as illustrated in Fig. 6.1. The loop momentum will
flow through the node and it can be viewed as outgoing with momentum +l and incoming
with momentum �l at the nodal points denoted by �+ and ��, respectively.

The number of solutions to the one loop scattering equations was shown in [12]. Since
the one loop scattering equations are just the tree level scattering equations with the loop
part on the forward limit, direct counting using (6.3) with n + 2 particles gives (n � 1)!
solutions, but this is not the case. In fact, not all of the (n�1)! are regular solutions; there
are singular solutions that does not satisfies the loop scattering equation in the forward
limit. This can be proposed as the following:

Proposition 1. The number of regular solutions for the one loop scattering equations
are given by

N (1)(n) = (n� 1)!� (n� 2)! , (6.9)

where the (n� 2)! are the singular solutions that is excluded from the forward limit.

In this chapter, we will proof proposition 1 in two di↵erent ways

1. using the same method in [12] and [13] with some improvement, and

2. using the method of dominance balance to construct the recursion relation for finding
the number of solutions.

Figure 6.1: The deformation of a torus with 6 marked points into a nodal Riemann sphere with

6 + 2 marked points, where the extra marked points are from the nodal points.

42



6.2 Dimensional Reduction and Back-to-Back limit
of the Scattering Equations

In this section, we will review the proof of proposition 1 that was presented in [12] and
[13] in details with some additional improvement for completion. It was proposed that
the one loop scattering equations can be understand as a special version of tree level
scattering equation embedded in higher dimension. We can achieve this by embedding
the momentum k in 4d into higher dimension, denoted K, and requiring them to satisfy
some properties:

1. All momenta are on-shell in higher dimension:

K2

A = 0 8 A 2 {1, .., n, n+ 1, n+ 2} , (6.10)

where n+1 and n+2 are just convenience labels for the loop momenta embedded in
higher dimension. For the 4d on-shell momenta, this follows directly from trivially
embedding them by

Ki = (ki, 0) 8 i,2 {1, .., n} (6.11)

2. The dot products of the 4d on-shell momentum is preserved under the embedding

Ki ·Kj = ki · kj 8 i, j 2 {1, .., n} . (6.12)

3. The scattering equations in the higher dimension are

EA =
n+2X

B=1

KA ·KB

�AB
. (6.13)

4. The parameter ⌧ governs the back-to-back limit. We can take the forward limit
such that the loop momenta at the two nodal points are back-to-back, i.e. kn+1 = l
and kn+2 = �l, by taking the limit ⌧ ! 0. In this limit, (6.13) become (6.8).

For the 4d o↵-shell momenta, the embedding with the lowest number of extra dimension
that satisfies property 1 and 2 is

Kn+1 = (l + ⌧q, |l|+ ⌧ |q|, ⌧p, i⌧p) (6.14)

Kn+2 = (�l + ⌧q,�|l|+ ⌧ |q|, ⌧p,�i⌧p) (6.15)

and this can be observed that

Kn+1 ·Kn+2 = �2⌧ 2p2 (6.16)

showing that the rate of back-to-back limit grows as ⌧ 2. The fact that this is of the
order ⌧ 2 gaurantees that the l2 will vanish on the back-to-back limit. Substituting the
expression for KA’s into the scattering equation (6.13),

E (⌧)
i =

⇣X

j

ki · kj
�ij

+
l · ki
�i+
� l · ki

�i�

⌘
+ ⌧
⇣q · ki
�i+

+
q · ki
�i�

⌘
(6.17)

E (⌧)
+ =

⇣X

j

l · kj
�+j

⌘
+ ⌧
⇣X

j

q · kj
�+j

⌘
+

1

�+�

(�2⌧ 2p2) (6.18)

E (⌧)
� =

⇣
�
X

j

l · kj
��j

⌘
+ ⌧
⇣X

j

q · kj
��j

⌘
+

1

��+

(�2⌧ 2p2) (6.19)
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where the superscript of ⌧ indicates that this version of the scattering equations still
depends on the parameter ⌧ , and will reduce to the one loop scattering equations (6.8)
under the limit ⌧ ! 0.

Now that we have successfully embedded the 4d momenta into higher dimension sat-
isfying the first two conditions given above. We will prove proposition 1 by showing that
not all solutions of (6.13) satisfies (6.8) on the back-to-back limit.

Proof. On the limit ⌧ ! 0, the higher dimension scattering equations (6.17) drop all the
term with ⌧ , giving directly the one loop scattering equations (6.8). However, some of
the (n� 1)! solutions of (6.13) do not satisfy (6.8). We need to investigate each cases of
solutions, which are the two singular solutions and the regular solutions.

Singular Solutions We can consider the case that �� = �+ + ✏ for some ✏⌧ 1. This
make the ⌧ -dependent scattering equations (6.19) become

E (⌧)
i =

⇣X

j

ki · kj
�ij

+
l · ki
�i+
� l · ki

�i+ � ✏

⌘
+ ⌧
⇣q · ki
�i+

+
q · ki

�i+ � ✏

⌘

=
⇣X

j

ki · kj
�ij

� ✏
l · ki
�2

i+

⌘
+ ⌧
⇣2q · ki

�i+

⌘
+ ⌧✏

⇣q · ki
�2

i+

⌘
(6.20)

E (⌧)
+ =

⇣X

j

l · kj
�+j

⌘
+ ⌧
⇣X

j

q · kj
�+j

⌘
+

2⌧ 2p2

✏
(6.21)

E (⌧)
� =

⇣
�
X

j

l · kj
�+j + ✏

⌘
+ ⌧
⇣X

j

q · kj
�+j + ✏

⌘
� 2⌧ 2p2

✏

= �
⇣X

j

l · kj
�+j

� ✏
l · kj
�2

+j

⌘
+ ⌧
⇣X

j

q · kj
�+j

� ✏
q · kj
�2

+j

⌘
� 2⌧ 2p2

✏
, (6.22)

Since both ✏ and ⌧ are small, the term of order ⌧✏ can be safely dropped;

E (⌧)
i =

⇣X

j

ki · kj
�ij

� ✏
l · ki
�2

i+

⌘
+ ⌧
⇣2q · ki

�i+

⌘
(6.23)

E (⌧)
+ =

⇣X

j

l · kj
�+j

⌘
+ ⌧
⇣X

j

q · kj
�+j

⌘
+

2⌧ 2p2

✏
(6.24)

E (⌧)
� = �

⇣X

j

l · kj
�+j

� ✏
l · kj
�2

+j

⌘
+ ⌧
⇣X

j

q · kj
�+j

⌘
� 2⌧ 2p2

✏
. (6.25)

The possible balances that can be considered are the two cases where ✏ ⇠ ⌧ and ✏ ⇠ ⌧ 2.

Singular Solution I Let us consider the case where ✏ ⇠ ⌧ . One can see that within
this choice of dominance balance, the terms 2⌧ 2p2/✏ vanish nicely on the limit ⌧ ! 0.
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The other terms of order O(✏) also vanish nicely. On this limit, the scattering equations
for the i-th particles reduce to the usual scattering equation without loop-terms

Ei =
X

j

ki · kj
�ij

, (6.26)

and these equations have (n�3)! solutions. The solution to the plus and minus scattering
equations can be determined by considering the sum and di↵erence of them:

E (⌧)
+ + E (⌧)

� = 2⌧
⇣X

j

q · kj
�+j

⌘
+ ✏
⇣X

j

l · kj
�2

+j

⌘
(6.27)

E (⌧)
+ � E (⌧)

� =
4⌧ 2p2

✏
� 2
⇣X

j

l · kj
�+j

⌘
� ✏
⇣X

j

l · kj
�2

+j

⌘
. (6.28)

The first equation (6.27) gives a solution for ✏ (which is ✏ ⇠ ⌧) and the second equation,
on the limit ⌧ ! 0 yields an (n� 2) degree polynomial in �+:

nX

j=1

l · kj
�+j

= 0 . (6.29)

Note that naively this looks like an (n� 1) degree polynomial, the degree is reduced due
to the fact that the leading order vanishes by the momentum conservation

nX

j=1

(l · kj)�n�1

+
= 0. (6.30)

Therefore, there are (n�3)!⇥ (n�2)⇥1 = (n�2)! solutions for this choice of dominance
balance.

Singular Solution II For the second choice of dominance balance, ✏ ⇠ ⌧ 2, the equations
for i-th particles reduce in the limit ⌧ ! 0 to the normal scattering equations, giving
(n � 3)! solutions. One can see that the terms 2⌧ 2p2/✏ do not vanish in this case, so it
contributes as an extra term to the equations. This is not the correct one loop scattering
equations therefore the solutions would not solve the loop scattering equations either.
In order to count the number of solutions for this case, one can see that (6.28) gives one
solution for ✏ (which is ✏ ⇠ ⌧ 2) and the term of order O(✏) in (6.27) vanishes, leaving the
equation

nX

j=1

q · kj
�+j

= 0 , (6.31)

to be solved. This equation is also an (n� 2) degree polynomial in �+. Therefore, there
are also (n� 3)!⇥ (n� 2)⇥ 1 = (n� 2)! solutions for this choice of dominance balance.

Regular Solutions The number of regular solutions to the loop scattering equations
under the reduction from tree-level higher dimension and back-to-back limit must exclude
the two sectors of the singular solutions. The number of regular solutions is therefore
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(n� 1)!� 2(n� 2)!.

The solutions for the loop scattering equations are then the regular solutions and the
first group of singular solutions, giving the total number of solutions

N (1)(n) = (n� 1)!� (n� 2)! (6.32)

6.3 Soft Recursion of the One-Loop Scattering Equa-
tions

In this section, we will proof proposition 1 by establishing a recursion relation for the
number of solutions to the one loop scattering equations. The recursion relation is ob-
tained by using the method of dominance balance, i.e. taking the soft limit then solve for
the recursion of each balances.

The number of solutions in (6.9) satisfy a recursion relation of the form

N (1)(n) = (n� 1)(n� 2)!� (n� 2)! = (n� 1)(n� 2)!� (n� 2)(n� 3)!

= (n� 1)[(n� 2)!� (n� 3)!] + (n� 3)!

= (n� 1)N (1)(n� 1) + (n� 3)N (0)(n� 1) , (6.33)

where N (0)(n) = (n� 3)! is the number of solutions for the n particle tree-level scattering
equations. This recursion relation will be useful for the following proof.

Proof. Now, to find the recursion relation for the number of solutions, let us consider the
soft limit of the loop scattering equation by taking kn ! ⌧kn. This make the one loop
scattering equations become

Ei =
X

j 6=n

ki · kj
�ij

+
l · ki
�i+
� l · ki

�i�
+ ⌧

ki · kn
�in

E± = ±
⇣X

j 6=n

l · kj
�±j

+ ⌧
l · kn
�±n

⌘

En = ⌧
⇣X

j 6=n

kn · kj
�nj

+
l · kn
�n+

� l · kn
�n�

⌘
, . (6.34)

Now, we can consider the two dominance balances in the limit ⌧ ! 0: the first balance
with all the terms in En are of order ⌧ and the second balance where the marked points
�n, �+, and �� are degenerated.
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Figure 6.2: The geometric interpretation of the reparametrization in (6.38) as the subsphere X
bubbling-o↵ from the main Riemann sphere �. Under the SL(2,C) invariance, we can gauge fix

three marked points on each sphere.

Balance 1 By taking the limit ⌧ ! 0, all scattering equations, except En, reduce to
the loop scattering equations for (n � 1) particles. In this dominance balance, we let all
the terms in En have the same order. This allow us to express En as an n � 1 degree
polynomial in �n,

X

j 6=n

kn · kj
n�1Y

A=1,±
A 6=j

�nA + l · kn
n�1Y

A=1,�

�nA � l · kn
n�1Y

A=1,+

�nA = 0 , (6.35)

where the ± in the products indicate the �±. This polynomial looks naively like a degree n
polynomial, but the leading order vanishes since the coe�cient of �n

n is
P

ki ·kn+l�l = 0,
making it a degree n� 1 polynomial in �n. Thus, there are n� 1 solutions for �n in this
dominance balance, hence we pick up the term

(n� 1)N (1)(n� 1) . (6.36)

Balance 2 The other dominance balance is more di�cult. It is achieved by reparametriz-
ing �n and �± as

�± = �J + "X± (6.37)

�n = �J + "Xn (6.38)

where �J is the junction point and X’s are the coordinates on the subsphere. This
reparametrization has a geometric interpretation as the bubbling-o↵ of the Riemann
sphere into a sub-sphere, as illustrate in Fig. 6.2. Substituting the reparametrized �n

and �± into equations (6.34), give the relations

E± = ±
⇣X

j 6=n

l · kj
�Jj

⇣
1� "

X±

�Jj
+ "2

X2

±

�2

Jj

⌘
+

⌧

"

l · kn
X±n

⌘
+O("3)

En = ⌧
X

j 6=n

kn · kj
�Jj

⇣
1� "

Xn

�Jj
+ "2

X2

n

�2

Jj

⌘
+

⌧

"

⇣ l · kn
Xn+

� l · kn
Xn�

⌘
+O("3), (6.39)

47



Figure 6.3: The geometric interpretation of the reparametrization in (6.40) as the subsphere Y
bubbling-o↵ from the sphere X.

telling that X+ = X� at leading order. The parametrization must then include another
order

�± = �J + "X+ + "̂Y± . (6.40)

where we are allowed to do a gauge fixing to set Y+ = 0. This modification correspond
to the point �+ and �� bubbling o↵ into another subsphere as illustrated in fig 6.3. This
make the expressions in (6.39) become

E� = �
X

j 6=n

l · kj
�Jj

⇣
1� "

(X+ + "̂Y�)

�Jj
+ "2

(X+ + "̂Y�)2

�2

Jj

⌘
� ⌧

"

l · kn
X+n

⇣
1� "̂Y�

X+n
+

"̂2Y 2

�

X2
+n

⌘
+O("3)

E+ =
⇣X

j 6=n

l · kj
�Jj

⇣
1� "

X+

�Jj
+ "2

X2

+

�2

Jj

⌘
+

⌧

"

l · kn
X+n

⌘
+O("3)

En = ⌧
X

j 6=n

kn · kj
�Jj

+
⌧ "̂

"

⇣ l · knY�

X2
n+

⌘
+O("). (6.41)

A short calculation can be done to show that

E� = �
 
X

j 6=n

l · kj
�Jj
�
X

j 6=n

l · kj
�2

Jj

"X+ +
X

j 6=n

l · kj
�3

Jj

"2X2

+
+

⌧

"

l · kn
X+n

+ 2
X

j 6=n

l · kj
�3

Jj

"2"̂X+Y�

+
X

j 6=n

l · kj
�3

Jj

"2"̂2Y 2

�
�
X

j 6=n

l · kj
�2

Jj

""̂Y� �
⌧ "̂

"

l · knY�

X2
+n

+
⌧ "̂2

"

l · knY 2

�

X3
+n

!
. (6.42)

On the back-to-back limit, we expect that E+ and E� are also back-to-back i.e. E� ⇠ �E+.
The first four terms of E� give the correct back-to-back expression, so we require that the
rest of the terms that are absent in E+ to vanish. This can be achieved by imposing that
""̂ and ⌧ "̂/" are of the same order, so that " ⇠ ±⌧ 1/2.
Using the soft limit, E+ gives

E+ =
X

j 6=n

l · kj
�Jj

, (6.43)
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which is an (n�3) degree polynomial in �J , giving exactly the n�3 solutions for �J , and
En imposes "̂ ⇠ ". Therefore, this dominance balance pick up the term

(n� 3)N (0)(n� 1) . (6.44)

Balance 3 However, if we suppose that the term ⌧ "̂/" is sub-leading instead, we must
have " ⇠ ±⌧x for x < 1/2. Then, in E+ we would get the same (n� 3) degree polynomial
in �J , and in E� the leading order vanish by the conditions obtained from E+. The
sub-leading of E� now goes as

0 =
X

j 6=n

l · kj
�2

Jj

, (6.45)

which is certainly a di↵erent equation, hence would give contradicting solutions to the
n � 3 degree polynomial in �n obtained from E+. Therefore this is not a dominance
balance.
The recursion relation for the number of solutions to the one loop scattering equation
with n external particles is therefore

N (1)(n) = (n� 1)N (1)(n� 1) + (n� 3)N (0)(n� 1) . (6.46)

Since the initial value of this recursion is N (1)(4) = 4, similar to the the initial value of
(6.9), they are the same recursion relation.

We will see in the next chapter that some of the feature here, especially the second
balance, will reappear in the spinorial version.
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Chapter 7

Number of Solutions at One-Loop 2:
Loop Polarized Scattering Equations

The other method of calculating one loop amplitude that will be the subject of this
project is the spinor formalism. This formula for the one-loop superamplitude was recently
proposed in [14], and it sparks our curiosity on its number of solutions and its di↵erence
or similarity it to the number of solutions from the CHY formalism. The formula for one
loop superamplitude was proposed in [14] as

A(1)

4D,n =

Z
d4l

l2

X

states

A(0)

o↵-shell,n+2

���
F.L.

, (7.1)

where A(1)

4D,n denotes the n-point one loop amplitude in 4d and A(0)

o↵-shell,n+2

���
F.L.

denotes

the o↵-shell (n+2) point tree-level amplitude, where the +2 are the o↵-shell momenta, on
the forward limit1. The details of this formula will be discussed in the following section.

The o↵-shell superamplitude was obtained using a 6d twistor formula, and it is local-
ized on a set of constraint equations called the polarized scattering equation ([25], [26]).
In the following section, a brief introduction to the polarized scattering equation will be
presented, followed by the construction of the one loop amplitude of [14]. Then, we show
the progress on establishing the recursion relation for the number of solutions of the loop
polarized scattering equation, using the method of dominance balance.

The results were unexpected to us. To this point, we have found two dominance
balances for the loop polarized scattering equations. The first part give a result that
looks like the number of solutions from CHY formalism, and the other part give a result
that looks like the number of solutions from RSVW formula. This is interesting because
the CHY formalism is independent of the MHV degree, but RSVW formula depends on
the MHV degree.2

1
In supersymmetric theory, the sum over states is generalized into Grassmannian integrals. In this

project, we are mostly interested in the constraints, so the Grassmannian integrals can be set aside.
2
The number of solutions for the tree polarized scattering equations is also independent of the MHV

degree, given by (n� 3)!.
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7.1 Polarized Scattering Equations

In light of [26], the loop polarized scattering equation can be obtained by looking at the
scattering equation with 6d spinors. For simplicity, we embedded the 6d spinors into 4d
and works with them instead.3 In order to see what o↵-shell momenta looks like in the
spinor-helicity formalism, we can first notice that the o↵-shell momentum l can be written
as a sum over two null momenta: l = p1 + p2 and p2

1
= 0 = p2

2
. In the spinor-helicity

formalism , the two null momenta can be written as two spinors. For convenience, we
label them as

p1 = ↵
1
̃↵̇
2

and p2 = �↵
2
̃↵̇
1
. (7.2)

In this parametrization, the indices 1, 2 are the label for the 4d massive little group
SL(2,C). The group SL(2,C) has a natural metric ✏ab, so we can write the o↵-shell
momentum as the antisymmetric product of the spinors with two indices:

l↵↵̇ := a
↵̃

b
↵̇✏ab , (7.3)

with
a
↵

b
�✏ab := M✏↵� and ̃a

↵̇̃
b
�̇
✏ab := M̃✏↵̇�̇ , (7.4)

so that MM̃ = l2. We denote the inner product of the little group index with the double
brackets: va↵w

b
↵̇✏ab := ((v↵w↵̇)). The spinors with two indices are then defined as

a
↵ =

�
1

↵,
2

↵

�
and ̃a

↵̇ =
�
̃1

↵̇, ̃
2

↵̇

�
. (7.5)

This notation allow us to embed the massless momenta in the new spinor notation as

a
↵ = (0,↵) and ̃a

↵̇ = (̃↵̇, 0) , (7.6)

so that we have the usual spinor-helicity decomposition: ((↵̃↵̇)) = ↵̃↵̇ = k↵↵̇.
In [14], the forward limit of the loop momenta was proposed, and it can be written in this
notation as

a
+,↵ =

�
1

+,↵,
2

+,↵

�
̃a
+,↵̇ =

�
̃1

+,↵̇, ̃
2

+,↵̇

�
, (7.7)

a
�,↵ =

�
1

+,↵,�2

+,↵

�
̃a
�,↵̇ =

�
̃1

+,↵̇,�̃2

+,↵̇

�
, (7.8)

so that l↵↵̇ = ((+↵̃+↵̇)) and �l↵↵̇ = ((�↵̃�↵̇)) = �((+↵̃+↵̇)).
The polarization can be defined as

✏�a = (0, 1) and ✏+a = (1, 0) , (7.9)

up to the reference choice. This allow us to write the product of the polarization and the
spinors as

✏i,↵ = ((✏�i,↵)) = i,↵ ✏̃i,↵̇ = ((✏�̃i,↵̇)) = 0 i 2 � , (7.10)

✏p,↵ = ((✏+p,↵)) = 0 ✏̃p,↵̇ = ((✏+̃p,↵̇)) = ̃p,↵̇ p 2 + , (7.11)

✏+,↵ = ((✏++,↵)) = 1

+,↵ ✏̃+,↵̇ = ((✏+̃+,↵̇)) = ̃1

+,↵̇ for + l , (7.12)

✏�,↵ = ((✏��,↵)) = 2

�,↵ = �2

+,↵ ✏̃�,↵̇ = ((✏�̃�,↵̇)) = ̃2

�,↵̇ = �̃2

+,↵̇ for� l . (7.13)

3
See Appendix D for more details on the 6d spinors and the embedding.
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This definition of the polarization allow us to write the polarization vectors for the massless
momenta as ✏i + ✏̃i, and allow us to easily generalized them for the massive momenta.

Now that we have set-up the notation for the spinors, we can begin to introduce the
polarized scattering equations. For tree level, the polarized scattering equations are given
by

Ei↵ = ui,a�
a
↵(�i)� vi,a

a
i,↵ and Ẽi,↵̇ = ui,a�̃

a
↵̇(�i)� vi,a̃

a
i↵̇ , (7.14)

where there are now 4n equations and five variables (�i, ui,a, vi,a) associating to each
particles and the map �a

↵(�) and �̃a
↵̇(�) are given by

�a
↵(�) =

nX

i=1

ua
i ✏i↵

� � �i
and �̃a

↵̇(�) =
nX

i=1

ua
i ✏̃i↵̇

� � �i
. (7.15)

The polarized scattering equations also imply the scattering equations, in fact, the con-
ditions

ui,a�
a
↵(�i) = vi,a

a
i,↵ and ui,a�̃

a
↵̇(�i) = vi,a̃

a
i↵̇ , (7.16)

are the relations obtained from the scattering equations. It presents linear relations
between (�a

↵(�), �̃
a
↵̇(�)) and (, ̃) using new scale-invariant variables ui and vi. From the

scale invariance, we can normalize vi using ((vi✏i)) = 1.
The measure of the integral formula on the constraints of the polarized scattering equation
and the normalization is given by

dµpol

n :=

Qn
i=1

d�id2uid2vi
vol(SL(2,C)� ⇥ SL(2,C))

nY

i=1

� (hvi✏ii � 1) �4 (uia�
a
A(�)� via

a
iA) , (7.17)

where the quotients are over Riemann sphere’s SL(2,C)� and the little group’s SL(2,C).
The integral formula for the scattering amplitude is then

An =

Z
dµpol

n In , (7.18)

with

In =
Ispin 1

n

�12�23...�n1
, (7.19)

where the Ispin 1

n is a function of Maxwell polarization data. 4

The loop polarized scattering equations are presented in [14], using the formula above
to incorportate the o↵-shell momenta. Then, the forward limit of the o↵-shell momenta
were taken and thus the formula presented above was obtained as

A(1)

4D,n =

Z
d4l

l2

X

states

A(0)

o↵-shell,n+2

���
F.L.

. (7.20)

where the two additional particles are the two legs of the o↵-shell loop momenta, with
the forward limit (D.13).

4
This could be extend to describe superamplitudes by including an extra supersymmetric factor, see

[26]
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The n+ 2 particles loop polarized scattering equations in the o↵-shell tree amplitude are
then given by

Ei↵ = ui,a�
a
↵(�i)� via

a
i,↵ and Ẽi,↵̇ = ui,a�̃

a
↵̇(�i)� vi,a̃

a
i↵̇ , (7.21)

where i 2 {1, 2, ..., n,+,�}. The loop polarized scattering equations (7.21) with �a
↵(�A)

and �̃a
↵̇(�A) written explicitly then take the form of

Ei↵ = ui,a

⇣ nX

i=1

ua
i ✏i↵
�ii

+
ua
+
✏+↵

�+i
+

ua
�
✏�↵

��i

⌘
� vi,a

a
i↵ (7.22)

Ẽi↵̇ = ui,a

⇣ nX

i=1

ua
i ✏̃i↵̇
�ii

+
ua
+
✏̃+↵̇

�+i
+

ua
�
✏̃�↵̇

��i

⌘
� via̃

a
i↵̇ . (7.23)

In the next sections, we will try to establish a recursion relation for the number of solutions
of the loop polarized scattering equations. We will take the soft limit of the loop polarized
scattering equations, then solve for the number of solutions on the dominance balances.

7.2 Soft Recursion of the Loop Polarized Scattering
Equations

We will now put to use what we have done in the previous chapters. In chapter 5, we have
calculated spinorial quantities to solve for the number of solutions for RSVW, while in
chapter 6 we have experienced the calculation for one loop scattering equations. For the
one loop polarized scattering equations, we expect it to show both features. Currently,
we have found that there are two dominance balances: 1) similar to the balance in RSVW
that all the terms in En and Ẽn are of the order ⌧ and 2) similar to the second balance of
the one loop CHY that was interpreted as the bubbling-o↵ of subspheres.

In order to be prepared for the upcoming calculation, we ran a numerical calculation
for the one loop polarized scattering equations with four particles, and it was found that
there are two solutions for all MHV sectors. However, beyond four particles, solving
numerically is too di�cult for the standard algorithm, and hence the search was discon-
tinued. Nevertheless, this result does not imply that the number of solutions are the same
for all MHV sectors if we go beyond four particles. However, as will be described in the
following section, the recursion relation for the loop polarized scattering equations seems
to depend on the tree level amplitude in the second balance, hinting that it will depend on
the MHV degree. This shows an interesting mix of an MHV indepedent CHY amplitude
and MHV dependent spinor-helicity formalism.

The numerical results also hint another interesting feature. From supersymmetric
Ward identity (see C), the amplitude in the all plus, all minus, one plus, and one minus
sectors vanish at all loop levels. Since there exist solutions from the constraint equations,
we expect that the other parts of the formula must vanish for these MHV sectors. We are
currently investigating whether the integrand vanishes for these sectors.

Before diving into the calculation, we want to give a brief summary of the results at
this stage.
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7.2.1 Summary of the Results

The aim of the following calculation is that, to establish a recursion relation for the number
of solutions to the loop polarized scattering equations, we consider the dominance balances
of the constraints under the soft limit. At this point, we discuss two dominance balances.
The first balance is achieved by having un ! ⌧ ûn, so that all the terms in En and Ẽn
are of the same order. This balance contributes (n � 1)N (1)

pol
(n � 1, k) solutions to the

recursion relation, in parallel with the first balance of the loop CHY. The second balance is
achieved by having un ! ⌧ ûn, un ! ⌧ û± along with the reparametrization �n = �J+⌧Xn

and �± = �J + ⌧X± + ⌧ 2Y±, also mirroring the second balance of the loop CHY, which
can be interpreted geometrically as fig. 6.3. A polynomial in �J is obtained from this
balance, but we have not concluded what the contribution to the recursion would look
like. Combining the contributions of the two balances, we have now picked up two terms
in the recursion relation:

N (1)

pol
(n, k) � (n� 1)N (1)

pol
(n� 1, k) + c(n)N (0)

pol
(n� 1, k) + ... , (7.24)

where the coe�cient c(n) of the second term is yet to be determined and we expect to
find more terms from other dominance balances. While these two dominance balances
closely resemble the dominance balances of the loop CHY in the last section, we expect
that switching the helicity of the nth and kth particle will contribute two more dominance
balances: one with all terms in the nth equations of the same order and another one by
reparametrizing the sphere.

7.2.2 Balance 1

In this balance, we will try to look at the loop polarized scattering equations under the
limits n↵ ! ⌧n↵ and ̃n↵̇ ! ⌧ ̃n↵̇, with ⌧ ! 0. On the limit, we will try to finding the
number of solutions using the recursion. The polarized scattering equations are then

Ei↵ = uia

⇣ kX

j=1,j 6=i

ua
jj↵

�ji
+

ua
+
1

+↵

�+i
+

ua
�
2

�↵

��i

⌘
� vi2i↵ (7.25)

Ẽi↵̇ = uia

⇣ n�1X

q=k+1

�
ua
q ̃q↵

�qi
� ⌧

ua
n̃n↵

�ni
+

ua
+
̃1

+↵

�+i
+

ua
�
̃2

�↵

��i

⌘
� ̃i↵ (7.26)

En↵ = una

⇣ kX

j=1

ua
jj↵

�jn
+

ua
+
1

+↵

�+n
+

ua
�
2

�↵

��n

⌘
+ ⌧n↵ (7.27)

Ẽn↵̇ = una

⇣ n�1X

q=k+1

�
ua
q ̃q↵

�qn
+

ua
+
̃1

+↵

�+n
+

ua
�
̃2

�↵

��n

⌘
� ⌧vn1̃n↵ (7.28)

E±↵ = u±,a

⇣ kX

j=1

ua
jj↵

�j±
+

ua
⌥
c
⌥↵

�⌥±

⌘
� v±,a

a
pm↵ (7.29)

Ẽ±↵̇ = u±,a

⇣ n�1X

q=k+1

�
ua
q ̃q↵

�q±
� ⌧

ua
n̃n↵

�n±
+

ua
⌥
̃c
⌥↵

�⌥±

⌘
� v±,a̃

a
±↵ . (7.30)
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where c = 1 for + and ̃+, and c = 2 for � and ̃�. Apart from the nth particle’s
equations, the other loop polarized scattering equations reduce to those of n� 1 external
particles, similar to what happened to the refined scattering equations. We proceed with
the same strategy by looking at the nth particle’s equations, a dominance balance can be
achieved by having un ! ⌧ ûn:

En↵ = ⌧ ûna

⇣ kX

j=1

ua
jj↵

�jn
+

ua
+
1

+↵

�+n
+

ua
�
2

�↵

��n

⌘
+ ⌧n↵ , (7.31)

Ẽn↵̇ = ⌧ ûn,a

⇣ n�1X

q=k+1

�
ua
q ̃q↵

�qn
+

ua
+
̃1

+↵

�+n
+

ua
�
̃2

�↵

��n

⌘
� ⌧vn1̃n↵ . (7.32)

The two loop polarized scattering equations are actually for equations with four unknown
variables: �n, û1

n, û
2

n, and vn1. Performing the same trick, we dot in n and 1 to (7.31)
and ̃n and ̃1 to (7.32) to separate the four equations:

0 =
kX

j=1

((ûnuj))
⌦
jn

↵

�jn
+

((ûnu+))
⌦
1

+
n

↵
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, (7.34)
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The last equation, (7.36), can be used to solve for vn1. By looking at the first equation
of the four, (7.33), and expanding the contraction of the little group index explicitly, one
can see that

0 =
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(û1
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j)

⌦
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j
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⌘ , (7.37)

giving a relation between û1

n and û2

n. We can obtain a relation similar to this by using
the tilded equation (7.35):
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n = û2

n

✓Pn�1

q=k+1
u2

q
[qn]
�qn
� u2

+

[+1n]
�+n
� u2

�

[�2n]
��n

◆

⇣Pn�1

q=k+1
u1
q
[qn]
�qn
� u1

+

[+1n]
�+n
� u1

�

[�2n]
��n

⌘ , (7.38)

both can be used to solve for �n in the next process.5

Now, we can solve for �n by substituting (7.37) in (7.35) and by noticing that

u2

q

Pk
j=1,± u1

j

⌦
jn
↵

�jn

Pk
j=1,± u2

j

⌦
jn
↵

�jn

� u1

q =
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j=1,±

⌦
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↵

�jn
((uquj)) . (7.39)

5
Note that in these relations, if one of the component of ûn vanishes then the �n obtained in (7.38)

will not coincide with the one from (7.37).
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These allow us to simplify (7.35) as 6

0 =
kX

i=1,±

n�1X

q=k+1,�±

((ujuq))

⌦
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qn
⇤

�jn�qn
. (7.40)

This relation can be written as a polynomial of degree n� 1 in �n,

kX

i=1,±

n�1X
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((ujuq))
⌦
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↵⇥
qn
⇤ n�1Y

A=1,±
A 6=j,q

�An = 0 . (7.41)

Thus, the number of solutions from this dominance balance pick up the term

(n� 1)N (1)

pol
(n� 1) . (7.42)

Note that this term is independent of the MHV degree.

7.2.3 Balance 2: Bubbling O↵

Now, we will proceed in a similar manner to the second balance of the proof presented in
the last chapter. This dominance balance can be achieved by reparametrizing �n and �±,
as done in (6.37) and (6.38). We can first consider the equations for i’s and p’s,
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⇣ kX

j=1,j 6=i

ua
jj↵

�ji
+

ua
+
1

+↵

�Ji

⇣
1 + "̃

X+

�Ji

⌘
+

ua
�
2

�↵

�Ji

⇣
1 + "̃

X�

�Ji

⌘⌘
� vi2i↵

= uia

⇣ kX

j=1,j 6=i

ua
jj↵

�ji
+

1

�Ji

�
ua
+
1

+↵ + ua
�
2

�↵

�
+O("̃)

⌘
� vi2i↵ (7.43)
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Ep↵ = upa
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Ẽp↵̇ = upa
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(7.46)

and as we have expected, their n-dependent terms drop o↵ under the limit and their
± terms group, similar to the loop scattering equations. The loop polarized scattering
equations for particles 1, ..., n � 1 reduced to the loop polarized scattering equations for

6
The notation �± in the sum means that the term with index ± must be added with a negative sign.
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n� 1 external particles.

Using the same procedure, we consider the loop polarized scattering equations for the
n-th particle,

En↵ = una
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In the loop scattering equations, the nth particle’s equations under the limit ⌧ ! 0 result
in a polynomial of degree (n� 3) in �J . We expect that the end result of this to also be
a degree (n� 3) polynomial in �J .

The loop polarized scattering equations for the o↵-shell particles under the reparametriza-
tion are given by
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Ẽ±↵̇ = u±,a
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For the loop scattering equations, the terms associated to the o↵-shell particles drop out
in i = 1, ..., n� 1 equations. For the loop polarized scattering equations, this can also be
achieved by having u± ! sû± where s is a soft factor depending on ⌧ and "̃. Under this
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scaling, the polarized scattering equations become
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E±↵ = s
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To determine how s depends on "̃, we can look at the constraints that we have on them.
There are two terms that we must be careful of in determining the weight of s, they are

s2

"̃

((û±û⌥))

X±

c
⌥↵ , (7.57)

from ± particle’s equations and

s
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⇣((unû+))̃1

+↵

X+n
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((unû�))̃2

�↵

X�n

⌘
= 0 , (7.58)

from the nth equations. We imposed that they must vanish at the leading order, similar
to the situation in loop scattering equations. These equations diverge for s < "̃. Even
though the first equation will not diverge for "̃1/2 < s < "̃, the equation (7.58) is not
satisfied since the terms inside the parenthesis cannot cancel with each other because the
’s are linearly independent. This suggest that s must be of order "̃. For the homogeneity
of the constraints En and Ẽn, we must also have that un ! ⌧ ûn.

In E± and Ẽ± with s ⇠ "̃,

E±↵ = "̃
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((û±ûn))̃n↵̇

Xn±
+ "̃
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one can see that every terms, except the last, contain soft factors. Under the limit "̃! 0
and ⌧ ! 0, all terms would vanish and this would force v± = 0. We must then find a
dominance balance that does not let every term except the last vanish i.e. one of the term
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become of order O(1). The dominance balance can be achieved by reparametrizing for
the second time

X+ = X+ + "̂Y+ (7.61)

X� = X+ + "̂Y� (7.62)

with Y+ = 0 as we have done in the previous section. E+ then have two terms that could
possibly be of O(1):

"̃

"̂

((û+û�))2

�↵

Y�

� v+a
a
+↵ = 0 , (7.63)

which can be achieved by requiring "̃/"̂ ⇠ 1. By independence of the kappas, one must
have that

0 = �((û+û�))

Y�

� v+2 and 0 = v+1 . (7.64)

With the normalization condition ((v+✏+)) = 1, or explicitly v+a = (v+1,�1), the first
equation becomes

((û+û�))

Y�

= 1 , (7.65)

giving a nice constraint relating the products of u± and the marked point Y�. We can
proceed in a similar fashion to E�, giving the conditions

0 =
((û�û+))

�Y�

� v�1 and 0 = v�2 . (7.66)

With the normalization condition ((v�✏�)) = 1, or explicitly v�a = (1, v�2), this give the
same relation

((û+û�))

Y�

= 1 . (7.67)

Now that we have done the second reparametrization, we want to find some relationship
of the soft parameters "̃ and ⌧ . In the last chapter, we determined the order of the soft
parameters by requiring the some terms in E� to vanish. These are the terms that do
not agree back-to-back with E+. In this case, we can explicitly substitute the second
reparametrization and restore the O("̃) in Ẽ�, this gives the relation
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We can set aside the last two terms vanishes at O(1), the rest of the terms can be com-
pared to those of Ẽ+. The terms that are not presented in Ẽ+ are the terms containing Y�

in the numerator. Requiring that they must vanish together at the same order imposes
✏̃3 ⇠ ⌧ 2✏̃, which simplifies to "̃ ⇠ ⌧ .7

7
Note that ⌧ here is actually ⌧1/2 of the ⌧ in the loop scattering equations, since kn = n̃n.
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Now that we have obtained some relations from the constraints E±, we can proceed
to find the solutions for �n, un,a, and vn1. First, consider the nth particle’s polarized
scattering equations, which are now
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(7.70)

These are four equations that can be used to solve for the four variables. Similar to the
process we did with the refined scattering equations, we separate four of them by dotting
in n and 1 to En, and ̃n ̃1 to Ẽn:
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((ûnuj))
⌦
jn
↵

�jJ
+

1

X+n

⇣
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The last equation, (7.74), can then be used to solve for vn1:
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Like in the previous section, we can use either (7.71) or (7.73) to solve for a relation
between û1

n and û2

n. Here, (7.71) were chosen to be used :
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(û1

nû
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giving us the relation
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Substituting this relation into (7.73) and with some calculation, we obtain
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This equation can be tremendously simplified using the other loop scattering equations.
First, consider the term with 1/X+n:
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+((û�uq)v)

⌦
�2n

↵⌘
+

kX

j=1

⌦
jn
↵

�jJ

⇣
((ujû+))
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The left term looks like a part of
⇥
nẼ+

⇤
:

⇥
nẼ+

⇤
=

n�1X

q=k+1

�
((u+uq))

⇥
nq
⇤

�q+
+

((u+u�))
⇥
n�2

⇤

��+

� v+1

⇥
n+1

⇤
� v+2

⇥
n+2

⇤
,

using the new parametrizations: �± = �J + ⌧X+ + ⌧ 2Y± where Y+ = 0, this equation
becomes

⇥
nẼ+

⇤
=

n�1X

q=k+1

�
((u+uq))

⇥
nq
⇤

�qJ
+

((u+u�))
⇥
n�2

⇤

⌧ 2Y�

� v+1

⇥
n+1

⇤
� v+2

⇥
n+2

⇤
.

Now, we use the scaling and form of the variables obtained previously, which are u± ⇠ ⌧ û±,
v+1 = 0 + ⌧ v̂+1, and v+2 = �((û+û�))/Y� = �1 , this allow us to group some terms
together as

� ⌧
⇣ n�1X

q=k+1

�
((û+uq))

⇥
nq
⇤

�qJ
+ v̂+1

⇥
n+1

⇤⌘
+

((û+û�))
⇥
n�2

⇤

Y�

+
((û+û�))

Y�

⇥
n+2

⇤
. (7.79)

The two terms on the right of order O(1) cancel each other, and what’s left from the O(⌧)
gives

n�1X

q=k+1

�
((û+uq))

⇥
nq
⇤

�qJ
= �v̂+1

⇥
n+1

⇤
. (7.80)

We can repeat the same procedure on
⇥
nẼ�

⇤
,
⌦
E+n

↵
, and

⌦
E�n

↵
, giving the relations

n�1X

q=k+1

((û�uq)) [nq]

�qJ
= v̂�2

⇥
n+2

⇤

kX

j=1

((û+uj)) hjni
�jJ

= v̂+1

⌦
+1n

↵

kX

j=1

((û�uj)) hjni
�jJ

= �v̂�2

⌦
+2n

↵
. (7.81)
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Substituting all of these into the original equation, one can see that this term vanishes:

�v̂+1

⇥
n+1

⇤ ⌦
+1n

↵
+ v̂�2

⇥
n+2

⇤ ⌦
�2n

↵
� v̂+1

⌦
+1n

↵ ⇥
+1n

⇤
+ v̂�2

⌦
+2n

↵ ⇥
�2n

⇤
= 0 .

(7.82)

Therefore, the second and the third sum in (7.78) cancels each other.

For the last term in (7.78) with X�2

+n, we can rewrite them without the factor ((û�û+))
as

⌦
�2 n

↵⇥
+1 n

⇤
�
⌦
+1 n

↵⇥
�2 n

⇤
= �

⌦
+2 n

↵⇥
+1 n

⇤
+
⌦
+1 n

↵⇥
+2 n

⇤

=
⌦
+1 n

↵⇥
n+2

⇤
�
⌦
+2 n

↵⇥
n+1

⇤

= kn↵↵̇
⇣
1↵
+
̃2↵̇
+
� 2↵

+
̃1↵̇
+

⌘

= kn↵↵̇✏ab
a↵
+
̃b↵̇
+

= kn · l . (7.83)

The equation in (7.78) can now be simplified to

kX

j=1

n�1X

q=k+1

⇥
nq
⇤

�qJ

⌦
jn
↵

�jJ
((ujuq)) +

((û+û�))

X2
+n

kn · l , (7.84)

and as a polynomial in �n, with ((û+û�)) = Y�,

kX

j=1

n�1X

q=k+1

⌦
jn
↵⇥
nq
⇤
((ujuq))

n�1Y

A=1
A 6=j,q

�AJ +
Y�

X2
+n

kn · l
n�1Y

A=1

�AJ . (7.85)

The residual term looks exactly like in bubbling o↵ the CHY scattering equations in
(6.41). Currently, (7.85) is not the expected polynomial of degree (n� 3) because of the
residual term, which we expected it to cancel with the solution of the other dominance
balance.

For completeness, we can solve for û2

n by substituting the relation (7.77) into (7.72).
After some calculation, we have

0 = û2

n

"
kX

i=1

kX

j=2

⌦
j1
↵⌦
in
↵

�jJ�iJ
((uiuj)) +

1

X+n

 
kX

j=2

((û+uj))

�jJ

⌦
j1
↵⌦

+1 n
↵

+
kX

j=2

((û1

�
uj))

�jJ

⌦
j1
↵⌦
�2 n

↵
+

kX

i=1

((uiû+))

�iJ

⌦
+1 1

↵⌦
in
↵
+

kX

i=1

((uiû�))

�iJ

⌦
�2 1

↵⌦
in
↵
!

+
1

X2
+n

 
((û�û+))

⌦
+1 1

↵⌦
�2 n

↵
+ ((û+û�))

⌦
+1 n

↵⌦
�2 1

↵
!#

+

 
kX

j=1

⌦
jn
↵

�jJ
u2

i +
1

X+n

⇣
û2

+

⌦
+1 n

↵
+ û2

�

⌦
�2 n

↵⌘
!
⌦
n1
↵
. (7.86)
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Similar to the previous derivation, the terms with X�1

+n vanish via the relations (7.80) and
(7.81). For the term with 1/X2

+n, one can use the Schouten identity to simplify the terms:

((û�û+))
⌦
+1 1

↵⌦
�2 n

↵
+ ((û+û�))

⌦
+1 n

↵⌦
�2 1

↵

= ((û+û�))
⇣⌦

+1 1
↵⌦

+2 n
↵
+
⌦
+1 n

↵⌦
1 +2

↵⌘

= ((û+û�))
⌦
+1 +2

↵⌦
n1
↵
. (7.87)

Thus, (7.86) simplifies and give a solution for û2

n

û2

n =
⌦
1n
↵

Pk
j=1

hjni
�jJ

u2

i +
1

X+n

⇣
û2

+
h+1ni+ û2

�
h�2ni

⌘

Pk
i=1

Pk
j=2

hj1ihini
�jJ�iJ

((uiuj)) +
1

X2
+n
((û+û�)) h+1+2i hn1i

, (7.88)

and û1

n can be obtained by the relation (7.77)

û1

n =
⌦
1n
↵

Pk
j=1

hjni
�jJ

u1

i +
1

X+n

⇣
û1

+
h+1ni+ û1

�
h�2ni

⌘

Pk
i=1

Pk
j=2

hj1ihini
�jJ�iJ

((uiuj)) +
1

X2
+n
((û+û�)) h+1+2i hn1i

. (7.89)

The calculation that has been completed up to this point has found one of the term
in the recursion relation for the number of solutions from the first dominance balance.
The term is of the form (n � 1)N (1)(n � 1), resembling the term obtained in the first
dominance balance in the last chapter. Up to this point, the polynomial in �n solved in
second dominance balance have not give the term that we have been expecting. In fact,
the residual term with kn · l resembles the term that vanishes under the soft limit of the
loop scattering equations.
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Chapter 8

Conclusion and Discussion

In this project, we presented the proof for the conjecture on the number of solutions of
the refined scattering equations that it is the Eulerian numbers. Moreover, we proved in
details for the number of solutions to the loop scattering equation using two methods.
Lastly, we showed some work in progress toward the proof for the one-loop polarized
scattering equations.

Preceding the proofs, this project reviews the physical and mathematical foundations
of scattering amplitude and twistor theory. These include the spinor-helicity formalism
that provides understanding on the MHV sectors of the amplitude. Then, the twistor
theory was reviewed to lay the foundation for describing general helicity amplitudes using
RSVW formula.

The number of solutions to the refined scattering equation is known in the field to
be the Eulerian number E(n � 3, k � 2). However, there was no explicit proof of the
conjecture. The first objective of this project is to show that the number of solutions of
refined scattering equation satisfies the recursion relation for the Eulerian numbers. This
was proved by induction, using the method of dominance balance to solve for the number
of solutions in each sector. In chapter 5, it was shown that there are two dominance
balances of the refined scattering equations, and the results from solving the two balances
are degree n � k � 1 and k � 1 polynomial in �n. The number of solutions of �n gives
the recursion relation N (0)(n, k) = (k � 1)N (0)(n� 1, k) + (n� k � 1)N (0)(n� 1, k � 1),
which is the same recursion relation for the Eulerian numbers.

After proving the tree-level number of solution, we ambitiously head on to use a
similar method at one loop. The one loop amplitude in 4d can be obtained from a tree
level amplitude in high dimension by dimensional reduction. We choose to work with two
formulations of the higher dimensional amplitude, that is using the CHY (chapter 6) and
the 6d twistor formulation (chapter 7).

Chapter 6 provides a short introduction to the CHY formula, in which the scattering
equations play an important role. The scattering equations, like the refined scattering
equations, capture the localization features on the Riemann sphere, but they depend on
the momentum rather than the spinor decomposition of the momentum. This allows
the CHY formalism to work for arbitrary dimensions. The one-loop extension of the
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CHY can be achieved by working on a nodal Riemann sphere, where the nodal points
add two more marked points to the sphere. The momentum was embedded in higher
dimensions, so that the 4d massive loop momentum is “on-shell”, and the higher dimension
scattering equations can be used. Embedding the high dimension scattering equations
into 4d loop scattering equations requires the forward limit so that the loop momentum
flows in and out of the two nodal points. We take the soft limit of the nth particle and
the forward limit, then solve for the expression for the variables associated to the nth

particle for each dominance balance. This allow us to establish a recursion relation for
the one loop scattering equations by counting the number of solutions for each dominance
balance. The number of solutions for the one-loop CHY constraints was obtained as
N (1)(n) = (n � 1)! � (n � 2)! = (n � 1)N (1)(n � 1) + (n � 3)N (0)(n � 1), depending on
the number of solutions to the n� 1 particle amplitude of both one loop and tree level.

The 7th chapter presented some work in progress on finding the number of solutions
to the constraints of the one loop amplitude formula. The formula for one-loop super-
amplitudes was recently published during the period where the project is ongoing, so it
captures our interest to use similar techniques to establish a recursion relation for number
of solutions. In this formalism, the one-loop amplitude was calculated using the o↵-shell
tree amplitude in higher dimension, then reduce to 4d one-loop amplitude under a forward
limit. The constraints of this formula are called the loop polarized scattering equations.

Up to this point, we have found a term in the recursion relations for the number
of solutions from one of the dominance balances. It is of the form (n � 1)N (1)(n � 1),
resembling what we had from one of the dominance balance in the previous chapter.
Although the number of solutions for the other dominance balance is still unclear, this
dominance balance is achieved by reparametrizing the points �n and �±, also similar to
what have been done in the previous chapter. These features show that the number of
solutions has similar features to the one obtained for the loop CHY.

Also, the numerical results of four particle scattering give equal number of solutions
for all MHV sectors. This is not clear if this is the case, since from supersymmetry,
all plus/minus and one plus/minus amplitudes vanishes at all perturbative level. These
results spark curiosity on the behaviour of the loop polarized scattering equations. We
expected that the vanishing of these amplitudes must come from the integrand of the
formula. Up to this point, the terms in the recursion relation do not appear to split
by the MHV degree. Motivated by the refined scattering equations, we also expect the
number of solutions to split by the MHV degree. This can be further investigated by
considering the other dominance balances, such as switching the k and n particle.
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Appendix A

Method of Dominance Balance

This appendix will present the method of dominance balance following [27], as it will be
used in chapter 5-7.

There are two kinds of perturbation problems. The first kind is the one that most
physics students learned quite early, that is, the regular perturbation problem, where
the perturbation " does not qualitative change the problem much. For some algebraic
equations P (x) = 0, they are of the form P (x) + " = 0, and the solution can be found
by using a power series expansion of " as an ansatz. The second kind is where the
perturbation qualitatively change the problem. These can be solved asymptotically for a
solution at di↵erent regions of " called as the dominance balances. The expansion of the
solution will depends singularly on ".

A nice example given in [27] to distinguish these two problem is to consider an algebraic
equation

x3 � x = 0 , (A.1)

where the unperturbed solutions are x = ±1, 0. The regular perturbation of this equation
is given by

x3 � x+ " = 0 , (A.2)

and this can be solved by using a power series expansion

x = x0 + "x1 + "2x2 + ... . (A.3)

Plugging this into (A.2), matching the xs, we have the relations

O("0) : x3

0
� x0 = 0

O("1) : 3x2

0
x1 � x1 + 1 = 0

O("2) : 3x0x2 � x2 + 3x0x
2

1
= 0 . (A.4)

(A.5)
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Solving each of these would give

x0 = �1, 0, 1 (A.6)

x1 =
1

1� 3x2

0

=
1

2
, 1,

1

2
(A.7)

x2 =
3x0x2

1

1� 3x0

= � 3

16
, 0,

3

8
, (A.8)

(A.9)

and so on, to any order that we want. Therefore, the three roots of the equation are

x = 0 + "+O("3) (A.10)

x = 1 +
1

2
"+

3

8
"2 +O("3) (A.11)

x = �1 + 1

2
"� 3

16
"2 +O("3) . (A.12)

The regular perturbation of this equation can be done by, for example,

"x3 � x+ 1 = 0 . (A.13)

Using the power series, one can get

O("0) : x0 � 1 = 0

O("1) : x3

0
� x1 = 0

O("2) : 3x2

0
x1 � x2 = 0 , (A.14)

which gives only one of the three solution:

x = 1 + "+ 3"2 +O("3) . (A.15)

The other two solutions are “hidden” in the limit " and can be obtained by scaling the
variable di↵erently with powers of ". We introduce a new rescaled variable y

x =
y

�(")
(A.16)

and we want y ⇠ O(1) as " ! 0. This delta will be the scaling factor that depends on
some power of ". Substituting (A.16) into (A.13), we now have

"y3

�3
� y

�
+ 1 = 0 . (A.17)

To get the non-trivial solutions, we must balance the terms, meaning that we will look
the equation where some of its term are of the same order of magnitude. These balancing
of the terms are call finding the dominance balance. The first dominance balance that
will be chosen is to balance the first two terms, this mean that we want

"

�3
=

1

�
, (A.18)
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giving � ⇠ "1/2. For this dominance balance, (A.17) can be written as

y3

"1/2
� y

"1/2
+ 1 = 0! y3 � y + "1/2 = 0 . (A.19)

Solving this using the power series of y, we get

y = ±1� 1

2
"1/2 +O(") , (A.20)

and for x

x = ± 1

"1/2
� 1

2
+O("1/2) . (A.21)

These two solutions diverges at " ! 0, so these two solutions cannot be obtained from
solving directly as in the trivial case.

The other dominance balance that we can choose is to have the last two term be of
the same order

1

�
= 1 , (A.22)

giving � ⇠ 1. The solution for this case is just the one found in (A.15).

Choosing the first and the last to be of the same order gives

"

�3
= 1 , (A.23)

so in this dominance balance � ⇠ "1/3, giving

y3 � y

"1/3
+ 1 = 0 , (A.24)

with the second term of O("1/3), bigger than the terms that we balanced. This mean
we do not obtained a dominance balance any new solutions. Note that in some problem,
balancing all the terms is also a choice. Though, for this problem, it does not give a
dominance balance.
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Appendix B

Proof of Lemma 1

This appendix will present the proof to lemma 1, which states the following:

Lemma 1 The measure dµn,k is invariant of the choice of negative helicity particle and
depend on just the number of negative helicity particle.

Proof. First of all, we will make the assumption that �i and i are not transformed under
the switching of the particle, since they should satisfied the same scattering equation

X

j 6=i

ki · kj
�ij

= 0 , (B.1)

under the transformation.
We want to switch two particles’ helicity to show that the measure is invariant under the
relabelling of the particle. For this to coincide with the calculation in chapter 5, we switch
particles k and n, so that now particle n, 1, ..., k� 1 have negative helicity and k, ..., n� 1
have positive helicity. Let �i be the variable ui under the switch of the particle. Now, to
see how this transformation map ui to �i, we can find the relation between them. First,
we can compare (5.4) and (5.15) by substituting the expression for k from (5.5) into
(5.4). By doing this, (5.4) became

Ep =
kX

i=1

⇣upui

�pi
� upui�nk

�ni�pk

⌘
i � p +

up

un

�nk

�pk
n . (B.2)

Comparing the coe�cient of n in (B.2) and (5.15) we obtain the relation

up

un

�nk

�pk
=

�p�n
�pn

. (B.3)

We will see that �p must be a function of the variables up, �p, �n, and �k , otherwise it would
not give a solution, which we will show later. Under the claim that �p = �p(up, �p, �n, �k)
and �n = �n(un, �n, �k), we can see that

�p = up
�pn

�pk
and �n =

�nk

un
. (B.4)
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Similarly, we can match (5.3) with (5.14) to yield the expression for ûi and ûk using the
same trick. The expression for �̃n from Ẽk is substituted into Ẽi in (5.3), giving

Ẽ ↵̇
i =

n�1X

p=k+1

⇣uiup

�ip
+

uiup�kn

�kp�in

⌘
̃↵̇
p � ̃↵̇

i �
�knui

�inuk
̃k . (B.5)

Comparing the coe�cient of ̃k in (B.5) and (5.14), we obtain the relation

�nkui

�inuk
=

�i�k
�ik

. (B.6)

Similarly, under the assumption that �i = �i(ui, �i, �n, �k) and �k = �k(uk, �n, �k), we can
see that

�i = ui
�ik

�in
and �k =

�nk

uk
. (B.7)

We can check that by using (B.4) and (B.7), one can transform (5.3) and (5.5) to (5.14)
and (5.15). For example, one can transform (B.5) using (B.4) and (B.7) as the following:

Ẽ ↵̇
i =

n�1X

p=k+1

⇣ 1

�ip
+

�kn

�kp�in

⌘
uiup̃

↵̇
p � ̃↵̇

i �
�knui

�inuk
̃k

=
n�1X

p=k+1

⇣ �np�ik

�ip�kp�in

⌘⇣�in

�ik

⌘⇣�pk

�pn

⌘
�i�p̃

↵̇
p � ̃↵̇

i �
�kn

�in

⇣�in

�ik

⌘
�i

�k
�nk

̃k

=
n�1X

p=k+1

⇣ 1

�ip

⌘
�i�p̃

↵̇
p +

�i�k
�ik

̃↵̇
k � ̃↵̇

i , (B.8)

which is the constraint equation (5.14).

Coming back to out assumption before, we would not get the correct transformation
if we had we had chosen the other choice for �s. This can be seen explicitly by having

�p = up
�pn�nk

�pk
and �n =

1

un
, (B.9)

�i = ui
�ik�nk

�in
and �k =

1

uk
, (B.10)

and substitute it into (B.5). This choice of variables would not give the correct expression
for the transformed constraint equation in terms of �:

Ẽ ↵̇
i =

n�1X

p=k+1

⇣ 1

�ip
+

�kn

�kp�in

⌘
uiup̃

↵̇
p � ̃↵̇

i �
�knui

�inuk
̃k

=
n�1X

p=k+1

⇣ �np�ik

�ip�kp�in

⌘⇣ �in

�ik�nk

⌘⇣ �pk

�pn�nk

⌘
�i�p̃

↵̇
p � ̃↵̇

i �
�kn

�in

⇣ �in

�ik�nk

⌘
�i�k̃k

=
n�1X

p=k+1

⇣ 1

�ip�nk�nk

⌘
�i�p̃

↵̇
p � ̃↵̇

i +
�i�k
�ik

̃k ,

which is not the transformed constraint equation as given by (5.14).
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The reduced measure after the transformation is given by

dµ0

n,k =

Qn
i=1

d�id�i/�i
vol(SL(2,C)⇥ U(1))

k�1Y

i=n

�̄2
 
̃i � �i

n�1X

p=k

�p̃p

�ip

!
n�1Y

p=k

�̄2
 
p � �p

k�1X

i=n

�ii

�pi

!

=

Qn
i=1

d�idui/ui

vol(SL(2,C)⇥ U(1))

k�1Y

i=1

�̄2
 
̃i � ui

nX

p=k+1

up̃p

�ip

!
n�1Y

p=k+1

�̄2
 
p � up

kX

i=1

uii

�pi

!

⇥ �̄2
 
̃n � �n

n�1X

p=k

�p̃p

�np

!
�̄2
 
k � �k

k�1X

i=n

�ii

�ki

!
(B.11)

where we have used

d�p
�p

=
dup

up
,

d�i
�i

=
dui

ui
,

d�k
�k

= �duk

uk
,

d�n
�n

= �dun

un
, (B.12)

to show that
Q

i d�i/�i =
Q

i dui/ui. For the unswitched particle, the constraints remain
the same under the inverse transformation as shown in (B.8). For particle k and n, the
constraints can be transformed back as

̃n � �n

n�1X

p=k

�p̃p

�np
= ̃↵̇

n �
�nk

un

n�1X

p=k+1

up̃↵̇
p

�np

�pn

�pk
� �nk

un

̃↵̇
k

�nk

�nk

uk

= unuk
̃↵̇
n

�nk
+

n�1X

p=k+1
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p

�pk
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nX
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p
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� ̃↵̇

k , (B.13)

and

k � �k

k�1X

i=n

�i↵
i

�ki
= ↵

k �
�nk

uk

k�1X

i=1

↵
i

�ki
ui
�ik

�in
� �nk

uk

�nk

un

↵
n

�kn
= un

kX

i=1

ui↵
i

�ni
� ↵

n . (B.14)

Thus, the reduced measure under the transformation is equal to the original reduced
measure up to a Jacobian factor:

dµ0

n,k = dµn,k

✓
�nk

unuk

◆4

, (B.15)

which would cancel out with the transformation factors of the Grassmannian delta func-
tions in N = 4 SYM.

Therefore, the reduced measure is invariant of the choice of helicity for each particle
and depends only on the number of particles in each sectors.
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Appendix C

Supersymmetric Amplitudes

RSVW formula was originally derived from a maximally supersymmetric string theory
with twistor space as its target space, called the twistor string theory.1 Even though
twistor string and the derivation of RSVW formula is beyond the scope of this project,
we will discuss the supersymmetric amplitudes in this appendix for completeness.

It is also crucial to point out the this project’s main focus is restricted only to the
bosonic sector i.e. the amplitude with gluons as external particles. The reason that we
can focus only on the bosonic sector is that at the tree level, there are no fermionic con-
tribution because the fermion vertex requires the fermion to come in and out. This means
that an amplitude with bosons as the external particles will contain fermions only at the
loop level. 2 Nevertheless, it is useful to remark on what superamplitudes are, to gain
more insights on MHV and NMHV and to prepare for the RSVW formula that will be
presented in chapter 4.

The N = 4 super Yang-Mills theory massless supermultiplet consists of 16 states: a
gluon of positive helicity g+, 4 gluinos �A with helicity 1/2 , 6 scalars SAB, 4 gluinos �ABC

with helicity �1/2, and a gluon of negative helicity g�.3 Solving the field equations and
quantizing the field, each field can be represented by the creation-annihilation operators.
Since we are looking at the scattering with all particles outgoing, these states can be
represent by its annihilation operators. Here, they are denoted a for the positive helicity
gluon, aA for the positive helicity gluinos, aAB for the scalars, aABC for the negative helicity
gluinos, and a1234 for the negative helicity gluon, with the indices A,B = 1, .., 4. These
indices serve purpose as the label of the SU(4) symmetry that rotates the supersymmetry
generators QA and the conjugate Q̃A ⌘ Q†

A. The action of the supercharges on the

1
In fact, twistor string theory is not well-defined for theories with less than maximal supersymmetry

[5].
2
Same argument holds with the CHY formula: one can restrict to the bosonic sector after deriving the

formula the RNS ambitwistor string theory, that is not well-defined for less than maximal supersymmetry.
3
The gluinos are not to be confused with the spinor �↵ with the greek alphabet index, though, the

gluinos will only appear in this section.
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annihilation operators is

[Q̃A↵, a()] = 0 [QA
↵̇ , a()] = ̃↵̇a

A()

[Q̃A↵, a
B()] = ↵�

B
Aa() [QA

↵̇ , a
B()] = ̃↵̇a

AB()

[Q̃A↵, a
BC()] = ↵2!�

[B
A ac]() [QA

↵̇ , a
BC()] = ̃↵̇a

ABC() (C.1)

[Q̃A↵, a
BCD()] = ↵3!�

[B
A aCD]() [QA

↵̇ , a
BCD()] = ̃↵̇a

ABCD()

[Q̃A↵, a
BCDE()] = ↵4!�

[B
A aCDE]() [QA

↵̇ , a
1234()] = 0

where the  and ̃ in the operators denotes the spinors of momentum of the outgoing
state, and the bracket is an anticommutator if both the arguments are fermionic and
otherwise a commutator.

We can now look at some consequences of SUSY on studying the amplitude. An n
point amplitude can be written using the annihilation operators for each particle, Oi(pi),
with i being the particle label, acting to the left on the out-vaccuum:

h0| O1(p1)...On(pn) |0i . (C.2)

Supposing the vaccuum is supersymmetric, the vaccuum must then be annihilated by the
SUSY generators: QA|0

↵
= 0 = Q̃A|0

↵
. Generators annihilating the vacuum means that

0 = h0|QAO1(p1)...On(pn) |0i = h0| O1(p1)...On(pn)Q
A |0i = h0|

⇥
QA,O1(p1)...On(pn)

⇤
|0i ,

(C.3)
and the same holds for Q̃A. These relations are called supersymmetric Ward identities,
and these allow us to write a linear relation among the scattering amplitudes with the
external states related by supersymmetry:

0 = h0|
⇥
QA,O1(p1)...On(pn)

⇤
|0i

=
nX

i=1

(�1)
P

i<j |Oj | h0| O1(p1)...
⇥
QA,Oi(pi)...On(pn)

⇤
|0i . (C.4)

The supersymmetric Ward identities can be used to show that the all plus/minus ampli-
tude vanishes not only at tree level but all loop level. Consider

0 = h0|
h
Q̃A, a

B
1
(p1)a2(p2)...an(pn)

i
|0i , (C.5)

using the commutation relations (C.1), one finds that

0 = p↵̇�
B
A h0| a1(p1)a2(p2)...an(pn) |0i = p↵̇�

B
AAn[+ + +...+] , (C.6)

the amplitude with all-plus external gluons vanishes. We can use the same method to
show that the one minus/plus amplitude also vanishes. This holds true at all orders in
perturbation theory since it relies on the fact that the vacuum is annihilated by the su-
persymmetric generators.

Extending to the on-shell superspace, we can collect the states in the supermultiplet
into a superfield by introducing four Grassmannian variables ⌘ labeled by SU(4) index:

⌦ = g+ + ⌘A�
A � 1

2!
⌘A⌘BS

AB � 1

3!
⌘A⌘B⌘C�

ABC + ⌘1⌘2⌘3⌘4g
� , (C.7)
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where the signs are chosen such that the Grassmannian di↵erential operators will select
its associate states from the superfield. The Grassmannian di↵erential operators for the
ith particle are

1,
@

@⌘iA
,

@

@⌘iA

@

@⌘iB
,

@

@⌘iA

@

@⌘iB

@

@⌘iC
, and

@

@⌘i1

@

@⌘i2

@

@⌘i3

@

@⌘i4
, (C.8)

associating with g+, �A, SAB, �ABC , and g�, respectively. This allow us to define the
supercharges as

qA↵̇ := ̃↵̇ @

@⌘A
and q†↵A := ↵⌘A , (C.9)

where the spinors ↵ and ̃↵̇ are the spinors associated with the momentum of the particle.
The supercharges satisfies {qA↵̇, q†↵B } = �AB

↵̃↵̇.
With the superfield, we can write a superamplitude An[⌦1...⌦n], which depends on the
on-shell momentum pi and a set of Grassmann variable ⌘iA for each particle i = 1, ..., n.
Using the di↵erential operators (or equivalently in the form of Grassmann integrals), we
can extract the states from the superfields and hence extract the amplitudes from the
superamplitudes. The supersymmetric Ward identity for on-shell superspace is now

QAAn = 0 and Q̃AAn = 0 , (C.10)

where

QA↵̇ :=
nX

i=1

qA↵̇
i and Q̃↵

A :=
nX

i=1

q†↵iA . (C.11)

Using the fact that QA and Q̃A annihilates the superamplitude, we know that the total
momentum

Pn
i=1

pi ⇠ {QA, Q̃A} annihilates the amplitude as well. This is actually the
momentum conservation in an operational form. Using the Grassmannian delta function

�8(Q̃) =
1

24

4Y

A=1

Q̃A↵Q̃↵
A =

1

24

4Y

A=1

nX

i,j=1

hiji ⌘iA⌘jA . (C.12)

the superamplitude can be written as

An = �8(Q̃)Pn , (C.13)

where Pn is some polynomial of Grassmann variables of degree 4k, where k is the num-
ber of negative helicity gluons [28]. The Grassmannian delta function guarantees the
annihilation of the superamplitude by the supercharges: obviously Q̃A�8(Q̃A) = 0 and
QA�8(Q̃A) = 0 by momentum conservation. The tree-level MHV superamplitude ofN = 4
SYM can be written as

AMHV

n [123...n] =
�8(Q̃)

h12i h23i ... hn1i , (C.14)

in which the Parke-Taylor tree-amplitude can be obtained by applying the four derivatives
withe respect to ⌘iA and ⌘jA for the negative helicity particle i and j, then the delta
function would return the factor hiji4.
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Appendix D

Spinors in Six Dimensions

The o↵-shell formalism in [14] was done first in six dimensions, so we will mention the
formulation of spinors in six dimensions. We follow the construction of six dimensions
spinors in [29]. In six dimensions, the Lorentz group is SO(6) ' SU(4), the spinors are
then complex four component objects transforming under fundamental representation of
SU(4). We expect the 6d momentum to be written as some antisymmetric product of two
spinors, since the antisymmetric representation of SU(4) is six dimensional. The gamma
matrices of this representation are given by �µ

AB and �̃µ,AB, with A,B = 1, ..., 4, where the
two gamma matrices are the fundamental and anti-fundamental representation of SU(4).
But unlike the usual SU(2) where we can use the invariant tensor ✏↵� to raise and lower
an index, the fundamental and anti-fundamental cannot be raised or lowered like that.
The only invariant tensor of SU(4) is ✏ABCD, so it will raise amd lower both indices:

✏ABCD�
CD = �AB and ✏ABCD�CD = �AB . (D.1)

The little group in 6d is the SO(4) ' SU(2) ⇥ SU(2), and they are labeled by a = 1, 2
and ȧ = 1, 2, respectively.

The 6d massless momentum kµ in the spinor notation looks like

kAB := kµ�
µ
AB and k̃AB := kµ�̃

µ,AB . (D.2)

Since the index A and B is antisymmetric, we can decompose these into an antisymmetric
product of spinors with a little group index,

kAB = {A
1
{B

2
� {A

2
{B

1
= {A

a {B
b ✏

ab := (({A{B)) (D.3)

k̃AB = {̃1A{̃2B � {̃2A{̃1B = {̃ȧA{̃ḃB✏
ȧḃ := (({̃A{̃B)) , (D.4)

for some 6d spinors {A
a and {̃aA. The double round brackets will denote the contraction

of the 6d little group index.

Now, we need to embed what we had in 4d in to this 6d notation. The 4d momentum
is embedded in a 6d spinor as

{A
a =

 
↵
1

↵
2

̃↵̇
1

̃↵̇
2

!
, (D.5)
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where the ↵ and ̃↵̇ are the usual 4d spinors. One can see that via this construction, the
massless 4d momentum can be written as

{A
a =

 
0 ↵

̃↵̇ 0

!
, (D.6)

such that kAB = {A
a {B

b ✏
ab reduces to ↵̃↵̇ = k↵↵̇. The 4d o↵-shell momentum l, on the

other hand, is embedded in 6d as

l↵↵̇ = ↵
1
̃↵̇
2
� ↵

2
̃↵̇
1
. (D.7)

For further convenience, we want to stick with the 4d notation, we split the 6d spinor into
two parts:

a
↵ =

�
1

↵,
2

↵

�
and ̃a

↵̇ =
�
̃1

↵,
2

↵

�
, (D.8)

so that the massive momentum l with lowered indices can be expressed as

l↵↵̇ = a
↵̃

b
↵̇✏ab , (D.9)

with
a
↵

b
�✏ab = M✏↵� and ̃a

↵̇̃
b
�̇
✏ab = M̃✏↵̇�̇ , (D.10)

such that l2 = MM̃ .

In [14], the loop amplitude in 4d can be obtained by the 6d amplitude with the loop
momenta l flowing through the two nodal points l+ and l� on the forward limit (like the
back-to-back limit in chapter 6). The forward limit requires the 6d spinors of the o↵-shell
loop momenta to be

{A
+,a =

 
↵
1

↵
2

̃↵̇
1

̃↵̇
2

!
and {A

�,a =

 
↵
1
�↵

2

̃↵̇
1
�̃↵̇

2

!
, (D.11)

such that (({A
+
{B

+
)) = �(({A

�
{B

�
)). Splitting the 6d spinors into two parts, we obtain

a
+,↵ =

�
1

+,↵,
2

+,↵

�
̃a
+,↵̇ =

�
̃1

+,↵̇, ̃
2

+,↵̇

�
, (D.12)

a
�,↵ =

�
1

+,↵,�2

+,↵

�
̃a
�,↵̇ =

�
̃1

+,↵̇,�̃2

+,↵̇

�
. (D.13)
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