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Cardioembolic stroke is a dangerous subtype of ischemic stroke. The patients 

with this subtype need special treatments to prevent recurrent events. The prevention 
is vital since only one more event could result in fatal damage. Hence, the classification 
into the categories of cardioembolic and non-cardioembolic subtypes is essential. We 
developed a multimodal machine learning model that can integrate the basic clinical 
information and non-contrast CT images to predict the risk of cardioembolic stroke. Our 
method reached the areas under the receiver operating characteristic curve (ROC-
AUC) of 0.840 by using a dataset of only 227 samples of stroke patients. Besides the 
capability to classify the stroke subtypes, the method can provide the interpretability of 
the model decision in the forms of the heatmap for large infarct localization and the 
feature impacts for interpretation. Our approach can be widely applied since we need 
only the basic clinical information and non-contrast CT which are commonly available 
in general hospitals. 
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1. Introduction 
1.1. Motivation 
Stroke is one of the most severe diseases causing serious disability or even death 
worldwide. To provide effective treatment to stroke patients, it is essential to identify the 
etiological subtype. Cardioembolic is a dangerous subtype leading to extensive damage 
to the brain tissue. Consequently, the main focus of the treatment for this subtype is to 
prevent recurrent events, since the secondary damage could be fatal. Anticoagulant is an 
effective therapy for the cardioembolic subtype, it can prevent the development of the 
malicious embolus. However, it has negative effects on the other subtypes, thus 
distinguishing cardioembolic from the others is critical for stroke treatment. Traditionally, 
classifying the subtype of stroke is time-consuming, especially monitoring the 
electrocardiogram (EKG) for patients with suspected cardioembolism. Therefore, 
clinicians are responsible to prioritize the risk of cardioembolic stroke to optimize the 
investigation resources. Nevertheless, the risk estimation is challenging for general 
practitioners. In many cases, they need advice from experts for consideration. This could 
be a disadvantage for the hospitals with limited resources such as rural hospitals with a 
shortage of stroke specialists. Fortunately, with the rise of modern machine learning 
technologies, various automated assisting systems have been developed to overcome 
the challenges. 
 
In stroke diagnosis, there are two basic sources of information. The first is clinical 
information including age, vital signs, symptoms, underlying disease, and physical 
examination results. The other source is non-contrast computed tomography (CT) which 
is useful for detecting diseases in the brain. With the advances in machine learning 
techniques, these sources of information can be mutually analyzed to classify the 
subtypes of stroke. Besides the accurate risk estimation results, the interpretability of the 
machine learning model’s decision also plays a key role to enable trustworthy assistance 
in clinical diagnosis.  
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In this study, we aim to develop a multimodal method that combines clinical information 
and CT to predict the risk of cardioembolic stroke. Non-contrast CT images are used to 
determine the existence of large infarct which is a characteristic of cardioembolic stroke. 
We apply a novel deep learning technique, pyramid localization network (PYLON) 
architecture (Preechakul, Sriswasdi et al. 2020) that specializes in weakly supervised 
localization for medical images, to simultaneously predict the likelihood and identify the 
location of large infarcts in CT images. The predicted likelihoods were utilized as the 
image features together with the clinical features extracted from electronic health records 
(EHR). These features are then processed by machine learning methods to estimate the 
risk of cardioembolic stroke. 
 
1.2. Objective 
We aim to develop an automated system to estimate the risk of cardioembolic stroke using 
both clinical information and CT images. The main hypothesis of this study is: 
 
The characteristics of cardioembolic stroke can be explained by the clinical information 
and the brain CT findings. Therefore, machine learning techniques can be applied to 
analyze the information and estimate the risk of cardioembolic stroke. 
 
The objectives of this thesis are as follows. 

1. To develop a multimodal machine learning method to integrate the clinical 
information and CT images to predict the risk of cardioembolic stroke. 

2. To enable the interpretability of the model’s decision for better understanding 
and reliable prediction results. 
 

1.3. Scope 
The scope of this thesis is to apply machine learning techniques with the clinical 
information and CT images extracted from King Chulalongkorn Memorial Hospital (KCMH) 
to estimate the risk of cardioembolic stroke together with the model interpretability. 
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2. Related work 
Ischemic stroke subtype classification had been studied in various aspects (Amarenco, 
Bogousslavsky et al. 2009), (Amort, Fluri et al. 2012). Oxfordshire Community Stroke 
Project (OCSP) (Bamford, Sandercock et al. 1991) categorizes ischemic stroke into 4 
phenotypes which include total anteriorcirculation infarcts (TACI), lacunar infarcts (LACI), 
partial anterior circulation infarcts (PACI), and posterior circulation infarcts (POCI). 
Despite the simplicity of the system, only infarct location is not sufficient to specify a 
cardiac source of embolism. Trial of Org10172 in Acute Stroke (TOAST) classification (HP, 
BH et al. 1993) is the most wildly used method due to its simplicity and the ability to specify 
stroke etiology. It classifies stroke subtypes into 5 categories including large-artery 
atherosclerosis (LAA), cardioembolism, small-vessel occlusion, a stroke of other 
determined etiology, and stroke of undetermined etiology. We applied this system to 
categorize stroke patients into the 5 groups and used them as the ground truths for our 
study. Causative Classification System (CCS) (Ay, Benner et al. 2007) is another system 
that divides ischemic stroke into 5 subtypes similar to TOAST. The undetermined group is 
further divided into cryptogenic embolism, other cryptogenic, incomplete evaluation, and 
unclassified categories. Moreover, each group is subdivided based on the reliability of 
evidence as evident, probable or possible. Atherosclerosis, Small-vessel disease, 
Cardioembolism and Other cause (ASCO) system (Amarenco, Bogousslavsky et al. 2013) 
categorizes subtypes by causes as follows: atherosclerosis, small vessel disease, cardiac 
source, and other cause. Also, the presence and causal relationship to the stroke is 
graded for each potential cause. However, these two systems are more complicated 
compared to TOAST and not widely adopted. 
 
Recently, these stroke subtyping processes have been transformed into automated 
systems with the advance in machine learning techniques. Fang et al. (Fang, Xu et al. 
2020) developed an automated ischemic stroke subtyping using OCSP as the gold 
standard. They studied the effectiveness of numerous machine learning models on a 
dataset from The International Stroke Trial (IST). The dataset of 16,636 patients was used 
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to select robust features by applying recursive feature elimination (RFE) incorporated with 
linear Support Vector Classifier (SVC), Random Forest, Extra Tree Classifier, Adaboost, 
and Multinomial Naïve Bayes. Then, another Extra Tree Classifier and a simple neural 
network were used to classify the stroke phenotypes. They achieved over 0.95 accuracy 
with both classifiers. 
 
Clinical feature extraction from EHR is a key challenge for the development of machine 
learning because of the unstructured nature of free text. Fortunately, the recent advance 
in natural language processing (NLP) had successfully eliminated the barrier and made 
the task a lot more practical. Garg et al. (Garg, Oh et al. 2019) proposed an automating 
ischemic stroke subtype classification using NLP to extract clinical features from EHR of 
1,091 patients. TOAST classification was used as the ground truth for this study. They 
experimented with 7 machine learning techniques including K-Nearest Neighbor (KNN), 
Support Vector Machine (SVM), Random Forest, Extra Tree Classifier, Gradient Boosting 
Tree, XGBoost, and stacking of these models using logistic regression. The stacking 
model attained the best performance with kappa coefficient of 0.72. Sung et al. (Sung, Lin 
et al. 2020) employed NLP to extract features from EHR of 4,640 patients and then 
combine the features with National Institutes of Health Stroke Scale (NIHSS) to form the 
initial features. A correlation-based feature selection technique was applied to reduce the 
feature’s dimension. Six commonly used machine learning techniques were utilized to 
classify the OCSP subtypes. The best method reached 0.399 Cohen’s kappa coefficient. 
Guan et al. (Guan, Ko et al. 2020) proposed an automated electronic phenotyping of 
cardioembolic stroke. They developed an NLP algorithm to extract cardioembolic stroke 
features using text-mining on administrative code and echocardiogram reports. 
Thereafter, the features extracted from the ischemic stroke registry of 1,598 patients were 
used to train 9 different machine learning methods to classify between cardioembolic and 
non-cardioembolic subtypes. The best performing model was achieved area under the 
receiver operating characteristic curve of 0.911. 
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Detecting infarct in non-contrast CT is challenging because of the low contrast or weak 
signal-to-noise ratio of brain soft tissue (Rekik, Allassonnière et al. 2012). To deal with this 
problem, certain techniques had been developed. Lee et al. (Lee, Yune et al. 2018) 
utilized multi-window conversion to increase the conspicuity of certain pathologies. This 
technique was also applied in our work. Deep convolutional neural network has become 
state-of-the-art for various medical imaging tasks. Recent studies leveraged the power of 
deep learning to localize the region of infarct in non-contrast CT.  Qiu et al. (Qiu, Kuang 
et al. 2020) developed an approach to detect early infarction in acute stroke with non-
contrast CT. A pretrained segmentation model was used to extract a set of custom-made 
features on each voxel. Then, the features were processed by a Random Forest to classify 
the presence of infarct. Pan et al. (Pan, Wu et al. 2021) decomposed each CT slice into a 
set of different sizes of small patches. Afterward, a convolutional network was used to 
classify whether each patch is from an infarct area. Moreover, a post-processing method 
was applied to refine the predicted results. EIS-Net (Kuang, Menon et al. 2021) was a 
novel method that can simultaneously segment infarct area and provide the Alberta Stroke 
Program Early CT Score (ASPECTS) (Pexman, Barber et al. 2001). This network contains 
two major components including Triplet convolutional neural network (T-CNN) for early 
infarct segmentation and ASPECTS Net for ASPECTS prediction. The first part 
incorporated context information into the network by comparing symmetric disparity 
between original CT images, horizontal-flipped images, and the corresponding atlas using 
comparison disparity blocks (CDB). Then, a multi-level attention gate module (MAGM) 
was used to fuse the outputs from the CBDs before segmenting the infarct volumes. The 
second part also utilized MAGM to activate the features relevant to ASPECTS scoring task. 
Finally, multi-region classification was performed to predict the score of each region. 
 
Despite the novelty, none of these studies incorporate the clinical information and CT 
images. Though, medical imaging information is normally recorded in EHR, it is still 
necessary to rely on radiologists to interpret and document the imaging results. To bypass 
the bottleneck, machine learning techniques could be applied as unified methods to 
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interpret clinical information together with imaging data. The strategies to fuse medical 
imaging and EHR were well studied in a work of Huang et al. (Huang, Pareek et al. 2020). 
They categorized the strategies into three groups which are early, joint, and late fusions. 
Early fusion integrates features at the input level. Joint fusion joins the hidden features in 
the middle layers of the model and loss is propagated back to the previous layers. Late 
fusion aggregates predictions at the output layer. Since we had very small data for 
cardioembolic stroke prediction but sufficient data for large infarct detection (a patient 
had multiple CT slices), late fusion was chosen as an appropriate strategy for us. Our 
large infarct localization model was independently trained with image-level annotations, 
unlike all the previous infarct detection studies which required pixel or voxel-level 
annotations on diffusion-weighted imaging (DWI). Finally, the output of the infarct 
localization model representing the presence of large infarct was aggregated with the 
clinical features to predict the risk of cardioembolic stroke. 
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3. Background 
 
3.1. Overview of our approach 
 

 
Figure 1: Overview of our end-to-end approach. PYLON is used to extract image 
features and predict infarct area together with the corresponding infarct probability. 
The extracted image features and clinical information are then fed into a multi-layer 
perceptron module to predict the risk of cardioembolic stroke. 
 

Our approach consists of two main modules including an image feature extractor and a 
joint classifier. We used PYLON as an image feature extractor which can simultaneously 
localize infarct region and predict the corresponding infarct probability. A multi-layer 
perceptron module is used as a joint classifier to predict the risk of cardioembolic stroke 
from the extracted image features and the clinical information. All modules are trained in 
an end-to-end manner. The overview of our approach is illustrated in Figure 1.  
 
3.2. Neural network 
In computer science, neural network, also known as artificial neural network (ANN), is a 
collection of connected node layers which can transform the input information into 
intermediate features that are specific to a target. Neural network can learn to extract 
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features by using backpropagation (Rumelhart, Hinton et al. 1985). There are numerous 
variants of the neural network nowadays, but the important ones related to our work are 
described in the following sections. 
 
3.2.1. Multi-Layer Perceptron (MLP) 
Multi-layer perceptron (MLP) is a simple class of neural network. It comprises multiple fully 
connected node layers which transfer the information in a feedforward way. There are 
three basic types of node layers in MLP including input layer, hidden layer, and output 
layer. MLP makes use of non-linear activation functions in hidden and output layers to 
transform the linear combination outcomes into non-linear spaces to distinguish the data 
that is not linearly separable. 
 
3.2.2. Convolutional Neural Network (CNN) 
Convolutional neural network (CNN) is a variant of artificial neural network which is 
commonly used to extract local pattern in sequential data, e.g. time-series data and image 
data (LeCun and Bengio 1995). The layer in CNN is called convolutional layer which 
consists of multiple filters. Each filter is responsible for the extraction of a local pattern 
which is relatively small compared to the input of the layer. The filters are applied through 
the input to achieve translation-invariance property. These characteristics of CNN make it 
much more efficient in local feature extraction compared MLP which must connect every 
single point of input data to each node in the layer. Therefore, CNN can be considered as 
a regularized version of MLP because of the immense reduction in network parameters. 
 
3.2.3. Pyramid Localization Network (PYLON) 
Pyramid localization network (PYLON) (Preechakul, Sriswasdi et al. 2020) is a specialized 
convolutional neural network architecture that aims to improve the accuracy of the 
heatmaps that explain image classification model. The heatmaps can provide accurate 
localization with only image-level annotation. It uses weakly-supervised learning 
technique to simultaneously produce both heatmaps and the corresponding classification 
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scores. The heatmaps are directly derived from the output of the last convolutional layer 
of the network which contains both fine-grained textural features and context features from 
the specialized pyramid architecture. The classification scores are simply obtained by 
applying global max pooling operation on the heatmaps. 
 
3.3. Activation function 
The relationship between the input and output data can be either linear or non-linear. 
However, the node operations in common neural networks are made of basic linear 
combination. Therefore, to capture non-linear relationship, activation functions were 
invented to transform the linear outcomes into non-linear spaces. There are two important 
activation functions used in our work. 
 
3.3.1. Sigmoid 
Sigmoid or logistic activation function is a popular activation function used to non-linearly 
transform a real number into a new domain with a range between 0 and 1. However, this 
activation function could result in a saturation issue, saturating gradient (Glorot and 
Bengio 2010). Although this function is not suitable for hidden layers, it is perfect for the 
output layer when the network is expected to predict likelihoods.  The formula of sigmoid 
function can be written as follows. 
 

𝜎(𝑥) =  
1

1 +  𝑒−𝑥
                                                                                         (1) 

 
3.3.2. Rectified Linear Unit (ReLu) 
Rectified linear unit (ReLu) is one of the most wildly adopted non-linear activation function 
because of its simplicity. This activation function transforms an input number into a non-
negative number. If the input number is negative, the corresponding output will be zero. 
In contrast, it will return identical number if the input number is non-negative. Therefore, it 
can produce non-linear transformation with minor cost and without saturation issue. The 
formula of ReLu can be written as follows. 
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𝑅𝑒𝐿𝑢 (𝑥) = max(0, 𝑥)                                                                                 (2) 

 
3.4. Cost function 
Cost function or objective function is a crucial part for the training of machine learning 
model. Minimizing the value of cost functions is the goal of training. The selection of the 
appropriate cost functions depends on the target task. For binary classification, binary 
cross-entropy (BCE) is a commonly used cost function. 
 
3.4.1. Binary Cross-Entropy (BCE) 
Binary cross entropy (BCE) is commonly used in binary classification. When the target is 
1, minimizing BCE will result in maximizing the output of the model. When the target is 0, 
minimizing BCE will result in minimizing the model output. The formula of BCE can be 
written as follows. 
 

𝐵𝐶𝐸(𝑦, �̂�) =  −𝑦 log(�̂�) − (1 − 𝑦) log(1 − �̂�)                                         (3) 
 
Where 𝑦 is the target label, �̂� is the model prediction. Sigmoid function is used as the 
activation function to convert model output to probability. 
 
3.5. Metric 
Metric is used to evaluate the performance of machine learning model. The right metric 
can indicate the strength and the weakness of the model. Hence, it plays a key role for 
determining the direction of the model development. The metrics used in this work are 
described as follows. 
 
3.5.1. Confusion matrix 
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Figure 2: Confusion matrix for binary classification. There are 4 categories of the 
outcomes including true positive (TP), false positive (FP), true negative (TN), and false 
negative (FN). 
 
In binary classification, the target label can be either positive or negative while the 
prediction can also be either positive or negative. Therefore, there are 4 possible 
categories of outcomes as demonstrated in Figure 2. We can count the total number of 
the outcomes in each category, and then put it in the corresponding cell in the confusion 
matrix. When the confusion matrix is completed, we can analyze the outcomes in various 
aspects. The fundamental metrics are described in the following sections. 
 
3.5.2. Sensitivity 
Sensitivity or positive recall is used to determine how well the prediction can recognize 
the positive samples. It can be calculated as follows. 
 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                                           (4) 

 
3.5.3. Specificity 
Specificity or negative recall is used to determine how well the prediction can recognize 
the negative samples. It can be calculated as follows. 
 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                                                           (5) 

 
3.5.4. Positive Predictive Value (PPV) 
Positive predictive value or positive precision is used to evaluate how accurate the 
positive prediction is. It can be calculated as follows. 
 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                                                                         (6) 
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3.5.5. Negative Predictive Value (NPV) 
Negative predictive value or negative precision is used to evaluate how accurate the 
negative prediction is. It can be calculated as follows. 
 

𝑁𝑃𝑉 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
                                                                                         (7) 

 
3.5.6. F1-score 
F1-score is a harmonic mean of precision and recall. It is used to evaluate the overall 
performance of classification with the balance between precision and recall. It can be 
calculated as follows. 
 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  
2

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +

1
𝑅𝑒𝑐𝑎𝑙𝑙

 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
   (8) 

 
3.5.7. Area Under the Curve of Receiver Operating Characteristic (ROC-AUC) 
 

 
Figure 3: An example of receiver operating characteristic curve (ROC). 
 
Receiver operating characteristic curve (ROC) shows the tradeoff between sensitivity and 
specificity at different confidence thresholds. As shown in Figure 3, the horizontal axis 
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represents the degree of false positive rate (FPR) which is equal to 1 – specificity, so the 
lower value of false positive rate indicates better specificity. The vertical axis represents 
the scale of true positive rate (TPR) or sensitivity. Since both TPR and FPR are normalized 
values, the ROC is unbiased to the population sizes. Also, the area under the receiver 
operating characteristic curve (ROC-AUC) can be used as a performance matric. The 
higher the ROC-AUC, the better the performance.  
 
3.5.8. Average Precision (AP) 

 

 
Figure 4: An example of precision-recall curve. 
 
Average precision (AP) is calculated by averaging the precisions at different confidence 
thresholds. Also, it can be calculated using the area under precision-recall curve as 
shown in Figure 4.  AP can be used as an evaluation matric that summarizes the balance 
between precision and recall. However, this matric is biased toward the positive 
population. If positive population are heavily dominant, false positive will be trivial. 
Consequently, precision can be very high even when all negative samples are missed. 
 
3.6.  Shapley additive explanations (SHAP) 
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Figure 5: A toy example showing the feature impacts (SHAP values) on the model 
output.  
 
Shapley additive explanations (SHAP) (Lundberg and Lee 2017) is a unified approach 
used to interpret the predictions of machine learning models. It utilizes game theory to 
calculate the impacts of the input features toward the model outputs as illustrated in Figure 
5. It can provide both scales and directions of the input impacts. Also, SHAP can be 
applied to any machine learning model, which makes it a powerful tool for model 
interpretation. We demonstrated the use of SHAP in our experimental results. 
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4. Data description 
 
The data collection of this study was approved by the Institutional Review Board (IRB) of 
the Faculty of Medicine, Chulalongkorn University. Two types of the dataset were 
gathered.  
 
4.1. CT images 
The first is CT images in DICOM format of 651 stroke patients at King Chulalongkorn 
Memorial Hospital (KCMH) collected from 2014 to 2020. Since a patient can have more 
than a series of CT scans, the total number of CT series is 1,217, comprising 60,334 CT 
images. Each CT image was labeled by experienced neurologists to identify the presence 
of a large infarct. A total of 5,840 images were labeled as having large infarcts. However, 
only image-level annotations were obtained due to limited resources. Therefore, the area 
of the infarct is undetermined.  
 
4.2. Clinical information 
The other dataset is a set of clinical information manually extracted from the EHR of KCMH. 
According to the complexity of the manual information extraction, only the clinical data of 
227 stroke patients from 2019 to 2020 were collected. The CT images of these 227 
patients are also included in the aforementioned CT dataset. The clinical information is 
composed of 49 stroke-relevant features as shown in Table 8 in Appendix A. To mitigate 
the curse of dimensionality, these features were deliberately refined into 11 important 
features by experienced neurologists as shown in Table 1. These expert-guided features 
outperform the raw features in our experiments. The Trial of Org10172 in Acute Stroke 
(TOAST) is used as the classification label whether the patients had a cardioembolic 
stroke. TOAST includes 5 subtypes of ischemic stroke: large-artery atherosclerosis (LAA), 
cardioembolism, small-vessel occlusion, a stroke of other determined etiology, and stroke 
of undetermined etiology. A patient with the TOAST of cardioembolism is a target of our 
study. On the other hand, it is unclear whether the patients with undetermined etiology are 
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considered having a cardioembolic stroke. Therefore, we decided to exclude all patients 
with undetermined TOAST from our study. The distribution of TOAST is shown in Table 2. 
 
Table 1: The expert-guided features converted from the stroke-relevant features 
 

Description 
Total samples, 

N=227 
Non-CE 

stroke, N=154 
CE stroke, 

N=73 

Demographics 

Female The patient is female 97 (42.7%) 55 (35.7%) 42 (57.5%) 

Age Age of the patient 65.8 ± 14.3 63.2 ± 13.9 71.4 ± 13.7 

Expert-guided features 

Duration LSN Duration in hours from clear onset or last 
seen normal to CT 

23.7 ± 36.7 28.7 ± 38.3 13.2 ± 30.6 

Duration FSA Duration in hours from clear onset or first 
seen abnormal to CT 

21.5 ± 35.9  26.4 ± 37.4 11.1 ± 30.4 

Gradual onset The patient had stepwise or gradual 
worsening stroke symptoms 

11 (4.8%) 9 (5.8%) 2 (2.7%) 

Peak clear onset The patient had peak stroke symptoms 
at onset 

107 (47.1%) 78 (50.6%) 29 (39.7%) 
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Cortical lobe sign The patient had "Dysphasia/Aphasia" or 

NIHSS 1b = 2 (Answers neither question 
correctly) or 

NIHSS 2 = 2 (Forced eye deviation) or 

NIHSS 3 > 0 (Hemianopia) or 

NIHSS 9 > 0 (Aphasia) or 

NIHSS 11 > 0 (Visual, tactile) 

84 (37.0%) 33 (21.4%) 51 (69.9%) 

Valvular heart disease The patient had "Valvular heart disease" 11 (4.8%) 1 (0.6%) 10 (13.7%) 

Metabolic syndrome The patient had "Diabetes mellitus" or 
"Hypertension" or "Obesity" or 
"Dyslipidemia" 

169 (74.4%) 120 (77.9%) 49 (67.1%) 

Vascular heart disease The patient had "Peripheral arterial 
disease" or "Previous transient ischemic 
attack " or "Previous stroke" or "Coronary 
heart disease" 

81 (35.7%) 52 (33.8%) 29 (39.7%) 

TIA same site The patient had  transient ischemic 
attack at the same site within 2 weeks 

1 (0.4%) 1 (0.6%) 0 (0%) 

Smoking The patient had been smoking 24 (10.6%) 21 (13.6%) 3 (4.1%) 

Data displayed as N (%) or mean ± SD. CE denotes cardioembolic. Age is included as a feature. 
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Table 2: The distribution of TOAST in the clinical data 

TOAST Total samples, N=227 Development set, N=181 Test set, N=46 

Large-artery atherosclerosis 55 (24.2%) 46 (25.4%) 9 (19.6%) 

Cardioembolism 73 (32.2%) 58 (32%) 15 (32.6%) 

Small-vessel occlusion 96 (42.3%) 75 (41.4%) 21 (45.7%) 

Other determined 3 (1.3%) 2 (1.1%) 1 (2.2%) 

5. Proposed method 
5.1. Large infarct detection with PYLON 
Infarct detection is crucial in ischemic stroke diagnosis. The presence of a large infarct 
indicates that there is a blockage in a large blood vessel which can be mainly caused by 
either LAA or cardioembolism. To detect the large infarct in CT images, we used PYLON 
as an image classification model to predict the likelihood of large infarct together with its 
approximate region. The advantage of PYLON is its ability to precisely locate the region 
of interest, the region of large infarct in this study, which is important for interpretability. 
All CT images were extracted using multi-window conversion to expose abnormalities in 
different ranges of density. Each window was obtained by CT windowing, which is 
commonly used during clinical interpretation by adjusting CT's window-width (WW) and 
window-length (WL). Three windows were used in this study including brain window 
(WW=80, WL=40), tissue window (WW=40, WL=40), and blood window (WW=40, 
WL=60). These windows are demonstrated in Figure 6.  
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Figure 6: Examples of CT windowing including the brain-window (WW=80, WL=40) for 
common investigation, tissue-window (WW=40, WL=40) for detecting anomalies in soft 
tissue, and blood-window (WW=40, WL=60) for detecting high density anomalies such 
as blood clots. 
 
For each CT, the 3 windows were converted into 8-bit grayscale images and then stacked 
together as a 3-channel image. The model was trained using these multi-window images 
as the inputs and infarct labels obtained from the neurologists as the targets. For the 
model settings, we used the default parameters which have ResNet-50 pre-trained on 
ImageNet as the encoder. The output dimension of the model was set to 1 for the binary 
classification of the presence of large infarct. Binary cross entropy (BCE) was used as the 
objective function for the model training. 
 
We used PyTorch framework to train the model for 100 epochs with the batch size of 64 
images. We used Adam to optimize the model’s weights with the initial learning rate of 
0.0001. The learning rate was conditionally reduced by the factor of 0.1 if the training 
objective value was not improved after every 10 epochs. The model weights from the 
epoch with the best validation objective value were chosen for evaluation. We trained our 
model on a single NVIDIA A100 GPU. To improve the generalizability of our model, we 
applied several image augmentation techniques including random rotation, random 
resized crop, horizontal flip, random brightness, and random contrast. 
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5.2. Cardioembolic stroke prediction 
We examined two different approaches for fusing the clinical and CT features. The first 
approach is late fusion which simply adds the infarct probability obtained from the infarct 
detection model as an additional feature to the clinical counterpart. Since a CT volume is 
composed of multiple CT slices, we selected the slice with the maximum infarct probability 
as the representative of the volume then used its infarct probability as the additional 
feature. Figure 7A and Figure 7B illustrates the overall architecture of the late fusion 
approach.  
 

 
Figure 7: Overall architectures of our approaches. A, infarct detection model producing 
heatmap for infarct localization. The infarct probability of each CT slice is determined by 
the maximum value of the corresponding heatmap. B, late fusion approach which simply 
concatenates the max infarct probability with the clinical features. The classifier is 
independently trained with the concatenated features. C, joint fusion approach which 
can mutually predict infarct probabilities and extract relevant image features for 
cardioembolic stroke prediction. Joint classifier and clinical-guided attention module are 
jointly trained with the infarct detection model in an end-to-end manner. 
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However, this approach limits the information of CT to the infarct detection outputs which 
are independent of the stroke subtype classification. Accordingly, we proposed another 
approach to jointly fuse the CT and clinical information to enable the training of both infarct 
detection and cardioembolic stroke prediction in an end-to-end manner as shown in 
Figure 7C. With this approach, the relevant CT features can be directly extracted to suit 
the stroke classification task. In addition, to handle the variation of the number of slices in 
an CT series, we developed a clinical-guided attention module to summarize the features 
of multiple CT slices into one piece. The module assigns appropriate weight for each slice 
and then outputs the weighted average features. Subsequently, the condensed CT 
features are concatenated with the clinical features and then fed into a joint classifier to 
predict the risk of cardioembolic stroke. 
 
5.2.1. Clinical-guided attention 
Clinical-guided attention module calculates slice attention weight for each block of the 
averaged image features. We assumed that the image features from a CT slice can 
partially imply some clinical information. Therefore, the similarity between the clinical 
features and the image features can represent the importance of the corresponding CT 
slice. The block of clinical features is linearly transformed into a query vector in 128-
dimensional space. Also, each block of the averaged image features is linearly 
transformed into a key vector with 128 components. Now, the query vector and the key 
vectors are in the same vector space. Thus, the similarity (attention activation) between 
the query vector and the key vector can be represented by the inner product which can 
be obtained by matrix multiplication. Softmax function is used to normalize the attention 
activation to the attention weights. Finally, a single block of the attention weighted image 
features is produced by the matrix multiplication between the blocks of the averaged 
image features and the attention weights.  
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Figure 8: Clinical-guided attention module calculating slice attention weight for each 
block of the averaged image features. 
 
5.2.2. Joint classifier 
Joint classifier module aggregates the clinical features and the image features to predict 
the risk of cardioembolic stroke. Encoder block is used to non-linearly transform the input 
vector into a new vector space which is better fit to the downstream task. ReLu is chosen 
as the non-linear activation function because it is simple, fast and good for gradient 
descent. Layer normalization is used to stabilize the output of the linear layer resulting in 
faster convergence during training. We used 3 encoder blocks to consecutively encode 
the input feature vector. The first, second and third blocks output 128-dimensional, 64-
dimensional and 32-dimensional output feature vectors respectively. The encoded image 
features are concatenated with the clinical features to form a vector of multi-modal 
features. Then, the feature vector is encoded by 3 encoder blocks. Lastly, the encoded 
feature vector is non-linearly transformed by a linear layer with sigmoid activation function 
to produce the probability of cardioembolic stroke. 
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Figure 9: Joint classifier module aggregating the clinical features and the image features 
to predict the risk of cardioembolic stroke  
 
Since the dataset of the cardioembolic stroke prediction task is relatively small, we firstly 
trained the infarct detection model on the full training dataset of NCCT dataset which to 
obtain the pre-trained weights for the subsequent training of the joint-fusion model. Then 
we jointly re-trained the pre-trained infarct detection model along with the clinical-guide 
attention module and the joint classifier on the development dataset of the cardioembolic 
stroke prediction task. There are two objective functions in the joint training process. The 
first objective is to minimize the binary cross entropy (BCE) for the infarct detection task 
in the same way as the pre-training step. Also, the second objective is to minimize the 
BCE for the cardioembolic stroke prediction task. These objectives can be written in a 
unified form as follows. 
 

𝐿𝑜𝑠𝑠𝑗𝑜𝑖𝑛𝑡 =  λ𝑖𝑛𝑓𝐵𝐶𝐸𝑖𝑛𝑓 +  λ𝑐𝑒𝐵𝐶𝐸𝑐𝑒                                                  (9) 
 
Where 𝐿𝑜𝑠𝑠𝑗𝑜𝑖𝑛𝑡 is the unified objective, λ𝑖𝑛𝑓 and λ𝑐𝑒 are the real number coefficients 
for the objective of the infarct detection task (𝐵𝐶𝐸𝑖𝑛𝑓) and the objective of the 
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cardioembolic stroke prediction task (𝐵𝐶𝐸𝑐𝑒) respectively. We used λ𝑖𝑛𝑓 = 1 and 
λ𝑐𝑒 = 1 in our study.  
 
PyTorch framework was used to train the joint fusion model for 30 epochs with the batch 
size of 32 samples. Due to the variation of the number of NCCT slices, each sample 
data including a single clinical feature vector and a set of multi-windowed NCCT images 
was individually fed into the joint-fusion model. The gradient of each sample in the batch 
is accumulated one by one. At the batch end, the model is optimized with the 
accumulated gradient. We used Adam to optimize the model’s weights with the initial 
learning rate of 0.0001. The learning rate was conditionally reduced by the factor of 0.1 
if the unified training objective value was not improved after every 10 epochs. The model 
weights from the epoch with the best validation objective value were chosen for 
evaluation. We trained our model on a single NVIDIA A100 GPU. To improve the 
generalizability of our model, we applied several image augmentation techniques 
including random resized crop, random brightness, and random contrast. 
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6. Experimental results 
6.1. Experiment setup 
We assessed 7 common machine learning classifiers for distinguishing between 
cardioembolic and non-cardioembolic strokes following the late fusion approach, 
including K-Nearest Neighbors (KNN), Logistic Regression (Logistic), Support Vector 
Machine (SVM), Decision Tree (Tree), Random Forest (RF), eXtreme Gradient Boosting 
(XGBoost) and Multi-Layer Perceptron (MLP). For the joint fusion approach, we only 
assessed the performance of the proposed joint fusion model. 
We defined the cardioembolic risk estimation of stroke patients as a binary classification 
problem. The patients with the TOAST classification of cardioembolism were labeled as 
the target or positive samples, while the rest were labeled as negative. This results in a 
total number of 73 positive samples and 154 negative samples. These samples were 
randomly split into a development set and a test set of 184 and 46 samples respectively. 
Then, the development set was split into train set and validation set using stratified k-fold 
with k equal to 5. The split of these samples is shown in Table 3. For the CT image dataset, 
the images of the 227 patients were split by patient’s ID to match the split of the previous 
dataset. Also, the images of the remaining 424 patients were split by patient’s ID using 
the same strategy as mentioned earlier. The splitting label for the stratified k-fold of the 
remaining patients was the indicator of whether the patient has an image with a large 
infarct label. Table 4 illustrates the distribution of the numbers of images in each split. 
 
Table 3: The number of samples (and the positive samples) in each split of the clinical 
information for the cardioembolic risk estimation task. 
Set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Train 144 (46) 145 (47) 145 (47) 145 (46) 145 (46) 

Validation 37 (12) 36 (11) 36 (11) 36 (12) 36 (12) 

Test 46 (15) 46 (15) 46 (15) 46 (15) 46 (15) 
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Table 4: The number of images (and the images with large infarct) in each split of the 
CT dataset for the large infarct detection task. 
Set Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 

Train 37,965 (4,001) 38,391 (3,597) 38,636 (3,695) 39,389 (3,906) 39,067 (3,697) 

Validation 10,397 (723) 9,971 (1,127) 9,726 (1,029) 8,973 (818) 9,295 (1,027) 

Test 11,972 (1,116) 11,972 (1,116) 11,972 (1,116) 11,972 (1,116) 11,972 (1,116) 

 
6.2. Performance comparison 
 
6.2.1. Large infarct detection in CT image 
Our approach achieved high performance in the large infarct detection task, image-level 
binary classification in this context, with the average area under the receiver operating 
characteristic curve (ROC-AUC) over 90 percent. Also, we compare the performance of 
the model trained with multi-window CT images to that of the model trained with only 
regular brain-window CT images. The overall performance of the latter was slightly inferior 
as shown in Table 5 and Figure 10.  
 
Table 5: The comparison of ROC-AUC on the test set of infarct detection task 

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 AVG. STD. 

Brain-window 0.9102 0.9147 0.9058 0.9152 0.8936 0.9079 0.0079 

Multi-window 0.9184 0.8839 0.9168 0.9160 0.9115 0.9093 0.0129 
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Figure 10: ROC comparison between brain-window and multi-window. 
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In contrast, the average precisions of these two approaches are comparable. Although 
multi-window performed better in 3 folds, its average performance is slightly lower than 
that of the brain-window as illustrated in Table 6 and Figure 11.  
 
Table 6: The comparison of average precision on the test set of infarct detection task 

Approach Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 AVG. STD. 

Brain-window 0.6552 0.6660 0.6396 0.6751 0.6126 0.6497 0.0220 

Multi-window 0.6725 0.5961 0.6669 0.6636 0.6319 0.6462 0.0287 

 

 
Figure 11: PRC comparison between brain-window and multi-window. 
 
6.2.2. Cardioembolic stroke prediction 
By using the infarct probability in addition to the clinical features for cardioembolic stroke 
prediction task, the performances of all classifiers improve as demonstrated in Table 7. 
Among the 7 late fusion classifiers, SVM outperformed the others with the average ROC-
AUC of 78.8% when using full clinical features, and 81.8% when using the expert-guided 
features. K-nearest neighbors, random forest and multi-layer perceptron with expert-
guided features also performed relatively well with the mean ROC-AUC greater than 78%. 
On the other hand, the joint fusion method with the clinical-guided attention module 
achieved the best performance with the average ROC-AUC of 84.0%. 
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Table 7: The comparison of ROC-AUC on the test set of the stroke prediction task. 

*Data displayed as mean (SD) 
 
6.3. Interpretability 
 
6.3.1. Localization of large infarct in CT image 
With PYLON, the region of the large infarct is simultaneously provided together with its 
probability in a single inference. This is similar to the segmentation problem that requires 
pixel-level annotations to supervise the training process. Nonetheless, our approach 
needs only image-level annotation to achieve localization capability. The predicted 
outcome can be converted into a heatmap as illustrated in Figure 12. 
 

 

Approach Tree XGBoost Logistic RF KNN MLP SVM 
Joint 

Fusion 

Full clinic 
0.64 

(0.05) 
0.69 

(0.03) 
0.71 

(0.04) 
0.75 

(0.05) 
0.64 

(0.05) 
0.71 

(0.05) 
0.78 

(0.03) 
 

Expert clinic 
0.68 

(0.02) 
0.74 

(0.03) 
0.77 

(0.01) 
0.77 

(0.02) 
0.75 

(0.06) 
0.77 

(0.03) 
0.80 

(0.07) 
 

Full clinic + CT 
0.74 
(0.05) 

0.73 
(0.05) 

0.71 
(0.03) 

0.77 
(0.02) 

0.66 
(0.09) 

0.73 
(0.05) 

0.79 
(0.02) 

0.72 
(0.07) 

Expert clinic + CT 
0.72 

(0.02) 
0.75 
(0.04) 

0.77 
(0.01) 

0.78 
(0.03) 

0.78 
(0.03) 

0.80 
(0.02) 

0.82 
(0.06) 

0.84 
(0.02) 
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Figure 12: An example of large infarct localization with only image-level annotation. The 
heatmap color on the right represents the probability that the pixel is part of the large 
infarct region. 
 
6.3.2. Feature explanation 

 
Figure 13: SHAP values indicating the impact of the input features on the joint-fusion 
model output. Positive impacts increase the value of output probability, while negative 
impacts reduce the output probability. The most impactful features are sorted from top 
to bottom. The feature values are displayed in color, blue color indicates low feature 
value while red color indicates high feature value. Image features are denoted by 
“img_f”. 
 

Trust is a key to enabling the adoption of machine learning in the real world, especially in 
healthcare.  Therefore, it is important to be able to understand the decision of the model.  
SHAP value is a way to interpret the impact of each input feature on the model output. By 
applying SHAP to our model, from Figure 13, the most impactful features are cortical lobe 
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sign, image features, age, onset and valvular heart disease. The impacts of these features 
are consistent with medical knowledge. The presence of cortical lobe signs increases the 
risk of cardioembolic stroke. Also, older patients tend to have a higher risk of atrial 
fibrillation (AF) which is a potential cause of cardioembolic stroke. Moreover, the damage 
caused by cardioembolic stroke is likely to be severe leading to highly noticeable 
symptoms. Thus, the people around can quickly detect and call for help. This 
demonstrates that our model’s decision was interpretable and reasonable. 
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7. Discussion 
 
The results in the infarction detection section were quite counterintuitive because of the 
negligible effect of multi-window conversion previously perceived as very helpful. This 
suggests that only brain-window might be sufficient for the task. Nevertheless, we decided 
to continue to apply multi-window conversion since it often outperformed the brain-
window. Another concern with this dataset is the high degree of imbalance. This reflects 
on the low AP’s. We tried several techniques to tackle this problem such as oversampling 
and Focal loss. Unfortunately, they were not effective. 
 
For cardioembolic stroke prediction, it is obvious that the combination of CT and expert-
guided features achieved the best performance. CT alone might not be sufficient to 
classify ischemic stroke subtypes. Particularly for the patients with early hospital 
admission, their brain tissue may look normal, so CT might not capture any abnormality. 
Conversely, clinical information could be analyzed to infer the subtypes of stroke. This 
could be explained by the fact that the cause of stroke is a brain injury. Thus, the location 
of the brain damage could be inferred by the characteristic of the stroke symptoms. 
Adding only infarct probability to the clinical features could provide performance gain to 
all the proposed classifiers. Furthermore, jointly training the infarct detection task and the 
cardioembolic stroke prediction task with the clinical-guided attention module yielded 
even better results. However, it is quite difficult to learn the relationship between the 
symptoms and brain damage if the data is small. We had only 227 samples while the size 
of the clinical features is 49. This could introduce the curse of dimensionality and harm 
the model performance. Fortunately, with expert-guided features whose dimension is only 
11, the model performances were significantly improved. Although the integration of CT 
and expert-guided features were effective, the best performance was still moderate with 
the best ROC-AUC of 0.86. We found that our model often misclassified large artery 
atherosclerosis as cardioembolism as demonstrated in Figure 14. This may be due to the 
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similarity of the clinical and brain imaging findings between them. Therefore, we may need 
additional information or more amount of data to reach higher performance.  
Our study had several limitations.  The dataset used in the development of the stroke 
classification models was relatively small (N=227). This may limit the generalization 
performance of our machine learning models. Thus, to scale for practical usage, a larger 
dataset is recommended to improve the model’s robustness. Moreover, although the 
interpretation of the clinical features was comprehensible, the image features extracted 
from the infarct detection model were obscure. This could be considered as the trade-off 
between interpretability and performance, using only infarct probability as the image 
feature was interpretable while using the extracted image features yielded better 
performance. 
 

 

 

Figure 14: Summary of the performance on the test set in fold 2 using both max CT 
score and expert-guided features as the input. (a) Confusion matrix divided into 4 
classes of TOAST, the prediction threshold was selected based on the optimal 
sensitivity score on the validation set. The majority of false-positive is large artery 
atherosclerosis which is similar to cardioembolism in both clinical and brain imaging 
findings. (b) ROC of the corresponding cardioembolic stroke prediction task with AUC 
= 0.86. (c) Precision-Recall curve of the task with the average precision of 0.80.  
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8. Conclusion 
8.1. Conclusion 
Our study demonstrates how the risk of cardioembolic stroke can be estimated using both 
clinical information and non-contrast CT images which are normally available in general 
hospitals. Our approach not only provides the evaluation of the risk of cardioembolic 
stroke but also provides the interpretability of the model decision in the forms of the 
heatmap for large infarct localization and the feature impacts for interpretation.  The large 
infarct detection performance achieved the average ROC-AUC of 0.909 with only image-
level annotations from experienced neurologists. Even with the small data of 227 samples, 
our method was able to reach the average ROC-AUC of 0.840 in cardioembolic stroke 
prediction. 
 

8.2. Future work 
Despite the accomplishment of combining the clinical and non-contrast CT features in our 
current work, the proposed method limits the role of clinical information to the calculation 
of the slice attention weights. To further exploit the clinical information, it could be used to 
determine the important regions within CT images to further extract more informative CT 
features. If this is possible, it may not only benefit the model performance but also the 
interpretability of the CT features. Therefore, we suggest the extraction of spatial CT 
features based on the clinical information as a potential direction for the future work. 
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9.  Appendix A. Data description for the 49 stroke-relevant features 
 
Table 8: The stroke-relevant features manually extracted from EHR 
 

Description 
Total samples, 

N=227 
Non-CE stroke, 

N=154 
CE stroke, 

N=73 

Demographics 

Female The patient is female 97 (42.7%) 55 (35.7%) 42 (57.5%) 

Age Age of the patient 65.8 ± 14.3 63.2 ± 13.9 71.4 ± 13.7 

Full stroke-relevant features 

Duration LSN Duration in hours from clear onset or last 
seen normal to CT 

23.7 ± 36.7 28.7 ± 38.3 13.2 ± 30.6 

Duration FSA Duration in hours from clear onset or first 
seen abnormal to CT 

21.5 ± 35.9  26.4 ± 37.4 11.1 ± 30.4 

Wake-up onset The patient woke up with stroke symptoms 54 (23.8%) 38 (24.7%) 16 (21.9%) 

Peak clear onset The patient suddenly showed stroke 
symptoms at onset 

148 (65.2%) 95 (61.7%) 53 (72.6%) 

Gradual onset The patient had stepwise or gradual 
worsening stroke symptoms 

11 (4.8%) 9 (5.8%) 2 (2.7%) 
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Rapidly improve The patient had rapidly improving stroke 
symptoms 

2 (0.9%) 2 (1.3%) 0 (0%) 

Heart rate Heart rate of the patient (BPM) 82.2 ± 16.4 80.5 ± 13.3 85.8 ± 21.3 

SBP Systolic blood pressure (mmHg) 156.1 ± 26.1 157.6 ± 26.5 152.8 ± 25 

DBP Diastolic blood pressure (mmHg) 87.6 ± 16.8 88.3 ± 15.6 86.1 ± 19.3 

NIHSS 1a Level of consciousness 0.2 ± 0.5 0.1 ± 0.3 0.4 ± 0.7 

NIHSS 1b Level of consciousness questions 0.3 ± 0.7 0.1 ± 0.5 0.8 ± 0.9 

NIHSS 1c Level of consciousness commands 0.2 ± 0.6 0.1 ± 0.4 0.5 ± 0.8 

NIHSS 2 Best gaze 0.3 ± 0.7 0.1 ± 0.4 0.7 ± 0.9 

NIHSS 3 Visual field 0.2 ± 0.6 0.1 ± 0.3 0.5 ± 0.9 

NIHSS 4 Facial palsy 0.8 ± 0.9 0.6 ± 0.8 1.1 ± 1 

NIHSS 5a Motor arm (left) 0.8 ± 1.2 0.6 ± 1 1.2 ± 1.5 

NIHSS 5b Motor arm (right) 0.7 ± 1.2 0.5 ± 0.9 1 ± 1.6 

NIHSS 6a Motor leg (left) 0.7 ± 1.2 0.5 ± 0.9 1.3 ± 1.5 

NIHSS 6b Motor leg (right) 0.6 ± 1.1 0.4 ± 0.9 1 ± 1.5 
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NIHSS 7 Limb ataxia 0.2 ± 0.5 0.2 ± 0.5 0.2 ± 0.4 

NIHSS 8 Sensory 0.5 ± 0.6 0.4 ± 0.5 0.6 ± 0.7 

NIHSS 9 Best language 0.5 ± 1 0.2 ± 0.7 1 ± 1.3 

NIHSS 10 Dysarthria 0.6 ± 0.7 0.5 ± 0.6 0.8 ± 0.7 

NIHSS 11 Extinction and inattention 0.2 ± 0.6 0.1 ± 0.4 0.6 ± 0.9 

Alteration of 
consciousness 

The patient had alteration of consciousness 
22 (9.7%) 6 (3.9%) 16 (21.9%) 

Right facial weakness The patient had right facial weakness 30 (13.2%) 14 (9.1%) 16 (21.9%) 

Left facial weakness The patient had left facial weakness 43 (18.9%) 24 (15.6%) 19 (26%) 

Right hemiparesis The patient had right hemiparesis 80 (35.2%) 52 (33.8%) 28 (38.4%) 

Left hemiparesis The patient had left hemiparesis 87 (38.3%) 55 (35.7%) 32 (43.8%) 

Right hypoesthesia The patient had right hypoesthesia 24 (10.6%) 20 (13%) 4 (5.5%) 

Left hypoesthesia The patient had left hypoesthesia 21 (9.3%) 18 (11.7%) 3 (4.1%) 

Dysarthria The patient had dysarthria 72 (31.7%) 49 (31.8%) 23 (31.5%) 

Dysphasia/aphasia The patient had dysphasia/aphasia 42 (18.5%) 15 (9.7%) 27 (37%) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

Ataxia The patient had ataxia 19 (8.4%) 17 (11%) 2 (2.7%) 

Vertigo The patient had vertigo 13 (5.7%) 11 (7.1%) 2 (2.7%) 

Diplopia The patient had diplopia 2 (0.9%) 1 (0.6%) 1 (1.4%) 

Visual problem The patient had visual problem 11 (4.8%) 5 (3.2%) 6 (8.2%) 

TIA same site Transient ischemic attack (TIA) at the same 
site within 2 weeks 

1 (0.4%) 1 (0.6%) 0 (0%) 

Previous TIA The patient previously had TIA 0 (0%) 0 (0%) 0 (0%) 

Previous stroke The patient previously had stroke 54 (23.8%) 37 (24%) 17 (23.3%) 

HT The patient had hypertension 147 (64.8%) 102 (66.2%) 45 (61.6%) 

DM The patient had diabetes mellitus 78 (34.4%) 58 (37.7%) 20 (27.4%) 

DLP The patient had dyslipidemia 86 (37.9%) 64 (41.6%) 22 (30.1%) 

Valvular heart disease The patient had valvular heart disease 11 (4.8%) 1 (0.6%) 10 (13.7%) 

Coronary heart disease The patient had coronary heart disease 33 (14.5%) 18 (11.7%) 15 (20.5%) 

CKD The patient had chronic kidney disease 16 (7%) 7 (4.5%) 9 (12.3%) 
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Peripheral arterial 
disease 

The patient had peripheral arterial disease 
2 (0.9%) 1 (0.6%) 1 (1.4%) 

Obesity The patient had obesity 1 (0.4%) 1 (0.6%) 0 (0%) 

Smoking The patient had been smoking 24 (10.6%) 21 (13.6%) 3 (4.1%) 

Malignancy The patient had malignancy 13 (5.7%) 6 (3.9%) 7 (9.6%) 

Data displayed as N (%) or mean ± SD. CE denotes cardioembolic. Age is included as a feature. 
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