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RENIERAMYCIN M ON THE SUPPRESSION OF LUNG CANCER STEM CELLS. Advisor: Prof. 
PITHI CHANVORACHOTE, Ph.D. 

  
Cancer stem cells (CSCs) are distinct cancer populations with tumorigenic and self-

renewal abilities. CSCs are drivers of cancer initiation, progression, therapeutic failure, 
and disease recurrence. Thereby, novel compounds targeting CSCs offer a promising way to 
control cancer. In this study, the hydroquinone 5-O-cinnamoyl ester of renieramycin M (CIN-
RM) was demonstrated to suppress lung cancer CSCs. CIN-RM was toxic to lung cancer cells 
with a half-maximal inhibitory concentration around 15 µM. CIN-RM suppressed CSCs by 
inhibiting colony and tumor spheroid formation. In addition, the CSC population was isolated 
and treated and the CSCs were dispatched in response to CIN-RM within 24 h. CIN-RM was 
shown to abolish cellular c-Myc, a central survival and stem cell regulatory protein, with the 
depletion of CSC markers and stem cell transcription factors ALDH1A1, Oct4, Nanog, and Sox2. 
For up-stream regulation, we found that CIN-RM significantly inhibited Akt and consequently 
decreased the pluripotent transcription factors. CIN-RM also inhibited mTOR, while slightly 

decreasing p-GSK3β (Ser9). Inhibiting Akt/mTOR induced ubiquitination of c-Myc and promoted 
degradation. The mechanism of how Akt regulates the stability of c-Myc was validated with the 
Akt inhibitor wortmannin. Taken together, we utilized molecular experiments and the CSC 
phenotype to reveal the novel suppressing the activity of this compound on CSCs to benefit 
CSC-targeted therapy for lung cancer treatment. 
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CHAPTER I 

INTRODUCTION 

1.1 Background and rational 

Cancer stem cells (CSCs) are a leading cause of cancer aggressiveness that 

enhance the ability of cancer to disseminate. They are the small section that carrying 

asymmetric division to remain the constant proportion and self-renewal properties. 

This unique population has been identified as a tumor initiator that progresses cancer 

(1, 2). Recent studies have highlighted the CSC population as a critical regulator of 

disease relapse, as CSCs have very high detoxification ability and augmented drug 

resistance pathways; therefore, targeting CSCs is recognized as a promising way to 

control cancer (3). 

CSCs exhibit biological activities and stem cell properties through several 

pluripotent transcription factors, such as Oct4, Nanog, and Sox2 (4). Among the 

prominent regulators of pluripotency, the protein kinase B (Akt)/c-Myc axis has 

garnered increasing interest. Akt plays an essential role in various aspects of tumor 

growth, survival and therapeutic resistance in numerous types of cancer (5, 6). c-Myc 

is a proto-oncogene transcription factor that regulates several downstream signaling 

pathways. The functions of c-Myc include cell cycle progression, survival metabolism 

and stem cell activity (7, 8). Overexpression of the c-Myc protein results in 

aggressiveness and therapeutic resistance of cancers because of over-activated 

stemness properties (8, 9). The cellular availability of c-Myc is dependent on the 

stability of the protein which is controlled by Akt. Akt promotes the stability of c-Myc 

by inhibiting phosphorylation at threonine 58 (Thr58), which prevents protein 

degradation (10, 11). In addition, mTOR regulates c-Myc-driven tumorigenesis (12) and 

controls c-Myc stability (13). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

A series of studies have demonstrated the cooperation between c-Myc and 

other self-renewal transcription factors, including Nanog, Sox2 and Oct4. These three 

self-renewal transcription factors possess predominant stemness activity (14, 15). c-

Myc cooperates with other factors to regulate self-renewal. However, recent studies 

have demonstrated that c-Myc plays a role as a regulator of other self-renewal 

transcription factors by inducing the transcription and activity of the proteins (14). 

Hence, inhibiting Akt which is upstream of various CSC related regulators, is a 

promising strategy. 

Marine-derived compounds are interesting biologically active compounds in 

cancer therapy. These compounds have complex structures that interact with various 

biomolecular targets to suppress or promote biological functions for treatment 

purposes (16). Natural marine compounds and their synthetic derivatives have been 

investigated in clinical trials (17). Marine-derived anticancer drugs, such as trabectedin 

and cytarabine, have been approved by the United States Food and Drug 

Administration (18). According to recent studies, the tetrahydroisoquinoline family 

and marine/microbial alkaloids such as renieramycins, ecteinascidins, saframycins, 

safracins and naphthyridinomycins, exhibit anticancer properties against cancer cells 

(19).  

Renieramycin M is a marine alkaloid in the bistetrahydroisoquinolinequinone 

family that has been isolated from the Thai blue sponge, Xestospongia sp. 

renieramycin M exhibits anticancer activities in several cancer cells, such as lung, 

breast and colon (20). Interestingly, this compound not only suppresses non-stem 

cancer cells but also suppresses CSCs in lung carcinoma (21). Hydroquinone 5-O-

cinnamoyl ester of renieramycin M (CIN-RM), which contains an additional cinnamoyl 

ester on C-5 and a hydroxyl moiety at C-8 of ring A, displays better apoptosis-

inducing potency in H292 lung cancer cells (22). CIN-RM was synthesized by a two-
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step chemical modification of renieramycin M involving palladium catalyzed 

hydrogenation and Steglich esterification (23). However, no study has reported on the 

suppression of CSCs by CIN-RM. This research aims to investigate the potential effect 

of CIN-RM on CSC of lung cancer and elucidated the underlying mechanism, which 

involved Akt regulating the c-Myc pathway. However, no study has reported on the 

suppression of CSCs by CIN-RM. This research aims to investigate the potential effect 

of CIN-RM on CSC of lung cancer and elucidated the underlying mechanism, which 

involved Akt regulating the c-Myc pathway. 

 

1.2 Objectives of the study 

1.2.1 To investigate the effect of hydroquinone 5-O-cinnamoyl ester of 

renieramycin M (CIN-RM) on lung cancer stem cell suppression.  

1.2.2 To evaluate the underlying mechanism(s) of CIN-RM against CSC property in 

lung cancer effects caused by CIN-RM on lung cancer. 

1.3 Hypothesis of the study 

1.3.1 CIN-RM can suppress CSC by inhibiting AKT/c-Myc signaling pathway in lung 

cancer 

1.4 Benefits of the study 

This study will provide the preliminary data of hydroquinone 5-O-cinnamoyl 

ester of renieramycin M including suppression of stem cell mechanism in non-small 

cell lung cancer and maintenance stem cell. The study can be used to further 

develop CIN-RM as an alternative treatment. 
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1.5 Conceptual framework 
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1.6 Research design 
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CHAPTER II 

LITERATURE REVIEW 

2.1      Lung cancer 

 Lung cancer is a cancer that initiates in the lungs and causes a death 

worldwide (24). Every year, over 1.8 million of lung cancer patients have been 

diagnosed (25). It is caused by bronchial mucosa cells that have been irritated for a 

long time, so it may be called a bronchogenic carcinoma. In 2018, 2.09 million of 

new cases and also 1.76 million of deaths have been reported. The cancer incidence 

and death rates have increased considerably compared to 2012. Smoking is still the 

major risk factor of this cancer (26). 

 

2.1.1 Symptoms  

Most lung cancer has not showed an obvious symptom in the initial stages. 

There are signs indicating the occurrence of the disease when more cancer growths. 

It can be observed from chronic cough, chest pain, fatigue, shortness of breath, pain 

while breathing or coughing, and weight loss. Some of rare symptoms may be 

occurred such as wheezing, changes of fingertip and nail shape, high fever, difficulty 

swallowing, hoarseness, and swelling of face and neck (27). 

 

2.1.2 Risk factor 

There are various risk factors for lung cancer including air pollution, genetic 

factor, and tobacco smoking. These factors are the causes of cancer development 

(27). 
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 Air pollution 

Air pollution, both indoor and outdoor, is one of the main risk factor for lung 

cancer. This factor acquires more than 30% of the causes of lung cancer (28). The 

releasing of chemicals (SO2, NOx, CO, and heavy metals) to the air and dust (PM) are 

considered important to cause air pollution and directly affect the respiratory system 

(29). In Taiwan, PM 2.5 was found to affect lung adenocarcinoma (AdLC) and the 

survival of patients (30).  

 

 Genetic factor 

Factors that cause cancer may come from external factors, but sometimes 

internal factors can also affect cancer, such as genetic factor. Family history is a 

genetic risk. If the family has a history of lung cancer, it will enhance the risk of 

disease as well (27). Genetic variation in the region 5p15.33 TERT-CLPTM1Ll affect 

lung cancer in non-smokers (31). Mutation of the epidermal growth factor receptor 

(EGFR) can induce cancer and the EGFR mutation in NSCLC patients is more common 

in female (Over 40%) than male (less than 15%) (32). 

 

 Tobacco Smoking 

Many researches have reported that tobacco smoking may be the major 

cause of this cancer, with a risk of 90% and 60% in male and female, respectively 

(32). In the smoking patients, the predicted prognosis is poorer than non-smoking 

(33). Tobacco smoke contains many carcinogenic (polyaromatic hydrocarbons, N-

nitrosamines, acetaldehyde), these chemicals can cause lung cancer development in 

smokers and also secondhand smokers (34). 
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2.1.3 Type of Lung cancer 

There are 2 subtypes, small cell lung cancer (SCLC) and non-small cell lung 

cancer (NSCLC) accounting for approximately 15% and 85% of all lung cancer 

respectively (35). NSCLC, the main type of lung cancer, is categorized into 3 subtypes 

including squamous cell lung carcinoma (25–30%) which has a strong relationship 

with smoking, large-cell lung carcinoma (5–10%) which starts in the middle of the 

lungs and can spread into nearby lymph nodes, and lung adenocarcinoma (40%) 

which is a key type of lung cancer. Lung adenocarcinoma has a slow growth rate and 

can be detected before it spreads outside the lungs compared to other types of lung 

cancer (36) (Figure 1). 

 

 

Figure  1 Histological classification of lung cancer cell 

(37) 

 

2.1.4 Treatments for lung cancer   

There are many options to cure lung cancer base on the type, the stage, and 

the patient's condition. The first treatment is surgical treatment, patients with stage I 

and II that have not lymph node spread, are suitable for surgical treatment (38). The 

second treatments are targeted therapy, chemotherapy, and immunotherapy. For 

NSCLC, the driver mutations are an important part of diagnostic of NSCLC. From 
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previous research, 50% of NSCLC patients had oncogenic drivers, and targeted 

therapy could improve overall survival (OS). This is the reason why FDA approved 

tyrosine kinase inhibitors (TKI), a one type of targeted therapeutic drug, for NSCLC 

treatment. However, the targeted therapy of SCLC has not been approved by the 

FDA yet. For immunotherapy, immune checkpoint inhibitors (ICIs) can be used to 

combine with chemotherapy (35). The last treatment is radiotherapy which is very 

essential in lung cancer treatment and it is used in palliative care. It can improve 

therapeutic response via a combination of immunotherapeutic agents and radiatio 

(39). 

 

2.2      Cancer Stem cell (CSC) 

Stem cells (SCs) are specialized cells which have the ability to self-renew, 

develop differentiate offspring in several different types of cells. Even with a small 

population, SCs are essential for replenishing aging cell and repairing damaged tissues 

(40). Cancer stem cells (CSCs), a small population inside the tumor hold stemness 

characters which promote tumor initiation, cell metastasis and tumor recurrence. 

Currently, CSCs are key factor contributing to low rate of successful treatments (41). 

Available chemotherapeutic drugs induce programmed cell death in normal cancer 

cells but not in CSCs (3). Other than that, CSCs show several characteristics like 

normal pluripotent stem cells including self-renewal, specific gene expression and 

protein markers, and the signaling pathways (42). These characteristics point out that 

CSCs are associated with tumor development and progression. In addition, previous 

research reported that the intrinsic and the extrinsic alterations in the SC tumor 

microenvironment, together with the mutations and the epigenetic regulations are 

involved and responsible for CSCs development (Figure. 2) (43).  
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Figure  2 The implication of SCs in term of development and progression of 
tumors 

(44) 
 

CSCs is a small sub-population of cells within tumor and its characteristics are 

the same with NSCs. CSCs have the ability to initiate tumor formation, widespread 

proliferation, and cancer chemotherapeutic drug resistant (42). As shown in figure 3, 

CSCs (red) can self-renew and developed in cancer to form tumor bulk (yellow). 

When the tumor grows, cells can go limited benign growth or all cells may form 

disseminated malignancies. Therefore, cells are resistance to drug and leading to 

cancer recurrence (45). 
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Figure  3 Cancer stem cells biology  

(45) 

 

In the United States, 2012 there are 226,160 of lung cancer patients were 

diagnosed and also 160,340 of deaths were reported (46). Although the diagnosis and 

treatment have been advance over the past decade, the prognosis remains poor due 

to its resistance in therapy, rapid tumor growth, and its ability to spread (47). CSCs 

are responsible for the aggressive phenotypes of lung carcinoma. CSCs expresses 

stem cell markers in lung cancer including CD133, CD44, ALDH, Oct4, and Nanog (48). 

Moreover, it important to be able to distinguish NSCLC and SCLC on the basis of CSC 

characteristics because it could effect on treatment strategies and prognosis (49). 

 

2.2.1 Cancer stem cell marker 

CSCs is a potential driving force of initiating new tumors and progression of 

cancer because of the self-renewal, drug resistance, metastasis and cancer 

recurrence (50). Up-regulation of specific stem cell protein markers including 

ALDH1A1 which relate to tumorigenesis and chemoresistance properties of CSCs (51). 
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ALDH 

Another marker that use to identify and isolate the CSCs is aldehyde 

dehydrogenase. ALDH  is an enzymes which can regulate the cell differentiation of 

NSCs (52). ALDH, intracellular enzymes, is involve in detoxification process and drug 

resistance in SCs (53). One of the members of the ALDH family is ALDH1. It is a 

cytosolic isoenzyme. The expression of ALDH1 of lung cancer cells have indicated 

highly tumorigenic and cancer cell cloning properties (54). Moreover, expression of 

ALDH1A1 on CSCs displayed chemotherapy resistance and EGFR-TKI (epidermal 

growth factor receptor tyrosine kinase inhibitors) resistance (55). 

 

2.2.2 Cancer stem cell transcription factor 

CSC can increase the expression of transcription factors which can regulate 

pluripotency property and self-renewal such as Nanog, Sox2, and Oct4, these factors 

making CSC different from NSCs. The overexpression of these proteins marker were 

determine in CSCs than ESC or normal cell that affects proliferation property and 

self-renewal (4). Transcription factors of stemness can modulated the stem 

phenotype such as self-renewal and pluripotency in NSCs and CSCs. Sox2, Nanog and 

Oct4 are commonly transcriptional factors that mediate CSCs properties in various 

cancer such as lung cancer (56),(57). Oct4 /Sox2 /Nanog complex recruits important 

transcriptional factors to induce stemness regulating proteins (58).  

 

Nanog 

Nanog, transcription factor, shows a critical factor in maintain the capacity of 

self-renewal of ESCs in the development of embryonic (59). In lung cancer patients 

with overexpression of this protein, the prognosis is worsened. Therefore, in the lung 
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cancer, Nanog protein is used as an key predictor in the prognosis (60). Nanog can 

control the self-renewal and cell potency in ESCs. In addition, the combination of 

Nanog with other protein including Oct4, Sox2 and Lin28 may be used to induce 

effective reprogramming process in fibroblasts to provide the induced pluripotent 

stem cells (iPSCs) (61).  Nanog is not only regulates self-renewal and induced 

pluripotent stem cells but also displays in regulating ESCs cell cycle. Previous 

research has indicated that ESC clones with overexpression of Nanog protein have 

expedited S-phase entry. For the Nanog physiological conditions, the C-terminal was 

bind to CDK6  and CDC2 5 A at regulatory region, which mediate S-phase entry (62). 

Moreover, NanogP8  is more expressed in T-cell acute lymphoblastic leukemia and 

when knockdown of NanogP8 can suppressed proliferation of cells and self-renewal, 

induced apoptosis and cell cycle arrest via a p53 pathway (63).  In addition, 

downregulation of Nanog cause G0/G1 cell cycle arrest, reduced cyclin E expression 

and STAT3 in breast cancer cell line (64). Nanog is important for control ESCs cell 

cycle. Therefore, the investigated Nanog in term of LCSC may be useful in the 

development of new therapies. 
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Figure  4 Nanog controls self-renewal and pluripotency of SCs 
 (61) 

 

Sox2  

SOX2 (SEX determining region (SRY) homology box 2) is o the stem cell 

transcription factor. Up-regulation of Sox2 is currently reported in various type of 

lung carcinoma such as SCLC,  squamous cell lung carcinoma and lung 

adenocarcinoma (65). Spheroid formation and CSCs apoptosis are regulated by Sox2 

protein level (66). Previous research found that Sox2 has functionally in the repair 

the pluripotent of iPS and ES. In addition, Sox2 has been accepted as a powerful 

oncogene in numerous cancer, where it controls CSCs and functionally relates to 

hallmarks rule as shown in Figure 5 (67). 
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Figure  5 The overview of SOX2 functionality  
(67) 

 

Oct4  

Oct4, Octamer-binding transcription factor 4, is the one of CSCs transcription 

factor. It is an essential regulator of ESC fate. Cancer cells are similar in appearance 

to early embryonic cells, with common characteristics including deathless, 

undifferentiated, and invasive (68). So, dysregulation of overexpressed proteins during 

the embryonic stage can cause development of cancer. Oct4 is especially expressed 

in ESCs and a large amount is needed to maintain self-renewal of ESCs, which mean 

Oct4 is a main regulator of pluripotency in mammalian development (69). A previous 

study has showed that the expression of Oct4 shows a critical factor in keeping CSC 

characters in lung cancer with CD133+ cells and  suppression on Oct4  expression 

inhibits stemness phenotypes and metastasis feature in CSCs of lung cancer cells 

(70).  
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2.2.3 Cancer stem cell signaling pathways  

 From currently research reported that CSCs have various similar characters to 

NSCs including self-renewal and differentiation. Both CSCs and NSCs share many 

major pathway to remain its survival (71). CSCs have been reported to show various 

properties of embryonic or SCs tissue and cancer development pathways including 

Akt signaling pathway which plays an essential role in various aspects of tumor 

growth, survival and therapeutic resistance in numerous types of cancer (5, 6). The 

critical driving pathways of CSCs including the AKT signaling pathway was increased in 

cancers with high CSC properties (72). So, activation of this signaling may give a 

significant role in extension of CSCs and resistance to drug.  

 

Akt regulate cancer stem cells  

The AKT also known as a protein kinase B (PKB). It is an oncogenic protein 

which control survival, proliferation, apoptosis mechanism. The critical 

phosphorylation sites of Akt are Thr308 and Ser473 and it phosphorylates a several 

of downstream such as FOXO1, GSK3β, and mTOR (73). Activation of Akt/mTOR 

pathway enhanced CSC phenotypes in various cancer such as prostate cancer, breast 

cancer, and colorectal cancer (6). 

Oct4/Sox2/Nanog complex recruits important transcriptional factors to induce 

stemness regulating proteins (58).  These transcription factors were shown to be 

activated via several pathways including Akt pathway (65). The previous study 

showed that Akt directly regulates Oct4 and Sox2 activity (74-77). Akt increases the 

stability of the Oct4 protein by phosphorylating Oct4 at threonine 235. 

Phosphorylated Oct4 enters to the nucleus and interacts with Sox2, which in turn 

activate the transcription of Nanog (78). 
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Figure  6 Role of Akt regulate stemness transcriptional factor complex 
(65) 

 

The mammalian target of rapamycin (mTOR) 

mTOR is a serine/threonine kinase. mTOR signaling pathway is critical in  

regulating growth, survival, metabolism of cell. The function of it acts through two 

structurally protein complexes which are mTOR complex 1 (mTORC1) and mTOR 

complex 2 (mTORC2). mTORC1 is regulated by many pathways including the Akt 

signaling pathway. mTORC1 regulates several proteins, including protein phosphatase 

2A (PP2A). Many previous research reported that mTOR signaling pathway is 

accumulated in various types of cancers. In the solid tumors, mTOR is dysregulated 

in approximatetl 30% of cancers. In NSCLC, PI3K signaling pathway activation is found 

about 50–70% of cancer patients with Akt phosphorylation (79). mTOR can also 

control the stability of c-Myc  through PP2A inhibition (80). 
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c-Myc regulates cancer stem cells 

 c-Myc, proto-oncogene, plays a role as stem cell transcription factor that 

regulates several down-stream pathway. There are many functions of c-Myc such as 

cell cycle progression, cell survival, and stem cell activity (7, 8). Overexpression of c-

Myc leading to over-activation of stemness properties (8, 9). c-Myc can cooperate 

with self-renewal transcription factors including Nanog, Sox-2 and Oct-4 to regulate 

the self-renewal property. (14). It is also a co-factor of Oct4/Sox2/KLF4 during 

pluripotent stem cell reprogramming process (81).  

  c-Myc gene is targeted in Wnt pathway. It is a critical role in switch. After 

suppression of β-catenin/TCF-4 activity of colorectal cancer cells, the decreasing of 

Myc gene leading to the transcription of p21, that results in differentiation and 

triggers G1 arrest (82). 

Notch signaling can activate PI3K/AKT signaling pathway  (83), and c-Myc. A 

recent research reported that in CRC cell lines, the activation of the Notch signaling 

could transcriptionally bind to c-Myc and cyclin D1 (84). Myc and cyclin D1 are 

related to the progression of the cell cycle. So, suppressing the Notch pathway for 

anti-cancer effect may involve in inhibition of the cell cycle progression (85-87). 

Moreover, self-renewal in colorectal CSCs is depend on the Hedgehog‐GLI via 

connect with the Wnt pathway (88). GLI-1 can reduces the expression of c-Myc, and 

can suppress the cell proliferation (89). It can indicate that c-Myc transcription factor 

is important in CSC therapy. 
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c-Myc maintains the chemoresistance 

c-Myc protein is significantly role in drug resistance. The overexpression of c-

Myc trigger downstream genes which related to cell cycle regulation and genomic 

instability (90-92). Several chromosomal abnormalities occur when c-Myc inducing 

genomic instability such as elevation of elements, centromere and telomere fusions, 

DNA double strand breaks, and genetic mutation. (92-95). In addition, the aggregation 

of genomic instability takes the susceptibility of tumor cells to DNA-damaging agents 

(Figure 7) (96, 97). 

 

 

Figure  7 Roles of c-Myc in chemoresistance 
(8) 

 

Akt/c-Myc signaling pathway in cancer stem cell  

  PI3K/Akt signaling pathways are important to cancer on physiological and 

pathological conditions including differentiation, proliferation, and cell survival (98). 

Previously researches showed that activation of the PI3K/Akt signaling pathway 

leading to EMT and enhanced CSC phenotypes on prostate cancer radioresistance 
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(99). PI3K/Akt pathway is significant for prostate CSCs maintenance and that targeting 

PI3K signaling may be beneficial in PC treatment by eliminating prostate CSCs (100). 

Myc is characterized as a regulator genes and proto-oncogenes which encode 

important nuclear transcription factors. As c-Myc has been recognized as an essential 

regulator of CSCs (7). Swords et al. demonstrated that when Akt pathway was 

disrupted, c-Myc was found to be rapidly decreased as a results of destabilization 

and enhanced degradation (11). c-Myc, a major downstream target of Akt, 

accompany Oct4, Nanog and Sox2 to promote self-renewal in CSCs (14). The stability 

of c-Myc is controlled by the Akt/mTOR pathway. mTOR inhibits Ser62 de-

phosphorylation on c-Myc by hindering PP2A activity (80) leading to the stabilization 

of c-Myc.  

 

 

Figure  8 The stability of c-Myc is controlled by the Akt/mTOR pathway 
(80) 
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Not only stability of the protein requires Akt/mTOR activity, but c-Myc cellular 

function was shown to depend on Akt activity (101). The present research indicated 

that Thr308 and Ser473 are the 2 main Akt phosphorylation sites; activation of 

Thr308 phosphorylation may increase the Akt enzymatic activity (12). The 

phosphorylation at Threonine 58 (Thr 58) and serine 62 (Ser 62) of c-Myc is significant 

for c-Myc ubiquitin-proteasomal degradation (Figure 9) (10). 

 

 

Figure  9 c-Myc ubiquitin-proteasomal degradation mechanism   
(10) 

 

Taken together, inhibition of CSCs, whether it be alteration of CSC markers, or 

inhibition of CSC signaling pathways, may be a possible alternative for lung cancer 

treatment under such circumstances. At present, several studies indicate that marine 

compounds from various sources can inhibit CSCs. For example, 5-O-acetyl-

renieramycin T induced apoptosis and decrease the CSC markers expression (CD44 

and CD133) and decrease Nanog stem cell transcription factor via Akt signal pathway 

(102). Crambe crambe (CR), marine sponge extract, strongly reduced pancreatic and 

prostate CSCs (103). renieramycin M (RM) suppress CSC-like phenotypes in H460 lung 
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cancer cells (21). CIN-RM has more potent cytotoxicity than RM in H292 lung cancer 

cells. CIN-RM induced apoptosis through a p53-dependent mechanism (22). 

Therefore, in this research is interested in inhibits lung CSCs by using CIN-RM, which 

are marine compounds. 

 

2.3 Phytochemicals and anti-cancer activities 

 Renieramycins, marine alkaloids classified into the tetrahydroisoquinoline 

family (19). 1,2,3,4-tetrahydroisoquinoline analogs show potential anti-cancer activity 

in many type of cancer  such as lung cancer, and colon cancer (104). The 1,2,3,4-

tetrahydroisoquinoline motif is the one of important as a minor groove DNA alkylator 

which can covalently bonds at N2-amine of guanine. This specifically 

functionalization result in DNA bending and leading to DNA damage in cancer cells 

(105). This result has indicate the significant of 1,2,3,4-tetrahydroisoquinoline scaffold 

as a model for anti-cancer candidates. Renieramycin M, bis-1,2,3,4-

tetrahydroisoquinolinequinone alkaloid, is isolated from the Thai blue sponge 

Xestospongia sp. (106). Moreover, renieramycin M and its derivatives which modify 

ester side chains at C-22, showed a potential cytotoxicity in cancer cell lines 

including colon cancer , lung cancer , and breast cancer (107). From previously study 

of structure activity  of  RM and its derivatives with linear and aromatic ester side 

chains that focus on C-22 and C-5 have been evaluated for cytotoxic in NSCLC cell 

lines (23), which has been reported to be the world's leading cause of death (108). 

From present findings, the chemical modification of ester side chains at position C-22 

and C-5 play a major relationship between structure and its cytotoxicity. 

Hydroquinone 5-O-cinnamoyl ester of renieramycin M (CIN-RM)  (Figure 10)  

was semi-synthesized from renieramycin M which is isolated from the Thai blue 

sponge Xestospongia sp. CIN-RM was obtained from two-step semi-synthesis of RM 

involving hydrogenation with 20% Pd(OH)2/C in EtOAc to obtain the 
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bishydroquinonerenieramycin M (HQ-RM) followed by esterification with cinnamoyl 

chloride and the addition of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide 

hydrochloride (EDCI.HCl) and 4-dimethylaminopyridine (DMAP) resulted in cinnamoyl 

substituent at C-5 position (23). Previous studies have revealed that renieramycin 

analogs have antimicrobial and anti-proliferation effects (109). For instance, 

renieramycin M induced apoptosis via p53-dependent signaling pathway and also 

inhibit progression and metastasis in lung cancer cell (110). Renieramycin M is an anti-

metastatic agent by sensitizing anoikis-resistant in H460 lung cancer cells to anoikis 

via suppress anoikis-resistance mechanisms (111). Bishydroquinone renieramycin M 

(HQ-RM) induces apoptosis of H292 lung cancer cells through a mitochondria 

pathway (112). CIN-RM induced apoptosis effect on H292 lung cancer cells (22). From 

the previous research, it has not been reported about the suppression of CSCs 

activity on lung cancer of CIN-RM. Therefore, the researcher is interested in study the 

suppression of lung CSCs activity, which should lead to the discovery of important 

anticancer compound which may play a role in the development of a new type of 

anticancer drugs that effective treatment. 

 

 

Figure  10 Structure of Hydroquinone 5-O-cinnamoyl ester of renieramycin M 
(CIN-RM) 
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CHAPTER III 

METHODOLOGY 

3.1 Material and Instruments 

3.1.1 Non-small Cell Lung Cancer Cell Lines and Cultures  

Non-small cell lung cancer cells used in the experiment was H460. H460 was 

obtained from the American Type Culture Collection (Manassas, VA, USA). H460 were 

grown in Roswell Park Memorial Institute (RPMI) 1640 medium containing 10% fetal 

bovine serum (FBS), 2 mM L-glutamine, and 100 units/mL of each of penicillin and 

streptomycin under 5% carbon dioxide (CO2) at 37 °C condition in an incubator. 

 

3.1.2 Hydroquinone 5-O-cinnamoyl ester of renieramycin M (CIN-RM) 

preparation   

CIN-RM is dissolved with dimethyl sulfoxide (DMSO) and diluted with Roswell 

Park Memorial Institute (RPMI) 1640 Medium cell culture in 10% fetal bovine serum 

(FBS) to obtain the desired concentration. The final concentration of DMSO will be 

less than 0.5% solution, which shows no signs of cytotoxicity. 

 

3.1.3 Chemical and Reagents 

Roswell Park Memorial Institute (RPMI) 1640 medium, penicillin/streptomycin, 

fetal bovine serum (FBS), phosphate-buffered saline (PBS), L-glutamine, and trypsin-

EDTA were acquired from Gibco (Grand Island, NY, USA). Dimethyl sulfoxide (DMSO), 

3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide (MTT), propidium iodide 

(PI), Hoechst 33342, Triton X-100 ,bovine serum albumin (BSA), MG132, and 

paraformal-dehyde were obtained from Sigma-Aldrich, Co. (St. Louis, MO, USA). 

Agarose was obtain from Bio-Rad Laboratories (Hercules, CA, USA). RIPA buffer were 

acquired from Cell Signaling Technology, Inc. (Danvers, MA). The primary antibodies 
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were used in the experiments including β-Actin (#4970), GSK3β (#9323), p-GSK3β 

(#9832), mTOR (#2983), p-mTOR (#5536),  Akt (#9272), phosphorylated Akt or p-Akt 

(#4060), c-Myc (#5605), Nanog (#4903), Oct4 (#2840), Sox2 (#3579), and ALDH1A1 

(#36671) were acquired from Cell Signaling Technology (Danvers, MA, USA). The 

primary antibody ubiquitin (ab7780) was purchased from Abcam (Cambridge, UK). The 

respective secondary antibodies, anti-rabbit IgG (#7074) and anti-mouse (#7076) were 

also obtained from Cell Signaling Technology (Danvers, MA, USA). 

 

3.1.4 Equipment 

- CO2 incubator (Thermo forma) 

- Oven (United instrument Co., Ltd., Thailand) 

- Water bath (Memmert, Chatcharee Holding Co., Ltd., Thailand) 

- Fume hood FH120 (BossTech) 

- Nikon Eclipse Ts2 microscope 

- Microplate reader Perkin Elmer VICTOR3 (Anthros, Durham, USA) 

- Guava flow cytometer (Merck Millipore) 

- SDS-PAGE (Bio-rad) 

- Chemiluminescent ImageQuant LAS4000 

- 60- and 100-mm dish culture (Corning Inc., USA) 

- 6, 24 and 96 well plate (Corning Inc., USA) 

- 1.5 ml microcentrifuge tube (Corning Inc., USA) 

- 0.2-2 µl, 2-20 µl, 10-200 µl and 200-1000 µl micropipettes (Corning Inc., USA) 

- 2 µl, 20 µl, 200 µl and 1000 µl micropipette tips (Corning Inc., USA) 
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3.2 Methods 

3.2.1  Cytotoxicity Assay 

To study the cytotoxicity of CIN-RM on NSCLC cell lines (H460), MTT 

colorimetric assay was used. H460 1.5x104 cells/well were cultured in 96-well tissue 

culture plate with 100 µL/well RPMI in 10% FBS at 37 °C under 5% CO2 in incubator 

overnight. Cells in 96-well plates were treated with various concentrations of CIN-RM 

(0, 0.1, 0.5, 1, 5, 10, 20 µM) for 24 h. After that, cells were incubated with 0.4 mg/mL 

MTT for 3 h at 37°C. Then, 100% DMSO was added to dissolve the formazan crystals. 

The intensity of the MTT product was measured at 570 nm by a microplate reader 

(Anthros, Durham, NC, USA). The percentage of cell survival (% Cell viability) and IC50 

were calculated as described in the manufacturer’s protocol (7sea Biotech, Shanghai, 

China). Cell viability (%) = (ODexperi-ment − ODblank)/(ODcontrol − ODblank) × 

100%. 

 

3.2.2  Nuclear Staining Assay  

Apoptosis and necrosis cells death were analyzed with Hoechst 33342 and PI 

fluorescent DNA co-staining assay. The cells were seeded 1 x 104 cells/well in 96 well 

plate and incubated overnight. Then, the cells were treated with CIN-RM at various 

concentrations (0-20 µM) for 24 h. After that, cells were incubated with 10 µg/mL 

Hoechst 33342 and 5 µg/mL PI for 30 min at 37°C. Then, cells were visualized by 

fluorescence microscopy (Nikon ECLIPSE Ts2) and the analysis was evaluated by 

ImageJ software. 

 

3.2.3  Apoptosis Assay 

Apoptotic and necrotic cells were investigated using Annexin V-FITC apoptosis 

kit (Thermo Fisher Scientific, Waltham, MA, USA). Cells were treated with various 

concentrations (0-20 µM) of CIN-RM, incubated at 37 °C for 24 h. Treated-cells were 
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trysinized and suspended in 70 µL of 1X binding buffer. Then, incubated with 

Annexin V/FITC in the dark at room temperature for 15 min. Then, binding buffer was 

added up to 400 µL and the cells were stained with PI before performed flow 

cytometry assay. The cells were analyzed with BD FACSDiva 8.0.2 flow cytometry 

systems. 

 

3.2.4 Colony Formation Assay   

H460 cells were pretreated with various concentrations (0-20 µM) of CIN-RM 

for 24 h. Next, CIN-RM-treated cells were detached and seeded approximately 

300 cells/well onto a 6-well plate and let them formed colonies at 37 °C for 7days. 

The cells were fixed with 4% paraformaldehyde for 30 min at room temperature, 

followed by staining with crystal violet solution at room temperature for 30 min and 

washed with tap water. The colony number and size were investigated by OpenCFU 

software. 

 

3.2.5 Anchorage-Independent Growth Assay  

Soft agar colony formation assay was used to determined anchorage-

independent growth cell growth. The cells were pretreated with various 

concentrations (0-20 µM) of CIN-RM for 24 h. For the preparation of the agar, 1:1 ratio 

mixture of RPMI medium containing 10% FBS and 1% agarose in a 24-well plate to 

form a bottom layer. For an upper layer contain 8 × 103 living cells/mL in the 

agarose gel with 10% FBS and 0.3% agarose. When the upper layer was solidified, 

RPMI medium containing 10% FBS was added and then incubated at 37°C. Phase-

contrast images of colony formation were taken at day 7, 14, and 21 of treatment 

using a phase-contrast microscope (Olympus IX51 with DP70, Melville, NY, USA). The 

colony number and size were investigated by ImageJ software. 
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3.2.6 Spheroid Formation Assay  

H460 cells were pretreated with various concentrations (0-20 µM) of CIN-RM 

for 24 h. The cells were detached and seeded approximately 2.5 × 103 cells/well 

onto a 6-well ultralow attachment plate with in serum free RPMI medium and 

incubated. Spheroid for-mation was determined after 7 days using a phase-contrast 

microscope (Nikon ECLIPSE Ts2). The analysis was evaluated by ImageJ software. 

Meanwhile, H460 cells were seeded approximately 2.5 × 103 cells/well onto a 

6-well ultralow attachment plate with serum free medium and incubated for 7 days 

to form primary spheroids. Then, the primary spheroids were suspended into single 

cells and seeded onto a 96-well ultralow attachment plate with serum free medium 

for 14 days to form secondary single spheroids. After that, the spheres were treated 

with various concentrations of CIN-RM (0–20 µM) and incubated for 24 h in an 

environment of 37 °C with 5% CO2. At 24 h after treatment, apoptosis cell death was 

analyzed with Hoechst 33342 and imaged using a phase-contrast microscopy (Nikon 

ECLIPSE Ts2, Tokyo, Japan). 

 

3.2.7 Immunofluorescence  

H460 cells were seeded in 96-well plates at the density of 8 × 103 cells/well 

and incubated overnight. Then, H460 cells were treated with various concentrations 

(0-20 µM) of CIN-RM and 2.5 and 5 µM of wortmannin. Next, cells were fixed with 4% 

paraformaldehyde for 15 min, followed by permeabilized by 0.5% of Triton X-100 in 

PBS for 5 min, and then blocking with 10% of FBS in 0.1% of Triton X-100 for 1 h at 

room temperature. Primary antibody of c-Myc and p-Akt at proportional 1:200 in 10% 

of FBS were applied before incubation overnight at 4 °C. After that, Alexa Fluor 488 

IgG secondary antibody was added and incubated for 1 h in dark at room 

temperature. Hoechst 33342 was used to stain cell nucleuses and then visualized 
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under fluorescent microscope (Nikon ECLIPSE Ts2, Tokyo, Japan) and the analysis was 

evaluated by ImageJ software. 

 

3.2.8 Immunoprecipitation Assay 

H460 cell lines were pretreated with 10 µM of MG132 for 1 h followed by 10 

µM of CIN-RM for 3 h. The treated cells were obtained and lysed with RIPA buffer. 

The magnetic beads from Dynabeads™ Protein G Immunoprecipitation Kit were 

washed with washing buffer and incubated with c-Myc primary antibody (Ab) in 

binding buffer about 10 min. Then, adding the protein lysate to the bead-Ab 

complex suspension overnight at 4°C. Then, the complex was washed 3 times with 

100 µL washing buffer. Supernatant was discorded and then the elution buffer was 

added for detaching the Ab-Ag complex from the beads. Finally, western blot 

analysis was used to evaluate the ubiquitinated c-Myc protein. 

 

3.2.9 Western blot analysis 

Western blotting was a technique for detecting specific proteins in a sample. 

Cells were seeded at density 4 x 105 cells/well in 6 well plates overnight. Cells were 

treated with CIN-RM at various concentrations (0-20 µM) for 24 h and 2.5 and 5 µM of 

wortmannin for 12h . Then, cells were washed with PBS (on ice) and incubated on 

ice for 30 min with 1X RIPPA 60 µL containing 10x RIPA buffer 100 µL, protease 

inhibitors (PI) 100 µL, PMSF 10 µL, and Triton X 10 µL. Protein content was analyzed 

using BCA protein assay. The extracted proteins were separated with gel 

electrophoresis using 7.5%-15% SDS-PAGE (Sodium dodecyl sulfate polyacrylamide 

gel). After that, the proteins were transferred from the gel to the polyvinylidene 

difluoride (PVDF) membrane, blocked with milk medium (Tris-HCl (pH 7.5) 25 mM, 

NaCl 125mM, and 0.05% Tween20 (TBST) 0.05%) and 5% nonfat dry milk powder for 

2 h, and incubated overnight with primary antibodies that specific to the proteins 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 30 

(ALDH1A1, Nanog, Oct4, Sox2, GSK3β, p-GSK3β, mTOR, p-mTOR, Akt, p-Akt, c-Myc, 

and beta-actin). Then, the membranes were washed with TBST 3 times and then 

incubated with the secondary antibodies for 2 h at room temperature. 

Immunoreactive proteins were detected with the chemiluminescent evaluation 

system and subsequently exposed by Chemiluminescent ImageQuant LAS4000. 

Protein bands were analyzed using the ImageJ software. 

 

3.2.10 Statistical analysis 

The results from three independent experiments (n = 3) were presented as 

means ± standard deviation for each group. Statistical differences between groups 

were analyzed using an analysis of variance (ANOVA), followed by individual 

comparisons with Schefft’s post-hoc test. For two-group comparison, t-test analysis 

was calculated. The statistic was calculated by SPSS software program version 16 

(SPSS Inc., Chicago, IL, USA).  The p-value of less than 0.05 was considered as 

statistically significant. *p < 0.05, **p < 0.01, and ***p < 0.001. GraphPad prism 5 was 

used to created graphs in this experiment (GraphPad Software, San Diego, CA, USA). 
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CHAPTER IV 

RESULTS  

4.1 Selective cytotoxicity of CIN-RM in human lung cancer cells 

To elucidate the anticancer potential of CIN-RM (Figure 10), we determined 

the cytotoxic profile of CIN-RM in lung cancer H460 cells. The cells were incubated 

with CIN-RM (0–20 µM) for 24 h. The results showed that CIN-RM significantly reduced 

the viability of H460 cells (Figure 11A) with a half maximal inhibitory concentration 

(IC50) value of 14.64 ± 7.09 µM (Figure 11B).  

 

 
Figure  11 Effect of CIN-RM on cell viability of lung cancer H460 cells. 
 (A) The significant reduction of % cell viability in human lung cancer H460 cells with 

CIN-RM at 0–20 µM for 24 h. (B) The half maximal inhibitory concentration (IC50) of 

CIN-RM in H460 cells was 14.64 ± 7.09 µM. All data are presented as the mean ± SEM 

(n = 3). * p < 0.05, and ** p < 0.01 compared with untreated cells. 
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Further investigations of CSC-targeting activity of the compound were 

performed in H460 cells treated with 0–20 µM CIN-RM. Apoptosis is characterized by 

condensation and fragmentation of DNA. Therefore, we examined whether the 

majority of the cytotoxic effects caused by CIN-RM was related to apoptosis. Hoechst 

33342 staining was used to evaluate the nuclear morphology of the CIN-RM-treated 

cells. H460 cells were treated with 0–20 µM CIN-RM for 24 h. In addition, propidium 

iodide (PI), fluorescence dye was used to detect for necrosis; however, no PI-positive 

cells were detected at the tested CIN-RM concentrations. These results reveal that 1-

20 µM CIN-RM induced apoptosis cell death indicated by the clear presence of DNA 

condensation and/or fragmentation (Figure 12). The reduction in cell viability 

detected by MTT correlated well with the induction of apoptosis at the same 

concentrations.  

 

 
Figure  12 Apoptosis effect of CIN-RM on H460 cells. 
Apoptotic H460 cells were detected by Hoechst 33342/PI staining and visualized by 

fluorescence microscopy. The percentage of apoptotic cells in CIN-RM-treated cells 

was analyzed. All data are presented as the mean ± SEM (n = 3). *** p < 0.001 

compared with untreated cells. 
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The apoptosis inducing activity of CIN-RM was confirmed by annexin-V-FITC/PI 

staining with flow cytometry analysis. Similar to the nuclear staining assay, CIN-RM 

significantly induced apoptotic cell death in concentration of 1-20 µM (Figure 13). Our 

results suggest that apoptosis was the main mode of cell death of the CIN-RM 

treated cells.  

 

 
Figure  13 Effect of CIN-RM on apoptosis by flow cytometry on H460 cells. 
(A) To confirm apoptosis inducing activity in H460 cells, the cells were treated with 

various concentrations of CIN-RM (0–20 µM) for 24 h, and apoptosis was evaluated by 

annexin V-FITC/PI staining. (B-C) The percentage of cells in each stage and the 

percentage of apoptotic cells were calculated. All data are presented as the mean ± 

SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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It is widely accepted that CSCs can escape apoptosis in response to 

chemotherapy. Next, we tested whether CIN-RM had this effect on a resistant cell 

population in the modified colony formation assay. Surviving H460 cells after a 24-h 

CIN-RM (1, 5, 10, and 20 µM) treatment were subjected to a clonogenic assay without 

further treatment. Crystal violet-stained colonies represent the capability to 

reproduce a new cancer colony from a single cell was shown in Figure 14. It was 

shown that the resistant cells receiving CIN-RM at 1-20 µM could not form the 

colonies  

 

 
Figure  14 Effect of CIN-RM on cell proliferation by colony formation assay on 
H460 cells. 
Cells were treated with various concentrations of CIN-RN (0–20 µM) for 24 h before 

being subjected to forming colonies for 7 days, then the colonies were stained with 

crystal violet. All data are presented as the mean ± SEM (n = 3). *** p < 0.001 

compared with untreated cells. 
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4.2 CIN-RM Attenuates Anchorage-Independent Growth and Suppresses CSC 

Spheroid Formation 

It was previously reported that the process of anchorage-independent growth 

of cancer cells reflects the anoikis-resistant capability of malignant tumor cells (113). 

To test whether CIN-RM could suppresses such cancer cell survival and the ability to 

grow under detached conditions, H460 cells were treated with CIN-RM for 24 h. The 

surviving cells were collected and grown for 7, 14, and 21 days in soft agar for the 

anchorage-independent growth assay. The number and size of the growing cancer 

colonies were determined and calculated relative to those of the untreated control. 

The results indicated that the CIN-RM-pretreated cells exhibited decreased 

anchorage-independent growth compared with the untreated control (Figure 15). As 

illustrated in Figure 15 , the numbers of H460 cell colonies decreased significantly in 

response to the 1, 5, 10 and 20 µM CIN-RM treatment and the percentage of the 

colony size in response to 1, 5, 10 and 20 µM CIN-RM were 100%. These results 

suggest that the CIN-RM treatment may affect the signaling pathways influencing the 

growth of cancer cells in the detached condition. 
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Figure  15 CIN-RM suppresses anchorage-independent growth of H460 cells. 
Cells were pretreated with CIN-RM for 24 h, and the surviving cells were subjected to 

an anchorage-independent growth assay. Data are represented as the mean ± SEM (n 

= 3). *** p < 0.001 compared with untreated cells. 
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As the ability of cancer cells to form tumor spheroids has been used to 

reflect the CSC phenotype, we studied the effect of CIN-RM on spheroid formation. 

H460 cells were treated with various concentrations of CIN-RM (0–20 µM) for 24 h, 

and the cells were subjected to the spheroid formation assay. The primary spheroids 

were captured under a microscope after 7 days. The results show that the untreated 

control cells had a high ability to form primary tumor spheroids, whereas the cells 

treated with CIN-RM exhibited a completely abolished of tumor spheroids at any 

dose (Figure 16).  

 

Figure  16 Effect of CIN-RM on spheroid formation on H460 cells. 
Cells were pretreated with CIN-RM for 24 h and allowed to form primary spheroids 

for 7 days, and the spheroid of the CSC population was determined. Data are 

represented as the mean ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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To further confirm this CSC suppressing activity, a CSC-rich population was 

established form secondary spheroid of control cells. The CSC spheroids were 

seeded in ultralow attach 96-well plates at a density of one spheroid per well. The 

spheroids were treated with CIN-RM (0-20 µM) for 24 h. The results showed that the 

untreated control spheroid survived and maintained the integrity of tumor spheroid, 

whereas the CIN-RM-treated cells revealed a dissociated pattern of spheroids (Figure 

17A). Hoechst 33342 staining further revealed apoptosis character of DNA 

fragmentation and/or DNA condensation in the CIN-RM treated cells (Figure 17B). 

 

 

Figure  17 Effect of CIN-RM on CSC secondary spheroid on H460 cells. 

(A) The CSC single spheroid was treated with toxic concentrations of CIN-RM for 24 h. 

(B) The apoptosis cell death was analyzed with Hoechst 33342. 
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After showing that CIN-RM suppressed CSC properties, we next confirmed this 

result by evaluating the CSC markers in CIN-RM-treated cells. CSCs highly express 

self-renewal transcription factors and detoxifying enzymes, such as ALDH1A1, Oct4, 

Nanog, and Sox2 (4). The H460 cells were treated with various concentrations of CIN-

RM (0-20 µM) for 24 h and expression of the ALDH1A1, Oct4, Nanog, and Sox2 

proteins was measured (Figure 18A). The results showed that Oct4 and Sox2 were 

dramatically decreased at 1 µM of CIN-RM, while Nanog decreased significantly at 5 

µM. ALDH1A1 decreased significantly at 10 µM (Figure 18B) when compared with the 

untreated control. 

 

 

 

Figure  18 CIN-RM suppresses cancer stem cell (CSC)-like phenotype of human 
lung cancer cells. 
(A) H460 cells were treated with various concentrations (0–20 µM) of CIN-RM for 24 h. 

The expression of ALDH1A1, Oct4, Nanog, and Sox2 were determined by Western 

blotting. β-actin was determined to confirm equal loading of the samples. (B) 

Densitometry of each protein was calculated and the results were presented as 

relative protein levels when compared with untreated control. Data are represented 

as the mean ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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4.3 CIN-RM Suppression of CSC Is Mediated Via Akt Inhibition 

c-Myc and Akt play major roles in cell survival, proliferation and stem cell 

properties. It has known that Akt controls the degradation of c-Myc by ubiquitin 

proteasomal degradation (11). To investigate whether CIN-RM suppresses CSCs 

through the Akt/c-Myc signaling pathway, H460 cells were treated with various 

concentrations (0–20 µM) of CIN-RM and investigated by western blot analysis (Figure 

19A). The results indicated that the expression of p-Akt, p-mTOR, and c-Myc 

decreased significantly, while the expression of p-GSK3β (Ser9) decreased slightly 

compared to those of non-treated control cells (Figure 19B), suggesting that the CSC-

suppressive activity of the compound may, at least in part, via Akt/c-Myc inhibition. 
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Figure  19 CIN-RM suppresses CSCs through the Akt/c-Myc signaling pathway. 
(A) H460 cells were treated with various concentrations (0–20 µM) of CIN-RM for 24 h 

and the expression levels of mTOR, p-mTOR, GSK3β, p-GSK3β, Akt, p-Akt, and c-Myc 

protein were investigated by Western blotting. (B) Blots were reprobed with β-actin 

to confirm equal loading of samples. The immunoblot signals were quantified by 

densitometry. Values are presented as means ± SEM (n = 3). * p < 0.05, ** p < 0.01, 

and *** p < 0.001 compared with untreated cells. 
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We further confirmed the inhibitory effect of CIN-RM on the Akt/c-Myc 

signaling pathway using an immunofluorescence staining assay. H460 cells were 

treated with 0–20 µM of CIN-RM for 12 h before incubated with p-Akt and c-Myc 

primary antibodies. Overall, p-Akt and c-Myc fluorescence intensity decreased 

significantly in the cytoplasm and nucleus (Figure 20,21). Interestingly, while the level 

of p-Akt was evenly distributed in both cell compartments (Figure 20B), c-Myc was 

predominantly located in the nucleus of un-treated control cells (Figure 21B). 

 

 

Figure  20 CIN-RM suppresses p-Akt on H460 cell. 
(A) H460 cells were treated with CIN-RN at toxic concentrations for 12 h. The cellular 

levels of p-Akt were determined by immunofluorescence analysis. (B) The 

fluorescence intensity of the nucleus and cytoplasm were analyzed by ImageJ 

software. (C) The fluorescence intensity was analyzed by ImageJ software. Values are 

presented as means ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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Figure  21 CIN-RM suppresses c-Myc on H460 cell. 

(A) H460 cells were treated with CIN-RN at toxic concentrations for 12 h. The cellular 

levels of c-Myc were determined by immunofluorescence analysis. (B) The 

fluorescence intensity of the nucleus and cytoplasm were analyzed by ImageJ 

software. (C) The fluorescence intensity was analyzed by ImageJ software. Values are 

presented as means ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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Emerging research has shown that Akt affects degradation of c-Myc via the 

ubiquitin proteasomal pathway (114). Enhanced c-Myc degradation has also been 

linked to a reduction of CSC transcription factors, including Sox2, Oct4 and Nanog 

(115). This study further investigated whether downregulation of Akt by CIN-RM 

resulted in degradation of the c-Myc ubiquitin proteasomal. H460 cells were 

pretreated with 10 µM of the proteasomal inhibitor MG132 for 1 h followed by 10 

µM of CIN-RM for 3 h. The c-Myc-ubiquitin complex was evaluated by 

immunoprecipitation assay (Figure 22A). Figure 22B indicates that the level of the c-

Myc-ubiquitin complex increased approximately two-fold in CIN-RM-treated cells. 

These results demonstrate that suppressing CSCs with CIN-RM occurred through Akt-

dependent c-Myc destabilization. 

 

Figure  22 Effect of CIN-RM on degradation of the c-Myc ubiquitin proteasomal. 
(A) H460 cells were treated with 10 µM MG132 for 1 h followed by 10 µM CIN-RM for 

3 h. The specific c-Myc protein was immunoprecipitated using an antibody against c-

Myc. The immunocomplex was evaluated by immunoblotting using ubiquitin 

antibodies. (B) Densitometry of Ub-c-Myc protein complex level was calculated. 

Values are presented as means ± SEM (n = 3). * p < 0.05 compared with untreated 

cells. 
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The PI3K inhibitor wortmannin was used to validate the regulation in H460 

cells to bolster the finding that Akt regulates the stability of c-Myc. Cells were 

treated with wortmannin at 2.5 and 5 µM for 12 h and the Akt, p-Akt and c-Myc 

protein levels were determined. Wortmannin significantly decreased the p-Akt and c-

Myc levels, while the Akt protein levels remained unchanged (Figure 23). The 

immunofluorescence staining assay confirmed suppression of Akt by the PI3K 

inhibitor and further revealed that c-Myc was consequently suppressed (Figure 

24,25). 

 

 

Figure  23 Wortmannin suppresses Akt/c-Myc signaling pathway. 
(A) H460 cells were treated with 2.5 and 5 µM of wortmannin for 12 h and the 

expression levels of Akt, p-Akt, and c-Myc were analyzed by Western blotting. (B) 

Blots were reprobed with β-actin to confirm equal loading of samples. The 

immunoblot signals were quantified by densitometry. Values are presented as means 

± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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Figure  24 Wortmannin suppresses p-Akt on H460 cell. 
(A) H460 cells were treated with wortmannin at 2.5 and 5 µM for 12 h. The cellular 

levels of p-Akt were determined by immunofluorescence analysis. (B) The 

fluorescence intensity was analyzed by ImageJ software. Values are presented as 

means ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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Figure  25 Wortmannin suppresses c-Myc on H460 cell. 
(A) H460 cells were treated with wortmannin at 2.5 and 5 µM for 12 h. The cellular 

levels of c-Myc were determined by immunofluorescence analysis. (B) The 

fluorescence intensity was analyzed by ImageJ software. Values are presented as 

means ± SEM (n = 3). *** p < 0.001 compared with untreated cells. 
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CHAPTER V 

DISCUSSION AND CONCLUSION 

CSCs are a unique sub-population within tumors that are linked to low-rated 

successful treatments. CSCs have several cellular defensive mechanisms to escape 

conventional treatments (116). The remaining CSCs that are not eliminated by 

chemotherapy initiate and promote cancer relapse (42). Therefore, the molecules 

targeting CSCs as well as the mechanism maintaining cancer stemness should offer a 

novel promising treatment for cancer (117). CSCs commonly overexpress specific CSC 

markers, such as ALDH1A1, and possess a high level of pluripotent transcription 

factors, including Nanog, Sox2 and Oct4. The CSCs in many cancers are enhanced by 

Akt and its downstream regulator, c-Myc (4, 5). As the stem cell rich population of 

cancers has a highly active Akt signaling mechanism and elevated c-Myc (5, 118), 

these two proteins have been recognized as important drug targets for cancer 

treatment (119). In this study, we demonstrated the activity of CIN-RM in suppressing 

lung cancer CSCs with a possible underlying compound action mechanism. 

Marine-derived compounds from various sources have been demonstrated to 

inhibit CSCs. For example, 5-O-acetyl-renieramycin T induces apoptosis and 

decreases expression of the CSC markers (CD44 and CD133) and decreases the Nanog 

stem cell transcription factor via the Akt signaling pathway (102). An extract of the 

marine sponge Crambe crambe (CR) strongly reduces pancreatic and prostate CSCs 

(103). RM suppressed CSC-like phenotypes in H460 lung cancer cells (21). CIN-RM 

(Figure 10) was semi-synthesized from renieramycin M which is isolated from the Thai 

blue sponge Xestospongia sp. (23). A previous study demonstrated that CIN-RM 

shows potential as an anticancer agent by triggering apoptosis-inducing factors (AIF) 

and a caspase cascade leading to apoptotic cell death in lung cancer (22). Our study 

revealed that the CIN-RM treatment resulted in a significant induction of apoptotic 
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cell death and inhibited cell proliferation (Figure 12-14). We have added up the 

novel information that CIN-RM significantly obstructed anchorage independent cell 

growth and inhibited the ability to form tumor spheroids (Figure 15,16) and 

eradicated the formed spheres (Figure 17). 

ALDH1A1, Nanog, Oct4 and Sox2 are reported stem cell markers in lung 

cancer (4, 51). Overexpression of ALDH represents highly tumorigenic, cancer cell 

cloning properties (54) and reveals chemo-resistance (55). Moreover, Nanog, Sox2 and 

Oct4 are pluripotent transcription factors regulating self-renewal capacity. In our 

study, we discovered that CSCs suppressed the activity of CIN-RM by inhibiting 

ALDH1A1 and the pluripotency transcription factors (Figure 18). For the up-stream 

regulatory mechanism, CSC transcription factors were shown to be activated via 

several pathways including Akt. It was previously shown that Akt directly regulates 

Oct4 and Sox2 activity (74-77). Akt increases the stability of the Oct4 protein by 

phosphorylating Oct4 at threonine 235. Phosphorylated Oct4 enters to the nucleus 

and interacts with Sox2, which in turn activate the transcription of Nanog (78). 

In addition, c-Myc, a major downstream target of Akt, accompany Oct4, Nanog 

and Sox2 to promote self-renewal in CSCs (14). c-Myc is a co-factor of 

Oct4/Sox2/KLF4 during pluripotent stem cell reprogramming (81). Akt regulated the 

stability of c-Myc via a GSK3β-dependent mechanism (10) Similarly, the stability of c-

Myc is controlled by the Akt/mTOR pathway. mTOR inhibits Ser62 de-

phosphorylation on c-Myc by hindering PP2A activity (80) leading to the stabilization 

of c-Myc. The expression levels of the p-mTOR, p-Akt and c-Myc proteins significantly 

decreased in response to CIN-RM (Figure 19). The results of the immunofluorescence 

assay demonstrated in the same manner that CIN-RM significantly decreased the 

intensity of p-Akt and c-Myc in cytoplasm and nucleus, respectively, of H460 cells 

(Figure 20,21).  The stability of c-Myc is dependent on the control by Akt in 
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protecting c-Myc proteasomal degradation by inhibiting GSK3β (11). Therefore, 

disrupting the Akt signal could result in indirect suppression of CSCs by destabilizing 

c-Myc. From these results, CIN-RM only slightly affected p-GSK3β (Ser9), but strongly 

decreased p-mTOR expression (Figure 19), suggesting that CIN-RM regulated c-Myc 

degradation through the Akt/mTOR pathway. 

CIN-RM was obtained from two-step semi-synthesis of RM involving 

hydrogenation at C-5 and C-8 position followed by esterification with cinnamoyl at C-

5 position. Previous studies reported that RM was toxic to H460 cell with IC50 around 

40 µM (110), while in this study founded that CIN-RM was toxic to H460 cell with IC50 

around 15 µM. Another research also reported that CIN-RM at 100 µM reduced 

viability of H292 cells more than RM at the same concentration (22). From previous 

studies, the key structure–activity relationship studies of RM and its derivatives 

featuring ester side chains at C-5 have been investigated for the cytotoxicity on 

NSCLC (120) (23). From the current findings, the modified ester side chains at C-5 

showed a critical structure-cytotoxicity relationship. According to the cytotoxicity on 

NSCLC, a small acyl ester at C-5 is importance for the high potencies of RM 

derivatives compound. The additional ester side chain at C-5 involves an increase in 

hydrophobic interaction and the hydrogen bonding in the DNA alkylation process to 

improve the cytotoxicity (20). Therefore, RM modification can be assumed that CIN-

RM is more toxic than RM because of the ester side chains at C-5 position. 

CIN-RM exhibited a potential CSC-targeting activity by inhibiting Akt. As CSCs 

have been shown to drive cancer progression, drug resistance, metastasis and 

relapse, this compound may offer novel approaches for the improvement of highly 

resistant and relapsing cancers. In addition, the Akt inhibitory effect of the compound 

may be useful for many human cancers in which Akt is over-activated with highly 

drug resistant characteristics. Furthermore, this novel model could be developed as a 

new molecular targeting Akt for cancer treatment. 
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In conclusion, this study demonstrated that CIN-RM suppressed CSCs in H460 

cells by inhibiting the AKT/c-Myc signaling pathway, resulting in the downregulation 

of the stem cell transcription factors, Nanog, Oct4 and Sox2 (Figure 26). This study 

will be useful to further develop CIN-RM as an alternative treatment for CSCs in lung 

cancer. 

 

Figure  26 The proposed regulatory pathway involving in CSC suppression of 
CIN-RM. 
CSCs are the major cause of therapeutic failure due to their ability of self-renewal 
and tumor initiation. They take part in cancer recurrence and metastasis. Akt signaling 
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and related pathways are upregulated in CSCs leading to cancer aggressiveness. CIN-
RM could directly interact and inhibit Akt function resulted in the reduction of stem 
cell transcription factors. In addition, the inhibition of Akt triggers c-Myc proteasomal 
degradation. In the absence of upstream pluripotency factors Nanog, Oct4 and Sox2 
and the protein co-factor c-Myc, the CSCs were depleted. 
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