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น าเชือ้พิเธียม อินซิดิโอซุ่มจ านวน 6 สายพันธุ ์มากระตุน้ใหเ้กิดการสรา้งซูโอสปอร  ์เพื่อน ามาทดสอบกับนิว
โทรฟิลที่แยกไดจ้ากอาสาสมคัรสขุภาพดีจ านวน 6 คน  ผลการศึกษาพบว่านิวโทรฟิลสามารถลดจ านวนเชือ้
ลงไดอ้ย่างมีนยัส าคญัทางสถิติเมื่อเปรียบเทียบกับสภาวะที่ไม่มีนิวโทรฟิล  (p < 0.001) โดยวดัจากปริมาณ
เชือ้ที่เจริญอยู่บนอาหารเลีย้งเชือ้ชนิด blood agar เปรียบเทียบกับซูโอสปอรท์ี่ถูกยอ้มสีเพื่อดูเซลลเ์ป็นหรือ
ตายดว้ยกลอ้งจลุทรรศน ์ต่อมาศึกษากระบวนการจบักินเชือ้โดยใชห้ลกัการโฟลวไ์ซโตเมทรี พบว่านิวโทรฟิล
สามารถจบักินซูโอสปอรไ์ดอ้ย่างมีนยัส าคญัทางสถิติเพียงแค่   2 สายพนัธุเ์ท่านั้น (p < 0.01) แต่การศึกษา
สดุทา้ยกลบัพบว่าซูโอสปอรจ์ านวนทั้งหมด 6 สายพันธุส์ามารถกระตุน้ใหน้ิวโทรฟิลปล่อยเสน้ใยดีเอ็นเอได้
อย่างมีนยัส าคญัทางสถิติเมื่อเปรียบเทียบกับสภาวะที่นิวโทรฟิลไม่ถูกกระตุน้  (p < 0.001) โดยประเมินจาก
การย้อมดว้ยสารเรืองแสงเพื่อดูใตก้ลอ้งฟลูออเรสเซนตแ์ละวัดปริมาณดีเอ็นเอที่ถูกปล่อยออกมา  จากผล
การศึกษาครัง้นีถื้อเป็นขอ้มูลใหม่ที่สามารถบ่งชีใ้หเ้ห็นว่านิวโทรฟิลที่ไดจ้ากอาสาสมัครสขุภาพดีนั้นปล่อย
เสน้ใยดีเอ็นเอออกมาเพื่อตอบสนองต่อการติดเชือ้พิเธียม อินซิดิโอซุ่ม 

 

สาขาวชิา จลุชีววิทยาทางการแพทย ์(สห
สาขาวชิา) 

ลายมือชื่อนิสิต ................................................ 

ปีการศกึษา 2564 ลายมือชื่อ อ.ที่ปรกึษาหลกั .............................. 
  ลายมือชื่อ อ.ที่ปรกึษารว่ม ............................... 
  ลายมือชื่อ อ.ที่ปรกึษารว่ม ............................... 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 iv 

 
ABSTRACT (ENGLISH) 

# # 6280071820 : MAJOR MEDICAL MICROBIOLOGY 
KEYWORD: Pythium insidiosum, pythiosis, neutrophils 
 Apichaya Sriwarom : The role of neutrophils against Pythium insidiosum. Advisor: 

Assoc. Prof. ARIYA CHINDAMPORN, Ph.D. Co-advisor: Asst. Prof. DIREKRIT 
CHIEWCHENGCHOL, M.D., Ph.D., NAVAPORN WORASILCHAI, Ph.D. 

  
Pythium insidiosum (P. insidiosum) is an oomycetes fungus-like microorganism 

causing pythiosis infection in humans. The zoospores (infective stage) of this pathogen 
contaminate aquatic environments such as moist soil and swampy area, which is a natural 
habitiat. Humans are infected with P. insidiosum via cutaneous route which is the main entry 
of the zoospores. Recent studies have shown that patients with pythiosis shows high 
morbidity and mortality rates particularly those with hematologic diseases. As neutrophils 
are the first line of immune defense during fungal infections, this study therefore 
investigated the activity of neutrophils in response to P. insidiosum. The neutrophil killing 
activity, phagocytosis, and neutrophil extracellular trap (NET) formation were determined. 
Zoospores from six different strains of P. insidiosum were randomly selected and incubated 
with isolated healthy neutrophils (n=6).  The results showed that human neutrophils 
significantly decreased number of zoospores as observed in both colony counts on blood 
agar and live/dead cell staining (p < 0.001). Phagocytosis measured by flow cytometry 
showed only two strains of zoospores (pHrodo-labeled) were significantly phagocytosed by 
neutrophils (p < 0.01). In contrast, all six strains of heat-killed zoospores significantly 
induced NETs (p < 0.001) detected by immunofluorescence staining and picogreen assay. 
Our findings suggests that human neutrophils produce NET formation as a main mechanism 
rather than phagocytosis in response to P. insidiosum. 
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CHAPTER I INTRODUCTION 
 Pythium insidiosum (P. insidiosum) is a member of oomycetes. P. insidiosum is a 

fungus-like pathogen found in moist soil and swampy areas [1, 2] in tropical and subtropical 

climate zones [3, 4]. The typical characteristic is similar to true fungi, including cell wall 

structure, life cycle, hypha development, etc. As the molecular analysis has classified in the 

kingdom stramenopila, P. insidiosum is therefore related to diatoms and brown algae [5, 6]. 

This organism is a significant pathogen in mammals, especially cattle, dogs, cats, and 

humans [7-9]. The infectious agent is an asexual reproductive stage, zoospores, that can 

invade injured skin and soft tissue, causing pythiosis [10]. After the adhesion in host tissue, 

the germinated hyphae from encysted zoospore will trigger the host immune response within a 

few hours [11-13]. Four forms of clinical manifestation in human pythiosis include vascular, 

cutaneous/subcutaneous, ocular, and disseminated types [8, 14, 15]. Without early and 

efficient treatments, patients always suffer from the infection and become a chronic/sub-

chronic disease with a high mortality rate or loss their sight [16]. Most of the underlying 

disorders in vascular pythiosis involve hematological diseases, including thalassemia and 

paroxysmal nocturnal hemoglobinuria (PNH)  [17, 18].   

The equine model revealed the study of the immunological response of pythiosis. It 

demonstrated that after the adherence of the infectious encysted zoospore, geminated 

hyphae invade the host. These hyphae activate the T helper 2 (Th2) response, affecting 

interleukin-4 (IL-4) and IL-5 cytokines release, resulting in hypersensitivity and tissue damage, 

indicating a poor prognosis. When the infected horses receive Pythium insidiosum antigen 

(PIA) as immunotherapy, the immunogens drive the Th1 response, interferon-gamma (IFN-γ), 

and IL-2 stimulate the cell-mediated immune response. Then pathogens are eliminated finally 

in non-chronic infected equines [13]. 

Our previous investigation demonstrated the increasing levels of IFN-γ, IL-10, and IL-

17 in 50 Thai pythiosis patients after receiving the PIA immunotherapy (PIAI). Interestingly, IL-

17 is the critical cytokine that can activate neutrophil accumulation at the infection site, as 

found in this experiment [19]. Moreover, the rabbit model showed moderate neutrophilia when 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

injection of zoospores via subcutaneous and intraperitoneal routes was administered [20]. We 

hypothesize that neutrophils are associated with the pathogenesis of pythiosis. 

At present, the immune response against P. insidiosum infection remains poorly 

understood. Neutrophils are the most abundant polymorphonuclear leukocytes in human 

circulation [21], which are one of the innate immune cells that play essential roles during the 

first step of the infection [19]. Evidence has shown that neutrophils are the first cells that 

migrate through the site of infection and eliminate the various type of pathogens [22, 23]. The 

functions of neutrophils include phagocytosis, degranulation, reactive oxygen species (ROS) 

production, and neutrophil extracellular trap (NET) formation [24, 25], which can play vital 

roles in the clearance of various fungi, including Candida albicans (C. albicans) [26, 27], 

Cryptococcus neoformans [28], Paracoccidioides brasiliensis [29], Phialophora verrucosa (P. 

verrucosa) [30], Aspergillus fumigatus (A. fumigatus) [31]. Since no data are currently 

available demonstrating the neutrophil functions during pythiosis infection, this study 

investigates the in vitro killing ability and mechanisms of neutrophils in response to P. 

insidiosum.  

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II OBJECTIVES 
 

Hypothesis 
 Neutrophils can eliminate Pythium insidiosum zoospores by phagocytosis and NET 
formation. 
 
Objective 

To investigate the neutrophil functions against zoospores of P. insidiosum. 
 

Research plan 
 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III LITERATURE REVIEWS 
Background of Pythium insidiosum  
  The oomycetes are a group of eukaryotes classified in the phylum Oomycota, which 

includes ecologically significant plant and animal pathogens [32]. These organisms are found 

in wet environments, including moist soil, aquatic reservoirs, or swampy agricultural areas [1]. 

They have similar characteristics to true fungi, including cell wall synthesis, nutrient 

acquisition, life cycle, and filamentous production [2, 33]. Thus, “water mold” has been 

commonly known. The molecular phylogeny showed an evolution of oomycetes related to 

diatoms and brown algae in the kingdom stramenopila [5, 6]. The comparison of typical 

features between oomycetes and true fungi is shown in Table 1. The taxonomic arrangement 

is classified into two large groups because an oomycete is highly diverse in morphological 

characteristics. The first group is mainly saprotrophic, composed of Eurychasmales, 

Leptomitales, and Saprolegniales. Another group is the plant and animal pathogens, 

composed of Rhipidiales, Pythiales, and Peronosporales [34]. The order Pythiales includes 

Pythium and Pilasporangium genus are the important pathogens in several hosts, animals, 

plants, fungi, and algae [35, 36]. 

 Pythium genus is a common pathogen that can cause disease in plants. They are 

therefore known as plant pathogens. Current studies have shown that Pythium insidiosum (P. 

insidiosum) can cause infection in mammals, especially horses, dogs, cats, and humans, 

called “pythiosis”. This infection occurs when the host contacts zoospores in environments, 

the infected form of P. insidiosum, via a wound in the appendages (leg and hand), eye, and 

soft tissues [7]. Pythiosis is a non-transmissible and emerging disease that has been reported 

in the wetland of tropical, subtropical, and temperate areas, including Australia, Japan, India, 

the USA, Brazil, South East Asia, etc. [3, 4]. 

In 1884, the infection was first reported in the cutaneous granulomatous lesion in 

horses by a British veterinarian who worked in India. However, the pathogen could not be 

isolated [37]. The infection was subsequently named “Hyphomycosis destruens” in 1901 and 

modified to “Hyphomycosis destruens equi” in 1902 by De Haan and Hoogkamer [38]. Until 

1961, the causative agent was isolated from horses and named Hyphomycosis destruens (H. 
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destruens), derived from Hyphomycosis destruens infection [39]. In 1974, the zoospore 

production in an aqueous medium was observed by Austwick and Copland. They proposed 

that H. destruens was related to an oomycete genus Pythium [1]. The infection has been 

known under various other names: “Bursattee” or “Bursate” which means rainy season derived 

from the Indian word, “Espundia” in Latin America, “Equine phycomycosis” in Australia and 

USA, “granular dermatitis” in Japan, “Hyphomycosis destruens equi” in Indonesia, “Leeches” 

in the USA, “Summer sore” in Australia, Latin America and USA, and “Swamp cancer” in 

Australia and USA [40-42]. Until 1980, The term “pythiosis” was proposed by Chandler et al. 

[43].  

In 1985, human pythiosis was first described in two thalassemic patients with 

cutaneous infection at Siriraj Hospital, Thailand [44]. The second case of five systemic 

infections was reported from Ramathibodi Hospital, Thailand, from 1987 to 1988 [45]. After 

that, sporadic human infection has been described in many countries, including Australia, 

Brazil, New Zealand, and the USA [46, 47].  
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Table 1 The typical features between oomycetes and true fungi.  
(Modified from Jamie McGowan and David A. Fitzpatrick, 2020 [48].) 
 

Features Oomycetes True fungi 

Kingdom Straminipila Fungi (Eumycota) 

Neighboring taxonomic 
groups 

Diatoms and brown algae Animals 

Size of genome 50 – 250 Mb 10 – 40 Mb 

Cell wall 
Cellulose and β-glucans 

(with little chitin) 
Chitin and β-glucans 

Cell membrane 
Incomplete ergosterol 

synthesis pathway 

Complete ergosterol 

synthesis pathway 

Hyphal structure 
Multinucleated in non-

septate hyphae 

Uni-nucleated/multinucleated 

compartment in non-

septate/septate hyphae 

Sexual reproductive 
structure 

Oospore 
Zygospore, Ascospore and 

Basidiospore 

Asexual reproductive 
structure 

Zoospore Conidia/spore 

Pigmentation Unpigmented Commonly pigmented 
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Biology of P. insidiosum 
1. Cell structure 

The cell wall is an external barrier surrounding the fungal and oomycete cells with 
many vital functions, including protecting and maintaining the cell. Moreover, the structure of 
cell walls in pathogenic fungi and oomycete contains many biological molecules in host 
recognition, adhesion, and colonization [49]. In true-fungi, cell wall components are 

composed of β-glucan (β-1,3-D-glucan and β-1,6-D-glucan) synthesized by a glucan 
synthase complex, the target of various immune cells and antifungal drugs [50]. Minor 

components are chitin (β-1,4-N-acetylglucosamine polymer) and mannan (also called 

phosphopeptidomannan) [51]. Oomycetes’ cell walls are composed of β-glucan and cellulose 

with little chitin (Table 1) [52]. Cellulose is a polymer of β-1,4-linked glucosyl residues and is 
considered to have a similar function as chitin in fungi [53]. In filamentous fungi, chitin is a 
significant fraction of the cell wall responsible for the rigidity of this structure, synthesized by 
the chitin synthase (CHS) gene [54]. Previous studies have shown that no chitin was present in 
P. insidiosum cell walls. In 2020, Kammarnjassadakul P et al. reported the expression of the 
CSH2 gene in P. insidiosum, which is probably related to chitin synthesis in the cell wall of P. 
insidiosum [55]. 

Sterols are the essential lipid compounds in the eukaryotes cell membrane that 

display many roles in biological processes, including selection and permeabilization, signal 

transduction, cytoskeleton reorganization, etc. [56]. Sterols are diverse in different organisms; 

for example, cholesterol is the principal sterol found in animals, whereas fungi contain 

ergosterol in their membrane [57]. Sterol synthesis is a significant target of several antifungal 

drugs, which inhibit enzymes in the sterol biosynthesis pathway. The cell membrane structure 

of P. insidiosum and some oomycetes lack ergosterol [58]. In general, there are 14 essential 

enzymes in the sterol biosynthesis pathway, which include ERG20, ERG9, ERG1 (Terbinafine 

targeted enzyme), ERG7, ERG11 (Itraconazole targeted enzyme), ERG24, ERG25, ERG26, 

ERG27, ERG6, ERG2, ERG3, ERG5, and ERG4, resulting in ergosterol end products. At the 

same time, P. insidiosum consists of only six enzymes leading to a failure in the production of 

ergosterol in their cell membrane (Figure 1) [59]. The incomplete ergosterol biosynthesis 

pathway affects the efficacy of some antifungal drug treatments in pythiosis.  
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Figure 1 Diagram shows enzymes and substrates in the sterol biosynthesis pathway 
Bold texts represent P. insidiosum contained enzymes: ERG3, ERG5, ERG11, ERG20, 

ERG 24, and ERG 26, resulting in incomplete ergosterol production. (Modified from T. 

Lerksuthirat et al., 2017) [59] 
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2. Morphology 

P. insidiosum develops mycelia-like fungal growth, which can be rapidly observed 

within 1-2 days on a culture medium. The common mediums used for the cultures in mycology 

laboratories include blood agar (BA), sabouraud dextrose agar (SDA), sabouraud dextrose 

broth (SDB), corn meal agar (CMA), and potato dextrose agar (PDA). The macroscopic 

morphology on the solid medium showed submerged hyphae, colorless to white colonies 

(Figures 2A and 2B). The colorless short mycelium with an irregular radiate pattern is shown in 

the liquid medium (Figure 2C) [10]. P. insidiosum has an optimum temperature for growth at 

34-36ºC, which relates to the susceptible host (mammals) body temperature [60].  

Microscopic examination in 10% potassium hydroxide (KOH) preparation and 

lactophenol cotton blue (LCB) wet mount showed the sparsely septate hyphae size between 

4-12 µm in diameter with 90° perpendicular lateral branches (Figure 3A and 3B) [8]. The 

biflagellate zoospores of size between 8-12 µ m are generated in a water environment and 

then release their flagella to become the encysted form (Figure 3C), which is an asexual 

reproductive stage structure produced from zoosporangia (Figure 3D) [11]. 
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Figure 2 Macroscopic morphology of P. insidiosum 

Representative pictures show the colorless colonies with submerged hyphae on 

sabouraud dextrose agar (A) and blood agar (B) and an irregular radiate pattern mycelium in 

sabouraud dextrose broth (C), incubated at 37ºC for 48 h.  
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Figure 3 Microscopic characteristics of P. insidiosum 

Representative pictures show sparsely septate hyphae in 10% KOH preparation (A) 

and LCB wet mount (B). After being induced with the induction medium, the encysted 

zoospores (C) and zoosporangium (D) were observed under the light microscope, 400x 

magnification. 
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3. Life cycle of P. insidiosum  

 The reproductive stage of P. insidiosum includes the sexual and asexual stages 

dependent on environmental conditions, like other oomycetes (Figure 4). 

 

 
 

Figure 4 The Life cycle of typical oomycetes, including P. insidiosum. 
Mycelia generate Oogonium and zoosporangium. The right part represents a sexual 

reproductive stage: fertilization occurs when the male antheridia transfer nuclei to the female 

oogonia. The oogoniums develop a thick wall, becoming mature oospores that can be 

resistant to various environmental conditions. The left part shows an asexual reproductive 

stage: the differentiation of zoosporangium into the mature stage leads to zoospores release. 

The biflagellate zoospores swim and lose their flagella when adhered to the host tissue, 

becoming the encysted form, germinated form, and hyphal form or mycelium, respectively 

[10]. (Modified from https://istudy.pk/oomycota/). 
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3.1 Sexual reproduction 

 Sexual reproduction of oomycetes occurs among male and female reproductive cells 

called gametangia. The large, round thin-walled structure contains one to several egg-like 

organelles known as female oogonia and smaller male reproductive cells known as antheridia 

(Figure 5). The general reproduction in fungi and oomycetes occurs when two gametangia 

come in contact, and nuclei transfer from the male antheridia to the female oogonia via a 

fertilization tube [61]. Oomycetes display in both heterothallic and homothallic reproduction. 

Heterothallic species require two different types of gametangia that develop from separate 

compartments, whereas homothallic species fertilize by self-originated gametangia. All 

species of Pythium are homothallic [62]. After fertilization, the oogonial cytoplasm becomes 

rich in lipid, protein, and β-linked glucose polymers. Then, thick-walled layers develop in 

mature oospores, which are essential for protection against environmental stress and 

microbial degradation [63].  

 

 
Figure 5 Sexual reproductive cells of Pythium spp. 

Female oogonium containing oospore with male antheridium of P. delawarii (A and B) 

[64] and P. aphanidermatum (C) [65]. The fat arrows represent antheridium, and the thin 

arrow represents oospore.    
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3.2 Asexual reproduction 
 Zoospore is an asexual reproductive structure of oomycetes produced from 

zoosporangia (Figures 3C and 3D). The formation of undifferentiated zoosporangia starts with 

the protoplasm flowing to the hyphal tip and forming into the vesicle. Then, the differentiation 

of protoplasm into zoospores within the vesicle (zoosporangia) is processed. During the 

mature stage, the zoosporangial membranes are ruptured, and biflagellate zoospores are 

released into the environment (Figure 6) [1 0 ]. The zoospore is typically kidney-shaped, with 

two flagella that emerge from a lateral groove. A whiplash-type is a posteriorly directed 

flagellum responsible for the zoospore movement through water; another is the anteriorly 

shortened flagellum, a tinsel-type [7]. The cell surface of a zoospore is composed of various 

peripheral vesicles surrounded by a cell membrane. All these peripheral structures function in 

the encystment process.    

 The encystment is performed when the zoospore attaches to injured plant or animal 

tissue. In an initial encystment process of zoospores, the flagella are detached, the peripheral 

vesicles are fused with the cell membrane as mentioned above, and the adhesive 

glycoprotein from these vesicles is released. Then, the encysted cell wall is completely 

produced, a germ tube is germinated, and a hypha is elongated to the environment [66, 67]. 

 

 
Figure 6 An asexual reproduction of P. insidiosum on a grass leaf 

The representative pictures show the differentiation of zoosporangium (A-D) and the 

release of zoospore into the environment (E-J), 400x magnification. 
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Pathogenesis  
 During an asexual reproductive stage of P. insidiosum, biflagellate zoospores are 

produced in an aquatic environment. Zoospores display chemotaxis towards plant and animal 

tissues, such as hair, wounds, cornea, and injured skin [8]. Susceptible hosts are infected by 

exposure to the natural habitat of P. insidiosum, especially patients who live or work in 

agricultural areas [7]. When zoospore contacts damaged tissues, the flagella are shed, and a 

sticky amorphous glycoprotein is secreted, such as protease. These substances facilitate the 

adhesion of zoospores and relate with a general feature of other pathogenic oomycetes [10]. 

The encysted zoospores develop a germ tube into the infected tissue, stimulated by the host’s 

body temperature [11]. Then, the hypha invades the host tissue and infiltrates blood vessels 

leading to thrombosis and aneurysm.     
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Clinical manifestation  
1. Vascular pythiosis 

The majority of human vascular cases have been reported in Thailand. Previous 

studies showed that patients with vascular pythiosis had a high mortality rate of 10-40% [14]. 

The most common organ involvement in vascular infection is the lower extremities, including 

the legs and thighs. Typical clinical and pathological features of vascular pythiosis are 

gangrenous ulcers due to the occlusion of an infected artery. Histological findings reveal the 

invasion of hyphae into arterial lumens. Eosinophilic migration and infiltration, focal 

suppurative granuloma, and giant cells surrounding the hyphae are observed. Then, the 

progression of pathogenesis results in the vascular aneurysm and arterial occlusion (thrombus 

or fibrosis). Angiograms have been reported to detect and monitor vascular lesions, which can 

observe an occlusion or expansion of fungal hyphae (Figure 7) [68, 69]. The current treatment 

for vascular infection is radical surgery in combination with antifungal agents, including 

itraconazole, terbinafine, and immunotherapy [15]. 

Many studies have reported that vascular pythiosis causes more severe infection in 

patients with hematological disorders, such as thalassemia and paroxysmal nocturnal 

hemoglobinuria (PNH) [17]. Iron overload can interfere with immune cell activities, especially 

phagocytic cells, affecting cytokine production. Moreover, Ud-naen et al. reported the 

decreasing level of IFN-γ that was produced by monocytes/macrophages derived from 

thalassemia patients after P. insidiosum zoospores exposure [18]. This study might indicate 

that iron overload is a significant factor that induces immune dysregulation during infection 

[70]. In addition, the transcriptome analysis found that P. insidiosum carries a gene encoding 

the ferrochelatase enzyme required for the final step of heme biosynthesis in both prokaryotes 

and eukaryotes, which is necessary for the survival of microorganisms inside the host [71]. 

These data support that ferrochelatase affects P. insidiosum infection in patients with 

hematological disorders [72].  
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Figure 7 Clinical and pathological features of vascular pythiosis 

Gangrenous ulcer (A), arterial occlusion detected by angiography (B), and hyphal 

branching in artery detected by Gomori methenamine silver staining (C). Aw, arterial wall; Lu, 

arterial lumen [14]. 

 

 
Figure 8 Clinical presentation of ocular pythiosis 

The representative pictures show the full thickness near-total corneal infiltration, which 
is the typical lesion of ocular pythiosis (A) and post-therapeutic penetrating keratoplasty (TPK) 
in pythiosis patients [73]. 
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2. Ocular pythiosis 
 Ocular pythiosis is the second most common clinical feature in patients with pythiosis 
in Thailand [8]. Most cases of ocular form are often caused by accidental contact, including 
eye rubbing and contact lens use, with contaminated water in the eyes [74, 75]. Moreover, 
hematological disorders are not a risk factor for ocular form. The symptoms of ocular lesions 
are a corneal ulcer, infective keratitis, corneal irritation, impaired visual acuity, swelling of the 
eyelids, and conjunctival injection [76]. Eye examination typically reveals “tentacle-like” or 
“dot-like” corneal infiltrates, full-thickness central large corneal ulcer, and endophthalmitis 
(Figure 8) [73]. The treatment of choice for ocular pythiosis includes surgical intervention with 
therapeutic penetrating keratoplasty (TPK), which is corneal transplantation in patients who 
have received severe infective keratitis, and a combination with antifungal drugs and 
immunotherapy [77]. 

 
3. Cutaneous/Subcutaneous pythiosis 

 Skin and subcutaneous tissue infection is the early form of vascular pythiosis 
commonly found in humans and animals [8]. The common clinical manifestations of 
subcutaneous pythiosis are pain and swelling, granulomatous, tumor-like lesions, infiltrative 
lumps, chronic ulcers, or necrotizing cellulitis [78]. The typical histopathology finding shows 
the granulomatous reaction with many inflammatory cells, predominantly neutrophils and 
eosinophils, surrounding the pathogens, which is called the “Splendore-Hoeppli phenomenon” 
(Figure 9A) [79]. This characterization presents the radiating, star-like asteroid or club-shaped 
granulocytic material around the infectious agent, the unique reaction in subcutaneous fungal 
infection, including basidiobolomycosis, conidiobolomycosis, aspergillosis, and candidiasis 
[80]. In addition, the unique characteristic of pythiosis in horses showed the necrotic tissue 
with yellow-white material, referred to as “kunkers” [7]. The kunkers or necrotic masses occur 
by the degranulation of eosinophils and mast cells damaging tissue, resulting in loss of 
exudates through the ulcerated skin lesion (Figure 9B) [9].  
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Figure 9 The histopathological and clinical presentation of cutaneous/subcutaneous pythiosis. 

Representative pictures show the Splendore-Hoeppli phenomenon, observed by H&E 
staining, magnification ×200 (A) [3], and the kunkers from horse tissue; arrows represent the 
lesion with white-yellowish exudates (B) [9].  
 

4. Disseminated pythiosis 
 Disseminated pythiosis is rare and found in only 3% of patients in Thailand [14]. This 
infection usually involves internal organs such as the lungs, heart, brain, intestine, and bones. 
Most patients with disseminated pythiosis have underlying hematological diseases [8]. 
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Epidemiology 
 Pythiosis has been reported in some countries in tropical, subtropical, and temperate 

regions of the world (Figure 10)  [3, 4, 7]. Most cases have been reported in mammals, 

especially horses, dogs, and humans. In 2006, Krajaejun et al. summarized that approximately 

100 cases of human pythiosis were found in Thailand, which is associated with the 

hemoglobinopathy underlying disease (85%), agricultural occupation (75%), and mortality rate 

(40%) [14].  

 Phylogenetic analysis using the internal transcribed spacer (ITS) region, mitochondrial 

cytochrome C oxidase II (COX2) gene, intergenic spacer (IGS) region, and exo-1,3-β-

glucanase gene (exo1), categorizes P. insidiosum into three clades, which are associated with 

geographic regions. Clade I or ATH is an American strain, clade II or BTH is an American, Asian, 

and Australian strain, and clade III or CTH is mostly a Thai and American strain [6, 81, 82].  

 

 
Figure 10 Geographic distribution of pythiosis. 

The colored representative picture of tropical, subtropical, and temperate regions 

where pythiosis cases are found [37]. 

 

In 2006, the retrospective epidemiological study of human pythiosis in Thailand from 

January 1985 to June 2003 from 9 tertiary care hospitals was reported by Krajaejun et al. The 

criteria: isolation of P. insidiosum and zoospore induction positive, anti- P. insidiosum 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 21 

antibodies presentation in blood samples, and demonstration of pathological features, were 

recruited in this study. They revealed that the cases of 120 Thai patients with pythiosis 

included 59% vascular form, 33% ocular form, 5% cutaneous/subcutaneous, and 3% 

disseminated form (Figure 11A). Human pythiosis cases in Thailand were found in the central 

region (46%), northeastern region (27%), northern region (16%), southern region (8%), and 

eastern region (3%) (Figure 12). Moreover, human pythiosis was associated with agricultural 

occupation, hemoglobinopathy underlying disease including Thalassemia (69%) and non-

thalassemia (11%), and male sex (71%) (Figure 11B) [14]. As human pythiosis has been 

increasingly reported in Thailand, in 2019, Lohnoo et al. explored the seroprevalence of anti-

P. insidiosum antibodies in 2,641 Thai individuals who lived in 21 provinces across Thailand 

from August 2008 to March 2009. They found that serum samples of 0.15% were identified 

with anti-P. insidiosum antibodies, which have no pythiosis history, suggesting subclinical 

infections [83]. 
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Figure 11 The retrospective data of human pythiosis in Thailand was diagnosed from January 

1985 to June 2003. 
Representative pictures show the various forms of pythiosis (A) and the sex of patients 

with pythiosis (B) [14].     
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Figure 12 The distribution of human pythiosis in Thailand 

C, central region; E, eastern region; N, northern region; NE, northeastern region; S, 

southern region [14].  
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Immune response against P. insidiosum 
 Understanding immune responses to P. insidiosum in humans and animals is still 

unclear. Previous studies showed that infected animals, including horses and dogs, generate 

anti-P. insidiosum antibodies that can be detected by an immunodiffusion and complement 

fixation test [12, 84, 85]. In humans, Imwidthaya et al. developed an in-house immunodiffusion 

test for the diagnosis of subcutaneous and systemic pythiosis [86]. In 1991, an 

immunodiffusion test was used to diagnose and monitor patients with pythiosis in Thailand 

[87]. Moreover, the detection of anti-P. insidiosum antibodies with enzyme-linked 

immunosorbent assay (ELISA) have recently been used for diagnosis, monitoring, and 

epidemiological studies in humans and animals [16, 83, 88, 89]. These serological studies 

suggested that P. insidiosum antigen recognizes the humoral immune response or antibodies 

during the infection. 

As anti-P. insidiosum antibodies are developed by the different host species, the 

recognition of different dominant antigens by antibodies is presented. This hypothesis was 

confirmed by Chindamporn et al. [90]. They found that serum samples collected from various 

hosts, including cats, cattle, dogs, horses, and humans displayed different recognition with 

various molecular masses of P. insidiosum proteins, which were detected by western blot 

analysis. Worasilchai et al. reported that the ELISA values (EVs) of P. insidiosum-specific-

immunoglobulin-G antibody (Pi-Ab) in 140 serum samples from patients with pythiosis were 

significantly increased when tested with the antigens prepared from clinical isolates in 

comparison with the equine-type strain, which in-house ELISA determined at Mycology 

laboratory service of King Chulalongkorn Memorial Hospital, Thailand [91]. This finding 

indicates that the binding affinity of specific Pi-Ab depends on the antigen type. Furthermore, 

EVs of Pi-Ab and serum β-1,3-D-glucan levels are significant biomarkers for monitoring 

vascular pythiosis [16].     

Cellular immunity is processed by activating various inflammatory cells, including 

macrophages, eosinophils, mast cells, etc., which is observed by the histological analysis of 

infected tissues [7, 78, 80]. Degranulation of eosinophils and mast cells affects the severe 

pruritis, kunkers formation, and development of tumor-like necrotic tissue in horses [9]. The 
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appearance of yellow-white exudates in kunkers lesions might suggest that the 

polymorphonuclear cells (PMNs) or neutrophils play a role in infection and inflammation 

against P. insidiosum. In addition, Miller and Campbell reported that significantly progressive 

leukocytosis with moderate neutrophilia was observed in rabbits who received motile 

zoospores injected by subcutaneous and intraperitoneal routes [20]. 

Based on equine models, Mendoza and Newton proposed cytokine production in 

response to P. insidiosum infection [13]. They demonstrated that when a zoospore develops a 

germ tube and generates hypha, these components act as the exogenous antigen that can 

recognize the hosts’ antigen-presenting cells (APCs). Then, APCs process and present the 

antigens to naïve T helper cells (Th0), affecting Th2 polarization by releasing interleukin-4 (IL-

4). The differentiation of the Th2 subset results in increasing levels of IL-4 and IL-5, which can 

stimulate B cells to produce IgG, IgM, and IgE molecules. Migration and degranulation of 

eosinophils and mast cells occur at the site of infection, causing hypersensitivity and tissue 

damage in the infected hosts. This finding is supported by hypersensitivity testing on the skin 

of infected horses [92]. The infected horses were vaccinated with P. insidiosum antigen (PIA), 

a crudely extracted protein from P. insidiosum cultures. These immunogens are processed 

and presented to APCs in a different pathway of the natural infection. These PIA-APCs activate 

Th0 and turn into the Th1 subset, affecting the release of interferon-gamma (IFN-γ) and IL-2. 

The switching of host immune response stimulates cell-mediated immunity, including cytotoxic 

T lymphocytes (CTL), which can eliminate the pathogen and decrease hypersensitivity 

reactions in the infected horses (Figure 13). Similar to the immune response in humans, 

Wanachiwanawin et al. reported significantly increased levels of IL-2 in vascular pythiosis 

patients after receiving the PIA immunotherapy [93]. In addition, unpublished data 

documented by Worasilchai et al. demonstrated the rising levels of IFN-γ, IL-10, and IL-17 

produced by peripheral mononuclear cells (PBMC) derived from 50 Thai pythiosis patients 

who received PIA immunotherapy. Interestingly, increased levels of IL-17 were observed after 

immunotherapy. This finding might indicate that neutrophils can recruit and eliminate P. 

insidiosum due to IL-17 being the key cytokine to activate neutrophil accumulation into the 

infection site.  
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Figure 13 The cytokine production in response to the natural P. insidiosum infection (right) 
and treatment with P. insidiosum antigen (PIA) immunotherapy (left) in equine models. 

The encysted zoospores attach to the host and then germinate hyphae. Antigen-

presenting cells (APCs) recognize PIA as an immunogen and become activated. IL-4 released 

by activated APCs induces naïve T helper cells (Th0) to Th2 polarization. Th2 cells further 

produce and increase levels of IL-4 and IL-5, which thereby stimulate B lymphocytes. 

Productions of IgG, IgM, and IgE trigger mast cell and eosinophil migration to the site of 

infection, causing tissue damage and hypersensitivity reaction. In contrast, PIA injection is 

recognized by APCs. The activation of APCs drives Th0 cells into Th1 cells. The release of 

IFN-γ and IL-2 stimulates the cell-mediated immune response, particularly cytotoxic T 

lymphocytes (CTLs), which induce the destruction of P. insidiosum [13, 94]. (Modified from 

Yolanda H, 2021) 
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Neutrophils  
Neutrophils are classified as PMNs and phagocytic leukocytes. These innate immune 

cells are the most abundant circulating leukocytes and are found in approximately 50–70% of 
total white blood cells in humans. During infection, the percentage of neutrophils may increase 
to 80% or more [21]. Their lifespan is approximately 6-8 h in blood circulation, and they can 
last up to 7 days in tissue [23]. Mature neutrophils have an average diameter of 7-10 µm, 
composed of segmented nucleus and granules or protein vesicles accumulated in the 
cytoplasm (Figure 14) [24]. They are the first cells of the immune system to migrate to a site of 
inflammation and play an essential role in cytokine production and pathogen elimination [19]. 
 

 
Figure 14 Neutrophil in peripheral blood smear 

Representative picture observed by Wright’s staining, light microscope, 1,000x 

magnification. 
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1. Neutrophil maturation and granulation 
More than 1011 neutrophils are released daily in the bloodstream and are generated in 

the bone marrow about 14 days from hematopoietic stem cells (HSC) [95]. HSCs differentiate 
into multipotent progenitor (MPP) cells and then transform into lymphoid-primed multipotent 
progenitors (LMPPs). After that, LMPPs differentiate into granulocyte-monocyte progenitors 
(GMPs) regulated by the granulocyte colony-stimulating factor (G-CSF), resulting in neutrophil 
generation from the myeloblast. The myeloid-controlled process by G-CSF is produced in 
response to IL-17A synthesized by T cells that regulate neutrophils [19]. The cells then follow 
a maturation process that includes the stages of promyelocyte, myelocyte, metamyelocyte, 
band form, and mature neutrophil (Figure 15) [96]. During differentiation, neutrophils change 
their nucleus from a round-shaped into a banded and segmented morphology, respectively, 
expressing the various receptors in each formation stage. 

During the maturation process, neutrophils contain specific enzymes, vesicles, 
granules, and other protein molecules, formed at four particular differentiation stages (Figure 
16). 

Primary or azurophilic granules (peroxidase-positive granules) are the largest oval-
shaped in morphology, first formed during neutrophil maturation, including myeloblast and 
promyelocyte stage. The term “azurophils” refers to the affinity for taking up the basic dye 
azure A, a dark blue dye often used in Giemsa stain [21]. The characteristic of these granules 
is the presence of myeloperoxidase (MPO) which is essential for respiratory burst [97]. 
Primary granules also contain other protein molecules, including defensins, lysozyme, 
bactericidal/permeability-increasing protein (BPI), neutrophil elastase (NE), proteinase 3, and 
cathepsin G [98].     

Secondary or specific granules are presented at the myelocyte and metamyelocyte 
stages, characterized by the glycoprotein lactoferrin’s presence. Lactoferrin's activity 
interferes with the iron acquisition of several pathogenic bacteria and fungi during infection 
[21]. The other protein molecules in specific granules, such as matrix metalloproteinase 
(MMPs), are the compartments of phagocytic vacuoles and a plasma membrane stored as 
inactive proenzymes. During phagolysosome formation, MMPs are activated, and the integral 
membrane components of phagocytosed microorganisms are degraded by this enzyme [99].  
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 Tertiary or gelatinase granules are the third class of neutrophil granules produced in 
the banded stage, containing a high gelatinase concentration [21]. Dewald et al. 
demonstrated a relationship between gelatinase secretion and the induction of respiratory 
bursts from human neutrophils. They found that superoxide production in response to various 
stimuli did not parallel gelatinase release. This data suggests that gelatinase secretion is not 
dependent on respiratory burst [100].     

The secretory protein vesicles are detected in mature neutrophils. These vesicles 

contain plasma-derived proteins, including albumin, important for membrane-bound 

molecules during neutrophil migration [25]
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Figure 17 Mechanisms of neutrophils against invading pathogen 
The representative picture demonstrates the killing activity of neutrophils, including 

phagocytosis, degranulation, and neutrophil extracellular traps (NET). During infection, 
neutrophils recognize the pathogen by their cell surface receptors. Phagocytosis occurs when 
the microorganisms are engulfed in the cytoplasm. Then, neutrophil forms the phagosome, 
generates a phagolysosome by fusing their granule vesicles, and produces a superoxide 
substance. Degranulation is the secretion of granules, enzymes, or protein vesicles to destroy 
the infected pathogen. NETs are the extracellular DNA and protein components activated by 
microorganisms, particularly those with large pathogens [22]. (Modified from Rosales C, 2018) 
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Killing mechanisms and antifungal activities 
 Neutrophils are the first line of defense against invading pathogens, which eliminates 
by their intra- and extracellular killing mechanisms. When microorganisms penetrate the host, 
neutrophils attach to the endothelium of blood vessels through various interactions by their 
receptor and adhesion molecules. After passing through the endothelium, neutrophils 
recognize and migrate to the signal source, called chemotaxis. Finally, neutrophils encounter 
and destroy the targeted pathogens [21]. Neutrophils display several immune response 
activities when encountering microbes, including phagocytosis, degranulation, and release of 
neutrophil extracellular traps (NETs) (Figure 17).  
 

1. Receptors and fungal recognition 
Neutrophils can directly recognize pathogen-associated molecular patterns (PAMPs), 

which are microbial molecules that share a lot of different general structures [102]. 

Components of fungal cell walls act as PAMPs such as β-glucan, chitin, mannans, and fungal 
nucleic acid [103]. These PAMPs are targeted with neutrophils via pattern recognition 
receptors (PRRs) on the cell surface. PRRs can recognize several domains of microbes and 
induce downstream events designed to eliminate pathogens from the host (Figure 18). 

The major PRRs for fungal pathogens are Toll-like receptors (TLRs), C-type lectin 
receptors (CLRs), galectin family proteins, nucleotide-binding oligomerization domain (NOD)-
like receptors, and NALP3 (NOD-, LRR and pyrin domain-containing protein 3) inflammasome 
[104]. Several studies have reported that complement receptor 3 (CR3, CD11b/CD18) is the 

crucial receptor on human neutrophils for the recognition of β-glucan. Bruggen et al. 
demonstrated that CR3 of neutrophils mediates phagocytosis of Saccharomyces cerevisiae 
(S. cerevisiae) [105]. Gazendam et al. reported that recognition of Aspergillus fumigatus (A. 
fumigatus) triggered CR3 through the phosphatidylinositol 3-kinases (PI3K) pathway to kill 

conidia. Additionally, Aspergillus hyphae recognize Fcγ receptors (FcγR), proceed with the 
signaling via spleen tyrosine kinase (SYK), PI3K, and protein kinase C, then trigger the 
production of ROS and MPO [31]. These data indicate that patients with a leukocyte adhesion 
deficiency I (LAD-I) with the invasive fungal infection lack CR3 integrin expression failing to 
bind with a blood vessel of phagocytes. Moreover, TLRs are classified into transmembrane 
receptors (TLR1, 2, 4, 5, 6, and 10) and intracellular receptors (TLR3, 7, 8, and 9), that 
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recognize both fungal cell wall components and nuclear components, such as DNA and RNA 
[106].  
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2. Phagocytosis 
 Phagocytosis is the primary mechanism for engulfing and eliminating pathogens by 
intracellular mechanisms [107]. When neutrophils encounter microorganisms, they recognize 
PAMPs, small molecules found on microbial cells that can induce neutrophils via PRRs and 
opsonic receptors [108]. Antigens (microorganisms) can be labeled for phagocytosis by 
opsonin, which are host-derived proteins that bind specific receptors on phagocytic cells. The 

opsonin-mediated receptors include FcγR, and CRs, which depend on IgG- and complement-
opsonized microbes. The process of antigen-labeled opsonin binding specific receptors on 
phagocytic cells is called opsonization [109]. Moreover, non-opsonic receptors include 

Dectin-1, Dectin-2, and Mincle, which are receptors for fungal β-glucan components that 
recognize microbial ligands and induce phagocytosis.  
  During phagocytic uptake, the polymerization of the actin cytoskeleton is processed, 
resulting in a change in the cell membrane that affects the depression of the membrane area. 
Then, pseudopods are formed around the microorganism [110]. The pathogens are engulfed 
in the cytoplasm of neutrophils, creating a new vesicle called a phagosome. The lysosome 
contains several hydrolytic enzymes, protein molecules, and antimicrobial peptides released 
from the neutrophil granules. The phagosome-containing microorganism and lysosome are 
called phagolysosome; this component finally eliminates and degrades the pathogens inside 
the cytoplasm [25].  

In addition to other antimicrobial molecules, neutrophils can kill microbes by the 
generation of toxic substances such as nitric oxide (NO), superoxide, and hydrogen peroxide 
(H2O2) [111]. This process is called a respiratory burst, producing reactive oxygen species 
(ROS) mediated by the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 
system. When the activation of NADPH oxidase is localized to specific granule membranes, 
electrons are transferred from NADPH to generate superoxide, and hydrogen peroxide is 
rapidly produced. Moreover, MPO can react with hydrogen peroxide affecting hypochlorous 
acid production, which increases bactericidal activity against pathogens [21]. Aratani et al. 
demonstrated a relationship between MPO and NADPH oxidase [112]. In mice models, they 
found that MPO could not play a role in host defense against A. fumigatus and C. albicans 
without NADPH oxidase. This data confirms that ROS production mediated by the NADPH 
system increases the strongest fungicidal activity of neutrophils. 
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3. Degranulation 
 One of the crucial roles during the infection of neutrophils is the release of 

antimicrobial substances and other molecules from secretory vesicles, which is called 
degranulation. The different types of granules demonstrate various properties in response to 
infection signals. During passing through the endothelium, neutrophils are exposed to the 
microbial activation signals affecting the release of gelatinase granules called 
metalloproteinase. Delclaux et al. demonstrated that gelatinase B could degrade type IV 
collagen, which plays the major factor in neutrophil migration across the basement membrane, 
activated by NE [113]. When neutrophils are activated, stimulation of the oxidative burst and 
mobilization of the azurophilic and specific granules are initiated. These granules fuse with the 
phagosome or plasma membrane, resulting in NADPH oxidase stimulation and ROS 
production [114]. Moreover, Lefkowitz et al. found that MPO released from neutrophils 
activates macrophages and induces microbicidal activity against C. albicans [115]. This 
investigation suggests that the released components from neutrophils have synergism with 
other immune cells.  

Neutrophils can release antimicrobial proteins that are contained in matured stage 
secretory vesicles. The main types of antimicrobial molecules include cationic peptides, 
enzymes, and proteins [25]. The neutrophil cationic antimicrobial peptides such as defensin 
and cathelicidin that can bind to microbial membranes inhibit bacterial cell wall synthesis. BPI 
is the lipopolysaccharide (LPS) binding protein that increases bacterial permeability and 
hydrolysis of the bacterial phospholipid [116, 117]. Neutrophils also contain proteolytic 
enzymes such as lysozyme, a serine protease, and NE that can destroy the bacterial cell wall 
and cleave some pathogenic virulence factors of bacteria [118]. The protein-containing 
vesicles have unique properties by interfering with the sequestrating of essential nutrients by 
microorganisms, including lactoferrin and calprotectin, which are iron and zinc chelators, 
respectively [119].         
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4. Neutrophil extracellular traps (NETs) 
Neutrophil extracellular traps (NETs) were first described in 1996 and characterized 

as the release of nuclear contents and morphological changes of neutrophils after treatment 
with phorbol-12-myristate 13-acetate (PMA) [120]. Many studies showed that the structure of 
NETs was composed of nuclear chromatin, antimicrobial peptides, and neutrophil enzymes; 
the process of the released components is called NETosis (Figure 19) [121].  
 

 
Figure 19 Neutrophil extracellular traps (NETs) 

The representative picture shows dsDNA release by human neutrophils after 
treatment with Phorbol myristate acetate (PMA), observed by 4’,6-diamidino-2-phenylindole 
(DAPI) staining, fluorescence microscope, 400x magnification. 
 

The main signaling pathway of NETosis was demonstrated by several in vitro studies. 
Various stimulants include PMA, the cell-permeable activator of protein kinase C (PKC), 
calcium ionophores, hydrogen peroxide, and LPS, which can induce NETosis [122]. After PMA 
treatment, neutrophils are stimulated via PKC and Raf-MEK-ERK signaling pathways, resulting 
in the activation of NADPH oxidase 2 (NOX2) and the induction of NET formation by ROS 
production [123]. The formation of ROS promotes MPO and NE translocation into the nucleus. 
MPO then converts hydrogen peroxide to hypochlorous acid, resulting in NE activation, which 
degrades the nuclear membrane’s cytoskeleton and affects the NET expansion [122]. 
Moreover, histone deamination and chromatin decondensation are promoted by peptidyl 
arginase deaminase 4 (PAD4) initiated calcium ionophores, which increase the intracellular 
calcium level that can activate PAD4 [124]. 
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On the other hand, NETs are triggered by recognizing stimuli through TLRs and CRs, 
which occur independently of ROS production. These processes promote the release of DNA 
via nuclear morphological changes, resulting in the loss of the multinucleated shape of the 
nucleus, separation of the nuclear membrane, and the release of DNA through a small area on 
the cell surface [125]. After releasing DNA from the nucleus, neutrophils can still engulf the 
pathogen, and their lifespan is not affected by DNA loss [126].  

As the complicated structures of fungi, including the variation in size and shape 
(yeast, hyphae, pseudohyphae, spore, etc.), special components (capsule, spherule, etc.), 
that affect the fungicidal activity of neutrophils [127], neutrophils, therefore, demonstrate the 
release of NETs in response to those of pathogens. Branzk et al. found that human neutrophils 
phagocytose the yeast form of C. albicans, whereas the hyphal form induces NETosis [26]. 
Gazendam et al. demonstrated that A. fumigatus hyphae induce NET formation, whereas the 
killing of conidia depends on the intracellular killing of human neutrophils [31]. Qui Liu et al. 
reported that NETs are the important neutrophil activity for controlling Phialophora verrucosa 
(P. verrucose) conidia [30]. These investigations support that neutrophil displays NETs in 
controlling and evading fungal infection.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV MATERIALS AND METHODS 
Blood collection and neutrophil isolation 

Blood samples from volunteers were collected by phlebotomy with their written 
informed consent. Whole blood from healthy donors (n=6) was collected in a heparinized 
tube, and the sample size was calculated by G Power Software version 3.1.9.2 (G*Power, 
Germany). The study was approved by the Institutional Review Board (IRB) of the Faculty of 
Medicine, Chulalongkorn University, Bangkok, Thailand (COA No. 572/2020, IRB No. 045/63).  
 For neutrophil isolation, fresh heparinized blood was layered on PolymorphprepTM 

(Axis-shield, Norway) with a 1:1 ratio and centrifuged at 1,800 rpm for 30 min at 25˚C. A sterile 
pipette removed the plasma and PBMC layers. The neutrophil layer was collected and washed 
with RPMI 1640 medium containing 25 mM HEPES and 2 mM L-glutamine (Gibco, USA) 
supplemented with 10% fetal bovine serum (FBS, Gibco, USA). The cells were centrifuged at 
1,800 rpm for 5 min at 25˚C. The supernatant was removed, and contaminated red blood cells 
were lysed by red cell lysis buffer with a ratio of 1:9 (cell: lysis buffer). Then, the cell 
suspension was centrifuged at 1,800 rpm for 5 minutes at 25˚C, and the pellets (neutrophils) 
were resuspended in 1 ml RPMI 1640 medium with 10% FBS. Cell purity and viability were 
determined by Wright-Giemsa and trypan blue staining (Gibco, USA), respectively [128]. 
 

 

 

 

 

 

 

 

 

 

 

 

 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 41 

P. insidiosum culture and zoospore induction 
 P. insidiosum isolates in this study were collected from different sources, as shown in 
Table 2.  
 
Table 2 The list of P. insidiosum isolates in this study. 
 

No. P. insidiosum isolates Source clade 
1 ATCC 58643 

(CBS 574.85) 
Equine I 

2 CBS 101039 Indian patient II 
3 CBS 777.85 Equine II 
4 PC10 Thai patient * II 
5 ATCC 90586 American patient III 
6 PEC1 Water reservoir ** III 

 

*     Clinical isolated from a vascular pythiosis patient in King Chulalongkorn Memorial Hospital 

**    Environmental isolated from water in Pasak Chonlasith Dam, Saraburi, Thailand 

 
All isolates were grown on sabouraud dextrose broth (SDB, Oxoid, UK) and incubated 

at 37˚C for 18-48 h [10]. The zoospore induction method was slightly modified from Mendoza 

et al. [11]. P. insidiosum isolates were inoculated on sterile grass leaves (Axonopus 

compressus), which were placed on the surface of corn meal agar (CMA, Becton-Dickinson, 

USA) and incubated at 37˚C [129]. After 2-3 days, grass leaves with hyphae were transferred 

into 15 ml of the induction medium to generate zoospores at 37ºC [130]. After 18 h, the 

induction medium containing encysted zoospores was centrifuged at 5,000 rpm for 10 min at 

10˚C. The supernatant was removed, and the pellet was washed three times with 1x 

phosphate-buffered saline (PBS, Biolegend, USA). The encysted zoospores were counted by 

hemocytometer. 
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Killing assay  
As the reference study of neutrophil killing against P. insidiosum has been 

uninvestigated, this study optimized the co-culture conditions. Opsonization and the ratio 
between neutrophils and zoospores were examined. The killing of zoospores was modified 
from Gazendam et al. [31]. Isolated neutrophils were incubated with zoospores in MOI 
(multiplicity of infection) 100:1, 10:1, 1:1, and 1:10, respectively, as shown in Table 3.  
 
Table 3 Neutrophil and zoospore ratio 
 

MOI 
(Neutrophil: zoospore)  

Neutrophil (cells) Zoospore (cells) 

100:1 2 × 105 2 × 103 

10:1 2 × 105 2 × 104 

1: 1 2 × 105 2 × 105 

1: 10 2 × 104 2 × 105 

 
After zoospore induction, the fresh encysted zoospores were opsonized with heat-

inactivated pooled healthy serum at 37˚C for 30 min and washed three times with 1xPBS. 

Zoospores were incubated with the neutrophil suspension in a 96-U bottom well cell culture 

plate (SPL Life Sciences, Korea) with the ratio mentioned in Table 3 for 2 h at 37ºC in a 5% 

CO2 incubator. Every 15 min, the suspension was mixed gently. After the incubation, cells 

were centrifuged at 10˚C, 5,000 rpm for 10 min. Then, sterile dH20 was added to the 

suspension, and neutrophils were lysed. To determine the viability of zoospores, the fungal 

colony numbers and the live/dead-stained zoospores were compared. All experiments were 

processed in triplicate independently.     

To observe the fungal colonies, the suspension after the neutrophil lysis was diluted in 

1xPBS. Next, 100 µl of the mixture was transferred to sheep blood agar (SBA, Oxoid, UK) and 

then spread using a sterile spreader. After incubation at 37˚C for 15 h, the colony count was 

performed.  
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To determine the live/dead zoospores under the microscope, cell suspension in a 96-

U bottom well cell culture plate was centrifuged at 5,000 rpm for 10 min. After that, the 

supernatant was removed, and the cell was stained with 0.4% trypan blue dye. The 

unstained/live and stained/dead zoospores were differentiated under a 40x light microscope 

(Olympus BX50, Japan). 
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Phagocytosis activity 
1. Heat-killed and pHrodo labeled zoospore preparation 

 To study phagocytosis activity, zoospore labeling with pHrodo was performed. The 
pHrodo staining protocol was modified from Shintaku T et al. [131]. All six strains of P. 
insidiosum zoospores were heated at 80˚C for 30 min with a shaker. Then, the heat-killed 
zoospores were centrifuged at 5,000 rpm for 10 min, and the pellet was resuspended with 1 
µM pHrodo-succinimidyl ester (Invitrogen, USA) in 1x PBS. The mixture was incubated with a 
shaker for 30 min at room temperature, protected from light. After staining, pHrodo-labeled 
zoospores were washed three times with 1x PBS and resuspended in RPMI 1640 medium with 
10% FBS.  
 

2. Phagocytosis assay 
To determine the ability of zoospore-induced neutrophil phagocytosis, neutrophils 

were seeded in a 96-U bottom well cell culture plate. The pHrodo-labeled zoospores were 

added and mixed gently. To perform the opsonization process, heat-inactivated healthy serum 

was added to the cell suspension (final serum concentration of 5% v/v) and incubated at 37ºC 

in a 5% CO2 incubator for 30 min in the dark. The negative control was incubated with 10 

µg/ml cytochalasin D (Sigma-Aldrich, Israel). After the incubation, the mixture was centrifuged 

at 1,800 rpm for 5 min at room temperature. The supernatant was removed, and the pellet was 

resuspended in 90 µl of flow cytometry staining (FACS) buffer supplemented with 10 µl of 

human AB serum for blocking. The suspension was incubated at 4˚C for 20 min. To stain 

neutrophil, 0.2 mg/ml APC anti-mouse/human CD11b antibody (Biolegend, USA) was added 

as a surface marker and incubated at room temperature for 15 min in the dark. APC rat IgG2b, 

k (Biolegend, USA) was chosen as an isotype control. Next, the suspension was washed with 

FACs buffer and centrifuged at 1,800 rpm for 5 min at room temperature. The supernatant was 

removed, and the pellet was resuspended in 100 µl of FACS buffer. Cells were stored on ice 

and measured by flow cytometer (FACsAria II, BD Biosciences, USA) with a maximum delay of 

2 h [132]. Flow cytometry phagocytosis data were analyzed by FlowJo (Version X 10.0.7).  
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Neutrophil extracellular trap formation 
 An immunofluorescence staining was performed to assess the ability of zoospore-

induced NETs by neutrophils. The sterile round glass coverslip was coated with poly-L-lysine 

(Sigma-Aldrich, USA) in a 24-well cell culture plate (Jet Bio-Filtration, China) overnight at 4ºC. 

After the incubation, poly-L-lysine was removed, and the glass coverslip was washed with 

1xPBS. Neutrophils were seeded on a glass coverslip and incubated for 1 h at 37ºC in a 5% 

CO2 incubator. The heat-killed zoospores were added and incubated for 2 h. 100 ng/ml 

Phorbol myristate acetate (PMA, Sigma-Aldrich, USA) was chosen as a positive control. After 

the incubation, the supernatant was aspirated for DNA quantification by Quant-iTTM 

PicoGreen® (Invitrogen, UK). The glass coverslips were fixed with 1% formaldehyde for 5 min 

and washed with 1xPBS. Next, the cells were permeabilized with 1X Tris-buffered saline (TBS) 

in 0.05% tween 20 for 1 min and washed with 1xPBS. After that, glass coverslips were blocked 

with 1xTBS with 2% bovine serum albumin (BSA, Himedia, India) for 30 min and washed with 

1xPBS. 

 Immunofluorescence revealed the NET formation, and the staining protocol was 

modified from Sae-khow et al. [133]. Rabbit anti-Neutrophil Elastase and mouse anti-

Myeloperoxidase (Abcam, UK) as primary antibodies were added (at 1:200 dilution) and 

incubated overnight at 4ºC. After washing with 1xTBS, goat anti-rabbit IgG Alexa fluor 488 and 

goat anti-mouse IgG Alexa fluor 647 (Abcam, UK) as secondary antibodies were added (at 

1:200 dilution) and incubated at room temperature for 1 h, protected from light. The cells were 

washed with 1xTBS and stained with 1 µg/ml of 4',6-Diamidino-2-phenylindole (DAPI, 

Thermo fisher scientific, USA) for 10 min at room temperature in the dark. After that, the 

coverslips were washed with 1xTBS and dried. Antifade mounting media (Invitrogen, USA) 

was dropped, and coverslips were placed on the slide before identification by fluorescence 

microscope (Olympus IX81, Japan) and confocal laser scanning microscope (ZEISS LSM800, 

Germany). 
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Quantification of NET formation (Quant-iTTM PicoGreen®) [134] 

 As mentioned in NET formation, the supernatant was prepared to determine the levels 

of dsDNA induced by zoospores. After the incubation, 0.1 M Cacl2 and 50 U/ml micrococcal 

nuclease (Sigma-Aldrich, USA) were added to the supernatant and incubated at 37ºC for 10 

min. After that, the reaction was stopped by 0.5 M ethylenediaminetetraacetic acid (EDTA) 

and centrifuged at 1,800 rpm for 5 min to remove cell debris. The supernatant was collected 

and stored at -80 ºC. 

 Quant-iTTM PicoGreen® kits (Invitrogen, UK) were used for cell-free DNA 

determination. The sample and PicoGreen® reagent were added in a 1:1 ratio to a 96-flat 

bottom well plate (Corning, USA). The suspension was mixed and incubated at room 

temperature for 5 min in the dark. The ten-fold dilution of the DNA standard (1 µg/ml) was 

prepared for a standard curve [135]. Finally, the DNA level in the mixture was measured at an 

excitation wavelength of 480 nm and emission wavelength of 530 nm by spectrofluorometer 

(Varioskan Flash, Thermo-fisher scientific, Finland). 

 

Statistical analysis  
 Statistical analysis was performed with GraphPad Prism version 5.03 (GraphPad 
Software, San Diego, CA). Data were evaluated for statistical significance by one-way analysis 
of variance (ANOVA) followed by Bonferroni analysis to compare the groups. The results are 
presented as the mean ± standard error of the mean (SEM), and differences with a p-value < 
0.001 were considered statistically significant.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V RESULTS 
Neutrophil killing assay  

1. Killing assay optimization 

As the reference protocol for neutrophil killing against P. insidiosum is unpublished, 

this study conducted the optimization of the neutrophil killing assay. The type strain of P. 

insidiosum CBS 777.85 was randomly selected for the optimization protocol.  

To compare neutrophil killing activity between opsonization and un-opsonization, 

zoospores and neutrophil isolated from two healthy donors were incubated at 37ºC in a 5% 

CO2 incubator for 2 h. The ratio between neutrophils and zoospores is described in Table 2. 

Heat-inactivated pooled healthy serum was added in the opsonized condition during 

incubation, whereas RPMI 1640 culture medium was added in the unopsonized condition. 

Colony count was used to determining the zoospores’ survival rate after co-incubation with 

neutrophils. Neutrophils from healthy donors showed a significantly higher killing capacity 

against opsonized zoospores (73.9 ± 5.0%) than unopsonized (89.1 ± 3.6%) (p < 0.001, n = 

2). No significant differences in the neutrophil killing activity against opsonized zoospores 

between MOI 1:1 (70.4 ± 5.9%) and 1:10 (77.5 ± 5.0%) were found (p > 0.05) (Figure 20). 
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Figure 20 Comparison of neutrophil killing capacity between opsonization and un-

opsonization 
Serum-opsonized (white bar) and un-opsonized (black bar) P. insidiosum zoospores 

CBS 777.85 were incubated with neutrophils in MOI (neutrophil: zoospore) 1:1 and 1:10. The 

survival rate of zoospores was assessed with colony count. n = 2. Mean ± SEM. *** p < 0.001 

and ** p < 0.01 compared with the no neutrophil; ### p < 0.001 comparison between 

opsonization and un-opsonization.  

 
Figure 21 Neutrophils and zoospores optimal ratio 

Opsonized-P. insidiosum zoospores CBS 777.85 were incubated with neutrophils in 

MOI (neutrophil: zoospore) 100:1, 10:1, 1:1, and 1:10, respectively. The survival rate of 

zoospores was assessed with colony count compared with the incubation without neutrophils. 

n = 2. Mean ± SEM. ***, p < 0.001 compared with the no neutrophils; ns = no significant 

between MOI 1:1 and 1:10. 
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Next, we investigated the optimal ratio between neutrophils and zoospores for 

neutrophil-killing assay. As neutrophils significantly displayed the role in killing capacity 

against opsonized-P. insidiosum zoospores, CBS 777.85 zoospores were opsonized with 

serum and co-incubated with neutrophils isolated from two healthy donors with the ratio as 

shown in Table 3. Colony count evaluated the antimicrobial activity of neutrophils after 

incubation for 2 h. Colony count on BA showed a significantly decreased percentage of P. 

insidiosum colonies observed in MOI 1:1 (78.0 ± 6.5%) and 1:10 (77.5 ± 5.3%), respectively, 

compared with the incubation of zoospores without neutrophils (p < 0.001, n = 2). Moreover, 

no significant differences in neutrophil killing capacity were found between MOI 1:1 and 1:10 

(p > 0.05) (Figure 21). 

 
2. Neutrophil killing against P. insidiosum zoospores 

 To evaluate neutrophil killing capacity against P. insidiosum zoospores, neutrophils 

from six healthy donors were incubated with fresh zoospores from different sources, as 

mentioned in Table 2. The preliminary results indicated that opsonization with serum 

enhanced the killing capacity of neutrophils when incubated with zoospores in both MOI 1:1 

and 1:10. Therefore, pooled serum from healthy donors was added to the experiments. Colony 

count determined the neutrophil killing ability after incubation with zoospores compared with 

live/dead cell staining. 

 To observe the P. insidiosum colonies, suspension of zoospores after incubation with 

neutrophils was spread on BA (Figure 30, Appendix B). Neutrophils significantly decreased 

the percentage of colony count when co-incubated with all six strains of P. insidiosum 

zoospores compared to the incubation of zoospores without neutrophils. Treatment of 

neutrophils with zoospore ATCC 58643, CBS 101039, CBS 777.85, PC10, and ATCC 90586 

displayed a higher significantly decreased the survival rate (p < 0.001, n = 6) than treatment 

of neutrophils with zoospore PEC1 (p < 0.01, p < 0.05, n = 6), which was observed in both 

MOI 1:1 and 1:10 (Figure 22). The data of neutrophils incubated with zoospores observed by 

colony count are summarized in Table 4.  

 To determine P. insidiosum viability under a microscope, zoospores were stained with 

trypan blue dye to indicate live/dead cells. Neutrophils were lysed with sterile dH20, and 
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zoospores were stained with 0.4% trypan blue. Then, unstained zoospores were counted to 

indicate the viable cells. All six strains of P. insidiosum zoospores showed a significantly 

decreased viability rate when co-incubated with neutrophils, compared with total zoospore 

count per well (p < 0.001, n = 6) (Figure 23). The data of zoospore viability observed by 

live/dead cell staining are summarized in Table 5. 
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Figure 22 All six strains of P. insidiosum zoospores were killed by neutrophils, as observed 

by colony count. 
Co-culture 2.0 × 105 serum-opsonized zoospores incubated with 2.0 × 105 and 2.0 × 

104 neutrophils in MOI (neutrophil: zoospore) 1:1 (A) and 1:10 (B), respectively. Zoospore 

viability was assessed by colony count, compared with the incubation without neutrophils. n = 

6. Mean ± SEM. *** p < 0.001, ** p < 0.01, and * p < 0.05 compared with no neutrophils. 
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Figure 23 All six strains of P. insidiosum zoospores were killed by neutrophils, as observed 

by live/dead cell staining. 
Treatment 2.0 × 105 serum-opsonized zoospores incubated with 2.0 × 105 and 2.0 × 

104 neutrophils in MOI (neutrophil: zoospore) 1:1 (A) and 1:10 (B), respectively. After 

neutrophil lysis, zoospores were stained with trypan blue, and un-stained/lived cells were 

observed under a light microscope, 400x magnification, calculated relative to total cell count. 

n = 6. Mean ± SEM. *** p < 0.001 compared with total cells. 
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Table 4 The percentages of colony count, observed in both MOI 1:1 and 1:10 
 

No. P. insidiosum isolates 
Mean ± SEM (%) 

MOI 1:1 MOI 1:10 

1 ATCC 58643 (CBS 574.85) 70.7 ± 6.7 63.1 ± 6.3 

2 CBS 101039 80.4 ± 6.4 67.2 ± 7.1 

3 CBS 777.85 78.2 ± 13.1 74.4 ± 12.6 

4 PC10 80.6 ± 9.7 78.9 ± 13.0 

5 ATCC 90586 72.4 ± 16.3 71.6 ± 16.5 

6 PEC1 85.8 ± 11.7 81.9 ± 10.8 

 
Table 5 Zoospore viability, observed in both MOI 1:1 and 1:10. 
 

No. P. insidiosum isolates 
Mean ± SEM (%) 

MOI 1:1 MOI 1:10 

1 ATCC 58643 (CBS 574.85) 74.0 ± 6.1 68.4 ± 13.3 

2 CBS 101039 80.3 ± 7.8 71.9 ± 10.4 

3 CBS 777.85 77.1 ± 7.7 77.9 ± 10.1 

4 PC10 86.1 ± 5.2 80.4 ± 9.2 

5 ATCC 90586 76.6 ± 10.2 73.4 ± 10.2 

6 PEC1 80.4 ± 9.3 74.3 ± 11.2 
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Neutrophil phagocytosis 
 The percentages of neutrophil phagocytosis of P. insidiosum zoospores were 

evaluated by flow cytometry after incubation for 30 min. As described in the methods, 

neutrophils were labeled with the anti-CD11b antibody observed in the allophycocyanin (APC) 

channel at 660 nm wavelength. Single cells were gated (Figure 24A), the neutrophil population 

was determined by forward scatter (FSC-A), and cell size and cell complexity were 

determined by the side scatter (SSC-A), respectively (Figure 24B). All six strains of heat-killed 

zoospores were stained with 1 µM pHrodoTM red detected in the phycoerythrin (PE) channel at 

575 nm wavelength. Based on the principle, pHrodoTM dye is a non-fluorescent dye outside 

the cell but fluorescence brightly when pH is dropped from neutral to acidic. Zoospore-

phagocytosed neutrophils excited the red dye of pHrodoTM due to an acidified environment 

inside a neutrophil [136].  

The main parameter of interest in the phagocytosis assay was the percentage of PE-

positive cells representing the neutrophil population in co-culture conditions. CD11b positive 

cells were first gated to indicate only neutrophils, and then PE positive cells were determined 

in neutrophil gating, which was demonstrated by PE fluorescence histogram (Figure 24C). 

Treatment of the co-culture with cytochalasin D, a negative control, showed the absence of PE 

fluorescence signals (Figure 24D).  

Zoospores induced from type strains, ATCC 58643 and CBS 777.85 of P. insidiosum 

were significantly phagocytosed by neutrophils, compared with negative control (p < 0.01, p < 

0.05, n = 6) (Figure 25). In addition, all six strains of zoospore treatment showed significantly 

decreased phagocytosis activity when compared with C. albicans as a positive control (p < 

0.001, n = 6) (Figure 36, Appendix B). The data on neutrophil phagocytosis are summarized in 

Table 6.  
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Figure 24 Representative flow cytometry results of neutrophil phagocytosis of P. insidiosum 

zoospores after 30 min incubation. 
Gating neutrophils in single cells (A) and neutrophil populations (B). Neutrophil-

phagocytosed zoospores were detected by gating neutrophils-labeled anti-CD11b (APC) 

antibody and selection of PE-positive cells, which demonstrated the peak of PE signals by the 

histogram (C). PE signals were absent when treated with cytochalasin D as a negative control 

(D).     
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Figure 25 Phagocytosis activity of neutrophils incubated with six strains of P. insidiosum 

zoospores. 
Co-culture 2.0 × 105 serum-opsonized zoospores incubated with 2.0 × 105 neutrophils. 

After 30 min incubation, flow cytometry assessed phagocytosis activity compared with 

cytochalasin D treatment. n = 6. Mean ± SEM. ** p < 0.01, * p < 0.05 compared with 

cytochalasin D. 

 
Table 6 Neutrophil phagocytosis of P. insidiosum zoospores, measured by flow cytometry 
 

No. P. insidiosum isolates Mean ± SEM (%) 

1 Cytochalasin D (Negative control) 0.2 ± 0.1 

2 ATCC 58643 (CBS 574.85) 3.6 ± 3.0 

3 CBS 101039 2.0 ± 1.1 

4 CBS 777.85 3.2 ± 2.3 

5 PC10 1.7 ± 1.4 

6 ATCC 90586 0.8 ± 0.5 

7 PEC1 1.7 ± 1.8 
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NET formation 
1. Qualification of NET formation 

 After incubating human neutrophils and P. insidiosum zoospores for 2 h, cells were 

stained and preserved on a slide. The preliminary results showed that neutrophils formed 

NETs after zoospores CBS 777.85 and CBS 101039 treatments, which were observed under a 

confocal microscope (630x original magnification). PMA treatment as a positive control 

resulted in more robust NET-formed neutrophils than treatment with zoospores, which was 

observed as the DNA web-like structure (blue) with elastase (green) and MPO (red) granules. 

Whereas unstimulated neutrophils produced a minimal NET structure (Figure 26).   

 The percentage of NET-released neutrophils was observed after the incubation of P. 

insidiosum zoospores. NETs formed by neutrophils were stained with DAPI and counted per 

100 cells using a fluorescence microscope (400x magnification). All six strains of zoospore 

treatment demonstrated a significantly increased percentage of NET formation compared with 

negative control (p < 0.001 and p < 0.01, n = 6), which was observed in both MOI 1:1 and 

1:10 (Figure 27). The data on P. insidiosum zoospore-induced NET formation are summarized 

in Table 7.  
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Figure 26 Representative NET formation pictures visualized by immunofluorescence confocal 
microscope. 

Neutrophils isolated from healthy donors (2.0 × 105 cells) were stimulated with 100 

ng/ml PMA as a positive control, and zoospore CBS 777.85 and CBS 101039 (2.0 × 105 cells), 

compared with unstimulated neutrophils as a negative control. The released nucleus from 

neutrophils was detected by DAPI (blue) and released enzymes of elastase (green) and 

myeloperoxidase (MPO; red), which was observed under a confocal laser scanning 

microscope, 630x original magnification. 
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Figure 27 P. insidiosum zoospores induced NET formation by human neutrophils 

Treatment 2.0 × 105 heat-killed zoospores incubated with 2.0 × 105 and 2.0 × 104 

neutrophils in MOI 1:1 (A) and 1:10 (B), respectively. The number of NETs was counted per 

100 cells using a fluorescence microscope. n = 6. Mean ± SEM. *** p < 0.001 and ** p < 0.01 

compared with negative control. 
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2. Quantification of dsDNA levels 

After zoospore-induced NETs incubation for 2 h, DNA components released from the 

nucleus of neutrophils were digested by micrococcal nuclease to cleave the dsDNA contained 

in the supernatant. Then, the culture medium was aspirated to determine cell-free DNA by 

Quant-iTTM PicoGreen® assay. The results showed significantly increased levels of dsDNA for 

all six strains of zoospores compared with unstimulated neutrophils (p < 0.001 and p < 0.01, n 

= 6), which was observed in both MOI 1:1 and 1:10 (Figure 28). As P. insidiosum is a 

eukaryote, the determination of cell-free DNA released from zoospores was performed. The 

incubation of heat-killed zoospores without neutrophils showed a minimal concentration of 

cell-free DNA, which were a range of 0 – 10 ng/ml (data not shown). The data on cell-free DNA 

levels after P. insidiosum zoospore treatment are summarized in Table 8.  
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Figure 28 P. insidiosum zoospores induced NETs released in culture medium. 
Treatment 2.0 × 105 heat-killed zoospores incubated with 2.0 × 105 and 2.0 × 104 

neutrophils in MOI 1:1 (A) and 1:10 (B), respectively. The level of cell-free DNA was quantified 

by Quant-iTTM PicoGreen® assay. n = 6. Mean ± SEM. *** p < 0.001 and ** p < 0.01 compared 

with negative control. 
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Table 7 NET formation detected under a fluorescence microscope 
 

No. P. insidiosum isolates 
Mean ± SEM (%) 

MOI 1:1 MOI 1:10 

1 ATCC 58643 (CBS 574.85) 33 ± 9.3 60 ± 10.1 

2 CBS 101039 29 ± 8.9 51 ± 6.9 

3 CBS 777.85 48 ± 9.3 67 ± 9.2 

4 PC10 39 ± 6.3 45 ± 6.4 

5 ATCC 90586 41 ± 5.6 53 ± 7.7 

6 PEC1 39 ± 7.5 51 ± 11.0 

Negative control (neutrophils) 23 ± 5.9 28 ± 5.7 

Positive control (PMA) 90 ± 5.2 90 ± 5.8 

 
Table 8 Cell-free DNA in culture medium detected by Quant-iTTM PicoGreen® 
 

No. P. insidiosum isolates 
Mean ± SEM (ng/ml) 

MOI 1:1 MOI 1:10 

1 ATCC 58643 (CBS 574.85) 72.70 ± 8.4 92.11 ± 10.2 

2 CBS 101039 61.53 ± 11.0 74.78 ± 7.4 

3 CBS 777.85 100.80 ± 12.2 115.80 ± 9.0 

4 PC10 91.65 ± 4.9 97.26 ± 5.0 

5 ATCC 90586 98.73 ± 7.1 110.60 ± 5.7 

6 PEC1 93.68 ± 5.4 99.77 ± 8.1 

Negative control (neutrophils) 21.12 ± 5.2 27.69 ± 4.8 

Positive control (PMA) 201.60 ± 71.8 185.10 ± 26.9 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI DISCUSSION 

 Pythiosis is a life-threatening fungal infection caused by P. insidiosum, an oomycetes 
fungus-like pathogen. The challenging diagnosis and treatment have been associated with 
poor prognosis and loss of host organs with a high mortality rate [14]. Evidence has shown 
that neutrophils are one of the innate immune cells that display essential roles in response to 
several fungi [19, 22]. The reference studies of neutrophils in response to P. insidiosum are 
scarce. This study demonstrates the in vitro neutrophil killing activities against P. insidiosum 
with killing ability, phagocytosis capacity, and NET formation.  

As the protocol for neutrophil killing against P. insidiosum has been uninvestigated, 

this study optimized the killing capacity when incubating neutrophils and zoospores (infective 

stage). The type strain, CBS 777.85 P. insidiosum, was randomly selected for the optimization 

protocol. First, we investigated the role of serum components (opsonin) in enhancing the 

killing activity of neutrophils, which is called opsonization. Heat-inactivated pooled serum from 

healthy donors was added to the wells during incubation. Serum-opsonization demonstrated a 

higher killing capacity of neutrophils than the incubation without serum (Figure 20). This 

finding indicates that opsonization enhances the killing of P. insidiosum by neutrophils. 

Opsonization is the process of recognizing and targeting invading pathogens, which facilitates 

phagocytosis [109, 137]. IgG, complement component, and other serum factors are the 

opsonin that can bind the pathogens and activate phagocytes, including neutrophils, 

monocytes, and macrophages [138]. However, complements did not appear during the 

incubation because serum was heated at 56ºC for 30 min for complement inactivation. Thus, 

natural IgG contained in serum displays as an opsonin in response to P. insidiosum zoospores 

and facilitates neutrophil killing activities. 

Next, we investigated neutrophils and zoospores ratio (MOI) for the killing activity of 

neutrophils. Neutrophils showed an optimal killing capacity when incubated with zoospores in 

a ratio (neutrophils: zoospores) of 1:1 and 1:10, observed by colony count. No significant 

difference in the killing capacity between MOI 1:1 and 1:10 was found (Figure 21). Therefore, 

both neutrophils and zoospores ratios of 1:1 and 1:10 were used in the neutrophil-killing 

assay. 
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After optimization, the capacity of neutrophils for P. insidiosum elimination was first 

investigated. The survival rate of zoospores indicated neutrophil killing capacity after co-

incubation, evaluated by colony count on BA and live/dead zoospore staining. Trypan blue 

dye was used to distinguish cell viability under a light microscope. Live cells cannot take up 

the dye due to the integral cell membrane resulting in unstained cells. The dye can be 

absorbed in dead cells, displaying blue cells [139]. This assay counted the unstained or 

viable cells to compare with P. insidiosum colonies grown on BA after challenge with 

neutrophils. All six strains of zoospores demonstrated colony numbers and viable cells of 

more than 60% in both MOI 1:1 and 1:10 (Figures 22 and 23). These results indicated that 

neutrophils from healthy donors significantly eliminated the zoospores by around 40%.  

A previous study reported that common fungal pathogens, such as C. albicans, were 

killed by human neutrophils [104, 140]. therefore, this study investigated the viability of C. 

albicans and found that neutrophils significantly inhibited yeast by more than 40% when 

compared with the condition without neutrophils (Figures 31 and 32, Appendix B). These 

results indicated that the viability of C. albicans was much lower than P. insidiosum after 

incubation with neutrophils, which supported that P. insidiosum zoospores were hardly 

eliminated by neutrophils.    

One of the important mechanisms of neutrophils in response to invading pathogens is 

phagocytosis. This study further investigated the phagocytosis of neutrophils in P. insidiosum, 

determined by the percentage of pHrodo-positive cells.  Based on the principle, pHrodo 

fluorescent dye can express brightness in an acidified environment inside phagocytic cells 

due to the accumulation of phagosomal enzymes and acidic granules [25, 131, 136].  When a 

neutrophil engulfs a zoospore, the intensity of pHrodo labeled zoospores is increased, 

detected in the PE channel by a flow cytometer. Zoospore-phagocytosed neutrophils were 

gated in the neutrophil population that excited the PE positive signals, as demonstrated in the 

PE fluorescence histogram. Cytochalasin D was chosen as a negative control to inhibit 

neutrophil phagocytosis. Cytochalasin D is a chemical extract that can bind the plus end of 

microfilament, which inhibits actin polymerization and blocks cell movement [110]. Incubation 
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of neutrophils and zoospores treated with cytochalasin D resulted in few PE-positive signals 

(Figure 24). 

Only two strains of P. insidiosum showed significantly increased neutrophil 

phagocytosis: the heat-killed ATCC 58643 and CBS 777.85 P. insidiosum zoospores. In the 

other strains, no significant difference was observed compared with the negative control. 

These results might indicate that phagocytosis is probably not the primary killing mechanism 

of P. insidiosum, and the phagocytosis capacity of neutrophils might depend on the microbial 

size. These hypotheses were supported by the determination of neutrophil phagocytosis in C. 

albicans. The results showed that heated-killed yeast-formed C. albicans were engulfed by 

neutrophils as the percentage of phagocytosis was significantly increased compared with the 

negative control (Figure 36, Appendix B). For fungal phagocytosis, the cell size and shape of 

engulfed fungi affect the phagocytosis activity of neutrophils [127]. Human neutrophils are 10-

15 µm in diameter, while P. insidiosum zoospores are 8-12 µm in diameter, larger than the 

yeast form of C. albicans (approximately 2-3 µm in diameter) [141]. Branzk N et al. 

demonstrated that neutrophils could induce phagocytosis of the yeast-locked strain of C. 

albicans, whereas hyphal formed C. albicans resulted in NET formation [26]. Moreover, 

Sulvatori O et al. reported hyphal form of C. albicans (length of > 10 µm) reduced the 

phagocytosis index of human neutrophils [142]. These data support that neutrophil 

phagocytosis capacity depends on the microbial size. Moreover, neutrophils might release 

NETs to entrap larger pathogens. 

As mentioned above, large-size pathogens affect the phagocytosis activity of 

neutrophils [127]. Thus, neutrophils may display another important killing mechanism, 

particularly NETs, in pathogen elimination [22, 122]. This study also evaluated the ability of P. 

insidiosum zoospores to induce NETs. First, zoospores from type strains, CBS 101039 and 

CBS 777.85 P. insidiosum, were randomly selected to evaluate the capacity of zoospores 

inducing NET formation by immunofluorescence staining. Two strains of selected zoospores 

showed the activation of neutrophils releasing dsDNA, elastase, and myeloperoxidase (Figure 

26). In addition, our qualification and quantification analysis of NET demonstrated that all 

zoospore isolates significantly induced NET released by neutrophils (Figures 27 and 28), 
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whereas a negative control showed minimal NETs. These results suggest that neutrophil-

activated NETs may display a key mechanism during P. insidiosum infection. Many studies 

have demonstrated that neutrophils release NETs in response to fungi. Qui Liu et al. 

demonstrated that P. verrucosa conidia triggered NET and elastase releasing neutrophils [30]. 

Gazendam et al. reported A. fumigatus hyphae induced NET but did not have a role in the 

killing activity, whereas both NADPH oxidase and MPO were required for Aspergillus 

elimination [31]. These data support our result that P. insidiosum can induce the production of 

NET, which is one of the important killing mechanisms of neutrophils. 

Neutrophils play not only an important role in the control of infectious diseases but 

also an essential role in the inflammatory response [19, 21, 22, 25]. Animal pythiosis 

demonstrates the necrotic mass with a yellowish exudate appearance, which is the unique 

characteristic of the cutaneous and subcutaneous lesion [7, 9, 78, 80]. Vascular pythiosis 

manifests arterial occlusion that composed of fungal hyphae, thrombus, and inflammatory 

cells [68, 69]. These characteristics can be assumed that granulocytes, especially neutrophils, 

may recruit and demonstrate inflammation during P. insidiosum infection. The releasing of 

several intracellular mediators from NETosis, such as DNA components, histone, proteins and 

enzymes, toxic substances, etc. displays the important activator in the inflammatory response 

[111, 121-123]. Nitric oxide (NO) produced from nitric oxide synthase enhanced cell death 

during inflammation [143]. Histones released from NETs display the cytotoxic component on 

the lung epithelial cells [144]. Moreover, chronic infection of the lung reveals fibrotic areas, 

neutrophil proteins, and DNA, which are associated with NET formation [145]. These data 

suggest that the accumulation of NET mediators can promote inflammatory response in 

pythiosis. 

This is the first study of in vitro neutrophil killing activities in response to P. insidiosum. 

Neutrophils from healthy donors showed the release of NETs to entrap zoospores, which were 

the infective stage induced by various strains of P. insidiosum. Nevertheless, these findings 

could not represent the exact pathogenesis of neutrophils during infection because 

neutrophils isolated from healthy donors were used in this study. Further study of neutrophils 
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derived from pythiosis patients is needed to explain the pathogenesis during P. insidiosum 

infection.   

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VII SUMMARY 
 This study investigated the in vitro killing activities of neutrophils in response to P. 

insidiosum. We demonstrated that zoospores, the infective stage, induced the formation of 

neutrophil extracellular traps (NETs), observed in both qualification (the percentage of NETs) 

and quantification (the levels of dsDNA) of the NET assay. After co-incubation with live 

zoospores, neutrophils from healthy donors showed a zoospore killing capacity of around 

40%, observed by the survival rate of zoospores (colony count and lived-cell staining). 

Moreover, we found that only two strains of six P. insidiosum zoospores could induce 

phagocytosis by neutrophils. Nevertheless, this study first observes neutrophil killing against 

P. insidiosum. Neutrophils isolated from pythiosis patients are needed in future studies. 
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APPENDIX A 
BUFFERS AND REAGENTS 

Reagents for neutrophil isolation 

1. RPMI 1640 medium with 10% Fetal bovine serum (FBS)   

 - RPMI 1640 medium (Gibco, USA) 5. 000 ml 

 - Heat-inactivated FBS (Gibco, USA)  45. 000 ml 

2. Red cell lysis buffer    

 - NH4Cl2 8. 290 g 

 - KHCO3 1. 000 g 

 - EDTA  0. 037 g 

 - Distilled water (Dw)  1,000. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    
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Reagents for zoospore induction 

1. Induction medium solution A    

 - K2HPO4 87. 090 g 

 - KH2PO4 48. 050 g 

 - (NH4)2HPO4  46. 040 g 

 - Dw 500. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    

2. Induction medium solution B    

 - MgCl2•6H2O 25. 420 g 

 - CaCl2  118. 380 g 

 - Dw 500. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    

3. Working solution of Induction medium    

 - Solution A 500. 000 µl 

 - Solution B 100. 000 µl 

 - Sterile Dw 1,000. 000 ml 

4. 1x Phosphate buffered saline (PBS)    

 - 10x PBS (Biolegend, USA) 100. 000 ml 

 - Dw 900. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    
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Reagents for flow cytometry  

1. FACs buffer (2% FBS in 1x PBS)    

 - 1x PBS 49. 000 ml 

 - Heat-inactivated FBS 1. 000 ml 

 
Reagents for Quantification of NET formation 

1. 0.1 M CaCl2    

 - CaCl2•2H2O 0. 735 g 

 - Sterile Dw 50. 000 ml 

2. 0.5 M Ethylenediaminetetraacetic acid (EDTA)    

 - EDTA 46. 750 g 

 - Sterile Dw 250. 000 ml 

3. 50 U/ml micrococcal nuclease (CAS: 9013-53-0, Sigma-Aldrich, USA)  

 - 200 U/ml micrococcal nuclease (stock solution) 250. 000 µl 

 - 1x PBS 750. 000 µl 
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Reagents for immunofluorescence staining 

1. 1% Formaldehyde    

 - 10% formaldehyde 10. 000 ml 

 - 1x PBS 90. 000 ml 

2. 1X Tris-buffered saline (TBS)    

 - Tris base (Thermo Fisher scientific, USA) 6. 100 g 

 - NaCl  8. 800 g 

 - Sterile Dw 1,000. 000 ml 

3. 1X TBS with 0.05% tween 20    

 - 1x TBS 50. 000 ml 

 - Tween 20 25. 000 µl 

4. 1xTBS with 2% bovine serum albumin (BSA)    

 - 1x TBS 50. 000 ml 

 - BSA (Himedia, India) 1. 000 g 
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Culture medium preparation 

1. Sabouraud dextrose broth (SDB)    

 - SDB powder (Oxoid, UK) 30. 000 g 

 - Dw 1,000. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    

2. Corn meal agar (CMA)    

 - CMA powder (Becton-Dickinson, USA)  17. 000 g 

 - Dw 1,000. 000 ml 

 Sterilization by autoclave at 121˚C for 15 min    
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