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slope reliability analysis. The shear strength parameters of soil and root cohesion 

quantified by statistical characteristics are considered. Two natural slopes are selected 

as case studies. Firstly, a case study of shallow failure located on sandstone slopes in 
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CHAPTER 1: INTRODUCTION 

1.1. Background 

Slope instability caused by heavy rainfall events is one of the major problems in 

geotechnical engineering. This can lead to the collapse of a variety of infrastructures 

even leading to loss of life. Recently, the use of vegetation to prevent slope instability 

has been widely applied in many parts of the world because of its relatively low cost, 

environmental benefits and aesthetics (Gray and Sotir, 1996a; Rahardjo et al., 2012). 

Most research agrees that contributions of vegetation to reinforce slope stability are 

well recognised for both hydrological and mechanical effects (Wu et al., 1979; Schmidt 

et al., 2001; Chirico et al., 2013; Fatahi et al., 2014; Jotisankasa et al., 2014; Leung et 

al., 2015). In terms of the hydrological effects, an increase in soil suction results when 

moisture is extracted by plant roots deep in soil which is known as evapotranspiration. 

The presence of roots in the soil can also affect soil permeability and soil-water 

retention behaviour (Jotisankasa and Sirirattanachat, 2017). One of the major 

mechanical effects of roots on slope stability is the process of increasing soil shear 

strength by providing additional root reinforcement (Coppin and Richards, 1990; Wu, 

2013; Eab et al., 2015).  

Several studies have investigated the effect of vegetation on slope stability using 

both the limit equilibrium and finite element method of analysis (Lin et al., 2010; 

Chirico et al., 2013; Wu, 2013; Tiwari et al., 2013; Leung et al., 2015). The results 

conclude that root cohesion played an important role in stability analysis. However, 

such studies have only focused on deterministic analysis, in which root cohesion was 

characterized by constant values. In fact, the growth of vegetation is affected by various 

factors, including soil moisture content due to rainfall, type of vegetation, type of soil, 

and environmental conditions which could cause strong variability of root cohesion in 

distance or space. Several studies have reported that the majority of root cohesion 

values of vegetation species fall within the range of 1.0 - 20.0 kPa depending on 

different environments (O’loughlin, 1974; Kazutoki and Iwamoto, 1986; Abernethy 

and Rutherfurd, 2001; Simon and Collison, 2002). Schmidt et al. (2001) measured 

values of root cohesion in the field and the results indicated that variability of root 

cohesion depended on the presence of one species of vegetation. They found that root 
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cohesion ranged from 6.8 - 23.2 kPa in industrial forests and 25.6 - 94.3 kPa in natural 

forests. In addition, Eab et al. (2015) studied the increase of soil shear strength from a 

vetiver root system using direct shear tests. The results can be used to correlate the root 

area ratio with the increase of soil shear strength. The vetivers with a root area ratio of 

2.44 - 4.37% can increase root cohesion by about 6.0 - 6.8 kPa. Therefore, deterministic 

analysis of slope stability might lead to conservative results and these results can be 

underestimated or overestimated in an evaluation of slope failure. 

In recent years, many investigators have contributed to understanding spatial 

variability of soil properties and characteristics of vegetation on slope stability. For 

example, Fenton and Griffiths (2008) studied the effects of spatial variability of shear 

strength parameters using a random finite element method. Srivastava et al. (2010) 

investigated the influence of spatial variability of permeability properties on steady 

state seepage flow and slope stability analysis. Griffiths et al. (2011) analyzed the 

failure probability of an infinite slope assuming a random field model of  shear strength 

parameters. Cho (2014) performed a probabilistic stability analysis of rainfall-induced 

landslides considering spatial variability of permeability. Jiang et al. (2014) used a non-

intrusive stochastic finite element to investigate slope reliability considering spatially 

variable shear strength. A new study by  Zhu et al. (2017) also looked into the effect of 

natural characteristics of vegetation on slope stability considering in particular, the 

effects of variability in root length. However, these studies ignored the spatial 

variability of root length in reliability analysis of vegetated slope failure; thus, the 

spatial variability of root cohesion has not yet been specifically investigated. In 

addition, slope stability analysis considering the effect of spatial variability of 

parametric studies (i.e. shear strength parameters, root cohesion) requires a significant 

development of existing deterministic code for both the limit equilibrium and finite 

element method of analysis. This is a problem of significant difficulty for most 

completed problems in engineering fields which are known as coupling analyses 

between transient seepage and slope stability. 

This research aims to examine a slope stability analysis in conditions both with 

and without the various effects of vegetation during heavy rainfall. Monitoring pore 

water pressure was possible using the rainfall period record to verify pore water 
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pressure of the proposed seepage analysis model. Slope stability analysis was then 

performed considering with the effect of soil suction (pore water pressure), variation of 

shear strength and root cohesion using the limit equilibrium method. One and two 

dimensional examples of spatial variation of soil shear strength and root cohesion were 

simulated with a random field approach, respectively in order to estimate the failure 

probability of a slope. The effects of soil shear strength variability were quantified to 

investigate the failure mechanism of a slope and to predict the critical rainfall duration 

affecting slope failure. In addition, the effect of root cohesion variability caused by root 

reinforcement in space or distance was also investigated in order to evaluate the 

contribution of vegetation with respect to the stability of a slope. The unsaturated-

saturated seepage analysis and conventional limit equilibrium method were 

implemented for deterministic analysis while a random field model of soil shear 

strength parameters and root cohesion were employed in probabilistic analysis to assess 

the influence of spatial variability on vegetated slope stability. 

1.2. Objective of the study  

The objectives of this study are summarized as follows: 

- To examine and verify the proposed model for seepage analysis and determine 

the mechanisms of failure of a soil slope caused by heavy rainfall. Two case studies 

were conducted with and without the effects of vegetation. 

- To simulate spatial variability of soil shear strength and root cohesion based on 

a one and two dimensional random field model, respectively. 

- To extend and modify the available computer program of SEEP/W and 

SLOPE/W modules to consider the effect of spatial variability of root cohesion on 

failure probability analysis of a natural soil slope. 

1.3. Scope of the study 

To clarify the research problems, the scope of the study is covered as follows: 

- Seepage analysis was conducted for both unsaturated and saturated conditions 

using the finite element method and the Mualem-van Genuchten model (van 

Genuchten, 1980). 
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- The limit equilibrium method was applied for slope stability analysis using the 

extended Morh-Coulomb criterion. 

- Spatial variability of soil shear strength parameters and root cohesion were 

generated using a random field model and Monte Carlo Simulation. 

- Two case studies were conducted on a natural slope: a sandstone slope without 

vegetation (Japan) and a residual soil slope with vegetation (Thailand). 

1.4. Research schedule 

Table 1.1. The schedule of the doctoral program 
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CHAPTER 2: LITERATURE REVIEW 

2.1. Introduction 

At present, stability analyses of natural slopes are usually marked by the 

uncertainty of input parameters which are known as the influences of spatial variability 

of soil properties and characteristics of vegetation. This chapter presents background 

information on traditional and advanced slope stability, uncertainty in analysis of slope 

stability, vegetated slope stability analysis, and the random field model of parametric 

studies. 

2.2. Deterministic methods for slope stability analysis 

Slope stability analysis is usually used to calculate the safety factor of natural 

slopes, excavations, embankments, earth dams and landfills. Over the years, many 

methods have been developed from laborious manual calculations to advanced 

computer solutions. The following subsections describe the available methods for slope 

stability analysis. 

2.2.1. Limit equilibrium method  

In the early years of the 20th
 century, slope stability analysis used the limit 

equilibrium method in order to solve the equilibrium problem with assumption of force 

and/or moment equilibrium. To date, many limit equilibrium methods had been 

developed and applied, including the ordinary method of slices (Fellenius, 1936), 

Bishop’s modified method (Bishop, 1955), force equilibrium methods (Lowe and 

Karafiath, 1960), Morgensten and Price’s method (Morgenstern and Price, 1965), 

Spencer’s method (Spencer, 1967), and Janbu’s generalized procedure of slices (Janbu, 

1968) which were all useful for analysis and estimation of  slope stability. With respect 

to the limit equilibrium method, the soil shear strength could be calculated using either 

total stress or effective stress. For the total stress analysis, pore water pressures were 

not considered and the soil shear strength was described as undrained shear strength, 

su. For the effective stress analysis, the Mohr-Coulomb failure criterion was used to 

simulate the soil shear strength as: 
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' ( ) '
n w

c u tan    
 (2.1) 

where c’ is the effective cohesion of soil, n is the normal stress, uw is the pore water 

pressure, and ’ is the effective friction angle of soil. It should be noted that equation 

(2.1) is only used in fully saturated soils. For unsaturated-saturated soil conditions, the 

shear strength of soil can be expressed based on the extended Mohr-Coulomb failure 

criterion (Fredlund et al., 1978) as: 

' ( ) ' ( )
b

n a ww
c u tan u u tan       

 (2.2) 

where ua is the pore air pressure, and b is the contribution to shear strength due to soil 

suction.  

In the limit equilibrium method, a slip surface which can be planar, circular or 

non-circular in shape was assumed to analyze the stability of the slope. The factor of 

safety (FS) was defined as the ratio between the shear strength of soil to the shear stress 

and the FS was always constant for the entire slip surface. It should be noted that the 

limit equilibrium method was implemented within a deterministic framework. This 

means that the parametric studies used the best estimate value of the available field or 

laboratory test data (fixed values). In fact, the parametric studies were the uncertain 

quantity which was associated with the accuracy of the chosen method, the limits of the 

data, the test equipment and previous experience. Therefore, slope stability analysis 

using the FS was unsatisfactory for the limit equilibrium method. Hence, it was 

concluded that a combination of uncertainty and variability in parametric studies with 

slope stability analysis was required which is known as probabilistic analysis or 

reliability analysis of slope stability. 

2.2.2. Finite element method  

Recently, the finite element method (FEM) has been widely used in slope stability 

analysis due to the fact that available computer software can usually provide a quick 

and accurate estimation of the FS. In addition, the FEM can solve complex problems of 

geotechnical engineering. According to Griffiths and Lane (1999), the FEM has several 

advantages over the limit equilibrium methods:  
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(1) No assumption is required in advance with respect to the shape of a failure 

surface. Failure occurs naturally through the zones where the soil elements with shear 

strength are lower than the applied shear stresses. 

(2) There is no need to make assumptions about internal forces, which appears to 

have been one of the major sources of inaccuracy for some limit equilibrium methods. 

The FEM preserves global equilibrium until failure is reached. 

(3) The FEM provides information about deformations at pre-failure stress levels 

if realistic soil stiffness parameters are used. 

(4) The FEM is able to provide information on progressive failure up to and 

including overall shear failure. 

Several models have used the FEM for slope stability analysis, such as the elasto-

plastic soil model conducted by Smith and Hobbs (1974), and the stability of c’-’ 

slopes given by Zienkiewicz (1975). These studies also indicate that the factor of safety 

computed by the FEM was in good agreement compared with the limit equilibrium 

method. Since then, the FEM for slope stability analysis has been reported as the most 

advantageous method (Lane and Griffiths, 2000; Sainak et al., 2004; Griffiths and 

Marquez, 2007). In the FEM, the FS of the slope is calculated by trial strength reduction 

factor in order to find the factored soil shear strength parameter causing the slope 

failure. The factored soil strength parameters can be obtained from the following: 

'/
f

c c FS
 (2.3) 

( '/ )
f

arctan tan FS 
 (2.4) 

where cf is the effective soil cohesion at the failure time, and f is the effective friction 

angle at the failure time. At the present, the finite element slope stability analysis 

software is available, for instance, the fourth edition of programming the finite element 

method (Smith and Griffiths, 2004) and some versions of the program Plaxis. 
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2.3. Probabilistic slope stability analysis 

The calculation of the factor of safety was inadequate to consider the effect of 

soil variability and other sources causing slope stability uncertainty. Therefore, 

probability analysis has been adopted as a satisfactory approach to account for the 

uncertainty and variability of soil properties and other parameters in geotechnical 

engineering. In the literature, several probability approaches have been presented to 

estimate failure probability or the reliability index, including: the first order second 

moment (FOSM), the first order reliability method (FORM), and Monte Carlo 

simulation (MSC). 

2.3.1. First order second moment 

The first order second moment (FOSM) is a simple method which accounts for 

the effects of the variability of random input variables with respect to performance 

function. This method is based on a first-order of Taylor series expansion of 

performance function at some points to be evaluated, and the expansion was truncated 

after the linear term (first order, the mean and standard deviation are defined from the 

first two moments of the performance function).  

The accuracy of the method deteriorates for the second and higher partial 

derivatives if the performance function is non-linear due to the truncation of the Taylor 

series after the first order term. Therefore, a few assumptions need to be made to 

evaluate the partial derivatives and sometimes they can become cumbersome. However, 

Duncan (2000) demonstrated that FOSM could be applied to many geotechnical 

problems including slope stability by using this simplified approach. 

Consider a performance function 1 2 3
( , , ...., )

n
f X X X X  of random variables

1 2 3
, , ...

n
X X X X , the Taylor series expansion is 

1 2

1

2

1 1

( , ,...., ) ( )

1
( )( ) ...

2

n i

i j

n

X X X i X

i i

n n

i X j X

i j j j

f
F f X

x

f
X X

x x

   

 



 


  




   

 




 

(2.5) 

The first two moments of performance function: 
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1 2 3

[ ] ( , ,..., )
F X X X

E F f    
 (2.6) 

2

2

1 1 1

[ ] [X ] 2 [X , ]
n n n

F i i j

i i ji i j

f f f
Var F Var Cov X

x x x


  

       
                   

 
 

(2.7) 

In general, [ ]E F , [ ]Var F  are the mean and variance of the performance function, 

respectively, [ , ]
i j

Cov X X is the covariance coefficient between the two random input 

variables ix and jx and n is the number of random variables. The reliability index can 

be calculated with the equation 
F

F





  and the probability of failure ( )

f
P    , where 

(.) is the cumulative distribution function (CDF). Applications of the FOSM method 

for slope stability analysis have been described in previous studies and a detailed 

formulation of the method can be found in the publications of Fenton and Griffiths 

(2008). 

2.3.2. First order reliability method 

Hasofer and Lind (1974) proposed an approach estimating the reliability index 

which is referred to as the first order reliability method (FORM). The reliability index 

was estimated by the minimum distance from the origin to a point on the failure 

criterion. In the FORM approximation, if the vector of random variables has non-

Gaussian variables, they would be transformed to the standard normal space U, where 

U is a vector of the independent Gaussian variables with zero mean and unit standard 

deviation, and ( )G U is a linear function. A model of the FORM is presented in Figure 

2.1. 

 

Figure 2.1. FORM approximation for reliability index  
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Low (2003) presented a method for finding the reliability index in the original 

space. His approach was based on the matrix formulation of the Hasofer-Lind reliability 

index β as follows: 

1
min ( ) ( )

T

x F

x C x  




  
 

(2.8) 

or, equivalently: 

 
1

min

T

i i i i

x F
i i

x x
R

 


 





 


   
   
     

(2.9) 

where x is the vector representing the set of random variables,  is the vector of the 

mean value, C is the covariance matrix, R is the correlation matrix and F is the failure 

domain. 

Figure 2.2 shows the geometry of a reliability index for a two variables problem 

which can be interpreted as finding the smallest ellipsoid (the probability distribution 

of the variables) tangent to the limit state surface. It can be implemented using built-in 

Excel (Low and Tang, 2004) and Matlab programs. 

 

 

Figure 2.2. Reliability index in the plane of original variables (Low, 2003) 



 

 

11 

2.3.3. Monte Carlo Simulation  

Another way to estimate the mean and standard deviation of performance 

function is the use of a Monte Carlo simulation (MCS) based on generated random 

variables of input parameters. The process is repeated thousands of times in order to 

establish the statistical characteristics of the performance function (FS). The major 

advantage of this method is that no assumption is required about the shape of the 

probability distribution of the performance function. 

Consider the problem of failure probability of a system which has n random 

variables X1, X2, X3…,Xn. The performance function 1 2 3
g( , X , ..., X )

n
X X also has random 

variables because the input parameters are random variables if system failure occurs 

whenever 1 2 3
g( , X , ..., X ) g

n crit
X X  , where crit

g  is the critical value, equal to 1.0. The 

failure probability can be calculated with n dimensional integral of the joint probability 

density function
1 2 1 2

( , )
X X

f x x . 

1 2

1 2

,..., 1 2 1 2( , ..., ) ......
n

n

n nX X X

x F

f
x F x F

f x x x dx dx dxp
 

  
 

(2.10) 

in which F denotes the failure region. Unfortunately, in some cases, the equation (2.10) 

is complete for analytical solutions and may be difficult to implement in numerical 

integration algorithms. An alternative solution to evaluate equation (2.10) is simulated 

by a sequence of realizations of X1, X2,…, Xn. 1 2
g( , X ,..., X )

n
X calculated for each 

realization. The failure probability can be estimated by an equation called a Monte 

Carlo simulation as follow: 

1

1 n

f i

i

I
n

P


   (2.11) 

where 1I   if 1 2
g( , X ,..., X ) g

n crit
X   and 0I   otherwise.  

Figure 2.3 illustrates the fundamental issue of the Monte Carlo simulation i.e. that 

the performance function only includes the two parameters of X1, X2. From these two 

plots, the true failure probability can be Pf = 0 or more than zero depending on the 



 

 

12 

statistical characteristics of input parameters as well as the number of realizations. 

However, the Monte Carlo simulation is the best method to estimate the failure 

probability for cases in which there are many independent variables or the performance 

functions are strongly non-linear. However, it should be noted that the limitation of the 

Monte Carlo simulation is the number of trials necessary to ensure a desired level of 

accuracy in the results and how to reduce error in the sampling process or decrease the 

number of trials necessary to achieve the desired accuracy. This leads to a cumbersome 

calculation of probability if problems are more complex. 

Figure 2.3. Monte Carlo simulation of two parameters X1, X2 

2.4. Variability of parametric studies 

In geotechnical engineering, the properties of natural soils are uncertain and 

inherently variable from one location to another, even within a relatively homogeneous 

deposit. According to Vanmarke (1977), the uncertainty of soil properties can be 

divided into three primary sources: limited sampling data, measurement errors from 

testing equipment, and empirical error using correlation models relating to the 

characterization of soil properties. The following section presents methods to quantify 

the variability of parametric studies and to generate data require to do reliability 

analysis.  

2.4.1. Statistical characteristics 
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Parametric studies are recognized as random variables. Instead of estimating a 

deterministic value, an input parametric study of soil property is defined by the 

statistical characteristics and its probability density function (PDF). 

2.4.1.1. Mean of a random variable 

The mean is the most important characteristic of a random variable describing its 

central tendency. For X, a random variable with probability density function f(x), the 

mean of X (expected value), denoted X
 , is defined by: 

1

[ ] ( )
X

n

i i

i

E X x f x


 
 

(2.12) 

if X is a discrete function. 

[ ] ( )
X

E X xf x dx





  
 

(2.13) 

if X is a continuous function 

2.4.1.2. Variance, standard deviation and coefficient of variation of a random variable  

The other important characteristics of a random variable are expressed as the 

distribution if it is wide or narrow around a mean value. This distribution is commonly 

measured by a quantity called the variance of a random variable. 

Similarly, X is still a random variable with probability density function f(x). 

Variance of X can be defined by: 

2 2 2

1

[ ] [( ) ] ( ) ( )
n

X X i X X i

i

Var X E X x f x  


    
 

(2.14) 

if X is a discrete function. 

2 2 2
[ ] [( ) ] ( ) ( )

X X X X
Var X E X x f x dx  





    
 

(2.15) 

if X is a continuous function. 
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The square root of the variance,
2

X
 , is called the standard deviation and the 

coefficient of variation, cov, is the ratio of the standard deviation to the mean value, as 

given by:  

cov X

X




  (2.16) 

2.4.1.3. Covariance and correlation coefficient of two random variables 

 Let X and Y be a pair of random variables with joint probability distribution

( , )
XY

f x y that depend on each other. The covariance, Cov[X,Y], is described by: 

[ , ] [( )( )]
X Y

Cov X Y E X Y   
 (2.17) 

Discrete case: 

1 1

[ , ] ( )( ) ( , )
n m

i X j Y XY

i j

Cov X Y x y f x y 
 

  
 

(2.18) 

Continuous case: 

[ , ] ( )( ) ( , )
X Y XY

Cov X Y x y f x y dxdy 
 

 

   
 

(2.19) 

The correlation coefficient between X and Y is defined as be: 

[ , ]
XY

X Y

Cov X Y


 


 
(2.20) 

The correlation coefficient has a value from -1 to +1, when the two variables are 

perfectly related, 1
XY

   , and if the two random variables are independent, 0
XY

  .  

Table 2.1 presents statistical characteristics of soil shear strength which were conducted 

from the various laboratory tests. 
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Table 2.1. Mean and cov of shear strengths parameters (Phoon and Kulhawy, 1999)  

Property Soil type No. of data group cov Mean  

c (UC) Fine grained 38 0.06 - 0.56 101 

c (UU) Clay, silt 13 0.11 - 0.49 33 

c (CIUC) Clay 10 0.18 - 0.42 47 

c (TC) Clay, silt 11 0.08 - 0.38 13 

c (DS) Clay, silt 2 0.19 - 0.20 15 

c (LV) Clay 15 0.05 - 0.37 - 

 (TC) Clay, silt 4 0.07 - 0.56 10 

 (DS) Clay, silt 5 0.03 - 0.29 11 

 (DS) Sand 2 0.13 - 0.14 26 

tan (TC) Clay, silt 4 0.06 - 0.46 - 

tan (DS) Clay, silt 3 0.06 - 0.46 - 

tan (TC) Sand, silt 6 0.02 - 0.22 - 

tan (DS) Clay 6 0.06 - 0.22 - 

  

2.4.2. Spatial variability 

Since the characteristics of soil tend to vary from one point to another, the 

variation of soil in distance or space is known as the spatial variability. A random field 

model was investigated to describe the correlation structure of soil (Vanmarcke, 1983). 

In order to simulate a relationship between data points, the Markov correlation function 

is commonly used in geotechnical engineering (Fenton and Griffiths, 2008; Phoon, 

2008) as follows: 

2
( ) exp

l


 

 
  

 
 (2.21) 

where  = z-z’ is the distance between data points (element size in one dimension) and 

l is an autocorrelation length describing whether the spatial soil properties show a strong 
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or weak relationship. A large autocorrelation length implies a smoothly varying field 

while a small correlation length indicates a ragged field.  

In practical conditions, the different element sizes within a problem can be 

generates with complex geometry. Therefore, the variance reduction factor is used to 

compute the locally averaged statistics applied to data points (or elements) which can 

be expressed as follow: 

2

0

2
( ) ( ) ( )

T

T T d
T

     
 

(2.22) 

where T is the length of the domain (or elements). Figure 2.4 illustrates the Markov 

correlation function and variance reduction function for the correlation length l = 1.0. 

 

 

Figure 2.4. Markov correlation function and variance function 

For the higher dimension (of two dimensions), the Markov correlation function 

and variance reduction are defined by equation (2.23) and (2.24), respectively, as shown 

in Figure 2.5. 

22
( , ) exp exp

yx
x y

x yl l


  

    
     

    

 (2.23) 

2 2

0 0

4
( , ) ( )( ) ( , )

yx
TT

x x x y x x

x y

T T T x T y dxdy
T T

        (2.24) 
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Figure 2.5. Two dimension correlation function and covariance function 

(autocorrelation length l1 = l2 = 1.0) 

As mentioned above, the spatial variability of the parametric studies is becoming 

increasingly common for generation of random fields. This leads to the recognition that 

probabilistic analysis of complex geotechnical engineering is no longer sufficient based 

solely on the mean value and covariance coefficient. Uncertain and variable parametric 

studies must be incorporated with the correlation length (equation (2.21) and (2.23)) to 

calculate failure probabilities associated with the typical performance function. Figure 

2.6 (a) and (b) show a one and two dimensional random field model for a typical 

autocorrelation length, respectively. Nowadays, many different random field models 

are available to simulate spatial variability of parametric studies of which the following 

are perhaps the most common:  1) Moving-average (MA) method, 2) Covariance matrix 

decomposition, 3) Discrete Fourier transform (DFT) method, 4) Fast Fourier transform 

(FFT) method, 4) Turning-bands method (TBM) and 6) Local average subdivision 

(LAS) method. The detail of these methods can be seen in the publication of Fenton 

and Griffiths (2008). 

 

a) One dimensional random field 
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b) Two dimensional random field 

Figure 2.6. Typical random field generation 

2.4.3. Transformation approach  

In the field of geotechnical engineering, parametric studies usually have positive 

values; thus, the random variables of parametric studies are assumed to be statistical 

characteristics by a lognormal distribution (Fenton and Griffiths, 2008) defined by the 

mean x and standard deviation x. Because the Gaussian distribution (the normal 

distribution) is often used to generate  random variables for  reasons of convenience 

and lack of available data, the standard deviation and mean of the underlying the normal 

distribution of lnX are given by: 

2

ln (1 cov )X    (2.25) 

2

ln ln
0.5

X X X
ln     (2.26) 

The corresponding probability density function can be written as: 

2

ln

2

lnln

( )1
( )

22

X

XX

lnx
f x exp

x



 

 
  

 
 (2.27) 

Normal random variables can be calculated from the pseudo-random-number 

generator of the uniform distribution (Fenton and Griffiths, 2008). Random variables 
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having a lognormal distribution can be generated from the normal distribution function 

which was presented in equation (2.27). 

2.5. Model of stability analysis on a vegetated slope 

2.5.1. Background 

The effects of vegetation which impact slope stability were used to determine 

slope stability in the 1960s but they have been considered a minor effect and are ignored 

in slope stability analysis at present. Although the effects of vegetation had been 

investigated at the time, they were only well recognized by a few research pioneers 

(Betlahmy, 1962; Bishop and Stevens, 1964; Endo and Tsuruta, 1969). Recent studies 

propose the use of vegetation effects on slope stability analysis in two ways: (1) through 

mechanical effects using the root reinforcement and (2) hydrological effect (Barker, 

1995). The mechanical effect has been studied to understand the physical interaction 

between vegetation and soil slope (Stockes and Mattheck, 1996; Wu et al, 1988) and 

benefits in considering slope stability with vegetation (Greenway et al, 2004). In 

contrast, hydrological effects refer to the modification of soil moisture content caused 

by plant evapotranspiration and rainfall infiltration. However, because of its minor 

contribution during heavy rainfall, evapotranspiration is ignored in this study. Detail of 

vegetation relating to slope stability analysis can be found in many publications. (Gray 

and Leiser, 1982; Coppin and Richards, 1990; Gray and Sotir, 1996b). 

2.5.2. Shear strength of root-soil 

The roots of tree, shrubs, grass and other plants can reinforce the soil due to their 

tensile strength and adhesion properties (Coppin and Richards, 1990). It is widely 

recognized that the tensile strength of plant roots acts to resist tensile cracking or can 

be converted to the shear strength of soil. The tensile strength of plant roots contribution 

to slope stability depends on a number of factors, including the type of soil, 

geomorphology, climate conditions and plant species. In addition, the calculation of the 

effects of small plants on soil shear strength will be carried out in some cases and the 

surcharge load dismissed for large plants. Although the mechanical effects comprise 

various aspects, the available literature has generally focused on investigating the 
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influence of root reinforcement on the stability of slopes so quantifying the effect of 

root reinforcement will be reviewed this section. 

The effect of the presence of plant roots in soils can be reviewed in the work of 

Endo and Tsuruta, (1969); O’Loughlin, (1974) and Waldron, (1977). The primary 

estimation of root reinforcement is based on an estimation of the term in the Mohr-

Coulomb criterion: 

,
( ) tan '

r n wsc c u       (2.28) 

where 
,

sc is the effect of cohesion of the soil, r
c is the apparent cohesion provided by 

roots, n
  is the normal stress due to the weight of the soil and water of sliding mass, uw 

is the soil pore water pressure, and ' is the effective internal friction angle of soil. 

The contributions of root reinforcement for soil shear strength have been 

calculated by several authors, including in-situ direct shear tests on a soil block with 

plant roots (Wu et al., 1988; Wu and Watson, 1998; Abernethy and Rutherfurd, 2001) 

and laboratory direct shear tests of soil with roots (Waldron, 1977; Terwilliger and 

Waldron, 1991). 

2.5.3. Root area ratio 

Root area ratio (RAR) is defined as the ratio of the total cross-sectional area that 

is occupied by all roots in a given cross-section of soil, Ar, to the total cross-sectional 

area of the soil being considered, A. The RAR can be determined using an equation 

suggested by Coppin and Richards (1990) as follow: 

i ir
n aA

RAR
A A

 


 (2.29) 

where ni is the number of roots in size class i; ai is the mean cross-sectional area of 

roots in size class i.   

The depth of root is significant to the variability of  the RAR which depends on 

plant species and environmental conditions (Greenway, 1987). Most grass roots are 

located within the upper 50 mm of soil  (Coppin and Richards, 1990). For trees and 
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shrubs, root depth is specified in the range of 1.0 to 3.0 m. Normally, the depth of roots 

is constrained by bedrock at relatively shallow depths (less than 2 m) in many slopes 

(Schmid et al., 2001). 

2.5.4. Root tensile strength 

The tensile strength of roots can be measured using a tensile test in the laboratory 

or in-situ and has been reported by many researchers. The root tensile strength depends 

on many factors such as vegetation species, environmental conditions, and root 

diameter as established by previously cite authors. Table 2.2 shows the root tensile 

strength of some different species of plant provided by Coppin and Richards (1990). It 

is clear that the root tensile strength ranges widely for various plants. In addition, the 

root tensile strength shows significant variability with root diameter. Most studies have 

recognized that there is a decrease in root tensile strength with increasing diameter (Wu 

et al., 1979; Simson and Collison 2002, Ji et al., 2012). Figure 2.7 shows the 

relationship between the root tensile strength and root diameter in Loess Plateau, China. 

         Table 2.2. Root tensile strength (Coppin and Richards, 1990) 

Species Tensile strength (MPa) 

Elymus (Agroppyron) repens (Cough grass) 7.2 - 25.3 

Campanula trachelium (Bellflower) 0.0 - 3.7 

Convolvulus arvenis (Bindweed) 4.8 - 21.0 

Plantago lanceolate (Plantain) 4.0 - 7.8 

Taraxacum officianal (Dandelion) 0.0 - 4.4 

Trifolium pratense (Red Clover) 10.9 - 18.5 

Medicago sativa (Alfalfa) 25.4 - 86.5 

Populus nigra (Black Poplar) 5.0 - 12.0 

Populus euramericana (Hybird Poplar) 32.0 - 46.0 

Pseudotsuga menziesii (Douglas Fir) 19.0 - 61.0 
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Figure 2.7. Relationship between root tensile strength and root diameters 

2.5.5. Root cohesion  

Following the root reinforcement models of Wu (1976), Gray and Ohashi (1983), 

roots are assumed to have elastic behavior, and initially perpendicular to the shear zone, 

the root cohesion can be defined as: 

(cos tan ' sin )
r r

c t    
 (2.30) 

where is the angle of deformed roots with regard to shear surface and tr is the average 

mobilized tensile strength of roots per unit area of soil. The equation (2.30) is modified 

to determine the root cohesion from the tensile strength of an individual root Tri and the 

root area ratio ri

s

A

A

 
 
 

 of root cross-sectional area (Ari) to soil cross-sectional area (As), 

where n is the number of roots in area As. Root cohesion can be rewritten as (Wu et al, 

1979): 

1

1.2
n

ri
r ri

i s

A
c T

A

 
  

 


 
(2.31) 

In addition, root cohesion can be measured by a field test or a laboratory direct 

shear test (Eab et al., 2015) and back analysis on failed slopes. In the literature, many 

investigators have published that root cohesion values had different ranges due to the 

effect of various vegetation species growing in different environments. Table 2.3 
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summarizes typical values for root cohesion which vary from 1.0 to 94.3 kPa depending 

on type of vegetation and environments. Normally, values of root cohesion fall within 

the range of 1.0 - 20.0 kPa.  

 Table 2.3. Typical value for root cohesions, cr. 

Species c
r
 (kPa) Investigator 

Alder (Japan) 2.0 - 12.0 Endo and Tsuruta, 1969 

Hemlock, spruce (Alaska, USA) 3.4 - 4.4 Swanston, 1970 

Conifers (British Columbia, Canada) 1.0 - 3.0 O’Loughlin, 1974 

Conifer (Oregon, USA) 3.0 - 17.5 Burroughs and Thomas, 1977 

Ponderosa pine, Douglas-fir (Idaho, USA) 2.8 - 6.2 Gray and Megahan, 1981 

54-month-old yellow pine (Laboratory) 3.7 - 6.4 Waldron et al., 1983 

Sphagnum moss (Alaska, USA) 3.5 - 7.0 Wu, 1984a 

Hemlock, sitka pruce (Alaska, USA) 5.6 - 12.6 Wu, 1984b 

Japanese cedar (Japan) 1.0 - 5.0 Abe and Iwamoto, 1986 

Grass, sedges, shrubs, sword fem (USA) 1.6 - 2.1 Buchanan and Savigny, 1990 

Natural forest-conifers (USA) 25.6 - 94.3 Schmidt et al., 2001 

Industrial forest-hardwood (USA)  6.8 - 23.2 Schmidt et al., 2001 

Vetiver grass (Thailand) 6.0 - 6.8 Eab et al., 2015 

 

2.5.6. Spatial variability of root cohesion 

Root cohesion is also characterized by spatial variability due to non-uniformity 

of the species, size, and spacing of tress on a slope. Recently, Abernethy and Rutherfurd 

(2001) conducted tests on two Australian riparian species which varied both vertical 

and horizontal dimensions. They calculated root cohesion based on the measured values 

of the root area ratio and root tensile strength using the perpendicular root reinforcement 

model. A non-linear regression was applied to estimate root cohesion which was the 

exponential function of distance from the tree trunk (dh) and the depth below the soil 

surface (dv). 

For the river red gum: 
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4.920 0.099 1.333 2 0.70vhd d
rc e r

 
   (2.32) 

For the swamp paperbark: 

4.769 0.540 1.891 2 0.63vhd d
rc e r

 
   (2.33) 

Schmidt et al. (2001) also conducted root cohesion calculations of some species 

of vegetation at the Oregon Coast Range, USA. The results show that the root cohesion 

values ranged from 6.8 to 23.2 kPa in industrial forests with significant deciduous 

vegetation and from 25.6 to 94.3 in natural forest dominated by coniferous vegetation. 

In their study areas, landslides tended to occur due to a reduction in root strength. 

According to previous studies, slope stability analysis, which has considered the 

effect of various types of vegetation has ignored the spatial variability of root cohesion 

(Wu et al., 1979; Greenway, 1987, Lin et al., 2010; Chirico et al., 2013; Wu, 2013; 

Tiwari et al., 2013; Leung et al., 2015) though it was well recognized and verified by 

recent field measured data. In this research, random fields of root cohesion are 

generated using mean values, an assumption of covariance and autocorrelation length. 

Probabilistic analysis is then performed with generated random fields of root cohesion. 

The results indicated that the spatial variability of root cohesion has significant effects 

on slope failure. 

2.5.7. Shallow failure on vegetated slopes 

Vegetated slope failure is usually known as shallow translational or planar failure 

overlying a bedrock where a thin soil layer is less than 2.0 m thick and the length-to-

depth ratio is very high. Therefore, infinite slope analysis is commonly adopted for 

slope stability analysis in this situation (Lu and Godt, 2008; Ray et al., 2010; Li et al., 

2013). The factor of safety (FS) is defined as the ratio of the available shear strength to 

the shear stress expected along the failure surface. In the case of a shallow landslide, 

the FS can be estimated by a modification of the original equation (Wu et al., 1979)  if 

calculation of pore air pressure in equation (2.28) is almost equal to atmospheric 

pressure, ua = 0 as the flowing function: 
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2' (W )cos tan '

(W )sin

r w wc c S u l
FS

S D

 



     
   

(2.34) 

where: c’ is the effective soil cohesion, cr is the root cohesion, W is the total weight of 

the slices, Sw is the surcharge due to weight of vegetation,  is the slope angle, uw is the 

pore water pressure, l is the length of slices; ’ is the effective friction angle of soil, and 

D is the wind loading (Figure 2.8). However, in this study where a vetiver grass of 

vegetation is focused on for slope stability analysis, the contribution of the acting force 

may not be so important and can be ignored in consideration of attributed vegetation. 

 

Figure 2.8. Model of a vegetated slope considering the influences of root 

reinforcement and acting forces 

2.5.8. Deep-seated failures on a vegetated slope 

Deep-seated failures usually occur in humid tropical environments where the soil 

layers are rather deep reaching up to 30 m depth (Collison and Anderson, 1996). 

Therefore, roots of plant cannot occupy the entire soil layer and the failure mechanism 

may be circular, or non-circular, or rotational rather than in the case of shallow failure 

where critical surfaces may pass beneath the root zone. To study the influences of 

vegetation on deep-seated slope failures, Greenwood (2006) developed a spreadsheet-

based program using the traditional limit equilibrium method modified to consider the 

contribution of root cohesion, surcharge, and wind loading while hydrological effects 
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were only calculated according to changes in pore water pressure. Several researchers 

the University of Bristol, UK also developed a stability model in order to study the 

effects of rainfall infiltration on vegetated slope stability analysis. This model simulated 

the flow system using a forward explicit finite difference scheme with Darcy’s law in 

a saturated condition. For the unsaturated condition, water flow is computed using 

Richards’ equation. Evapotranspiration and root water uptake were modelled using the 

Penman-Monteith equation and an increase in apparent soil using the root 

reinforcement model of Wu et al. (1979). 

2.6. Unsaturated seepage analysis 

2.6.1. The continuity equation of unsaturated seepage analysis 

Water flow through unsaturated soil is governed by the same physical law, 

Darcy’s law, as fluid flow through saturated soils. The major difference between water 

flow in saturated and unsaturated soil is that the coefficient of permeability is assumed 

to be a constant in saturated soil while it is a function of matrix suction in unsaturated 

soils. However, the partial differential equation of flow is similar in the two cases. 

Richards (1931) developed Darcy’s law in order to simulate the sum of the rates of 

change flows plus an external applied as equal to the rate of change of the volumetric 

moisture content with respect to time which can be expressed using a continuity 

equation as follow: 

x y z

h h h
k k k Q

x x y y z z t

          
                   

(2.35) 

where , ,x y zk k k , is the permeability function (coefficient permeability) in x, y, z 

directions, respectively, h  is the total hydraulic head,   is the volumetric moisture 

content, t is time, and Q is the applied boundary flux calculated from the difference 

between rainfall and runoff. It should be noted that the amount of water stored within 

the soil depends on the soil suction and volumetric moisture content, as shown in Figure 

2.9 for typical soil. In addition, the hydraulic conductivity is also highly non-linear 

depending on pore water pressure in unsaturated soil (Figure 2.10). The volumetric 

moisture content and hydraulic conductivity are associated with soil type, in the 
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literature, many models have adopted in unsaturated soil framework as mentioned in 

the following section. 

 

Figure 2.9. Volumetric moisture content versus pore water pressure 

Pore water pressure (kPa)
 

Figure 2.10. Hydraulic conductivity versus pore water pressure 
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2.6.2. Soil water characteristic curves (SWCC) 

As mentioned in section 2.6.1, the relationship between suction (negative pore 

water pressure) and the amount of water stored within the soil, known as SWCC, is 

important for unsaturated seepage analysis. Nowadays, a large number of closed-form 

solutions and empirical equations have been proposed to best fit laboratory data or field 

data for SWCCs, as presented in Table 2.4. 

Table 2.4. Empirical equation used to best fit SWCC data  
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The equation in Table 2.4 can be included in two-parameter SWCC equations and 

three-parameter SWCC equations. Each of these equations can be best fit to laboratory 

or field data using a non-linear regression analysis in order to find curve-fitting 

parameters as input hydraulic parameters in unsaturated seepage analysis. 
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2.6.3. Numerical solutions for multi-dimensional problem 

The nonlinear partial differential equation (2.35) has no general analytical 

solution and hence the use of numerical approximation is one of the best solutions. 

Numerical models of unsaturated flow have also been combined with slope stability 

models to examine a wide variety of geotechnical engineering problem. Three 

approaches have been used to solve the Richard’s equation: 1) Finite Different Method 

(Zarba et al., 1990); 2) Finite Element Method (Panday et al., 1993; Forsyth et al., 

1995); 3) Finite Volume Method (Takeuchi et al., 2010; Zambra et al., 2012). Table 2.5 

lists several of the freely available and commercial models for simulating variable 

unsaturated flow. 

Table 2.5. Numerical software for simulation of unsaturated flow.  

Model Dimensions Licensing Description Reference 

VS2DI 2 Freely 

available 

Finite difference solution of 

the Richard’s equation, 

solute and heat transport, 

graphical user interface  

Hsieh et 

al., 1999; 

Healy, 

2008 

HYDRUS  

1-D 

1 Freely 

available 

Finite element solution of 

the Richard’s equation, 

graphical user interface, 

inverse modeling of 

material properties from 

observation 

Simunek 

et al., 

2005; 

 

HYDRUS 

2D/3D 

3 Commercial 3-D finite element solution 

to the Richard’s equation, 

hysteresis of soil hydraulic 

properties, non-linear solute 

transport 

Simunek 

et al., 

1999, 

2005; 

 

TOUGH2 3 Freely 

available 

3-D integrated finite-

difference solution to the 

Richards equation, 

hysteresis of soil hydraulic 

properties, non-linear hear 

transfer 

Pruess et 

al., 2011 

Geo 

studio/ 

SEEP/W 

2 Commercial Finite element method to 

solve Richards’s equation 

for unsaturated-saturated 

condition. 

Geo 

Studio 

2007 
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CHAPTER 3: RESEARCH METHODOLOGY 

3.1. Introduction 

This chapter discusses the implementation of the finite element method for 

seepage analysis during heavy rainfall and the determination of the factor of safety 

using the limit equilibrium method. Probabilistic analysis was approximated 

considering the effect of spatial variability of soil shear strength parameters. The 

available software was modified in order to analyze the effect of spatial variability of 

root cohesion on vegetated slope failure. The procedure will be carried out in a 

subsequent chapter. 

3.2. Definition of spatial variability of parametric studies 

In this study, the effective soil cohesion, friction angle of soil, and root cohesion 

are defined as random variables at a given point. The mean values of these random 

variables are calculated form both laboratory and field test while their cov is taken from 

previous researchers with the exception of root cohesion. The assumption of cov of root 

cohesion is set because no data has been reported. In order to describe the spatial 

correlation between two random variables, autocorrelation lengths are varied following 

the typical case study, as shown in Table 3.1. 

     Table 3.1. Spatial variability characteristic of parametric studies 

Parametric studies Mean value cov 
Autocorrelation 

length 

Effective cohesion (c’) 
Laboratory 

and field test 

Previous 

researchers Varied Effective friction angle (’) 

Root cohesion (cr) Assumptions 

 

3.3. Finite element method for seepage analysis 

For seepage analysis in an unsaturated soil layer, Darcy’s law originally derived 

for saturated soil, was modified to accommodate the flow of water through unsaturated 

soil (Richards, 1931). The only difference made is that under conditions of unsaturated 

flow, hydraulic conductivity is no longer a constant. There are some empirical and 

semi-empirical functions which have been proposed to present hydraulic conductivity. 
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In this study,  nonlinear functions of the volumetric moisture content and the coefficient 

of permeability of the unsaturated soil were adopted based on the Mualem-van 

Genuchten model (van Genuchten, 1980) as: 

1

1 ( )

r
e m

n
s r

S
h

 

   
 


 

 
 

(3.1) 

where 
1

1m
n

  , n > 1 are dimensionless parameters, and  

 
2

1/2 1/1
m

m
z s e ek k S S 

  
 

 
(3.2) 

in which Se is the effective water saturation, r is the residual volumetric moisture 

content, s is the saturated volumetric moisture content, ks is the saturated permeability 

(m/hr), and  is the fitting parameter (1/m). 

The numerical codes were developed on the basis of the theory of unsaturated 

flow. In this study, the finite element method was applied using the SEEP/W module 

of Geo-Studio 2007 to solve the equation (2.35) in one and two dimensional directions. 

To obtain the result, the time step increment and element size should be defined in the 

advantage (Pan et al., 1996; Van Dam and Feddes, 2000; Caviedes-Voullième et al., 

2013). 

3.4. Determination of factor of safety 

Factor of safety (FS) is defined as the ratio of the available shear strength to the 

shear stress calculated along the failure surface. Normally, traditional limit equilibrium 

is used to determine the factor of safety of a slope under transient infiltration condition 

(Lu and Godt, 2013). Therefore, a method of slices was adopted to calculate the factor 

of safety along the potential failure surface and to search for a critical surface, the factor 

of safety can be expressed as: 

f

i i

n

i
i

n

i

sin

l

W

FS









 

(3.3) 
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where n is the total number of slices, f  is the shear strength of soil which was defined 

as equation (2.2), i is the slice index, li is the length of each slice, Wi is the weight of 

each slice per unit base area; i is the base inclination of the slice. The factor of safety 

is then calculated with the apparent seepage analysis. 

3.5. Random field generation 

Spatial variability of a random field of standard normal distribution (Gaussian 

random field) can be simulated using the following spectral approach: 

 
1

( ) A sin(2 ) cos(2 )
n

i i i i i

i

i i iX z R f z B f z 


   (3.4) 

in which ( )
i iR G f   and (2 1) / 2

i
if     

where n is the number of discrete frequency, equal to the power of 2 , G(f) is the one-

sided spectral density function,  f is the frequency interval of G(f) domain, Aj and Bj are 

uncorrelated standard normal random variables. 

Since the second-moment of a Gaussian random field (covariance function, C()) 

is the Fourier transform of the one-sided spectral density function G(f) the inverse 

transform can be applied to find the one-sided spectral density function as follow: 

2

0

2 ( )
( ) cos(2 )

X

C
G f df


  

 



   (3.5) 

in which 
2

( ) ( )
X

C      and 
2

1
X

   with the standard normal distribution. Equation (3.5) 

can be written in terms of the correlation function as: 

0

2
( ) ( ) cos(2 )G f df     





   (3.6) 

For a random field model, the value of parametric study assigned to each element 

is itself a random variable which can be correlated to one another by controlling the 

correlation coefficient. Because the size of each element might be different within the 

domain, the mean value assigned for each element is affected by local averaging. For a 
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finite element size T, the variance reduction factor due to local averaging with 

numerical solution from equation (2.22) is: 

2

2

2 2
1

2
( )

l T T
T exp

T l l


  
    

  
  

(3.7) 

and the spatial variability of random field of parametric study can be generated by 

equation: 

( ) ( ) (z )i iz exp T X       (3.8) 

3.6. Failure probability  

The probabilistic analysis of slope failure can be formulated using a set of random 

variables. Let  denote random variables of parametric study; f() is the joint 

probability density function of , and FS() is the factor of safety. The failure 

probability can be calculated by the following integral (Baecher and Christian, 2003): 

 
( ) 1

( ) 1 ( )f
FS

P P FS f d
 

       
(3.9) 

A Monte Carlo simulation (MCS) is adopted to calculate the failure probability 

due to the variability of root cohesion as: 

1

1
( )

n
k

f

k

P I FS
n 

     (3.10) 

where n is the number of simulations, and ( )kI FS   is an indicator function 

characterizing the failure domain defined as: 

1 ( ) 1

0 ( ) 1

( )k
kFS

kFS

I FS


 
 
  

    (3.11) 
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3.7. Flow chart of the methodology 

The procedure of the probabilistic method considering the effect of spatial 

variability of parametric studies during heavy rainfall can be summarized as shown in 

Figure 3.1. 

 

Deterministic analysis

Limit equilibrium method 
for slope stability analysis with 

mean values of input parameters

Verify monitoring data

Identify statistical charateristic of input parameters

Generate n random field of

spatial variability of input parameters

Probabilistic analysis 

Replace mean values 

corresponding to n random field of 

spatial variability of input parameters

Define 

failure mechanisms

Calculate

factor of safety

Extract factor of safety less than 1.0

Calculate failure probability 

Assess the effect of spatial variability 

of input parameters on failure probability

Finite element method for seepage analysis 

Obtain n factor of safety for all 

random field of spatial variability of input parameters

     

Figure 3.1. Flow chart of methodology  
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CHAPTER 4: THE INFLUENCE OF SPATIAL VARIABILITY IN SHEAR 

STRENGTH PARAMETERS ON RAINFALL INDUCED LANDSLIDE: A 

CASE STUDY OF SANDSTONE SLOPES IN JAPAN 

4.1. Introduction 

This chapter describes in detail the influence of spatial variability in shear 

strength parameters on rainfall induced slope failure. The study site is located in the 

southwest Boso Peninsula, central Japan including the three sandstone slopes: S-1, S-

2, S-3 and the three mudstone slopes: M-1, M-2, and M-3, as seen in Figure 4.1. 

Figure 4.1.  Site location. 
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4.2. Data collection and analysis 

4.2.1. Landslide characteristics: slope geometry and soil profile 

A 1989 rainstorm which caused landslides along the sandstone and mudstone 

slopes was recorded at four meteorological stations (Yokohama, Kisarazu, Sakuma, and 

Sakahata) within a 30 km radius from the study site (Figure 4.2). The sandstone slope 

S-1, which has an angle of  = 38.40, slip depth of 1.6 m, sliding area of 620 m2 and 

volume of 990 m3 was selected in this study (Matsushi et al., 2006). Figure 4.3 shows 

the longitudinal section and failure surface of the S-1 slope, and Table 4.1 shows 

landslide characteristics of slope S-1. The properties of the upper 1.5 m soil layer were 

evaluated from undisturbed soil core samples of 5.0 cm diameter and 5.1 cm height, 

which was extracted at every 10-15 cm depth intervals, as summarized in Table 4.2 

(Matsushi, 2006).  

 

Figure 4.2. A 1989 storm at four meteorological stations (Data from Matsushi (2006)). 
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Original surface

Failure surface

 

Figure 4.3. The longitudinal section and failure surface of slope S-1 (adapted from 

Matsushi (2006)) 

The soil profile of slope S-1 was classified using a dynamic cone penetration test 

(DCPT) value (Nc), as shown in Figure 4.4. Wakatsuki et al. (2005) classified the 

ground into four soil layers: 0  Nc < 5 (upper layer), 5  Nc < 10 (middle layer), 10  

Nc  30 (lower layer), and Nc  30 (bedrock). In the classification of weathered rock by 

the Geological Society (1995), the upper layer and the middle layer correspond to 

“Grade V/VI” (completely weathered soil), the lower layer corresponds to “Grade IV” 

(highly weathered rock) and the bedrock corresponds to “Grade I-III” (slightly 

weathered rock and fresh rock). According to the Unified Soil Classification System 

(USCS), the upper layer can be classified as silty sand (SM) based on grain-size 

distribution (Table 4.2). 

Table 4.1. Dimensions of landslide. 

Slope 
Slope angle 

(degrees) 

Slip depth* 

(m) 

Sliding area 

(m2) 

Volume 

(m3) 

Sandstone 
38.4 1.6 620 990 

S-1 

* Measured vertically from the original ground surface to the slip plane. 

(records of the 1989 storm) 
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Table 4.2. Physical soil properties. 

 

 

 

 

 

 

 

Figure 4.4. Soil profile of slope S-1 

4.2.2. SWCC parameters and saturated permeability of slope S-1 

The soil suction and volumetric moisture content of the upper layer were obtained 

from pressure plate tests. The soil water characteristic curve (SWCC) and its curve-

fitting of the van Genuchten model using the SWRC-Fitting program (Seki, 2007) are 

presented in Figure 4.5. In this study, the types of the middle and lower layer of soil 

can be reasonably assumed to be the same as the top layer based on the DCPT; 

Depth 

 (cm) 

Dry unit 

weight 

(kN/m
3
) 

Porosity 

Grain-size distribution 

(%) 

Clay Silt Sand 

10 9.8 0.63 3.5 14.6 81.9 

30 12.1 0.54 6.2 19.5 74.2 

45 12.8 0.52 - - - 

60 13.3 0.50 3.7 8.0 88.3 

75 13.7 0.48 - - - 

90 13.7 0.48 8.4 7.9 83.6 

120 12.9 0.51 7.1 6.5 86.4 

150 13.3 0.50 4.7 4.3 91.0 

Average 12.7 0.52 5.6 10.1 84.3 
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therefore, the same set of SWCC parameters were used for all soil layers. The saturated 

permeability was determined from a constant head permeability test which was 

obtained from the upper soil layer down to the bedrock, as shown in Figure 4.6. Table 

4.3 summarizes the fitting parameters of the soil-water characteristic curve and the 

average saturated permeability of all soil layers as input parameters for unsaturated 

seepage analysis. 
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Figure 4.5. Soil water characteristic curve of upper layer 
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Figure 4.6. Saturated permeability varied with depth from a constant head 

permeability test 
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Table 4.3. SWCC parameters and saturated permeability. 

 

 

 

 

 

 

 

4.2.3. Soil shear strength of slope S-1 

The shear strength of soils determined under four different normal stresses with 

various volumetric moisture contents (Matsushi et al., 2006) were used in the analysis. 

The best fitting curves of shear strength versus volumetric moisture content for normal 

stress of 10, 20, 30 and 40 kPa are presented in Figure 4.7. The apparent soil cohesion 

(soil cohesion in dry condition), the frictional angle, and the reduction coefficient were 

calculated as the input shear strength parameters for the stability analysis, as 

summarized in Table 4.4. It is noted that the direct shear tests were performed for the 

upper layer (i.e., < 2 m depth). The analysis was then focused on the upper layer.  

Volumetric moisture content
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Figure 4.7. Best fitted shear strength versus volumetric moisture content curves for 

four normal stresses 

Parameters Value 

r 0.179 

s 0.462 

1/m) 3.73 

n 2.598 

ks (m/s) 4.28x10-5 
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Table 4.4. Soil shear strength parameters 

 

 

   

 

     

Remark: C ce   is total soil cohesion under unsaturated condition 

4.3. Modelling seepage analysis of the SM layer 

4.3.1. Boundary and initial condition 
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Figure 4.8. One dimension of transient seepage analysis model of S1-slope (element 

size, z = 0.05 m) 

In this section, a one-dimensional transient seepage analysis was conducted to 

study the effect of the 1989 rainstorm causing the shallow slope failure in the Japan 

site. For the S-1 slope, the bedrock located at 4.5 m depth (Figure 4.4) was designated 

the bottom undrained boundary (zero flux boundary), while the top boundary of the 

model should be designated a flux boundary (q), which is equivalent to the desired 

Parameters Meaning Value 

c (kPa) Apparent soil cohesion 35.8 

 (0) Friction angle 28.3 

 Reduction coefficient 4.81 
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rainfall intensity. The average rainfall intensity from four recorded stations (Figure 4.2), 

which was equivalent to a flux of 0.032 m/hr, was defined as the top boundary 

condition. The linear pressure head (zero at bedrock and -4.5 m at the surface slope) 

was set as the initial condition. No ponding on the top surface of the soil column can 

be reasonably assumed due to the fact that when the rainwater exceeds the infiltration 

capacity of soil the excess water will drain away as surface runoff. A small time step 

increment of 1 second, and element size of 0.05 m were used in the analysis. A one-

dimensional transient seepage analysis model of the S1-slope is presented in Figure 4.8. 

4.3.2. Volumetric moisture content from the unsaturated seepage analysis 

 

Figure 4.9. Volumetric moisture content profiles of the S-1 slope 

In this section, an unsaturated seepage analysis was performed to investigate 

slope stability during rainfall. The resulting volumetric moisture content determined 

from SEEP/W was then used with the infinite slope stability model to determine the 

corresponding factor of safety. Figure 4.9 shows the vertical distribution of volumetric 

moisture content with the duration of rainfall. The results show that the volumetric 

moisture content of ground surface rapidly increased at the beginning of rainfall. Then, 

the volumetric moisture content increased with depth as rainfall infiltrated the soil. 

When infiltration remained constant after 12 hours, the volumetric moisture content 



 

 

44 

nearly reached saturation, and there was no generation of positive pore water pressure 

in the upper layer. 

4.4. Stability analysis of slope S-1 

4.4.1. Infinite slope stability model 

As mentioned in section 4.2.1, the failure surface of slope S-1 was parallel to the 

original plane and the depth of failure was less than 2.0 m. This implies that S-1 slope 

failure is normally categorized as a shallow failure, in which the infinite slope 

assumption can be reasonably used to analyze the stability of slope S-1. Therefore, the 

infinite slope stability model was adopted in this case study, as shown in Figure 4.10. 

The factor of safety of the infinite slope can be expressed as: 

 

Figure 4.10. Stability analysis of an infinite slope model 

f f

m

FS
Wsin cos

 

  
 

 
(4.1) 
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where f  is the shear strength of soil which was defined as equation (2.2), m is the shear 

stress at any point along the potential failure surface, W is the weight of the soil slice 

per unit base area, and  is the slope angle. 

According to research by Fredlund et al. (2012) the shear strength of soil can be 

simplified as: 

( ) 'n af
C u nta    

 (4.2) 

where ' ( ) b
a wC c u u tan    is the total cohesion under unsaturated soil condition. 

The shear strength parameters from the direct shear tests conducted by Matsushi 

et al. (2006) were adopted in this study. During the test, a single-staged direct shear was 

performed under different normal stresses. The moisture conditions of soil specimens 

varied from an oven-dried condition to a capillary saturated condition. The results 

indicate that the total cohesion can be expressed using an exponential decay function 

of the apparent soil cohesion at dry condition (c), reduction coefficient (), and 

volumetric moisture content () as:  

C ce   (4.3) 

However, observations found that the frictional angle is rather constant, so in this study 

the friction angle is assumed to be constant (i.e.,  = ’).  

The unit weight of the soil slice increases with the moisture content from rainfall 

infiltration. The weight of a vertical soil column per unit cross-sectional area (W) from 

the slope surface to the potential failure surface can be expressed as: 

1

( )
m

d i w

i

W z  


  
 

(4.4) 

where m is the total number of elements, z is the thickness of the soil, d is the dry unit 

weight of soil, and i is the volumetric moisture content of each soil element. 
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In addition, the unstable slope is still affected by the increase in pore water 

pressure (Figure 4.10) causing decrease in effective stress. If ua = 0 at atmospheric 

pressure, the safety factor of the slope can be expressed as:  

1 1

max( ,0) tantan

tan
( ) sin cos ( ) sin cos

w

m m

d i w d i w

i i

uce
FS

z z

 


         



 

  

    
 

(4.5) 

4.4.2. Factor of safety of S-1 slope 

In this section, the resulting volumetric moisture content determined from 

SEEP/W (Figure 4.9) was used with the infinite slope stability model to determine the 

corresponding factor of safety. Figure 4.11  shows the factor of safety varied with depth 

for the different rainfall durations. It can been seen that by increasing volumetric 

moisture content with depth, the factor of safety first decreased dramatically, increased 

slightly, and then decreased again. For the case of the 6 hours rainfall, the factor of 

safety decreased due to soil shear strength deceases and the unit weight of the soil slice 

increased with increasing depth. The minimum factor of safety, close to 1.21, occurred 

at the depth of 1.05 m. However, as shown in Figure 4.9, the volumetric moisture 

content decreased at a depth of approximately 1.1-1.3 m; therefore, the factor of safety 

began to increase slightly. Subsequently, the unit weight of the soil slice increased with 

increasing depth, and the factor of safety began to decrease. This is because the main 

factor controlling the factor of safety is the reduction in soil shear strength at the early 

stage of rainfall. A similar phenomenon can be observed at 3 and 9 hours of rainfall. 

The factor of safety only continuously decreases with depth after 12 hours of rainfall 

because the increase in volumetric moisture content is almost constant in the upper 

layer (the top 2 m ) (Figure 4.9). A factor of safety of less than one can be observed 

from a depth below 1.7 m. The slope stability analysis demonstrates that failure of the 

S-1 slope occurred during the 1989 rainstorm with failure surfaces below 1.6 m in the 

upper layer. Results indicate that the simulation of the failure surface agrees well with 

the observation of actual slip surface. 
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Figure 4.11. Distribution of the factor of safety with time 

4.5. Random field of shear strength parameters 

A series of random field of C and the tan were carried out using equation (3.8). 

In this case, the distance between data points of  = 0.05 m was chosen. Figure 4.12 

shows distribution of shear strength parameters with and without the typical random 

field at 6 hours rainfall. The results in Figure 4.12 (a) indicate that soil cohesion 

changed about 6.5 kPa along the first depth of 1.0 m, while soil cohesion changed about 

14.5 kPa below a depth of 1.0 m. This is because rainfall infiltration only reached a 

depth of 1.0 m, which increased volumetric moisture content (as seen in Figure 4.9) and 

decreased soil cohesion. However, the results in Figure 4.12 (b) show that tan just 

fluctuates about 0.54 along the whole depth since tan was not affected by an increase 

in volumetric moisture content due to rainfall infiltration (Matsushi, 2006). 
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a) Typical random field of cohesion. 
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Figure 4.12. Typical random field of shear strength parameters 

The input statistical parameters, such as the mean, and standard deviation are 

assumed to be defined at the point level. In the context of random field theory, the point 

variance was reduced due to the local averaging process and the reduction was indicated 

by a variance function, as mentioned in chapters 2 and 3. A generated random field of 

shear strength depends on the given autocorrelation length if the element size has a 

constant value of  = 0.05 m. If smaller autocorrelation length is set, the variance 

reduction will approximate 0, the more the fluctuation of shear strength is given. On 

the other hand, if a lager autocorrelation length is set, the variance of reduction will 

reach 1.0, the more the stabilization of shear strength is given.  

Figure 4.13 shows the different distributions of shear strength parameters 

corresponding to different autocorrelation lengths in the random field model. Clearly, 

shear strength parameters became stable when the larger autocorrelation length was 

given, and they returned to deterministic analysis if the autocorrelation length reached 

a finite value. 
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Figure 4.13. Effect of autocorrelation length l on a typical random field of shear 

strength parameters 

4.6. Probabilistic analysis of slope S-1 

4.6.1. Procedure of estimation of failure probability  

A procedure for the estimation of failure probability considering the effect of 

spatial variability of shear strength parameters is proposed in this section, as shown in 

Figure 4.14.  This procedure includes of the following steps: 

 (1) Identification of the spatial variability of shear strength parameters such as 

mean, coefficient of variance (cov), and autocorrelation length (l). Generation of n 

random fields of shear strength parameters using equation (3.8) and the Monte Carlo 

Simulation 

(2) Repetition of the mean value of all elements in the factor of safety function 

(equation (4.5)) by n generated random fields of shear strength parameters; thus, n new 

FS functions are generated corresponding to n random field. 

 

a) Effect of l on random field of C. 

 

 

b) Effect of l on random field of tan 
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 (3) Obtaining n different factors of safety and then FSs which are less than 1.0 

will be extracted. The failure probability is approximated by equation (3.10). 

(4) Assessment of the effect of spatial variability of shear strength parameters on 

slope failure probability. 

Extract factor of safety less than 1.0

Calculate failure probability 

Identify statistical charateristic of shear strength parameters:

  - Mean value (

  - Coefficient of variance (cov)

  - Autocorrelation length (l)

Generate n random field

 of shear strength parameters

Replace mean values 

corresponding to n random field

of shear strength parameters

Obtain n factor of safety for all 

random field of shear strength parameters

Assess the effect of spatial variability 

of shear strength parameters on failure probability  

Figure 4.14. Procedure of failure probability calculation 

To analyze the probability of rainfall-induced slope failure, the total soil cohesion 

under unsaturated condition (C) and the frictional resistance (tan) were considered as 

the random fields. The values of C and tan were determined from the direct shear test 

results (Figure 4.7). It is noted that the value of C was not constant, but it tends to 

decrease with increasing volumetric moisture content due to rainfall infiltration. 

According to Retheti (1988), the covariance coefficient of the effective cohesion (covc’) 

for sandy soils and clayish soils were usually greater than 0.2. Since the effective 

cohesion is the same as the total soil cohesion in the saturated condition, the covariance 
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coefficient of the total soil cohesion (covC) can be set as the same value of covc’ (Fenton 

and Griffiths, 2008). The covariance coefficient of the frictional resistance (covtan) was 

between 0.02 and 0.22 (Phoon and Kulhawy, 1999). In order to verify slope failure 

during the rainstorm and evaluate the effect of each shear strength parameter, the slope 

failure probability was calculated using the same value of covariance coefficient 

corresponding to covC = covtan = 0.2. In addition, to simulate the effect of 

heterogeneous soil characteristics on the probabilistic calculation, the autocorrelation 

length l was varied from 0.02 to 2.0 m for the description of the spatial autocorrelation 

length of random fields C and tan. Table 4.5 summarizes the statistical characteristics 

of soil shear strength parameters used for probabilistic analysis. 

Table 4.5. Statistical characteristic of soil shear strength used for probabilistic analysis 
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Figure 4.15. Convergence of the failure probability at different time 

Parameters Mean value cov 
autocorrelation 

length (m) 

C (kPa) 35.8e-4.81 

0.2 0.02  l  2.0 
tan 0.5384  
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A series of random fields of C and tan were carried out using the random model 

and Monte Carlo Simulation. Figure 4.15 shows the convergence of the estimated 

probability of failure for the slope, which indicate that the failure probability can be 

converged when the generated samples exceed 2,000. In this study, 5,000 sets of the 

random fields C and tan were used as input shear strength parameters for probabilistic 

stability analysis. Then, the factor of safety and critical depth were recorded for each 

generated random field C and tan; failure probability was approximated based on 

equation (3.10). 

4.6.2. Effect of autocorrelation length  

In this section, probabilistic analysis of rainfall-induced slope failure is 

illustrated. The autocorrelation lengths between 0.02 to 2.0 m were implemented for 

both random fields of C and tan in this study. Figure 4.16 shows the histogram of 

frequency of each critical failure surface which occurred at different depths for the 

autocorrelation lengths of 0.02 and 2.0 m at 9 and 12 hours of rainfall duration. In 

Figure 4.16 (a) and (b) indicate that the critical failure surface most likely occurred at 

a depth of approximately 1.0 - 1.7 m after 9 hours of rainfall. This finding means that 

the wetting front due to rainfall infiltration only decreases the shear strength of soil at 

the slope’s upper portion in the early stages of infiltration. As infiltration progresses 

and the wetting front moves down, the critical surface continuously increases in depth 

until the wetting front reaches the base of the upper layer. Finally, the highest frequency 

of critical surface failure occurred at the base of the upper layer, as shown in Figure 

4.16 (c) and (d). Since the highest frequency of critical surface failure took place 

between 1.5 to 2.0 m depth of the upper layer after 9 hours of rainfall, as seen in Figure 

4.16, the failure mechanism can be characterized as a shallow failure, where the critical 

failure surfaces were located above the interface between the weathered soil and 

bedrock. Comparing the previous studies of Cho (2014) and Dou et al. (2015), the 

failure mechanism always occurs at the interface between the weathered soil and 

bedrock during rainfall infiltration. Figure 4.16 also indicated that the frequency of the 

critical surface failure was affected by the autocorrelation length. In the histogram 

shown in Figure 4.16  (a) and (c) at l = 0.02 m display smaller frequencies at the critical 

failure surface than the histogram in Figure 4.16 (b) and (d) for l = 2.0 m. This is 
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because the lower autocorrelation length, which exhibits highly non-homogeneous soil, 

has the critical surface moving upward. Conversely, the higher autocorrelation length 

provided an increased frequency probability that the critical failure surface would be 

located at the weakest part of the upper layer as the random field becomes more 

spatially uniform. 
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a) After 9 hours, l = 0.02 m 
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b) After 9 hours, l = 2.0 m 
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c) After 12 hours, l = 0.02 m 
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d) After 12 hours, l = 2.0 m 

Figure 4.16. Histogram of the critical depth at two different times from random field 

analysis covC = 0.2; covtan = 0.2) 
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Figure 4.17 shows the influence of autocorrelation length l in the range of 0.02  

l  2.0 m on the failure probability at different points in rainfall duration. The failure 

probability was calculated at the critical failure surface corresponding to the minimum 

factor of safety of the deterministic analysis. The results indicate that the failure 

probability increases dramatically as infiltration progresses, and soil slopes with 

smaller values of autocorrelation length have a smaller failure probability at the early 

stages of infiltration. However, the failure probability for cases with smaller values of 

correlation length was greater than those with larger values of autocorrelation length 

after the rainfall duration exceeded approximately 9.5 hours. This can be referred to as 

a critical rainfall duration causing slope failure.  It should be emphasized that all curves 

cross over at the failure probability of Pf = 0.5 occurring at the critical rainfall duration. 

This is because the cumulative probability of FS for all autocorrelation lengths is equal 

to 0.5 at the corresponding safety factor of FS = 1.0, as shown in Figure 4.18. Therefore, 

the location of the failure surface can be derived from probabilistic analysis, in which 

Pf = 0.5. 

 

Figure 4.17. Effect of l on the failure probability calculation at different times from 

random field analysis (covC = 0.2; covtan = 0.2) 
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Figure 4.18.  The cumulative probability of the FS at the critical rainfall duration of 

9.5 hours from random field analysis (covC = 0.2; covtan = 0.2) 
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Figure 4.19.  Failure probability distribution and the corresponding failure surface at 

the critical rainfall duration of 9.5 hours from random field analysis (covC = 0.2; 

covtan = 0.2) 
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In order to obtain the failure surface, the failure probability distributions were 

calculated at the point of critical rainfall duration. Figure 4.19 shows the distribution of 

failure probability with depth for all autocorrelation lengths. The corresponding failure 

surface was also obtained at the failure probability of Pf = 0.5, with the failure surface 

located at the depth of 1.7 m of slope while the actual failure surface during the 1989 

storm occurred at the depth of 1.6 m, which approximated the analysis result indicating 

the probabilistic analysis with random fields was an effective predictor to locate critical 

failure surfaces and determine critical rainfall durations. 

4.6.3. Effects of random fields of shear strength parameters 

In the previous assessment, two random fields of C (total soil cohesion under 

unsaturated condition) and tan (frictional resistance) were considered for the failure 

probability calculation. One might want to identify which random field has a greater 

effect on the slope failure. In order to evaluate the influence of each random field, a 

series of FS for each random filed alone and both random fields were calculated at the 

failure surface which occurred at the critical rainfall duration, and the cumulative 

probability curves of FS for these cases were obtained at the different autocorrelation 

lengths. Figure 4.20 compares the cumulative probability curve of FS considering two 

random fields together with the curve obtained by ignoring one random field at a 

different autocorrelation length. The difference between the curves considering two 

random fields and the curve neglecting one random field reflects the importance of that 

random field for failure probability calculation. As shown in Figure 4.20, when random 

field tan was ignored, the difference of probability was more than the difference by 

neglecting random field C. It turns out that shallow failure is mainly caused by 

reduction in soil cohesion during rainfall infiltration. In addition, this difference trend 

to increase with the increase of autocorrelation length. This finding indicates that the 

influence of each random field for non-homogeneous soil is somewhat important. 
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a) l = 0.02 m. 

 

Factor of safety (FS)

0.6 0.8 1.0 1.2 1.4 1.6

C
um

ul
at

iv
e 

p
ro

b
ab

ili
ty

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Random field C

Random field tan

Random field C, tan

 

b) l = 0.05 m. 
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c) l = 0.25 m. 
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d) l = 2.0 m. 

Figure 4.20. Effect of random field C and tan on the slope failure at the critical 

rainfall duration of 9.5 hours from random field analysis (covC = 0.2; covtan = 0.2) 



 

 

60 

4.7. Summary 

This chapter examined the spatial variability of shear strength parameters on 

rainfall-induced landslides. A case study of a sandstone slope with deep impermeable 

bedrock in a site in Japan was selected for comparison. An unsaturated seepage and 

infinite slope stability analysis were applied using a probabilistic method. To simulate 

shallow failure, the reduction in soil shear strength due to the increase in volumetric 

moisture content was considered. A series of Monte Carlo simulations were conducted 

to investigate the effect of a random field on C and tan parameters. The analysis results 

were then compared to an actual occurrence of slope failure during a storm in 1989. 

The results indicate that the proposed random field was essential to predict failure 

surfaces and critical rainfall duration (The time period of rainfall which triggers slope 

failure).    
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CHAPTER 5: THE INFLUENCE OF SPATIAL VARIABILITY OF ROOT 

COHESION ON RAINFALL INDUCED SLOPE STABILITY ANALYSIS: A 

CASE STUDY OF A RESIDUAL SOIL SLOPE IN THAILAND 

5.1. Introduction 

As discussed in Chapter 2, it is well known that vegetation has an effect on slope 

stability analysis. This is effected through various processes, including modification of 

volumetric moisture content; root reinforcement; surcharging; arching; and wind 

loading. Many studies have been conducted to quantify the effects of vegetation on 

slope stability with both the limit equilibrium method and the finite element method 

(Lin et al., 2010; Chirico et al., 2013; Wu, 2013; Tiwari et al., 2013; Leung et al., 2015). 

However, slope stability analysis considering the effect of vegetation under heavy 

rainfall has not been investigated. In addition, previous studies only mentioned in their 

hypothesis artificial rainfall or lacked monitoring data (soil suction or moisture content) 

to verify the proposed model. Thus, their analyses could not respond to natural 

conditions slope stability. 

In this chapter, a full-scaled field monitoring test was implemented on an 

unsaturated soil slope in Nakorn Nayok Province, Thailand (Jotisankasa et al., 2009) to 

model the effect of heavy rainfall and the spatial variability of root cohesion on slope 

stability analysis. Therefore, the objectives of this chapter can be stated as follows: 

1. To simulate saturated-unsaturated seepage analysis in two dimensions and 

verify the proposed model.  

2. To incorporate the effects of typical root distribution into the limit equilibrium 

method for the vegetated slope stability model. 

3. To generate random fields of root cohesion in order to assess the influence of 

spatial variability of root cohesion on failure probability of a vegetated slope. 

5.2. Characteristics of study the slope (Thadan slope) 

The study site is located near Thadan dam in Nakorn Nayok Province, Thailand 

(hereafter, referred to as Thadan slope) about 200 km northeast of Bangkok. A shallow 

failure in 2004 was triggered by a heavy rainfall spanning over three days which 
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amounted to a total rainfall of about 300 mm, or an average of about 100 mm/day 

(Figure 5.1 (a)). After failure, the slope was redesigned and constructed with compacted 

residual soil available on-site. The slope was also populated with vetiver grass, as seen 

in Figure 5.1 (b). The repaired soil slope was investigated with a lightweight dynamic 

penetrometer (Jotisankasa et al., 2009) which indicated the thickness of the residual soil 

layer was 2.0 to 3.0 m. Below the residual soil lies the slightly weathered volcanic rock 

which can be defined as impermeable bedrock. 

 

Figure 5.1. Thadan slope (a) after failure in 2004 and (b) current state 
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Figure 5.2. Field instruments on the Thadan slope (after Jotisankasa et al., 2009) 

Figure 5.2 displays the cross-section of the study site considering the residual soil 

layer. The slope angle of 260 with respect to the horizontal plane was averaged along 

the ground surface. Field instrumentation was deployed on the slope using tensiometers, 

which were installed at Point 1 (lower station) and Point 2 (upper station) to monitor 
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pore water pressure at depths varying from 0.3 to 2.15 m during rainfall, as depicted in 

Figure 5.2. 

The geology in the area of the slope consists of undifferentiated Permo-triassic 

volcanic rock, including rhyolite, andesite, tuffs, and agglomerate (Royal Irrigation 

Deparment, 2004). The undisturbed samples were collected using a thin-walled tube 

sampler with a diameter of 63 mm from depths of 0.5 - 1.0 m. The basic properties of 

the residual soil are summarised in Table 5.1. According to the Unified Soil 

Classification System (USCS), the residual soil can be classified as silty soil with 

medium plasticity (MH/ML). 

 Table 5.1. Physical soil properties 

Soil type 

Saturated unit 

weight 

(kN/m3) 

Liquid 

Limit 

(%) 

Plasticity 

Index 

(%) 

Grain-size distribution (%) 

Clay 

 

Silt 

 

Sand 

 

Gravel 

 

MH/ML 17.61 46-51 6-18 
31.9-

36.7 

38.9-

53.9 

13.7-

18.9 
0.5-5.5 

 

5.3. Seepage analysis of the Thadan slope 

For the seepage analysis in an unsaturated soil layer of the Thadan slope, a 

transient state nonlinear partial differential equation (2.35)  was employed using an 

iterative finite element scheme in Geo-studio software. To obtain a reliable result, the 

time step and element size should also be defined in advance (Van Dam and Feddes, 

2000; Smith and Griffiths, 2004; Caviedes-Voullième et al., 2013). In this analysis, a 

small time step increment of 300 seconds, and a global element size of 0.2 m were 

employed. 

5.3.1. Collection of SWCC parameters and field test of hydraulic conductivity  

The relationship between soil suction and volumetric moisture content (soil-water 

characteristic curve, SWCC) of the residual soil was determined with a KU-tensiometer 

for samples in both dry and wet conditions (Jotisankasa and Vathananukij, 2008). The 

SWCC and its curve-fitting van Genuchten model are presented in Figure 5.3. The 

saturated permeability was determined from a constant head borehole permeability test 

at different depths at the study site, using the method described in Garga and Blight 

(2012). The results indicate a permeability of 2x10-4 m/s near the surface falling 
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abruptly to 4x10-8 m/s at a depth of about 1.8 m, as shown in Figure 5.4. The higher 

value of permeability near the surface may be due to the effect of root holes as well as 

a lower overburden stress level. Since the residual soil layer of the slope is rather 

homogeneous, the average saturated permeability of 2.9x10-5 m/s was used to define 

the hydraulic conductivity function. Table 5.2 summarizes the fitting parameters of the 

soil water characteristic curve and the average saturated permeability of residual soil as 

input parameters for seepage analysis. 
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Figure 5.3. SWCC of residual soils (data from Jotisankasa and Vathananukij, 2008) 
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Figure 5.4. Saturated permeability varied with depth from field permeability tests 
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              Table 5.2. SWCC parameters and saturated permeability 

 

 

   

 

 

 

 

5.3.2. Rainfall intensity record 

In order to simulate the effect of heavy rainfall that can lead to slope failure, the 

rainfall intensity in the period 03-Sept-2008 to 24-Sept-2008 was chosen in this study, 

as shown in Figure 5.5. This was the period with maximum pore pressure readings 

observed during the monitoring program starting from 2007. The maximum rainfall 

intensity of this period was observed on 12-Sept-2008 and found to be over 120 

mm/day.  The rainfall record was classed into 21 periods with an interval of 1 day for 

the proposed model. In the finite element model, the rainfall intensity was assigned on 

the ground surface as the transient flux boundary. The pore water pressure and 

volumetric moisture content of the residual soils in response to this imposed flux 

boundary were then calculated.  

 

Figure 5.5. Recorded rainfall intensity 

Type Parameters Value 

Residual volumetric moisture content r 2.1x10-4 

Saturated volumetric moisture content s 0.473 

Fitting (1/kPa) 0.902 

parameters n 1.101 

Saturated permeability ks (m/s) 2.9x10-5 
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5.3.3. Initial and boundary condition 

In this section, an unsaturated-saturated flow model was simulated for both steady 

state analysis and transient state analysis. The SWCC parameters and the saturated 

permeability values from laboratory and field tests were used as input parameters in the 

seepage model to calculate pore water pressure and volumetric moisture content during 

the period of rainfall under investigation. In the initial condition, a steady state 

infiltration rate, equal to an average rainfall intensity of 7.54 mm/day from 01-Jan-2008 

to 31-Dec-2008, was assigned on the ground surface of the slope. This was meant to 

simulate the long-term precipitation which gave rise to a steady state initial condition 

before the simulated major heavy rainfall event. A zero flux boundary was imposed at 

the bottom of the domain where slightly weathered volcanic rock was located. For the 

transient infiltration analysis, the top boundary of the model was equivalent to the 

rainfall intensity recorded during the period of 03-Sept-2008 to 24-Sept-2008. Since 

the ground surface was close enough to interact with the bottom of the residual soil at 

the crest and toe of the slope, a zero flux condition was set for the left and right 

boundary condition. The model ignored the effect of evapotranspiration, which did not 

have a major contribution to slope stability in the rainy season (Greenway, 1987; 

Coppin and Richards, 1990). No ponding on the top surface of the soil slope could be 

reasonably assumed due to the fact that when the rainwater exceeds the infiltration 

capacity of the soil, the excess water drains away as surface runoff. Figure 5.6 shows 

the initial total pressure head distribution before the transient state seepage analysis for 

a steady state using an average rainfall intensity of 7.54 mm/day. The initial total 

pressure head was then used to calculate transient pore water pressure during heavy 

rainfall. 

5.3.4. Monitoring and simulating pore water pressure 

The pore water pressures were monitored at two different locations along the 

slope (i.e., upper and lower stations) using miniature tensiometers developed by 

Jotisankasa et al. (2007). This device is based on MEMs pressure sensor technology 

capable of measuring both positive and negative pore water pressure with a range from 

-80 to 600 kPa. Each tensiometer was installed at depths of 0.3, 0.6 and 1.0 m at Point 

1 and at depths of 1.0, 1.5, 2.15 m at Point 2 as shown in Figure 5.2. The pore water 
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pressure corresponding to the rainfall intensity record during the period of 03-Sept-

2008 to 24-Sept-2008 was also obtained as presented in Figure 5.7. The monitored pore 

water pressures were used for comparison with those of the seepage analysis to verify 

the proposed seepage model. 

 

Figure 5.6. Initial total pressure head (m) 

5.3.4.1. Effect of rainfall intensity 

Figure 5.7 (a) and (b) present the results of the transient seepage analysis at 

various depths at Point 1 and Point 2, respectively. The pore water pressure in the lower 

area (Point 1) gradually changed in response to rainfall entering at shallow depths, 

while the change appeared more sudden in the upper area (Point 2) at deeper depths 

when rainfall intensity exceeded 100 mm/day. At Point 1, positive pore water pressure 

appeared at different depths one day before the highest rainfall intensity and almost 

remained constant until the period of rainfall ended. This was expected as the free-

draining saturated surface was located near the toe of the slope. At Point 2 however, 

the positive pore water pressure could only be observed at different depths one day after 

the highest rainfall intensity and reappeared at deeper depths (1.5 and 2.15 m) after 19-

Sept-2008. This demonstrated a kind of delayed infiltration behaviour at the deeper 

depth. The pore water pressures measured at different depths were also drawn on these 

figures to demonstrate the accuracy of the proposed seepage model. As shown in Figure 

5.7 (a), the pore water pressures obtained from simulation were higher than those 
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measured at shallower depths (0.3 and 0.6 m) in the first period of rainfall (no rainfall). 

This is because the assumed initial flux boundary condition of 7.54 mm/day, based on 

long-term rainfall measurement, was set to ground surface and therefore may not 

represent the short-term distribution of the pore water pressure that would be affected 

by some daily climate effects (e.g. evapotranspiration) especially at a shallow depth. 

Subsequently, the simulation curves and the measurement curves become more 

consistent from the beginning of rainfall to the end of the period of rainfall. At 1.0 m 

depth of the lower station (Figure 5.7 (a)), the pore water pressure from simulation was 

slightly greater than those actually measure after a few days rainfall (09-Sept-2008). 

This slight difference can be explained by the fact that in the analysis, the undrained 

flux boundary was at the bottom of the domain and consequently a small part of 

rainwater would still remain in soil slope. In reality, however, a small amount of 

seepage may occur out of the bottom domain.  

 

 

a) Point 1 (Lower station) 
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b) Point 2 (Upper station) 

Figure 5.7. Comparisons between measured and simulated pore water pressures 

Unlike the results in Figure 5.7 (a), the pore water pressure response in the upper 

area in Figure 5.7 (b) indicates that the loss of soil suction in the first period of rainfall 

affected not only the initial infiltration but also the downslope seepage from the crest 

to the toe slope. In the same way, the modelled downslope seepage can occur more 

easily than the actual response because the modelled soil was assumed to be 

homogeneous in this analysis. This would explain why the measured pore water 

pressure was greater than the simulated value. However, one day after the highest 

rainfall record (13-Sept-2008), the results at different depths showed a better 

consistency between the modelled and actually measured pore water pressure. In 

addition, the pore water pressure response characteristics were also expected to be 

strongly affected by other factors, such as geomorphological and geological conditions.  

5.3.4.2. Predicted pore water pressure 

Figure 5.8 (a) and (b) show predictions of pore water pressure distribution with 

depths at Point 1 and Point 2, respectively during the period of rainfall. As seen in 

Figure 5.8 (a), at the beginning of rainfall (before 05-Sept-2008), a decrease in pore 

water pressure occurred at shallow depths which tended to increase because of water 
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redistribution during periods of no rain, while in contrast, the pore water pressure 

remains virtually unchanged at the greater depth. On 07-Sept-2008, pore water pressure 

only exceeded the initial condition at depths above 0.4 m as a consequence of limited 

rainfall infiltration. Below 0.4 m depth, the pore water pressure curve tended to be 

similar to the pore water pressure curve on 05-Sept-2008. Since rainfall had 

continuously increased on 10-Sept-2008, the pore water pressure reached a positive 

value at a depth below 1.1 m. On the other hand, the ground above 1.1 m depth remained 

unsaturated. After the highest rainfall intensity occurred (13-Sept-2008), the saturated 

zone reached the bedrock (1.4 m depth) while the pore water pressure increased linearly 

with depth. The rainfall intensity declined rapidly on 16-Sept-2008 as pore water 

pressure decreased with the same range value with depth and this tendency remained 

until there was no record of rainfall on 24-Sept-2008. In addition, it was noted that the 

pore water pressure distributions on 13-Sept-2008 and 20-Sept-2008 were nearly 

identical even though rainfall intensity on these days were different. This can be 

explained as when rainfall intensity exceeded the quantity of 100 mm/day, the rainwater 

in excess of infiltration capacity could not infiltrate through the ground surface and thus 

was converted to runoff. This suggests that rainfall at that particular time reached flow 

rate exceeding the infiltration capacity of the soil. A similar explanation can be 

provided for the pore water pressure measurements at the upper station (before 07-Sept-

2008), as shown in Figure 5.8 (b). However, on 10-Sept-2008, as the pore water 

pressure increased to approximately -1.5 kPa, the soil slope only became saturated near 

the bedrock because the amount and duration of rainfall were insufficient to induce the 

pore water pressure to rise to the higher area. When the highest rainfall intensity 

occurred (125 mm/day), the soil profile was completely saturated below a depth of 0.8 

m, and almost saturated above this level on 13-Sept-2008. Rainfall intensity dropped to 

37 mm/day on 16-Sep-2008 which caused an obvious decrease of pore water pressure 

at a greater depth since seepage occurred down slope due to gravity. Unlike the case of 

the lower station, pore water pressure on 20-Sept-2008 was less than the value on 13-

Sept-2008 below 0.8 m depth and the soil slope had not been completely saturated 

above 0.8 m. This is explained by the fact that soil thickness at the upper station was 

greater than at the lower station. It can be demonstrated that even with the highest 

rainfall intensity assumed in this analysis, the whole soil profile would still not be 
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completely saturated at the upper station. Therefore, runoff might not appear at the 

upper location as the infiltration and seepage continued.  
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a) Point 1 (Lower station) 
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b) Point 2 (Upper station) 

Figure 5.8. Prediction of pore water pressure distribution with depth 
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5.4. Stability analysis of the Thadan slope including vegetation 

For a vegetated slope under unsaturated-saturated conditions, the shear strength 

can be expressed by the primary influence of root reinforcement, as suggested by Wu 

et al. (1979) in combination with the Mohr-Coulomb failure criterion (Fredlund et al., 

1978). Thus, the shear strength is represented as: 

' ' 'rf c c tan    
 (5.1) 

where c’ is the effective soil cohesion, cr is the root cohesion, ’ is the effective stress, 

and ’ is the effective friction angle. The effective stress can be computed by the suction 

stress-based equation (Lu and Likos, 2006). 

' s
au    

 (5.2) 

where  is the total stress due to the self-weight of the soil, ua is the pore air pressure 

which is zero at the atmospheric condition, and s is the suction stress which can be 

expressed as a function of matric suction (ua – uw) (Lu et al., 2010; Fredlund et al., 

2012) thus: 

( )s r
a w

s r

u u
 


 


  

  
(5.3) 

With the incorporation of equations (5.1), (5.2), and (5.3) the shear strength of a 

vegetated slope can be defined under soil-root composite for saturated-unsaturated 

conditions as follow: 

' ( ) ( ) 'r
r a a wf

s r

c c u u u tan
 

  
 

 
 
 


     


 

(5.4) 

Since the weight of grass was considered negligible and there was no traffic load 

on the slope, the weight of each slice per unit base area (Wi) from the slope surface to 

the potential failure surface was only contributed by soil, which can be expressed as: 

1
i si

n

i

AW 



 

(5.5) 
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where  is the unit weight of the soil. To simplify the calculation in the transient slope 

stability analysis,  can be approximated as the saturated unit weight for both saturated 

and unsaturated conditions during the rainy season. In equation (5.5), Asi is the cross-

sessional area of each slice. 

Finally, the factor of safety with consideration of the effect of vegetation on slope 

stability during rainfall infiltration based on equation (3.3) can be written as: 

( ' ) ' '
n

r
r i i i w i

i s r

n

i i

i

c c l W cos tan u l tan

W sin

FS

 
  

 



 
   

 




 

(5.6) 

The computed field of volumetric moisture content and pore water pressure from 

transient seepage analysis are then used to calculate the factor of safety. The results are 

verified whether or not slope failure occurs in the periods of heavy rainfall. 

5.4.1. Slopes without root cohesion 

In this section, limit equilibrium analysis was performed to investigate slope 

stability during periods of rainfall. The resulting pore water pressure and volumetric 

moisture content calculated from SEEP/W was then used as input in SLOPE/W to 

determine the corresponding factor of safety. The effective shear strength parameters 

were calculated on the undisturbed specimens using the drained direct shear test under 

a saturated condition. The effective soil cohesion c’ and the effective friction angle ’ 

are 12.8 kPa and 33.1o respectively. In this study, the effective soil cohesion c’ = 12.8 

kPa was applied in the case of a well-compacted soil slope while c’ = 0 was assumed 

for the worst case scenario as a non-compacted soil condition. Table 5.3 presents the 

value of shear strength for both cases as the input parameters in the stability analysis 

during rainfall infiltration. 

         Table 5.3. Soil shear strength parameters 

 

 

 

 

   

Type Parameters Value Remark 

Effective soil cohesion c’ (kPa) 
12.8 Well-compacted soil 

0 Non-compacted soil 

Effective friction angle ’ (0) 33.1 - 
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 Factors of safety (FS) were determined for both well-compacted soil condition 

and non-compacted soil conditions. Figure 5.9 illustrates variation in the FS during the 

rainfall period of 03-Sept-2008 to 24-Sept-2008. In the well-compacted soil condition, 

the slope remained stable according to the factor of safety (FS >1.0). For the non-

compacted soil condition, slope instability appeared to develop after rainfall intensity 

exceeded 100 mm/day, in which case the factor of safety was less than 1.0 after 13-

Sept-2008. At the beginning of the period of rainfall (before 07-Sept-2008), the factor 

of safety was almost constant for both conditions which indicated the minor effect of 

suction to slope stability. From 07-Sept-2008 to 12-Sept-2008, the FS of well-

compacted soil gradually decreased, while the FS of non-compacted soil fluctuated. 

This suggests that factor of safety variability was not affected in the case of greater soil 

cohesion in the first period of rainfall. However, the distribution of FS with time for 

well-compacted and the non-compacted soil conditions (Figure 5.9) showed some 

discrepancy after the highest rainfall intensity which occurred on 12-Sept-2008. 

In order to illustrate the influence of heavy rainfall and the failure mechanism of 

a slope for non-compacted soil, Figure 5.10 presents the distribution of pore water 

pressure in the soil of the slope and the corresponding failure surface on 13-Sept-2008, 

as shown in Figure 5.11. As seen in Figure 5.10, the water table (where pore water 

pressure was zero) reached the upper half of the slope, and pore water pressure 

increased linearly from the ground surface to the interface between the residual soil and 

bedrock. The failure surface developed in the region of the lower half of the slope, 

where the residual soil slope was fully saturated (Figure 5.11). The simulated failure 

surface implied that the failure mechanism of the slope was a shallow failure which 

could only occur at the lower depth of 1.0 m in residual soil. The slope would fail as a 

result of the decrease in the effective stress due to the increase in pore water pressure, 

while the slope failure might not be affected by a great reduction in soil shear strength 

(an assumption of c’ = 0 for non-compacted soil).   
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Figure 5.9. Factor of safety variation with time for a soil slope without roots 
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Figure 5.10. The pore water pressure distribution on 13-Sept-2008 
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Figure 5.11. Corresponding failure surface for non-compacted soil slope without root 

cohesion on 13-Sept-2008 (worst case scenario) 

5.4.2. Slope with root cohesion 

To assess the influence of vegetation on slope stability, the worst case scenario 

(non-compacted soil condition) was only performed to calculate the factor of safety 

using equation (5.6) from 03-Sept-2008 to 24-Sept-2008. Vegetation consisting of 

typical vetiver grass in Thailand was employed as a special case at the Thadan slope. 

In the literature, the majority of root cohesion vegetation species fall within the range 

of 1.0-20.0 kPa depending on different environments (O’loughlin, 1974; Kazutoki and 

Iwamoto, 1986; Abernethy and Rutherfurd, 2001; Simon and Collison, 2002). 

Furthermore, according to Lynch (1995), the root distribution of some grasses was 

observed and can be approximately uniform at the shallow depths, while Ji et al. (2012); 

Leung et al. (2015) have presented evidence that root distribution tends to decrease with 

depth in deeper zone. In this section, root cohesion was assumed based on the research 

of Eab et al. (2015) which represented conditions near the ground surface. The average 

value of root cohesion corresponded to cr = 3.0 kPa and the root cohesion value of cr = 

6.0 kPa were used to simulate the effect of variability of root vegetation on slope 

stability, as shown in Table 5.4. As seen in Figure 5.2, the thickness of the residual soil 

changed from 0.3 m at the crest and toe of the slope to 2.5 m at the middle of the slope, 

leading to the assumption of the extended depth of roots which reached the bedrock to 



 

 

77 

be applied for the whole soil slope in this study. This is because the depth of root 

systems varies significantly with vegetation species and their growing environments. 

For trees and shrubs, the root depth was reported in the range of 1.0-3.0 m (Kozlowski, 

1971). In North America, the root depth is usually constrained by the bedrock (less than 

2.0 m) in many slopes (Schmidt et al., 2001). 

 Table 5.4. Characteristics of vetiver grass  

 

 

     

 

 

Figure 5.12. Factor of safety varied with time for vegetated slope 

Figure 5.12 shows the factor of safety during the rainfall period of 03-Sept-2008 

to 24-Sept-2008 considering the contribution of vegetation on both the root cohesion cr 

= 3.0 kPa and cr = 6.0 kPa. It can be seen that the factor of safety of a vegetated slope 

is higher than that of the worst case scenario without root cohesion (Figure 5.9). In all 

cases, the factor of safety is always more than 1.0 despite the highest rainfall intensity 

occurring at 12-Sept-2008. The results in Figure 5.12 also indicate the discrepancy of 

the distribution of FS considering the smaller value of root cohesion and that of FS 

considering the greater value of root cohesion. In the case of root cohesion cr = 3.0 kPa, 

Type Parameters Value 

Root cohesion cr (kPa) 3.0 and 6.0 

Depth of root lr (m) 1.8 
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the lowest FS is 1.03 (45% increment from the case without root cohesion) while the 

lowest FS is 1.24 (75% increment from the case without root cohesion) for case of root 

cohesion cr = 6.0 kPa. This finding suggests that the uniform distribution of roots can 

effectively increase the stability of a slope during heavy rainfall. Thus, the contribution 

of vegetation to stabilise slopes can be readily seen as the slope would not fail even 

under the worst case scenario if it was rebuilt and grown with vegetation. 

5.5. Probabilistic method for analysis of slope stability of the Thadan slope 

5.5.1. Domain of spatial variability root cohesion 

In order to simulate the effect of the spatial variability of root cohesion on a 

probabilistic analysis, a typical finite element model of the Thadan slope was 

constructed, as shown in Figure 5.13. The majority of elements are square and the 

elements adjacent to the bottom model are generated into triangles. In this study, 

element size is mainly 0.5 m in length for both the distance in a horizontal direction and 

the distance in a vertical direction. However, the length of a few elements can be less 

than or more than 0.5 m in length because of the complex geometry of the slope.  In 

Figure 5.13, the finite element mesh consists of 380 elements, each element being then 

assigned a value of generated root cohesion from a random field model which is carried 

out in the following section. 

 

Figure 5.13. A typical finite element model of the Thadan slope considering the 

effect of spatial variability of root cohesion 
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5.5.2. Random field generation of root cohesion 

Before the random field of root cohesion is generated, a two sided spectral density 

function should be defined in a chosen domain of root cohesion, as presented in 

equation (5.7). A numerical integration is applied to solve equation (5.7) at every point 

with an interval frequency (fi, fj) in the horizontal and vertical dimension, respectively.  

0 0

4
( , ) ( , ) (2 2 )

yx

i j x y i jx yG f f cos f f dxdy    


     (5.7) 

where x, y are horizontal and vertical distance, respectively; x and y are the distance 

any two points in horizontal and vertical dimensions, ( , )x y   is the correlation 

function as seen in equation (2.23). 

A two-dimensional random field of standard normal distribution can also be 

simulated using a two sided spectral density function in two dimensions, as given: 

1 1

( , ) (2 2 ) (2 2 )
n m

i j ij ij i x j y ij i x j y

i j

X x y R A sin f f B cos f f       
 

       (5.8) 

in which ( ),ij j x yiR G f f   and (2 1) / 2, (2 1) 2/
i x j y

f i f j     , where ( ), jiG f f

must be taken in the manner of the positive ,x y  in order to Rij which is always the 

meaning. This is done because the spectral density function is symmetrical about the 

original point. 

In a random field model, the value of root cohesion assigned to each element is 

itself a random variable which can be correlated to one another by controlling the 

autocorrelation coefficient. Because the size of each element might be different within 

the domain, the mean value assigned for each element is affected by local averaging. 

For a finite element of side length Tx and Ty, the variance reduction factor due to local 

averaging using numerical integral solution to solve equation (2.24) (Fenton and 

Griffiths, 2008)  is given by: 
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2 2

2 2

2 22 2
1 1

4
( , )

x y y yx x

x y x x y y

x y

l l T TT T
T T exp exp

T T l l l l


    
           

      

  
(5.9) 

where x, and y denote the coordinates of the centroid of each element. It is clear that 

variance reduction significantly decreases when element size increases. Therefore, the 

influence of spatial variability of root cohesion might not respond to the manner of a 

larger size element known as traditional probability analysis. In this study, the root 

cohesion can be modeled as a lognormal distribution due to the value of root cohesion 

always being positive. The random field of root cohesion is given by: 

( , ) ( , ) ( , )
r rr i i c c x y i ic x y exp T T X x y   

    (5.10) 

A typical random field of root cohesion for the Thadan slope considering the 

effect of vegetation is shown in Figure 5.14. Because the slope has 380 elements, it 

contains 380 random variables. The random variables can be correlated to one another 

by controlling the spatial autocorrelation length, as described in equation (2.23). Figure 

5.14 (a) and (c) show random fields of root cohesion at mean values cr = 3 kPa and cr 

= 6 kPa, respectively corresponding to the same correlation length lx = ly = 0.25 m. For 

small autocorrelation lengths, variability of uniform distribution of root cohesion 

appeared at almost all elements. With a high correlation length, strong root 

reinforcement only occurred at specific regions, while weak root reinforcement existed 

at others, as depicted in Figure 5.14 (b) and (d). It is clear that the spatial variability of 

root cohesion can lead to uniform variability of root soil for the whole slope, the strong 

root soil occurring specific regions, and weak root soil occurring at other regions 

causing a conservative estimate of failure probability. Thus, vegetated slope stability 

should be accounted for in reliability analysis. 
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a) lx = ly = 0.25 m, cov = 0.25, mean = 3.0 kPa 

 

b) lx = ly = 2.0 m, cov = 0.25, mean = 3.0 kPa 
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c) lx = ly = 0.25 m, cov = 0.5, mean = 6.0 kPa 

 

d) lx = ly = 2.0 m, cov = 0.5, mean = 6.0 kPa 

Figure 5.14. Typical random field of root cohesion 

Figure 5.15 shows tow typical critical surface at the two different autocorrelation 

lengths corresponding to random fields of root cohesion in Figure 5.14 (c) and (d). A 

few parts of critical surface in Figure 5.14 (c) did not occur on bed rock while critical 

surface in Figure 5.14 (d) almost located on bed rock. In addition, the FS was calculated 

using Bishop’s simplified method indicated that the FS considering a smaller 

autocorrelation length (FS=1.013) was less than that considering a greater 
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autocorrelation length (FS=1.131). It is clear that the spatial variability of root cohesion 

significantly effects on slope stability and distribution of failure mechanism as well.  

 

a) lx = ly = 0.25 m, cov = 0.5, mean = 6.0 kPa; FS = 1.013 

 

b) lx = ly = 2.0 m, cov = 0.5, mean = 6.0 kPa; FS = 1.131 

Figure 5.15. Typical critical surface at two different autocorrelation lengths (lx = ly = 

0.25 m and lx = ly = 2.0 m) 

5.5.3. Procedure of approximated failure probability 

A procedure to approximate failure probability considering the effect of spatial 

variability of root cohesion is proposed in this section, as shown in Figure 5.16. This 

procedure includes the following steps: 
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(1) Creation of a finite element model of probabilistic analysis of the vegetated 

slope with the same hydrological parameters of seepage analysis for all elements using 

the SEEP/W module. Soil suction (pore water pressure) and volumetric moisture 

content are calculated according to the corresponding model in order to estimate slope 

stability. Then, a vegetated slope model which has the same structure is assigned the 

mean value of root cohesion for all elements using the SLOPE/W module. Next, the 

SLOPE/W module runs to define the factor of safety (FS) and create an “FS” input file. 

The “FS” input file contains all the necessary information of the SEEP/W and 

SLOPE/W modules (Appendix B1) which can be modified according to the 

requirements of this study. 

(2) Identification of the statistical characteristics of root cohesion such as the 

mean (), coefficient of variance (cov), and autocorrelation length (lx and ly). After 

determination of the Tx and Ty for each element, n random fields of root cohesion are 

generated in two dimensions using equation (5.10). It is noted that n is a number in the 

Monte Carlo simulation and each random field includes all elements of the domain that 

must have different values of root cohesion. 

(3) A matlab program is used to replace the mean value of root cohesion in step 

(1) with the corresponding value of root cohesion which is generated in step (2). 

Because the Monte Carlo simulation of n realizations was performed n new “FS” input 

files are also generated in this step. All new “FS” input files have the same structure 

except the value of root cohesion at each element. 

(4) Running the SLOPE/W module with each new “FS” input file generated in 

step (3) to calculate the factor of safety. Such a process is executed automatically by a 

generated “Run_MCS” file, as shown in Appendix B2, and the result is also 

automatically saved under “FS” output files, as shown in Appendix B3. This process 

will produce n different “FS” output files which contain n different factors of safety, 

respectively.  

(5) n different factors of safety are extracted from n corresponding “FS” output 

files and the failure probability is approximated by equation (3.11). 
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Run SLOPE/W with new "FS" input file 

Extract factor of safety from 

calculated result of new "FS" input file

i = 0

n = sample size

NO

YES

Generate new "FS" input file
 
for 

each realization of random field of c
r
 

START

Simulate spatial variability of c
r

using random field model and MCS

END

Create a finite element model using SEEP/W

Identify statistical charateristic of c
r

Input:

i) Mean value ( )

ii) Coefficients of variance (cov)

iii) Autocorrelation length (l
x
 and l

y
)

Create the "FS" input file from 

deterministic analysis using SLOPE/W

i < n

i = i+1

i = n

Approximate failure probability using equation (3.11) 

 

Figure 5.16. Flowchart of approximated failure probability 
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5.5.4. Failure probability considering the effect of spatial variability of root 

cohesion 

For a given set of input root cohesion data (mean, coefficient of covariance, and 

autocorrelation length), a Monte Carlo simulation is performed. This means that the 

slope stability analysis is repeated many times until the calculated failure probability 

reaches a point of convergence. Each realization of the Monte Carlo simulation process 

differs in the location at which the strong and weak zones are situated. For example, in 

the first realization, the critical surface may be situated in the weak zone which causes 

slope failure, whereas in another realization, the critical surface may be located at the 

strong zone where the slope remains stable. In this section, probabilistic analysis is only 

approximated for non-compacted soil conditions (worst case scenario) to dominate the 

effect of vegetation. Because root cohesion displays strong variability in distance or 

space, as mentioned in Chapters 1 and 2, an assumption of range cov of 0.5 - 4.0 is 

specified for root cohesion. The mean value of root cohesion which was measured near 

ground surface (Eab et al., 2015) is implemented in this case, while the autocorrelation 

length varies from 0.25 to 2.0 m, as presented in Table 5.5. The failure probability of a 

vegetated slope is calculated at the critical failure surface corresponding to the 

minimum FS of the deterministic analysis (13-Sept-2008).  

Table 5.5. Statistical characteristic of root cohesion 

Root cohesion Mean value (kPa) cov lx and ly (m) 

cr 6.0 0.5 - 4.0 0.25 - 2.0  

Since calculation of a complex problem (i.e. Thadan slope) will consume time, 

the number of realizations of the Monte Carlo simulation should be accurately defined 

as approximated failure probability. Figure 5.17 shows the convergence of the 

estimated probability of failure at the different cov of root cohesion and autocorrelation 

length which indicate that the failure probability can be converged when n realizations 

of MCS exceed 200. In this study, 500 sets of the random fields of cr were used as input 

root cohesion data for probabilistic analysis on vegetated slope stability. 
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Figure 5.17. Influence of the MCS on convergent failure probability 

5.5.4.1. Effect of autocorrelation length (lx, ly) and coefficient of variance (cov) 

Figure 5.18 shows the failure probability as a function of autocorrelation length 

(lx, ly) for a range of input coefficients of variance (cov), with the mean of root cohesion 

cr = 6.0 kPa. The results indicate that the failure probability increased with increasing 

cov of root cohesion. The slope considering lesser values of autocorrelation length had 

a smaller failure probability in which the cov of root cohesion was less than 2.0 while 

the failure probability for cases with the smaller values of autocorrelation length was 

greater than that with the larger values of autocorrelation length, in which the cov of 

root cohesion exceeded 2.0. This figure clearly shows the full influence of spatial 

variability of root cohesion in the range of autocorrelation length 0.25  lx, ly  2.0 m. 

It should be emphasized that all curves cross over at the failure probability of 

approximately 0.47 occurring at cov = 2.0. This is because the cumulative probability 

of FS for all autocorrelation lengths is equal to 0.47 at the corresponding safety factor 

of FS = 1.0, as shown in Figure 5.19. Therefore, a cov = 2.0 can be seen as a critical 

cov of root cohesion causing complete slope failure in this analysis. This can be 

compared with previous research of Fenton and Griffiths (2008), in which the failure 
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probability was always 0.5 since they only focused on a hypothetical slope with the 

same element size within the entire slope. 

 

Figure 5.18. The effect of spatial variability of root cohesion on failure probability 
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Figure 5.19. Cumulative probability of FS at cov 2.0
rc   
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In the previous assessment, failure probability was approximated only focusing 

on an isotropic random field of root cohesion (lx = ly). One might want to identify which 

anisotropic random field of root cohesion (lx  ly) contributes the effect of calculated 

failure probability. Figure 5.20 illustrates the failure probability considering the 

difference between the horizontal autocorrelation length and vertical autocorrelation 

length. These results indicate that failure probability with an anisotropic random field 

was larger than that with an isotropic random field in which the cov of root cohesion is 

less than the critical value. On the other hand, the cov of root cohesion is more than 

critical value failure probability with an anisotropic random field was smaller than that 

with an isotropic random field. In addition, the anisotropic random field did not have 

the greatest influence on failure probability for both ratios of lx / ly and ly/ lx. It is clear 

that the spatial variability of root cohesion in horizontal and vertical directions had 

significant effect leading to likelihood of overestimating or underestimating failure 

probability in slope stability analysis. 

 

Figure 5.20. Effect of anisotropic random field on failure probability 

5.5.4.2. Effect of a finite element mesh on failure probability 
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In order to simulate the effect of finite element mesh on failure probability the 

major length of elements in the horizontal dimension was maintained with no change 

(x = 0.5 m), while the major length of elements in the vertical dimension of y = 0.25 

m was specified which could have emphasized the contribution of root cohesion with 

depth. 962 elements were generated in this case. Figure 5.21 (a) shows the variation of 

failure probability with the coefficient of variation of cr for the two differences of 

typical finite elements at the autocorrelation length lx = ly = 0.5 m. The failure 

probability, ignoring spatial variability of root cohesion (random variable lx, ly  ), 

is also drawn in this figure to evaluate the effect of a finite element mesh. With an 

increase of cov, the results indicated that there were two crossover points between the 

curves associated with the random field (Tx = Ty = 0.5 m and Tx = 0.5 m, Ty = 0.25 m) 

and random variable (lx, ly  ), which gave a critical value of cov
rc

. When the cov
rc

exceeded the critical values, considering the random variable in cr would lead to an 

underestimate of the failure probability. Otherwise, it would be an overestimate of the 

failure probability if the corresponding cov
rc
was less than the critical values. Such 

findings are consistent with the observations reported in Fenton and Griffiths (2008). It 

is clear that the critical value of cov
rc
= 1.75; 2.4 and the failure probability Pf = 0.47; 

0.56 increases with increasing finite element mesh, respectively. Figure 5.21 (b) shows 

the failure probability which was approximated using a random field and random 

variable at two critical values of cov
rc
= 1.75 and 2.4 corresponding to an element size 

of Tx = Ty = 0.5 m and Tx = 0.5 m, Ty = 0.25 m, respectively. It is clear that a conservative 

estimation of failure probability fully depended on the covariance coefficient and 

autocorrelation length. With a smaller element size, failure probability was 

overestimated when autocorrelation length increased. Otherwise, failure probability 

was underestimated with the larger element size. The critical values of cov
rc
also 

increased with increasing element size. In addition, to compare the effect of two 

differences of typical finite element on distribution of FS, a series of factors of safety 

were calculated at cov
rc = 2.0 with an autocorrelation length lx = ly = 0.5 m, as shown 

in Figure 5.22. Figure 5.22 (a) shows that the probability distribution curve of the FS 

considering a finite element mesh with Tx = Ty = 0.5 was narrower than that curve of 
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the FS considering a finite element mesh with Tx = 0.5 m, Ty = 0.25 m. This can be 

explained by the fact that the smaller sized element had a greater influence by variance 

reduction (equation (5.9)) which caused an increase in the range of FS. Figure 5.22 (b) 

shows the cumulative probability of FS for two typical finite element meshes which 

indicate that the failure probability of the slope increases with decreasing finite element 

mesh, equal to 0.47 and 0.53 corresponding to Tx = Ty = 0.5 m and Tx = 0.5 m, Ty = 

0.25, respectively. It can be observed that ignoring the finite element mesh (considering 

only the random variable for the whole slope) would lead to an un-conservative estimate 

of the failure probability of the slope if factor of safety was below 1.0. These results are 

in fair agreement with the research of Cho (2007) and Griffiths et al. (2011). 

 

 

a) Effect of variation of cov of root cohesion at lx = ly = 0.5 m 
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b) Effect of variation of autocorrelation length at critical values of cov
rc
 

Figure 5.21. Effect of finite element mesh on failure probability 

 

a) Probability distribution of FS 
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b) Cumulative probability of FS 

Figure 5.22.  Comparison of distribution of FS at two different typical finite elements 

( cov 2.0
rc  and lx = ly = 0.5 m) 

5.5.5. Effects of root distribution on failure probability 

In order to simulate the effect of root distribution on failure probability, a 

stationary random field with the mean value corresponding to the average value of root 

cohesion was used for the uniform distribution of roots (Figure 5.23 (a)). While a non-

stationary random field with the mean values corresponding to values calculated by the 

linear function of root cohesion (decrease with depth) was used for the triangular 

distribution of roots (Figure 5.23 (b)). According to Vergani et al. (2012), cov of root 

tensile strength of seven tree species (spruce fir, European larch, European beech, sweet 

chestnut, maple, ash, and hornbeam) was between 0.25 and 1.22. In addition, root 

cohesion was a linear function of root tensile strength; thus, cov of root cohesion can 

be set as the similar value of cov of root tensile strength (Fenton and Griffiths, 2008). 

The statistical characteristics of root cohesion are presented in 
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a) Case 1 (Uniform distribution of roots) 
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b) Case 2 (Triangular distribution of roots) 

Figure 5.23. Distribution model assumption of root cohesion 

Table 5.6. Statistical characteristic of root cohesion in the two different distribution  

Type Parameters 
Statistical characteristic  Root 

distribution Mean cov lx and ly (m) 

Root 

cohesion 
cr (kPa) 

3.0 
0.1 - 1.0 0.25 - 2.0  

Uniform 

 6 1 rz z  Triangular 

 

Figure 5.24 (a) and (b) indicate that the critical cov of root cohesion considering 

the uniform distribution of roots and triangular distribution of roots were 0.45 and 0.32, 

respectively. This is because the cumulative probability of FS for all autocorrelation 

lengths and cov = 0.45, 0.32 is also equal to 0.46 at the corresponding safety factor of 

FS = 1.0, as shown in Figure 5.25 causing complete slope failure in this analysis. 



 

 

95 

 

a) Uniform distribution of root 

 
b) Triangular distribution of root 

Figure 5.24. The effect of root distribution respond to critical cov 
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a) Uniform distribution of root ( cov 0.45
rc  ) 
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b) Triangular distribution of root ( cov 0.32

rc  ) 

Figure 5.25. Cumulative probability of FS at critical cov of root cohesion 
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Figure 5.26 the typical random field of root cohesions corresponding to the 

autocorrelation length lx = ly = 0.25 m and the critical cov were specified. For the 

uniform distribution of roots, the higher value of root cohesion could appear at a 

shallow and greater depth (Figure 5.26 (a)). This observation is explained by the 

assumption that mean value of root cohesion was calculated from the average value of 

root cohesion, which seem to be not realistic. With the triangular distribution of roots, 

variability of the stronger root reinforcement only occurred at upper depths while 

variability of the weaker root reinforcement existed at lower depths (Figure 5.26 (b)). 

This is because a phenomena of the triangular distribution of roots made root cohesion 

increasing with depth, which was known as a more actual condition. Thus, the effect of 

spatial variability on root distribution may cause a conservative calculation of the FS 

or the failure probability. As seen in Figure 5.27, the corresponding FS considering the 

uniform distribution of roots (Figure 5.27 (a)) was more than that considering the 

triangular distribution of roots (Figure 5.27 (b)). This can explain that some parts of the 

critical surface crossed the higher value of root cohesion in the uniform distribution of 

roots. On the contrary most of the critical surface located on the smaller value of root 

cohesion in the triangular distribution of roots causing decrease in FS.  

 

 
 

a) Uniform distribution of root (lx = ly = 0.25 m; cov 0.45
rc  ) 
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a) Triangular distribution of root (lx = ly = 0.25 m; cov 0.32
rc  ) 

Figure 5.26. Typical random field of root cohesion at critical cov
rc
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a) Uniform distribution of root (FS = 1.044) 
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b) Triangular distribution of root (FS = 1.019) 

Figure 5.27.  The corresponding critical surface at typical random field of root 

cohesion 

5.6. Summary 

This chapter presented a case study of a seepage model for slopes subjected to 

rainfall in Thailand and the influence of vegetation on slope stability. One advantage of 

the finite element scheme is that it was performed using a two dimensional unsaturated-

saturated seepage analysis to obtain the pore water pressure results during the period of 

rainfall. The conventional limit equilibrium method was expanded for an unsaturated 

soil slope using generalised soil suction. The extended Mohr-Coulomb failure criterion 

was applied to consider the root effect on soil slope stability under rainfall conditions. 

The rainfall intensity, the soil-water characteristics and the saturated permeability 

measured from the field were used to calculate pore water pressure response. The 

calculated results were compared with the measured values from the site to assess the 

effectiveness of the proposed seepage model. The pore water pressure and volumetric 

moisture content obtained from the seepage model were then employed in the transient 

unsaturated-saturated slope stability analysis. The effective soil cohesion of c’ = 12.8 

kPa was obtained from tests on well-compacted soil in the field, while zero effective 

soil cohesion c’ = 0 was assumed for non-compacted soil (the worst case scenario). The 

influence of root cohesion on slope stability was considered by means of the root 
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cohesion (cr). Factors of safety in transient seepage slope stability analysis were 

computed for with and without root cohesion under the worst case scenario. The 

available programs, SEEP/W and SLOPE/W modules, were modified to consider the 

effect of spatial variability of root cohesion on failure probability. Two dimensions of 

random fields of root cohesion were assigned to the slope stability model which was 

generated using a Monte Carlo simulation. The results demonstrate that the strong 

variability of root cohesion in space could cause slope failure even when the slope has 

rooted vegetation. 
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

6.1. Conclusions 

This research examined the effects spatial variability of parametric studies on 

probabilistic analysis of slope stability during heavy rainfall events. An analysis of 

unsaturated seepage was conducted to verify the proposed model. One dimension of 

random field of shear strength parameters was investigated on a sandstone slope site in 

Japan, while the available software program was extended to consider the effect of two 

dimensions of a random fields of root cohesion on residual a soil slope in Thailand. 

6.1.1. Sandstone slope without vegetation in Japan 

The probabilistic analysis results on the sandstone slope in Japan indicate that the 

critical failure surface was located at the depth of approximately 1.0 - 2.0 m below 

ground surface depending on the rainfall duration. The failure surface occurred at 1.7 

m depth at the critical rainfall duration of 9.5 hr. The actual soil slope also failed at 1.6 

m depth below ground in the period of the 1989 storm. However, the deterministic 

approach with infinite slope assumption reported the location of the failure surface at 

the base of the upper layer (i.e., 2.0 m as shown in chapter 4).  

The critical failure surface was not necessarily fixed at the base of the upper layer, 

but changed due to the migration of wetting front as rainfall progressed. The results 

show that the frequency of the critical failure surface that occurs at the weakest part of 

the upper layer increases with increased autocorrelation length. This also agrees well 

with previous studies by Cho (2014) and Dou et al. (2015). 

The probability framework can be used to find the critical rainfall duration 

corresponding to the location of the slip surface occurring at a depth of 1.7 m of the 

upper layer. In this study, the critical rainfall duration was obtained to indicate the slope 

failure during the 1989 rainstorm. The results confirm that the random field model is 

an essential technique to predict the slope failure due to rainfall. 

A probabilistic stability analysis of rainfall-induced slope failure depends on the 

contribution of random fields on the shear strength parameters C and tan. However, it 

was found that the random field of C was a more important shear strength parameter 
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for failure probability estimation for shallow landslides. This finding can be used to 

verify the significance of effects of uncertain shear strength parameters of a shallow 

failure. 

6.1.2. Residual soil slope in Thailand with vegetation 

The proposed seepage model indicated that there was a better agreement between 

the simulated and measured pore water pressure at shallow depths rather than at deeper 

depths. The positive pore water pressure showed more discrepancy at Point 1 (lower 

part), while a conversion occurred at Point 2 (upper part). The prediction of pore water 

pressure demonstrated that the whole soil slope was almost completely saturated in 

intense storms. 

The non-vegetated slope with well-compacted soil was stable during the period 

of rainfall, while slope instability occurred with non-compacted soil (the worst case 

scenario) when rainfall intensity exceeded 100 mm/day. The failure mechanism of the 

slope under the worst case scenario was characterised as a shallow failure in which the 

failure surface was located at a depth above 1.0 m, in the saturated region.  

The slope stabilisation effect of vegetation was assumed to be through additional 

soil shear strength by root cohesion. Typical characteristics of vetiver grass in Thailand 

was assumed to be due to the roots in this analysis. The results showed that the factor 

of safety was more than 1.0 for both root cohesions, cr = 3.0 and cr = 6.0 kPa during the 

period of rainfall, and the slope with the non-compacted soil condition with vegetation 

became stable in the assumed heavy rainfall condition. Furthermore, a uniform 

distribution of root appeared to contribute more to slope stability. 

The proposed method of probabilistic analysis on vegetated slope stability was 

conducted based on a random field model and Monte Carlo simulation. The available 

computer program was modified to apply both methods. The findings indicate that the 

vegetated slope would failed completely after the greatest rainfall intensity occurs if the 

cov of root cohesion was more than the critical values with any autocorrelation length. 

However, the vegetated slope still remained stabilized in this case which implied that 

the effect of the rainy season might cause an increase in cov of root cohesion not 

exceeding critical values. Furthermore, the effect of random fields was more important 
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than that of random variables on failure probability if the smaller value of cov of root 

cohesion was given. In addition, the effect of spatial variability of root cohesion also 

indicated that the smaller critical value of cov was overestimated in cases of failure 

probability, while greater critical values underestimated cases of failure probability at 

the larger autocorrelation length. 

Considering the same characteristics of spatial variability of root cohesion (cov 

and autocorrelation length), the failure probability decreased with increasing element 

size. It can be concluded that the probabilistic analysis of slope stability which was 

investigated on a finite element model using the limit equilibrium method was more 

effective for natural slope. This also agrees well with previous studies by Griffiths et 

al. (2011) and Jiang et al. (2014). 

6.2. Recommendations for further research 

In this research, slope stability analysis was performed on two case studies which 

presented real condition of geotechnical engineering problem. This is the highlight 

point of this research not reported in previous studies. Furthermore, the results of this 

research were also compared with measured data in order to verify the effectiveness of 

the proposed method. In probabilistic analysis, spatial variability of parametric studies 

was considered in cooperation with seepage analysis in heavy rainfall events which can 

cause an increase in uncertainty. In addition, one strength of this research over the 

studies of Griffiths et al. (2011), Santoso et al. (2011), Cho (2014), and Dou et al. (2015) 

is that did not develop finite element codes for complex problems which can possibly 

lead to incorrect simulations. This research only extended and modified the available 

software program to perform probabilistic analysis of natural soil slopes. Thus, the 

contribution of this research is that it can be used in place of cumbersome models and 

reduce calculation time. 

However, the statistical characteristics of spatial variability of shear strength 

parameters and root cohesion (cov and autocorrelation length) were based on observed 

or suggested values found in the literature re. Moreover, slope stability and probabilistic 

analysis only used the limit equilibrium method which may not correspond to actual 

phenomena of the two case studies in this research. Therefore, recommendations for 

further research are following: 
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- Statistical characteristics of spatial variability of parametric studies should be 

determined in actual cases based on the amount of significant data. This might avoid 

conservative estimates of slope stability. 

- Further study on natural slope stability considering the effect of vegetation 

during rainfall events should be investigated using the finite element method. The root-

soil component in consideration of stress-deformation analysis which can relate to the 

hydrological effects will be more advantageous since no assumption is given for real 

conditions. The failure region can occur arbitrary location within the studied problems. 

- A slope will become more stable during heavy rainfall if vegetation can effect a 

decrease in the cov of root cohesion. Therefore, it is recommended that a plant species 

should be chosen whose roots growth can strongly reduce spatial variability of root 

cohesion. 
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APPENDIX 

A1. Program for spectral density function 

% Simulation of normal random process using the two-sided power spectral density 

function, S(f) 

function [sigma,A,B,wax,way,x,y,nfx,nfy] = 

two_dimension_spectral(nex,ney,dx,dy,lx,ly,n_MCS) 

% Frequency interval, delfx,delfy 

delfx = 1/nex/dx; 

delfy = 1/ney/dy; 

% Discretization of autocorrelation function, R(taux,tauy) 

taux = zeros(1,nex); 

tauy = zeros(1,ney); 

taux = -(nex/2-1)*dx:dx:(nex/2)*dx; 

tauy = -(ney/2-1)*dy:dy:(ney/2)*dy; 

R = zeros(ney,nex); 

for k=1:ney 

for m=1:nex 

R(k,m)=exp(-2*abs(taux(m))/lx)*exp(-2*abs(tauy(k))/ly); 

end 

end 

% Numerical calculation of S(f) using FFT 

H = zeros(ney,nex); 

H = fft2(R); 

fx=zeros(1,nex); 

fy=zeros(ney,1); 

S=zeros(ney,nex); 

% Shuffle f to correspond with frequencies ordering implied in H 

fx(1,1)=0; 

fy(1,1)=0; 

for m=2:nex/2+1; 

fx(1,m)=fx(1,m-1)+delfx; 

end; 

fx(1,nex/2+2) = -fx(1,nex/2+1)+delfx; 

for m = nex/2+3:nex; 

fx(1,m) = fx(1,m-1)+delfx; 

end; 

for k=2:ney/2+1; 

fy(k,1)=fy(k-1,1)+delfy; 

end; 

fy(ney/2+2,1) = -fy(ney/2+1,1)+delfy; 

for k = ney/2+3:ney; 

fy(k,1) = fy(k-1,1)+delfy; 

end; 

tau0x = (nex/2-1)*dx; 

tau0y = (ney/2-1)*dy; 

for k=1:ney 
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 for m=1:nex 

  S(k,m)=H(k,m)*exp(2*pi*i*(fx(1,m)*tau0x+fy(k,1)*tau0y))*dx*dy; 

 end 

end 

S = real(S); % remove possible imaginary parts due to roundoff errors 

% Shuffle S to correspond with f in increasing order 

fx = -(nex/2-1)*delfx:delfx:(nex/2)*delfx; 

fy = transpose(-(ney/2-1)*delfy:delfy:(ney/2)*delfy); 

tempx = zeros(ney,nex); 

  

for m=1:nex/2-1; 

tempx(:,m)=S(:,m+nex/2+1); 

end; 

for m=nex/2:nex; 

tempx(:,m)=S(:,m-nex/2+1); 

end; 

tempy = zeros(ney,nex); 

for k=1:ney/2; 

tempy(k,:)=tempx(k+ney/2,:); 

end; 

for k=ney/2+1:ney; 

tempy(k,:)=tempx(k-ney/2,:); 

end; 

S=tempy; 

clear tempx; 

clear tempy; 

% Simulation of normal process using spectral representation with mean of process = 

0 and variance of process = 1 

Lxmax = 1/delfx; 

Lymax = 1/delfy; 

Lx = 0.5*Lxmax; 

Ly = 0.5*Lymax; 

% Number of simulated data points, nx,ny 

% Depth sampling interval, dx,dy 

% Coordinates in x direction, x(1), x(2) ... x(nx) 

% Coordinates in x direction, y(1), y(2) ... y(ny) 

nx = round(Lx/dx); 

ny = round(Ly/dy); 

delx = Lx/nx; 

dely = Ly/ny; 

x = delx:delx:Lx; 

y = dely:dely:Ly; 

% Number of positive frequencies in the spectral expansion, nf = N/2 

nfx = nex/2; 

nfy = ney/2; 

% Simulate uncorrelated standard normal random variables sigma = zeros(nfy,nfx); 

% Calculate energy at each frequency using trapezoidal rule, 4*S(f)  
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for k = 1:nfy 

for m = 1:nfx; 

sigma1 = S(nfy-k+2,m+nfx-1); 

sigma2 = S(nfy-k+2,m+nfx); 

sigma3 = S(nfy-k+1,m+nfx-1); 

sigma4 = S(nfy-k+1,m+nfx); 

sigma(k,m) = 4*(sigma1+sigma2+sigma3+sigma4)*0.25*delfx*delfy; 

end 

end 

sigma = sigma.^0.5; 

wax = zeros(1,nfx); 

for m = 1:nfx 

wax(m) = 0.5*2*pi*(fx(m+nfx-1)+fx(m+nfx)); 

end 

way = zeros(1,nfy); 

for k = 1:nfy 

way(k) = 0.5*2*pi*(fy(k+nfy-1)+fy(k+nfy)); 

end 

randn('state',1); 

Z = random('Normal',0,1,2*nfy,2*nfx,n_MCS); 

A = Z(1:nfy,1:nfx,:); 

B = Z(nfy+1:2*nfy,nfx+1:2*nfx,:); 

 

A2. Program for standard normal distribution 

function [X] = normal_X(lx,ly,dx,dy,n_MCS,nx,ny) 

% Number of data points based on power of 2, N 

nex=158; 

ney=34; 

 [sigma,A,B,wax,way,x,y,nfx,nfy] = 

two_dimension_spectral(nex,ney,dx,dy,lx,ly,n_MCS); 

for l = 1:n_MCS 

for k = 1:nfy 

for m = 1:nfx 

xi = x(m); 

yj = y(k); 

[Xij] = random_Xij(nfx,nfy,sigma,A,B,wax,way,xi,yj,l); 

X(k,m,l)=Xij; 

end 

end 

end 

X=X(1:ny,1:nx,:); 

function [Xij] = random_Xij(nfx,nfy,sigma,A,B,wax,way,xi,yj,l) 

Xij = 0; 

for j = 1:nfy 

for i = 1:nfx 

Xij = 

Xij+sigma(j,i)*(A(j,i,l)*cos(wax(i)*xi+way(j)*yj)+B(j,i,l)*sin(wax(i)*xi+way(j)*yj)); 
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end 

end 

 

A3. Program for random field 

function [cr] = randomfield(lx,ly,mean_cr,cov_cr,n_MCS,matrix_e,size_e) 

% Sampling interval,dx,dy 

dx=0.5; 

dy=0.5; 

nx=79; 

ny=17; 

[X] = normal_X(lx,ly,dx,dy,n_MCS,nx,ny); 

% Lognormal x (consider variance reduction) 

x_lncr = sqrt(log(1+cov_cr^2)); 

m_lncr = log(mean_cr)-0.5*x_lncr^2; 

% Simulation of random field 

k=0; 

for i=1:nx 

for j=1:ny 

 if matrix_e(j,i)>0 

 k=k+1;    

 % Variance reduction 

gT=(lx^2*ly^2)/(4*size_e(k,1)^2*size_e(k,2)^2)*(2*size_e(k,1)/lx+exp(-

2*size_e(k,1)/lx)-1)*(2*size_e(k,2)/ly+exp(-2*size_e(k,2)/ly)-1);     

m_crT = exp(m_lncr+0.5*x_lncr^2*gT); 

x_crT = m_crT*sqrt(exp(x_lncr^2*gT)-1); 

cov_crT = x_crT/m_crT; 

x_lncrT = sqrt(log(1+cov_crT^2)); 

m_lncrT = log(m_crT)-0.5*x_lncrT^2; 

Rad_crT(k,:)= m_lncrT + X(j,i,:)*x_lncrT; 

  end 

end 

end 

cr=exp(Rad_crT); 

 

A4. Program for modifying “FS” input file 

ct = transpose(cr); 

for j=1:500 

R = ct(j,:);   

xmlfile = fullfile('Slope_cr.xml'); 

DOMnode = xmlread(xmlfile); 

d = DOMnode.getElementsByTagName('Analysis'); 

e = d.item(0).getElementsByTagName('Name'); 

e.item(0).setTextContent(genvarname(num2str(j))); 

for i=1:380 

 a = DOMnode.getElementsByTagName('Material'); 

 b = a.item(i).getElementsByTagName('StressStrain'); 
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 c = b.item(0).getElementsByTagName('SlopeCohesion'); 

 c.item(0).setTextContent(num2str(R(1,i))); 

end 

xmlwrite([genvarname(num2str(j)),'.xml'],DOMnode); 

end 

 

A5. Program for “FS” output file 

delimiterIn = 'S'; 

headerlinesIn = 2017; 

for i=1:500 

   A = importdata([genvarname(num2str(i)),'.fac'],delimiterIn,headerlinesIn); 

   B = cell2mat(A(2017,1)); 

   C = str2num(B(1,58:65)); 

   FS(i,:) = C; 

end 
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B1. “FS” input file for slope stability analysis. 
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B2. “Run_MCS” file for n simulation of slope stability analysis. 
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B3. “FS” output file. 
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