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Chapter 1

Introduction

Throughout, let N be the set of all nonnegative integers, Z be the set of all integers
and @Q be the set of all rationals.

1.1 The field of p-adic numbers Q,

The absolute value | - | is a well-known norm on the field Q of rational numbers.
Is there other norms on Q7 The answer to this question is yes. Let p be a prime
number. The p-adic valuation v : Z \ {0} — N is defined by for each nonzero
integer x, v(x) is the largest n such that p™ divides . We define the p-adic norm

|- |, on Q as follows: for each = € Q,

0, if 2 =0

pU@o®) %

|z, =
for some a,b € Z \ {0}

The field of p-adic numbers @, is the completion of Q with respect to the p-adic

norm | - .

1.2 First-order Logic

We will introduce some definitions in first-order logic.

Definition 1.1. A language £ is a disjoint union of
1. aset R of relation symbols; each R € R has associated arity arity (R) € N;
2. a set C of constant symbols; each ¢ € C has associated arity 0;

3. a set F of function symbols; each f € F has associated arity arity (f) €
N\ {0}.

Definition 1.2. An L-structure is a quadruple MM = (M, R™,C™, F™) consisting
of:

1. a nonempty set M, called the underlying set;
2. R™={R™: R € R} where each R™ C MR,

3. CM={c™:c € C} where each ™ € M;



4.

FM = {fM. fc F} where each f™: M) — M.

Definition 1.3. Let £ be a language and 9t be an L-structure. Define the
expansion of £, Ly, and the canonical expansion, My, of M to Ly, by Ly =
LUM, and o™ = q for every a € M.

Definition 1.4. Let 9 be an L-structure. Without loss of generality, we may

assume that 9T = 9M,,. Let o be an Lj;-sentence. We recursively define o to be

true in 9 (denoted by 9 F o) by requiring

1.

2.

MET,

for R € R and variable-free Ly/-terms t1, ..., ¢ ity (r), M E Rt1...t iy (r) if
and only if (£, ..., tgfmy (r)) € R™;

for variable-free Ly/-terms t1,ty, MM Et; =ty if and only if 7% = 37
if 0 = =7 for some L);-sentence 7, then 9 F o if and only if M 7;

if 0 = 1 A1 for some L,;-sentences 71,72, then M F o if and only if

ME7 and ME 7

if 0 = 1 V7 for some Ly-sentences 71,79, then 9 E ¢ if and only if
MET or ME 1

if 0 = Yu;p(v;) for some variable v; and £y-formula ¢(v;), then M F o if
and only if 9 F ¢(a) for every a € M;

if 0 = Jv;p(v;) for some variable v; and Ly,-formula ¢(v;), then M E o if
and only if M E ¢(a) for some a € M.

Definition 1.5. Let 99T and 91 be L-structures. We say that 91 is a substructure
of M, denoted by M C N, if

1.

2.

3.

4.

M C N;
R™ = RN M > (R) for every R € R;
m

A = c™ for every c € C;

for every f € F, f™ is the restriction of f™ to M 2ity(R)

Definition 1.6. Suppose 91 C 91. We say that 91 is an elementary substruc-
ture of N, (denoted by M < N) if for all n € N, L-formula p(z1, ..., z,), and

ay, ...

Jan € M, M E p(ay, ...,a,) if and only if NE p(ay, ..., a,).

Now, we let 9t be an L-structure and A be a subset of an underlying set M
of <M.



Definition 1.7. Let X C M"™. We say that X is A-definable in 91 if there exist
an L-formula o(z1,...,%n, Y1, ..., yx) (where k € N) and ay,...,ar € A such that
X ={(by, ... bp) € M" : M E (b1, ..., by, a1, ..., ax) }

Let f: X — M™ be a function. We say that f is A-definable in 901 if the
group of f, {(z,y) € M"™™ : f(x) =y} is A-definable.

Definition 1.8. Let £ be the language obtained by adding each element of A to
L as a constant symbol. Note that 91 is an L 4-structure by trivial interpretation
a™ = a for each a € A. Let Tha(IM) = {0 : 0 is an La-sentence and M F o}.
We say that p is an n-type over A if p is the set of all £4-formulas without free

occurrences of variables besides x4, ..., x,.

Definition 1.9. Let p be an n-type over A. We say that a € M" realizes p if
M E ¢(a) for all ¢ € p.

We let S™(A) be the set of all complete and consistent n-types over A.

Definition 1.10. We say that 91 is “N;-saturated” if for any countable Z C M,
p(z) € S™(Z), then there is @ € M™ such that a realized p(z).

Theorem 1.11. Let N be an L-structure and S C N. Then there is an L-
structure M such that M XN, S C M, and |M| < |L]|+ |S|+ No.

Definition 1.12. Let (G,-) be a group in 9. We say that (G,-) is a group
definable in 91 if G is a definable subset of M™, for some n, and - is also definable.

Definition 1.13. A “topological group” G is a group endowed with a topology

such that the multiplication and the inversion are continuous.

Anand Pillay studies properties of definable groups in the field of p-adic num-
bers Q, and o-minimal structures. In [5], he proved that if (G,-) is a group
definable in the field of p—adic numbers, then there is a topology 7 on G such
that - : G x G — G is T—continuous and there exists n > 0 such that for all
g € G, there is an open set U in G such that g € U and U is isomorphic to Q.

A similar result in o-minimal context was shown in [4].

1.3 P-minimality

Let £ ={+,—,-,0,1,Div, (P,)nen} be alanguage where 0, 1 are constant symbols,
+, - are binary function symbols, — is a unary function symbol, Div is a binary
relation symbol and each P, is a unary relation symbol. Let p be a prime number.
Observe that the expansion of the field of p-adic numbers by Div = {(a,b) € Qﬁ :
v(a) <wv(b)} and P, = {z € Q, : Jy,y" = z}(where n € N) is an L-structure.



In [1], Deirdre Haskell and Dugald Macpherson generalize the concept of p-adic
fields into P-minimal structures.

Throughout the rest of this section, let £’ be a language extending £ and 9
be an L'-structure such that (M,v) is a valued-field, Div = {(a,b) € M? : v(a) <
v(b)} and PP = {x € M : Jy,y" = z}.

Definition 1.14. We say that 9t is P-minimal if for every 9V elementarily
equivalent to 9, every definable subset of 9 is defined by quantifier-free L£-

formula.

Let M be a P-minimal structure. Then the underlying set M can be equipped
with the topology generated by {By@)(c) : a,b € M} where Byq)(c) = {x € M :
M E Div(a,z—c)} The following lemma was proved by Deidre Haskell and Dugald
Macpherson in [1].

Lemma 1.15. Let I be a P-minimal structures. Then
1. FEvery infinite definable subset of M has non-empty interior in M .

2. Every non-empty definable subset of the value group vM which is bounded

above has a greatest element.

Definition 1.16. Let (iy,...,i,) be a sequence of zeroes and ones of length n. Let
Py = P, \{0}. An (i1, ...,4,)-cell is a definable subset of M" defined by induction

on n as follows:

1. A (0)-cell is a point of M and a (1)-cell is of the form {x € M : 7y <
v(x—c) <y ANz —c) e Pi}, where A\, Ay € v(M)U{—00,00}, ¢, A € M
and k € N.

2. Suppose that (iy, ..., i,)-cells are already defined. Then an (i1, ..., i,, 0)-cells
is the graph of a definable continuous function from an (iy, ..., i,)-cell to M,
and an (i1, ..., i, 1)-cell is a set of the form {(y,z) € CxM : v(a1(y))Dyv(x—
c(y))Oav(az(y)) ANz —c(y)) € P}, where C is an (i, ..., i,)-cell, ay,as,c
are definable continuous functions on C', A\ is as in 1., and [J; and [y are

either <, <, or no condition.

Definition 1.17. Let 9 be an L-structure. We say that 991 admits “definable
Skolem function” if for every L-formula ¢(x,y) such that for every b € M* M E
Jx, ¢(z,b), there is a definable function f : M* — M' such that M E o(f(b),d),
for every b € M*.

The following theorem was proved by Marie-Helene Mourgues in [3].



Theorem 1.18. Let MM be a P-minimal structure with definable Skolem function.
Then for each n € N, the following hold:

1. If A is a definable subset of M™, then A can be partitioned into finitely
many cells of M™.

2. Given a definable function f : A — M, where A is a definable subset of
M™ there exists a finite partition of A into cells such that the restriction of

f to each cell is continuous.

Definition 1.19. We say that a € acl(A) if and only if there exists an £-formula
o(z,y) and a € A" such that M E p(a,a) and {c € M : ME (¢,a)} is finite.

Definition 1.20. We say that 91 has “Exchange Property” if for A C M, if
a € acl(AU{b}) and a ¢ acl(A), then b € acl(AU {a}).

1.4 OQOutline

In this project, we study properties of definable groups in P-minimal structures.
In Chapter 2, we recall the notion of dimension. In Chapter 3, let £ be a countable
language and 9t be a P-minimal L-structure. Let (G,-) be a group such that
G C M™. For each open V C GG, we define a topology 7, on G by @ is 7y -open
if and only if (a- Q) NV is open for any a € G. We show that if 9t admits
definable Skolem function, has Exchange Property and is N;-saturated, and G is
an n-dimensional 0-definable subset of M™, then there is a large definable subset
V' of G such that

1. G equipped with the topology 7 is a topological group; and

2. V is a finite disjoint union of 0-definable 7y -open sets.



Chapter 2

Dimension

In this chapter, we introduce a concept of dimension. We let 01 be a P-minimal

structure and A be a finite subset of an underlying set M of 9.

Definition 2.1. Let a € M". Then dim(a/A) = the least cardinality of a subtu-
ple @’ of a such that a Cacl(AUd’).

We let S™(A) be the set of all complete and consistent n-types over A.

Definition 2.2. Let p(z) € S™(A). Then dimp = dim(a/A) for some a € M"

realizing p.

Definition 2.3. Let X C M™ be A-definable. Then dim X = max{dim(a/A) :
a € X} =max{dimp : p € SP(A) is realized in X}.

Definition 2.4. Let Z be a definable subset of M™. The topological dimension of
Z, topdim(Z) is the greatest integer k for which there is a projection 7 : M™ —
MP* such that m(Z) has non-empty interior in M*.

The following lemma was proved by Deirdre Haskell and Dugald Macpherson
in [1].

Lemma 2.5. If n,m are positive integers, X is a definable subset of M™ and
f:M" — M™ is a definable function, then topdim(X) > topdim(f(X)).

The following is a consequence of Lemma 1.15 and Lemma 2.5.

Lemma 2.6. If 9 has Exzchange Property, then for any positive integer n and
definable X C M", topdim(X) = dim(X).

Lemma 2.7. Let X C M"™ be A-definable and k < n. If 9 has Exchange
Property, then dim X > k if and only if some projection of X onto M* has

interior in M¥.

Lemma 2.8. Suppose that 9 has FEzchange Property. Let V(zy...x,,7y) be a
formula and for any b let X be the subset of M™ defined by V(Z,b). Then for
any k < n there is a formula 1 (y) without parameters such that for any b,
dim X3 = k if and only if 1 (b).

Proof. By Lemma 2.7. [



Definition 2.9. Let Y C X C M"™ be definable. We say that Y is large in X if
dim(X \Y) < dim X.

Definition 2.10. Let X be A-definable and a € X. We will say that a is a
generic point of X over A if dim(a/A) = dim X .

Lemma 2.11. Let Y C X be definable. Then Y is large in X if and only if for
every A over which X and Y are defined, every generic point a of X over A is
in Y.

Proof. By Definition 2.9. ]

Lemma 2.12. Let X C M"™ be A-definable. Let ¢(xq,...,x,,y) be an L-formula
over O. Then {b: ¢(z,0) N X is large in X} is A-definable.

Proof. By Lemma 2.11 ]



Chapter 3
Definable groups

Throughout this chapter, let 9 be an N;-saturated P-minimal structure that
admits definable Skolem functions and has Exchange Property. Let (G,-) be a
group that is 0-definable in 9. Observe that the inversion ~! : G — @ is also
0-definable in 9.

Lemma 3.1. Let b € G and let a be a generic of G over b. Then b-a is a

generic of G over b.

Proof. Let b € G and a be a generic of G over b. Then dim(a/b) = dim G. Since
- and ~! are O-definable, dim(b-a/b) = dim G. Thus, b- a is a generic of G over
b. O

Lemma 3.2. For any b € G, there are generics by, by of G such that b = by - by.

Proof. Let b € G. Let by be a generic of G over b. Then dim(b,/b) = dimG.
Since the inversion is 0-definable, dim(b;'/b) = dimG. Let by, = b;'-b. By
Lemma 3.1, by = bfl-b is a generic of G over b such that by-by = bl-bfl-b =b. O

Definition 3.3. We say that a,b are mutually generic of G, if a is generic of G

over b and also b is generic of G over a.

Lemma 3.4. Let X be a large definable subset of G. Then finitely many translates
of X cover G.

Proof. Let X be {ay,...,a,}-definable. First, we will construct 9%,. By Theo-
rem 1.11, there is an L-structure 9, such that My <M, {ay,...,a,} C My and
| M| < Rg. Next, we will show that for every a € G there exists b € G™ such that
a€b-X. Let a € G. Suppose to the contrary that for all b€ G™, a ¢ b™!- X
ie. b¢ X -a7'. Then G™ C G\ (X -a'). We have

dim G™ = max{dimp : p € S7*(()) and p is realized in G™}
(0) and p is realized in G\ (X -a™ ')}
= max{dimp : p € S¥*(P) and p is realized in G\ (X -a ')}
< max{dimp : p € S™({a}) and p is realized in G \ (X -a~ ")}
=dim(G\ X -a™).

< max{dimp : p € S7%

Since a~! is bijection, by Lemma 2.5, dim(G \ X - a™!) = dim(G \ X). Since X
is large in G, we have dim(G \ X) < dim G. Then dim G™ < dim(G'\ X -a™1) =



dim(G \ X) < dim G, which is absurd. Therefore, there exists b € G™ such that
a € b-X. Suppose to the contrary that for all r,by,...,b, € G™ there exists
a € G such that a ¢ b;- X forall i € {1,....,r}. Let p(z) ={x ¢ b- X : b€ G™}.
Let A be a finite subset of p(z). Then A ={x ¢ b - X,...,x ¢ b, - X} for some
bi,...,b, € G™ . By hypothesis, there exists a € G such that for all 7,by,....b, €
G™0 . Then A is consistent. By Compactness Theorem, p(z) is consistent. That
is p(x) € STY(A). Since G™ C Mp for some k, we have |G™0| < |My|. Since 9y
is countable, G™ is countable. Since 9 is W;-saturated, there is @ € M such
that a realizes p(x). Since p(z) is consistent, there exists a such that for every
b € G™ such that a ¢ b- X, which is absurd. Then there are by, ..., b, € G™ such
that every a € G is in b; - X for some ¢ = 1,...,r. Hence, finitely many translates
of X cover G. [l

Definition 3.5. Let V' be an open subset of G. We define the topology 7, on G
by O C G is 7y-open if and only if for all g € G, (¢- O) NV is open.

Lemma 3.6. Assume dimG = n. Then there are a subset V' of G and Y of
G x G such that

1. V=U,U..UJU, where the U;’s are open 0-definable subsets of M"™;
2. 'V is large in G;

3. Y islarge in G x G;

4. the inversion is a continuous map from V onto V

5. Y ids open in V X V' and the multiplication is a continuous map from Y to

V., and

6. for every a € V', if b is a generic of V over a, then (b,a) € Y and
(b b-a) €Y.

Proof. By Theorem 1.18, we can write GG as a finite disjoint union of 0-definable
cells. Let Uy, ...,U, be the cells of dimension n. Let Vj; = U; U...UU,. Then
Vo is large in G. By Theorem 1.18, we can write U; as a finite disjoint union
of 0-definable cells on each of which either the inversion is not a map into U
or the inversion is a continuous map into U;. Noting that for each generic a of
G over 0, there are i,j with a € U;, a=' € U; and every 0-definable subset
of G of dimension n contains a generic of G' over (). Then for each i there are
open subsets U}, ..., Ur of U; such that U;Zl Uij is large in U; and the inversion
is a continuous map from U] — U; for every j. Let Vi = (J;;U/. Then V;
is large and open in V{ and the inversion is a continuous map Vi — V4. Since
U; is the cell of dimension n for all ¢ € {1,...,7} and Vj = U; U...UU,, we
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can find an open large 0-definable Yy C V4 x V4 such that the multiplication is
a continuous map from Yy — V4 such that Yy is large in G x G. We define
V] = {a € V; : for every generic b of G over a, (b,a) € Yy and (b™',b-a) € Yy}.
By Lemma 2.12, V/ is 0-definable. If a is a generic of GG, then a € V;. Moreover
for b generic of G over a, (b,a) and (b™!,b-a) are generics of GxG. Then a € V.
By Lemma 2.6, V/ is large in G. We can write V] as a finite disjoint union of 0-
definable cell such that dimension n. We can find open large 0-definable V5 C VY.
Then V; ! is also open in V; and large in G. Let V = Vo NV, *. Then V is
open in Vj and large in G, also V x V is open in Vy x V and large in G x G.
Let Y = (VxV)n{(a,b) € Yo:a-be V}. Then Y is open in V x Vj and for
mutually generic a,b of G, (a,b) € Yy and a - b is generic. Then (a,b) € Y. By
Lemma 2.11, Y is large in G x GG. Therefore,

1. V=U,U..UU,. where the Us are open 0-definable subsets of M";
2. V islarge in G

3. Y islarge in G x G;

4. the inversion is a continuous map from V' onto V;

5. Y isopen in V x V and the multiplication is a continuous map from Y to
V', and

6. for every a € V, if b is a generic of V over a, then (b,a) € Y and (b7',b-a) €
Y.

Lemma 3.7. Let V' be as in Lemma 3.6. Then

1. For any a,b€ G, the set Z={x €V :a-x-beV} isopenin V, and the

map r — a-x-b is a homeomorphism Z — a-Z - b.

2. For any a,b € G, the set Z ={(z,y) e VxV:a-x-b-yeV} is open in
V xV and the map (x,y)—a-x-b-y: Z =V is continuous.

Proof. 1. Let a,b € G and z¢g € Z. Write b = by - by with b1,bo € V. Let c € G
such that c is generic over {a, xg,b1,b2}. Then c € V and c-a € V. Let Zy = {z €
V:(c-a,x) €Y, (c-a-x,b)) €Y,(c-a-x-by,by) €Y and (¢! c-a-x-b-by) €Y}
Then Zy C Z is open in V and zy € Zy. Hence, Z is open in V. Next, we will
show that the map f: Z — a-Z -b is a homeomorphism. Let W be open in
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a-Z-band k€ f~H(W). Consider

W) ={z€Z: f(z) eW}
={xeZ:a-xz-beW}
={zxeV:ia-xz-beVnNW}
C{reV:ia-xz-be W}

Then k€ V and a-k-b € W. Let d € G such that d is generic over {a, k, by, by }.
Let Ko={z €V :(c-a,z)€Y,(c-a-x,by) €Y, (c-a-x-b,by) €Y, (c ,c-a-
x-by-by) €Y and (a-x-b) € W}. Since multiplication is continuous, Ky is open
in Z. Then Ky C f~Y(W) and k € K. Therefore, f~*(W) is open in Z. Thus,
the map f:Z — a-Z b is a homeomorphism.

2. By a similar argument as in 1., we are done. []

Lemma 3.8. Let V' be as in Lemma 3.6. Let O CV and a € G. Then a- QO is
Ty -open if and only if O is open in V.

Proof. Assume that a-O is 7y -open. Then for all g € G, (g-a-O)NV is open. Since
G is a group, a~! € G. Hence, (o' (a-O)) NV = O is open in V. Conversely,
assume that O is open in V. Let ¢ € G Then (g:(a-O0))NV =((g-a)-O)NV.
Let Z={zxeV:at-g'-z eV} by Lemma3.7, g- (a-O)NV isopenin V.
Thus, a- O is 1y -open. ]

Theorem 3.9. If 9 admits definable Skolem function, has Fxchange Property
and is Ny -saturated and G is an n-dimensional 0-definable subset of M™, then
there are a large definable subset V' of G such that

1. G with the topology Ty s a topological group;

2. 'V is a finite disjoint union of 0-definable sets Uy, ..., U, such that for each

1=1,...r,U; is 7y -open in G.

Proof. Let V be as in Lemma 3.6. Suppose V = U; U---UU, where the U;’s are
open 0-definable subsets of M™. For each i € {1,...7}, since U; = e - U; and U;
is open, by Lemma 3.8, U; is 7y -open. To complete the proof of this theorem, it
is enough to show that the inversion is a 7y -continuous and the multiplication is
Ty -continuous on G. Let W be 1y -open in G. We will show that the pre-images

of W under the inversion and the multiplication are 7y -open.

Claim 1. For every a € G, (W NaV)™" is 1y -open.

Proof of Claim 1. Let g € G. We would like to show that g- (W NaV) 1NV is
open. Since W is 7y-open in G, ¢ 'W NV is open. Since a 'W NV =a (W N

aV), a *(W NaV) is open. Since the inversion is continuous, (W NaV) ta =
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(a™' (W naV))™! is open. By Lemma 3.7, g- (W NaV)™-a)-a ' NV is open.
Then g- (W NaV)"' NV is open. Hence, (W NaV)™! is 7y -open. O

Claim 2. For every a € G, {(z,y) e G x G:x-ye€ WnNaV} is 7y -open.

Proof of Claim 2. We want to show that {(z,y) € G x G :x-y € WnaV} is
Ty-open in G x G. Let g,h € G. We want to show that O = {(¢g-z,h-y) €
VXV :z-yeWnaV} is open. Note that O = {(g-z,h-y) EGXG:a" -2y €
a”'W NV}. By the same argument as in Claim 1, we have that a 'W NV is
open. Since the map (z,y) > a~'-g~'-x-h~1 y is continuous, O is open. Hence
{(z,y) e GxG:x-ye WnNaV} is 1y-open. O

By Lemma 3.4, there exists ¢y, . .., ¢, such that W = (Wne, V)U...U(WNe V).
By Claim 1, we have that (W N, V)7L ..., (W N¢V)™! are 1y-open. Hence,
Wt=WneV)tn---nNn(WnNe) ! is ry-open. For each i € {1,...,k}, let
O, ={(z,y) e GxG:2-yeWngegV}. By Claim 2, Oy,...,0 are 7y -open.

Since
AW =W neV)u---U(WneV))
= WnoaViu---U-WneV]
— (91 IRSaslel (Qlﬁ

the pre-image -~![W] is 7y -open.

Therefore, the inversion and the multiplication are 7y -continuous on G. [
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Background and Rationale
Let p be a prime number. The p-adic valuation von Z \ {0} is a map from Z \ {0} to
N U {0} that sends any nonzero integer X to the highest n such that p" divides x. We
define the p-adic norm |-, on Q as follows:

0, ifx=20

= a
Ixlp pY@+® i x = 5 for some a,b € Z \ {0}

The p-adic numbers Q,, is the completion of Q with respect to the p-adic norm |-|,,.
Let L = {+,—,-,0,1, Div, (P,)en} be a language where 0, 1 are constant symbols, +,:
are binary function symbols, — is a unary function symbol and Div is a binary relation
symbol. Observe that the field of p-adic numbers with the interpretation of Div
by Div(a,b) if and only if v(a) < v(b) and the interpretation of (P,)ney by {X €
M: 3y, y" = x} is an L -structure. Let L' be a language extending L, and let F be an L'-
structure. We say that F is P- minimal if, for every F' elementarily equivalent to F,
every definable subset of F'is quantifier-free definable by L-formula. In [1], Haskell
and Macpherson generalize a concept of p-adic field into P- minimal structures. In [3],
Pillay proved that if (G,*) is a definable group in Q,, , then there is a topology T on G
such that *: G X G = Gis T —continuous and there exists n > 0 such that for all g €
G, there is an open set U in G such that g € U and U is homeomorphic to Qp. In this
project, we are interested in properties of definable groups in P-minimal structures.

Objectives
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To study properties of definable groups in P-minimal structures with definable
Skolem functions.
Scope

In this project, we only study P-minimal structures with definable Skolem
functions.

Project Activities

1. Literature review.
2. Studying properties of definable groups in P-minimal structures.
3. Writing the project report.

Duration of time

Month

Project Activities

1. Literature review

2. Studying
properties of
definable groups in
P -minimal
structures.

3. Writing the
project report.

Benefits

To know properties of definable groups in P-minimal structures.

Equipment
Software
1. Latex
2. Microsoft Word
Hardware
1. Notebook
2. Printer
Budget

1. Books 5,000 Baht
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