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CHAPTER I

INTRODUCTION

Organic synthesis is one of the most important fields in organic chemistry. It focuses
on finding synthesis pathway of organic compound or discovery novel reaction. To
synthesize a new compound or a known compound, organic chemist must have solid
knowledge and experience in organic synthesis0 to make synthesis plan reasonable. In
most cases, organic chemist may have to do literature search to find more information
about possible synthesis route. It is thus a difficult task for beginner in this field. This
obstacle can be overcome logically by using retrosynthetic analysis in combination with
computer-assisted synthesis planning tools.

1.1 Retrosynthetic analysis

Retrosynthetic analysis is a problem solving technique to generate synthesis plan
in a reverse order. This process begins with analyzing a target molecule to find possi-
ble disconnectable functional group or bond. Applying this disconnection, the target
molecule is separated into two smaller moieties, which are called “synthons” as shown
in Figure 1.1. The structures of both synthons do not exist in reality so it is necessary to
find compounds that can be used to generate these synthons and these compounds
are called “synthetic equivalents”. Finding and applying disconnection are carried out
recursively until synthetic equivalences become known purchasable compounds. The
retrosynthetic analysis was initially logicalized in 1960s by E. J. Corey [1]. And since then,
most of total synthesis research have been using this approach to generate synthesis
plan and synthesize many compounds.
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The example of retrosynthetic analysis can be shown in Figure 1.2. Although retrosyn-
thesis analysis is very useful approach to find synthesis plan, it still requires strong
background in organic synthesis to find suitable disconnection in each step. Therefore,
computer technology comes to play a role to solve this drawback.

Figure 1.1: Synthon and synthetic equivalent

Figure 1.2: Example of retrosynthetic analysis
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1.2 Computer-assisted synthesis planing

Computer-assisted synthesis planing (CASP) is a computational tool to generate syn-
thesis pathway from target molecule. By using computer to calculate and find synthesis
plan, it could greatly reduce time usage compared to generating synthesis plan man-
ually. In addition, it is applicable for both novice and expert organic chemists. There
are several available CASP tools, which were released as open-source or commercial
software such as Reaxys and SciFinder-n which can be shown in Figure 1.3.

Figure 1.3: CASP tool in SciFinder-n

1.2.1 Core components of computer-assisted synthesis planning

Most of CASP tools consist of five components [2], which are explained as follows.

1. Library of reaction rules. The reaction rule is molecular fragment from both
reactants and products that contains information about which atoms are discon-
nected or transformed from reactants into products or vice versa. The reaction
rule can be encoded into SMARTS format or different format that component
number 2 understand which part of molecule should be apply in this rule. The
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library is used to serve as elementary synthesis step to build up the overall syn-
thesis route of desired product. The library can be obtained by (a) using previous
existing library and/or (b) creating a new one by mining the databases containing
synthesis reactions.

2. Search engine. Starting from a target molecule as an input, search engine will
determine disconnection by searching against library of reaction rules to find can-
didate reactions that can transform product (target molecule) backward one step
to reactants. It will also construct reactant or product molecules according to
selected reaction rule. Search engine is applied several times until the reactants
are in the component number 3

3. Database of starting materials. This is normally a database of commercially pur-
chasable compounds. If a reactant in any retrosynthesis step could be purchased,
there is no need to step back to synthesize this compound. Therefore, this
database is used to terminate retrosynthesis step cycle.

4. Searching strategy. Generally, synthesis route of most compounds composes of
several synthesis steps from reactants to product. In each synthesis step, it is
very common that there are several possible reactions with different reactants
to synthesize a given product. In other word, several possible disconnections
(several reaction rules) can be found by the search engine (component number
2) for a target product. So, there should be a good searching strategy to search
through chemical space that can combine all synthesis steps together to give
product. The retrosynthesis problem can be considered as a tree search problem,
thus any tree search algorithm can be applied as searching strategy.

5. Scoring function. This function is used to calculate score of each possible synthe-
sis route based on several factors, e.g., number of synthesis steps needed. User
can use the score to evaluate which synthesis route is more feasible.

The workflow of CASP is shown in Figure 1.4.
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Figure 1.4: Flowchart of CASP

1.2.2 Development of computer-assisted synthesis planning

The development of CASP can be dated in 1960s from Dendral project [3] which
aim to use artificial intelligence approach for generating synthesis plan but this task was
unsuccessful. In 1967 E. J. Corey proposed the “retrosynthetic analysis” and systemized
the rule [1]. This revolutionalize the field to become more systematic and become the
basis of CASP tools. Then Corey and Wipke presented the very first CASP tool called
Organic Chemical Simulation of Synthesis but this project was short-lived and was split
into two groups of CASP; LHASA for Logic and Heuristic Applied to Synthetic Analysis [4]
and SECS for Simulation and Evaluation of Chemical Synthesis [5]. The LHASA project
was developped by E. J. Corey, which used heuristic transforms written in chemical
language called “CMTRN (Chemistry TRaNslator)”. However, one major drawback of
this tool is a failure in dealing with reactions containing stereochemistry [6]. There
were several CASP tools after LHASA but almost all of them were unsuccessful to use
due to several problems which are discussed in details below.
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1. Molecular context
Most of CASP tools use reaction template coded by expert and this can be
problematic when molecular context coming to play. Even similar molecules
but with different functional groups can lead to different results. This gives a
similar role about regioselectivity problem.

2. Size of chemical space and searching algorithm
The chemical space for synthesis planning is not much large but still a challenging
due to most of CASP tools use exhaustive search or simple best-first search which
can be a problem when searching an enormous space.

3. Synthetic position
Unlike chess or any other games, the synthesis position is ill-defined problem
which means it cannot be defined easily which position should be applied or
which reaction should be used.

As the review paper was published in 2016 [7], the CASP is still the challenging problem
due to several points that were already discussed. In 2017, the preprint of developing
of CASP tool was released and this mark as significant because this can solve most
of the previous problems. And the next year this preprint article was published into
research article [8]. In that research article, the data-driven approach was used to
extract data in synthesis database into reaction template and then it was combined
with three models of artificial neural network and Monte-Carlo tree search algorithm
(MCTS). After 2018, CASP development have been using this approach by employing
artificial neural network and Monte-Carlo tree search (MCTS) algorithm with their own
dataset for training neural network [9].



CHAPTER II

THEORETICAL BACKGROUND

2.1 Artificial neural network

Artificial Neural Network or ANN is the mathematical model that has inspiration
from biological nerve cell. Initialized in 1943 by Warren McCulloch and Walter Pitts [10].
Artificial neural network model can be used as single unit called perceptron or many
units connected to each other. The many units of perceptron that connect to as a layers
sometime called “deep learning”. Artificial neural network model can be applied in
many field such as object detection, image processing, natural language processing etc.

2.1.1 Perceptron

The perceptron is the smallest unit of artificial neural network. Introduced by Frank
Rosenblatt in 1958 [11]. The equation of perceptron is shown in equation 2.1.

yi = f (w1x1 + w2x2 + w3x3 + ... + wnxn + b) (2.1)

where xi are the input of perceptron,wi are weight or parameter of perceptron, b is
bias, and f (x) is activation function. The preceptron can solve logical problem such
as “and” gate and “or” gate. However it cannot solved the exclusive or gate problem
with single perceptron. This problem lead to the use of multilayer perceptron, which
means using another preceptron connect with previous perceptron and stack into layer,
hence the name multilayer perceptron.
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2.1.2 Optimization of neural networks

To make neural network learning from data that feed into model, the parameter
of neural network must be optimized. In this case, the optimization algorithm can be
used to optimize the parameters which are weights and biases in neural network model.
The very first algorithm to optimize parameter of neural network is gradient descent
method which is shown in equation 2.2.

wi+1 = wi − α
dJ

dw
(2.2)

whilewi are the parameter in previous step,α is learning rate, and dJ
dw

are the deriva-
tive of cost function by parameters. The problem is how to calculate the derivative
of these functions since there are several parameters to calculate and it is difficult to
calculate.

Yann LeCun proposed the back propagation algorithm [12]. The back propagation
algorithm uses a chain rule in calculus for calculating the weights and biases by back-
propagating the derivative of previous function continue to weights and biases. This is
shown in equation 2.3.

dJ

dw
=

dJ

df

df

dz

dz

dw
(2.3)

However, the gradient descent method is no longer used for entire dataset because it
is computational expensive. Thus, stochastic gradient descent method and variation
will be use instead such as stochastic with momentum, RMSProp, and Adam.

2.2 Monte-Carlo Tree Search (MCTS)

Monte-Carlo Tree Search or MCTS is the tree search algorithm, purposed by Rémi
Coulom in 2006 [13]. Monte-Carlo tree search algorithm differ than traditional tree
search by using random simulation (Monte-Carlo simulation) as part of tree search
hence the name.

This algorithm consists of four phases.
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Figure 2.1: Monte-Carlo Tree Search

1. Selection
This phase will select node from the root node until the leaf node is reached

2. Expansion
This phase will create new node to expand the leaf node from previous phase

3. Rollout or Simulation
In this phase, a random node will be build and doing Monte-Carlo simulation
until the target node is reached.

4. Update
This final phase will update the reward or score from the simulation result and
send it back to parent node until root node is reached.

The advantage of Monte-Carlo tree search is the tree can grow asymmetrically which is
useful for searching on tree problem with high branching factor. However, the drawback
of Monte-Carlo tree search is it can lead into loss state due to policy of selective node
expansion. Monte-Carlo tree search can be applied in game such Go [14, 15] and
retrosynthesis problem [8].



CHAPTER III

EXPERIMENTAL PROCEDURE

3.1 Component of CASP in this work

In this thesis work, the template-based data-driven approach was employed. All
the components from section 1.2.1 are described in details on how to get these com-
ponents. The flow of our work is schematically shown in Figure 3.1.

Figure 3.1: Flowchart of experimental procedure
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3.1.1 Library of reaction rules

This work used the library of reaction rules developed by D. Löwe in his Ph.D.
dissertation [16] as a template. The library was extracted from the US patent data
[17]. There are two databases: granted patents from 1976 to September 2016 and
applications from 2011 to September 2016. These two databases were combined into
one dataset and duplicate reactions were drop out. Next step is using modified version
of RDChiral [18] reaction-extraction function in python library to extract reaction center,
reactant and product molecules. Reaction that cannot be extracted and reaction with
unique template will be discarded. These reactant and target molecules were used to
create library of reaction rules and will be used to train neural network afterward.

3.1.2 Search engine

This component used RDKit [19] to generate reactant from product that corresponds
with reaction center. With the help of neural network to guide what reaction center
should be used and confirmation of reaction by using another neural network model
to get reasonable reactant molecule.

3.1.3 Database of starting material

This database was created by combining ZINC dataset [20], which is a free database
of commercially available compounds, and the two sources of starting material suppli-
ers which are AlfaAesar and Acros.

3.1.4 Search strategy

Searching strategy in this work used Monte-Carlo Tree Search, which is similar to
previous work [8]. However, instead of using three models of neural network, only
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expansion model and in-scope filter neural network model were used in this work.
The reason to omit rollout model is that it has similar role to expansion model, which
is to calculate what probability of each reaction should be used but in different phase
of MCTS so to save training time only expansion model was used in this work.

3.1.5 Scoring function

The scoring function in this work was modified from Segler’s work [8]. It is shown
in below.

Q(s, a) =
1

N(s, a)

n∑
i=1

ziW (bi) (3.1a)

W (bi) = max

(
0,
Lmax − ξ(bi)

Lmax

)
(3.1b)

ξ(bi) = length(bi)−
J∑

j=1

kP (sj, aj) (3.1c)

while N(s, a) is number of times that explored, Lmax is max length of synthesis
step which was set to 10, P (s, a) is prior probability that is calculated by neural
network, k is damping factor which was set to 0.99, zi is the reward of state.

3.2 Training neural network

3.2.1 Expansion model

Expansion model is neural network model for using in expansion phase of Monte-
Carlo tree search to find which reaction rule should be applied. This model is similar
to previous work [8].

To get the training data for this model, all extracted reaction rules were used. The
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product of each reaction was labeled according to what reaction rule came from since
several reactions can give the same reaction rule. The number of product from reaction
per reaction rule was varied from 5 to 100 with increament by 5, since this model is
important for classifying on what reaction should be use so this model need to be varied
to make sure that the optimized condition for accuracy and number of frequency of
reaction rule can be found.

3.2.2 In-scope filter model

In-scope filter model is neural network model for using in expansion phase to val-
idate molecule after applied search engine that corresponding to reaction rule. This
model is similar to previous work [8].

To get the training data for this model, all reactions in the dataset that were labeled
from previous step and reaction rules were used. All reactant were applied by each
reaction rule to generate product, if product generated from reaction rule is the same
molecule as labeled product, this reaction will be labeled as “corrected” reaction, oth-
erwise it will labeled as “incorrected” reaction. This will generate a lot of dataset and
also unbalance due to the number of correct reaction is much less than number of
incorrect reaction. To maximize the accuracy of this model, the incorrect reaction will
be sampling according to number of correct reaction.

3.3 Testing the CASP

To test our CASP method, the dataset from real target molecules must be cho-
sen. Target molecules to test this CASP are target molecules taken from publication in
Journal of Medicinal Chemistry in 2019.
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Figure 3.2: Example of target molecules



CHAPTER IV

RESULTS AND DISCUSSION

4.1 Reaction template extraction

From 1,484,441 reactions in the US Patent dataset, only 644,619 reactions extracted
which were 43.42 percent. The major reason that several reactions cannot be extracted
is some reactions have incorrect SMILES format when extracted from literature [17].
Some reactions have atom labels but they do not changed in both reactant and prod-
uct and thus a reaction center could not be identified. All the extracted reactions
were classified into groups, which are called reaction templates. Totally 1,225 reaction
templates were obtained. Top ten reaction templates with the highest frequency are
shown in Table 4.1. It is worth to mention that several reactions gave unique reaction
template which cannot be used to train in neural network model due to insufficient
data per template. Within 1,225 reaction templates, there are only 29 reaction tem-
plates that contain stereochemistry which is just 2.37 percent. This indicated that there
are not much stereochemistry in reaction template. The reason is probably because
there is not much stereochemistry in reaction dataset with perfect reaction dataset,
also the stereochemistry is not in the reaction center which is omitted by the RDChiral
itself.

4.2 Neural network training

Neural network training results are discussed here.
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Table 4.1: The top ten reaction templates extracted by RDChiral

reaction template number of reaction

11,470

6,507

3,764

3,745

3,587

2,825

2,148

1,932

1,870

1,869
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4.2.1 Expansion model

The training results for expansion model are show in Figure 4.1. The optimal condi-
tion of this model is at epoch one from epoch zero which gives the lowest cost function
value of validation data which is 1.4228. The accuracy of this model is 63.59 percent
which is similar to the previous work [8]. Since this model is multiple classification,
precision and recall of this model were not calculated due to numerous number of
class and its difficulty in interpretation. Also, the number of optimal reaction per class
at 50 gave the optimal condition satified with number of classes, number of reaction
per class, accuracy of model and performance of this CASP which are shown in Table
4.2. This number was also used in previous work in the rollout model [8].

Figure 4.1: Training result of expansion model. Left is loss function of expansion model,
and right is accuracy of this model.

4.2.2 In-scope filter model

The training results of in-scope filter model are shown in Figure 4.2. The optimal
condition of this model is at epoch six from epoch zero which gives the lowest cost
function value of validation data which is equal to 0.3740. This model is binary classifi-
cation model, the precision and recall of this model were calculated. The precision is
0.8373 and the recall is 0.8525.
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Table 4.2: The results at various rule frequency

Rule frequency Number of rule Model Accuracy (%) CASP Performance (%)
5 14,720 52.27 40.18
10 7,003 56.52 42.28
15 4,528 60.17 43.41
20 3,337 61.51 46.24
25 2,626 61.73 47.53
30 2,125 62.18 51.58
35 1,813 61.55 48.99
40 1,535 63.04 49.80
45 1,362 63.67 52.14
50 1,225 65.02 50.44
55 1,094 63.80 46.40
60 992 65.56 51.58
65 911 65.31 53.03
70 842 66.91 51.41
75 783 67.43 49.88
80 728 67.81 49.07
85 670 68.42 45.59
90 626 66.07 51.58
95 581 67.91 51.41
100 553 68.20 51.66
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Figure 4.2: Training results of in-scope filter model

4.3 Synthesis plan performance

Using 1,237 target molecules in the testing test, our CASP tool can successfully
generate synthesis plan for 629 target molecule, which is 50.85 percent. According to
Figure 4.3 most of successful synthesis plans consist of 1 - 2 step(s) but several target
molecules can reach up to the maximum number of 10 steps. According to Figure 4.4,
the time usage for this CASP is just 1 - 2 second(s) although there are several target
molecules that need 20 seconds. The reason is the calculations of these molecules
reached the maximum number of reaction step which is set to 10. The example of
synthesis plan that was generated by this work is shown in Figure 4.5. Although there
are 1,225 reaction templates, this number is still not enough for gernerate high quality
synthesis plan because some of target molecules might contain some functional groups
that are actually transformable but they are not included in this work.

In order to compare the performance of our CASP tool with the commercial
one, 100 target molecules were randomly selected from our testing set and were in-
puted into the SciFinder-n tool. The SciFinder-n could generate synthesis plan for 76
molecules. It could be possible to further improve the performance of our tool by
including more qualified reactions dataset into the library of reaction rules.
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Figure 4.3: The number of synthesis step that can be generated by this work

Figure 4.4: Time usage of each target molecule during generate synthesis plan
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Figure 4.5: Example of synthesis plan that is generated by this work. This target
molecule can be synthesized within 4 steps.



CHAPTER V

CONCLUSION

The open-source CASP tool was successfully developed by using neural network
in combination with MCTS. The accuracy of expansion model is 63 percent by using
reaction per class at 50, precision is 0.84 and recall is 0.85. The number of reaction
center from this work is 1,225. The tool can generate synthesis plan of 629 from 1237
target molecules. All the source code are available at https://github.com/
tjthecalculator/thesis_retrosynthesis

Suggestion for further work is the improvement of performance by including more
high-quality reactions dataset into the library of reaction rules. In addition, it would
be very convenient for users if other formats for structure of input, apart from SMILES
format, are allowed. The improvement could also be done by applying neural network
to find disconnection. This need to be investigated and studied.

https://github.com/tjthecalculator/thesis_retrosynthesis
https://github.com/tjthecalculator/thesis_retrosynthesis
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