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Anomaly detection is of great significance for intelligent surveillance 

videos. Current works typically struggle with object detection and localization 

problems due to crowded scenes and lack of sufficient prior information of the 

objects of interest during training, resulting in false-positive detection results. Thus, 

in this thesis, we propose two novel frameworks for video anomaly detection and 

localization. We first propose a Deep Spatiotemporal Translation Network (DSTN), 

a novel unsupervised anomaly detection and localization method based on 

Generative Adversarial Network (GAN) and Edge Wrapping (EW). In this work, 

we introduce (i) a novel fusion of background removal and real optical flow frames 

with (ii) a concatenation of the original and background removal frames. We 

improve the performance of anomaly localization in the pixel-level evaluation by 

proposing (iii) the Edge Wrapping to reduce the noise and suppress non-related 

edges of abnormal objects. DSTN is a successful approach, providing good 

performance regarding anomaly detection accuracy and time complexity for 

surveillance videos. However, the false-positive problem has still occurred in the 

scene. Thus, we continue to propose Deep Residual Spatiotemporal Translation 

Network (DR-STN), a novel unsupervised Deep Residual conditional Generative 

Adversarial Network (DR-cGAN) model with an Online Hard Negative Mining 

(OHNM) approach to specifically remove the false-positives. The proposed DR-

cGAN provides a wider network to learn a mapping from spatial to temporal 

representations and enhance the perceptual quality of synthesized images from a 

generator. Our proposed methods have been tested on publicly available anomaly 

datasets, including UCSD pedestrian, UMN, and CUHK Avenue, demonstrating 

superior results over other state-of-the-art methods both in frame-level and pixel-

level evaluations. 
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CHAPTER 1  

INTRODUCTION 

1.1. Overview of the Proposed Methods 

This thesis presents two manuscripts for video anomaly detection in crowded 

scenes as follows:  

i) Unsupervised anomaly detection and localization based on deep 

spatiotemporal translation network (DSTN); 

ii) Deep residual spatiotemporal translation network for video anomaly 

detection and localization (DR-STN). 

Both manuscripts are submitted in partial fulfillment of the requirements for 

the Degree of Doctor of Philosophy in Electrical Engineering, Faculty of Engineering, 

Chulalongkorn University.  

First, we proposed DSTN to solve the anomaly detection problems, e.g., 

complex scenes, time consumption, small anomaly datasets, and object localization. 

DSTN focuses on translating spatial to temporal information to obtain comprehensive 

information for both the appearance and motion features of the objects based on the 

image-to-image translation framework. DSTN is designed with the pre- and post-

processing procedures to enhance its detection and localization performance and to 

eliminate non-object and redundant features based on Generative Adversarial 

Network (GAN) in an unsupervised manner. The pre-processing procedures include a 

background removal method, a novel fused optical flow, a patch extraction, and a 

concatenated spatiotemporal features. The post-processing procedure is an edge 

wrapping method. The proposed DSTN can handle any possible anomalous event in 

the complex scenes without tuning parameters during testing, making it particularly 

robust while achieving good running time performance due to the less complexity of 

the model.  However, since DSTN works on the patch that does not specify only the 

objects but also the background, it faces problems in generating the motion 

information of the objects. Furthermore, using GAN may incorrectly generate the 

synthesized output (i.e., shapes of objects) from input pattern as the discriminator 

learns only the temporal representation (optical flow) without the appearance 

information or spatial representation. Additionally, the background removal method is 

quite sensitive to illumination changes and the patch extraction does not always 

capture the full appearance of the objects. These issues lead to object localization, 

misdetection, and false-positive detection problems, in which the normal event is 

incorrectly detected as the abnormal event. 

To solve these problems, we continue to propose a novel Deep Residual 

Spatiotemporal Translation Network (DR-STN) framework for video anomaly 

detection and localization in crowds with a novel Deep Residual convolutional GAN 

(DR-cGAN) model. In this work, we did not use any traditional approaches, i.e., the 

background subtraction method, to extract features as the first work. Instead, we focus 

more on how to comprehensively obtain the full appearance of the objects of interest 

(the moving foreground objects). Thus, we apply the powerful object detector, 

YOLOv4, to extract features of individual objects in the frame to feed into our model. 
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Additionally, we specifically improve the performance of the translation model to 

extensively learn the translation of objects of interest from appearance (spatial) to 

motion (temporal) representations. Unlike DSTN, we built a novel DR-cGAN as a 

learning model by adding the residual units and the residual connections between 

layers in the encoder and decoder of the generator. The architecture of DR-cGAN in 

the generator creates a wider model, enhancing the accuracy and quality of the 

synthesized image. Besides, an online hard negative mining (OHNM) and a semantic 

region merging are proposed to remove the false-positive results and combine the 

synthetic results of objects of interest into a full output frame, respectively. With the 

significance of the proposed DR-STN, we can overcome the misdetection and false-

positive detection problems and achieve competitive performance over other state-of-

the-art methods, including the proposed DSTN. 

1.2. Motivation and Problem Statement 

Currently, the surveillance system is rapidly increased popularity as modern 

technology, which can be used to ensure life safety and break the wall of security 

mistrust. This modern technology can be installed in any environment (indoor and 

outdoor perimeter security) for various applications such as health monitoring, facility 

protection, vandalism deterrence, parking lots, traffic monitoring, and public safety. 

Those CCTV cameras have been widely used to record real-time situations and store 

in the system to help reduce crimes, monitor the activities, and collect the evidence. 

However, CCTV is only performed as a post video forensic process by investigating 

previous events. Human resources are required to manually screen all scenes 

monitored by the CCTV, leading to the difficulty for the monitors to find an abnormal 

event in the scene, even working as a team as they might lose some vital information 

when taking a break or switching the viewpoint from the screen. In addition, this 

behavior may cause computer vision syndrome to the monitors and affect their 

concentration [32]. Video anomaly detection [15] is a complex and challenging task 

for use in surveillance systems. An abnormal event refers to an activity that raises 

suspicions by differing from the majority of activities in the scene (e.g., a person 

driving a car while others are walking on the street). It can occur in any realistic 

scenario, e.g., indoor, outdoor, crowded, and uncrowded scenes. It may lead to 

significant problems, such as a robbery, an area invasion, and a terrorist attack, 

causing a lot of damage, injury, or death [16]. Since CCTV cameras can only monitor 

these events, there is a need to build an intelligent CCTV analysis system to precisely 

detect and localize abnormal events in realistic scenarios for surveillance videos. The 

main challenge of building an intelligent CCTV system is how to precisely detect and 

locate all possible abnormal events in crowded and complex scenes. 

There are several issues to be considered for designing an effective anomaly 

detection system. The first issue is about the complex scene, which is considered a 

challenging factor for VAD since anomalies can present in various environments but 

mostly in crowded scenes where there might be more than one anomaly at a time. 

Most works focus on the crowded scenes due to its high complexity of the multiple 

objects with occlusion and clutter rather than the uncrowded scene which is much 

simpler. This scene complexity challenge has drawn interest from researchers in the 

computer vision research area. To handle this significant issue, two main approaches 

have been implemented for anomaly detection in crowds: (i) a traditional-based 
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approach and (ii) a deep learning-based approach. With (i) the traditional-based 

approaches [3; 4; 6; 9; 10; 23; 25; 26; 47], appearance and motion (e.g., trajectories) 

are employed to detect the anomaly events based on hand-crafted features. Their 

accuracy depends on object appearances and motion cues which can be found by 

extracting features and tracking the objects [26]. Even though the traditional-based 

approaches can detect multiple objects in crowded scenes, they are more difficult to 

generalize to complex scenarios than deep learning-based approaches. Hence, deep 

learning-based approaches [11; 14; 19; 27; 35-37; 50; 52-54], have been considered as 

being more appropriate for handling complex scenes as they can improve the 

performance of anomaly detection and localization with the use of a learnable model 

of nonlinear transformation [11; 19; 46; 52]. 

Following the complex scene issue, time-consumption is one of the 

challenging issues for using an anomaly detection system in real-world applications. 

If high accuracy is required, the detection of multiple objects in crowded scenes is 

very time-consuming, asking for an inherent speed-accuracy tradeoff [2; 8; 26; 29; 30; 

39; 51]. Recently, the deep learning-based approaches are considered for reducing the 

time complexity while retaining good detection performance due to the importance of 

low computational complexity and high detection accuracy for the surveillance videos 

[12; 18; 28; 31; 40-43; 48]. The recent advanced techniques for speeding up CNNs 

are parameter pruning and sharing and transferred convolutional filters [5]. Many 

works [12; 18; 31; 40; 43; 48] try to optimize the computational time of CNN-based 

algorithms by focusing on convolutional architectures. They try to reduce 

convolutional layers and redundant parameters that are not drastically impacting the 

model performance, resulting in a smaller and faster network than traditional CNN 

[24]. Several works [28; 42] use pre-trained fully convolutional networks (FCNs) as a 

regional feature extractor for semantic segmentation to reduce the computational 

complexity of the traditional CNN. 

Another significant issue is the lack of abnormal training samples in the 

datasets, leading to insufficient training information and the difficulty of designing 

good classifiers for indicating abnormal events. Besides, there is no chance to train for 

all possible abnormal events since they can occur unpredictably in real-world 

environments. An abnormal event in one dataset may be considered as a regular event 

in another dataset. Therefore, recent works focus on unsupervised deep learning-based 

approaches to overcome this problem, e.g., generative approaches [27; 36; 37].  

Besides, the low performance of object localization in pixel-level anomaly 

detection is also addressed in the literature. Most works achieve high accuracy 

(measured by Area Under the Curve (AUC)) only on anomaly detection in a frame-

level evaluation. In contrast, the AUC of object localization in the pixel-level 

evaluation is much lower. This issue occurs because of the lack of sufficient features 

of the objects of interest (e.g., appearance and motion patterns of foreground objects) 

for model training. These features should be extracted during training to learn the 

model. Precisely, the reasons lie in this problem are as follows:  

i) A full-frame is fed into the model without prior knowledge of the 

objects, making it difficult for the model to correctly learn the mapping 
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from the appearance to the temporal information of objects and 

resulting in misdetection of abnormal objects [27; 35-37];  

ii) Patch extraction is not effective enough to collect comprehensive 

features of the normal object for the model to learn its characteristics 

[11; 52]. Fig. 1.1 shows two examples of the missed detection of 

abnormal objects, including cycling in Fig. 1.1 (a) and a vehicle in Fig. 

1.1 (b). 

 

 

 

(a) Misdetection of cycling  (b) Misdetection of vehicle 

Fig. 1.1 The misdetection results on the UCSD Ped1 [3] and Ped2 dataset [35]. 

Finally, all these issues mentioned above lead to false-positive anomaly 

detection that decreases the accuracy and reliability of the system, e.g., AUC and 

pixel accuracy. Lots of works in anomaly detection research [27; 35-37] have faced 

false-positive results in their final output in which the system incorrectly detects 

regular events as abnormal ones. This problem is significant to be handled to enhance 

the overall performance of the system. Current works [34; 45] aim to enhance the 

accuracy with the use of a supervised learning method. However, even a supervised 

learning method provides high accuracy; it needs data labeling for all samples which 

is not suitable for video anomaly detection since anomalies are varied and 

unpredictable. The examples of false-positive detection results on pedestrians are 

illustrated in Fig. 1.2 [15]. 

 

Fig. 1.2 The false-positive detection results on UCSD Ped1 and Ped2 dataset [15]. 

Abnormal Event 

Abnormal Event 
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According to these considerations, unsupervised deep learning-based 

approaches are considered the most suitable solution for handling the complex 

anomaly scenarios without defining any data labeling for anomaly samples. 

Unsupervised learning aims to learn only regular events since they are the majority of 

patterns in the scene. Any unknown patterns will be considered as anomalies by the 

significant difference in distance from the normal patterns. With the significance of 

unsupervised learning, Generative Adversarial Network (GAN) has gained more 

attention in anomaly detection research due to its outstanding performance in 

constructing images, affording data augmentation, and dealing with implicit data in 

complex scenarios. GAN consists of two competing networks: generator G and 

discriminator D. In common GAN [17], during training, G aims to generate the 

synthetic data that looks real and fools D that its generated data is real, while D tries 

to distingue whether its input is real or fake. G is the only network used to reconstruct 

new data at testing time. In addition, GAN allows the convolutional networks in the 

generator to generate data on different representations, e.g., sketch image to realistic 

image and vice versa. With the use of convolutional networks, many works have tried 

to achieve better performance on image reconstruction and to overcome vanishing 

gradients.  He, et al., [20] proposed skip connection with identity mapping [21] 

instead of using it in FCNs [28]. U-Net is proposed in [38] to enhance the accuracy of 

image segmentation by concatenating feature maps from low- and high-level semantic 

information, achieving good segmentation results on the biomedical image. Isola et al. 

[22] proposed the translation of a sketch image to a realistic image based on 

conditional GANs (cGANs) using U-Net architecture as the generator and a patch-

based discriminator. 

This thesis presents two novel frameworks for anomaly detection and 

localization for surveillance videos. Both of the proposed methods have been tested 

on three publicly available benchmarks, including UCSD pedestrian, CUHK Avenue, 

and UMN datasets. We first proposed a novel Deep Spatiotemporal Translation 

Network (DSTN) with the main contributions listed below: 

 (i) We propose DSTN, a novel unsupervised deep learning architecture based 

on GAN, to transform information from the spatial to the temporal domain for 

addressing the anomaly detection and localization tasks in crowded scenes for 

surveillance videos. Our DSTN automatically learns the normal samples without 

varying any parameters, presenting remarkable advantages over previous traditional 

methods; 

(ii) We propose a novel fusion of a background removal frame and a real 

dense optical flow frame to eliminate noise from appearance and motion 

representations and acquire explicit boundaries of foreground objects; 

(iii) We propose concatenated spatiotemporal features to combine important 

feature information obtained from the new design of patch extraction requiring 

extensive low-level appearance and motion features; 

(iv) This paper presents the first attempt to improve anomaly object 

localization at the pixel level by introducing an Edge Wrapping technique at the final 

stage of the framework.  
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This proposed DSTN is different from the early works [3; 4; 6; 9; 10; 23; 25; 

26; 47] that focus on hand-crafted features since we can handle any possible 

anomalous event in the complex scenes without tuning parameters during testing, 

making the proposed DSTN particularly robust, while achieving good running time 

performance. Additionally, the proposed DSTN is different from [27; 35-37] that rely 

on deep learning-based approaches because DSTN is additionally equipped with pre- 

and post-processing procedures to enhance its detection and localization performance 

and to eliminate non-object and redundant features. 

However, according to the experimental results of DSTN, there is still room 

for improvement in object localization and false-positive detection problems. Thus, to 

solve these problems, we continue to propose a novel Deep Residual Spatiotemporal 

Translation Network (DR-STN) framework for video anomaly detection and 

localization in crowds with a novel Deep Residual cGAN (DR-cGAN) model inspired 

by the deep residual learning [20] and image-to-image translation [22]. Different from 

DSTN and the previous works [27; 36; 37] which are based on the framework in [22], 

the DR-cGAN is built by adding the residual units and the residual connections in 

between layers in the encoder and decoder to learn the translation of objects of 

interest from appearance (spatial) to motion (temporal) representations. Our 

architecture in the generator creates a wider model, enhancing the accuracy and 

quality of the synthesized image. A powerful object detector [1] is applied to extract 

the objects of interest in the frame to feed into our DR-cGAN. Besides, an online hard 

negative mining (OHNM) and a semantic region merging are proposed to remove the 

false-positive results and combine the synthetic results of objects of interest into a full 

output frame, respectively. We compare our proposed DR-STN method with other 

state-of-the-art works, showing the superior performance of the proposed method in 

both frame-level and pixel-level evaluations. The DR-STN contribution can be 

concluded as four-fold: 

 (i) Our unsupervised DR-STN learns only normal events without using any 

hand-crafted features and effectively translate comprehensive information of the 

objects of interest from appearance to motion representations in crowded scenes; 

(ii) We propose DR-cGAN, a novel end-to-end unsupervised deep residual 

connection network, to improve perceptual information of reconstructed images from 

the generator. DR-cGAN provides a wider network that extensively passes 

information from the previous to the next layer of encoder and decoder. To the best of 

our knowledge, this is the first attempt to build the deep residual connections 

(projection and identity shortcuts) on the U-Net architecture of cGAN for VAD; 

(iii) We introduce the object detector as the pre-processing process to extract 

only the objects of interest to feed into the DR-cGAN model to help learn the pattern 

of normal objects. This approach provides better object localization for the pixel level. 

To our knowledge, we are the first to integrate the object detector with GAN; 

(iv) We introduce OHNM and a semantic region merging as the post-

processing processes to eliminate the false-positives without retraining the model and 

integrate the intensity of objects for the final anomaly output, providing more reliable 

and remarkable results than the state-of-the-art. 
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The outlines of this thesis consist of five chapters. Chapter two describes the 

background and literature reviews. Chapter three presents the methodology, which is 

divided into two main frameworks (DSTN and DR-STN). Chapter four shows the 

implementation details and the experimental results for each framework compared 

with other state-of-the-art works along with the discussions. Chapter five provides a 

conclusion and directions for future work. 

1.3. Objectives 

1. To investigate recent trends and datasets of anomaly detection in realistic 

scenarios. 

2. To develop anomaly detection and localization for surveillance videos. 

3. To enhance the ability of a CCTV surveillance system for security. 

1.4. Scope of Work 

1. Apply machine learning algorithms and determine the suitable algorithm for 

implementing in appearance and motion features  

2. Use video from a stationary camera in the static environment. 

3. Propose a framework on spatiotemporal anomaly detection that can detect and 

localize anomalous events for surveillance videos. 

4. Evaluate the performance of the proposed algorithm on the ROC curve, with 

AUC and EER indicated, and compare with other state-of-the-art methods. 

1.5. Research Benefits  

1. The anomaly detection and localization system can be applied with realistic 

and crowded scenarios. 

2. The accuracy of anomaly detection and localization is improved over other 

state-of-the-art methods while maintaining good running time, making the 

system more reliable and useful for real-world applications. 

3. The system can be applied for security in smart city applications using 

surveillance videos. 
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CHAPTER 2  

PROPOSED METHODS 

This thesis presents two novel proposed methods: i) Deep Spatiotemporal 

Translation Network (DSTN) and ii) Deep Residual Spatiotemporal Translation 

Network (DR-STN). In this chapter, we introduce our proposed methods as the 

original manuscript in Section 2.1 and Section 2.2 for DSTN and DR-STN, 

respectively. Section 2.3 explains the training procedures in detail. Section 2.4 

provides the evaluation criteria and Section 2.5 shows the discussion for both of our 

proposed methods. 
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2.1. Unsupervised Anomaly Detection and Localization Based on Deep 

Spatiotemporal Translation Network 

Abstract Anomaly detection is of great significance for intelligent surveillance 

videos. Current works typically struggle with object detection and localization 

problems due to crowded and complex scenes. Hence, we propose a Deep 

Spatiotemporal Translation Network (DSTN), a novel unsupervised anomaly 

detection and localization method based on Generative Adversarial Network (GAN) 

and Edge Wrapping [29]. In training, we use only the frames of normal events in 

order to generate their corresponding dense optical flow as temporal features. During 

testing, since all the video sequences are input into the system, unknown events are 

considered as anomalous events due to the fact that the model knows only the normal 

patterns. To benefit from the information provided by both appearance and motion 

features, we introduce (i) a novel fusion of background removal and real optical flow 

frames with (ii) a concatenation of the original and background removal frames. We 

improve the performance of anomaly localization in the pixel-level evaluation by 

proposing (iii) the Edge Wrapping to reduce the noise and suppress non-related edges 

of abnormal objects. Our DSTN has been tested on publicly available anomaly 

datasets, including UCSD pedestrian, UMN, and CUHK Avenue. The results show 

that it outperforms other state-of-the-art algorithms with respect to the frame-level 

evaluation, the pixel-level evaluation, and the time complexity for abnormal object 

detection and localization tasks. 

Keywords anomaly detection, anomaly localization, spatiotemporal, unsupervised 

learning, video surveillance. 

2.1.1. Introduction 

Surveillance has rapidly gained increasing popularity as a modern technology, which 

can be used to ensure life safety and break the wall of security mistrust. Closed-

Circuit Television (CCTV) cameras have been widely used for monitoring and 

recording situations, providing evidence to the surveillance system. According to [1], 

the growth of surveillance videos has increased by 9.3 percent in 2019. However, the 

CCTV cameras are mostly used for the post-video forensic process by allowing the 

investigation of previous events [2]. This means that the CCTV camera feed still 

needs to be manually monitored by a human operator for any abnormal events which 

can unpredictably occur in the scene. An abnormal or anomalous event refers to an 

activity that raises suspicions by differing from the majority of the activities. It can 

possibly occur in any realistic scenario (e.g., indoor, outdoor, crowded, and 

uncrowded scenes) and may lead to major problems, such as an area invasion, a 

robbery, and a terrorist attack, causing a lot of damage, injury, or death [3]. According 

to the performance of CCTV cameras [2], there is a need to build intelligent systems 

to analyze abnormal events in realistic scenes for surveillance videos. The main 

challenge of building an intelligent CCTV system is how to precisely detect and 

locate all possible abnormal events in crowded and complex scenes. To design an 

effective anomaly detection and localization system [7], [10], [13], [44], there are four 

main issues to be considered: the complex scene, time-consumption, dataset, and 

object localization.  
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The complex or crowded scene may contain multiple objects with clutter and 

occlusions which are difficult to deal with. Besides, it is more challenging than the 

uncrowded scene as it has higher complexity. This scene complexity challenge has 

drawn interest from researchers in computer vision research area [4]-[14], [19], [20], 

[45]-[48]. To handle this significant issue, two main approaches have been 

implemented for anomaly detection in crowds: (i) a traditional-based approach and 

(ii) a deep learning-based approach. With (i) the traditional-based approaches [20]-

[28], [35], appearance and motion (e.g., trajectories) are employed to detect the 

anomaly events based on hand-crafted features. Their accuracy depends on object 

appearances and motion cues which can be found by extracting features and tracking 

the objects [20]. Even though the traditional-based approaches are able to detect 

multiple objects in crowded scenes, they are more difficult to generalize to complex 

scenarios than deep learning-based approaches. Hence, deep learning-based 

approaches [4], [7], [10]-[17], [29], have been considered as being more appropriate 

for handling complex scenes as they are able to improve the performance of anomaly 

detection and localization with the use of a learnable model of nonlinear 

transformation [7], [8], [13], [15].  

Following the complex scene issue, time-consumption is one of the 

challenging issues for the use of an anomaly detection system in real-world 

applications. If high accuracy is required, the detection of multiple objects in crowded 

scenes is very time-consuming, asking for an inherent speed-accuracy tradeoff [5], 

[18], [20], [38]-[41]. Recently, the deep learning-based approaches were considered 

for reducing the time complexity while retaining good detection performance due to 

the importance of low computational complexity and high detection accuracy for the 

surveillance videos [44], [46], [52]-[57], [59]. The recent advanced techniques for 

speeding up CNNs are parameter pruning and sharing and transferred convolutional 

filters [30]. Many works [52]-[57] try to optimize the computational time of CNN-

based algorithms, focusing on convolutional architectures by reducing convolutional 

layers and redundant parameters that are not drastically impacting the model 

performance, resulting in a smaller and faster network compared to the traditional 

CNN [58]. Several works [46], [59] use pre-trained fully convolutional networks 

(FCNs) as a regional feature extractor for semantic segmentation to help to reduce the 

computational complexity of the traditional CNN.  

Another significant issue is the lack of abnormal training samples in the 

datasets, leading to insufficient training information and the difficulty of designing 

good classifiers for indicating abnormal events. In addition, there is no chance to train 

for all possible abnormal events since they can occur unpredictably in real-world 

environments. Therefore, recent works focus on unsupervised deep learning-based 

approaches, such as generative approaches [11], [14], [16], to overcome this problem.  

Finally, the low performance of object localization in pixel-level anomaly 

detection is also addressed in the literature. Most works achieve high accuracy 

(measured by Area Under the Curve (AUC)) only on anomaly detection in a frame-

level evaluation, while the AUC of object localization in the pixel-level evaluation is 

much lower. This occurs because of the lack of sufficient features of the objects of 

interest (e.g., appearance and motion patterns of foreground objects) for model 

training. These features should be extracted during training in order to learn the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 11

  

 

 

model. Specifically, the full input frame is fed into the model without prior 

knowledge of the objects in the scene, making it difficult for the model to correctly 

learn the mapping from the appearance to the temporal information of objects and 

resulting in misdetection and false detection of abnormal objects [10], [11], [14], [16]. 

Current works try to improve the performance of object localization by isolating 

patches for deeper feature extraction [7], [13]. 

Following these considerations, we propose a novel unsupervised 

spatiotemporal translation based on Generative Adversarial Network (GAN) for 

anomaly detection and localization in crowded scenes. Our proposed framework, 

named Deep Spatiotemporal Translation Network (DSTN), is different from the early 

works [20]-[28], [35] that focus on hand-crafted features since we can handle any 

possible anomalous event in the complex scenes without tuning parameters during 

testing, making the proposed DSTN particularly robust, while achieving good running 

time performance. Additionally, the proposed DSTN is different from [10], [11], [14], 

[16] that rely on deep learning-based approaches because DSTN is additionally 

equipped with pre- and post-processing procedures to enhance its detection and 

localization performance and to eliminate non-object and redundant features. The 

proposed DSTN has been tested on three challenging anomaly benchmark datasets 

and compared with other state-of-the-art methods, showing the effectiveness of our 

proposed framework in terms of both accuracy and time complexity. 

To conclude, our main contributions are four-fold: 

(i) We propose DSTN, a novel unsupervised deep learning architecture based 

on GAN, to transform information from the spatial to the temporal domain for 

addressing the anomaly detection and localization tasks in crowded scenes for 

surveillance videos. Our DSTN automatically learns the normal samples without 

varying any parameters, presenting remarkable advantages over previous traditional 

methods; 

(ii) We propose a novel fusion of a background removal frame and a real 

dense optical flow frame in order to eliminate noise from appearance and motion 

representations and acquire explicit boundaries of foreground objects; 

(iii) We propose concatenated spatiotemporal features to combine important 

feature information obtained from the new design of patch extraction requiring 

extensive low-level appearance and motion features; 

(iv) This paper presents the first attempt to improve anomaly object 

localization at the pixel level by introducing an Edge Wrapping technique at the final 

stage of the framework. 

This paper consists of five sections. We review related works in Section 2.1.2 

and present our proposed method, DSTN, in Section 2.1.3. Section 2.1.4 shows 

experimental results compared with several state-of-the-art algorithms and analysis of 

DSTN. Section 2.1.5 provides a conclusion and directions for future work. 
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2.1.2. Related Works 

The related works of video anomaly detection can be grouped into two main 

categories: traditional-based and deep learning-based approaches. 

A. Traditional-based Approaches 

In this section, we focus on the frameworks that rely on hand-crafted features. These 

can be divided into two types: temporal (motion) approach and spatiotemporal 

(appearance and motion) approach. For the temporal approach, X. Tang, et al., [21] 

proposed abnormal event detection based on motion attention using sparse coding by 

comparing current regions with neighboring regions to generate a motion attention 

map. Sparse reconstruction is proposed in [22] by extracting the optical flow and 

applying the Histogram of Maximal Optical Flow Projections with a sparse 

representation to generate the dictionary of the normal event. Recently, motion energy 

[23] and motion entropy [24] were proposed to characterize the abnormal event based 

on its temporal information only. Overall, the temporal approach is suitable only 

when dealing with scenes that have a simple background and a low number of 

foreground objects. 

The spatiotemporal approach combines information from both appearance and 

motion features, making it more robust to complex scenes than the temporal approach. 

This approach has been addressed by using various local feature descriptors, including 

Gaussian Mixture Model (GMM) [25], Histogram of Oriented Gradients (HOG) [42], 

Histogram of Optical Flow (HOF) [42], Histogram of Optical Flow Orientation 

(HOFO) [43] and Magnitude (HOFM) [26], Gaussian regression [27], and Optical 

Flow (OF) [35] with Principal Component Analysis (PCA) [60], which can be 

grouped by applying classifier methods such as K-Means [28] and Bags of Visual 

Words (BoVW) [27]. However, the problem with the traditional-based approaches is 

that they rely on hand-crafted features that limit their generalization to other 

anomalous events. 

B. Deep Learning-based Approaches 

Deep learning-based approaches have gained wide popularity as they consistently 

achieve higher performance than the traditional state-of-the-art approaches [20]-[28], 

[35] in learning high-level features from a large amount of data and dealing with 

complex problems such as object detection and recognition and image classification. 

These approaches can be categorized based on the level of supervision involved. The 

supervised learning requires labeled data, causing difficulty in detecting 

unpredictable anomalous events in real-world use cases. Similarly to supervised 

learning, semi-supervised learning still needs some labeled samples to train the model 

[15], [29]. In contrast, unsupervised learning is able to handle various anomalous 

events without any labeling requirement, making it the most suitable approach for 

anomaly detection in real-world applications. Most frameworks of anomaly detection 

are based on unsupervised learning because of its high performance in terms of 

flexibility and reliability of anomaly detection and localization. 
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Unsupervised learning has been investigated for training in recognition tasks 

by using CNNs [10], [30]. Ravanbakhsh, et al., [10] proposed a Binary Quantization 

Layer as a final layer to plug into the top of the network for gathering motion 

information of abnormality. Xu, et al., [7] proposed an Appearance and Motion 

DeepNet (AMDN) for detecting anomalous events in the videos. The discriminative 

feature is used instead of hand-crafted features by applying Stacked Denoising 

AutoEncoders (SDAE) [61]. Fan, et al., [13] proposed a two-stream variational 

autoencoder by using Gaussian Mixture Model (GMM) with a Fully Convolutional 

Network (FCN) [46] at the bottleneck between encoder and decoder to compute the 

spatial and temporal score. In [17], the authors proposed a neural network for 

anomaly detection in video surveillance by using three processing blocks; feature 

learning, sparse representation, and dictionary learning, and also proposed and 

reformulate an adaptive iterative hard-thresholding algorithm as a new long short-

term memory (LSTM). Liu, et al., [16] introduced a video prediction framework for 

anomaly detection using GANs for training normal events, where the abnormal event 

is detected by leveraging the difference between a predicted future frame and its 

ground truth. A future frame is predicted based on appearance and motion feature 

information. Hasan, et al., [15] proposed an end-to-end deep learning framework for 

abnormal detection using a Convolutional Autoencoder for learning the normal 

events in crowds and generating the appearance of the normal pattern at testing time, 

where the abnormality score is measured by the reconstruction error. Similarly to 

[15], the authors in [14] recently proposed Generative Adversarial Nets (GANs) for 

an abnormal cross-channel event in which the discriminator is directly used as the 

final classifiers as an end-to-end anomaly detector. The difference between [15] and 

[14] is that the latter is based on the interplay between generator and discriminator 

networks. Another study [11] is dealing with the abnormal event detection in videos 

using GANs to train only normal events with the use of two networks, (i) generating 

the optical flow from the frame and (ii) generating the frame from the optical flow. 

Following related works, GANs are an outstanding approach that achieves 

high performance in the anomaly detection task. GANs are a great solution to 

overcome classification problems as they are able to find the significant features in 

the frames without any predefined anomaly types. The fundamental architecture of 

GANs [31]-[33] comprises two networks, the generator G for generating synthetic 

data z that are likely to come from the same data-generating distribution as the real 

samples and discriminator D for discriminating whether the input data are real or fake 

data generated by G. More specifically, G generates a new image e from random 

noise z, while D tries to distinguish a real image x from e. In addition, D does its best 

to classify the synthetic image generated from G as the fake image, while G tries to 

fool D by producing the synthetic image which looks real, making it challenging to be 

differentiated. The parameters of G are optimized by updating only with gradients 

flowing through D in order to maximize the probability of D(G(z)) so that D makes a 

mistake by classifying the synthetic image as the real image, making G efficient in 

generating images [31]. With enough training time and capacity, G and D are 

incapable to improve because the probability distributions of the generator and the 

real data are equal, meaning that D can no longer distinguish between the two 
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distributions. GANs also afford data augmentation and implicit data management due 

to D, which benefits the deeper training of G on the same small anomaly dataset 

without training additional classifiers.  

Even though GANs outperform several state-of-the-art works, there is still 

room for improvement of the object localization at the pixel-level evaluation as most 

of the current works [11], [14], [16] can significantly improve only the performance 

of frame-level evaluation for the object detection. Thus, apart from the anomaly 

detection in the frame-level evaluation, our DSTN specifically focuses on improving 

the performance of anomaly localization at the pixel level. Our model is implemented 

based on the image-to-image translation framework using the U-Net architecture with 

skip connections proposed in [34], using the generator with a patch-based 

discriminator and allowing transforming images to other representations. We take this 

ability to generate optical flow from raw pixel images by using GANs, so our G is 

used for spatiotemporal transformation. The difference between our DSTN and [34] is 

that we use G to learn the normal event to understand its pattern instead of using G to 

generate a realistic image. At testing time, G is only used for generating appearance 

(spatial) and motion (temporal) features of the normal event from the input image. 

With this generated frame, we can simply detect the anomalous areas by comparing 

the generated frame with the real frame. 

2.1.3. DSTN for Anomaly Detection and Localization 

A. Overview 

Our DSTN consists of four main phases, including feature collection, spatiotemporal 

translation, differentiation, and edge wrapping for the object localization. Fig. 2.1 

shows the overview of DSTN that can translate information from the spatial or 

appearance to the temporal or motion representations.  

In the feature collection, we introduce a background removal method, a novel 

fusion between the background removal frame fBR and the dense inverse search optical 

flow frame OFdis, a patch extraction, and a concatenation between the original frame f 

and the background removal frame fBR. Specifically, the novel fusion of fBR and OFdis 

is proposed to obtain the prior knowledge of the foreground objects in the scene for 

the model training. To our knowledge, this is the first attempt to fuse fBR with OFdis to 

enhance the performance of feature extraction of both appearance and motion patterns 

for anomaly detection and localization tasks. The background removal method 

provides the complete shape appearance for each moving foreground object while the 

dense inverse search optical flow method provides the temporal information 

corresponding to its input. However, OFdis contains noises that may affect the quality 

of image generation during GAN training. Thus, due to the performance of the 

background removal method, we manage to fuse it with OFdis to get rid of noises and 

make the edges of each foreground object sharper and more precise. The output of 

this fusion, represented as OFfus, is considered as the real dense optical flow. The 

fusion of these simple but yet effective techniques provides remarkably good results 

in noise reduction in OFdis which facilitates G to generate the desired temporal output. 

Apart from the fusion, patch extraction is also applied to each frame before 

input it into a spatiotemporal deep GAN model, consisting of competing G and D 
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networks. Additionally, the concatenation between patches of f and fBR is introduced to 

capture more information on the moving foreground objects in the scene. This 

concatenation is specifically designed for delivering the low-level appearance of the 

moving objects along with their temporal information within the scenes, assisting the 

model to learn to map the appearance information to temporal information in a more 

comprehensive way. To conclude, these feature collection methods are introduced in 

order to obtain better input data to feed into the spatiotemporal deep GAN model. In 

this way, the model is able to translate the information from the spatial or appearance 

to the temporal or motion representations efficiently. 

In training, G learns only the normal events and translates the spatial to temporal 

image representations depending on the real dense optical flow. The output of G is a 

generated dense optical flow, represented as OFgen. In D, it tries to discriminate the 

patches of real dense optical flow OFfus from the patches of generated dense optical 

flow OFgen while G tries to fool D by producing more OFgen that is difficult to be 

discriminated. If D discriminates the patches of OFgen as a fake or wrong image, G 

will regenerate OFgen until the model reaches the target objective.  

In testing, we input all video sequences so that G generates the generated dense 

optical flow of anomalous events based on the normal events. The anomalous events 

can be detected by differentiating the pixel intensity of the real optical flow OFfus and 

the generated dense optical flow OFgen. Finally, we analyze the final output with a 

novel edge wrapping technique to localize pixels that belong to the anomalous 

objects. The details of our DSTN are described in the following sections. 

 

Fig. 2.1 The overview of our proposed framework. 
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B. Feature Collection 

This is the most important initial task for obtaining the characteristics of objects in the 

scene. The details of the feature collection approaches are described in the following 

sections. 

1) Background Removal 

As we consider the real-world situations recorded from the static CCTV cameras, the 

objects of interest are only the moving foreground objects. In this case, where the 

background is stationary, we introduce a background removal method, represented as 

fBR, to extract only the moving foreground object features and to remove unimportant 

pixels in the background. The fBR image is the representation for appearance 

information which can be obtained by computing the frame absolute difference 

between two consecutive frames as shown in Eq. (2.1): 

 𝑓𝐵𝑅 = |𝑓𝑡 − 𝑓𝑡−1|,  (2.1) 

where ft is the current frame and ft-1 is the previous frame of a video sequence. In 

addition, to achieve more appearance features, we implement a binarization on fBR and 

then concatenate the binarized fBR with f. This concatenation provides more 

appearance information on the foreground objects of the binarized fBR image, assisting 

in the learning of G. 

In Section 2.1.4, we compare the background removal method with a popular 

technique for background subtraction, i.e., the GMM-based background subtraction 

[67]. The experimental results clearly show that the background removal method is 

more effective for anomaly detection in our experiments as it can preserve more 

appearance information of the moving foreground objects than the GMM-based 

background subtraction method. 

2) Fused Optical Flow 

Optical flow (OF) is a technique that is used to detect and track the motion of the 

object of interest obtained from two consecutive frames; ft and ft-1. Since we consider 

the motion of foreground objects in terms of running time and accuracy, we choose 

Dense Inverse Search (DIS), calculated by [37], to generate dense optical flow for our 

DSTN due to its high performance in real-world applications, including low 

complexity, less time-consumption, and accurate motion detection and tracking. Then 

we obtain the real dense optical flow generated from the DIS technique named OFdis. 

However, OFdis contains some noise dispersed in the scene apart from the objects. 

Hence, to eliminate it, we propose a novel fusion of fBR and OFdis for appearance and 

motion, respectively, by integrating these frames to acquire clear foreground object 

boundaries for the use of object detection, tracking, and localization. Equation (2.2) 

shows how to eliminate the noise in DIS optical flow by knowing the information of 

fBR where its pixel values equal to 0 or 255. Then, the fusion OFfus is defined by 

applying image masking of fBR on OFdis to change its pixel values. Thus, we obtain the 

new OFdis represented as OFfus that provides better boundaries of the foreground 

regions. The output of this fusion OFfus is formulated as below: 
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 𝑂𝐹𝑓𝑢𝑠 = 𝑂𝐹𝑑𝑖𝑠 ⌊
𝑓𝐵𝑅

𝑓𝐵𝑅+𝜁
⌋, (2.2)  

where 𝜁 is a constant value. 

3) Patch Extraction 

Patch extraction is important for the feature collection process as it helps to obtain 

more appearance and motion features. Additionally, the patch extraction allows the 

model to learn the pattern of local pixels in the scene, resulting in achieving better 

feature collection performance than extracting the features directly from the full 

image frame. To extract the patch, we consider the magnitude and direction of the 

dense optical flow based on the moving objects in the scene. In addition, each moving 

object is needed to be detected in its full-size appearance at the current frame along 

with its motion and direction from the frame-by-frame image. The patch size can be 

determined by 
𝑤

𝑎
 × h × cp, where w is the width of the frame, h is the height of the 

frame, a is a scale value, and cp represents the number of channels. All patch elements 

are normalized into a range of [-1, 1]. In our DSTN, the patch is extracted by applying 

a sliding window approach with a stride d to feed into the spatiotemporal translation 

deep GAN model from its input frames, including f, fBR, and OFfus. While f and fBR are 

the input for G, OFfus is the input for D. This patch extraction provides the appearance 

of the moving foreground object along with its motion and direction in the scene, 

assisting in further processing of the concatenated spatiotemporal features. 

4) Concatenated Spatiotemporal Features 

In the learning of G, it is important to provide enough information on the appearance 

to make G understand the features of normal patterns in the scene extensively. The 

overview of data preparation of concatenated spatiotemporal features is shown in Fig. 

2.2. To achieve more low-level information on the appearance, we propose the 

concatenation of f and fBR patches for the input of G to learn the normal events. 

Specifically, the number of channels of the concatenated f and fBR frames is 2 (cp = 2). 

As a result, the G model obtains efficient information since fBR gives the contour edge 

information of the foreground objects while f gives the overall information in the 

scene. After inputting the concatenated f and fBR frames, the spatiotemporal translation 

deep GAN will learn this information until it reaches the desired temporal information 

as the target output. 
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Fig. 2.2 The data preparation of concatenated spatiotemporal features for the temporal 

target output. 

C. Spatiotemporal Translation Model 

This work investigates the deep Generative Adversarial Network (GAN) as inspired 

by image-to-image translation [34] based on U-Net architecture [63]. The GAN 

network consists of two cores: generator G and discriminator D. It aims to learn a 

mapping from the inputs of spatial representation (f and fBR) to the output of temporal 

representation (OFgen). 

1) Generator 

The generator G model is the main model of the DSTN since it is applied in both 

training and testing. In the basic GAN [31]-[33], G takes an image x and a random 

noise z as the input. It generates the output image e with the same resolution as the 

input x but representing the different channel, using the random noise z, e = G(x,z). In 

our DSTN, G tries to transform the spatial representation image of the concatenated f 

and fBR frames to the temporal representation image of generated dense optical flow 

frame OFgen. However, in this work, the random noise z is not effective to G because 

the input of G is the spatial representation data and G tries to generate the temporal 

representation data based on the input data. Hence, this model has been designed to 

include the drop-out instead of the additional Gaussian noise z. The Drop-Out 

algorithm [34] is applied within Batch Normalization [62] in the Decoder, resulting e 

to be reformulated as e = G(x). 

Specifically, on the generator architecture, G consists of Encoder (En) and 

Decoder (De) [34]. Fig. 2.3 shows the Encoder and Decoder deep network 

architecture constructed by a residual connection. The Encoder network has been 

constructed from Convolution (Conv), Batch Normalization (BN), and the Activation 

Leaky-ReLU (L-ReLU). On the other hand, the Decoder network has been built from 

De-Convolution (De-Conv), Batch Normalization (BN) with Drop-Out, and the 

Activation ReLU that allows the model to speed up the learning to suffuse the color 

space of the training distribution [33]. This residual connection or a skip connection 

directly connects the encoder layers to the decoder layers based on the architecture of 
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U-Net [63]. The layers of the Encoder and the Decoder are indicated in Fig.2.4. In 

detail, the residual connection is inserted between each layer l at the Encoder and 

layer t-l at the Decoder, where t is the total number of layers. It allows the information 

to flow through the initial layer to the last layer by concatenating all channels at layer 

l with layer t-l. In other words, it often allows one to use smaller networks that are 

easier to optimize and provide higher quality results of image transformation with a 

lower complexity cost than the deep convolutional network such as VGG nets [64], 

[65]. The analysis of the residual connection is discussed in Section 2.1.4. 

 

Fig. 2.3 An overview of our generator architecture in which its input is a spatial 

representation and its output is a temporal representation. 

 

Fig.2.4 Encoder and Decoder Architectures 

2) Discriminator 

The discriminator (D) is used only at the training time. There are two inputs 

for D to discriminate: the fake patch of OFgen (OFgen = e) and the real patch of OFfus 

(y = OFfus) obtained from the fusion between fBR and OFdis. The job of D is to check 

whether G can produce OFgen or not, and how it looks like comparing with OFfus. D 

provides a scalar output denoting the probability of the inputs (OFfus, OFgen) for 

determining the real data. 

In D, we use PatchGAN which is constructed as shown in Fig. 2.5. The 

PatchGAN can produce a faster training GAN than the full image discriminator net 

(e.g., 256×256) because it applies to each partial patch of the image. For the 
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implementation of D, the OFfus image is subsampled from the resolution of 256×256 

pixels to 64×64 pixels. Hence, the total patches of OFfus image are 16 patches. These 

16 patches are passed through the PatchGAN model to decide whether OFgen from G 

is True or False. We analyze the impact of using 64×64 PatchGAN in Section 2.1.4, 

where we compare the performance of different sizes of PatchGAN in terms of FCN-

scores and visual quality outputs. 

 

Fig. 2.5 The PatchGAN structure in the discriminator architecture. 

Two objective functions including a Generator Loss or L1 Loss LL1 and a 

GAN Loss LGAN are determined for training G and D. Our DSTN contains only one 

network consisting of the translation of spatial to temporal images where the dense 

optical flow is defined by three-channel components; horizontal, vertical, and 

magnitude. Suppose y is the target image, which is OFfus, x is the input data of G, 

which is obtained by concatenating f and fBR frames. Specifically, G learns the 

mapping from x to y without noise z, where the drop-out algorithm is used in the form 

of z in this work. The objective functions, LL1 and LGAN, can be defined as below, 

  𝐿𝐿1(𝐺) = 𝛦𝑥,𝑦[‖𝑦 − 𝐺(𝑥)‖1],   (2.3) 

 𝐿𝐺𝐴𝑁(𝐺, 𝐷) = 𝛦𝑦[𝑙𝑜𝑔 𝐷 (𝑦)] + 𝛦𝑥 [𝑙𝑜𝑔 (1 − 𝐷(𝐺(𝑥)))]. (2.4)  

Finally, the network, G, is optimized as  

 𝐺∗ = 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

 𝐿𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆𝐿𝐿1(𝐺). (2.5) 

This one network of spatiotemporal translation deep GAN provides less 

complexity cost while contains enough important information for learning normal 

events. The reason that we do not train for anomalous events is that we need the 

model to know only normal patterns to be able to handle the possibility of occurrence 
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of various anomalous events without any descriptions for anomaly ground truth 

samples. 

D. Anomaly Detection 

After training the normal events by the spatiotemporal learning-based deep 

GAN, the model understands the translation from the spatial representation of the 

normal events (the concatenated frame of f and fBR) to the temporal representation 

(OFfus). Then, the model parameters of this training are used in the testing procedure.  

During testing, all video sequences are used in the experiment. Each frame f and 

its previous frame t-1 from the test video sequences are input into DSTN. We use G in 

the spatiotemporal learning-based deep GAN as it corresponds to the trained model. 

In this case, if there are unknown events in the scenes, G will try to generate the dense 

optical flow based on the normal objects as it has been learned only with the normal 

events. Thus, it cannot reconstruct the anomalous event in the same way as normal 

events. This inaccuracy of G for anomalous event reconstruction leads to the detection 

of the possible occurrence of anomaly events.  

To detect the anomalous events in the scene, we simply subtract the patches of 

OFfus and OFgen to find the pixel by pixel difference in the scene. In addition, the 

position of anomalous objects is required to be identified in the scene. Hence, we 

propose the edge wrapping for object localization in this work. The details of 

differentiation and edge wrapping are described as following. 

1) Differentiation 

After completing the model training, OFgen can be observed by using the 

trained model parameters. To identify whether the scene contains the abnormal events 

or not, the pixel by pixel differentiation between OFfus and OFgen is simply defined by 

subtracting a patch of OFfus and a patch of OFgen as shown in Eq. (2.6) below, 

 𝛥𝑂𝐹 = 𝑂𝐹𝑓𝑢𝑠 − 𝑂𝐹𝑔𝑒𝑛 > 0, (2.6)  

where ∆OF is the subtraction output after differentiating between OFfus and OFgen in 

which the output value is more than 0. This shows the possible abnormal events in the 

scene due to the fact that G was not able to reconstruct the anomalous events in OFgen 

in the same way as the actual anomalous events in OFfus. 

After the subtraction, we consider the probability of pixels in ∆OF as the score 

indicating whether the pixels in ∆OF belong to normal or abnormal events. As each 

∆OF from different test video sequences needs to have the same range of pixel values 

where the lowest value is 0 and the highest value is 1, we consider the highest pixel 

value in ∆OF as the abnormal pixel in the frame. We normalize ∆OF by computing the 

maximum value MOF of all components for each test video sequence, regarding its 

range of values. Then, the ROC curve is computed by gradually changing the 
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threshold of anomaly scores to determine the best decision threshold. The 

normalization of differentiation ∆OF can be defined as NOF as shown in Eq. (2.7): 

 𝑁𝑂𝐹(𝑖, 𝑗) = 1/𝑀𝑂𝐹𝛥𝑂𝐹(𝑖, 𝑗) (2.7)  

 where NOF(i,j) is the normalized differentiation of ∆OF in the position of the pixel (i,j). 

2) Edge Wrapping 

After applying differentiation, the differences between OFfus and OFgen are 

revealed, showing the anomalous events in the scene. However, there are some 

problems with false anomaly detection on the normal events and over-detection on the 

abnormal object areas. Thus, to correctly localize the position of the anomalous 

objects and events in the scene, we propose the Edge Wrapping technique for 

specifically improving the object localization at the pixel level by preserving only the 

important edge information and suppressing the rest. 

To suppress the unimportant edges along with the noise, we implement the 

Edge Wrapping based on the Canny edge detection [49]. This Edge Wrapping 

approach is a multistage procedure divided into three stages, including a noise 

reduction, a gradient intensity, and a non-maxima suppression, as described below. 

 Noise Reduction 

A Gaussian filter is used to smooth the normalized differentiation output 

image NOF by removing noise from the background and removing pixels from non-

related anomalous events. The size of the filter is we × he × ce where we and he 

represent the width and height of the Gaussian filter of the Edge Wrapping and ce 

represents the number of channels such as ce = 1 for the grayscale image and ce = 3 

for the color image. For our DSTN, we obtain the grayscale image after 

differentiation, then ce = 1.  

 Gradient Intensity 

For the gradient intensity, the edge gradient (Ge) can be obtained by 

convolving the image with a gradient operator in horizontal (Gx) and vertical (Gy) 

directions. To find Ge, the image is filtered by a gradient operator, Sobel kernel, in Gx 

and Gy directions to obtain the gradient magnitude and its direction, which is 

perpendicular to the edges, for each pixel. The derivative filter size is the same as the 

Gaussian filter size in the noise reduction stage. Ge is computed at each pixel using 

the first derivative to obtain the edge gradient magnitude and the edge gradient 

direction, which is perpendicular to the edge direction, as shown in Eq. (2.8) and Eq. 

(2.9). 

 𝐺𝑒 = √𝐺𝑥
2 + 𝐺𝑦

2, (2.8)  

 𝜃 = 𝑡𝑎𝑛−1 (
𝐺𝑦

𝐺𝑥
). (2.9)  
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 Non-maxima Suppression 

Finally, the non-maxima suppression is implemented by determining the 

threshold to preserve the ridge edges and suppress the noise. We check whether the 

magnitude at a pixel is greater than a threshold T (T=50). If it is greater than T, there 

is a point of the edge, representing a local maxima in the neighborhood. Thus, if it is 

the local maxima, preserve it. Otherwise, suppress it to 0. Therefore, we obtain the 

edges corresponding to the actual anomalous objects. The reason why we choose the 

threshold value of 50 is indicated in Section 2.1.4, where we consider different 

threshold values in our experiment.  

In addition, the Gaussian filter with kernel size we × he × ce is applied to avoid 

the occurrence of spot noise in the image. The output of this procedure is represented 

as EW, which is defined for the final anomaly object localization OL as shown in Eq. 

(2.10): 

 𝑂𝐿 = 𝛥𝑂𝐹 ⌊
𝐸𝑊

𝐸𝑊+𝜁
⌋ (2.10)  

where 𝜁 is a constant value. 

2.1.4. Experimental Results  

This section presents the evaluation of our DSTN on three challenging anomaly 

datasets, including UCSD pedestrian [5], UMN [6], and CUHK Avenue [18], with its 

implementation details. Our proposed method is analyzed to highlight the impact of 

residual connections, background removal, patch extraction, and edge wrapping with 

its base threshold value. The experiment results are comprehensively compared with 

other state-of-the-art methods in terms of the frame-level and pixel-level evaluations 

and the time complexity. 

A. Dataset 

1) UCSD Dataset 

The UCSD pedestrian dataset [5] contains crowded scenes in outdoor environments 

with various anomalous events such as cycling, skateboard, vehicle, and wheelchair. 

It comprises two sub-sets, including Ped1 with 34 training and 16 test video 

sequences with around 5500 normal and 3400 anomalous frames and Ped2 with 16 

training and 12 test video sequences with 3460 normal and 1652 anomalous frames. 

Ped1 has a resolution of 238×158 pixels, while Ped2 has a resolution of 360×240 

pixels.  

2) UMN Dataset 

The UMN dataset [6] has been recorded for distinguishing the anomalous events in 

crowded scenes. It has 11 video sequences in three different scenes, containing both 

indoor and outdoor scenes with a total number of 7700 frames. The image resolution 

is 320×240 pixels. The main characteristics of this dataset are that the crowds walk 

normally and then suddenly run in different directions. The walking and running 

patterns are represented as normal and abnormal events, respectively.  
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3) CUHK Avenue Dataset 
uuu 

The CUHK Avenue dataset [18] has been recorded with a fixed camera installed in 

front of a school gate, containing frames with a total number of 30652 frames which 

are divided into 16 training and 21 test video sequences with 15328 and 15324 

frames, respectively. The length of each video sequence is about 1-2 minutes (around 

25 frames per second). The normal pattern includes pedestrians walking parallel to the 

camera, while the abnormal patterns contain different events (e.g., people throwing 

objects, jumping, running, and loitering). The ground truth of abnormal object that is 

labeled in the rectangular area is provided in this dataset.  

B. Implementation 

The proposed DSTN is implemented by using Python and Matlab based on Keras [50] 

backend TensorFlow [51]. At training time, we use a GPU with a high-performance 

graphics card, NVIDIA GeForce GTX 1080 Ti with NVIDIA CUDA Cores 3584, and 

a memory bandwidth of 484 GB/sec. The testing is implemented by using a 2.8 GHz 

CPU with the Intel Core i9-7960x processor. The reconstruction loss LL1 is optimized 

to 10-3 using Adam optimization. 

C. Evaluation Criteria 

We evaluate the quantitative performance of the proposed DSTN framework based on 

two criteria: frame level and pixel level. The frame-level evaluation checks whether 

there is at least one anomalous event that occurs in a test frame, and then the frame is 

defined as being abnormal. The pixel-level evaluation indicates the position of 

anomalous events, triggered if the detected abnormal area overlaps more than 40% 

with the ground truth [20]. The pixel-level evaluation is more challenging than the 

frame-level evaluation because of the complexity of anomaly localization. 

D. Evaluation on UCSD Dataset 

The first experiment is on the UCSD pedestrian dataset which contains 10 image 

sequences of the UCSD Ped1 and 12 image sequences of the UCSD Ped2 with the 

ground truth of pixel-level evaluation. In this dataset, both frame-level and pixel-level 

protocols are used to evaluate the UCSD Ped1 and the UCSD Ped2. 

In the feature collection, we independently extract patches from each original 

image of the UCSD Ped1 with a size of 238×158 pixels and the UCSD Ped2 with a 

size of 360×240 pixels to multiple patches with a size of 
𝑤

4
 × h × cp. The total number 

of patches of the UCSD Ped1 and the UCSD Ped2 for training is about 22k and 13.6k 

image patches, respectively. The patches give information on the appearance of the 

foreground object along with its motion features due to the information of the 

changing vector within each patch in the frame. After collecting the appearance and 

motion features, all patches are resized to the resolution of 256×256 pixels to be fed 

into the model as the input for training and testing. 

At the training time, the sizes of the input and target data are set to the 

resolution of 256×256 pixels as a default. The input of G has been defined by the 

concatenation of f and fBR patches to provide the information on the appearance with 
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the foreground object boundaries. Since G comprises of Encoder and Decoder 

networks [34], there are different procedures implemented in each part. In the 

Encoder network, the image resolution of the first layer of the proposed framework is 

256×256 pixels. Then it is encoded from 256→128→64→32→16→8→4→2→1 to 

get the variable vectors known as latent space that exploits data in one-dimensional 

space from the spatial representation of images. The downscale from the spatial 

representation image to latent space is implemented by using a CNN with a kernel 

size of 3×3 pixels and a stride of s = 2. In addition, the number of neurons in each 

layer of the Encoder network is set from 

6→64→128→256→512→512→512→512→512, corresponding to its image 

resolution of each input layer. 

After the encoding process, the Decoder network starts to generate the target 

data by performing a reverse process with the same structure. The Decoder decodes 

the latent space to the target image size of 256×256 pixels in order to reach the 

temporal representation of the optical flow output. The number of neurons in each 

layer of the Decoder is the same as the Encoder configuration with its image 

resolution of the input layer. Moreover, the drop-out is applied in the Decoder to be 

represented as the random noise z of GAN by removing connections of neurons with 

the default probability at p = 0.5. This drop-out helps to prevent over-fitting on the 

training dataset. 

Furthermore, the training process requires D to vary G in order to optimize the 

distinction of a fake and a real image. D is represented by PatchGAN, having an input 

size of 64×64 pixels and output the probability showing whether the object belongs to 

a negative class (fake) or a positive class (real). The PatchGAN structure is defined as 

64 →32→16→8→4→2→1, where it is flattened to 512 neurons which are then 

followed by a Fully Connection (FC) and a Softmax layer to link to the target output 

label. Since PatchGAN works on a partial image which has less learnable parameters, 

we observe that the training of the deep spatiotemporal translation GAN network is 

faster. For other parameter settings, the batch size is set to 1 and the reconstruction 

loss (norm L1) is optimized to be lower than 0.001. Adam optimization is used with a 

learning rate of 0.0002 and a momentum of 0.9. 

At the testing time, G is the only model used to generate OFgen to compare 

with the original temporal representation OFfus. The resolution of the test images is 

the same as the training images for all datasets. Various state-of-the-art methods [4]-

[8], [10], [11], [13]-[19], [35], [36] are compared with our DSTN. According to the 

quantitative comparison of different methods in terms of Equal Error Rate [49] and 

Area Under Curve (AUC) in Table 2.1, it is clearly shown that our proposed method 

outperforms all the methods as we achieve the highest AUC value in both frame-level 

and pixel-level evaluations of the UCSD pedestrian dataset. We also reach the lowest 

EER value compared to the other methods except only for the pixel-level evaluation 

on the UCSD Ped2 in [13]. 
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Table 2.1 Performance comparison with state-of-the-art methods on UCSD dataset. 

Method 

Ped1          

(frame level) 

Ped1         

(pixel level) 

Ped2       

(frame level) 

Ped2         

(pixel level) 

EER AUC EER AUC EER AUC EER AUC 

MPPCA [70] 40% 59.0% 81% 20.5% 30% 69.3% - - 

Social force (SF) [71] 31% 67.5% 79% 19.7% 42% 55.6% 80% - 

SF+MPPCA [72] 32% 68.8% 71% 21.3% 36% 61.3% 72% - 

SR [73] 19% - 54% 45.3% - - - - 

MDT [72] 25% 81.8% 58% 44.1% 25% 82.9% 54% - 

Detection at 150fps [74] 15% 91.8% 43% 63.8% - - - - 

SR+VAE [75] 16% 90.2% 41.6% 64.1% 18% 89.1% - - 

AMDN (double fusion) [59] 16% 92.1% 40.1% 67.2% 17% 90.8% - - 

GMM [60] 15.1% 92.5% - 69.9% - - - - 

Plug-and-Play CNN [62] 8% 95.7% 40.8% 64.5% 18% 88.4% - - 

GANs [63] 8% 97.4% 35% 70.3% 14% 93.5% - - 

GMM-FCN [65] 11.3% 94.9% 36.3% 71.4% 12.6% 92.2% 19.2% 78.2% 

Convolutional AE [15] 27.9% 81% - - 21.7% 90% - - 

Liu et al. [16] 23.5% 83.1% - 33.4% 12% 95.4% - 40.6% 

Adversarial discriminator [14] 7% 96.8% 34% 70.8% 11% 95.5% - - 

AnomalyNet [17] 25.2% 83.5% - 45.2% 10.3% 94.9% - 52.8% 

DSTN (proposed method) 5.2% 98.5% 27.3% 77.4% 9.4% 95.5% 21.8% 83.1% 

 

The qualitative results of our proposed method can be visually illustrated in the 

standard protocol for abnormality detection as ROC curves, where the x-axis is the 

False Positive Rate (FPR) and the y-axis is the True Positive Rate (TPR). To produce 

the ROC curves, the threshold parameter has been varied from 0 to 1 to indicate the 

flow of TPR and FPR. We compare our performance with other state-of-the-art 

methods from their original papers (when available) as shown in Fig. 2.6 and Fig. 2.7, 

where Fig. 2.6 shows the ROC comparison on the UCSD Ped1 in both (a) frame-level 

evaluation and (b) pixel-level evaluation and Fig. 2.7 shows the ROC comparison on 

the UCSD Ped2 in the frame-level evaluation. According to Fig. 2.6 and Fig. 2.7, our 

proposed DSTN, represented as the dark blue curves, outperforms all the competing 

methods as our curves have the strongest growth on the TPR, meaning that the 

abnormal events in our proposed method are accurately detected and localized in both 

frame-level and pixel-level evaluations.  
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 (a)  (b) 

Fig. 2.6 ROC comparison on UCSD Ped1 dataset: (a) frame-level evaluation and (b) 

pixel-level evaluation. 

 

Fig. 2.7 ROC comparison on UCSD Ped2 dataset at frame level. 

We also show some examples of the anomaly detection and localization on the 

UCSD dataset in Fig. 2.8. The results show that our proposed method can efficiently 

detect different anomalous events in the frame, including a single object (e.g., a 

wheelchair, a vehicle, a skateboard, and a bicycle) and multiple objects (e.g., bicycles, 

vehicle and bicycle, bicycle and skateboard). However, there is false anomaly 

detection in Fig. 2.8 (h), where the proposed method detects the normal event 

(walking pedestrians represented in red color) as an abnormal event. This is probably 

because the speed of walking pedestrians is the same as the cycling event in the scene. 
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 (a) (b) (c) (d)  

 
 (e)  (f)  (g)  (h)  

Fig. 2.8 Examples of anomaly detection and localization results on UCSD Ped1 and 

Ped2 dataset: (a) wheelchair, (b) vehicle, (c) skateboard, (d) bicycle, (e) bicycles, (f) 

vehicle and bicycle, (g) bicycle and skateboard, and (h) bicycle and skateboard. 

E. Evaluation on UMN Dataset 

We evaluate the performance on the UMN dataset using the same training parameter 

settings and network configuration as for the UCSD dataset. Table 2.2 shows the 

AUC comparison of our DSTN performance with other state-of-the-art methods [6], 

[10], [11], [14], [17], [19], [36].  

Table 2.2 AUC comparison with state-of-the-art methods on UMN dataset. 

Method AUC 

Optical-flow [6] 0.84 

SFM [6] 0.96 

Sparse Reconstruction [19] 0.976 

Commotion [36] 0.988 

Plug-and-Play CNN [10] 0.988 

GANs[11] 0.99 

Adversarial Discriminator [14] 0.99 

AnomalyNet [17] 0.996 

DSTN (proposed method) 0.996 

From Table 2.2, it is clear that the proposed DSTN outperforms most of the 

baseline methods and its AUC performance is equal to the best method [17]. The 

examples of anomaly detection and localization on three different scenes of the UMN 

dataset are shown in Fig. 2.9. 
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 (a)   (b)   (c)  (d)  

Fig. 2.9 Examples of anomaly detection and localization results on UMN dataset: (a), 

(b), and (c) show running activity in outdoor scenes, while (d) shows running activity 

in an indoor scene. 

F. Evaluation on CUHK Dataset 

In this section, we follow the previous training parameter settings and network 

configuration of the UCSD and UMN datasets for the evaluation on the CUHK 

Avenue dataset. Table 2.3 shows the comparison of our DSTN performance with 

other state-of-the-art methods [13], [15]-[18], in which the proposed DSTN 

outperforms all the competing methods for both AUC and EER.  

Table 2.3. Performance comparison with state-of-the-art methods on CUHK Avenue 

dataset. 

Method EER AUC 

Convolutional AE [15] 25.1% 70.2% 

Detection at 150 FPS [18] - 80.9% 

GMM-FCN [13] 22.7% 83.4% 

Liu et al [16] - 85.1% 

AnomalyNet [17] 22% 86.1% 

DSTN (proposed method) 20.2% 87.9% 

Fig. 2.10 presents examples of anomaly detection and localization on the 

CUHK Avenue dataset, containing multiple abnormal activities, including (a) 

jumping, (b) throwing objects (papers), (c) falling objects (papers), and (d) grabbing a 

falling bag. From Fig. 2.10, it is clearly seen that our DSTN can detect and localize 

various anomalous events accurately, especially in Fig. 2.10(d) where the abnormal 

areas (e.g., a bag and a human head) are detected, even though they have only a slight 

difference in motion from the normal events. 
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 (a)   (b)    (c)    (d)  

Fig. 2.10 Examples of anomaly detection and localization results on CUHK Avenue 

dataset: (a) jumping, (b) throwing objects, (c) falling objects, and (d) grabbing object. 

G. Analysis of Residual Connection 

As the residual connection or the skip connection in G is significant to our DSTN, we 

conduct additional experiments to indicate and analyze the performance of the 

residual connection compared to the autoencoder network which is created by 

removing the residual connections in the U-Net. First, we train on all training video 

sequences from the UCSD Ped2 dataset for 40 epochs on both networks to study their 

performance of minimizing the L1 loss on the training samples as shown in Fig. 2.11.  

 

Fig. 2.11 Performance comparison between autoencoder and residual connection on 

UCSD Ped2 dataset. 

 

The residual connection loss, represented as a red star curve, exhibits lower 

training error over training time compared to the autoencoder loss represented as a 

blue dash curve, meaning that the performance of the residual connection is 

remarkably higher than the one of the autoencoder.  

In addition, we observe the ability of temporal information generation of the 

residual connection and the autoencoder from the test video sequences of the UCSD 

Ped2 dataset as shown in Fig. 2.12. Fig. 2.12(c) shows that the autoencoder is unable 
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to generate dense optical flow in our experiment. On the other hand, the residual 

connection in Fig. 2.12(b) can properly generate a new dense optical flow 

corresponding to the real dense optical flow in Fig. 2.12(a), providing a good quality 

result of the synthesized image. 

 
 (a) dense optical flow  (b) residual connection (c) autoencoder 

Fig. 2.12 Examples of dense optical flow generation results of residual connection and 

autoencoder on the UCSD Ped2 dataset. 

Besides the above, we also compute FCN-scores on pixel accuracy [59] and 

Structural SIMilarity Index (SSIM) [66] metrics on the UCSD Ped2 dataset to 

compare the performance between the autoencoder and the residual connection as 

shown in Table 2.4. For both evaluations, a higher value means a better result. The 

pixel accuracy metric is a common semantic segmentation evaluation. In this work, 

there are two classes; a foreground region class and a background region class. Let nij 

be the number of wrong classified pixels of class i, and nti be the total number of 

pixels of class i. The pixel accuracy can be computed by ∑ 𝑛𝑖𝑖𝑖 / ∑ 𝑛𝑡𝑖𝑖 . For the SSIM 

index, we use it to measure the similarity between the original and the synthesized 

images. The more the synthesized image looks like the original image, the more 

efficient the model is. The results in Table 2.4 show that the residual connection 

clearly achieves superior results on the low-level information than the autoencoder for 

both pixel accuracy and SSIM evaluations. 

Table 2.4. Performance comparison of the autoencoder and the residual connection in 

terms of FCN-scores on pixel accuracy and Structural SIMilarity Index (SSIM) on the 

UCSD Ped2 dataset. 

Network Architecture Pixel accuracy SSIM 

Autoencoder 0.83 0.82 

Residual connection 0.9 0.96 

H. Analysis of DSTN 

In this section, the proposed DSTN is analyzed to emphasize the significance of its 

main elements, including background removal, PatchGAN, patch extraction, and 

Edge Wrapping with its threshold value as follows.  
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 The Background Removal Method 

First of all, to demonstrate the performance of the background removal method using 

the frame absolute difference on the proposed DSTN, we compare it with a popular 

technique for background subtraction, i.e., the Gaussian mixture model (GMM)-based 

background subtraction method [67], on the UCSD dataset as shown in Fig. 2.13. As 

we train only the normal event patterns in the scene, Fig. 2.13(c) shows that the 

background removal method can preserve more information on the normal events 

than the GMM-based background subtraction method, which loses some appearance 

information of the normal and abnormal events as shown in the red box in Fig. 

2.13(b), providing incomplete and inaccurate information of the foreground objects. 

According to these experimental results, the background removal method is more 

suitable for our proposed method since it comprehensively preserves the appearance 

feature information of the moving foreground objects. Thus, we use it as the 

foreground feature extractor under the assumptions of static CCTV cameras. 

 
 (a) original frame  (b) GMM  (c) background removal 

Fig. 2.13 Performance comparison of background subtraction between (b) GMM-

based background subtraction method and (c) background removal method on the 

UCSD dataset. 
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 The Impact of PatchGAN and Patch Extraction 

Considering the impact of using the patch in our proposed method, we investigate 

different sizes of PatchGAN used in D to demonstrate its performance to DSTN. 

Based on [34], the full ImageGAN has greater depth and more parameters than 

PatchGAN, making it more difficult to train. Thus, we test additional PatchGAN with 

a patch size of 32×32 pixels and 64×64 pixels. The use of the 32×32 PatchGAN 

provides lower intensity on the appearance of objects than the 64×64 PatchGAN 

which is better in the visual quality of the synthesized images, meaning that the 

structure of synthesized images is more recognizable, as shown in Fig. 2.14.  

 
 (a) frame  (b) 32×32 pixels  (c) 64×64 pixels 

Fig. 2.14 Comparison of different sizes of PatchGAN: (a) frame, (b) 32×32 pixels, 

and (c) 64×64 pixels. 

We also compute the FCN-scores on the pixel accuracy and the SSIM of the 

32×32 PatchGAN and the 64×64 PatchGAN, as shown in Table 2.5. From Table 2.5, 

the 64×64 PatchGAN achieves slightly better pixel accuracy than the 32×32 

PatchGAN. Thus, according to the performance of the 64×64 PatchGAN in Fig. 2.14 

and Table 2.5, we decided to use it in all the experiments. 

Table 2.5 Performance comparison of different sizes of PatchGAN in terms of FCN-

scores on pixel accuracy and Structural SIMilarity Index (SSIM) on the UCSD Ped2 

dataset. 

PatchGAN Size Pixel accuracy SSIM 

32×32 0.89 0.96 

64×64 0.9 0.96 
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Furthermore, we also ran additional experiments to show the effect of the 

patch extraction from the feature collection process. We investigate two different 

patch sizes with the scale value a = 2 (pa2) and a = 4 (pa4) on the UCSD datasets. Fig. 

2.15 shows the comparison of AUC and computational complexity of two different 

patch sizes, pa2 and pa4, on the UCSD datasets.  

 
(a) Ped1  (b) Ped2 

Fig. 2.15 Comparison of AUC and computational complexity of two different patch 

sizes, pa2 and pa4, on the UCSD datasets. 

pa2 provides low computational complexity as it achieves 50% faster 

processing than pa4 due to its bigger patch size. However, pa2 has a lower accuracy 

than pa4 on both frame-level and pixel-level evaluations. Specifically, the AUC values 

of pa2 on the UCSD Ped1 dataset are 96.9% for frame level and 72.5% for pixel level, 

while the AUC values of pa4 are 98.5% for frame level and 77.4% for pixel level. For 

the AUC values of pa2 on the UCSD Ped2 dataset, they are 95.4% for frame level and 

78.1% for pixel level, while the AUC values of pa4 are 95.5% for frame level and 

83.1% for pixel level. This remarkably shows that pa4 achieves more accurate results 

for both evaluations. Based on these experimental results, we can conclude that the 

patch size with a higher scale value provides better abnormal event localization. Since 

we aim to collect features from both appearance and motion information for 

enhancing the localization accuracy, we use pa4 for the training videos of all datasets. 

The stride d is assigned to 
𝑤

𝑎
 for extracting the patches which are then resized to 

256×256 pixels. Thus, the patch size is 
𝑤

4
  * h * cp. 

 The Impact of Edge Wrapping and Threshold Value 

As we aim to improve the performance of the anomaly localization in the 

pixel-level evaluation, we introduce the Edge Wrapping [29] at the final stage of our 

DSTN. To choose the threshold values in EW, Canny edge detection [49] 

recommends the ratio of the high to the low threshold in the range of two or three to 

one. In this work, the low threshold is observed from the high threshold divided by 

three. Since the pixels above the high threshold value considered as strong edges have 

the maximum value of 255, the lower threshold should be assigned as 
255

3
  = 85. Then, 

we explore different threshold values, including the threshold value of 35, 50, 65, and 
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80. We conduct experiments on edge preservation of different threshold values as 

shown in Fig. 2.16. 

 

 
 (a) frame  (b) T=35  (c) T=50  (d) T=65  (e) T=80 

Fig. 2.16 Comparison of edge detection with different thresholds: 35, 50, 65, and 80. 

The experimental results show that the threshold value of 50 (T = 50) can 

preserve better edges than other threshold values. Specifically, the threshold values of 

35 (T = 35) and 50 (T = 50) are better than other threshold values (T = 65, T = 80) 

because they can preserve more soft edges of the objects in the scene, while the 

threshold values of 65 and 80 give incomplete edge results. However, the threshold 

value of 35 provides more edges (e.g., object shadows and background) which are not 

useful in our experiment. Thus, in this work, we select the threshold value of 50 as the 

base threshold. 

Table 2.6 shows a comparison of the impact of EW on the proposed DSTN for 

the frame-level and pixel-level performances on the UCSD dataset. Using EW, we 

achieve a significant improvement in terms of the AUC and EER, especially in the 

pixel-level localization. To further demonstrate the importance of EW, we show a 

comparison of applying EW on examples from all datasets, the UCSD, UMN, and 

CUHK Avenue, in Fig. 2.17. From Fig. 2.17, it is clear that EW helps to locate the 

actual anomalous objects more precisely since all unrelated features (e.g., shadows, 

noises, and normal objects) are suppressed. These results prove the benefit of 

applying EW for anomaly detection and localization in combination with the proposed 

DSTN. 

Table 2.6 Impact of Edge Wrapping [29] on UCSD frame-level and pixel-level 

performances. 

Method 
Ped 1 (F) Ped 1 (P) Ped 2  (F) 

EER AUC EER AUC EER AUC 

DSTN without EW 9% 95.8% 35.6% 70.1% 9.8% 94.6% 

DSTN with EW 5.2% 98.5% 27.3% 77.4% 9.37% 95.54% 
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(a) DSTN without Edge Wrapping 

 

(b) DSTN with Edge Wrapping 

Fig. 2.17 Examples of the impact of Edge Wrapping on all datasets: UCSD Ped1, 

UCSD Ped2, UMN, and CUHK Avenue. 

I. Analysis on Time Complexity 

We compare the computational time of the proposed DSTN with other state-of-the-art 

methods [5], [7], [18]-[20]. As these methods do not provide their original 

implementations, we follow the computational time and the environment from [7]. 

With regard to computational time in frame per second (fps), our DSTN achieves 3.17 

fps, 3.15 fps, 3.15 fps, and 3 fps on the UCSD Ped1, UCSD Ped2, UMN, and CUHK 

Avenue datasets, respectively. We also compare our time complexity in seconds per 

frame with other baseline methods as shown in Table 2.7. 

Table 2.7. Computational time comparison during testing (seconds per frame). 

Method 
CPU GPU Memory 

Running Time 

Ped1 Ped2 UMN Avenue 

Sparse Reconstruction [19] 2.6GHz - 2.0GB 3.8 - 0.8 - 

Detection at 150 fps [18] 3.4GHz - 8.0GB 0.007 - - 0.007 

MDT [5] 3.9GHz - 2.0GB 17 23 - - 

Li et al. [20] 2.8GHz - 2.0GB 0.65 0.80 - - 

AMDN (double fusion) [7] 2.1GHz Nvidia Quadro K4000 32GB 5.2 - - - 

DSTN (proposed method) 2.8GHz - 24GB 0.315 0.319 0.318 0.334 

It is clear that our computational time is lower than most of the baseline 

methods except for [18]. This is because our architecture is based on a deep learning 

framework consisting of multiple convolutional layers while [18] is based on a sparse 

combination learning framework that has lower neuron connections. However, we 

obtain significantly higher AUC value and relatively much lower EER value in both 
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frame-level and pixel-level evaluations on the UCSD and the CUHK Avenue datasets 

than [18]. According to our experimental results, we can conclude that the proposed 

DSTN outperforms other competing methods by achieving the highest AUC value in 

both frame-level and pixel-level evaluations while providing a good running time for 

surveillance videos. 

2.1.5. Conclusion 

In this paper, we propose a novel unsupervised spatiotemporal anomaly detection and 

localization for surveillance videos. The proposed DSTN framework is embedded 

with concepts of deep convolution neural network of GAN based Edge Wrapping 

approach which brings advantages to anomaly localization. The deep spatiotemporal 

translation network is designed to learn the appearance and motion representations 

with the use of the fusion and the concatenation of patches for combining the learned 

features. Additionally, our proposed method does not rely on any prior knowledge in 

order to design features for the input (as we use raw pixels) and does not involve low-

level object analysis, such as object detection and tracking. We provide extensive 

experimental results compared with other state-of-the-art methods and implemented 

on three publicly available datasets, including the UCSD pedestrian, UMN, and 

CUHK Avenue. We clearly show that our DSTN outperforms other state-of-the-art 

methods in terms of accuracy and time complexity as we obtain the highest AUC 

value in both frame-level and pixel-level evaluations for all datasets and achieve a 

good running time that outperforms most of the baseline methods. Our method is 

effective and robust for anomaly event detection and localization in the crowded 

scenes for surveillance videos. For future work, we will explore an object translation 

model with a clustering method to enhance the performance of the anomaly detection 

and localization from the complex scene. Other abnormalities will be observed for 

increasing the robustness of the model for real-world use. 
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2.2. Deep Residual Spatiotemporal Translation Network for Video Anomaly 

Detection and Localization 

Abstract Video anomaly detection has gained significant attention in the current 

intelligent surveillance systems. However, many existing works have difficulties in 

dealing with the anomaly localization in the crowded scenes due to the lack of 

sufficient prior information of the objects of interest during training, resulting in false-

positive detection results. To cope with these issues, we propose Deep Residual 

Spatiotemporal Translation Network (DR-STN), a novel unsupervised Deep Residual 

conditional Generative Adversarial Network (DR-cGAN) model with an Online Hard 

Negative Mining (OHNM) approach. The proposed DR-cGAN provides a wider 

network to learn a mapping from spatial to temporal representations and enhance the 

perceptual quality of synthesized images from a generator. During DR-cGAN 

training, we take only the frames of normal events to produce their corresponding 

dense optical flow. At testing time, we compute the reconstruction error in local 

pixels between the synthesized and the real dense optical flow and then apply OHNM 

to remove false-positive detection results. Finally, a semantic region merging is 

introduced to integrate the intensities of all the individual abnormal objects into a full 

output frame. The proposed DR-STN has been extensively evaluated on three 

benchmarks, demonstrating superior results over other state-of-the-art methods both 

in frame-level and pixel-level evaluations. 

Keywords anomaly detection, generative adversarial network, surveillance video, 

residual unit, hard negative mining 

2.2.1. Introduction 

Video anomaly detection [15] has recently become popular in computer vision 

research due to the growing demand for security aspects. An anomaly is a rare event 

occurring in crowded scenes and there might be more than one anomaly at a time. The 

challenges of VAD relate to complex and crowded scenes, anomaly localization, 

small anomaly datasets, and many false-positive detection results. The anomaly 

localization is required to indicate the position of the abnormalities in a scene and is 

more challenging than detecting an abnormal frame. Another challenge is the very 

small number of anomalies present in the available public datasets leading to the 

difficulty of learning a good classifier. Besides, these challenges result in false-

positives in the final output through which the system incorrectly detects normal 

events as abnormal ones. 

Many efforts in the community have been done to overcome these problems. 

Previous works used hand-crafted features (e.g., Gaussian regression with Bags of 

Visual Words [2], trajectories with K-means [3], and Histogram of Oriented Gradients 

[29]). However, it is difficult for these methods to precisely detect and localize 

different occluded and small objects in real crowded scenes even though they can 

detect multiple objects. In such a complex scene, deep learning methods [4, 5, 12, 13, 

19, 22, 23, 25, 28, 30] are more suitable to generalize the representations of these 

objects due to the nonlinear transformation performance of learnable models. In 

addition, many of the deep learning methods [5, 12, 22, 23] are only able to obtain a 

high detection rate on the frame level while the detection rate at the pixel level is 

much lower. The reasons are as follows: i) a full-frame is fed into the model without 
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prior knowledge of the objects, resulting in insufficient features of objects of interest 

for performing deep data-hungry learning; ii) patch extraction is not effective in 

collecting comprehensive features of the object. Recent works [21, 26] aim to enhance 

the accuracy using supervised learning methods that need data labeling for all 

samples, making it not suitable for VAD as anomalies are varied and unpredictable. 

Hence, unsupervised deep learning methods are a more suitable solution as they aim 

to learn only normal events (the majority of patterns in the scene) without the need for 

labeling data. Any unknown patterns will be considered as anomalies by their large 

distance from the normal patterns. Following this consideration, Generative 

Adversarial Networks (GANs) have gained more attention in anomaly detection 

research due to their outstanding performance in constructing images, affording data 

augmentation, and dealing with implicit data in complex scenarios [6]. GANs consist 

of two competing networks: a generator G and a discriminator D. With the 

convolutional networks in G, many works have tried to achieve a high visual quality 

of image reconstruction and to overcome vanishing gradients. U-Net has been 

proposed in [24] based on the idea of skip connections [7] to enhance the accuracy of 

image segmentation for the biomedical image. Isola, et al., proposed [9] an effective 

translation of sketch images to realistic images based on conditional GANs (cGANs) 

with the use of U-Net. 

In this work, we propose a novel Deep Residual Spatiotemporal Translation 

Network (DR-STN) approach for video anomaly detection and localization in crowds. 

Fig. 2.18 shows an overview of our proposed framework. Inspired by [7, 9], we 

propose a novel Deep Residual cGAN (DR-cGAN) to enhance the accuracy and 

quality of the synthesized image. A powerful object detector [1] is applied to extract 

the objects in the frame to be fed into our DR-cGAN. Different from previous works 

[5, 12, 22, 23] which are based on [9], our DR-cGAN is built by designing the 

residual units and the residual connections in G to learn the translation of objects of 

interest from appearance (spatial) to motion (temporal) representations.  

Our contribution is four-fold:  

(i) our unsupervised DR-STN learns only normal events without using any 

hand-crafted features and effectively translates comprehensive information of the 

objects of interest from appearance to motion representations in crowded scenes; 

(ii) we propose DR-cGAN, a novel end-to-end unsupervised deep residual 

connection network, to improve perceptual information of reconstructed images from 

the generator. DR-cGAN provides a wider network that extensively passes 

information from the previous to the next layer of encoder and decoder. To the best of 

our knowledge, this is the first attempt to build deep residual connections (projection 

and identity shortcuts) on the U-Net architecture of cGAN for VAD;  

(iii) we introduce the object detector as the pre-processing process to extract 

only the objects of interest to feed into the DR-cGAN model to help in learning the 

pattern of normal objects. This provides better object localization for the pixel level;  

(iv) we introduce an Online Hard Negative Mining (OHNM) and a semantic 

region merging as the post-processing processes to eliminate the false-positives 

without retraining the model and integrate the intensity of objects for the final 
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anomaly output, providing more reliable and remarkable results than the state-of-the-

art. 

 

Fig. 2.18 Overview of proposed framework. 

2.2.2. Related Works 

Among existing works, the deep learning approaches are the most successful ones. 

The main approaches include supervised and unsupervised learning.  

The supervised learning methods typically provide higher accuracy on 

classification problems. Ramachandra, et al., [21] proposed anomaly localization in 

videos using Siamese CNN to compute a distance between the ground truth label on 

normal and abnormal video patches, causing over-fitting issues as the input of the 

network is limited to small patches of the abnormal event. Singh, et al., [26] proposed 

Aggregation of Ensembles (AOE) of different fine-tuned CNNs with additional 

multiple SVM and Softmax classifiers to detect anomalies in crowds. This network is 

not end-to-end trainable and has a high cost of data annotation for obtaining a 

sufficient amount of data.  

On the other hand, unsupervised learning is considered as being a more 

flexible approach for VAD. Xu, et al., [28] proposed an appearance and motion 

anomaly detection network using Stacked Denoising AutoEncoders (SDAEs) as the 

feature extractor with the One-Class SVM classifier. Prawiro, et al., [19] proposed a 

two-stream autoencoder where the decoder is used to learn the static background and 

the dynamic foreground objects. Ravanbakhsh, et al., [22] proposed two cross-

channel networks between appearance and motion and vice versa based on cGANs. 

This fusion strategy for the two networks makes it more complex to reconstruct 

images. Similarly, the adversarial discriminator based on cGANs is proposed in [23], 

where the discriminator is used as the classifier during testing, making it faster than 

[22] but yielding lower accuracy. Ganokratanaa, et al., [5] proposed a deep 

spatiotemporal translation network (DSTN) based on GAN with pre- and post-

processing procedures, resulting in good frame-level anomaly detection. However, 
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their background removal is quite sensitive to shadow and illumination changes and 

the patch extraction is not always able to obtain the full object appearance.  

The proposed DR-cGAN is different from other previous works since we do 

not rely on hand-crafted features or require any labeled data as in the supervised-

based approaches. Specifically, we are different from [5] as we build the deep residual 

cGAN architecture with the object detector without any pre-defined background 

subtraction model. Additionally, the OHNM method [10] has been implemented to 

explicitly address anomaly localization and false-positive detection problems, 

providing more robust and reliable results. 

2.2.3. Methodology 

A. Pre-processing DR-STN 

The object detection is introduced at the first stage of DR-STN to locate and extract 

the objects of interest for the input of our DR-cGAN model, allowing us to gain more 

meaningful semantic information. We use You Only Look Once (YOLO) [1] to 

handle the challenges from the realistic scenes (e.g., noise, illumination changes, and 

object scaling and occlusions) due to its high robustness on images in different 

environments and its optimal speed-accuracy tradeoff. The pre-trained YOLO is 

applied on each frame f to predict a set of bounding boxes for the objects. These 

bounding boxes aim to extract spatial information of the objects from each frame f 

and temporal information of the objects from each dense optical flow Or to pass into 

the DR-cGAN for model learning. 

B. DR-cGAN in DR-STN 

Our DR-cGAN is proposed for learning the translation from spatial to temporal 

information (dense optical flow). In training, we input only the objects of interest in 

the frames of normal events to G. G translates the spatial object fob to the synthesized 

dense optical flow object Oobg in such a way that it is challenging for D to 

differentiate it from the real dense optical flow object Oobr. Our G and D architectures 

are adopted from [8, 20]. The residual units in G are designed based on [7]. The 

details of our architecture are explained in the following sub-sections. 

1) Generator with Residual Connections 

The generator G is the core model used both in training and in testing in DR-cGAN. 

In the common GAN [6], G learns a random noise z as an input to construct an output 

image �̂�. Differently, cGAN [17] learns a conversion from an image x with a random 

noise z to output an image �̂�, �̂� = 𝐺(𝑥, 𝑧). However, the use of random noise z is not 

essential in G as G can still learn the mapping without the noise [9]. Following [9], we 

apply the noise in the form of dropout in the decoder, resulting in �̂� = 𝐺(𝑥). 

A concerning issue of translating the spatial to temporal information is 

mapping the difference in surface appearance from a high-resolution input to a high-

resolution output grid. Thus, we design the generator architecture to effectively align 
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the input structure to the output structure as shown in Fig. 2.19. This generator 

network consists of two models: encoder and decoder. The encoder functions as the 

data compressor, while the decoder reversely functions as the data decompressor. In 

the encoder, the spatial image is input to a series of down-sampling layers until 

reaching a bottleneck layer. Then, the decoder performs the reconstruction process to 

generate a semantic output image. Our structures of the encoding and decoding blocks 

are defined in [5]. 

 

Fig. 2.19 The proposed generator architecture of DR-cGAN 

To achieve finer semantic results, the low-level information is required to be 

shared between the input and the output in order to propagate the information through 

the network without degradation while maintaining the high-level information. 

Following this consideration, we introduce the novel generator architecture as i) we 

add the residual unit in each layer of the encoder and decoder to achieve a wider 

feature learning network; ii) we apply the residual connections from encoder layers to 

decoder layers to share the low-level information. Suppose n is the total number of 

layers. The residual unit is added after each encoder layer i and decoder layer n-i, 

while the residual connections are added from each encoder layer i to the decoder 

layer n-i. This implies better generalization and easier optimization for image 

translation as discussed in Section 2.2.4. Specifically, our residual units consist of 

projection and identity shortcuts as shown in Fig. 2.20. The projection shortcut is used 

to match the dimensions. Since the dimensions of our input and output in the encoder 
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are not the same, we define the projection shortcut to increase the dimensions of the 

input features to be able to add with the output features. For the decoder, its residual 

unit has two inputs: the output from the decoder layer and the residual connections 

from the encoder layer. The identity shortcut is then defined to add the concatenated 

inputs with the output using the same dimensions. 

 

Fig. 2.20 Structure of the residual unit 

2) Discriminator 

We use the discriminator D only during the training process. D classifies two classes 

of spatiotemporal objects: a real class {𝑥 = 𝑓𝑜𝑏 , 𝑦 = 𝑂𝑜𝑏𝑟} and a fake class {𝑥 =

𝑓𝑜𝑏 , 𝑂𝑜𝑏𝑔 = 𝐺(𝑥)}. We train D to maximize the correct classification problem on both 

real and fake classes. A binary cross-entropy loss with logits loss is computed as the 

objective function of D. In contrast, G is trained to minimize the objective function of 

D with a reconstruction error between Oobg and Oobr. In other words, the adversarial D 

and G learn a two-player minimax game with value function 𝑉(𝐷, 𝐺): 

 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥 𝑉
𝐷

(𝐷, 𝐺) = ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) + 𝜆ℒ𝐿1(𝐺)  (2.11) 

where ℒ𝑐𝐺AN(𝐺, 𝐷) presents as a cGAN loss, and ℒ𝐿1(𝐺) is a reconstruction loss in G. 

Both losses are determined as below, 

 ℒ𝐿1(𝐺) = 𝔼𝑥,𝑦[‖𝑦 − 𝐺(𝑥)‖1],   (2.12) 

 ℒ𝑐𝐺𝐴𝑁(𝐺, 𝐷) = 𝔼𝑥,𝑦 [𝑙𝑜𝑔[𝜎(𝐷(𝑥, 𝑦))]] + 𝛦𝑥 [𝑙𝑜𝑔 [1 − 𝜎 (𝐷(𝑥, 𝐺(𝑥)))]].(2.13)  

where 𝜎 is a sigmoid function, 𝜎(𝐷) = 1/(1 + 𝑒−𝐷). 
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Our DR-cGAN provides good feature learning of the learned normal events 

while being less complex. Since we do not train with the abnormal event, the model 

understands only the normal patterns at the training time and then can observe the 

irregular objects following the reconstruction error at the testing time. The anomaly 

detection process is explained in detail in the following section. 

C. Anomaly Detection 

At testing time, only G is applied to translate fob of the test video frame to Oobg in 

order to compare with its corresponding Oobr for obtaining the irregular object. 

Specifically, the spatial objects 𝑆𝑡  =  {𝑓𝑜𝑏1
, 𝑓𝑜𝑏2

, . . . , 𝑓𝑜𝑏𝐾
}

𝑡
 and their corresponding 

bounding boxes 𝐵𝑡  =  {𝑏1, 𝑏2, . . . , 𝑏𝐾}𝑡 are extracted from each frame at time t, where 

K is the total number of the detected objects in a frame. To detect the irregular object, 

the reconstruction error △𝑡= {△𝑜𝑏1
,△𝑜𝑏2

, . . . ,△𝑜𝑏𝐾
}

𝑡
 is computed by differentiating 

between the real temporal objects 𝑇𝑟
𝑡 = {𝑂𝑜𝑏𝑟1

, 𝑂𝑜𝑏𝑟2
, . . . , 𝑂𝑜𝑏𝑟𝐾

}
𝑡
and the synthesized 

temporal objects generated from G, 𝑇𝑔
𝑡 = {𝑂𝑜𝑏𝑔1

, 𝑂𝑜𝑏𝑔2
, . . . , 𝑂𝑜𝑏𝑔𝐾

}
𝑡
. The 

reconstruction error on kth object is: 

 △𝑜𝑏𝑘
= 𝑂𝑜𝑏𝑟𝑘

− 𝑂𝑜𝑏𝑔𝑘
> 0 (2.14) 

 △𝑜𝑏𝑘
 provides an irregular score representing the possible anomalous event in 

the scene when the value of △𝑜𝑏𝑘
 is greater than 0. However, the output of △𝑜𝑏𝑘

 may 

result in a false positive, meaning that the normal object (negative sample) is 

incorrectly detected as the abnormal object (positive sample). This false-positive 

object represents a hard negative example. To ensure that we obtain the actual 

abnormal object, we determine the high confidence score to decide whether △𝑜𝑏𝑘
 

belongs to the normal or abnormal object. Then OHNM is proposed to get rid of the 

negative example in the anomaly detection. The probability of anomaly score 𝑃𝑎𝑘
 on 

kth object is computed as: 

 𝑃𝑎𝑘
=

∑ △𝑜𝑏𝑘(𝑖,𝑗)∈△𝑜𝑏𝑘

(𝑖,𝑗)

∑ 𝑂𝑜𝑏𝑟𝑘(𝑖,𝑗)∈𝑂𝑜𝑏𝑟𝑘
 

(𝑖,𝑗)
 (2.15) 

Since the model is trained only with the normal patterns, it performs a good 

reconstruction on the normal objects, causing a low value of △𝑜𝑏𝑘
 and 𝑃𝑎𝑘

. In 

contrast, the model is not able to correctly reconstruct the abnormal object, causing a 

high value of △𝑜𝑏𝑘
 and 𝑃𝑎𝑘

. Following these characteristics, the high confidence 

scores of the normal and abnormal objects are set based on two-interval thresholds: 

confident normal threshold Cn and confident abnormal threshold Ca. After this setting, 

we obtain a true detection of normal and abnormal objects. However, there are some 

objects which are not enrolled in these two criteria (𝐶𝑛  <  𝑃𝑎𝑘
<  𝐶𝑎). Then, we take 

these objects into consideration of the OHNM examples to finalize the true detection 

of anomaly outputs. 
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To observe hard negative examples, the template matching is performed as a 

short tracklet to match each detected object in 𝑓𝑡 to the search patch p in its adjacent 

frames within a window ±1 frame. The size of p is assigned to extensively cover the 

displacement of the object by enlarging the bounding box bk of the kth reference object 

𝑓𝑜𝑏𝑘
 to the size of 20×20 pixels. This size of p is defined due to the small movement 

of the object between frames. Specifically, the main idea of our OHNM is to move 

𝑓𝑜𝑏𝑘
 (template) at 𝑓𝑡over p in its adjacent frames (𝑓𝑡−1 and 𝑓𝑡+1) in order to measure 

the highest similarity patch and record the template as a normal object. The highest 

similarity of the pattern between 𝑓𝑜𝑏𝑘
and p is determined via block matching by 

shifting 𝑓𝑜𝑏𝑘
 with the distance (u,v) in the horizontal and vertical directions within the 

corresponding sub-patch of p. To find the similarity score from the best-matching 

position between 𝑓𝑜𝑏𝑘
 and p, we use the standard normalized cross-correlation (NCC) 

algorithm which is formulated as: 

 𝑁𝐶𝐶(𝑢, 𝑣) =
∑ 𝑝(𝑢+𝑖,𝑣+𝑗)(𝑖,𝑗)∈𝑓𝑜𝑏𝑘

·𝑓𝑜𝑏𝑘
(𝑖,𝑗)

√∑ 𝑝2(𝑢+𝑖,𝑣+𝑗)
(𝑖,𝑗)∈𝑓𝑜𝑏𝑘

·∑ 𝑓𝑜𝑏𝑘
2

(𝑖,𝑗)∈𝑓𝑜𝑏𝑘

(𝑖,𝑗)

.  (2.16) 

After acquiring the NCC similarity score, we are able to determine whether 

the object is abnormal or not based on the confident similarity score Cs. If there is a 

large appearance change between frames, we assign the object as being abnormal 

otherwise, we consider it to be a normal object or an isolated object yielded by flicker 

noise. Finally, the semantic region merging is implemented by combining all the 

detected abnormal objects into a full semantic frame A computed as follows, 

 𝐴(𝑖, 𝑗) = {
△𝑜𝑏𝑘

(𝑖, 𝑗), 𝑛𝑜𝑛 − 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔 𝑜𝑏𝑗𝑒𝑐𝑡 

1 𝐾⁄ ∙ ∑ △𝑜𝑏𝑘
(𝑖, 𝑗)𝑘∈𝐾 ,                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (2.17) 

where K is the total number of the final abnormal objects and (i, j) are the pixel 

positions of A.  

A is normalized to get the probability score NA in a range of [0, 1] of the full 

semantic frame. The highest pixel intensity value of A, MA, is considered as the 

abnormal pixel in the frame. The ROC curve is performed on NA by slightly shifting 

the threshold of anomaly scores in a range of [0,1] to determine the best decision 

threshold. NA can be defined as follows, 

 𝑁𝐴(𝑖, 𝑗) = 1 𝑀𝐴⁄ ∙ 𝐴(𝑖, 𝑗).  (2.18) 

2.2.4. Experimental Results 

In this section, we evaluate the performance of the proposed DR-STN on three 

anomaly benchmarks and compare it with state-of-the-art methods on both frame 

level and pixel level. The impact of our proposed DR-cGAN model and OHNM 

method is analyzed in detail. 
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A. Datasets 

The UCSD dataset [15] includes two sub-folders: Ped1 and Ped2. There are 34 

training and 16 test videos in Ped1 with around 5500 normal and 3400 abnormal 

frames. For Ped2, it has 16 training and 12 test videos with around 2500 normal and 

1652 abnormal frames. The image sizes of Ped1 and Ped2 are 238×158 pixels and 

360×240 pixels, respectively. The abnormal events in this dataset include cycling, 

skateboarding, vehicles, and wheelchairs. 

The UMN dataset [16] has 11 videos recorded in crowded indoor and outdoor 

scenes with around 7700 frames and an image size of 320×240 pixels. The abnormal 

events refer to running, while the normal events refer to the normal walking. 

The CUHK Avenue dataset [14] has 16 training and 21 test videos with 15328 

and 15324 frames and an image size of 360×640 pixels. There are various anomalies 

in the scenes, e.g., jumping, loitering, running, and throwing objects, while the normal 

events are the walking crowds. 

B. Implementation Details 

Our proposed DR-STN is based on Python and Matlab with PyTorch [18]. The 

training and testing processes are implemented on NVIDIA GeForce GTX 1080 Ti. 

Adam optimization is used to optimize our reconstruction loss (𝜆ℒ𝐿1) that targets to 

2E-1. The optimization parameters are defined as [9].  

In our DR-cGAN, the sizes of the input and output of G for both training and 

testing processes are set to 64×64 pixels. With the encoder network in G, the input 

image is encoded by using a CNN with a kernel size of 3×3 pixels and a stride s = 2 to 

reach a bridge representing the spatial data. For the decoder network in G, each layer 

is built as the reverse of each encoder layer. To avoid the over-fitting problems on the 

training dataset, the random noise z is provided in the form of dropout in the decoder 

with the default probability value p = 0.5. In addition, the residual units for both 

encoder and decoder are designed by using 3×3 convolution and 1×1 convolution 

with s = 1, respectively. For D, it takes two input images with the resolution of 64×64 

pixels to produce the 6×6 output feature. 

C. Evaluation Criteria 

We evaluate the quantitative performance of the proposed DR-STN considering two 

criteria: frame level (F) and pixel level (P). In F, the frame is considered as an 

anomaly if there is at least one abnormal event in a test frame. On the other hand, P 

specifies the location of the abnormal event. The frame is a true detection when the 

detected abnormal region overlaps with the ground truth region more than 40% [11]. 

D. Performance Evaluation 

In this section, we compare Area Under the Curve (AUC) and Equal Error Rate [49] 

performance of DR-STN with other state-of-the-art methods as shown in Table 2.8. 
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We use the same network configuration and training parameter settings for all three 

datasets. The experiment on the UCSD dataset is implemented with 10 and 12 videos 

of the UCSD Ped1 and UCSD Ped2, respectively, along with their pixel-level ground 

truth. GANs [22] and DSTN [5] are set as the baseline methods due to their success in 

leveraging frame-level and pixel-level detection accuracy and achieving state-of-the-

art performance in an unsupervised manner. Table 2.8 shows that our DRSTN 

surpasses not only the baseline methods but also most of the competing works in both 

F and P criteria in which we achieve higher AUC and lower EER than other works, 

except only for the AUC of the UCSD Ped1 dataset at P in [21]. This is probably due 

to their supervised learning on labeled abnormal data. However, our experimental 

results can significantly overcome other criteria in [21] and all criteria in [26] which 

also relies on a supervised-based method, showing the competitive performance of 

DR-STN in anomaly detection and localization tasks. In addition, the examples of our 

detection and localization results on three datasets are shown in Fig. 2.21 where we 

can detect and localize both single and multiple abnormal events in the crowded 

scenes even when they are occluded (e.g., a bicycle and a skateboard in Fig. 2.21(b)). 

Table 2.8 AUC and EER Comparison with State-of-the-Art Methods on UCSD, 

CUHK Avenue, and UMN datasets 

Method UCSD Ped1 

(F) 

AUC/EER 

UCSD Ped1 

(P) 

AUC/EER 

UCSD Ped2 

(F) 

AUC/EER 

UCSD Ped2 

(P) 

AUC/EER 

CUHK 

Avenue (F) 

AUC/EER 

UMN 

(F) 

AUC/EER 

Social force 

(SF) [16] 

67.5%/31.0% 19.7%/79.0% 55.6%/42.0% -/80.0% -/- 96.0%/- 

Detection at 

150fps [14] 

91.8%/15.0% 63.8%/43.0% -/- -/- 80.9%/- -/- 

AMDN (double 

fusion) [28] 

92.1%/16.0% 67.2%/40.1% 90.8%/17.0% -/- -/- -/- 

GANs [22] 97.4%/8.0% 70.3%/35.0% 93.5%/14.0% -/- -/- 99.0%/- 

Liu, et al. [12] 83.1%/23.5% 33.4%/- 95.4%/12.0% 40.6%/- 85.1%/- -/- 

Adversarial 
Discriminator 

[23] 

96.8%/7.0% 70.8%/34.0% 95.5%/11.0% -/- -/- 99.0%/- 

AnomalyNet 
[30] 

83.5%/25.2% 45.2%/- 94.9%/10.3% 52.8%/- 86.1%/22.0% 99.6%/- 

DSTN [5] 98.5%/5.2% 77.4%/27.3% 95.5%/9.4% 83.1%/21.8% 87.9%/20.2% 99.6%/- 

GMM-FCN [4] 94.9%/11.3% 71.4%/36.3% 92.2%/12.6% 78.2%/19.2% 83.4%/22.7% -/- 

Siamese [21] 86.0%/23.3% 80.4%/- 94.0%/14.1% 93.0%/- -/- -/- 

AOE [26] 94.6%/- -/- 95.9%/- -/- -/- -/- 

Two-stream 

decoder [19] 

84.2%/- -/- 96.1%/- -/- -/- -/- 

DR-STN 

(proposed 

method) 

98.8%/2.9% 82.5%/21.5% 97.6%/6.9% 86.4%/16.3% 90.8%/11.0% 99.7%/- 
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(a)  (b)  

 

 (c) (d) 

Fig. 2.21 Examples of anomaly detection and localization results. 

E. Analysis of DR-STN 

To emphasize the importance of our DR-STN, we analyze two main components of 

the proposed framework:  

i) The performance of DR-cGAN compared with the baseline methods 

including U-Net [9] and autoencoder which is simply built by 

removing the skip connections in U-Net; 

ii) The impact of OHNM on DR-STN with regard to AUC.  

First, we divide the training folder of the UCSD Ped1 dataset into two subsets: 

70% for training samples and 30% for testing samples. We train the DR-cGAN model 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 54

  

 

 

and other baseline methods for 20 epochs to see their effectiveness in minimizing the 

𝜆ℒ𝐿1 loss as illustrated in Fig. 2.22, where our DR-cGAN (red square) reaches the 

lowest error over the training epochs, showing faster and superior performance in 

model learning than other baseline methods about 50%.  

 

Fig. 2.22 Training loss comparison between Autoencoder, U-Net, and DR-cGAN on 

the UCSD Ped1 dataset. 

To clarify the ability in generating the synthesized image on normal events 

during testing, we evaluate the proposed network using two common methods. First, 

FCN-scores for semantic segmentation on pixel accuracy [13] are computed to obtain 

the probability of correct pixels on a set of defined object classes (foreground and 

background region classes). The pixel accuracy is defined as ∑ 𝑛𝑖𝑖𝑖 ∑ 𝑛𝑡𝑖𝑖⁄ , where nii 

is the number of the correct classified pixels of class i, and nti is the total number of 

pixels of class i. Second, Structural SIMilarity Index (SSIM) metric [27] is used to 

evaluate the similarity between the synthesized and the real images. For both 

evaluations, a higher value indicates a better result of the synthesized image. Table 

2.9 shows that our DR-cGAN significantly surpasses all baseline methods regarding 

both evaluations, providing a good synthesized image quality that is highly similar to 

the real image.  

Table 2.9 Performance comparison of the Autoencoder, U-Net, and DR-cGAN in 

terms of FCN-scores on pixel accuracy and Structural SIMilarity Index (SSIM) on the 

UCSD Ped1 dataset. 

Method Pixel accuracy SSIM 

Autoencoder 0.81 0.78 

U-Net 0.82 0.8 

DR-cGAN  0.87 0.85 

 

Apart from the above experiments, our OHNM relies on both temporal and 

spatial conditions. For the temporal condition, we can determine whether the object is 
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normal or abnormal based on 𝑃𝑎𝑘
under the criteria of two-interval thresholds, Cn = 0.1 

and Ca = 0.8. The object is classified as normality if its 𝑃𝑎𝑘
is less than or equal to 0.1 

(𝑃𝑎𝑘
≤ 0.1) and as an abnormality if its 𝑃𝑎𝑘

is greater than or equal to 0.8 (𝑃𝑎𝑘
≥ 0.8). 

This is probably because the model has only the knowledge of the learned normal 

events at the training time. Hence, during testing, when we input all objects from each 

frame into the model, △𝑜𝑏𝑘
 provides less difference in local pixels between the 

learned and the test samples in case the input is the normal object, resulting in a small 

value of 𝑃𝑎𝑘
 which falls into the criteria of Cn. On the other hand, there is a great 

difference of △𝑜𝑏𝑘
if the input is the abnormal object, resulting in a high value of 𝑃𝑎𝑘

 

which is considered an abnormality following the criteria of Ca. For 𝑃𝑎𝑘
 value that 

does not belong to these two criteria (0.1 < 𝑃𝑎𝑘
 < 0.8), we apply the template 

matching to observe the NCC score of the objects between frames to indicate the 

appearance displacement whether the objects are the same. NCC results in a high 

similarity score if there is a small change in the appearance of the objects between 

frames, considering as the false-positive anomaly result. Based on the experiment, we 

set the confident similarity score on the normal object Cs = 0.8. We analyze the 

impact of OHNM on our DR-STN for reducing the false-positive detection results in 

terms of AUC on the UCSD dataset. With the use of OHNM, the model can 

remarkably improve the AUC values in both F and P as shown in Table 2.10.  

Table 2.10 AUC Performance of OHNM on DR-STN  

Method Ped 1 (F) Ped 1 (P) Ped 2  (F) 

DR-STN without OHNM 97.85% 72.65% 96.16% 

DR-STN with OHNM 98.83% 82.50% 97.62% 

 

The AUC of P on the UCSD Ped1 dataset is increased up to about 10% 

compared to the plain DR-STN, providing a more precise location of the abnormal 

events in the scene. Following these experimental results, it is clear that applying 

OHNM with the proposed DR-STN benefits both anomaly detection and localization 

tasks. 

2.2.5. Conclusion 

This paper introduced a novel unsupervised deep residual spatiotemporal translation 

network for video anomaly detection and localization. The proposed DR-STN is 

embedded with a wider DR-cGAN and OHNM which benefits in reducing false-

positive anomaly detection. The DR-cGAN is designed for the translation learning of 

appearance and motion representations by integrating the residual units, residual 

connections, and cGAN. Additionally, our DR-cGAN takes only raw pixels as the 

input from the object detector without relying on any prior knowledge of hand-crafted 

features. We conducted extensive experiments on three benchmarks and showed the 

robustness and effectiveness of the proposed framework which clearly outperforms 

other state-of-the-art methods. 
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2.3.Training Procedures 

2.3.1. DSTN 

As we described the proposed DSTN method in Section 2.1, we shall explain it more 

in detail on the feature extraction and training procedures. The training flow diagram 

of DSTN is shown in Fig. 2.23.  

 

Fig. 2.23 Training flow diagram of DSTN  

In the training framework, only normal event patches Pf of original frame f are 

input with their corresponding foreground patches PBR of the background removal 

frame fBR into the Generator G of the deep GAN to generate the synthesized patches 

�̂�OF of dense optical flow frame OFgen, representing the motion information of the 

normal events. To obtain a good optical flow,  fBR is fused with the real dense inverse 

search optical flow frame OFdis to eliminate noise in OFdis. The fusion of f and fBR 

frames called a fused dense optical flow frame OFfus provides clear motion 

information for model learning.  

Let POF presents the patches of OFfus. Thus, the full training set of N patch 

samples are defined as 𝑇 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), ⋯ , (𝑋𝑁, 𝑌𝑁)}, where 𝑋𝑖 = (𝑃𝑓𝑖
, 𝑃𝐵𝑅𝑖

), 

𝑌𝑖 = 𝑃𝑂𝐹𝑖
, and 𝑖 ∈ 𝑁. Specifically, before feeding the training set into the model, we 

upscale Pf, PBR, and POF to a resolution of 256×256 pixels and normalize the intensity 

value in the range of [-1, 1]. Then, Pf and PBR are concatenated and fed into G. The 

model is learned by optimizing the equation (2.5) to obtain the desired reconstruction 

loss L1 between the generated patch of dense optical flow �̂� = �̂�𝑂𝐹 and the 

corresponding patch of fused dense optical flow 𝑌.  
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In the process of the Discriminator D, D learns Y and �̂� via a deep patch 

discriminate network to classify that Y is real and �̂� is fake, while G tries to fool D by 

producing more synthetic images �̂� that are difficult to be discriminated against from 

Y. If D classifies �̂�as a fake image, G will generate the new 𝑌 ̂until D classifies it as a 

real image (the same as Y).  

The detail of the optimization of the training process of DSTN is explained in 

Algorithm 1 as follows; 

Algorithm 1 Minibatch Adaptive moment estimation [33] in the training of deep 

GAN. The parameters of discriminator D are updated to its hyperparameter k, which 

we used k = 1 as the least expensive option in our experiments. The default values of 

Adam parameters: 𝜂 = 2E − 3, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1E − 08. 

 Initial parameters of G, 𝛩𝐺 

 Initial parameters of D, 𝛩𝐷 

 for number of training iterations do 

  for k steps do 

 Sample minibatch of m examples {𝑋(1), . . . , 𝑋(𝑚)} from the 

concatenated input patch of spatial representation (𝑃𝑓 , 𝑃𝐵𝑅). 

 Sample minibatch of m examples {𝑌(1), . . . , 𝑌(𝑚)} from the 

original patch of temporal representation 𝑃𝑂𝐹. 

 Update the discriminator’s parameters: 

𝑔𝜃𝐷
← ∇𝜃𝐷

1

𝑚
∑ [log 𝐷(𝑌(𝑖)) + log (1 − 𝐷 (𝐺(𝑋(𝑖))))]𝑚

𝑖=1 . 

𝜃𝐷 ← 𝐴𝑑𝑎𝑚(𝑔𝜃𝐷
, 𝜃𝐷 , 𝜂, 𝛽1, 𝛽2, 𝜖) 

end for 

 Sample minibatch of m examples {𝑋(1), . . . , 𝑋(𝑚)}  from the 

concatenated input patch of spatial representation (𝑃𝑓 , 𝑃𝐵𝑅). 

 Sample minibatch of m examples {𝑌(1), . . . , 𝑌(𝑚)} from the original 

patch of temporal representation 𝑃𝑂𝐹. 

 Update the generator’s parameters: 

𝑔𝜃𝐺
← ∇𝜃𝐺

1

𝑚
∑ log (1 − 𝐷 (𝐺(𝑋(𝑖)))) + 𝜆𝑚

𝑖=1 ‖𝑌(𝑖) − 𝐺(𝑋(𝑖))‖. 

𝜃𝐺 ← 𝐴𝑑𝑎𝑚(𝑔𝜃𝐺
, 𝜃𝐺 , 𝜂, 𝛽1, 𝛽2, 𝜖) 

 end for 

 Algorithm 1 stops updating the parameters after the reconstruction loss is less 

than 1E-3. The performance of G in generating synthesized temporal representation is 

evaluated by computing the pixel accuracy and SSIM as described in Section 2.1. 

Finally, G is the only network used in our testing experiment.  
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2.3.2. DR-STN  

In this section, we explain more detail on the training procedures of the proposed DR-

STN as presented in Section 2.2. The training flow diagram of DR-STN is shown in 

Fig. 2.24.  

 

Fig. 2.24 Training flow diagram of DR-STN  

In the training framework, only the spatial representation S of objects of 

interest in the frame f is input into the Generator G in our novel DR-cGAN to generate 

the synthesized dense optical flow objects Tg, representing the temporal information 

of the normal events. In this work, the pre-trained object detector is used to obtain 

individual objects in the scene. To the best of our knowledge, YOLOv4 is the latest 

and the most suitable object detection approach for our model due to its high detection 

rate and low complexity performances. We then apply it on each original frame f to 

acquire the object boundary box information B to extract spatial objects and dense 

inverse search (DIS) optical flow objects, representing both appearance and motion 

representations for the model learning. 

Different from DSTN, the full training set of N patch samples are defined as 

𝑇 = {(𝑋1, 𝑌1), (𝑋2, 𝑌2), ⋯ , (𝑋𝑁 , 𝑌𝑁)}, where 𝑋𝑖 = 𝑓𝑜𝑏𝑖
, 𝑌𝑖 = 𝑂𝑜𝑏𝑟𝑖

, and 𝑖 ∈ 𝑁. We 

upscale fob and Oobr to a resolution of 64×64 pixels and normalize their intensity value 

in the range of [-1, 1] before feeding them into model learning. The model is learned 

by optimizing Eq. (2.11) to obtain the desired reconstruction loss L1 between the 

generated object of dense optical flow �̂� = 𝑂𝑜𝑏𝑔 with the corresponding object of real 

dense optical flow 𝑌.  

For Discriminator D, the pair of (𝑋, 𝑌) and the pair of (𝑋, �̂�) are learned via a 

deep discriminate network to classify that 𝑌 is real and �̂� is fake as shown in Fig. 

2.25, while G tries to fool D by producing more synthetic images �̂� that are difficult 

to be discriminated against from Y. If D discriminates �̂� as a fake image, G will 

generate the new �̂� until D discriminates it as a real image (the same as 𝑌).  
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Fig. 2.25 A conditional discriminator architecture of DR-cGAN. 

The detail of the optimization of the training process of DR-STN is explained 

in Algorithm 2 as follows; 

Algorithm 2 Minibatch Adaptive moment estimation [33] in the training of DR-

cGAN. The parameters of discriminator D are updated to its hyperparameter k, which 

we used k = 1 as the least expensive option in our experiments. The default values of 

Adam parameters: 𝜂 = 2E − 3, 𝛽1 = 0.9, 𝛽2 = 0.999, 𝜖 = 1E − 08. 

 Initial parameters of G, 𝛩𝐺 

 Initial parameters of D, 𝛩𝐷 

 for number of training iterations do 

  for k steps do 

 Sample minibatch of m examples {𝑋(1), . . . , 𝑋(𝑚)} from the 

input object of spatial representation 𝑓𝑂𝑏. 

 Sample minibatch of m examples {𝑌(1), . . . , 𝑌(𝑚)} from the 

original object of temporal representation 𝑂𝑜𝑏𝑟. 

 Update the discriminator’s parameters: 

𝑔𝜃𝐷
← ∇𝜃𝐷

1

𝑚
∑[log 𝜎𝐷(𝑋(𝑖), 𝑌(𝑖))

𝑚

𝑖=1
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+ log (1 − 𝜎𝐷 (𝑋(𝑖), 𝐺(𝑋(𝑖))))] 

𝜃𝐷 ← 𝐴𝑑𝑎𝑚(𝑔𝜃𝐷
, 𝜃𝐷 , 𝜂, 𝛽1, 𝛽2, 𝜖) 

end for 

 Sample minibatch of m examples {𝑋(1), . . . , 𝑋(𝑚)}  from the input 

object of spatial representation 𝑓𝑂𝑏. 

 Sample minibatch of m examples {𝑌(1), . . . , 𝑌(𝑚)} from the original 

object of temporal representation 𝑂𝑜𝑏𝑟. 

 Update the generator’s parameters: 

𝑔𝜃𝐺
← ∇𝜃𝐺

1

𝑚
∑ [log (1 − 𝜎𝐷 (𝑋(𝑖), 𝐺(𝑋(𝑖))))

𝑚

𝑖=1

 

+𝜆‖𝑌(𝑖) − 𝐺(𝑋(𝑖))‖]  
 

𝜃𝐺 ← 𝐴𝑑𝑎𝑚(𝑔𝜃𝐺
, 𝜃𝐺 , 𝜂, 𝛽1, 𝛽2, 𝜖)  

end for 

Algorithm 2 stops updating the parameters after the reconstruction loss is less 

than 2E-3. Similar to DSTN, we evaluate the performance of G in generating 

synthesized temporal representation by computing the pixel accuracy and SSIM 

metrics as explained in Section 2.2 and use it in our testing experiment. 

2.4. Evaluation Criteria 

 Receiver Operating Characteristic (ROC) 

The Receiver Operation Characteristic curve (ROC) is a standard method used for 

evaluating the performance of an anomaly detection system. It is a plot that indicates 

a comparison between True Positive Rate (TPR) and False Positive Rate (FPR) at 

various threshold criteria and benefits the analysis of the decision-making process 

[13]. 

In the anomaly detection observation, the abnormal events that are correctly 

determined as the positive detections (abnormal event) from the entire positive ground 

truth data are represented as TPR known as the probability of detection. The more the 

curve of TPR goes up, the better the detection accuracy of abnormal events is. The 

normal event (negative data) that are incorrectly determined as the positive detections 

from the entire negative ground truth data are represented as FPR. The higher FPR 

means the higher rate of the misclassification of normal events. There are four types 

of binary predictions for TPR and FPR computation, as described below. 

True Positive (TP) is the correct positive detection of an abnormal event when 

the prediction outcome and the ground truth data are positive (abnormal event). 

False Positive (FP) is the false positive detection when the outcome 

is predicted as positive (abnormal event), but the ground truth data is negative (normal 

event), meaning that the normal event is incorrectly detected as an abnormal event. 

This problem often occurs in the video anomaly detection task (e.g., a walking person 

is detected as an anomaly). 
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True Negative (TN) is the correct detection of a normal event when the 

outcome is predicted as negative (normal event) and the ground truth data is also 

negative. 

False Negative (FN) is the incorrect detection when the outcome is predicted 

as negative (normal event) and the ground truth data is positive (abnormal event). 

Hence, TPR and FPR can be computed, as shown in Eq. (2.19) and Eq. (2.20), 

respectively: 

 𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
,   (2.19) 

 𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
. (2.20) 

Moreover, there are two related evaluation methods of the ROC as follows. 

 Area Under Curve (AUC) 

Area Under Curve, also known as AUC, is used in classification analysis problems to 

define the best prediction model. It is computed from all the areas under the ROC 

curve, where TPR is plotted against FPR. The higher value of AUC indicates the 

superior performance of the model. Ideally, the model is a perfect classifier when all 

positive data are ranked above all negative data (AUC = 1). In practice, most of the 

AUC results are required in the range between 0.5 and 1.0 (AUC = [0.5,1]), meaning 

that the random positive data are ranked higher than the random negative data (greater 

than 50%). Besides, the worst case is when all negative data are ranked above all 

positive data, leading the AUC to 0 (AUC = 0). Hence, AUC classifiers can be 

defined as AUC ∈ [0,1] where AUC values for real-world use are greater than 0.5. 

The AUC values that are less than 0.5 are not acceptable for the model. To conclude, 

we prefer higher AUC values than the lower ones. 

 Equal Error Rate (EER) 

Apart from the AUC, the performance of the model can be quantified by using an 

Equal Error Rate known as EER. It is the point that occurred on the ROC curves when 

there is an equal probability of misclassified positive or negative data where FPR 

equals 1-TPR. The EER comes from the intersection of the ROC curve and the unit 

square diagonal. The lower the EER values, the better the performance of the model. 

It is in contrast to the AUC values, which refer to the higher value. 

 Frame-level Evaluation for Anomaly Detection 

We evaluate the quantitative performance of the proposed method based on two 

criteria: frame level and pixel level. The frame-level evaluation is used for detecting 

the anomalous pixel in the frame at the time. If one or more anomalous pixels are 

detected, the frame will be labeled as the abnormal frame no matter what size and 

location of the objects are. In this case, the frame becomes the true positive (TP) when 

the ground truth is also abnormal as the test frame. However, if the ground truth is not 

abnormal, it will become a false positive (FP).  In this work, the ROC curve is used to 
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illustrate the accuracy of frame-level anomaly detection on the UCSD dataset and 

compare the results with other state-of-the-art works. Also, the AUC and the EER are 

applied as the criteria for evaluating the results.  

 Pixel-level Evaluation for Anomaly Localization 

This aims to evaluate the accuracy of the anomalous events at the pixel level. It 

attempts to localize the anomaly pixel in the scenarios and enhances the precision of 

anomaly detection from the frame-level measurement. To indicate whether the frame 

is the true positive (TP) or not, the detected abnormal area is needed to be overlapped 

more than 40% with the ground truth [26]. In addition, if one pixel is detected as 

abnormal events, the frame will be distinguished as the false positive (FP). The pixel-

level evaluation is more challenging and stricter than the frame-level evaluation 

because of the complexity of anomaly localization. For the accuracy measurement, 

the ROC curve is used to measure the accuracy of pixel-level anomaly localization.  

 Pixel Accuracy 

The pixel accuracy metric is a standard semantic segmentation evaluation [28]. In this 

work, there are two classes; a foreground region class and a background region class. 

Let nij be the number of wrong classified pixels of class i, and nti be the total number 

of pixels of class i. The pixel accuracy can be computed by ∑ 𝑛𝑖𝑖/ ∑ 𝑛𝑡𝑖𝑖𝑖 . 

 Structural SIMilarity Index (SSIM) 

SSIM index is used to measure the similarity between the original and the synthesized 

images [49]. The more the synthesized image looks like the original image, the more 

efficient the model is. 

2.5. Discussion 

In this section, we discuss our proposed methods, DSTN and DR-STN, and point out 

their advantages and limitations as follows.  

 Advantages and Disadvantages 

For our DSTN framework, we designed the video anomaly detection framework 

by embedding successful GAN with the additional pre- and post-processing 

approaches. Regarding the pre-processing approach, we proposed the simple but yet 

effective background removal method. The experiment of the background removal 

method in Section 2.1.4.H clearly shows that the background removal method can 

preserve the full appearance of foreground objects in the scene, making it suitable for 

model learning.  However, after the differentiation, we noticed that the output of the 

irregular frame contains a large area of unnecessary pixels over the actual object in 

the scene. This area probably occurs because of the motion of the object. In other 

words, a fast-moving foreground object tends to provide a large reconstruction error.  

To solve this problem, we proposed edge wrapping as a post-processing approach to 

eliminate these unnecessary pixels from the reconstruction error of the GAN model. 

According to Section 2.1.4.H, edge wrapping also helps to remove the false-positive 

detection results. Thus, following the experimental results, we can conclude that using 
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pre- and post-processing approaches benefit GAN in terms of the anomaly 

localization. Besides, the ROC curves show that our proposed DSTN overcomes other 

state-of-the-art methods in both frame-level anomaly detection and pixel-level 

anomaly localization, especially at the frame level. This is because it is designed 

based on only one deep network with help from the edge wrapping. 

However, our first proposed DSTN method has some limitations described as 

follows: 

i) The background removal is not robust to illumination changes, noise, 

and occlusion, especially in complex and crowded scenes; 

ii) The patch extraction is not good enough to provide a concise spatial 

object for GAN learning; 

iii) The GAN model has a problem in learning low-level features in the 

scene (see Section 2.1.4.G); 

iv) The edge wrapping does not guarantee that the false positive can be 

detected. 

Due to the limitations of DSTN, we designed new algorithms to improve the 

performance of anomaly localization. We take advantage of the pre- and post-

processing concepts from DSTN for our novel DR-STN.  

For DR-STN, we first introduce the object detector to extract the spatial objects 

in the complex and crowded scenes. This object detector helps our model in learning 

the normal patterns of the objects more precisely. Second, we integrate the residual 

units, which are proposed to enhance the low-level feature information, in cGAN, 

resulting in a good performance on the pixel accuracy and SSIM, as indicated in 

Section 2.2.4. Moreover, the objective function in our model is smoother in model 

learning than the previous work due to the use of the binary cross-entropy loss with 

logits loss in the discriminator. Finally, the online hard negative mining (OHNM) 

method is presented to remove the false-positives in the final output without retraining 

the model, making the proposed DR-STN suitable for real use. Regarding the AUC 

and EER, DR-STN outperforms DSTN in all aspects, as shown in Table 2.11. Thus, 

the proposed DR-STN can better target the correct observation of normal and 

abnormal events in the crowded scene. 

Table 2.11 AUC and EER Performance comparison between DSTN and DR-STN 

Method UCSD Ped1 

(F) 

AUC/EER 

UCSD Ped1 

(P) 

AUC/EER 

UCSD Ped2 

(F) 

AUC/EER 

UCSD Ped2 

(P) 

AUC/EER 

CUHK 

Avenue (F) 

AUC/EER 

UMN 

(F) 

AUC/EER 

DSTN  98.5%/5.2% 77.4%/27.3% 95.5%/9.4% 83.1%/21.8% 87.9%/20.2% 99.6%/- 

DR-STN  98.8%/2.9% 82.5%/21.5% 97.6%/6.9% 86.4%/16.3% 90.8%/11.0% 99.7%/- 

 Examples of the comparison between DSTN and DR-STN methods on the 

UCSD, CUHK Avenue, and UMN datasets are shown in Fig. 2.26. 
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(a) DSTN on UCSD Ped1 (b) DR-STN on UCSD Ped1 

 
(c) DSTN on UCSD Ped2 (d) DR-STN on UCSD Ped2 

 
 (e) DSTN on CUHK Avenue (f) DR-STN on CUHK Avenue 
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 (g) DSTN on CUHK Avenue (h) DR-STN on CUHK Avenue 

 
 (i) DSTN on CUHK Avenue (j) DR-STN on CUHK Avenue 

Fig. 2.26 Examples of the comparison between DSTN and DR-STN methods on 

UCSD, CUHK Avenue, and UMN datasets 

 In Fig. 2.26, we demonstrate the same scene for each dataset to compare the 

performance of each proposed method. Fig. 2.26 shows that DR-STN provides a 

fuller anomalous mask on objects than DSTN in most scenes except in Fig. 2.26 (j) on 

the UMN dataset, in which some objects are missing. This misdetection problem 

might occur due to the low resolution of the input image that causes the errors in the 

object detector. However, DR-STN still can detect this frame as an abnormal frame 

based on the neighboring objects. Moreover, DR-STN can effectively remove the 

false-positives that occur on the objects, as shown in Fig. 2.26 (a), where there is 

some false detection on the normal events (e.g., the lower part of walking pedestrian) 

represented as red and green colors. The performance of removing false-positives of 

the proposed DR-STN significantly benefits the use of anomaly detection and 

localization system in real-world cases. 

We also demonstrate the qualitative results of our proposed methods compared 

with other state-of-the-art works in the ROC curves, as shown in Fig. 2.27, consisting 
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of (a) frame-level evaluation on the UCSD Ped1, (b) a frame-level evaluation on the 

UCSD Ped2, and (c) a pixel-level evaluation on the UCSD Ped1. Our proposed DR-

STN (dark blue circle curves) outperforms all the competing methods, including the 

proposed DSTN (red star curves). The DR-STN’s curves have the highest growth on 

the TPR, meaning that the abnormal events in DR-STN are precisely detected and 

localized in both frame-level and pixel-level evaluations.  

 

 (a) frame-level evaluation on UCSD Ped1 (b) frame-level evaluation on UCSD Ped2 

 

(c) pixel-level evaluation on UCSD Ped1 

Fig. 2.27 ROC comparison on UCSD dataset 

 Model Parameters 

We show our model parameters and sizes and the AUC performance in both frame-

level and pixel-level evaluations to deliver the models’ performance and 

characteristics. The comparison of AUC and model parameters and sizes between 

DSTN and DR-STN on the UCSD dataset is shown in Table 2.12. 
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Table 2.12 Comparison of AUC and model parameters and sizes between DSTN and 

DR-STN on the UCSD dataset 

 Table 2.12 shows that DR-STN provides higher AUC in both frame-level and 

pixel-level evaluations than DSTN for the UCSD dataset. DR-STN has more 

parameters in the generator and is bigger than DSTN because we built a more 

comprehensive network (wider) to enhance the learning performance in the 

spatiotemporal translation of the generator instead of a deeper network. As the wider 

network is significantly more effective than the deeper one [20], we introduce the 

residual units inside the original GAN [17], resulting in an increasingly small number 

of total parameters but high accuracy. 

 Furthermore, we show the comparison between AUC in the frame-level and 

pixel-level evaluations and the models’ parameters on the UCSD dataset, as shown in 

Fig. 2.28 and Fig. 2.29 as follows. 

 

Fig. 2.28 Comparison of frame-level AUC and models’ parameters on UCSD dataset 

Model 
Average AUC Total parameters Size (MB) 

Frame Pixel Generator Discriminator Generator 

DSTN  97 80.25 30,631,299 6,279,620 122.6 

DR-STN  98.2 84.45 43,230,400 2,768,705 173.0 
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Fig. 2.29 Comparison of pixel-level AUC and models’ parameters on UCSD dataset 

 In Fig. 2.28 and Fig. 2.29, the proposed DR-STN is presented in a circle 

orange mark while the proposed DSTN is a blue circle mark. The size of the mark in 

the plot represents the size of the model. The bigger size means that the model has 

more parameters. Thus, Fig. 2.28 and Fig. 2.29 show that DR-STN achieves higher 

AUC in both evaluations but has more parameters than DSTN.  

 Computational Time 

To comprehensively analyze our proposed methods, we compare the computational 

time in frames per second using CPU with other state-of-the-art methods on all three 

datasets: UCSD, UMN, and CUHK Avenue. The comparison of computational time 

during testing is shown in Table 2.13. 

Table 2.13 Computational time comparison during testing (seconds per frame). 

Method 
CPU GPU Memory 

Running Time 

Ped1 Ped2 UMN Avenue 

Sparse Reconstruction  2.6GHz - 2.0GB 3.8 - 0.8 - 

Detection at 150 fps  3.4GHz - 8.0GB 0.007 - - 0.007 

MDT  3.9GHz - 2.0GB 17 23 - - 

Li et al.  2.8GHz - 2.0GB 0.65 0.80 - - 

AMDN (double fusion)  2.1GHz Nvidia Quadro K4000 32GB 5.2 - - - 

DSTN  2.8GHz - 24GB 0.315 0.319 0.318 0.334 

DR-STN  3.4GHz - 24GB 4.26 4.44 4.07 3.62 

 From Table 2.13, it shows that DSTN is faster than DR-STN for all datasets. 

The reason is that DSTN implements a small number of patches extracted from the 

scene, while DR-STN implements all individual objects in the scene. This issue refers 

to an inherent speed-accuracy tradeoff as DR-STN achieves higher accuracy than 

DSTN but requires more computational time for precisely detecting multiple objects 

in crowded scenes. 
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In particular, we also show our performance in terms of both accuracy and 

time complexity. We compare the AUC in the frame level and pixel level and the 

running time of our proposed methods with other state-of-the-art works (when 

available) on the UCSD Ped1 and Ped2 datasets, as shown in Fig. 2.30 and Fig. 2.31, 

respectively. 

 

(a) Frame-level AUC and running time comparison on UCSD Ped1 

 

(b) Pixel-level AUC and running time comparison on UCSD Ped1 

Fig. 2.30 Comparison of AUC and running time on UCSD Ped1 
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(a) Frame-level AUC and running time comparison on UCSD Ped2 

 

(b) Pixel-level AUC and running time comparison on UCSD Ped2 

Fig. 2.31 Comparison of AUC and running time on UCSD Ped2 

 In Fig. 2.30 and Fig. 2.31, we represent our proposed methods as a blue circle 

mark for DSTN and a red square mark for DR-STN. Fig. 2.30 shows that DR-STN 

outperforms other state-of-the-art works in terms of the frame-level AUC accuracy on 

the UCSD Ped1 for both frame-level and pixel-level evaluations. In the frame level, 

even DR-STN takes more time to implement than DSTN [15], Detection at 150 fps 

[29], and Li et al. [26], it can still surpass other competing works like AMDN [52] 
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and MDT [30]. Similar to the frame level, these works [15; 26; 29], and Sparse 

reconstruction [7] surpass DR-STN regarding the running time in the pixel level. 

However, DR-STN is faster than AMDN [52] and MDT [30]. Fig. 2.31 shows that 

DR-STN outperforms other competing works regarding the AUC in both frame-level 

and pixel-level evaluations, while DSTN still performs well in both AUC and running 

time aspects. 

Overall, DSTN performs the best performance for surveillance videos with 

respect to both accuracy and running time concerns as it achieves high AUC and low 

time complexity. As requiring high accuracy leads to the speed-accuracy tradeoff, 

DR-STN is also considered as one of the best approaches as it achieves the highest 

AUC for both evaluations with an acceptable time consumption for real use. 

According to our experimental results, we can conclude that both of our proposed 

methods, DSTN and DR-STN, outperform other competing methods. They all achieve 

high AUC value in both frame-level and pixel-level evaluations and providing a good 

running time for surveillance videos. 
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CHAPTER 3  

CONCLUSION 

3.1. Conclusion 

In this thesis, we propose two novel frameworks for anomaly detection in 

crowded scenes: i) unsupervised anomaly detection and localization based on deep 

spatiotemporal translation network (DSTN) and ii) deep residual spatiotemporal 

translation network for video anomaly detection and localization (DR-STN). 

The proposed DSTN framework is embedded with a deep convolution neural 

network of GAN based Edge Wrapping approach, which brings advantages to 

anomaly localization. The deep spatiotemporal translation network is designed to 

learn the appearance and motion representations using the fusion and the 

concatenation of patches for combining the learned features. Additionally, our 

proposed DSTN does not rely on any prior knowledge in order to design features for 

the input (as we use raw pixels) and does not involve low-level object analysis, such 

as object detection and tracking.  

The proposed DR-STN is embedded with a wider deep residual convolutional 

GAN (DR-cGAN) and online hard negative mining (OHNM) which benefits in 

reducing false-positive anomaly detection. The DR-cGAN is designed to translate 

appearance and motion representations by integrating the residual units, residual 

connections, and cGAN. Additionally, our DR-cGAN takes only raw pixels as the 

input from the object detector without relying on any prior knowledge of hand-crafted 

features.  

For both of our proposed methods, we conducted extensive experiments and 

compared them with other state-of-the-art methods on three publicly available 

benchmarks, including the UCSD pedestrian, UMN, and CUHK Avenue. We clearly 

show that our DSTN outperforms other state-of-the-art methods of accuracy and time 

complexity that surpass most baseline methods. Additionally, our DR-STN performs 

best regarding the accuracy, especially at the pixel level. In DR-STN, we obtain the 

highest AUC value in both frame-level and pixel-level evaluations for all datasets and 

achieve a good running time suitable for surveillance videos. To conclude, our 

proposed methods are effective and robust for anomaly event detection and 

localization in the crowded scenes for surveillance videos.  

3.2. Suggestion 

A multimodal learning model might enhance the anomaly detection and 

localization performance and reduce time consumption for future work. Moreover, 

other regular events should be observed for improving the performance and 

robustness of the model in learning normal patterns for real-world use. 
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