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บทคัดย่อ 

 

ในงานวิจัยน้ี แผ่นเยื่อบางพอลิเบนซอกซาซีน, แผ่นเยื่อบางโซเดียม-เอและพอลิเบนซอกซาซีนแบบ

สองช้ัน, และ แผ่นเย่ือบางโซเดียม-เอและพอลิเบนซอกซาซีนแบบเมตริกซ์ผสม ถูกเตรียมข้ึนบนตัวรองรับอลูมิ

นาด้วยวิธีการชุบเคลือบเพ่ือใช้สําหรับกระบวนการแยกสารผสมระหว่างเอทานอลกับนํ้าโดยวิธีเพอแวปพอเร

ชัน ผลของตัวแปรในขณะเตรียมแผ่นเย่ือบางและในขณะทดสอบ ซึ่งได้แก่ ความเข้มข้นของสารต้ังต้นพอลิเบน

ซอกซานซีน, ระยะเวลาที่ใช้เคลือบซีโอไลท์โซเดียม-เอ, ปริมาณซีโอไลท์โซเดียม-เอที่เติมเข้าไป, ความเข้มข้น

ของเอทานอลในสารผสม, และ อุณหภูมิในขณะทดสอบ ที่มีต่อประสิทธิภาพของกระบวนการเพอแวปพอเรชัน

ได้ถูกศึกษาและอภิปราย มีการทดสอบการบวมตัวของแผ่นเย่ือเพ่ือศึกษากลไลที่เก่ียวข้องในกระบวนการเพ

อแวปพอเรชัน ผลลัพธ์ที่ได้แสดงให้เห็นว่า แผ่นเย่ือบางพอลิเบนซอกซาซีนที่สังเคราะห์จาก บิสฟีนอล-เอ, 

ฟอร์มาลดีไฮด์, และ เฮกซะเมทิลีนไดเอมีน ให้ประสิทธิภาพของการเพแวปพอเรชันที่ดีที่สุด ด้วยค่าฟลักซ์ของ

การซึมผ่านอยู่ในช่วง 23 ถึง 33 กรัม ต่อตารางเมตร เชนติเมตร และค่าการแยกท่ีมากกว่า 10,000 ซึ่งค่าฟ

ลักซ์ของการซึมผ่านสามารถเพิ่มข้ึนได้ถึง 106 กรัม ต่อตารางเมตร เชนติเมตร เมื่อใช้แผ่นเยื่อบางโซเดียม-เอ

และพอลิเบนซอกซาซีนแบบสองช้ัน 

นอกจากนี้ เมื่อใช้แผ่นเย่ือบางโซเดียม-เอและพอลิเบนซอกซาซีนแบบเมตริกซ์ผสม พบว่า ทั้งค่าฟ

ลักซ์ของการซึมผ่านและค่าการแยกมีค่าเพ่ิมขึ้นตามการเพ่ิมขึ้นของปริมาณซีโอไลท์โซเดียม-เอ ที่ใส่เข้าไป โดย

ปริมาณการซีโอไลท์โซเดียม-เอที่เหมาะสม (15 เปอร์เซ็นต์โดนนํ้าหนัก) ให้แผ่นเย่ือบางที่ให้ค่าฟลักซ์ของการ

ซึมผ่านสูงที่สุดที่ 725 กรัม ต่อตารางเมตร เชนติเมตร ด้วยค่าการแยกท่ีมากกว่า 100,000 
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Abstract 

 

In this research, polybenzoxazine (PBZ) membrane, NaA-PBZ double layered 

membrane, and NaA-PBZ mixed matrix membrane were prepared on tubular α-Al2O3 

support by dip-coating technique for separating ethanol-water mixture via pervaporation. 

Effects of preparation parameters and operating parameters, including PBZ precursor 

concentrations, number of dipping, type of PBZ precursor, NaA zeolite coating time, amount 

of NaA zeolite loading, feed ethanol concentration, and operating temperature, on the 

pervaporation performance were studied and discussed. Swelling tests of each prepared 

membranes were also conducted to determine the mechanisms involved in pervaporation. 

The results showed that the PBZ membrane synthesized from bisphenol-A, formaldehyde, 

and hexa-methylenediamine (HDA) provided the best pervaporation performance with total 

permeation flux in a range of 23–33 g m-2 h-1 and separation factor more than 10,000. It was 

also found that the total permeation flux was improved, up to 106 g m-2 h-1, when the NaA-

PBZ double layered membrane was introduced. 

Moreover, in the case of NaA-PBZ mixed matrix membrane, both the total 

permeation flux and the separation factor were increased with increasing amount of NaA 

zeolite loading. The optimal amount of NaA zeolite loading was to use 15wt% NaA zeolite, 

providing the highest total permeation flux of 725 g m-2 h-1 with the separation factor of 

higher than 100,000.      
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CHAPTER I 

INTRODUCTION 

 

 

Pervaporation, a type of membrane separation techniques, is well-known for 

separating azeotropic and close-boiling point mixtures. It plays an important role in 

production of ethanol fuel from ethanol-water mixture due to its advantages over the 

other separation processes in many aspects, including; less intensive energy, no 

azeotrope, no need for harsh chemicals, less space requirement for installation, etc. 

(O’Brien et al., 2000). However, because the economic feasibility of the pervaporation is 

significantly dependent of the production cost and the membrane performance, thus, the 

deployment of a high performance membrane must be a major focus for developing a 

cost-effective ethanol manufacturing process (Di Luccio et al., 2002). 

A polymeric membrane is commonly selected due to its high processability and 

low production cost. One of the most interesting polymer for preparing a polymeric 

membrane is polybenzoxazine (PBZ), a novel class of high performance phenolic resin, 

due to its many interesting aspects, such as high thermal, chemical, and mechanical 

stability (Takeichi et al., 2005). However, similar to most of the pervaporation membranes, 

partially crosslinked PBZ membrane still faced a problem of swelling, drastically reducing 

the membrane stability and separation performance (Pakkethati et al., 2011; Qiao and 

Chung, 2005; Zhang et al., 2006). To overcome this issue, use of the fully crosslinked 

polymeric membrane is one way for reducing the swelling and improving the membrane 

durability. Although an increase in the degree of the polymer crosslinking causes a 
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reduction of the swelling behavior, the resulting lower permeation flux and flexibility 

become major drawbacks (Hilmioglu and Tulbentci, 2004; Praptowidodo, 2005). 

 The ceramic-supported, crosslinked polymeric membrane should be a promising 

solution for producing higher stability and separation performance of the membrane while 

the permeation flux is still maintained if the thickness of the polymer membrane is thin 

enough (Huang et al., 1999). Many researchers found that using a ceramic support could 

improve not only the membrane stability, but also its separation performance (Liu et al., 

2012; Zhu et al., 2010). 

 

Objectives 

The purpose of this research is to determine the optimum conditions for 

preparing ceramic-supported PBZ-based membranes, which are; α-Al2O3 supported PBZ 

membranes, α-Al2O3 supported NaA-PBZ double layered membranes, and α-Al2O3 

supported NaA-PBZ mixed matrix membranes (NaA-PBZ MMM), by investigating the effect 

of preparation parameters, such as; PBZ precursor concentration, dipping time, NaA 

zeolite coating time, and amount of NaA zeolite loading, on the membrane formation and 

performance of ethanol/water separation via pervaporation. The operation parameters, 

such as; feed ethanol concentration and operating temperature, were also studied and 

discussed, as well. 
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CHAPTER II 

LITERATURE REVIEW 

 
 

2.1  Bioethanol 

Bioethanol is a natural alcohol obtained via fermentation, mostly from starches, 

sugars, and cellulosic materials, by microorganisms (Mamma et al., 1996; Sheikh et al., 

2013). It was considered as a renewable energy source and has received more attentions 

as an alternative energy for replacing fossil fuel usage due to the increasing of global 

concerns about the depletion of fossil fuel in over the last decade (Tao et al., 2005). 

However, due to the limitations of fermentation process, the produced ethanol has a very 

low concentration, approximately 10-12 wt%. To overcome the problem, a purification 

process is necessary (Chen et al., 2014).  

 
2.2  Pervaporation 

2.2.1  Introduction to pervaporation technology 

Pervaporation is a separation of liquid-liquid mixture using a selective 

membrane. It is a well-known technique that used to break the azeotropic mixture and 

separate close-boiling point mixture that cannot be accomplished by using normal 

distillation (Chapman et al., 2008). Pervaporation is also known as a less energy-intensive 

technique for separating ethanol-water mixture when comparing to distillation and other 

conventional separating techniques (Kunnakorn et al., 2013).  

The liquid mixture is fed at upstream side (ambient pressure) to contact 

with the selective membrane that allows the desired component to transport through 
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(which is called “permeate”) and prevents the other components from passing through 

(which is called “retentate”). Meanwhile, the downstream side is being held under 

vacuum that causes permeate to be evaporated. The retentate is concentrated by 

recycling back to the feed reservoir, as shown in Fig. 2.1. 

 

Figure 2.1  Schematic diagram of pervaporation process (Chapman et al., 2008) 

 

The pervaporation performance can be determined by two parameters, 

permeation flux and separation factor, that imply to productivity and quality of the 

separation, as given in eq. 2.1 and 2.2, respectively. 

The permeation flux (J, g m-2 h-1) is expressed as: 

tA

W
J


           (2.1) 

where W is the weight of permeate (g), A is the effective membrane area (m2), and t is the 

pervaporation time (h). 

The separation factor (α, dimensionless) is expressed as: 

tEtOH

OH

PerEtOH

OH

w

w

w

w

Re

2

2



















          (2.2) 
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where wH2O and wEtOH are the weight fractions of water and ethanol from the permeate 

side (denoted as Per) and the retentate side (denoted as Ret), respectively.  

 

2.2.2  Membranes for pervaporation dehydration of ethanol 

To maximize the pervaporation performance, a development of membrane 

that has high separation performance, high chemical stability, and high mechanical 

strength must be a major focus (Sun et al., 2013). 

 

2.2.2.1  Polybenzoxazine membrane 

Polybenzoxazine (PBZ) is a class of high performance thermosetting 

phenolic resin, obtaining from the polymerization of benzoxazine resin via thermally 

activated ring-opening reaction (Fig. 2.2). A primary amine, phenol, and phenolic 

compound are used as a starting materials for synthesize benzoxazine resin (Burke and 

Stephens, 1952; Ghosh et al., 2007). 

 

Figure 2.2  Benzoxazine polymerization (Hacaloğlu et al., 2011) 

 

PBZ has been attracted great attention for serving as separating 

membrane in pervaporation applications due to its high thermal, mechanical, and 

chemical stability (Takeichi et al., 2005). The potential of using PBZ as the pervaporation 



6 
 

membrane for separating ethanol/water mixture was studied by Pakkethati et al. (2011). 

They synthesized three different PBZs from bisphenol-A (BPA), formaldehyde, and three 

different primary diamines; hexamethylenediamine (HDA), tetraethylenepentamine (TEPA), 

and tetraethylenetriamine (TETA) to prepare poly(BA-hda), poly(BA-tepa), and poly(BA-

teta) membrane, respectively. It was found that all PBZ membranes exhibited an 

excellent thermal stability up to 240 °C. The pervaporation of 10 wt% feed ethanol 

mixture at 70 °C showed that the poly(BA-hda) membrane provided the highest durability 

with a service time longer than 120 h, a maximum permeation flux of 1.52 kg m-2 h-1, and 

separation factor of more than 10,000, indicating outstanding separation performance for 

the ethanol/water separation, leading to a great potential of using PBZ membrane in 

water/ethanol separation applications. 

 
2.2.2.2  Sodium A (NaA) zeolite membrane 

NaA zeolite (also referred as zeolite A or 4A zeolite) is sodium 

aluminosilicate with Linde Type A (LTA) framework. Because NaA zeolite has a well-

defined pore opening of about 4 Å, it provides molecular-sieving effect for separating 

water (kinetic diameter of 2.6 Å) and ethanol molecules (kinetic diameter of 5.2 Å) (Shah 

et al., 2000). In 2006, Kuanchertchoo et al. proposed an effective method for synthesizing 

uniform nano-sized NaA zeolite particles by using silatrane and alumatrane as a precursor. 

They also found that the optimum conditions for synthesizing the most uniform and 

smallest size of NaA zeolite particles was to use SiO2:Al2O3:3Na2O:410H2O synthesis 

formula with addition of 3 wt% NaA zeolite seed and using microwave heating at 80 °C for 
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6 h (Kuanchertchoo et al., 2006). However, in order to prepre a NaA zeolite membrane, 

the continuous layer of NaA zeolite must be formed. One of the most effective technique 

to prepare a continuous NaA zeolite layer was proposed by Huang et al. (2004), see Fig. 

2.3. They successfully synthesized NaA zeolite membrane on a tubular alumina support 

by using a technique called secondary growth with vacuum seeding method. The result 

showed that vacuum could help in reducing the influence of gravitational force on the 

NaA zeolite particles, allowing them to be attached on the support surface more 

homogeneously, resulting in the NaA zeolite membrane formed on the support more 

uniformly (Huang et al., 2004). 

 

 

Figure 2.3  Mechanisms of zeolite membrane formation by hydrothermal synthesis. 

(a)Without vacuum assistance, (b) with vacuum assistance. FC: capillary force, FV: vacuum 

force, FG: gravitation force, and FR: resultant force (Huang et al., 2007). 
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CHAPTER III 

EXPERIMENTAL 

 
 
3.1 Materials 

Formaldehyde (CH2O, 37 wt% in water; Merk), bisphenol-A (BPA, 97% purity; 

Aldrich), tetraethylenepentamine (TEPA, 85% purity, Aldrich) and diethylenetriamine 

(DETA, 99% purity; Aldrich), and hexamethylenediamine (HDA, 98% purity; Aldrich) were 

used for PBZ precursor synthesis in 1,4-dioxane (analytical grade; RCI Labscan) as a 

solvent. Ethanol (absolute; RCI Labscan) mixed with deionized water was used as 

pervaporation feed. Sodium hydroxide (NaOH, 99% purity; RCI Labscan), aluminum 

hydroxide hydrate (Al(OH)3·xH2O; Sigma), and fumed silica (SiO2, AEROSIL® 380; supported 

by Evonik) were used to synthesize NaA zeolite. Tubular α-alumina support with inner 

and outer diameters of 9 and 11 mm, respectively, was purchased from the National 

Metal and Materials Technology Center (MTEC). It was cut to 6 cm long, cleaned with 

deionized water using an ultra-sonic bath, dried in an oven, and calcined in a furnace at 

400 ºC for 3 h to remove any organic impurities before being used. 

3.2 Synthesis of PBZ precursors 

The PBZ precursor was synthesized using quasi-solventless method with 1:1:4 

(phenolic compound : primary amine : formaldehyde) formula (Pakkethati et al., 2011). 

Prior to the synthesis, phenolic compound (i.e. BPA) and primary amine (e.g. HDA, TEPA, 

and DETA) were prepared according to their state obtained from vendor, for example, BPA 

and HDA are solid at room temperature so they are required to dissolved into 1,4-dioxane 
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to prepare BPA and HDA solution before being used for synthesis; on the other hand, 

TEPA and DETA are liquid thus they can be used directly from the bottle. To synthesize 

PBZ precursor, formaldehyde was added into BPA solution and stirred until a 

homogeneous mixture was obtained. The amine was then added dropwise into the 

mixture and stirred until a yellow viscous solution of PBZ precursor was obtained. 

However, in case of using HDA, it is important to keep the BPA/CH2O mixtures in an ice 

bath under 10 °C before adding HDA solution into it, to suppress the side reactions. After 

that, the pretreatment at 80 °C was also required for obtaining the yellow viscous 

solution. Finally, the obtained PBZ precursor was diluted with solvent to 5–25 wt% PBZ 

concentrations before being used in membrane preparation step. 

 
3.3 Synthesis of NaA zeolite particles 

The NaA zeolite particles was synthesized via oxide one-pot synthesis (OOPS) 

using Al2O3:SiO2:3Na2O:410H2O formula as was described elsewhere (Kuanchertchoo et al., 

2006). Firstly, Sodium hydroxide was dissolved in deionized water, followed by adding 

aluminum hydroxide hydrate, and fumed silica, respectively. The mixture was stirred 

overnight before heating treatment in a microwave oven (Milestone - ETHOS SEL) set at 60 

ºC for 10 h. The obtained particle was washed with deionized water, dried, and calcined 

at 550 °C for 3 h. 

 
3.4 Preparation of PBZ membrane 

The PBZ was coated on the outer surface of the support using dip-coating 

technique. A PTFE cap was used to clog at both ends of the support to prevent coating at 
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inside. The support was then dipped into the PBZ precursor solution and dried in oven at 

100 ºC for 30 min. The process between dipping and drying were continuously done in 

cycle which was counted as the number of dipping cycle. The final sample was heated in 

an oven to convert PBZ precursor to PBZ membrane. 

 
 
3.5 Preparation of NaA-PBZ double layered membrane 

A NaA zeolite particles was coated on the support using vacuum-assisted method 

according to seeding method proposed by Huang et al. (Huang et al., 2004; Huang et al., 

2007). The support was closed at one side using a PTFE cap and connect with a vacuum 

pump the other side. The support was immersed in the NaA zeolite suspension and 

applied vacuum. After the coating, the support was dried in oven. Finally, the support was 

coated with PBZ precursor in a similar way as preparing PBZ membrane. 

  

3.6 Preparation of NaA-PBZ mixed matrix membrane 

The method for preparing the PBZ membrane as was described previously is also 

used in this case, except that NaA zeolite was first added to the PBZ precursor and 

dispersed by ultra-sonication before the dip-coating procedure. 

 

3.7 Characterizations 

1  Equipment 

Differential scanning calorimeter (DSC; Mettler Toledo – DSC-822e) was 

used to determine the crosslinking temperature of the PBZ precursor using a heating rate 
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of 10 ºC min-1 under N2 flow. Thermogravimetric analyzer (TGA; PerkinElmer) was used to 

investigate thermal behavior of the PBZ using heating rate of 20 °C min-1 under N2 flow. X-

ray diffractometer (XRD; Rigaku - Smartlab), using CuKα as the X-ray sources, was used to 

confirmed the structure of zeolite. Scanning electron microscope (SEM; Hitachi – TEM 

3000) and field emission scanning electron microscope (FE-SEM; Hitachi – S-4800) were 

used to identify the morphology of the synthesized zeolite and to measure the thickness 

of the prepared membrane.  

 
 

2  Pervaporation testing 

The pervaporation system was carried out at 70 ºC and the pressure of 

permeate side was maintained constantly at 10 mmHg using vacuum pump (Edwards). A 

peristaltic pump (Masterflex) was used to feed the mixture of ethanol and water. The 

effect of number of dipping cycle and PBZ concentration on separation performance were 

investigated using fixed 50:50 (ethanol:water, w/w) feed mixture. The effect of ethanol-

water ratio in feed on optimized membrane was studied with feed ratios of 10:90, 30:70, 

50:50, 70:30 and 90:10. The quantities of ethanol and water from both retentate and 

permeate sides were determined using Gas Chromatography (GC; Agilent – 3890N) 

equipped with TCD detector using He as a carrier gas.  

 
3  Swelling behavior of membrane  

The test on swelling was conducted to investigate the separation 

mechanism of the membrane. A piece of thin membrane film was submerged under 
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various solvents ranging from pure water, ethanol/water mixture, to absolute ethanol in a 

closed container. The system was kept at 70 °C, similar to the actual pervaporation 

temperature, for 48 h. The degree of swelling (Ds) was calculated using Equation (3.1) 

(Pakkethati et al., 2011): 

 	 % 	100            (3.1) 

where Ws is the weight of the swollen membrane and Wd is the weight of dry membrane. 
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CHAPTER IV 

NOVEL POLYMERIC MEMBRANE MATERIALS FOR ETHANOL/WATER SEPARATION VIA 

PERVAPORATION 

 
4.1 Abstract 

In this research, novel polybenzoxazine (PBZ) membranes, synthesized from 

bisphenol-A, formaldehyde and diamines, were coated on a tubular alumina support by 

dip-coating technique for ethanol purification application via pervaporation. The effects of 

dipping time and precursor concentration on the membrane preparation and the 

separation performance showed that both PBZ membranes were remarkably stable, 

resistant to swelling, and provided an impressively high separation factor of higher than 

10,000 for all ethanol concentration ranges, characteristics implying that they could be a 

good candidate for high purity ethanol production. 

 
4.2 Introduction 

An increase in energy use has spurred greater interest in producing ethanol fuel 

for vehicle use. The ethanol fuel, however, must be highly pure to prevent damage to 

vehicles. It is well known that in obtaining highly pure ethanol, membrane technology can 

be much more energy efficient than conventional technology. Thus, a membrane with 

high mechanical strength and chemical resistance is required [1,2]. Polybenzoxazine (PBZ), 

a thermosetting phenolic resin, is a good candidate for serving this purpose because it has 

a high performance in both mechanical and chemical properties due to its thermally 

activated structure, allowing the ring polymerization to occur and form strong network 
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structures [3-5]. Pakkethathi et al. [6] studied three different partly crosslinked PBZ 

membranes for separating 10:90 ethanol:water mixture via pervaporation, and found that 

only one membrane revealed a good performance in both permeation flux and 

selectivity. However, all membranes have low mechanical strength and chemical 

resistance since they cannot tolerate both vacuum force and higher ethanol 

concentration. In this research, fully crosslinked PBZ membranes were studied to 

overcome these problems. To prevent brittleness from fully crosslinking PBZ as well as to 

improve membrane strength, a tubular alumina support was employed [7]. The effect of 

PBZ type on swelling behavior and separation performance was also investigated. 

 

4.3 Experimental 

1  Tubular alumina supported membrane preparation 

Two different partly crosslinked PBZ precursors were first synthesized using 

two different diamines, viz., tetraethylenepentamine (tepa, 85% purity, Aldrich) and 

diethylenetriamine (deta, 99% purity, Aldrich), as described elsewhere [4,6]. Meanwhile, 

the α-alumina tube (effective length = 43 mm, purchased from National Metal and 

Materials Technology Center (MTEC), Thailand) was cleaned with deionized water in an 

ultrasonicator bath before calcining at 400 ºC for 3 h to remove organic dirt. 

The PBZ precursors synthesized from tepa or deta were denoted as 

poly(BA-tepa) and poly(BA-deta), respectively. Using dip-coating technique, PBZ precursors 

were first diluted by 1,4-dioxane (analytical grade, Labscan) to prepare 10 to 30 wt% of 

poly(BA-tepa) and poly(BA-deta) solutions. The calcined alumina support (one end closed 
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with Teflon cap) was dipped into the solution before drying at 100 ºC in oven, followed 

by polymerization at 200 °C or 180 °C, for poly(BA-tepa) or poly(BA-deta), respectively. 

Both dipping and drying steps were carried out as a cycle, the so called dipping cycle, and 

were repeated until a functional membrane (or a membrane giving a good separation 

performance) was obtained. 

 
2  Membrane characterization 

Surface morphology and thickness of membranes were characterized by 

scanning electron microscope (SEM, JEOL JSM-540LV). Gas chromatography (GC, Agilent 

6890N) equipped with TCD detector was used to determine the quality of ethanol in both 

permeate and retentate while testing performance. 

To study the swelling behavior, three different solvents (pure ethanol 

(EtOH, absolute, Labscan), water, and 50:50 (w/w) (ethanol/water), were used. Into each 

solvent, 0.1 g PBZ thin film was immersed, and the system was maintained at 70 ºC 

similar to the actual performance study. The degree of swelling (Ds) of the membrane 

sample was defined as [6]: 

100
0

0 x
w

ww
D t

s


          (4.1) 

where w0 is the initial weight of the membrane sample and wt is the weight of the 

membrane swollen. 

 
3  Performance study 

The performance of PBZ membranes was carried out in batch 
pervaporation with a feed flow rate of 900 ml min-1 using a peristaltic pump (Masterflex). 



20 
 

The interior pressure was maintained constantly at 10 mmHg using a vacuum pump 
(Edwards). The ethanol concentration and temperature in the feed were varied to study 
the pervaporation performance of each PBZ membrane. The amount of permeate was 
measured to determine the total permeation flux and the ethanol concentrations in both 
permeate and retentate were determined for the separation factor, as follows [7,8]. 

Total permeation flux (J) (g m-2 h-1) is defined as: 

tA

W
J

*
           (4.2) 

where W is the weight of permeate, A is the membrane effective surface area, and t is the 

pervaporation time. 

Separation factor (α) is defined as: 

retentate

EtOH

OH

permeate

EtOH

OH

EtOHOH

X

X
X

X

][

][

2

2

/2           (4.3) 

where XH2O and XEtOH are the weight fractions of water and ethanol in permeate and 

retentate, respectively. 

 

4.4 Results and discussion 

1  Membrane fabrication 

The images of the prepared membranes are shown in Fig. 4.1. The surface 

image of α-alumina support shows that the particle size varied from 0.5 to 3 μm (Fig. 

4.1a). After finishing the dipping process, the surface is completely covered with a smooth 

and dense polymer layer, as shown in Fig. 4.1b. Because the major separation mechanism 

occurs at this polymer layer [9], it is important to prepare the membrane with a minimum 

of defect. The cross-sectional images of poly(BA-tepa) and poly(BA-deta) are shown in Fig. 
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4.1c-4.1h. The thickness of the prepared polymer layer was analyzed and summarized in 

Table 4.1. As can be seen in Fig. 4.1c and 1f, no dense poly(BA-tepa) and poly(BA-deta) 

membrane layers prepared from 10 and 20 wt% precursors, respectively, were observed 

on the support surface even when they were continuously dipped up to 10 times (Table 

4.1), indicating that those concentrations were too low for preparing the membranes. 

However, instead of coating on the surface, the polymers penetrated into the support, 

probably due to a very low solution viscosity. The dense polymer layer was observed 

when the precursor concentration was up to 20 and 30 wt% for poly(BA-tepa) and 

poly(BA-deta), respectively. It is worth noting that only 20 wt% poly(BA-tepa) was needed 

to obtain a dense layer while poly(BA-deta) needed 30wt% concentration. Tepa contains 

more amine groups, resulting in more intermolecular H-bonding and making poly(BA-tepa) 

membrane fabrication easier to achieve [10]. This result can be confirmed by the thicker 

poly(BA-tepa) membrane layer.  In addition, when comparing membranes produced at the 

same precursor concentration (i.e. 30 wt%, see Fig. 4.1e and 4.1g), poly(BA-tepa) also 

requires fewer  dipping cycles to obtain a dense membrane. Not only were fewer dipping 

cycles needed to produce a membrane, but the resultant thinner membrane layer 

improved the membrane performance, resulting in a thinner polymer layer and 

consequently providing a higher permeation flux [6,9]. Conclusively, a defect-free polymer 

layer cannot be obtained if the precursor concentration is too high or too low. The 

optimal precursor concentrations for preparing poly(BA-deta) and poly(BA-tepa) 

membranes were at 30–40 and 20–30 wt%, respectively. 

 



22 
 

 

 

Figure 4.1  SEM surface images of (a) uncoated α-alumina support; (b) α-alumina 

supported PBZ membrane; cross-sectional images of poly(BA-tepa) at (c) 10 wt%; (d) 20 

wt%; (e) 30 wt% and poly(BA-deta) at (f) 20 wt%; (g) 30 wt %; (h) 40 wt%, respectively 

(a) 

(c) 

(b) 

(d) 

(e) (f) 

(g) (h) 
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Table 4.1  Effect of PBZ concentration on number of dipping cycle requirement and 

membrane separation performance 

 

Polymer 
Precursor 

concentration/wt% 

Number of dipping 

cycle requirement 

Averaged membrane 

layer thickness/μm* 

Poly(BA-

tepa) 

10 10** … 

20 5 19.8 

30 2 11.9 

Poly(BA-

deta) 

10 10** … 

20 10** … 

30 4 15.4 

40 2 13.0 

 

*  –  measured from SEM 
** – all membranes prepared up to 10 times of dipping cycles are leaked and no 
separation performance was observed 
 

2  Membrane performance 

To study the membrane performance, pervaporation is generally utilized 

and in this study a batch system containing a mixture of water-ethanol was operated, 

thus, retentate was recycled back to feed while water was permeated through the 

membrane. As expected, the feed ethanol concentration increased with time. A 
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pervaporation experiment using a feed ethanol concentration ranging from 10 to 90 wt% 

EtOH was conducted to study the performance and stability of the membranes. Poly(BA-

tepa) and poly(BA-deta) membranes prepared from 30 and 40 wt% precursor 

concentrations, respectively, were chosen since the lowest number of dipping cycles in 

preparation was needed, taking the shortest time in fabrication. Moreover, the thinnest 

membrane layer was obtained, maximizing the permeation flux. From Fig. 4.2, the highest 

total permeation flux of both poly(BA-tepa) and poly(BA-deta) are observed at 10 

wt%EtOH feed with a value of  20.25 g m-2 h-1 (Fig. 4.2a) and 19.45 g m-2 h-1 (Fig. 4.2b), 

respectively, with a separation factor higher than 10,000, indicating that the permeate 

contained mostly water. As the ethanol concentration gets higher; the water partial 

pressure in the feed should be lower, causing a lower permeation flux [11]. Although the 

separation factor of the membranes are not different, the poly(BA-tepa) membrane shows 

a greater reduction in the total permeation flux than the poly(BA-deta) membrane at 

higher feed ethanol concentrations. To clarify this result, a swelling behavior test was 

conducted in pure water, pure ethanol, and 50:50 water/ethanol solvents, and the results 

are shown in Fig. 4.3a to 4.3c, respectively. Neither membrane was swollen by water 

molecules after more than 10 days, but both were swollen by ethanol molecules, with 

the maximum swelling degree of 3.1 and 2.1 for poly(BA-tepa) and poly(BA-deta), 

respectively (Fig. 4.3b). Although these swelling degree results are considerably small, 

they could indicate that the membranes are more hydrophobic. Fu et al. [12] suggested 

that the sorption of ethanol in hydrophobic membranes restricts the molecular transport 

in the polymer layer, which would be the major reason in decreasing of permeation flux 
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besides the lowering of water partial pressure. Thus, the drastic decrease of the total 

permeation flux of poly(BA-tepa) at higher ethanol concentration (Fig. 4.2a) may  result 

from the higher molecular restriction by ethanol molecules adsorbed in the membrane, 

as confirmed by the larger amount of the swollen membrane in ethanol (Fig. 4.3b). The 

swelling behavior testing also revealed the multiple sorption of water and ethanol 

molecules in a mixture of ethanol and water (Fig. 4.3c). The water molecules could 

adsorb in the membrane via H-bonding with ethanol, resulting in a higher degree of 

swelling than in pure ethanol conditions [13]. However, those swelling results are again 

very small, thus still resulting in a separation factor higher than 10,000 with no sign of 

being damaged since no drastic drop in the separation factor was observed in all ethanol 

concentrations [14,15]. The results could suggest the excellent stability of PBZ 

membranes in any ethanol/water mixture, leading to a great potential for the use of these 

membranes in the ethanol purification process, especially in a highly pure ethanol 

concentration for renewable energy. 

 

4.5 Conclusions 

Poly(BA-deta) and poly(BA-tepa) membranes on tubular α-alumina support were 

successfully fabricated. The PBZ precursor concentration was a major factor in controlling 

the membrane performance. Poly(BA-tepa) required less precursor concentration to 

obtain a functional membrane than poly(BA-deta). However, both membranes provide 

good stability and separation performance at all ethanol concentrations, indicating a 

potential material for high purity ethanol production. 
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Figure 4.2  Effect of feed ethanol concentration on membrane separation performance of 

(a) poly(BA-tepa) and (b) poly(BA-deta) 

(a) 

(b) 
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Figure 4.3  Swelling behavior of fully crosslinked PBZ thin film in (a) pure water; (b) 

absolute ethanol and (c) 50:50 water/ethanol mixture 
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CHAPTER V 

PREPARATION OF POLYBENZOXAZINE/NaA ZEOLITE DOUBLE LAYERED MEMBRANE FOR 

ETHANOL/WATER PERVAPORATION APPLICATIONS 

 

5.1 Abstract 

Polybenzoxazine (PBZ)/NaA zeolite double layered membrane was developed for 

ethanol/water separation purpose. The effects of membrane preparation parameters, 

including coating time and crosslinking temperature, on membrane separation 

performance were studied. It was found that the PBZ layer was well coated on the NaA 

zeolite layer regardless NaA zeolite coating conditions. The optimum crosslinking 

temperature to achieve the PBZ layer was found at 170 ºC. The obtained membrane 

provided a high separation factor of more than 10,000 and was highly stable in the feed 

ethanol concentration of 35-90 wt% with multiple runs of pervaporation testing. 

 

5.2 Introduction 

 Due to global concerning on fossil fuel depletion over the last few years, the use 

of alternative renewable energy for the vehicle fuel substitution has received more 

attention. Bioethanol has a great potential for serving this purpose because it can be 

produced from abundantly natural resources, such as biomass. Moreover, it provides 

much less climate change due to much less carbon dioxide emission.[1] However, to 

produce ethanol fuel from bioethanol, an energy efficient separation process, such as 

pervaporation, is required. The pervaporation is a membrane separation process and well-
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known for purifying ethanol. Many researchers have focused on development of high 

performance membrane to improve the separation efficiency.[2-4]  

Polybenzoxazine (PBZ) can be served as the pervaporation membrane due to its 

high thermal, chemical, and mechanical stability.[2,5,6] However, membrane stability is 

another drawback to achieve a better separation performance. One strategy to overcome 

this drawback is to incorporate NaA zeolite into PBZ membrane to improve the 

ethanol/water separation performance into PBZ.[6,7] 

In this work, a new preparation of the PBZ/NaA zeolite membrane for ethanol 

purification via pervaporation technique was developed by forming a double layered 

membrane. The effects of the membrane preparation parameters on pervaporation 

performance were studied and discussed. The membrane stability was also determined 

from multiple tests under the pervaporation condition. 

 

5.3 Experimental 

1.  Chemicals 

Fumed silicon dioxide (SiO2, AEROSIL® 380) was supported by Evonik. 

Aluminum hydroxide hydrate (Al(OH)3.xH2O), 1,6-hexamethylenediamine (HDA, 98 % 

purity), and Bisphenol-A (BPA, 97 % purity) were purchased from Aldrich. Sodium 

hydroxide (NaOH, AR grade), 1,4-dioxane, and ethanol (EtOH, absolute) were purchased 

from RCI Labscan limited. Formaldehyde (CH3O, 37 wt% in water) was purchased from 

Merck. Tubular support with 11 mm O.D., 9 mm I.D., and 43 mm effective length was 

purchased from MTEC. 
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2.  Equipment 

A differential scanning calorimeter (DSC, Mettler DSC822) was used to study 

a polymerization process of PBZ precursor using a heating rate of 10 °C min-1 under a N2 

flow.  The morphologies of the support and the membrane were investigated using a field 

emission scanning electron microscope (FE-SEM, Hitachi S-4800). A thermogravimetric 

analyzer (TGA, PerkinElmer) was used to investigate thermal behavior of the membrane 

using a heating rate of 20 °C min-1 under a N2 flow. Gas chromatograph (GC, Agilent 6890N) 

equipped with TCD detector was used to determine chemical composition of 

ethanol/water mixture. A microwave oven (Milestone ETHOS SEL) was used to synthesize 

NaA zeolite. 

 

3.  Synthesis of NaA zeolite particles 

NaA zeolite particles were synthesized according to the procedure 

described by Kuanchertchoo et al.’s work.[8] Sodium hydroxide, aluminum hydroxide 

hydrate, and fumed silica were mixed together in water using 3Na2O:SiO2:Al2O3:410H2O 

formula. The mixture was stirred overnight and microwave heated at 60 ºC. The obtained 

NaA zeolite was washed repeatedly with deionized water and dried in an oven.  

 

4.  Synthesis of PBZ precursor 

PBZ precursor preparation was followed the procedure described 

elsewhere using BPA:HDA:4CH3O formula.[2] Two mixture solutions of BPA and HDA were 

separately prepared by dissolving 3.42 g of BPA and 1.74 g of HDA in 1,4-dioxane before 



34 
 

mixing them together in an ice baht with addition of formaldehyde. The mixture was then 

stirred until homogenous, followed by pretreatment at 80 ºC to obtain a transparent 

yellow liquid of PBZ. 

 

5.  Preparation of PBZ/NaA zeolite double layered membrane 

Prior to the preparation, a tubular alumina support was cut, cleaned with 

deionized water, dried, and calcined at 400 ºC for 3 h to remove any organic dirt. NaA 

zeolite particles were coated on the support using vacuum-assisted method according to 

seeding method proposed by Huang et al. [8] One side of the support was sealed with 

PTFE tape and the other side was connected with a vacuum pump. The support was 

immersed in the NaA zeolite suspension, which was prepared by dispersing 7 g of NaA 

particles in 1 liter of deionized water using an ultrasonic bath. Vacuum was then applied 

for various times (2-6 min). After the coating, the support was dried in an oven before dip-

coating with PBZ following the procedure described elsewhere. [6,9] The support was 

dipped into a PBZ precursor solution twice before crosslinking at a suitable temperature 

for 30 min. The final membrane was gently cooled to room temperature. 

 

6.  Pervaporation process 

The process was set at 70 ºC with the pressure of the permeate side was 

kept constant at 10 mmHg. A feed mixture was circulated between a feed tank and the 

retentate side using a feed pump with a flow rate of 900 ml min-1. The permeate was 

condensed using a liquid nitrogen cold trap to determine the permeation flux. The 
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quantities of ethanol and water from both permeate and retentate were used to 

calculate the separation factor. The permeation flux and the separation factor are 

calculated from the following equations:[10]: 

 Permeation flux (J, g m-2 h-1) is expressed by: 

tA

W
J


           (5.1) 

where W is the permeate weight (g), A is the effective membrane surface area (m2), and t 

is the pervaporation time (h).  

Separation factor (α) is expressed by: 

retenethanolwater

permethanolwater

XX

XX

)/(

)/(
         (5.2) 

where Xwater/Xethanol is the weight ratio of water to ethanol in permeate and retentate, 

denoted as perm and reten, respectively.  

 

5.4 Results and discussion 

1  Effect of NaA zeolite coating time 

Vacuum coating time was varied to determine an optimal condition for 

preparing NaA zeolite layer. SEM images of α-Al2O3 support surface before and after the 

coating are shown in Fig. 5.1. The image of the plain support (Fig. 5.1a) revealed an 

irregular shape and non-uniform size of alumina particles varying from 0.5-5 μm. After 2 

min of the coating (Fig 5.1b), the uniformly cubic shape of NaA zeolite particles with an 

average size of 0.5 μm were found on the surface, but not fully covered. When increasing 

the coating time to 4 min (Fig. 5.1c), the α-Al2O3 support was fully covered by an orderly 
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arranged NaA zeolite particles. However, if the coating time was extended to 6 min (Fig. 

5.1d), the smoothness of NaA zeolite layer was reduced and the excessive particles were 

found on top since the excess NaA particles were unable to attach to the support. [8]  

 To determine the optimal coating time, the pervaporation of 50:50 

(EtOH:H2O) mixture was conducted to determine the membrane performance and the 

results are shown in Fig. 5.2. It was surprising that the surface roughness of 6 min of 

coating did not cause any negative effect to the membrane performance as both 

permeation flux and separation factor were still increasing with the coating time. This is 

implied that the PBZ outmost layer was well coated on the NaA zeolite layer and well 

protected the mixture from leaking, as confirmed by the almost identical values of the 

separation factor for all coating time. The presence of NaA zeolite facilitates the 

transportation of water, thus making the permeation rate of water be increased [7,11]. The 

maximum total permeation flux was found to be 106 g m-2 h-1 for the 6 min coating time 

with the separation factor of more than 10,000.  
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Figure 5.1  FE-SEM surface images of (a) plain α-Al2O3 support; NaA zeolite particles 

coated support with vacuum coating time of (b) 2 min; (c) 4 min; and (d) 6 min. 

 

(a) (b) 

(c) (d) 
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Figure 5.2  Pervaporation performance of 50:50 (w/w) ethanol/water mixture using 

PBZ/NaA zeolite double layered membrane 

 

2  Effect of crosslinking temperature 

DSC thermograms of PBZ after crosslinking at various temperatures are 

shown in Fig. 5.3. The exothermic peak was referred to crosslinking reaction of the PBZ 

precursor. At 100 ºC crosslinking temperature, a large exothermic peak was observed, 

indicating the complete crosslinking of PBZ precursor [12]. The peak was reduced when 

increasing crosslinking temperature and also shifted its onset toward a higher temperature, 

meaning that higher crosslinking degree was obtained as more benzoxazine rings were 

opened and crosslinked. At the crosslinking temperature of 180 ºC, no peak was observed, 

implying that the maximum crosslinking degree of PBZ precursor was reached as most of 

benzoxazine rings were opened and crosslinked [13]. 
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Figure 5.3  DSC thermograms of PBZ after crosslinked at various temperatures. 

 

TGA thermogram shown in Fig. 5.4 revealed thermal behavior of PBZ. The 

thermogram showed two major weight loss at 150º-250 ºC and 260º-470 ºC, in agreement 

with the results observed by Takeichi and Agag. [14] The weight loss at 150º-250 ºC can 

be visually observed from the changing of the membrane color as increasing the 

crosslinking temperature, see Fig. 5.5. The PBZ membrane was pearly yellow at the 

crosslinking temperature of 140 ºC (Fig. 5.5a) and became orange at the crosslinking 

temperature of 160 ºC (Fig. 5.5b), followed by brown at 170 ºC (Fig.5. 5c). At 180 ºC (Fig. 

5.5d), the membrane became dark brown which reflected to a higher degree of 

degradation [2].  
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Figure 5.4  TGA thermogram of PBZ precursor 

 

 

 

Figure 5  Physical appearance of the membranes crosslinked at (a) 140º; (b) 160º; (c) 170º; 

and (d) 180 ºC 

(a) (b) (c) (d) 
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Figure 5.6 shows that the total permeation flux was increased with the 

crosslinking temperature up to 170 °C before decreasing. This result could be explained 

by the change of physical structure of polymer, as proposed a mechanism by Berean et 

al.’s [15]. They also found that the permeability of polydimethylsiloxane (PDMS) 

membrane was increased with crosslinking temperature, due to the increasing of intensity 

of bonds stretching at pendant groups, resulting in more polymer chain flexibility, and 

thus causing the decreasing of crosslink density. However, at the crosslinking temperature 

above 170 °C, the separation factor was found to decrease due to the degradation of PBZ 

layer, creating some defects on the membrane. Therefore, the optimum crosslinking 

temperature for preparing the membrane was 170 °C. 
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Figure 5.6 Total permeation flux and separation factor of PBZ/NaA double layered 

membrane as a function of crosslinking temperature 
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3  Membrane stability testing 

The membrane was tested under various feed ethanol concentrations 

between 35-90 wt% and several cycles to check its performance and stability. After 

multiple runs (Fig. 5.7), the total permeation flux and the separation factor of the 

membrane exhibited the same trend, implying that this membrane has high stability and 

can tolerate a wide range of the feed ethanol concentrations, indicating a great potential 

for this material to serve as the pervaporation membrane. 
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Figure 5.7  Pervaporation performance of PBZ/NaA double layered membrane at various 

feed ethanol concentrations. 

(a) 

(b) 
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 5.5 Conclusions 

The PBZ/NaA zeolite double layered membrane was prepared for separation of 

ethanol/water mixture via pervaporation. The presence of NaA zeolite layer was found to 

improve the total permeation flux to PBZ membrane. When increasing the amount of NaA 

zeolite particles, the performance was also increased. The several cycles of pervaporation 

testing confirmed that the membrane was highly stable in various feed ethanol 

concentrations, ranging from 35 to 90 wt%. 
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CHAPTER VI 

PERFORMANCE POLYBENZOXAZINE MEMBRANE AND MIXED MATRIX MEMBRANE FOR 
ETHANOL PURIFICATION VIA PERVAPORATION APPLICATIONS 

 
6.1 Abstract 
Polybenzoxazine (PBZ) membranes have caught great attention for serving as a high 

performance membrane for pervaporation process owing to their high mechanical 

properties, high chemical resistance, high thermal stability, and low synthesis cost. This 

study aims to develop PBZ membrane and NaA-PBZ mixed matrix membrane (MMM) for 

purification of ethanol/water mixture using pervaporation process and to investigate the 

effects of preparation parameters on the membrane performance, including precursor 

concentrations, number of dipping, amount of NaA zeolite loading, temperature, and 

ethanol concentration. It was found that PBZ membrane and NaA-PBZ MMM were found 

to exhibit an excellent stability in every feed ethanol concentrations with low degree of 

swelling. The highest separation factor of the pure PBZ membrane was more than 10,000 

while the NaA-PBZ MMM was even higher, Up to and in some cases even higher than 

100,000 with the highest permeation flux of 1,071 g m-2 h-1 when using 25 wt% PBZ 

precursor with 15 wt% NaA zeolite loading. The permeation flux of MMM increased with 

an increase in the temperature or a decrease in the feed ethanol concentration. The 

swelling increased when the ethanol concentration increased, revealing a hydrophobic 

behavior of the NaA-PBZ MMM. The membranes are capable of purifying ethanol in any 

feed ethanol concentration ranges with an excellent performance and properties that 

would lead to a great potential for used in bioethanol purifying applications. 
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6.2 Introduction 

Currently, ethanol fuel is one of the most attractive alternative fuels to gasoline 

due to its derivation from various biological renewable resources and its compatibility 

with internal combustion engines [1-3]. However, the ethanol produced from these 

resources contains only a 10–12 wt% concentration, and thus distillation, a conventional 

process for ethanol purification and considered an energy-intensive technique, is 

employed [4]. Moreover, the azeotrope of ethanol/water mixture at 95 wt% ethanol also 

restrains the maximum concentration of ethanol that can be achieved.  

Pervaporation, a well-known technique for the separation of an azeotropic and 

close-boiling point mixture, not only has a great potential in producing ethanol fuel from 

fermented ethanol, but also is considerably more energy efficient than the distillation 

process [5]. Since the economic feasibility of the pervaporation process is significantly 

dependent on production cost and membrane performance, a membrane with a high 

separation factor, a better permeation flux, and good stability has been studied and 

developed [5,6]. A polymeric membrane is commonly selected due to its high 

processability and low production cost. However, most pervaporation polymeric 

membranes have a tendency to swell, drastically reducing the membrane stability and 

separation performance [7-9]. 

Polybenzoxazine (PBZ), a class of high-performance phenolic material, provides 

many interesting characteristics, including high mechanical properties, high thermal 

stability, tailorable chemical structure, and low synthesis cost. The potential of using PBZ 

as a separating membrane was studied by Pakkethathi et al. [10],  who synthesized three 
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different kinds of partially crosslinked PBZ membrane synthesized from bisphenol-A, 

formaldehyde, and three different types of multifunctional amines, viz., 

hexamethylenediamine (hda), tetraethylenepentamine (tepa), and tetraethylenetriamine 

(teta), and denoted as poly(BA-hda), poly(BA-tepa), and poly(BA-teta), respectively. They 

studied the membrane performance on a 10:90 ethanol:water separation via 

pervaporation process and found that only poly(BA-hda) provided the best separation 

performance in both permeation flux and separation factor. However, poly(BA-hda) lost its 

performance after a few days due to its swelling. One way to overcome these drawbacks 

is to crosslink the polymeric membrane to suppress the swelling behavior and to improve 

its durability.  

One promising method for increasing stability and separation performance is to 

crosslink the polymer on a ceramic support while the permeation flux is still maintained if 

the polymer membrane is sufficiently thin [11-14]. However, the diffusion of polymer into 

the support must be a primary concern in order to prepare a defect-free membrane. 

Many ceramic-supported polymeric membranes have been prepared using water to 

saturate the support and prevent polymer penetration into the support [15]; however, 

water caused pin holes and voids when making contact with polymer systems [12,16]. 

Our research thus aimed to develop a thin film PBZ membrane and a NaA-PBZ 

mixed matrix membrane (NaA-PBZ MMM) on a tubular α-alumina support for the ethanol 
purification process. The effects of membrane preparation parameters and operation 
parameters on pervaporation performance were systematically investigated. Swelling 
behavior of the membranes was also tested to study separation behavior of the 
membranes. 
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6.3 Experimental 

1  Materials 

Formaldehyde (CH2O, 37 wt% in water; Merk), bisphenol-A (BPA, 97% purity; 

Aldrich), and, hexamethylenediamine (HDA, 98% purity; Sigma-Aldrich) were used for PBZ 

precursor synthesis in 1,4-dioxane (analytical grade; RCI Labscan) as a solvent. Ethanol 

(absolute; RCI Labscan) mixed with deionized water was used as pervaporation feed. 

Sodium hydroxide (NaOH, 99% purity; RCI Labscan), aluminum hydroxide hydrate 

(Al(OH)3·xH2O; Sigma), and fumed silica (SiO2, AEROSIL® 380; supported by Evonik) were 

used for NaA zeolite synthesis. Tubular α-alumina support with inner and outer diameters 

of 9 and 11 mm, respectively, were purchased from MTEC. 

 
2  Synthesis of PBZ precursor 

The PBZ precursor was synthesized using the procedure described 

elsewhere [10]. BPA (5.13 g) and HDA (2.61 g) were separately dissolved into 15 ml of 1,4-

dioxane. Formaldehyde was then added into the BPA solution and stirred until a 

homogeneous mixture was obtained. The mixture was kept under 10 ºC before adding 

HDA solution and then pretreated at 80 ºC until a yellow viscous solution was obtained. 

The final mixture was diluted to 5–25 wt% PBZ concentrations for membrane preparation. 

 
3  Synthesis of NaA zeolite 

NaA zeolite used as a dispersed phase in this study was synthesized using 

Al2O3:SiO2:3Na2O:410H2O formula [17,18]. NaOH was dissolved in deionized water, 

followed by adding aluminum hydroxide hydrate, and fumed silica, respectively. The 
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mixture was stirred overnight before microwave heating treatment on a Milestone - ETHOS 

SEL microwave oven set at 60 ºC for 10 h. The obtained product was washed with 

deionized water, dried, and calcined at 550 °C for 3 h. 

 
4  Preparation of PBZ membrane 

An alumina support tube was cleaned with deionized water using an ultra-

sonic bath to remove dirt and loose particles on its surface before drying in an oven and 

calcined in a furnace at 400 ºC for 3 h to remove any organic impurities. The prepared 

PBZ solution was coated only on the outer surface of the tube, followed by drying in an 

oven set at 100 ºC for 30 min. The dipping procedure was carried out by repeatedly 

dipping and drying in a cycle, and the number of dipping cycles was counted. The final 

membrane was obtained by crosslinking the PBZ-coated alumina tube in an oven. 

 
5  Preparation of NaA-PBZ MMM 

The method for preparing the PBZ membrane is also used in this case, 

except that NaA zeolite was first added to the PBZ precursor and dispersed by ultra-

sonication before the dipping procedure. The optimum PBZ precursor concentration and 

the number of dipping cycles obtained from the PBZ membrane study were applied for 

preparing the NaA-PBZ MMM. In this part, various amounts of NaA zeolite were studied, 

thus xNaA-PBZ membrane refers to the NaA-PBZ MMM containing x amount (wt%) of NaA 

zeolite. 

 

6  Characterization 
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A scanning electron microscope (SEM; Hitachi – TEM 3000) was used to 

identify the morphology of the prepared zeolite and the thickness of the prepared 

membranes. The structure of the prepared zeolite was determined by X-ray diffraction 

spectrometer (XRD; Rigaku - Smartlab) using CuKα as the X-ray source. Differential 

scanning calorimetry (DSC; Mettler Toledo – DSC-822e) was used to determine the 

crosslinking temperature of the PBZ membrane using a heating rate of 10 ºC min-1 under 

N2 flow. 

 

7  Pervaporation 

A prepared membrane was installed in the module, as shown in Fig. 5.1. 

The pervaporation system was carried out at 30-70 ºC with pressure of the permeate side 

maintained constantly at 10 mmHg using a vacuum pump (Edwards). A peristaltic pump 

(Masterflex) was used to feed the mixture of ethanol and water at a feeding rate of 900 

mL min-1. The quantities of ethanol and water from both retentate and permeate sides 

were determined using Gas Chromatography (GC, Agilent 3890N) equipped with TCD 

detector using He as a carrier gas.  
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Figure 6.1  Schematic of pervaporation apparatus. (1) Heater; (2) Feed reservoir; (3) 

Peristaltic pump; (4) Membrane module; (5), (6) and (7) Condenser; and (8) Vacuum pump. 

 

The separation performance of the membranes was determined by the total 

permeation flux and the separation factor from the following equations; 

Total permeation flux (J, g m-2 h-1) is defined as: 

∗
              (6.1) 

where P is the weight of permeate (g), A is the effective membrane area (0.00149 m2), and 

t is the pervaporation time (h). 

 

Separation factor (α) is defined as: 

             (6.2) 
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where WH2O and WEtOH are the weight fractions of water and ethanol from permeate side 

(superscript of P) and retentate side (superscript of R), respectively. 

 

8  Swelling behavior of membrane 

The test on swelling was conducted to investigate the separation 

mechanism of the membrane. A piece of thin membrane film was submerged under 

various solvents ranging from pure water, ethanol/water mixture, to absolute ethanol in a 

closed container. The system was kept at 70 °C, similar to the actual pervaporation 

temperature, for 48 h. The degree of swelling (Ds) was calculated using Equation (3): 

	 % 	100           (6.3) 

where Wd is the weight of dry membrane and Ws is the weight of the swollen membrane. 

 

6.4 Results and discussion 

1  Determination of membrane crosslinking condition 

PBZ precursor was obtained after mixing BPA, HDA, and CH3O together at 

low temperature. Heating the precursor causes ring-opening polymerization at the 

benzoxazine ring and creates a network structure of PBZ, so-called crosslinked PBZ, as 

shown in Fig. 6.2. The network structure provides better mechanical properties, chemical 

stability, and swelling resistance [19-21]. Therefore, the maximum degree of crosslinking 

must be focused to maximize the properties. 
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Figure  6.2  Thermal crosslinking of PBZ 

 

DSC technique was used to track the ring-opening polymerization of the 

precursor, which is identified by an exothermic peak [10,22]. DSC thermograms of the PBZ 

precursor before and after heating are shown in Fig. 6.3. As can be seen from Fig. 6.3a, the 

highest crosslinking rate is indicated by the maximum exothermic peak of the PBZ 

precursor at 170 ºC. This temperature was thus selected as the crosslinking temperature 

for all fabricated membranes in this experiment. The thermogram of the PBZ precursor 

after heat treatment at 170 ºC for 30 min (Fig. 6.3b) shows no peak, indicating that 170 ºC 

was the maximum temperature to fully crosslink the PBZ precursor. 
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Figure 6.3  DSC thermograms of PBZ membrane. (a) Before and (b) After thermally 

crosslinked at 170 ºC for 30 min. 

 

2  Characterization of NaA zeolite 

The crystal structure of synthesized NaA zeolite particles were 

characterized using XRD technique matching with the reference data from PDF card 

number: 00-038-0241, as shown in Fig. 6.4a. The obtained peaks were well-matched with 

the reference that indicated to cubic structure of NaA zeolite. To confirm the results, the 

SEM technique was used and the image was shown in Fig. 6.4b. It revealed the cubic 

shape of the synthesized NaA zeolite with the size was in a range of 0.24-0.74 μm. 

 

(a) 

(b) 
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Figure 6.4  (a) XRD pattern and (b) SEM image of synthesized NaA zeolite particles 
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3  PBZ membrane 

To obtain a good separation performance, the fabricated membrane must 

have no defects and be sufficiently thin. Study of the precursor concentration and the 

number of dipping cycled was thus conducted, and the results shown in Fig. 6.5. The 

pervaporation testing was carried out using 50:50 water:ethanol mixture at 70 ºC. It was 

found that the number of dipping cycles required for preparing a good membrane 

significantly depends on the precursor concentration. None of the prepared membranes 

using 5 – 25 wt% precursors can be achieved from only one dipping cycle. The first 

dipping cycle might be a pretreatment for the ceramic support surface before the dense 

thin film layers, i.e., separation layers, started to form during the second dipping step. 

However, except for the 5 wt% precursor, the additional dipping did not affect the 

membrane performance since nearly constant values beyond 2 dipping cycles of each 

precursor concentration were obtained (Fig. 6.5). The relationship between the required 

number of dipping cycles, separation performance, and membrane thickness is 

summarized in Table 6.1. The minimum number of dipping cycles required was found to 

be 2 when using the precursor concentrations of 20 and 25 wt%. It was noticed that a 

precursor concentration higher than 25 wt%, e.g., 30 wt%, resulted in a very viscous 

polymer solution, which hindered the dipping step. The membrane prepared from 30 

wt% precursor was either impermeable or highly defective. Therefore, the highest 

performance membrane with a separation factor >10,000 can only be obtained when 

using a precursor concentration of 25 wt%. Moreover, the membrane thickness 

undoubtedly increased with an increase in the PBZ precursor concentration. As described 
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previously, the separation performance also depends on the membrane thickness. The 

thickness values obtained thus reflect the permeation flux and the separation factor of 

each membrane. The thicker membrane resulted in a lower permeation flux, but also a 

higher separation factor. 
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Figure 6.5  Effect of number of dipping cycle on membrane separation factor. 

 
Table 6.1  Membrane pervaporation performance and thickness 

PBZ precursor 

concentration 

(wt%) 

Number of 

dipping cycle 

requirement 

Separation 

factor (α) 

Total 

permeation flux 

(g m-2 h-1) 

Separation 

layer thickness 

(μm) 

5 8 6 67.16 1.8 ±0.18 

10 4 20 45.59 3.2 ±0.15 

15 3 190 37.09 4.3 ±0.22 

20 2 980 25.68 10.2 ±0.99 

25 2 12,012 21.84 15.1 ±0.83 
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4  NaA-PBZ mixed matrix membrane (NaA-PBZ MMM) 

The key component of a membrane process is the membrane itself. The 

two most basic requirements for selecting a membrane are selectivity or separation factor 

and permeation rate. Compared to polymeric membranes, a significant improvement in 

separation properties with trivial loss in membrane flexibility is expected for the resultant 

MMMs due to the presence of inorganic fillers. In this study, NaA zeolite is the filler used 

in the PBZ matrix which was prepared by using a precursor concentration of 25 wt%. The 

pervaporation performance results of the PBZ membrane containing no NaA zeolite and 

NaA-PBZ MMM, containing various amounts of NaA zeolite (5–25 wt%), and using 90 wt% 

ethanol feed concentration are shown in Fig. 6.6. Due to the fully crosslinked PBZ making 

the material become very dense, the permeation flux of the pure PBZ membrane was 

low (22.9 g m-2 h-1). However, the separation factor was impressively high, above 10,000. 

This because, according to the mechanism proposed by Pakkethati et al. [10], the 

diffusion of ethanol molecule in the membrane was reduced by the attraction between 

ethanol and hydrophobic PBZ chain. Thus the only water molecules can permeate 

throughout the membrane which resulting in very high membrane separation factor. 

The addition of 5 wt% zeolite not only increased flux, but also increased 

the separation factor. This reversal trade-off phenomenon occurred due to molecular 

sieving effect of the NaA zeolite. The pore opening of NaA zeolite is about 4 Å that 

permits water molecules (kinetic diameter of 2.65 Å) to diffuse through but restricts the 

ethanol molecules (kinetic diameter of 4.46 Å) [23]. Thus it enhances the membrane 

selectivity that increasing the separation factor. Moreover, the hydrophilicity of NaA 
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zeolite also improves the water transportation in membrane, resulting in the increasing of 

total permeation flux as well [24]. As the zeolite increased up to 15 wt%, both the 

permeation flux and the separation factor remarkably increased to 1,071 g m-2 h-1 and 

over 100,000, respectively. However, at loading beyond 15 wt%NaA, the separation factor 

dropped down from the maximum value of more than 100,000 to 943 and 6 at 20 and 25 

wt%NaA, respectively. This is due to the agglomeration of zeolite causing a defective 

membrane and promoting ethanol leaking, resulting in a decrease in the membrane 

separation factor [24]. 
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Figure 6.6  Membrane separation performance from various NaA zeolite loadings. 

 

This incident can be clearly identified by SEM images shown in Fig. 6.7. The 

PBZ membrane surface is smooth and dense (Fig. 6.7a) while the PBZ membranes loaded 

with NaA zeolite show white particles dispersed underneath the PBZ smooth surface (Fig. 

6.7b and 6.7c). The membrane surface started to become rough when loaded with 15 
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wt% of NaA zeolite (Fig. 6.7d). Voids and defects started to occur at 20 and 25 wt% NaA 

(Fig. 6.7e and 6.7f), leading to a greater chance for ethanol molecules to pass through the 

membrane, resulting in a drastic decrease of the separation factor, as shown in the results 

in Fig. 6.6. The 15 wt%NaA-PBZ MMM, exhibiting the highest separation factor of more 

than 100,000, was thus selected as the optimum MMM used in further experiments. In 

addition, examples of the cross-sectional images of the PBZ membrane and the MMM (Fig. 

6.7g and 6.7h), respectively) also revealed that the average membrane’s thickness was in 

a range of 19 to 23 μm. 

 

  

  

 

(a) (b) 

(c) (d) 
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Figure 6.7  SEM surface images of (a) PBZ membrane; MMM with (b) 5; (c) 10; (d) 15; (e) 

20; (f) 25 wt% NaA zeolite loadings; and cross-sectional images of (g) PBZ membrane and 

(h) 15 wt%NaA-PBZ MMM. 

 

The effect of NaA zeolite on the reduction of surface smoothness can also 

be roughly determined through visual observation, as given in Fig. 6.8, showing the 

appearance of the support and the supported membranes. The α-alumina support 

exhibits a white, dull appearance (Fig. 6.8a) while a yellow, smooth glossy surface was 

achieved when coated with pure, fully crosslinked PBZ (Fig. 6.8b). As can be seen in Fig. 

6.8c-e, the membranes lost their glossy appearance and became duller with an increase 

(e) (f) 

(g) (h) 
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in the amount of NaA zeolite, and the higher NaA zeolite content resulted in the rougher 

and duller surface. 

 

Figure 6.8  Physical appearances of (a) α-Al2O3 support; (b) PBZ membrane; (c) 5; (d) 15; 

and (e) 25 wt% NaA-PBZ MMM. 

 

5  Effect of ethanol concentration in feed 

The separation performances and stability of PBZ membrane and PBZ 

MMM containing 15 wt% of NaA were investigated using various ethanol concentration 

feeds. Experimentally, the pervaporation of ethanol/water mixture was done by 

permeating water and circulating the retentate back to the feed reservoir [25]. Thus, the 

amount of water in the feed decreased, allowing the ethanol concentration to increase 

overtime. To study whether these membranes are still stable in other ethanol 

concentrations besides the 50:50 ethanol:water ratio, a pervaporation test of the 

membrane in a whole range of ethanol concentration was thus designed, and the results 
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are shown in Fig. 6.9a. The PBZ membrane exhibits a much lower permeation flux (13.5–

28.0 g m-2 h-1) than the 15 wt% NaA-PBZ MMM (726.0–1,071.1 g m-2 h-1). The permeation 

flux slightly decreased when the feed ethanol concentration increased, owing to the 

reduction of the water partial pressure at the retentate side [26]. Moreover, both 

membranes show excellent stability since the separation factor values were still 

maintained at higher than 10,000 at every feed ethanol concentrations (see Fig. 6.9b), due 

to the network structure of PBZ. Many other works reporting on the use of polymeric 

membranes noted that a damaged membrane resulted from an increase in ethanol 

concentration, causing a drastic reduction of the separation factor [10,27,28]. There was 

no observation of the membrane being damaged by solvent swelling in this work, 

confirming that these PBZ-based membranes provide an excellent stability in all ranges of 

ethanol/water pervaporation system. This is an important advantage for serving as the 

pervaporation membrane in any feed ethanol concentration. 

 

6  Membrane swelling behavior 

The swelling test of both membranes was conducted to confirm separation 

performance. Because these membranes were fully crosslinked, the degrees of swelling of 

all membranes obtained were less than 3 %, as seen in Fig. 6.10. The swelling degree 

increased with an increase in the ethanol concentration, revealing that the PBZ 

membrane has a higher affinity with the ethanol than with the water, indicating  the 

hydrophobic behavior of the PBZ-based membranes [29]. It is worth noting that 100% 

ethanol produced a lower swelling degree than the ethanol:water mixture. As described 
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by Xu et al., ethanol molecules could act as a small surfactant to interact with the PBZ 

surface and become more hydrophilic [30]. This changing property allows the water 

molecules in the ethanol-water mixture to be sorbed, resulting in a significant increase in 

the degree of swelling [31,32]. This phenomenon can probably relate to a mechanism in 

which the water molecules diffuse through the membrane matrix despite the fact that 

PBZ exhibits hydrophobic behavior. In addition, the swelling degree of MMM was slightly 

higher than the PBZ membrane due to the presence of hydrophilic NaA zeolite [24]. 
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Figure 6.9  Effect of feed ethanol concentration on (a) total permeation flux and (b) 

separation factor at 70 ºC 
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Figure 6.10  Swelling testing of membranes in various ethanol concentrations 

7  Effect of temperature 

As the separation temperature increased from 30 to 70 C, the 

permeation fluxes of both PBZ membrane and NaA-PBZ MMM increased (Fig. 6.11a). It is 

well-known that the increase of temperature improves the polymer chain mobility as well 

as the kinetic energy of the diffusing molecules, resulting in a higher diffusing rate or 

permeation flux of both ethanol and water [33-35]. Moreover, the rising of temperature 

could alter the sorption behavior of both diffusing molecules that could lead to a higher 

permeation rate of ethanol molecule over the water molecule, resulting in the decreasing 

of the separation factor with increasing temperature (Fig. 6.11b) [24,36]. To further 

investigate the effect of temperature, the Arrhenius plot (Equation (4)) was used. 

 

exp	              (6.4) 
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where J is the total permeation flux, J0 is the permeation rate constant, Ea is the apparent 

activation energy for permeation, R is the universal gas constant, and T is the temperature 

in Kelvin. The plot between ln(J) vs 1/T, as given in Fig. 6.11c reveals that the apparent 

activation energies of the PBZ membrane and the 15 wt%NaA-PBZ MMM are 41.25 and 

34.74 kJ gmol-1, respectively. The lower activation energy of the MMM indicates that an 

excessive chain movement of the PBZ is restrained by the presence of NaA zeolite in the 

polymer matrix, causing the permeation flux to be less sensitive with changes in 

temperature [33]. 
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Figure 6.11  Effect of temperature on membrane separation performance (a) total 

permeation flux; (b) separation factor; and (c) Arrhenius plot 
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6.5 Conclusions 

The PBZ membrane and NaA-PBZ MMM were successfully fabricated on the 

tubular α-alumina support for ethanol/water separation via pervaporation. Both PBZ and 
NaA-PBZ membranes exhibit excellent stability in all ethanol concentrations with the 
degree of swelling values of less than 3 %. The highest separation factor of the PBZ 
membrane was higher than 10,000 with the permeation flux of 13.5 – 28.0 g m-2 h-1 while 
that of the NaA-incorporated PBZ matrix increased to more than 100,000 with a 
permeation flux of 726.0 – 1,071.1 g m-2 h-1. In addition, the apparent activation energies 
of the PBZ membrane and the 15wt%NaA-PBZ MMM were 41.25 and 34.74 kJ gmol-1, 
respectively. 
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CHAPTER VII 

CONCLUSIONS AND RECOMMENDATIONS  

 

7.1 Conclusions 

PBZ membranes, NaA-PBZ double layered membranes, and NaA-PBZ mixed 

matrix membrane (NaA-PBZ MMM) were successfully prepared on a tubular α-Al2O3 

support by using dip-coating technique. All of the prepared membranes showed an 

excellent stability in pervaporation in all feed ethanol concentrations with the degree of 

swelling lees than 5%. The total permeation flux of three different PBZ membranes 

synthesized from BPA, formaldehyde, and different types of primary diamines; TEPA, 

DETA, and HDA, were in ranges of 2.3 – 20.2 g m-2 h-1, 12.3 – 19.5 g m-2 h-1, and 23 – 33 g 

m-2 h-1, respectively, depending on the feed ethanol concentration, with the separation 

factor more than 10,000 in all cases. The separation performance could be further 

improved by introducing NaA zeolite into the membrane system. For example, the total 

permeation flux of NaA-PBZ double layered membrane was increased up to 109 g m-2 h-1 

while the separation factor was still more than 10,000. In case of NaA-PBZ MMM, both the 

total permeation flux and the separation factor were improved, depending on the amount 

of NaA zeolite loading. The optimum amount of 15 wt% NaA zeolite loading provided the 

membrane total permeation flux of 726 - 1,071 g m-2 h-1 with the increased separation 

factor of 100,000. 
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7.2 Recommendations 

The PBZ membrane can be further developed by varying the following 

parameters; type of phenolic compound and primary amine to enhance a bettere 

separation performance, type of support to reduce production cost and improve the 

separation performance, and technique for preparing membrane, e.g. electro-spinning 

technique, to increase the efficiency/precision of the preparation. The larger scale of 

pervaporation should also be conducted to estimate the potential of using PBZ 

membrane in an industrial-scale. 
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Abstract 

 

The use of bioethanol fuel produced directly from the renewable biomass should be one of the truly 

sustainable energy developments. However, the amount of ethanol concentration in bioethanol 

obtained from fermentation is quite low; an energy-effective separation method is required for 

concentrating ethanol up to the fuel level. The less energy-intensive technique of pervaporation is a 

promising method in producing high-purity ethanol, but the overall economic feasibility is 

dependent upon the membrane. Thus, in this review, various membranes are reported, discussed, 

and compared as to their advantages, disadvantages, and separation performance via the 

pervaporation process. It is found that different membranes provide different performances and 

advantages in ethanol separation. Other parameters governing the separation performance, such as 

temperature, ethanol concentration, membrane production method, and production cost, are also 

included. 

 

Keywords: Pervaporation, Membrane, Ethanol, Purification, Separation performance 
 
INTRODUCTION 
 

Due to the depletion of fossil fuel reserves and an increase in global demand, the development of 

sustainable energy alternatives for replacing fossil fuel has attracted great attention for many years, 

and ethanol fuel, being a good candidate, has been extensively studied. One of the reasons for 

ethanol’s ascendancy is that it can be produced from a variety of resources, such as sugar cane, 

corn, grasses, etc., using fermentation. However, the current fermentation technique provides a 

very low ethanol concentration of less than 15 wt% (Mohanty et al., 2009; Lee et al., 2013). This 

concentration certainly cannot be used in any engine technology; thus, in using bioethanol as the 

vehicle fuel, the conventional process of azeotropic distillation is used for separating the ethanol-

water mixture to obtain a high purity of ethanol of at least 99.5 wt%. The azeotropic distillation, 

however, is an energy-intensive technique, increasing the cost of the produced fuel (Van Hoof et 

al., 2004; Kunnakorn et al., 2013). Other techniques, such as pressure swing absorption, liquid-

liquid extraction, and crystallization, are not only costly and energy intensive, but also limited in 
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terms of practical production (Kim et al., 2002). Membrane separation technique using 

pervaporation is thus an attractive process to be considered. 

 
PERVAPORATION PROCESS 
 
Pervaporation, a separation of liquid mixture using a selective membrane especially for the 

azeotropic and close-boiling point mixtures, is well known to be a less energy-intensive operation 

than the common azeotropic distillation process, leading to a more energy-efficient way to produce 

a high purity of ethanol for fossil fuel replacement (O’Brien et al., 2000). A liquid mixture is fed to 

contact with the membrane at the upstream side while the downstream side is being held under 

vacuum. The undesired component is able to permeate through the membrane preferentially in the 

form of vapor by means of the low pressure before flowing out. The desired component is 

concentrated by recycling the retentate to the feed reservoir, as shown in Fig. 1. The separation 

performance of the membrane is determined by two major factors, permeation flux and separation 

factor, which relate to both the productivity and quality of the separation, as given in eq. 1 and 2, 

respectively. 

 
Insert Figure 1 

 
The permeation flux (J, kg m-2 h-1) is defined as: 
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where W is the weight of permeate (kg), A is the effective membrane area (m2), and t is the 

pervaporation time (h). 

 

The separation factor (α) is defined as: 
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where wH2O and wEtOH are the weight fractions of water and ethanol from the permeate side 

(denoted as Per) and the retentate side (denoted as Ret), respectively. 

 

MEMBRANE DEVELOPMENT 

 

Currently, the major focus of membrane development is to improve membrane performance in both 

high separation factor and permeation flux, thereby enhancing the economic feasibility of ethanol 

production (Di Luccio et al., 2002). A variety of materials have been studied in development of the 

membrane. In this report, the membranes for only ethanol-water mixture are reviewed and 
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categorized into three main classes, viz., polymeric membranes, inorganic membranes, and mixed-

matrix membranes. In polymeric membranes, the separating layer is made from organic polymers, 

while inorganic membranes are made from ceramics or zeolites. Mixed-matrix membranes are 

composed of both ceramic and polymer, working together for the separation (Kittur et al., 2005). 

 
POLYMERIC MEMBRANES 
 
The polymeric membrane is the most common membrane in the membrane separation and can be 

fabricated by various simple techniques, such as casting, extruding, and coating. These techniques 

facilitate ethanol’s economic feasibility in terms of membrane product and cost (Chowdhury et al., 

2001; Widjojo and Chung, 2009). The polymeric membrane can be used as a self-supporting 

membrane or supported membrane. Generally, the support for a polymeric membrane is made of 

porous ceramics or stronger polymer to improve the membrane strength for a better separation 

performance (Fu et al., 2014). The self-supporting membrane is normally cast as a thin polymer 

film which generally provides low mechanical properties, low separation performance, and high 

swelling. These drawbacks limit its application for use in the ethanol purification area (Zhao et al., 

2013). Thus, many researchers have focused on improving the membrane stability as well as its 

separation performance by increasing crosslinking degree, blending with other polymers, and co-

polymerizing with other monomers (Zhang et al., 2009). Due to the high polarity of the ethanol-

water mixture, the membrane to be used in the ethanol-water separation must be hydrophilic 

polymers, such as poly(vinyle alcohol) (PVA), chitosan, and cellulose. However, hydrophobic 

membranes have also gained more attention for ethanol-water separation due to their better 

mechanical properties, higher chemical resistance, and higher thermal stability (Ghofar and 

Kokugan, 2004; Smuleac et al., 2010). Examples of hydrophobic membranes are 

polydimethylsiloxane (PDMS), polyimides, and a new class of phenolic resins, so-called 

polybenzoxazine (PBZ).  

 
Self-supporting polymeric membranes 
 
Praptowidodo (2005) studied the influence of two different hydrophilic groups, itaconic acid and 

N-3-trimethyl-ammonio-propyl-acrylamide-chloride, in PVA co-polymer membranes, and 

compared them with the pure PVA membrane. The pervaporation result of 90:10 ethanol:water 

mixture showed that the separation factor of the PVA-itaconic acid copolymer membrane was the 

highest, as a result of having the highest hydrophilicity, while the second copolymer containing 

ammonium group provided a lower separation factor, but a higher one than the pure PVA due to 

lower hydrophilicity. However, the permeation fluxes of both copolymer membranes were 

decreased due to their higher rigidity, causing brittleness. The results were in good agreement with 

the study of the crosslinking effect using glutaraldehyde. With an increase in crosslinking time, the 

separation factor increased, but the permeation flux decreased. 
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A PVA copolymer containing a hydrophilic group was also studied by Zhang et al. (2009). They 

prepared a PVA membrane grafted with quaternary ammonium group called quaternized PVA 

membrane using trimethyl ammonium chloride with the degree of quaternization (DQ) ranging 

from 2.024 to 4.035. They found that increasing the DQ value in the membrane increased the 

hydrophilicity and improved water selectivity, but also increased the swelling. Thus, they 

minimized the swelling by crosslinking the membrane using glutaraldehyde even at 85 wt%EtOH, 

resulting in a higher selectivity. However, the permeation flux was reduced. Since a good 

pervaporation membrane requires high permeation flux and selectivity, these membranes must be 

optimized between degree of quaternization and degree of crosslinking. 

 
Gimenes et al. (2007) prepared a blend between sericin, extracted from the silkworm cocoons, and 

PVA for ethanol pervaporation membrane. The dimethylolurea (DMU) was used as a crosslinking 

agent which was expected to crosslink only at hydroxyl groups and leave the amino groups of 

sericin to interact with water during the pervaporation. They found that the increase in 

hydrophilicity by introducing PVA into sericin caused the membrane to swell more, resulting in a 

higher permeation flux and lower separation factor. 

 
Pandey et al. (2005) prepared a bacterial cellulose membrane for separation of glycerol, ethylene 

glycol, ethanol, formalin, and acetone from water. They claimed that bacterial cellulose was able to 

serve as the pervaporation membrane in an ethanol/water system, providing an excellent 

permeation flux of 1.43 kg m-2 h-1 at 75 °C. However, the separation factor obtained was very low, 

only 1.3. They explained that the membrane was not modified or crosslinked, causing the 

membrane to swell and resulting in such a low separation factor. 

 
Dubey et al. (2005) worked on improving chitosan membrane by preparing chitosan/bacterial 

cellulose and chitosan/PVA membranes. Based on their previous work (Dubey et al., 2002), 

bacterial cellulose showed high mechanical strength, high chemical resistance, and good water 

flux. The bacterial cellulose was selected to blend with chitosan. The results showed that although 

the chitosan/bacterial cellulose membrane possessed a higher mechanical strength than the 

chitosan/PVA membrane, the membrane exhibited an identical strength to the pure chitosan 

membrane, meaning that adding bacterial cellulose did nothing to improve the chitosan membrane 

strength. Moreover, the separation performance of the chitosan/PVA membrane revealed 

unsatisfactory results, showing a further reduction of permeation flux. The chitosan/bacterial 

cellulose also showed a moderate separation performance, but both the permeation flux and the 

mechanical strength were still less than those obtained from the pure bacterial cellulose membrane. 
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Lai et al. (2012) prepared PDMS membrane using UV/ozone treatment. Naturally, the PDMS 

membrane exhibits the hydrophobic property, but its surface structure could be changed by the 

UV/ozone treatment. Thus, the treatment was expected to change the surface hydrophobicity to a 

hydrophilic form, which would be more suitable for the ethanol/water pervaporation. They found 

that the UV/ozone treatment indeed affected the membrane surface. The working distance, relating 

to the UV intensity, and the pretreatment time were optimized to maximize the hydrophilicity of 

the membrane. However, the pervaporation results demonstrated a trade-off between the 

permeation flux and the separation factor after the treatment. As hydrophilicity increased, the 

separation factor also dramatically increased since the structure was changed to more silica-like 

structure, which was more restrictive to larger molecules like ethanol. However, it was also denser, 

reducing the total permeation flux. 

 

Pakkethati et al. (2011) prepared PBZ membranes for ethanol/water pervaporation using a simple 

film-casting technique. Due to the extraordinary properties of PBZ, the PBZ was expected to 

exhibit higher mechanical strength and thermal stability. In their work, three different PBZs were 

synthesized from the bisphenol-A (BPA), formaldehyde, and three different amines, viz., 

hexamethylenediamine (HDA), tetraethylenepentamine (TEPA), and tetraethylenetriamine 

(TETA). They found that all PBZ membranes showed a high thermal stability up to 240 °C, which 

is much higher than the operating temperature in the pervaporation system. The pervaporation 

results revealed that the fabricated PBZ membrane synthesized from HDA exhibited the highest 

stability with a service time longer than 120 h, a permeation flux of 1.52 kg m-2 h-1, and separation 

factor of more than 10,000 at 70 °C, indicating outstanding separation performance for the 

ethanol/water separation with no need of additional membrane modification. They explained that 

the chain flexibility of the long aliphatic chain in the HDA structure played a significant role.  

 

Le and Chung (2014) demonstrated a copolyimide membrane prepared from poly(1,5-

naphthalene/3,5-benzoic acid-2,2′-bis(3,4-dicarboxyphenyl) hexafluoropropanedimide) (6FDA-

NDA/DABA) blending with its sulfonated polymer. The blend of sulfonated polymer with its pure 

form was expected to control the membrane performance and reduce the cost since the sulfonated 

polyimide provides a hydrophilicity of the membrane which increases the permeation flux, but 

reduces the membrane strength. According to Le and Chung, it is difficult to control the properties 

of the prepared membrane, resulting in poor repeatability. In their study, the preparation procedure 

was done by spinning process to make the hollow fiber membrane. The pervaporation result 

showed that the permeation flux increased when adding sulfonated polyimide, but the separation 

factor was lower due to the looser polymer structure, as confirmed by the increase in swelling of 

the polyimide blend membranes. Thus, they further studied to improve the separation factor by 
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coating the membrane surface with PDMS layer and thermal treatment. This modification 

improved the membrane for the separation factor only, since the permeation flux was still reduced. 

 
Recently, Chen et al. (2014) studied the PDMS membrane pervaporation of bioethanol produced 

from corn stover via fermentation process using a mixture of glucan, cellulose, and β-glucosidase 

enzymes. The impurities produced during the fermentation process were expected to somehow 

affect the pervaporation. They found that the major components were acetic acid and furan 

derivatives. The pervaporation with the addition of impurity was carried out individually. The 

effect of acetic acid was explained by the interaction between acid and PDMS, blocking the water 

molecules ability to diffuse through, thus reducing permeation flux. The effect of the furan 

derivatives was observed by using ijR value, indicating the interaction between PDMS and 

chemicals based on the solubility parameters. The higher ijR value obtained, the more interruption 

caused by the chemicals. 

 
The separation performance data of all self-supporting membranes discussed above are 

summarized in Table 1. As can be seen, this membrane class is mostly produced from PVA, owing 

to its highly hydrophilic property. The PVA membranes provide a good separation performance 

with the permeation flux and the separation factor in the ranges of 0.03–0.3 kg m-2 h-1 and 10–300, 

respectively. However, the hydrophobic PBZ membrane has also attracted a great attention in 

ethanol production application because it can provide superior separation performance with the 

permeation flux up to 3 kg m-2 h-1 and the separation factor of over 10,000. Thus, the PBZ 

membrane could have a greater potential in a practical process. 

 
Insert Table 1 

 
Supported polymeric membranes 

 

The limitation of self-supporting polymeric membranes, aka unsupported membranes, in some 

aspects, such as poor mechanical properties, low separation performance, etc., have led to the 

development of the supported polymeric membranes to overcome those drawbacks (Kim et al., 

2000; Wei et al., 2011). Porous ceramic materials or strong porous polymers are generally used to 

support the polymeric membrane. Because the molecular transport occurs in both the membrane (or 

separating) and the support layers, mechanical properties and separation performance are thus 

improved (Yoshida and Cohen, 2003). 

 

Kim et al. (2000) prepared a thin poly(amic methyl ester) membrane on the commercial porous 

polysulfone support via interfacial polymerization of 2,5-bis(methoxycarbonyl terephthaloyl 

chloride) (BMTC) with various diamines, viz., ethylene diamine (EDA), hexamethylene diamine 
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(HDA), and m-phenylene diamine (m-PDA), directly on the support surface. They found that 

poly(amic methyl ester) supported polysulfone improved the separation factor when compared to 

the performance of the support itself. However, the permeation flux decreased due to the increase 

in the transport resistance. The HDA-BMTC and EDA-BMTC membranes were found to provide 

superior pervaporation performance for 90:10 ethanol:water because the separating layer of these 

membranes was very thin while the PDA-BMTC membrane was poor in film-forming ability. 

Moreover, the HDA-BMTC membrane was further tested for its stability and demonstrated an 

excellent stability up to six days after the operation. 

 

Yanagishita et al. (2001) studied the pervaporation performance of polyimide synthesized from 

pyromellitic dianhidride (PMDA) and 4,4’-oxydianiline (ODA) using poly(amic acid) salt (PAA 

salt), and coated on commercial asymmetric polyimide (PI-2080) support. The result showed that 

the performance of the supported membrane significantly better than the self-supported one 

because the separating layer thickness was greatly reduced. 

 

Li et al. (2006) worked on chitosan (CS)-PVA blends prepared on polyacrylonitrile (PAN) support 

for separation of ethanol, similar to the work by Jiraratananon et al. (2002), who prepared chitosan-

hydroxycellulose (CS-HEC) blends on cellulose acetate (CA) support. The separation performance 

of the chitosan was expectedly improved by blending with a highly hydrophilic polymer, such as 

PVA or HEC, to increase the membrane hydrophilicity. Li et al. found that the separation factor of 

the CS-PVA/PAN membrane increased to maximum at 40 wt% of PVA concentration before 

slightly decreasing, probably due to the phase inversion of the CS-PVA matrix. However, when 

comparing the performances between the pure CS, CS-PVA/PAN, and PVA/PAN membranes. The 

PVA/PAN membrane provided fair permeation flux and an excellent separation factor while the CS 

membrane was superior in the permeation flux, but fairly low in the separation factor. The CS-

PVA/PAN membrane, however, provided a permeation flux as low as the PVA/PAN membrane, 

and separation factor as low as the CS membrane. 

 

Huang et al. (2008) studied poly(thiol ester amide) prepared on the modified polyacrylonitrile (m-

PAN) support. The interfacial polymerization technique was used in preparing poly(thiol ester 

amide) thin film by reacting cystamine (2-aminoethanethiol) with trimesoyl chloride (TMC) or 

succinyl chloride (SCC) on the support. They found that the poly(thiol ester amide) membrane 

synthesized from TMC performed better separation in terms of selectivity than the membrane 

synthesized from SCC because of the aromatic ring and the network structure of TMC, providing 

less swelling. They also measured the free volume of the membrane using Doppler-broadened 

linewidth and shape (S) parameters. The results confirmed the presence of the network structure in 
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the TMC membrane and that the active layer thickness was only 100 nm, much thinner than the 

typical self-supported polymeric membranes. 

 

Zhu et al. (2010) prepared PVA-chitosan membrane on a tubular asymmetric ZrO2-Al2O3 support, 

and studied the effect of the support pore size on the performance of t-butanol/water pervaporation. 

It was found that the support pore size of 0.2 μm was the optimum. A too-narrow pore size of 0.05 

μm provided very low permeation flux due to the high molecular transport resistance, while a too-

large pore size of 0.5 μm provided very low separation factor and permeation flux because the 

support was not compact enough, easily causing defects. Moreover, filling of polymer into the 

support pores also caused a huge permeation resistance. For the separating layer, chitosan 

concentration was found to reduce the compactness of the PVA structure, providing more 

permeation flux and a slightly lower separation factor. These results were contradictory to the study 

of Dubey et al. (2005) who found that the structure was more compact when blending PVA with 

chitosan, causing further reduction of permeation flux in ethanol/water pervaporation. The 

membranes were further tested for various organic-water mixtures; ethanol, t-butanol, methyl 

acetate, and ethyl acetate, and the results showed that the pervaporation of the ethanol/water system 

revealed the highest activation energy. 

 

The tubular asymmetric ZrO2-Al2O3 was also studied to support PDMS membrane in the work of 

Wei et al. (2011). The tubular PDMS/ZrO2-Al2O2 membrane was tested and compared with PDMS 

membrane supported by blended cellulose acetate (BCA) or PDMS/BCA membrane. The 

PDMS/ZrO2-Al2O3 membrane was prepared by dip-coating technique while PDMS/BCA 

membrane was prepared by casting technique. Reduction of polymer penetration into the support 

and a more uniform coating when increasing molecular weight of PDMS were found to be the 

major reason for the increase of separation factor of the PDM/ZrO2-Al2O3. The membrane 

thickness was found to be governed by the polymer concentration and the dipping time. The 

pervaporation performance result of the PDMS/ZrO2-Al2O3 was not only superior, but also the 

long-term pervaporation results showed that the PDMS/ZrO2-Al2O3 was quite stable up to 30 days 

with no sign of delamination while the PDMS/BCA was delaminated after 11 days of the operation.  

 

The potential of using fully crosslinked polybenzoxazine (PBZ) membrane for ethanol/water 

pervaporation was studied by Chuntanalerg and coworkers (in press, b). Two different PBZs 

synthesized from bisphenol-A, formaldehyde, and tetraethylenepentamine (tepa) and 

diethylenetriamine (deta), denoted as poly(BA-tepa) and poly(BA-deta), respectively, were coated 

on tubular alumina support in order to prevent brittleness and to improve membrane strength. As 

both poly(BA-tepa) and poly(BA-deta) membrane were fully crosslinked, the swelling property 

was minimized, allowing them to better tolerate in a wide range of the feed ethanol concentration, 



102 
 

from 10 to 90 wt%, with the separation factor values of higher than 10,000. However, the reduction 

of the permeation was observed at high ethanol concentration, due to the restriction of molecular 

transport caused by sorbed ethanol. From the study, it was found that the permeation flux of 

poly(BA-tepa) membrane was reduced greater than that of poly(BA-deta) due to the higher amount 

of ethanol sorption in poly(BA-tepa). 

 
The separation performance data of all supported polymeric membranes are summarized in Table 

2. PVA was widely used as the separating layer along with chitosan. In this case, there is more than 

one layer involved in the separating mechanism, membrane and support layers. The major 

improvement of the pervaporation performance should depend on the membrane selectivity. 

 
Insert Table 2 

 
INORGANIC MEMBRANES 

 

Unlike the polymeric membranes, the inorganic membranes for ethanol/water separation are 

dominated by a single type of zeolite membrane called NaA zeolite (is referred to as zeolite A or 

4A zeolite) membrane. The NaA zeolite, a sodium aluminosilicate with Linde Type A (LTA) 

framework, has a well-defined pore opening of about 4 Å, perfectly lying in between the molecular 

sizes of ethanol (kinetic diameter of 5.2 Å) and water (kinetic diameter of 2.6 Å) (Shah et al., 

2000). It thus provides a molecular sieving ability in separating those two molecules, leading to a 

high performance membrane with an exceptional permeation flux and separation factor.  

 

Kondo et al. (1997) prepared NaA zeolite membrane on various supports having different 

Al2O3/SiO2 ratios. The supports were produced by mixing α-Al2O3, mullite, and cristobalite 

together. They found that the membrane selectivity increased when increasing the Al2O3 content up 

to 70 % before becoming constant. However, the most cost-effective support was at 65% Al2O3 

content, although the price of a support tube with I.D., O.D., and length of 9, 12, and 800 mm, 

respectively, were 1,300 JPY or about 11.18 USD.  

 

Ikegami et al. (1999) studied the pervaporation of ethanol/water using silicalite membrane. The 

effects of sugars and yeast cells presented in bioethanol on pervaporation performance were 

investigated. The reduction of permeation flux was found when any of the impurities are presented 

in the mixture, due to the restriction of molecular diffusion by those impermeable molecules. This 

finding was opposite to that of Chen et al. (2014) who found that the presence of yeast cells 

provided a positive effect to the permeation flux for their polymeric membrane. This report was a 

good example of using inorganic membranes in bioethanol pervaporation in comparison with 

polymeric membranes. 



103 
 

Ma et al. (2009) synthesized microporous silica membrane for ethanol/water pervaporation. The 

total sample of 15 replicates was used in their pervaporation testing. They found that the separation 

factors and the permeation fluxes obtained were in the ranges of 10 to 500 and 0.3 to 0.8 kg m-2 h-1, 

respectively. The best performance membrane, based on the optimization between the separation 

factor and the permeation flux, was selected for the stability test. The results showed that the 

membrane was stable up to 1,600 min of the operation. As time progressed, a decrease the 

permeation flux and an increase in the separation factor were observed. These results are similar to 

the results obtained from the other porous inorganic membranes, which is related to the decrease of 

water amount in feed. 

 

Kuanchertchoo et al. (2006) synthesized NaA zeolite membrane on alumina support via seeding 

and microwave heating techniques using nano-size NaA zeolite seed synthesized from silatrane and 

alumatrane precursors. The advantages of using atrane precursors in the synthesis of uniformly 

nano-sized zeolites have been proven and reported in Wongkasemjit’s laboratory (Sathupunya et 

al., 2002; Phiriyawirut et al., 2003). The presence of NaA zeolite seed helps NaA zeolite to 

uniformly and continuously grow on the alumina support surface. Moreover, Kuanchertchoo et al. 

(2007) studied the effect of seed concentration, seeding time, reaction time and temperature on the 

membrane preparation. The optimization of NaA zeolite membrane was justified based on the 

pervaporation of ethanol/water results. They found that using 3 g of NaA zeolite seed per 1 liter of 

water is the optimal condition for synthesizing the membrane; amount of seed caused the 

membrane to become too thick, while a low amount of seed was not enough for zeolite membrane 

to form a defect-free continuous layer. In this study, the optimal condition for preparing NaA 

zeolite membrane was to use 3g/l of NaA zeolite seed with 2 min of seeding time and 15 min 

microwave heating time at 363 K.  

 

Kunnakorn et al. (2011a, 2011b) compared NaA zeolite membranes synthesized from microwave 

and autoclave techniques. The time-dependent parameters, separation factor, and permeation flux 

with respect to time were studied and selected to describe the membrane stability. They found that 

a high purity of ethanol, at least 99.5%, for fuel specification, can be obtained from both 

membranes using microwave and autoclave techniques. These membranes also provided good 

performance and stability in ethanol/water pervaporation for a long-term period with multiple runs, 

although the membrane prepared from microwave gave slightly higher permeation flux. However, 

judging from the preparation procedure, the autoclave technique requires significantly longer 

synthesis time (600 min) than the microwave heating (30 min). They also conducted a techno-

economic investigation, comparing energy usage data between the conventional azeotropic 

distillation and the hybrid process combining distillation and membrane pervaporation systems 

(Kunnakorn et al., 2013). A chemical process simulation program (PRO II by Provision version 
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8.0) was used in the study. The simulation was based on the practical distillation process and 

pervaporation data obtained from the NaA zeolite membrane in their laboratory research. The 

results showed that the hybrid system provided the lowest energy usage in producing 99.5% 

ethanol. The highest amount of energy consumption was found in the azeotropic distillation 

column, which requires almost 20 times more energy than that utilized in the pervaporation unit.  

 
The data of separation performance of all inorganic membranes discussed above are summarized in 
Table 3. As can be seen, NaA zeolite membranes exhibit the best pervaporation performance, with 
a permeation flux range of 1.5–2.8 kg m-2 h-1 and a separation factor of more than 10,000.  
 

Insert Table 3 
 
MIXED-MATRIX MEMBRANE 
 
Basically, a mixed-matrix membrane (MMM), a mixture of an inorganic additive, such as zeolites, 

and a polymer matrix, is prepared to improve the overall separation performance, and also to 

overcome the trade-off barrier between permeation flux and separation factor in polymeric 

membranes (Robeson, 2008; Vane et al., 2008). Generally, zeolites provide exceptional separation 

performance, but exhibit poor ability in fabrication to achieve a homogeneous membrane.  

 

Sun et al. (2008) prepared a MMM by incorporating H-ZSM-5, an aluminosilicate with MFI type 

framework with pore opening of 5.4 Å, into chitosan. H-ZSM-5 exhibits high acid strength which 

was expected to increase the hydrophilicity of the membrane as well as to improve the selectivity 

by its size-selective effect. The results showed that the H-ZSM-5/chitosan MMM improved the 

permeation flux. The maximum separation performance was observed when 8 wt% H-ZSM-5 was 

mixed with chitosan. Although addition of H-ZSM-5 into chitosan did improve the permeation flux 

when compared to the pure chitosan membrane, the separation factor was reduced, probably due to 

the larger pore size of H-ZSM-5 than the kinetic diameters of both ethanol and water molecules. 

They also demonstrated that an increase of the Si/Al in the H-ZSM-5 improved the permeation flux 

and separation factor, owing to the increase in the Si-OH-Al framework which improved the 

adhesion between chitosan and zeolite. 

Amnuaypanich et al. (2009) incorporated zeolite 4A into natural rubber/PVA semi-interpenetrating 

polymer network (NR/PVA semi-IPN). The PVA was expected to improve the hydrophilicity of 

the hydrophobic NR matrix, while zeolite 4A, having molecular-sieving ability, was expected to 

improve the permeation flux and separation factor of this MMM. The increase of PVA (which in 

turn increases –OH group in the NR matrix caused the membrane to absorb more water due to 

stronger bonding to the water molecules, leading to more swelling. However, the swelling 

decreased with an increase in the zeolite 4A loading because the zeolite particles restricted the 

polymer chains movement in the matrix, reducing the total free volume of the polymer matrix. 
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They also found that 30 wt% of zeolite 4A loading resulted in the optimal separation factor and 

permeation flux. 

 

Lue et al. (2011) loaded a commercial zeolite (trade name: TZP-9023 with a Si/Al ratio of 666) into 

PDMS membrane. They found that the zeolite consisted of two different pore sizes of 5.93 Å 

(99.7%) and 29.1 Å (0.3%) with the BET surface area of 243 m2/g. They prepared membranes 

using two different techniques, adding zeolite into PDMS before and after crosslinking. The 

pervaporation performance showed a significant improvement in post-addition membrane, while 

exhibiting only a slightly increase in pre-addition membrane when compared to the dense PDMS 

membrane. They demonstrated that the non-uniform distribution of zeolite, created by the post-

addition of zeolite into the polymer matrix, enhanced the pervaporation performance while the 

uniform distribution of zeolite caused the chain rigidity which reduced the permeation flux. 

 

Zhan et al. (2012) prepared PDMS/ZSM-5 (Si/Al ratio = 300) MMM loaded etched with HF acid. 

The etching was expected to improve the adhesion between zeolite and hydrophobic PDMS surface 

by reducing the hydrophilicity of the ZSM-5 at its surface. The effects of the acid concentration 

and zeolite loading on the membrane preparation were determined to obtain the optimal condition 

for a better water-ethanol separation performance. They found that the etching created the pin-holes 

in micrometer-scale on the zeolite surface, which later filled with PDMS, and enhanced the 

adhesion between PDMS and zeolite surfaces. The result was confirmed by increasing the HF acid 

concentration; the membrane separation factor increased while the permeation flux decreased since 

there was more polymer filling into the zeolite pores, decreasing the polymer chain movement, thus 

reducing the permeation rate. However, loading 30 wt% ZSM-5 zeolite into PDMS matrix was 

found to improve both permeation and separation factor. Moreover, they also suggested that this 

MMM was able to perform the ethanol pervaporation in all ranges of ethanol concentration of 5-90 

wt%, which is suitable for bioethanol purification, but the best selectivity was achieved when the 

ethanol concentration was below 10 wt%. 

 

Flynn et al. (2013) studied a MMM prepared from PVA and mesoporous silica sphere, and found 

that up to 10 wt% loading of mesoporous silica in PVA matrix increased the permeation flux and 

the selectivity before causing the drastically decreasing to below the value of those using the pure 

PVA membrane due to the agglomeration of the silica. The increase of permeation flux with an 

increase in the silica loading was explained by the increase in the membrane hydrophilicity and 

free volume while the increase in selectivity was claimed from the conditioning and relaxation 

effects. 
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Polybenzoxazine (PBZ) and NaA zeolite were used to prepare MMM (Chuntanalerg et al., in press, 

a). The effects of PBZ concentration, amount of NaA zeolite loading, feed ethanol concentration, 

and operating temperature on the pervaporation performance were studied and discussed in this 

work. It was found that the incorporation of NaA zeolite into PBZ matrix, up to 15wt%NaA zeolite 

loading, improved both permeation flux and separation factor due to an increase in the water 

transportation and the molecular sieving effect provided by NaA zeolite, respectively. However, 

when increasing the %loading more than 15wt%, the defect was resulted, causing a drastically 

decrease of separation factor. The membrane stability evaluated in a wide range of ethanol 

concentration (10 to 90wt%) was found that the degree of swelling was low, giving a high 

separation factor of more than 10,000 at the 10wt% ethanol feed and went up to higher than 

100,000 at the 90wt% ethanol feed, implying that this MMM was very stable and applicable in the 

pervaporation of these feed mixtures. 

 

All separation performance data described above for MMMs are summarized in Table 4. The 

permeation flux and the separation factor of the membranes could be simultaneously improved 

when adding zeolites into the polymer matrix due to its size-selective ability, which creates a 

promising way to achieve a higher performance. 

 

Insert Table 4 

 

CONCLUSIONS 

 

Different kinds of membrane provide different characteristics. The self-supported polymeric 

membranes may provide an economic attraction in membrane production, but not in performance, 

due to their poor mechanical properties, low chemical resistance, and swelling. The supported 

membranes improve mechanical strength and separation performance. The inorganic membranes 

provide an outstanding separation performance, but are extremely difficult in processability, 

leading to a higher price in industrial usage. The mixed-matrix membranes thus provide an 

attractive alternative that are able to overcome all barriers while achieving both permeation flux 

and separation factor. 
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Figure 1: The schematic diagram of pervaporation process 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1: Separation performance of self-supported polymeric membranes 

 

Membrane Modification Crosslinking agent / 
condition 

Feed ethanol 
concentration (wt%) 

Temperature 
(°C) 

Permeation flux 
(kg/m2.h) 

Separation 
factor 

Reference 

PVA - glutaraldehyde 96 40 0.279 107 Praptowidodo, 
2005 

PVA Copolymerized with itaconic 
acid 

glutaraldehyde 96 40 0.123 216 Praptowidodo, 
2005 

PVA Copolymerized with ammonium 
group 

glutaraldehyde 96 40 0.119 228 Praptowidodo, 
2005 

PVA Quaternized with trimethyl 
ammonium chloride, DQ = 
3.260 

- 85 50 0.042 40.2 Zhang et al., 
2009 

PVA Quaternized with trimethyl 
ammonium chloride, DQ = 
3.336 

- 85 50 0.048 52.8 Zhang et al., 
2009 

PVA Quaternized with trimethyl 
ammonium chloride, DQ = 
4.035 

- 85 50 0.052 58.3 Zhang et al., 
2009 

PVA Quaternized with trimethyl 
ammonium chloride, DQ = 
3.260 

glutaraldehyde 85 50 0.033 58.3 Zhang et al., 
2009 

PVA - dimethylolurea 10 60 ≈0.110 ≈100 Gimenes et al., 
2007 
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Sericin - dimethylolurea 10 60 ≈0.070 ≈90 Gimenes et al., 
2007 

Sericin Blended with PVA dimethylolurea 10 60 ≈0.095 ≈125 Gimenes et al., 
2007 

Sericin Blended with PVA Thermally 
crosslinking 

10 60 ≈0.070 ≈92 Gimenes et al., 
2007 

Bacterial 
cellulose 

- - 54 75 1.43 1.3 Pandey et al., 
2005 

Bacterial 
cellulose 

Treated with alkaline - 70 70 0.112 287 Dubey et al., 
2002 

PVA - - 95 24 0.190 10.1 Dubey et al., 
2005 

Bacterial 
cellulose 

- - 95 24 0.754 1.6 Dubey et al., 
2005 

Chitosan - - 95 24 0.120 2.4 Dubey et al., 
2005 

Chitosan Composited with bacterial 
cellulose 

- 95 24 0.214 9.2 Dubey et al., 
2005 

Chitosan Blended with with PVA (1:3) - 95 24 0.077 19.3 Dubey et al., 
2005 

Chitosan Blended with with PVA (1:1) - 95 24 0.028 22.0 Dubey et al., 
2005 

Chitosan Blended with with PVA (3:1) - 95 24 0.029 2.8 Dubey et al., 
2005 
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PDMS - - 90 40 0.360 11 Lai et al., 2012 

PDMS Treated with UV/O3 - 90 40 0.220 130 Lai et al., 2012 

PBZ (from hda) - Thermally 
crosslinking 

10 70 1.52 >10,000 Pakkethati et al., 
2011 

6FDA-
NDA/DABA 

- - 85 60 1.2 110 Le et al., 2014 

6FDA-
NDA/DABA 

Blended with 3% its sulfonated 
polymer  

- 85 60 3.2 55 Le et al., 2014 

6FDA-
NDA/DABA 

Blended with 3% its sulfonated 
polymer and coated with PDMS 

- 85 60 2.7 104 Le et al., 2014 

6FDA-
NDA/DABA 

Blended with 3% its sulfonated 
polymer and thermal treatment 

- 85 60 2.6 130 Le et al., 2014 

PDMS - Thermally 
crosslinking 

5 40 1.124 5.5 Chen et al., 2014 

 

 

 

 

 

 

 



115 
 

Table 2: Separation performance of supported polymeric membranes 

 

Membrane Support Feed ethanol 
concentration (wt%) 

Temperature (°C) Permeation flux 
(kg/m2.h) 

Separation factor Reference 

Polyimide (BMTC-
HDA) 

Asymmetric 
polysulfone 

90 40 1.7 240 Kim et al., 2000 

Polyimide (PMDA-
ODA) 

Asymmetric 
polyimide (PI-2080) 

94 30 0.2 800 Yanagishita et al., 
2001 

HEC/chitosan Cellulose acetate 90 60 0.424 5469 Jiraratananon et al., 
2002 

PVA PAN 80 60 ≈0.90 ≈148 Li et al., 2006 

PVA/chitosan PAN 80 60 ≈1.50 ≈40 Li et al., 2006 

Poly(thiol ester 
amide) (AETH-TMC) 

Modified-PAN 90 25 1.60 1130 Huang et al., 2008 

PVA/chitosan Asymmetric 
ZrO2/Al2O3 

8 70 ≈0.18 ≈1300 Zhu et al., 2010 

PDMS Blend cellulose 
acetate 

5 40 ≈0.62 ≈7.8 Wei et al., 2011 

PDMS Asymmetric 
ZrO2/Al2O3 

5 40 1.6 8.9 Wei et al., 2011 
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Table 3: Separation performance of inorganic membranes 

 

Membrane Feed ethanol concentration (wt%) Temperature (°C) Permeation flux (kg/m2.h) Separation factor Reference 

NaA zeolite 95 95 2.35 >5,000 Kondo et al., 1997 

Silicalite 4 30 0.26 23 Ikegami et al., 1999 

Microporous silica 94 70 0.3-0.8 10-500 Ma et al., 2009 

NaA zeolite 95 70 1.6 1760.5 Kuanchertchoo et al., 2007 

NaA zeolite (with intermediate layer) 95 70 1.7 6532.7 Kuanchertchoo et al., 2007 

NaA zeolite (via microwave 
synthesis) 

87.7 70 0.5-1.0 >10,000 Kunnakorn et al., 2011a 

NaA zeolite (via autoclave synthesis) 87.7 70 0.4-0.5 >10,000 Kunnakorn et al., 2011a 

NaA zeolite  90 70 2.82 >10,000 Kunnakorn et al., 2011b 

NaA zeolite 90 70 2.12 >10,000 Kunnakorn et al., 2013 
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Table 4: Separation performance of mixed matrix membranes 

Polymer matrix Inorganic additive Feed ethanol concentration 
(wt%) 

Temperature (°C) Permeation flux 
(kg/m2.h) 

Separation factor Reference 

Chitosan - 10 80 0.054 158.02 Sun et al., 2008 

Chitosan H-ZSM-5 (8 wt%, Si/Al = 
25) 

10 80 ≈0.119 ≈178 Sun et al., 2008 

Chitosan H-ZSM-5 (8 wt%, Si/Al = 
38) 

10 80 ≈0.119 ≈165 Sun et al., 2008 

Chitosan H-ZSM-5 (8 wt%, Si/Al = 
50) 

10 80 0.231 152.82 Sun et al., 2008 

NR/PVA - 8.06 80 1.56 766 Amnuaypanich 
et al., 2009 

NR/PVA Zeolite 4A (10 wt%) 8.06 80 2.28 940 Amnuaypanich 
et al., 2009 

NR/PVA Zeolite 4A (20 wt%) 8.06 80 2.83 1506 Amnuaypanich 
et al., 2009 

PDMS - 10 25 0.002 9.21 Lue et al., 2011 

PDMS TZP-9023 (30 wt%) 10 25 0.016 12.5 Lue et al., 2011 

PDMS ZSM-5 (30 wt%, etched with 
HF acid) 

10 50 ≈0.200 ≈11 Zhang et al., 
2012 

PDMS ZSM-5 (30 wt%, etched with 
HF acid) 

90 50 ≈2.15 ≈1.5 Zhang et al., 
2012 



118 
 

PVA Mesoporous silica (10 wt%, 
sphere shape) 

90 60 0.855 42 Flynn et al., 
2013 
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Due to the depletion of fossil fuel and increasing of global warming 
concerns, the alternative energy has been attracted the interest of many 
researchers in the recent year. Bioethanol, one of well-known alternative 
energy, is commonly used as fossil fuel substitute. Deriving from 
fermentation of renewable resources, the process to produce bioethanol 
requires low energy which is applicable in fuel production. However, the 
major problem of fuel bioethanol production is the separation process which 
consumes much higher energy to recover ethanol from the fermented mixture. 
Instead of using conventional energy-intensive separation process, such as 
extractive distillation or azeotropic distillation, the pervaporation process 
provides more energy efficient way to produce fuel ethanol. To increase the 
efficiency of pervaporation, the development of higher membrane separation 
performance with low production cost is the main focus. Polybenzoxazine 
(PBZ) has an excellent candidate due to the ability to tailor it molecular 
structure leading to the proper design of the membrane separation ability 
while the membrane production cost is low. Moreover, the membrane stability 
and separation performance can be remarkably improved by using as the fully 
cross-linked PBZ membrane. In this study, the separation performance of 
various fully cross-linked PBZ membrane supported on alumina tube for 
water-ethanol pervaporation was investigated. The membranes were prepared 
by dip-coating tubular alumina support. The separation performance of each 
membrane was determined by separation factor and permeation flux. The 
resulting membranes show the superior separation factor (more than 10,000) 
with a good membrane stability. 
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Tubular α-Al2O3-supported polybenzoxazine (PBZ) membranes were prepared by 
dip-coating technique for ethanol-water separation via pervaporation. The effect of PBZ 
concentration on the number of dipping cycle required and on separation performance 
was studied. Based on the obtained results, a possible mechanism of the membrane 
formation was investigated and proposed. It was found that two membrane preparation 
steps were involved, viz. transition layer accumulation and separation layer formation. The 
membrane prepared by using 25 wt% PBZ needed the shortest preparation time and 
provided the highest separation factor. Moreover, the membrane had excellent stability in 
every ethanol feed concentration with a separation factor higher than 10,000. The study of 
a long-term pervaporation in 90:10 ethanol:water feedwas also carried out and the results 
showed excellent durability during 11 days of operation with 99.45 wt% of ethanol. 
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Figure 6 Effect of number of dipping cycle on membranes separation factor. 



124 
 

Performance of fully-cured polybenzoxazine membranes for 

water-ethanol separation via pervaporation 

Panupong Chuntanalerga, Nion SaeLima, Santi Kulthippanjab, Thanyalak Chaisuwana, and Sujitra 

Wongkasemjita*  
aThe Petroleum and Petrochemical College and Center of Excellence for  Petrochemicals and 

Advanced Materials, Chulalongkorn University, Bangkok, Thailand 
b UOP, A Honeywell Company, Des Plaines, Illinois, USA 

*Correspondence to: Tel: 66‐2‐2184133, Fax: 66‐202154459, Email: dsujitra@chula.ac.th 

 

Partially-cured polybenzoxazine membranes have a great 
potential for separation of low ethanol concentration in water via 
pervaporation. The process provides a good performance in term of 
the separation factor, over 10,000, but the membrane can be damaged 
at high ethanol concentration. In this study, fully-cured 
polybenzoxazine membrane was applied for a higher ethanol 
concentration to study whether it provided superior ethanol resistance. 
It was found that the synthesized membrane is a promising one to be 
used in a wide range of the ethanol concentration in pervaporation 
process, especially when the fully-cured polybenzoxazine membranes 
were prepared on tubular alumina support by dip-coating technique. 
The thickness of the membranes was characterized by FE-SEM and 
the membrane performance was tested by pervaporation in various 
ethanol-water solutions (10, 30, 50, and 90% ethanol) at 70 C. The 
averaged thickness of membranes was less than 15 µm and the 
separation factors were over 10,000 for all membranes. 
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 Bioethanol has attracted great attention for many years as one of the promising 
sustainable energy alternatives and a good candidate for replacing gasoline usage. 
However, to use bioethanol in a vehicle and not to harm the engine, a highly concentrated 
ethanol of at least 99.5% is a major requirement. Thus, a separation process has played an 
important role. One of the well-known techniques for separation of ethanol-water is 
pervaporation. This technique is not only has a great potential in producing ethanol fuel 
from bioethanol, but also considerably more energy efficient than the conventional 
distillation process. The overall separation performance of the pervaporation process is 
significantly dependent of properties of the membrane used, thus, the development of the 
membrane to exhibit a higher separation factor, a better permeation flux, and stability was 
focused in this talk.  

Polybenzoxazine (PBZ) is a class of high-performance phenolic resins, providing 
many unique characteristics, such as, high mechanical properties, high chemical stability, 
high thermal stability, tailorable structure, etc. We thus selected PBZ as a candidate for 
using as the separating membrane. Various PBZ membrane preparation techniques were 
investigated to achieve a better separation performance in ethanol-water separation. The 
obtained results will be discussed in detail. 
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