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The deregulation and liberalization of the energy market in the 1990s 
prompted short-term electricity trading, allowing energy markets to produce net 
output over a range of time periods as a result of this decentralized system, most 
commonly minutes to days ahead of time. The energy industry urgently requires a 
system that has undergone substantial modernization in place to handle a variety 
of issues, including the current climate, renewable resources, and the energy 
framework. In this dissertation, we investigate a deep reinforcement learning 
framework for both wholesale and local energy trading, which probes the challenge 
of RL to optimize the real-world problem in the energy exchange. First, we introduce 
the MB-A3C algorithm for day-ahead energy bidding to reduce WPP’s costs. Also, we 
have illustrated that our model can generate a strategy that obtains a more than 
15% reduction in average cost per day in Denmark and Sweden (Nord Pool dataset). 
Second, the MB-A3C3 approach is carried out and conducted on a large-scale, real-
world, hourly 2012–2013 dataset of 300 households in Sydney, Australia. When 
internal trade (trading among houses) increased and external trade (trading to the 
grid) decreased, our multiple agent RL (MB-A3C3) significantly lowered energy bills 
by 17%. In closing the gap between real-world and theoretical problems, the 
algorithms herein aid in reducing wind power production costs and customers’ 
electricity bills. 
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MARL Multi-Agent Reinforcement Learning  

MA-DRL Multi-Agent Deep Reinforcement Learning 

DER Distributed energy resources 

Dec-POMDP Decentralized partially observable Markov decision process 

CNNs Convolutional Neural Networks 

LSTM Long Short-Term Memory 

DPPO Distributed Proximal Policy Optimization 

MADDPG Multi-Agent Deep Deterministic Policy Gradient 
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A3C3 Asynchronous Advantage Actor-Critic with Communication   

Conv-A3C Convolution A3C  

A3C3-
Conv1D 

Convolutional 1-dimensional A3C3 

ToU Time-of-use 

FiT Feed-in tariff 

DTW Dynamic time warping 

MB-MADRL Model-based multi-agent deep reinforcement learning 

SGD Stochastic Gradient Descent 

ReLU Rectified Linear Unit 

Adam Adaptive Moment Estimation 

RMSE Root Mean Square Error 

MAPE Mean Absolute Percentage Error 
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CHAPTER I 

INTRODUCTION 
  

When linked to the electric utility's lower-voltage distribution lines, distributed 

generation generates energy from natural resources to assist the delivery of clean, 

reliable power to more consumers and decreases electricity losses along transmission 

and distribution lines. Energy-related commodity markets trade net produced output 

over a range of time periods as a result of this decentralized system, most commonly 

minutes to days ahead of time. Furthermore, the deregulation and liberalization of the 

energy market in the 1990s prompted short-term electricity trading. The energy 

industry urgently requires a system that has undergone substantial modernization in 

place to handle with a variety of issues, including the current climate, renewable 

resources, and the energy framework. 

Wind power is having significant impacts on the timing and location of electricity 

prices in the wholesale electricity market, competing generators offer their electricity 

output to retailers. The wind power producers (WPP) can be penalized if the plan 

deviates from the actual wind power that they can produce. Thus, it is difficult to 

manually determine and bid energy, which impacts WPP’s profit considerably. 

Algorithmic forecasting and bidding techniques are more suitable and can accomplish 

this task automatically.  

For electricity forecasting, there are some classical statistical and machine 

learning methods applied to the dataset. The statistical methods, such as Vector Auto-

Regression (VAR) and Auto-Regressive Integrated Moving Average (ARIMA), are applied 

in [1-3] for demand forecasting, but such methods have the limitation when applied 

in a large and complex dataset. Apart from power forecasting, various statistical 

methods also have been applied to electricity price forecasting with varying degrees 

of success [4-8]. Then, an Artificial Neural Network (ANN)-based application is proposed 
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to forecast a day-ahead electricity price [9-13]. [14] forecast load with Multi-Layer 

Perceptron (MLP) compared with a linear model. Recently, Recurrent Neural Networks 

(RNN) with attention mechanism was applied to forecast short-term solar irradiance 

[15] and to predict short-term wind power [16].  

Interestingly for energy bidding, it is crucial for WPP to have an automatic 

bidding strategy to maximize the profit. Deep Reinforcement Learning (DRL) is proposed 

as a bidding algorithm in [17-19] for profit optimization. Furthermore, a Deep 

Deterministic Policy Gradient (DDPG) following Markov Decision Process (MDP) with 

ANN-based model is proposed by [20]. Intending to leverage the capability of the 

algorithm, [21-24] proposed the DRL approach to maximize profit. The Asynchronous 

Advantage Actor-Critic (A3C), which agents work asynchronously [25], is introduced to 

increase the Wind Power Producer (WPP)’s profit [26] and economical dispatching [27]. 

Advantage Actor-Critic (A2C), the synchronous version of A3C, can also reduce the cost 

in power dispatch optimization [28]. 

The Model-based Reinforcement (MBRL) algorithm has shown more promising 

results in various domains since it includes Model Predictive Control (MPC). The Dyna 

architecture integrates learning, planning, and reactive execution [29]. The Model-

Based Policy Gradient (MBPG) applies MDP models to compute the policy gradient in 

closed form [30]. The modernized MBRL algorithms conducted on the MuJoCo 

benchmark are proposed in to optimize reward function. Interestingly, MBRL has never 

been applied in the wind energy bidding task [31, 32].  

Local Energy Markets (LEMs), on the other hand, enable localized energy 

exchange among community agents by integrating distributed generation, microgrid, 

and smart grid into a single electricity market at the distribution side [33, 34]. Since the 

millennium's turn, academic research has focused on the LEM concept to aid Europe's 

energy transition such as peer-to-peer energy trading in local energy communities [35]. 

The integration of distributed generation such as microgrids, smart grids, multi-energy 

systems, and virtual power plants are developing, as are new ideas called MAS (Multi-
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Agent Systems), which is a collection of autonomous, interacting creatures that share 

a common environment. They are transforming our electrical power infrastructure into 

a more decentralized, highly efficient energy management system [36]. While DRL is 

applied for peer-to-peer Energy Trading among Microgrids [37], it also extends to multi-

agents for MARL in [22, 38-41]. Interestingly, MARL is enhanced by an A3C framework 

with an internal communication mechanism to optimize the reward for the 

convergence of the algorithm [42-46]. Mean-field theory is applied in MARL to simplify 

the information for each agent [47-52]but hasn’t been applied in the energy trading 

field yet [47-52].  

In this dissertation, we proposed a deep reinforcement learning framework for 

both wholesale and retail energy trading which probes the challenge of RL to optimize 

the real-world problem in the energy sector. The MB-A3C, which is a Single-Agent 

Reinforcement Learning (SARL) is proposed for wholesale and extended to Multi-Agent 

Deep Reinforcement Learning (MA-DRL) for the retails. 

First, we introduce the MB-A3C algorithm for day-ahead energy bidding to 

reduce WPP’s cost when participating in the wholesale electricity market. The 

proposed algorithm can handle both the inaccuracy of wind energy forecasting and 

the dynamic activation of regulation prices. Intensively, experiments were conducted 

based on the Nord Pool datasets. Our model was compared to four DRL algorithms: 

Conv-A3C, DDPO, DDPG, and MBPG with five scenarios of wind power production. Also, 

we have illustrated that our model can generate a strategy that obtains an average 

cost per day compared to the best scenario generated with an assumption of knowing 

actual information.  

Second, the extended version of SARL: MA-DRL is proposed to trade energy in 

the local energy market which composes of more than one individual prosumers. Each 

prosumer, an autonomous agent, determines and submits their bids whether to buy 

or sell energy in each period with the optimized policy model which is trained and 

optimized through a reinforcement learning approach. When participating in the trading 
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market, these agents also have to share their information with other agents to improve 

the system’s performance as MARL concept.  

 

1.1. Objectives 
1. To propose a deep reinforcement learning architecture for energy trading 

paradigms that maximizes agent’s revenue during participating in the energy 
market on two market scales: wholesale and retail energy markets. 

2. To evaluate the performance of the proposed deep reinforcement learning for 
energy trading on two market scales: wholesale and retail energy markets. 
 

1.2. The Scope of Work 
1. Evaluate the proposed deep reinforcement learning along with the following. 

a. Experiment on public datasets, which consider as a real-world challenge 
in RL. 

b. Experiment with the wholesale and retail energy market. 
c. Compare proposed with baseline algorithms. 
d. Propose Single-Agent Reinforcement Learning (SARL) algorithm on the 

wholesale energy market and Multi-Agent Reinforcement Learning 
(MARL) algorithm on the retail energy market. 

2. Evaluate the proposed deep reinforcement learning on three methods based 
on many aspects of RL and baseline methods. 

a. Forecasting accuracy evaluation on deep learning approach 
b. Convergence of deep reinforcement learning policy model 
c. Reward optimization 

 

1.3. Research Funding 
    This research project is supported by Second Century Fund (C2F), Chulalongkorn 
University. 
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CHAPTER II 

BACKGROUND 
 

In this chapter, the background knowledge related to the dissertation is 

presented. The algorithm, problem formulation, data description, experimental 

scenario, and evaluation of two scale markets is explained.  

Involving in the liberalized energy market, parties must cooperate while also 

trying to earn a profit. The list of the most significant players in the energy market is 

depicted in Table 1. 

Table  1. The important players in energy market. 
Player Function Function in the unbundled European 

energy system (long) 

Producer Generates electricity Generates electricity in a power plant, 

which could be a nuclear, coal-fired, or 

STAG plant, an offshore wind park, or a 

combined heat and power plant (CHP) 

etc. If the plant can be managed flexibly, 

the producer may be able to provide 

ancillary services to the grid operator. 

Consumer Consumes electricity Consumes electricity to drive industrial 

operations, domestic appliances, lighting, 

and heating, among other things. 

Prosumer Consumes and produces 

electricity 

When own output is insufficient, it uses 

power from the grid, and when own 

production exceeds own use, it puts 

electricity on the grid. 
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Player Function Function in the unbundled European 

energy system (long) 

Transmission 

system operator 

(TSO) 

Transmits electricity to the 

high-voltage grid 

Long-distance transmission of energy 

produced at large facilities. To reduce line 

losses, high voltages of up to 400kV are 

employed. The TSO is ultimately 

responsible for ensuring that demand and 

supply are in balance at all times. 

Distribution system 

operator (DSO) 

Distributes electricity to the 

low-voltage grid 

Distributes electricity to end customer at 

voltages ranging from 400V to 70kV. 

Energy supplier Supply the electricity to 

households and small 

businesses 

The DSO no longer sells energy to the 

end-user following the unbundling. 

Customers have the option of selecting a 

preferred provider (depending on the 

tariffs and services offered). 

Balancing 

responsible party 

(BRP) 

Maintains a balance of 

electricity injection and 

intake at its access point. 

The BRP is required to make balanced 

nominations to the grid operator based 

on client consumption and/or production 

information and forecasting. A BRP is 

mandatory for every party injecting or 

taking data from the grid. 

Regulator Ensures that the free market 

is a level playing field. 

Because the transmission and distribution 

grids are operated as natural monopolies, 

an independent party is required to 

ensure that the TSO and DSO do not 

exploit their market position. They also 

monitor producers and consumers to 

ensure that (large) players do not try to 

manipulate pricing. 
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Player Function Function in the unbundled European 

energy system (long) 

Power Exchange Platform for exchanging 

energy 

Energy trading takes place on power 

exchanges, which are anonymous and 

transparent. Market players submit 

demand or supply bids using a 

multilateral trading platform. Every 

period, the market operator will aggregate 

all demand and supply bids and clear the 

market. The products available on the 

power exchanges are conventional 

products with sufficient demand to 

assure liquidity and a reasonable price. 

Aggregator Provides grid operators with 

balancing services as well as 

decentralized units with 

access to energy markets. 

In a single portfolio, an aggregator 

connects together multiple decentralized 

production and consuming units. He 

coordinates the operation of the pool of 

units and provides balancing services to 

the TSO or DSO, much as large plants 

have for decades. In addition, all relevant 

marketplaces exchange the energy of the 

decentralized units. 

 

In a traditional energy grid, generated electricity from generators is transmitted 

to consumers via transmission and distribution networks in a centralised power 

generation system. Power is generated by a few large-scale generation units and 

distributed to a variety of residential, commercial, and industrial consumers under the 

centralised generation system. By increasing the level of DER integration on the 

consumer side, a distributed power generation is forming, in which a large number of 

small-scale generation units with capacities ranging from a few kilowatts to a few 
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megawatts are connected to the distribution grid, resulting in bidirectional power flows. 

The growing utilisation distributed energy resources (DER) has shifted the electrical 

system from a centralized to a decentralized paradigm. The structure of a centralised 

and distributed generation system is depicted in Figure 1 which the connection 

between two scales energy market is indicated. The retail market may consider grid or 

network energy threshold or energy price from the wholesale market’s bidding result. 

 

 

 

Figure  1. The centralized (left) and decentralized (right) power generation system 
[53]. 

 

2.1. Day-Ahead (Spot) Market 
The day-ahead market (spot market) quotes market prices hourly based on 

purchase and sales bids. Considered as the main trading power arena, the day-ahead 

market is designed for the 24-hour delivery of electricity in real-time before the day of 

operation in the wholesale market to avoid price volatility: futures contracts, on the 

other hand, are exchanged for delivery at a specific time in the future. The spot market 

for Nord Pool (Elspot)’s process begins with the manufacturers and consumers sending 
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their tenders to the market 12 to 36 hours (mostly 24) before delivery, indicating the 

requested quantity and the corresponding amount of electricity.  

The marketplaces in the Nordic power market shown in Figure 2 following with 

the resolution of bidding timestamp. The financial markets provide stability to the 

business. The day-ahead market (spot market) quotes market prices hourly on the 

basis of purchase and sales bids. Intraday market creates physical balance. The day-

ahead market, the main trading power arena, is designed for the 24-hour delivery of 

electricity in real-time before the day of operation in the wholesale market to avoid 

price volatility. The prices and amounts in spot market are based on supply and 

demand. 

 

 

Figure  2. The marketplaces in the Nordic power market. 
 

The spot market for Nord Pool (Elspot) is a day-ahead market (Figure 3) in which 

the power price is decided by supply and demand. Where bidding closes at noon for 

deliveries from midnight and 24 hours in advance, the outcome of prices and the total 

sums exchanged are released.  
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(a) The process of trading electricity on the market modified from [54]. 
 

 

(b) The timeline of day-ahead market. 
 

Figure  3. The timeline of day-ahead market. 
 

The process begins with the manufacturers and consumers sending their 

tenders to the market 12 to 36 hours before delivery, indicating the quantity of 

electricity supplied or requested and the corresponding amount. The price which 

clears the market (balancing supply with demand) for each hour was then calculated 

by the Nord Pool power exchange. 

Principally, all power producers and consumers are able to trade at the 

exchange, but in fact, only major consumers such as distribution and trading companies 

   

 
8:00-12:00 

 Buyers and sellers enter their bids and offers into the 
trading system. 

 
Before 10:00 

 Power transmission capacities are provided by the 
system operators to each bidding area in the market. 

 
Before 12:00 

 Buyers plan how much power will they need. 

 Sellers determine how much power they can provide. 

 
13:00 

 Prices and volumes published by Nord Pool. 

 
15:00 

 Operational schedule sends to regulator. 

 Trades are invoiced between buyers and seller. 
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or large industries and generators perform on the market while minor companies form 

trading cooperatives: the case for wind turbines or engage with larger traders to 

perform on their behalf. The Nordic countries is traded on the spot market 45% of 

total electricity production approximately. The remaining share is sold by bilateral, 

long-term contracts, but the spot price has a significant effect on the rates agreed on 

in those contracts. The proportion sold on the spot market is as high as 80% in 

Denmark.  

 

2.1.1. Single-Agent Reinforcement Learning (SARL) 
The single agent reinforcement learning framework is based on the model 

shown in Figure 4, in which an agent interacts with the environment by choosing 

actions to take and then perceiving the effects of those actions, as well as a new state 

and a reward signal indicating whether it has achieved some goal (or has been 

penalized, if the reward is negative). The agent's goal is to maximize some metric over 

the rewards, such as the sum of all payouts following a series of acts. The framework 

of Markov decision processes, upon which the solutions for the reinforcement learning 

issue are formed, can be used to describe this general idea. 

 

Figure  4. The traditional reinforcement learning method. 
 

In the RL algorithm, the Markov Decision Process (MDP) concept is defined that 

the environment state focuses only on the current state and the results are partially 

random under the control of the decision-maker.  
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Markov Decision Processes [55-59] are, in fact, the foundation for much of the 

research on agent control. They can be defined as a tuple (𝑆, 𝐴, 𝑇, 𝑅) where:  

●  𝐴 is an action set.  
●  𝑆 is a state space.  
●  𝑇 ∶ 𝑆 × 𝐴 × 𝑆_ → [0,1] is a transition function defined as a probability 

distribution over the states. 
●  𝑅 ∶ 𝑆 × 𝐴 × 𝑆_ → 𝑅 is a reward function representing the expected value of 

the next reward, given the current state 𝑆 and action 𝐴 and the next state. 
 

These four parts must be defined differently for various problems solved by 

RL. The notion behind MDPs is that the agent performs some action 𝐴  on the 

environment in state s and then waits for the environment's response in the form of 

state 𝑆′ and a real number reflecting the immediate reward the agent receives for 

performing an in 𝑆. 

 

2.1.2. Problem Formulation 
This phase’s experiment considers the situation in which WPP participates in 

the reserve market. They have to plan some reserve energy to compensate for the 

deviation from the volume committed when the up-regulation price is activated as 

described in Figure 5.  

 

Figure  5. The energy and reserve market concept for wind power participation [60]. 
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The revenue of WPP (𝜋𝑡 ) consists of the income from the sale of energy with 

the regulation cost (𝜋𝑡
𝑅 ), and the expense of purchasing and deploying reserve capacity 

(𝑐𝑅,𝑡 ) as it invests in both the energy and reserve markets. In this paper, we have 

followed all profit and circumstance setups from [26]. Eq. (1) shows the profit formula, 

which is then simplified into Eq. (2) to inspect which term needs to be optimized as a 

reward function.  

𝜋𝑡 = 𝜋𝑡
𝑅 + 𝑐𝑅,𝑡 

= 𝑝𝐷𝐴,𝑡𝐸𝑎,𝑡 − 𝜂𝑢𝑝,𝑡𝑅𝑢𝑝,𝑡  +

 {

𝛥𝑝𝑢𝑝,𝑡(𝐸𝑎,𝑡 − 𝐸𝑏𝑖𝑑,𝑡 + 𝑅𝑢𝑝,𝑡) − 𝜇𝑢𝑝,𝑡𝑅𝑢𝑝,𝑡 , 𝑖𝑓 𝐸𝑎,𝑡 ≤ 𝐸𝑏𝑖𝑑,𝑡−𝑅𝑢𝑝,𝑡

−𝜇𝑢𝑝,𝑡(𝐸𝑏𝑖𝑑,𝑡 − 𝐸𝑎,𝑡),      𝑖𝑓 𝐸𝑏𝑖𝑑,𝑡 − 𝑅𝑢𝑝,𝑡 ≤ 𝐸𝑎,𝑡 ≤ 𝐸𝑏𝑖𝑑,𝑡

𝛥𝑝𝑑𝑜𝑤𝑛,𝑡(𝐸𝑎,𝑡 − 𝐸𝑏𝑖𝑑,𝑡),                        𝑖𝑓 𝐸𝑎,𝑡 ≥ 𝐸𝑏𝑖𝑑,𝑡

    (1) 

 

𝜋𝑡 = 𝑝𝐷𝐴,𝑡𝐸𝑎,𝑡 + 𝑐𝑡
𝑆       (2) 

where 𝑝𝐷𝐴,𝑡 is the price of wind energy sold, 𝐸𝑎,𝑡 is the averaged generated 

energy during interval 𝑡, and 𝐸𝑏𝑖𝑑,𝑡 is the committed volume of WPP at time interval 𝑡. 

𝜂𝑢𝑝,𝑡𝑅𝑢𝑝,𝑡 is the cost of the purchase reserve with the up-reserve volume of 𝑅𝑢𝑝,𝑡 and 

the price of the reserve capacity of 𝜂𝑢𝑝,𝑡 by the WPP to deal with the situation where 

the up-regulation price is activated and wind energy generated is less than the 

committed value. 𝛥𝑝𝑢𝑝,𝑡  =  𝑝𝑢𝑝,𝑡  − 𝑝𝑠𝑝𝑜𝑡,𝑡  and 𝛥𝑝𝑑𝑜𝑤𝑛,𝑡  =  𝛥𝑝𝑑𝑜𝑤𝑛,𝑡  −  𝑝𝑠𝑝𝑜𝑡,𝑡 are the 

up and down regulation price deviations from the spot price, respectively. 𝜇𝑢𝑝,𝑡 is the 

price of the reserve energy dispatched in real-time.  

 

This dissertation aims to increase the revenues of WPP through strategic bidding 

on the energy and reserve markets. Within Eq. (1), 𝑝𝐷𝐴,𝑡𝐸𝑎,𝑡 is the real-time revenue 

from wind energy produced. Maximizing the benefit thus implies maximizing the 
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second term 𝑐𝑡
𝑆 since the amount committed does not have any impact on the first 

term. The objective function shall be formulated in Eq. (3).  

 

𝑚𝑎𝑥(𝐹) = 𝑚𝑎𝑥 ∑ 𝑐𝑡
𝑆𝑇

𝑡=1       (3) 

 

We assume that the WPP’s intra-day activities are not included in the spot 

market bidding model. Therefore, the effect of a single WPP’s bidding strategy is not 

considered. WPP is assumed as a price-taker who has to accept prevailing market prices 

and lacks market share to influence market prices on its own [26].  

In the RL algorithm, the Markov Decision Process (MDP) concept is defined that 

the environment state focuses only on the current state and the results are partially 

random under the control of the decision-maker. There are four parts including the 

state space, the action space, the transition function, and the reward function. They 

must be defined differently for various problems solved by RL [61]. We defined the 

state, action, and reward function for wind energy bidding following [26] in Eqs. (4), (5), 

and (6). The transition function is not defined since it does not necessitate in the time 

series data.  

𝑆𝑡 = (𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡 , 𝐸𝑏𝑖𝑑,𝑡−1)     (4) 

where 𝑆𝑡 is the state at time step 𝑡. 𝐸𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡,𝑡 is the wind energy forecasting 

value at time step 𝑡 and 𝐸𝑏𝑖𝑑,𝑡 is the previous committed value. 

 

𝐴𝑡 = (∆𝐸𝑏𝑖𝑑,𝑡 , 𝑅𝑢𝑝,𝑡)      (5) 

where 𝐴𝑡 is the action at time step 𝑡. 𝛥𝐸𝑏𝑖𝑑,𝑡  =  𝐸𝑏𝑖𝑑,𝑡 − 𝐸𝑏𝑖𝑑,𝑡−1 represents the 

increments of the committed value at time step 𝑡 related to the value at time step 

(𝑡 − 1).  
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𝑅𝑡 = 𝑐𝑡
𝑆      (6) 

 where 𝑅𝑡  is the immediate reward, the agent obtains when the action is 

executed according to 𝑆𝑡.  

With the MDP at each step, the agent performs an action according to the 

current state, obtains an immediate 𝑟(𝑆𝑡 , 𝐴𝑡)  reward, and then transfers an 

environment to a new state. The total reward (𝑅𝑡)  for one episode of MDP 

corresponds to one bidding day with a discounted cumulative reward that can be 

written in Eq. (7).  

𝑅𝑡 = 𝑟(𝑠𝑡, 𝑎𝑡) + 𝛾𝑟(𝑠2, 𝑎2) + ⋯ + 𝛾𝑇−𝑡𝑟(𝑠𝑇 , 𝑎𝑇)   (7) 

where 𝛾 ∈ [0,1]  is a discount factor that is introduced to represent 

environmental uncertainty and 𝑇 is an episode that corresponds to 24 hours according 

to the hourly resolution of the datasets [62]. 

 

2.2. Peer-to-peer energy trading 
The development of decentralized energy resources has revolutionized energy 

distribution systems in recent decades. Simultaneously, the way energy is generated 

and consumed is radically changing, and conventional energy consumers are 

increasingly becoming prosumers. A Local Energy Market, which trading’s market 

structure is shown in Figure 6, is a term used to describe efforts to create a marketplace 

to coordinate the generation, supply, storage, transportation, and consumption of 

energy from decentralized energy resources (such as renewable energy generators, 

storage, and demand-side response providers) within a defined geographic area.  
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Figure  6. The market structure with local energy trading [63]. 
 

The transition to increasingly decentralized, distributed generation assets 

challenges existing governance, regulatory, and economic institutions to the test. Local 

Energy Markets (LEMs) are emerging as one solution to the issue of coordinating this 

increasingly complex system in the UK and elsewhere in Europe. In the UK, LEM designs 

are still in the early stages of development, with a wide range of design and 

functionality. The value, costs, and benefits of various market arrangements have yet 

to be thoroughly tested and analyzed, but continuing improvements to network 

charges, market settlement, and retail supply will have an impact on LEM 

implementation and success. 

Prosumer power generation is inconsistent and difficult to forecast, as it is 

severely affected by the solar radiation and temperature (which is constantly changing). 

There are numerous solutions available to prosumers that have a surplus of electrical 

energy. The energy can be stored for later use in a storage device, exported to the 
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electrical grid, or sold to other energy consumers. P2P energy trading refers to direct 

energy transfer between consumers and prosumers as illustrated in Figure 7.  

 

Figure  7. The model of peer-to-peer energy trading [64]. 
 

In the traditional market paradigm, producers and consumers interact with 

merchants according to their net consumption. However, peer-to-peer trading calls for 

the employment of cutting-edge technology and business structures with market rules 

that control the P2P paradigm [65]. Producers share their production and consumption 

in local exchanges prior to trading with retailers at an internal price that is often set 

between export and retail prices. A subgroup of producers who do not own any local 

power operations can be thought of as consumers. As a result of the stochastic nature 

of renewable energy sources like solar photovoltaic (PV) power, producers and 

consumers must make difficult quota decisions. Since every player's plan is updated 

in real time, selecting a decent trade strategy might be difficult. 

2.2.1. The double auction market mechanism 
Many consumers and producers involved in the energy industry are connected 

through the double auction (DA) market [66, 67]. The auction term in the electrical 

market is fixed at a predetermined period of time, i.e., an hourly resolution [68]. 

Following are the steps: 
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1. Whenever an auction session starts, traders broadcast their instructions to the 

market. Directives involve an energy quantity and a trade price. 

2. Sale orders and purchase orders must correspond. The orders are matched by 

an algorithm. 

3. The auctioneer applies the traditional mid-price strategy to calculate the 

market clearing price when two orders are matched. The minimum amount 

between the matched orders determines the transaction quantity. 

For matching price determination, the mid-price on the financial markets is the 

difference between the best price offered by sellers of stocks or commodities and the 

best price offered by purchasers of stocks or commodities. It can be merely described 

as the average of the ask price and the bid price. This method was also utilized in P2P 

energy trading [69]. The auctioneer balances the remaining energy and unmatched 

orders with the utility provider at grid pricing for time-of-use (ToU) and feed-in tariff 

(FiT) at the conclusion of the auction. FiT and ToU impose restrictions on all merchants' 

pricing plans in order to ensure economic gains. The costs of offers and bids always 

remain within the range of the grid prices. The clearing price is centered on the buy-

sell gap [70]. 

 

2.2.2. Multi-Agent Reinforcement Learning (MARL) 
 A framework for examining the sequential decision-making issues that agents 

(producers and consumers) confront is called MARL [71]. Smart grid applications, such 

as P2P energy trading in the DA market, can also utilize MARL [72]. The multi-agent 

architecture is based on the same concept as Figure 8, but there are multiple agents 

deciding on actions over the environment this time. The major distinction is that each 

actor is likely to have an impact on the environment, and so actions can have varied 

outcomes depending on what the other agents are doing. Generally, MARL is the 

learning problem in a multi-agent system, where numerous agents are learning at the 

same time.  
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Figure  8. The MARL diagram [40]. 
 

The stochastic game is a multi-agent version of the Markov decision process. 

Game theory, which is meant to solve multi-agent situations and in which the solutions 

include compromises and collaboration, has been used to simulate such a domain. 

While it has a different name, it is very similar to an MDP. All actors' states merge into 

a single state, with distinct rewards corresponding to each potential combined action. 

Transition functions work similarly to single-agent transition functions, substituting 

states and actions as needed. 

However, in MARL, we have numerous agents. In MARL, the term "state" refers 

to the combined state of all agents. As a result, state transitions become reliant on 

the combined activities of all agents, i.e. on how all of them act, rather than just one. 

To demonstrate the concept of non-stationary transitions, imagine the agent has some 

coworkers with whom he wants to collaborate. The size of the state and action spaces 

grows exponentially as the number of agents grows. Due to problems like the curse of 

dimensionality, this might make learning difficult. The difficulty can get too huge at 

times, causing convergence to take too long. It makes intuitive sense. The more options 

our policy has to make for our agents, the longer it will take them to figure out how 

to make good ones. 
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2.2.3. Problem Formulation 
The MDP principle in RL implies that the state of the environment is primarily 

concerned with the current state, and that outputs are partially random and under 

the control of the decision-maker. The state-space, action space, transition function, 

and reward function are the four components of MDP. For the various problems 

treated by RL, all states must be defined differently. The above-mentioned DA market 

clearing procedures are a model for multi-agent decision-making, defined as a 

decentralized, partially observable Markov decision process (Dec-POMDP) with discrete 

time steps [54]. N agents include a set of global state S, a collection of private 

observations O, a collection of action sets A, a collection of reward functions R, and a 

state transition function T. One auction period (t = 1h) is the time span between two 

sequential stages. Each agent n selects an action (𝑎𝑛,𝑡) based on its policy and private 

observation (𝑜𝑛,𝑡)  at time step t. In Eqs. (1), (2), and (3), the state space, action space, 

and reward function for the trading of solar energy are expressed [36]. The transition 

function is not defined since it is not needed in the time series data:  

 

𝑠𝑛,𝑡 =  [𝑃𝑛,𝑡
𝑖𝑛𝑓

, 𝐸𝑛,𝑡
𝑒𝑠 , 𝜆𝑡

𝑏 , 𝜆𝑡
𝑠, 𝑞𝑎𝑐𝑡𝑢𝑎𝑙𝑛,𝑡−1

𝑑𝑎 , 𝑞𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑛,𝑡

𝑑𝑎 , 𝜆𝑎𝑐𝑡𝑢𝑎𝑙𝑛,𝑡−1

𝑖 , 𝜆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑛,𝑡

𝑖  ]     (10) 

where 𝑠𝑛,𝑡  is the state of agent 𝑛  at time step 𝑡 . 𝑃𝑛,𝑡
𝑖𝑛𝑓  and 𝐸𝑛,𝑡

𝑒𝑠  are the 

inflexible load information and ES battery energy content at time step 𝑡. 𝜆𝑡
𝑏 and 𝜆𝑡

𝑠 are 

the grid information of ToU and FiT at time step 𝑡. 𝑞𝑎𝑐𝑡𝑢𝑎𝑙𝑛,𝑡−1

𝑑𝑎  and 𝜆𝑎𝑐𝑡𝑢𝑎𝑙𝑛,𝑡−1

𝑖  are the 

previous trading quantity and price at time step 𝑡 − 1. 𝑞𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑛,𝑡

𝑑𝑎  and 𝜆𝑓𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑛,𝑡

𝑖  are 

the forecast trading quantity and price at time step 𝑡. 

 

𝑎𝑛,𝑡 = [𝑎𝑛,𝑡
𝑞 , 𝑎𝑛,𝑡

𝑝 ]     (11) 

where 𝑎𝑛,𝑡 is the action of agent n at time step t. 𝑎𝑛,𝑡
𝑞  and 𝑎𝑛,𝑡

𝑝  represent the energy 

and price decision submitted to DA market at time step 𝑡. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 24 

𝑟𝑛,𝑡 =  −(𝜆𝑛,𝑡𝑞𝑛,𝑡
𝑑𝑎∆𝑡 +  𝜆𝑡

𝑏[𝑞𝑛,𝑡
𝑔𝑟𝑖𝑑

]
+

∆𝑡 +  𝜆𝑡
𝑠[𝑞𝑛,𝑡

𝑔𝑟𝑖𝑑
]

−
∆𝑡)  (12) 

where 𝑟𝑛,𝑡 is the immediate reward the agent 𝑛 at time step 𝑡 obtains when 

the action is executed according to 𝑠𝑛,𝑡.  

At step t, agent n receives its reward 𝑟𝑛,𝑡 in the form of a negative cost of energy 

bill, resulting from DA market clearing results. The agents who are successfully cleared 

in the DA market will get the local price 𝜆𝑛,𝑡 and the cleared quantity 𝑞𝑛,𝑡
𝑑𝑎 , after which 

each agent n can calculate its n,t corresponding cost in the DA market; the remaining 

unmatched quantity 𝑞𝑛,𝑡
𝑔𝑟𝑖𝑑 will be bought or sold through the utility company at ToU 

𝜆𝑡
𝑏 or FiT 𝜆𝑡

𝑠. The agents’ quantity 𝑞𝑛,𝑡
𝑔𝑟𝑖𝑑

=  𝑞𝑛,𝑡
𝑑𝑎 will be immediately exchanged at ToU 

or FiT if they are unable to be cleared in the DA market.  

As market’s equation expressed in Eq. (13), households trade their energy to 

others in competitive cooperative manner to maximize the profit: minimize energy 

bills.  

𝑅𝑡 =  ∑ −(𝜆𝑖,𝑡𝑞𝑖,𝑡
𝑑𝑎∆𝑡 + 𝜆𝑡

𝑏[𝑞𝑖,𝑡
𝑔𝑟𝑖𝑑

]
+

∆𝑡 +  𝜆𝑡
𝑠[𝑞𝑖,𝑡

𝑔𝑟𝑖𝑑
]

−
∆𝑡)𝑛

𝑖=1   (13) 

where 𝑅𝑡 is the reward of every agent (community’s reward) from 1 to 𝑛 at 

time step 𝑡 obtains when all agents’ action is executed according to their state. 

2.3 Energy trading in Thailand 
Thailand's main stock exchange announced an agreement with the state-

owned Electricity Generating Authority of Thailand (EGAT) to develop an energy trading 

platform as part of a plan to become Southeast Asia's electricity trading centre. The 

agreement was reached during the Association of Southeast Asian Nations' (ASEAN) 

energy ministers' session in Bangkok this week. ASEAN has long sought to construct a 

regional electricity grid to support member members where demand outstrips supply. 

The Thai Stock Exchange and EGAT will investigate into alternatives for ASEAN 

members to develop "a wholesale electricity market." As part of a power integration 

initiative, Thailand, Laos, and Malaysia have already committed to making around 300 

megawatts of electricity capacity accessible for trading. Power trade for up to three to 
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five years ahead would be possible on the planned Thai platform, as well as daily 

energy trading. Thailand utilizes an advanced single-buyer model, with EGAT serving as 

both a supplier and a buyer of electricity. As a result, on April 30, 2018, Thailand's 

Power Development Plan (PDP) was changed to incorporate three important aspects: 

(1) Demand Response (DR) and Energy Management Systems (EMS); (2) Renewable 

Energy Forecasting; (3) Micro-Grid and Energy Storage Systems (ESS). Following the PDP 

2018, the Alternative Energy Development Plan (AEDP 2018) was updated to keep RE 

at 30% of total final energy consumption. Governments have consistently encouraged 

RE from solar by launching incentive programs to entice solar producers to join the 

program and sell their products through the distribution network. To provide permits, 

the Energy Regulatory Commission (ERC) created the self-consumption program for 

residential PV rooftops. 

Despite several limitations, some small prosumers who would like to sell their 

PV production must join in the incentive scheme. Because Thailand's power market is 

governed by the Enhanced Single Buyer model, small producers are unable to sell 

their energy to anyone except the authorized utility company. Furthermore, they are 

unable to sell surplus power generation more than the Power Purchasing Agreement's 

power capacity (PPA). As a result, if their PV rooftop systems produce more power than 

the contract capacity, they will forfeit the extra production without compensation. As 

a result, many rooftop owners choose to install on-grid PV systems rather than 

participate in the government's incentive program. 

2.3.1 Current algorithms 
The National Control Center (NCC) requires supported information from a variety 

of sources for electricity generation planning. Short-term forecasting is done by 

applying linear regression to historical data. Specific application utilized Artificial Neural 

Network (ANN) also applied to forecast demand and price in short term for renewable 

energy project. Nonetheless, data and techniques are critical for leveraging system 

performance and supporting decision making. 
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2.3.2. Market rules 
The retail energy market is not yet available in Thailand, only sandbox project 

experimented. The market rule and limitation should be further considered are the 
supportive policies encouraging decentralization of power systems and better 
utilization of existing grid infrastructure and local distributed energy generators 
allowance to sell their electricity at the desired price to consumers willing to pay that 
price. Moreover, the compatibility of the system platform with the real market: block 
chain, smart meter, participants' behavior, game theory and constraints, Thailand 
governors, policy makers e.g., taxation and legal rights are the gaps that need further 
actions. 

 

2.3.3. Effect of energy trading to main grid 
Peer-to-peer (P2P) trading systems-based local electricity markets have evolved as 

a creative mechanism to sell electricity from prosumer to consumer, to effectively and 
highly value local flexibility, and to assist grid management. The local market results 
in total cost reductions for the consumer and provides the framework for creating price 
plans (such as loss management strategies) that are specific to DSO operations. 

Depending on the local environment, these LEMs may use solar, wind, or other 
sources. LEM-based renewable energy system for off-grid electrification in 
underdeveloped nations. They also looked at LEM usage in rural areas. 

New methods to enhance the overall efficiency of energy management and 
distribution have been made possible by renewable energy and its trade. For instance, 
cutting-edge forecasting algorithms can forecast the output of renewable energy 
sources (solar and wind). The stability of the power distribution system can be achieved 
by accurately anticipating the output of solar and wind energy. Another illustration is 
the large-scale integration of renewable energy without causing grid congestion, which 
is made possible by virtual power line storage systems at both the supply and demand 
sides. Dynamic line ratings are also now utilized to lessen congestion on electricity 
lines. 
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CHAPTER III 

RELATED WORKS 
 

In this chapter, the related algorithms related to the dissertation are presented. 

Deep learning, which has dominant performance on complex data, plays two essential 

roles in the RL framework: to forecast stage’s inputs (Attention-LSTM) and to optimize 

for the best policy (CNN and LSTM). The SARL algorithms: A3C, DPPO, DDPG, and MBPG, 

and MARL are also depicted, respectively. 

 

3.1. Deep Learning 
Deep Learning is a machine learning discipline that allows machines to learn 

from experience and comprehend the world in terms of a hierarchy of concepts, with 

each idea described in terms of its relationship to simpler notions. It has been 

increasingly valuable in recent years as the amount of data available has grown, and 

it may be used in a variety of disciplines, including image segmentation, object 

detection, video classification, speech recognition, reinforcement learning, robotics, 

and so on. As a result, they've sparked a lot of research interest in recent years, and 

they've achieved state-of-the-art results in a variety of domains, including sentiment 

classification. It can be divided current state-of-the-art deep learning algorithms for 

opinion mining into two groups: CNN and RNN [73].  

 

 3.1.1. Convolutional Neural Networks (CNNs) 
CNNs are multilayer neural networks that consist of one or more convolutional 

layers, generally with a subsampling step, followed by one or more fully connected 

layers. Besides, CNNS, which is also applied to one-dimension data [74], is suitable for 

multiple time-series inputs (wind power and wind bidding) since it considers all series 
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with multiple time steps altogether. Generally, the 1D-CNN architecture for time-series 

data, for example in Figure 9, consists of convolutional, pooling, fully connected layers. 

Also, the CNN network permits the volume and complexity of time series data for the 

deep learning concept.  

 

Figure  9. The example of 1D-CNN architecture for time series data [10]. 
 

 3.1.2. Recurrent Neural Network (RNN) 
Recurrent neural network (RNN) makes connections between nodes to form a 

directed graph along a sequence, which allows to exhibit dynamic temporal behavior 

for a time sequence. Unlike feedforward neural networks, RNN can use the internal 

state or memory to process sequences of inputs, which makes them applicable to 

tasks such as speech recognition.  

A special form of RNN capable of long-term dependencies learning: LSTM. The 

Attention-LSTM only focuses on the previous hour of the input sequence but the 24 

hours context. While the traditional LSTM networks use only the last hidden state as 

output, the Attention-LSTM (Figure 10) multiplies output hidden states by trainable 

weights [75]. As a consequence, they can capture more discriminatory task-related 

features by calculating all inputs together.  
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Figure  10. The Attention-LSTM diagram [76]. 
 

3.2. Single-Agent Reinforcement Learning (SARL) 
As the complexity of the domain increases, it is difficult to control energy flows 

by using existing technologies based on physical models. Besides, data-driven models, 

such as RL algorithms have found widespread applications in many sectors [77]. RL 

algorithm is categorized into two sets: MBRL tries to understand the world and create 

a model to represent it, while MFRL learns policy or value function directly as shown 

in Figure 11.  

 

Figure  11. The difference between MBRL and MFRL. 
 

Several methods, such as deep learning, multi-threaded, and supervised 

model-based, are combined with RL to increase the performance conducted in many 

areas of research including energy systems [77]. Both MFRL and MBRL algorithms are 
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introduced to solve issues in energy fields like A3C, DPPO, and DDPG which are MFRL 

methods, and MBPG that model the environment with policy gradient search.  

One of the simplest forms of single-agent reinforcement learning problems is 

the multi-armed bandit problem, where players try to earn money (maximizing reward) 

by selecting an arm (an action) to play (interact with the environment). This is an 

oversimplified model, where the situation before and after each turn is the same. In 

most scenarios, you may face different conditions and take multiple actions in a row 

to complete one turn. This introduces the discrimination between states and their 

transitions [78]. As is common in RL, these probabilities are updated based on feedback 

received from the environment. While initial studies focused mainly on a single 

automaton in n-armed bandit settings, RL algorithms using multiple automata were 

developed to learn policies in MDPs [79]. 

 

 3.2.1. Asynchronous Advantage Actor-Critic (A3C) 
Asynchronous Advantage Actor-Critic (A3C) is essentially asynchronous parallel 

training, in which several workers in parallel settings update a global value function 

separately (Figure 12). Exploration of the state space is made more effective and 

efficient using asynchronous actors.  

 

Figure  12. A3C diagram [80]. 
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Being applied in energy strategic bidding to maximize WPP’s revenue in [26], 

A3C maintains the policy 𝜋(𝑎𝑡 ∣ 𝑠𝑡; 𝜃) and the estimation of the value function 𝑉(𝑠𝑡; 𝜃𝑣) 

[25]. Both of them are updated after every 𝑇𝑚𝑎𝑥 action or when a terminal state is 

reached. The value-based “Critic” method relies on parallel actor-learners and 

accumulated updates to improve training stability. The A3C algorithm breaks the data 

correlation by running multiple workers in parallel. The stability of the algorithm during 

training is significantly improved. Moreover, the memory requirements are reduced 

compared to the deep Q-learning method. 

 

 3.2.2. Distributed Proximal Policy Optimization (DPPO) 
Distributed Proximal Policy Optimization (DPPO) [81], which is applied for 

intelligent economic dispatch in combined heat and power system [24], is essentially 

Proximal Policy Optimization (PPO) in a distributed setting by using multiple workers 

and a server parameter. A shared model is updated every time many workers are ready 

to send updates [82]. In terms of implementation, a central parameter server and a 

specific worker update the model, while numerous concurrent workers interface with 

the simulator, according to DPPO (Figure 13).  

 

 

Figure  13. The schematics of DPPO algorithm [83]. 
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The implementation of the Trust Region Policy Optimization (TRPO) is also 

applied to DPPO to restrict the amount by which any update is allowed to change 

the policy. 

 3.2.3. Deep Deterministic Policy Gradient (DDPG) 
The model-free approach Deep Deterministic Policy Gradient (DDPG) able to 

learn competitive policies for most of the tasks by applying low-dimensional 

observations with the same hyper parameter and network structure (Figure 14). In 

many cases, DDPG also able to learn good policies directly from pixels, keeping hyper 

parameters and network structure constant again. DDPG is also proposed to solve the 

problem of STATCOM-ADC parameter adjusting, which considers the uncertainty of the 

wind power production [20].  

 

Figure  14. DDPG algorithm structure [84]. 
 

 3.2.4. Model-Based Policy Gradient (MBPG) 
Model-Based Policy Gradient (MBPG) is introduced as MBRL with a gradient 

formula, exploration, and pruning strategy (Figure 15). The idea behind Dyna-style 

planning is that it allows us to execute the various model-free updates you've already 

heard about without having to operate in the real world. For large-scale MDPs, such 

as resource-restricted scheduling, it is impossible to store the entire MDP in a tabular 
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form. The overall effectiveness of MBPG depends on whether a sufficiently insightful 

partial model fits into the available memory. Therefore, MBPG introduces effective 

exploration which gathers training data in the relevant parts of state space, and 

heuristic pruning which removes irrelevant parts of the incomplete MDP model.  

 

Figure  15. MBPG algorithm [30]. 
 

In this dissertation, there are four baselines: three model-free algorithms 

including A3C, DPPO, DDPG, and one model-based technique, MBPG. In energy bidding, 

MFRL is applied in such problem more than MBRL which haven’t been chosen for 

solve problem in this area.  

 

3.3. Multi-Agent Reinforcement Learning (MARL) 
Several real-world problems, spanning from satellite development to traffic 

monitoring, are naturally described as cooperative multi-agent systems. These systems 
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necessitate algorithms capable of learning good policies with autonomous agents 

based merely on local partial observations of the environment. However, due to partial 

observability and non-stationarity from an agent's perspective, as well as the structural 

credit assignment problem and the curse of dimensionality, multi-agent environments 

are more complex, and attaining coordination in such systems remains a difficult task. 

Recent research on energy trading applied MADDPG, the single-threaded actor-critic 

with multiple agents, approach to leverage the capability of each trading system in 

LEM. The multi-threaded A3C is combined in MARL for the convergence of training for 

best policy has success but not yet implemented in the energy trading field. 

 

 3.3.1. Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [85] 
 MADDPG, or Multi-agent DDPG, is a multi-agent policy gradient methodology 

that use decentralized agents to generate a centralized critic based on the 

observations and behaviors of all agents (Figure 16). It results in learned rules that only 

use local data (their own observations) to execute. It applies not just to cooperative 

interactions, but also to competitive or mixed interactions involving both physical and 

communicative action. 

 

Figure  16. The schematic of the MADDPG algorithm [85]. 
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MADDPG does not necessitate a differentiable model of the dynamics of the 

environment or any specific structure on the communication mechanism between 

agents. The critic has access to additional information about the policies of other 

agents, but the actor just has access to local knowledge. Following training, only local 

actors are used in the execution phase, acting in a distributed environment as the 

algorithm is described in Figure 17. 

 

Figure  17. MADDPG algorithm [85]. 
 

 3.3.2. Asynchronous Advantage Actor-Critic with Communication (A3C3) 
[44] 

 In A3C, a policy-based methodology that changes both the policy and the 

value-function in the forward view using a combination of n-step returns, the actor-

critic architecture [80] and the advantage function [83] are utilized to establish the best 

policy. It also supports concurrent learning by allowing many actors-learners to adjust 

the neural network's parameters asynchronously. This strategy, however, restricts the 

number of only single agent or requires the system to be homogeneous.  
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Multi-agent learning has significant challenges in attempting to allocate a 

hidden communication channel. Recent research has frequently merged a customized 

neural network with reinforcement learning to facilitate communication between 

agents. [86] present a more scalable technique that not only deals with many agents 

but also allows collaboration across distinct functional agents and may be used in 

conjunction with any deep reinforcement learning method. Exploration is a difficult 

challenge in multi-agent reinforcement learning, especially when the rewards are 

scarce. A comprehensive technique, which is proposed for efficient exploration that 

incorporates agents sharing their experience, the Shared Experience Actor-Critic (SEAC) 

implements experience sharing in an actor-critic architecture by combining the 

gradients of many agents [45]. 

A distributed asynchronous actor-critic method, with differentiable 

communication and a centralized critic in a multi-agent context, is investigated to 

employ a centralized critic to estimate a value function [44]. The decentralized actors 

approximate each agent's policy function, and decentralized communication networks 

allow each agent to exchange important information with its team (Figure 18).  

 

 

Figure  18. A3C3 architecture with n distinct workers. Each worker interacts with its 
own environment and its own collection of j agents. Workers asynchronously update 
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the global networks and transfer those weights into their local networks when 
samples are gathered in mini-batches [44]. 

 

When more knowledge, such as the global status of the environment, is 

available, the critic can include it and optimize the actor networks. The actor networks 

of an agent's teammates optimize its communication network, so that each agent 

learns to output knowledge that is valuable to the policies of others. A3C3 can handle 

a high number of agents, noisy communication channels, and can be horizontally 

scaled to reduce learning time. 

A3C3, multi-agent A3C with a communication network in each multi-threaded 

worker, to determine reward optimization in cooperative-competitive manners of every 

agent in the system [44]. The actor, the centralized critic, and the communication 

network are the three major components of A3C3. A3C3 can learn policies that are 

very successful in achieving shorter distances to their goals than MADDPG through 

cooperative communication. Even though A3C3 has never been used in P2P energy 

trading, it has been chosen as our core model since it outperforms MADDPG by 

maximizing agent rewards. 
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CHAPTER IV 

CONCEPT AND RESEARCH METHODOLOGY 
 

The research’s concept is divided into two phases: wind energy bidding in the 

wholesale electricity market and energy trading in the local electricity market. SARL is 

applied in the first phase and MARL in the second due to the involvement of agents 

in each market type. Each phase's data description, experimental settings, and 

evaluation procedure are detailed in this chapter. 

 

4.1. MB-DRL for Wind Energy Bidding in the Wholesale Electricity Market 
 In this section, details of our model called “MB-A3C” are explained. There are 

three main components as illustrated in Figure 19: (i) forecasting model using the 

Attention-LSTM, (ii) policy model using the Convolution A3C (Conv-A3C), and (iii) MBRL 

framework. 

 

Figure  19. The MB-A3C diagram comprising with forecasting model, policy model 
and MBRL framework. 
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First, the forecasting module predicts the wind energy, and then the predicted 

wind energy is formulated as the current state. Second, the policy model takes the 

current state to propose a suitable policy resulting as an action for the day-ahead 

market (amount of bidding and reserve energies). Then, the cost can be projected using 

all factors. Third, in MBRL, another model is proposed to forecast a future cost since 

there are other factors (e.g., the market-clearing price: spot price) that do not know yet 

in the testing phase. This is the main contribution module for MBRL.  

 4.1.1. Forecasting Model  
Here we discuss the first module in Figure 19. The Attention-LSTM for wind 

energy forecasting (Figure 20) not only focuses on the previous hour of the input 

sequence but the 24 hours’ context. While the traditional LSTM networks use only the 

last hidden state as output, the Attention- LSTM multiplies output hidden states by 

trainable weights [75]. As a consequence, they can capture more discriminatory task-

related features by calculating all inputs together.  

 

 

Figure  20. The Attention-LSTM architecture for wind energy forecasting. Denote x0 to 
x23 as 24 inputs (hours) and a0 to a23 as attention weights. 

 

It is seen that the Attention-LSTM not only focuses on the previous hour of the 

input sequence but also on the 24-hour context. Unlike traditional LSTM networks, 
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which use only the most recent hidden state as output, Attention-LSTM networks 

multiply hidden state output by trainable weights. Consequently, they can capture 

more discriminatory task-related features by calculating all inputs together. 

The baseline is enhanced by the leverage forecasting algorithm for wind energy. 

Because Attention-LSTM has made numerous contributions in such tasks, we 

investigated it in our algorithm and found that it outperformed the baseline paper. 

For time series data, fundamental and modified attention mechanisms have 

been examined in several articles. It has been established that time series forecasting 

activities benefit greatly from attention to gains in general performance as compared 

to models like RNNs and LSTMs [87-89]. 

 

 4.1.2. Policy Model  

We proposed the convolutional A3C (Conv-A3C) which is our improvement 

from A3C. The model updates its parameters using experience and reward information 

to develop an optimal bidding strategy. We defined this optimal bidding strategy as a 

policy model (Module 2 in Figure 23). A3C performs with the three assumptions below.  

1. The term “Asynchronous” means multiple agents work together on the 
same issue and share information about what they have learned. Thus, the 
solution is reached more rapidly.  

2. An Actor-Critic is two networks delivering two outputs. One is the values for 
the different actions: a policy. The other calculates the value of the state 
the agent is currently in and reviews the action by value.  

3. The Advantage informs if there is an improvement in a given action 
compared to the expected average value of that state based on it.  

The reward obtained in this method only has a direct impact on the state 

action pairs at the current time step, which is why the algorithm slowly converges. The 

A3C algorithm adopts a multi-agent approach with the advantage function in Eq. (7) to 

speed up the learning process.  
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∑ 𝛾𝑖𝑟𝑡+𝑖
𝑘−1
𝑖=0   + 𝛾𝑘𝑉(𝑠𝑡+𝑘 ∣ 𝜃𝑣) − 𝑉(𝑠𝑡 ∣ 𝜃𝑣)     (7) 

where 𝑉(𝑠𝑡 ∣ 𝜃𝑣) is the state value function of state 𝑠𝑡 with parameter 𝜃𝑣 at 

interval 𝑡.  

In addition, there is a constraint (a maximum bound) for the policy to make it 

more realistic. If the total energy exceeds this bound, the process of bidding should 

be stopped. In the WPPs power plant, this constraint is “a network-determined power 

consumption”, which is usually planned one day in advance.  

For the cost (reward) calculation, during the training phase, the actual data 

needed for cost calculation is duly supplied in accordance with the profit formula, as 

given in Eq. (1). As for the testing phase, WPP cannot supply all the inputs needed for 

the reward function in advance. Therefore, the predicted cost is obtained via model 

prediction. 

4.1.2.1. The Critic Networks  

The critic network is optimized by minimizing the loss function defined for the 

value function 𝑉(𝑠𝑡) approximation, which maps the current state 𝑠𝑡 to the scalar. A3C 

uses multi-step rewards to optimize the critic network parameter. The function of loss 

is defined as Eq. (8) to accelerate the learning process [25].  

 

𝐿(𝜃𝑣) = 𝐸𝜃𝑣 (∑ 𝛾𝑖𝑟𝑘−1
𝑖=0  + 𝛾𝑘𝑉(𝑠 ∣ 𝜃𝑣) − 𝑉(𝑠 ∣ 𝜃𝑣))

2
    (8) 

when 𝜃𝑣 is set to the critic network parameter, 𝑟𝑡 is the immediate reward the 

agent has acquired when the action is executed at state 𝑠𝑡, 𝑉(𝑠𝑡) is the value function.  
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4.1.2.2. The Actor Networks  

The actor network’s parameter is optimized by a policy-based method to 

maximize the cumulative discounted reward obtained after executing an action in state 

𝑠𝑡 due to the A3C policy-based algorithm variant. According to the RL process, samples 

are collected with the trajectory 𝜏 =  {𝑠𝑡, 𝑎𝑡 , 𝑠𝑡, … , 𝑠𝑇 , 𝑎𝑇} which the cumulative 

discounted reward from time step 𝑡 is shown in Eq. (9). The trajectory corresponding 

to the bidding day is divided into 24 hours for wind energy bidding. There is a 

probability of a trajectory shown in Eq. (10).  

 

𝑅𝑡 = ∑ 𝑅(𝜏)𝑝𝜋(𝜏)𝑇
𝜏   = 𝐸𝜏∼𝑝𝜋(𝜏)[𝑅(𝜏)]    (9) 

where 𝑝𝜋(𝜏) is the probability of the trajectory 𝜏.  

 

𝑝𝜋(𝜏) = 𝑝(𝑠𝑡) ∏ 𝑝𝜋
𝑇
𝑡   (𝑎𝑡 ∣ 𝑠𝑡)𝑝(𝑠𝑡+1 ∣ 𝑠𝑡, 𝑎𝑡)    (10) 

where 𝑝𝜋(𝑎𝑡 ∣ 𝑠𝑡) is determined by the policy 𝜋, which is parameterized by 

𝜃𝜇. 

The partial derivation of the expected reward can be obtained concerning the 

neural network parameter 𝜃𝜇. The variance can be decreased by removing the baseline 

term 𝑏𝑡(𝑠𝑡), which in practice is uncommonly replaced by the value function 𝑉(𝑠𝑡). 

The reward’s partial derivatives related to 𝜃𝜇 is written in Eq. (11).  

 

𝛻𝑅𝜃𝜇 ≈
1

𝑁
∑ ∑ (𝑅𝑡(𝜏𝑛) − 𝑉(𝑠𝑡))𝛻𝑙𝑜𝑔 𝑝𝜃𝜇(𝑎𝑡

𝑛 ∣ 𝑠𝑡
𝑛)𝑇

𝑡=1  𝑁
𝑛=1       (11) 

where 𝑅𝑡(𝜏𝑛) is the accumulated discounted reward obtained after executing 

action at in state 𝑠𝑡 of the n-th trajectory, which is an evaluation of action value 

function 𝑄(𝑎𝑡 , 𝑠𝑡). The term 𝑅𝑡(𝜏𝑛) − 𝑉(𝑠𝑡) is an estimate of the advantage function 
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𝐴(𝑎𝑡 , 𝑠𝑡) = 𝑄(𝑎𝑡 , 𝑠𝑡) − 𝑉(𝑠𝑡), which represents how good it is to select action 𝑎𝑡 in state 

𝑠𝑡.  

Following the encouragement of an agent to explore more in the environment, 

the A3C algorithm adds to the objective function the term 𝐻 (𝜋(𝑠𝑡; 𝜃𝜇)), which is the 

entropy of the policy 𝜋. The policy gradient [27] is therefore formulated to Eq. (12).   

 

𝛻𝑅𝜃𝜇 ≈
1

𝑁
∑ ∑ 𝛻𝜃𝜇

𝑙𝑜𝑔 𝜋(𝑎𝑡 ∣ 𝑠𝑡; 𝜃𝜇) (∑ 𝛾𝑖𝑟𝑡+𝑖
𝑘−1
𝑖=0  + 𝛾𝑘𝑉(𝑠𝑡+𝑘 ∣ 𝜃𝑣) − 𝑉(𝑠𝑡 ∣ 𝜃𝑣)) +𝑇

𝑡=1
𝑁
𝑛=1

𝛽𝛻𝜃𝜇
𝐻 (𝜋(𝑠𝑡; 𝜃𝜇))       (12) 

where 𝛽 is the weight factor for the period of regularization. ANN is applied to 

learn a robust strategy to address environmental uncertainties. The parameters of the 

actor network are updated 𝑏𝑦 𝜃𝜇 ← 𝜃𝜇 − 𝜂𝜇𝛻𝜃𝜇𝑅𝜃𝜇   where 𝜂 is the learning rate of the 

actor network [27].  

 

4.1.2.3. The Convolution A3C (Conv-A3C)  

The Convolutional Neural Network (CNN) is applied to both actor and critic 

networks. Figure 21 illustrates our proposed Conv-A3C network architecture.  

 

Figure  21. The Conv-A3C diagram with the CNN architecture in actor and critic 
network. 
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It is suitable for multiple time-series inputs (wind power and wind bidding) since it 

considers all series with multiple time steps altogether (filter size = 2x1). Also, the 

CNN network permits the volume and complexity of time series data for the deep 

learning concept. 

 

 4.1.3. Model-Based Reinforcement Learning (MBRL) Framework 

Model-Based Reinforcement Learning (MBRL) learns optimal behavior indirectly 

by learning the environment when taking action and observing outcomes that include 

the next state and immediate reward. Dyna architecture is a variation of MBRL that 

proceed to update the value functions instead of only building a model with real 

experience. From module 3 in Figure 19, we applied MBRL with LSTM network 

architecture to model the environment, which characterizes time series as shown in 

Figure 22.  

 

Figure  22. The MBRL diagram with LSTM architecture for environment model. 
 

The workflow begins with a standard reinforcement learning agent, learning of 

domain knowledge, model-generated experiences, and planning. The LSTMs assure 

the ability to learn the context involved to create predictions in time-series forecasting 

problems, rather than having this context pre-specified and fixed, which is applied to 

predict future value need to be optimized in specific bidding.  
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 4.1.4. The overall process 

We train our MB-A3C with the procedure demonstrated in Figure 23. The 

process begins with wind energy forecasting. Then, 24 forecast values are passed to 

the policy model viz. Conv-A3C as a state to collect samples during training. The 

training process continues until the average cost per day calculated in accordance with 

Eq. (1), using actual data, stabilizes. Next, the collected samples utilize the LSTM 

algorithm for the 24 cost prediction. After that, the MPC process is applied for the 

testing phase. 

 

Figure  23. MB-A3C algorithm. where 𝑟𝑡 is the reward function. 𝜂𝑣 and 𝜂𝑢 are the 
actor’s and critic network’s learning rate. 𝑇𝑚𝑎𝑥 is the maximum training episode 

which is the updated time-step. 𝛾 is the discount factor. 𝛽 is the entropy 
regularization term. 𝜋 is the policy. 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑒𝑛𝑣., and 𝐷𝑡𝑒𝑠𝑡 are training, environment, 

and testing dataset, respectively. 
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Table 2 depicted the example of information from MB-A3C. Begin with training 

phrase, reward is calculated from cost calculation in policy model (Module 2). Then, 

it is predicted via environment model in MBRL framework (Module 3). 

Table  2. Bidding information example from MB-A3C from training to testing process. 

EP Hour 
State Action Reward 

Remark Wind 
forecast (t) 

Wind bid 
(t-1) 

Wind bid 
(t) 

Wind 
reserve (t) 

WPP’s 
cost 

1 

1:00 7.2 2.61 5 4.59 -8.43 

Training 

2:00 8.19 4.42 7 3.77 -2.12 
3:00 9.59 1.45 4 8.14 -9.86 
4:00 6.16 0.08 3 6.08 -1.78 

5:00 1.36 12.01 2 10.65 3.27 
6:00 1.7 10.78 4 9.08 -8.93 

7:00 5.26 3.65 5 1.6 -4.37 
… … … … … … 

23:00 11.14 11.5 12 0.35 -6.53 

0:00 2.41 0.28 2 2.13 -4.76 
WPP's Cost -40.11 

… … … … … … … … 

50k 

1:00 6.51 12.55 10 6.03 -10.11 

Testing 

2:00 7.9 0.22 5 7.69 -3.41 
3:00 7.24 6.24 7 1 0.82 
4:00 7.25 11.27 8 4.02 -1.24 

5:00 11.02 4.06 5 6.96 -9.34 
6:00 9.23 4.81 8 4.42 -6.2 

7:00 3.86 1.84 3 2.02 0.08 
… … … … … … 

23:00 4.76 9.16 8 4.39 -6.01 

0:00 5.49 10 8 4.51 -4.87 
WPP's Cost -63.79 
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4.2. MB-MA-DRL for Energy Trading in the Solar-installed households 
The MB-A3C3 structure, which consists of three modules, is shown in Figure 24. 

During the training phase, agents are categorized based on their daily trading activity 

(Module 2) after executing A3C3 to collect environmental data (Module 1). After that, 

a forecasting module (Module 3) is used to estimate the trading quantity and price of 

agents using centralized data from Module 2. The present condition is then used to 

generate the predicted trading quantity and price for the testing phase. The policy 

model then analyses the current situation and proposes a policy that will result in DA 

market behavior (amount of trading quantity and price).  

 

 

Figure  24. Schema of the three modules: (1) Policy model, (2) Agent clustering, and 
(3) MB-MADRL framework. 

 

4.2.1. Policy model: A3C3-Conv1D with DA mechanism 

The convolutional 1-dimensional A3C3 (A3C3-Conv1D) neural network was 

enhanced via application of A3C3. To build an optimal trading strategy for each agent, 
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model parameters were used and updated based on experience and reward 

information. A customized P2P energy trading environment was used to implement 

this optimal trading strategy as a policy model. The assumptions listed below are 

attributed to the A3C3-Conv1D, and A3C3 alike: 

1. The concept of “asynchronous” refers to when numerous threads 
collaborate on the same task and communicate what they have learned. 
Then, a solution is achieved more efficiently. 

2. “Multi-agent actor” and “centralized-critic”: The “multi-agent actor” 
provides values based on their current policy for various actions. A 
“centralized critic” combines agent observations and environmental state 
information to provide an estimate of the current state and evaluates 
actions. 

3. The term “advantage” describes how much better a certain action is 
relative to the predicted average value of the situation on which it is based.  

4. “Communication” allows agents to share important information explicitly 
via a communication network based on the performance of other agents. 

 Furthermore, policies have constraints (a maximum bound) to make them more 

realistic. The system constraints: a households’ load and energy storage. The trading 

constraints: price threshold, network capacity, and system status. If trading system fail, 

buy/sell with main grid. If main grid fails, each household buy/sell with community 

especially those who owns energy storage. 

A household’s energy storage, which is determined, is placed to offer trading 

quantity with minimum and maximum energy levels between 2 and 10 kWh.  

1. For trading prices, we followed the grid pricing provided by the data owner, 
as in Table 3, which includes the time-of-use (ToU) tariff, a flexible grid 
purchase price for the period, and the feed-in tariff (FiT), a set grid sale price 
of 0.04 $/kWh for the entire day [69]. The agent's trading price output, 
whether buy or sell, is limited to grid prices. 
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Table  3. Grid Pricing by period. 

Time 
ToU ($/kWh) FiT  ($/kWh) 

Time Value  
Shoulder 09:00-16:00 0.13 

0.04 Peak 17:00-20:00 0.18 
Off-Peak 21:00-08:00 0.08 

 

2. The network capacity threshold is considered peak demand when trading in 
the DA market. The algorithm employs a daily peak demand of 600 kW, 
which is sufficient to satisfy the network's capacity [90]. 

3. The condition in the trading algorithm will suggest trading directly from the 
grid if forecasted values deviate from historical weekly data. 

4.2.1.1. The Actor Networks 

 As depicted in Figure 25 local policy is learned by the actor network. In this 

example, the actor receives all of the other agents' observations and broadcast 

messages as input.  

 

Figure  25. Agent’s actor network. 
 

Regarding that, the network's output layer provides a probability distribution for 

agent j's actions. The output layer is based directly on the environment's action space. 
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4.2.1.2. The Centralized Critic Networks 

In Figure 26, the agent's centralized network is depicted, combining all agent 

observations with some additional information from the environment. If the 

environment allows access to its underlying state, the centralized observations 

become the entire environmental state 𝑠𝑡. Thus, policy is evaluated by the centralized 

critic. Sampled as a fully observable environment state shared by all agents. In some 

cases, this may not be feasible. 

 

Figure  26. Agent’s centralized critic network. 
 

4.2.1.3. The Communication Network 

In Figure 27, the communication network of the agent is depicted. To produce 

messages, the output layer has a rectifier with a ReLU activation function. Other output 

topologies are supported, such as continuous valued messages. The communicator 

network learns a communication protocol between agents. 

 

Figure  27. Agent’s communication network. 
 

4.2.3. Agent’s daily trading behavior clustering 

Due to their daily routines and activities, a household's daily behavior is 

currently different. Agents are clustered together for day-to-day trading to aggregate 
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similar trading activity as a single dataset for environmental modeling. Dynamic time 

warping (DTW) is a more precise method of calculating distance than Euclidean 

distance; data points are shifted between each other and the shape is prioritized above 

the geometry [91-93]. The assumption of Euclidean distance does not need two-time 

series to be of the equal length. The Euclidean distance is used to compare two data 

points [94]. The elbow [95] and silhouette [96] method is employed to determine the 

optimal k-means. 

Due to the large number of agents and their diverse behavior, it is assumed 

that an agent’s daily behavior differs hour by hour. Accordingly, 300 agents are 

organized into four clusters based on their daily trading behavior. In the literature, DTW 

is frequently used in conjunction with k-medoids and hierarchical approaches. 

Occasionally, DTW is used in conjunction with k-means in some articles, but this is 

debatable [97]. DTW has also been coupled with random-swap and hybrid among non-

traditional approaches [98]. Because of its one-to-many determination, DTW is used to 

assess the similarity of an agent's daily trade volume. DTW calculates the shortest 

distance between all points, allowing for a one-to-many match.  

4.2.4. Model-based multi-agent deep reinforcement learning (MB-MADRL) 

framework 

The multivariate-LSTM, depicted in Figure 28, consists of six time-dependent 

variables (𝑥1, … , 𝑥6) =  [𝑃𝑛,𝑡
𝑖𝑛𝑓

, 𝐸𝑛,𝑡
𝑒𝑠 , 𝜆𝑡

𝑏 , 𝜆𝑡
𝑠, 𝑞𝑛,𝑡−1

𝑑𝑎 , 𝜆𝑛,𝑡−1
𝑖 , 𝑟𝑛,𝑡−1

𝑖 ], is dependent on 

others in addition to its own previous values. The hidden layer output (ℎ1, … , ℎ6) from 

one step of the network is passed to the next. The algorithm captures not only the 

previous hour, but also the previous 24 hours of the input sequence. The technique is 

used to calculate the state’s predicted trading quantity (𝑞𝑛,𝑡
𝑑𝑎) and price (𝜆𝑛,𝑡

𝑖 ). The 

multivariate-LSTM is used to forecast an agent's trading quantity and price since it can 

multiply the output of hidden states by trainable weights, whereas traditional LSTM 

networks only use the latest hidden state as output [62]. 
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Figure  28. Schema of multivariate-LSTM having six features and a single output. 
 

4.2.5. The overall process of MB-A3C3  

As outlined below in Figure 29, Algorithm 1, the MB-A3C3 algorithm is 

demonstrated. The first step in the procedure is for A3C3-Conv1D to gather 

environmental data. Energy bills from the DA market mechanism, using actual data, 

stabilize after ten random runs of the training procedure. Then, the DTW algorithm is 

applied for time-series clustering to categorize the agents. The data from each cluster 

is gathered in order to combine the environmental data with the multivariate-LSTM 

for trading quantity and price forecasts for the following 24 hours. The MBRL technique 

is then used throughout the testing phase. 

Table 4, depicted the example of information from MB-A3C3. Begin with training 

phrase, forecast trading quantity and price are formulated from actual data in policy 

model (Module 1). Then, it is predicted via environment model in MBRL framework 

(Module 3). 
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Figure  29. MB-A3C3 algorithm. where 𝑟𝑡 is the reward function. 𝜂𝑣, 𝜂𝑢, and 𝜂𝑤 are 
the actor’s, centralized critic, and communication network’s learning rates. 𝑇𝑚𝑎𝑥 is 
the maximum training episode and tmax is the updated time-step. 𝛾 is the discount 

factor. 𝛽 is the entropy regularization term. 𝜋 is the policy. 𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑒𝑛𝑣., 𝐷𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑, 
and 𝐷𝑡𝑒𝑠𝑡 are training, environment, centralized environment, and testing datasets, 

respectively. 
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Table  4. Trading information example from MB-A3C3 from training to testing 
process. 
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CHAPTER V 

EXPERIMENTS AND RESULTS 
  

The experiment of two phases, wind energy and P2P energy trading are 

conducted due to the details. 

 

5.1. Experiment on SARL for Wind Energy Bidding in the Wholesale Electricity 
Market 
 We conduct the experiment on Nord Pool dataset with scenarios and 

evaluation which detail is depicted below. 

 

5.1.1. Data Description 

The experiment was carried out analyzing six datasets from wind farms viz. two 

from Denmark (DK1-2) and four from Sweden (SE1-4) as obtained from Nord Pool, a 

European power exchange [99]. Each dataset was tested on five different scenarios in 

the reserve market by varying the price ratios that affect reserve capacity and dispatch 

prices.  

The hourly resolution day-ahead market datasets are divided into two sets i.e. 

the training set (01/01/2016 - 31/05/2018) and the testing set (01/06/2018 - 

27/10/2018). The dataset contains seven variables: wind production, wind production 

prognosis, consumption prognosis, and up-regulating volume in megawatt-hour (MWh), 

up and down regulating price, and spot price, as described in Table 5. The price data 

is in the currency of Danish Krone (DKK) for Denmark (similar to the baseline [3]) and 

Euro (EUR) for Sweden. We considered the same reward function for both countries 

since Sweden is in the same region of Northern Europe as Denmark. 
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Table  5. The description and range of day-ahead market data.  The unit of wind 
energy and regulating volume is megawatt-hour (MWh).  The price data is in currency 

of Danish Krone (DKK) for Denmark and Euro (EUR) for Sweden. 

Data 
Range Unit Description 

Denmark Sweden   
Wind 
production 

-2 – 3,771 0 – 2,071 MWh Actual wind 
produced by WPP. 

Wind 
production 
prognosis 

0 – 3,973 0 – 5,694 Forecasted wind 
produced by WPP. 

Up regulating 
volume 

0 - 666 0 – 1,442 Reserve energy. 

Consumption 
prognosis 

  750-3,463     650-18,215   The demand for 
next coming day. 

Up regulating 
price 

-372.51 – 5,001 0 - 670.16 DKK for 
Denmark, 
EUR for 
Sweden 

The regulating price 
when up situation 
is activated. 

Down 
regulating price 

-837.44 – 1,898.90 -1,000.0 - 255.02 The regulating price 
when down 
situation is 
activated. 

Spot price -398.61 – 1,898.9 0 - 255.02 The day-ahead 
price announced at 
the end of the 
bidding period by 
regulator. 

 

5.1.2. Experimental Scenarios 

According to Eq. (1), 𝜂𝑢𝑝,𝑡 corresponds to the cost of the opportunity when 

WPP participates in the reserve market and 𝜇𝑢𝑝,𝑡 is the real-time dispatch price. The 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

price ratio of the reserve capacity and the reserve dispatch price is introduced in [26] 

to explore the impact of the reserve energy cost on the revenue of the WPP according 

to Eqs. (8) and (9).  

 

𝜂𝑢𝑝,𝑡 =  𝜓𝑝𝐷𝐴,𝑡      (8) 

𝜇𝑢𝑝,𝑡 = (1 + 𝜔)𝑝𝐷𝐴,𝑡      (9) 

The reserve cost refers to the cost of purchasing and dispatching operation 

when WPP is combined with other energy sources. It corresponds to different costs in 

specific scenarios. The reserve cost corresponds to the cost of the bilateral reserve 

market when WPP participates in both the energy market and the bilateral reserve 

market. Five scenarios interpreted in Table 6 are conducted in our experiment to 

investigate the effect of different circumstances on the cost.  

Table  6. The description of each experimental case. 

Case no. 𝝋 𝝎 Description 

1 0 0 Only trade in energy market 

2 0 0.1 No cost of purchasing from others 
but having operation for reserve 
energy dispatching from WPP’s own 
storage devices. 

3 0 0.2 

4 0.2 0.1 Purchasing and having operation for 
reserve energy dispatching from 
others 5 0.2 0.2 

 

 

5.1.3. Hyperparameters Setting and Details  

The efficiency of RL is enhanced by the potential of deep learning internally. The 

hyperparameters of MB-A3C in Table 7 are categorized by three main modules as in 
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Figure 24. We used the TensorFlow software library for machine learning procedure 

and the OpenAI Gym for developing reinforcement learning algorithms with the 

customized environment of the day-ahead market data.  

 

Table  7. The MB-A3C’s hyperparameter setting. 

Modules Hyperparameter Setting and Details 

Forecasting Model;  

Attention-LSTM 

- Data is preprocessed by Min-max normalization 

- Three Keras layers with 128 LSTM hidden nodes of each. 

- The Stochastic Gradient Descent (SGD) optimizer 

- The attention weights scoring with tanh and softmax. 

- The Xavier normal initializer for the initial random weights of 

Keras layers setting. 

- The MSE is evaluated for early stopping during training. 

Policy Model;  

Conv-A3C 

- Data is divided by 24 for normalization. 

- Ten actors with 24 step size each episode due to hourly 

resolution of datasets. 

- Learning rate 0.00001 for actor and 0.0001 for critic network. 

- Discount factor (𝛾) value is 0.1. 

- The entropy term controlling hyper parameter (𝛽) value is 

0.01. 

- Tensorflow layer with 10 units, Rectified Linear Unit (ReLU) as 

activation function for both actor and critic networks. 
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Modules Hyperparameter Setting and Details 

MBRL Framework;  

LSTM 

- Data is preprocessed by Min-max normalization. 

- Two Keras layers with 256 LSTM hidden nodes of each. 

- The Adaptive Moment Estimation (Adam) optimizer. 

- The Xavier normal initializer for the initial random weights of 

Keras layers setting. 

- The MSE is evaluated for early stopping during training. 

 

5.1.4. Evaluation 

The purpose of our MB-A3C is to minimize the cost of purchasing and 

dispatching reserve energy in WPP’s revenue by defined reward function: the second 

term of Eq. (1). The average cost per day, the cumulative reward of each episode 

consisting of 24 steps, is determined by the action performed by the MB-A3C algorithm 

during the training to optimize all parameters in Conv-A3C. Then, the optimized 

algorithm is tested to evaluate how well the MB-A3C completes the task according to 

the forecasting model, policy model, and experience with the predicted cost from the 

environment model in the MBRL framework. 
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5.1.5. The Experimental Result 

The result on SARL depicted in this section is divided as overall result and 

effect on the forecasting model. 

 

5.1.5.1. Overall Results  

The experimental results are depicted in Table 8 with five scenarios of each 

dataset to assess the impact of the purchase and dispatch price on WPP’s revenue 

with the discrepancy between 𝜓 and 𝜔 of each scenario. The result suggests that MB-

A3C learns and strategically bids to reduce costs over other RL algorithms with the 

penalty for the imprecision of the forecasting of wind energy and the uncertainty of 

price activation.  

Table  8. The average cost per day of each dataset compared to RL algorithms. 

Dataset 
Algorithm 

Upper 
Bound 

%Diff. 
A3C DPPO DDPG MBPG 

MB-A3C 
(Ours) 

In the currency of Danish Krone (DKK) per day 
 DK1  2,025.63 2,269.39 2,552.37 2,564.94 1,960.82 1,957.03 0.19 

1,747.30 2,037.90 1,660.17 1,691.08 1,613.84 1,606.08 0.48 
2,310.88 2,111.42 2,218.95 2,579.30 2,054.10 2,025.13 1.43 
2,999.29 2,880.65 2,972.43 2,847.05 2,805.73 2,729.93 2.78 
3,017.01 3,035.86 3,084.01 2,918.68 2,891.49 2,798.99 3.30 

 DK2  791.39 1,042.31 849.13 813.77 743.82 665.32 11.80 
1,271.04 1,161.34 1,220.46 1,418.68 817.84 730.94 11.89 
1,112.29 1,068.31 1,102.34 1,055.85 891.86 796.55 11.97 
1,787.61 1,716.92 1,771.62 1,696.90 1,686.07 1,577.28 6.90 
1,797.20 1,777.18 1,801.79 1,792.26 1,760.09 1,642.90 7.13 

In the currency of Euro (EUR) per day 
 SE1  53.73 58.74 68.99 59.84 52.28 52.18 0.19 

58.05 60.06 68.11 59.07 57.50 57.38 0.21 
55.99 59.00 71.89 62.35 62.72 62.59 0.21 

380.64 380.69 445.59 406.63 369.90 324.47 14.00 
401.51 401.56 472.38 429.87 375.12 329.68 13.78 

 SE2  265.05 298.12 382.72 276.60 275.38 239.30 15.08 
328.09 328.17 435.49 371.07 291.47 263.10 10.78 
386.18 386.28 510.08 435.76 317.89 286.90 10.80 
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Dataset 
Algorithm 

Upper 
Bound 

%Diff. 
A3C DPPO DDPG MBPG 

MB-A3C 
(Ours) 

543.07 601.56 759.43 554.87 563.26 507.81 10.92 
586.69 619.55 795.36 689.82 569.49 531.61 7.13 

 SE3  865.11 496.98 717.47 496.81 419.11 397.60 5.41 
854.06 487.06 704.73 479.02 482.48 436.86 10.44 
718.93 529.60 759.34 621.42 524.77 476.12 10.22 
948.86 669.04 906.57 763.98 658.45 575.05 14.50 

1,011.51 731.70 987.01 833.75 718.36 614.31 16.94 
 SE4  395.35 395.45 532.36 450.17 331.03 311.01 6.44 

389.18 389.29 524.45 443.31 342.13 342.11 0.01 
415.59 415.70 558.36 472.72 373.22 373.20 0.01 

1,151.39 1,151.64 1,478.45 1,282.26 1,100.79 1,097.87 0.27 
1,219.76 1,220.03 1,566.24 1,358.41 1,131.88 1,128.97 0.26 

 

*The upper bound refers to the model knowing the actual reserve and bidding energies. The 

bold number is the lowest cost according to such an algorithm. The %Diff. represents the 

difference of an average cost per day between MB-A3C (ours) and the upper bound. 

As shown in Table 8, MB-A3C is the winner in almost all cases (26 out of 30 

cases). Also, the %difference is introduced in the last column to investigate the 

deviation between the cost from MB-A3C and the upper bound, which is derived from 

the actual amount and considered as the best value. In most cases, MB-A3C’s results 

are quite close to the upper bound’s results, which are derived from actual amounts. 

Table 9 is a summary of the comparison results from Table 8. Based on paired 

t-test, MB-A3C significantly outperforms all baseline with a p-value less than 0.0001. It 

has a lower cost than DPPO and DDPG on the whole 30 cases. Also, MB-A3C provides 

the lowest average costs 1,722.57 DKK and 450.86 EUR in Denmark and Sweden which 

is closest to baselines (1,653.02 DKK and 420.41 EUR) with %difference at 4.21% and 

7.24%. 
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Table  9. The performance of MB-A3C is compared with the four RL algorithms. 
MB-A3C comparing 

topics 
Comparing Algorithms 

Conv-A3C DPPO DDPG MBPG 
Denmark (DKK) 

#Winner cases 10 10 10 10 
Average cost per day 1,885.96 1,910.13 1,923.33 1,937.85 
Different of average 
cost per day 

163.40 187.56 200.76 215.29 

%Different of average 
cost per day 

9.49 10.89 11.65 12.50 

p-value 0.0026 0.0029 0.0051 0.0251 
Sweden (EUR) 

#Winner cases 17 20 20 19 
Average cost per day 551.44 484.01 637.25 527.39 
Different of average 
cost per day 

100.58 33.15 186.39 76.53 

%Different of average 
cost per day 

22.31 7.35 41.34 16.97 

p-value 0.0044 < 0.05 < 0.05 < 0.05 
 

As depicted below in Figure 30a, results show that MB-A3C's trend is very close 

to that of the upper bound. However, there are some data points where MB-A3C's 

predicted cost is lower than the upper bound. The reason being is such that when 

wind energy is bid through the MB-A3C framework, the cost is correlated to the amount 

of energy sold, as determined via Eq. (1). The consistency of predicted cost and wind 

energy in Figure 30 shows that the algorithm learns to bid less energy and incurs less 

cost than the upper bound. 
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(a) The actual and predicted cost. 
 

 

(b) The actual and predicted wind energy. 
Figure  30. Predicted cost of MB-A3C is less than the actual amount (upper bound) 

at some data points on 30th August 2018: case study no. 5, SE1 test dataset. 
 

5.1.5.2. Effect of The Forecasting Model  

In this part, we are going to investigate the reasons behind our success. There 

are three main modules in our algorithm: (1) forecasting model, (2) policy model, and 

(3) MBRL framework as described in Chapter IV. Hence, if each module can perform 

effectively, this should drive an impact on our algorithm.  

The attention-LSTM can forecast the wind power accurately with the Root 

Mean Square Error (RMSE) 2.53 MWh and the Mean Absolute Percentage Error (MAPE) 

1.01% on the testing dataset. Figure 31 illustrates the average RMSE prediction for each 

hour where each line refers to the result of each test dataset. It is noted that there is 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 64 

not much difference between RMSE as regards the short-term and long-term 

forecasting, except for DK2 (the blue line). Such an outcome infers that this trend will 

not change much for the next 24 hours. 

 

  

Figure  31. RMSE of each dataset for wind energy forecasting horizon: 1 to 24 hours. 
 

The wind energy forecasting result from the attention-LSTM model is visualized 

in Figure 32. According to the accurate forecast of wind energy, the policy model can 

learn to take action and minimize the cost more efficiently.  

 

 

Figure  32. The results between actual and predicted wind power from Attention-
LSTM model on first 500 time steps of SE4 testing set. 
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For the policy model, the original A3C uses neural networks, while ours uses 

1D-CNN as network architecture which considers both series of forecast and previous 

bidding wind energy during the previous 24 hours (kernel size) altogether. The results 

in Table 10 indicate that Conv-A3C provides superior performance over A3C. Please 

note that the result is only conducted on the DK1 dataset as in [26].  

 

Table  10. The average cost per day (DKK) of Conv-A3C is compared to A3C. The five 
experimental cases are conducted on the DK1 testing dataset. 

Case no. Baseline paper Conv-A3C 
%Reduction of Conv-A3C  

from baseline 
1 2,449.00 2,025.63 17.29 
2 1,808.00 1,747.30 3.36 
3 2,449.00 2,310.88 5.64 
4 3,052.00 2,999.29 1.73 
5 3,067.00 3,017.01 1.63 

 

The average RMSE prediction for each hour is illustrated below in Figure 33; 

each line refers to the result for each test dataset. Results show that there is no 

difference in RMSE for each hour of cost forecasting. The overall RMSE for the test 

datasets proved to be: 43.57 DKK (Denmark) and 8.58 EUR (Sweden). 
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Figure  33. RMSE of each dataset for cost prediction horizon from 1 to 24 hours. 
*The units of RMSE are Danish Krone (DKK) for Denmark and Euro (EUR) for Sweden. 

 

As illustrated below in Figure 34, comparison between actual and predicted 

cost for the environmental model is shown. 

 

Figure  34. The cost prediction on the first 500 time steps comparison between the 
actual and predicted result. The result is derived from LSTM model on the SE4 

testing set with case study no. 5. 
 

Figure 35 illustrated the average cost per day on DK1 training data compared 

to each RL algorithm. The converged trend demonstrated that our MB-A3C learn and 

optimize for the best results above others. The cost tends to rise as the agent has no 

clue how to bid during the first stage. After the network parameters are optimized 

according to experience, the cost begins to converge. 
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Figure  35. The average cost per day over 100k episodes of training. 
 

The model-based deep RL algorithm MB-A3C makes a valid contribution to the 

strategic bidding of wind energy. MB-A3C combines the advantages of a time-series 

forecasting model with advanced machine learning methods via ($i$) the attention-

LSTM ($ii$) Conv-A3C and ($iii$) the MBRL framework. It is evident that the reduction 

of average costs per day of bidding demonstrated the superiority of MB-A3C over other 

RL algorithms used, especially as conducted in the five scenarios of the well-known 

Nord Pool datasets: Denmark and Sweden. The five scenarios having different 

adjustments of price ratios for the cost of reserve and dispatch energy were carried 

out to investigate the potential of MB-A3C. It is significant that MB-A3C outperformed 

all baselines and performed closely to the upper bound. Such a model is found to 

provide the lowest average cost per day, which maximizes WPP's revenue. 

5.1.5.3. Effect of component removal test 

There are three main contributions for utilizing the novel MB-A3C in wind energy 

bidding: 

a. Forecasting model: More accurate forecasting method effect of the 
model. It is effectively handle time-series and data complexity. 

b. Policy model: The original A3C uses neural networks, while ours uses 
1D-CNN as its network architecture, which considers both series of 
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forecasts and previous bidding for wind energy during the previous 24 
hours (kernel size) altogether. 

c. MBRL framework: To forecast a future cost since there are other factors 
(e.g., the market clearing price, or spot price) that are not known yet in 
the testing phase, this is the main contribution module for MBRL.  

 
Figure 36. indicate the WPP’s cost having component removal to assess the 

importance of each following contributions. 

 

Figure  36. The WPP’s average cost per day for component removal analysis; 
Denmark and Sweden. 

 

The cost reduction of each component removal method is depicted in Table 

11. Policy module is the most significant component in both countries, following with 

model-based framework and forecasting model, respectively. 

Table  11. The effect of component removal test by WPP’s average cost per day 
and percent of cost reduction of each. 

Method Test 
Average cost per day % Cost Reduction 

Denmark Sweden Denmark Sweden 

No Forecasting 1,891.76 505   

Have Forecasting 1,719.57 470.41 -9.10% -6.85% 

No Policy 2,431.62 482.76   
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Method Test 
Average cost per day % Cost Reduction 

Denmark Sweden Denmark Sweden 

Have Policy 2,095.49 440.41 -13.82% -8.77% 

No MB 1,910.13 549.19   

Have MB 1,723.33 506.34 -9.78% -7.80% 

 

5.2. Experiment on MARL for Energy Trading in the Retail Electricity Market 
 We conduct the experiment on dataset with scenarios and evaluation which 

detail is depicted below. The experiment was carried out after an examination of data 

from Ausgrid’s electricity network. The publicly available dataset contains load and 

rooftop PV generation for 300 residential customers, with load centers encompassing 

Sydney and the adjacent rural areas. The data was collected over a three-year period; 

both load and PV generation measurements were taken at 30 min intervals.  

 

5.2.1. Data Description 

In Ausgrid's power network area, data was collected from 300 randomly chosen 

solar customers. Between July 1, 2010, and June 30, 2013, customers were billed on 

a domestic tariff and a gross metered solar system was installed. Customers were 

chosen based on a comprehensive set of real-world data gathered from meter readings 

between July 1, 2010 and June 30, 2011. During the first year, some data quality checks 

were conducted, thereby removing users who were on the high and low ends of home 

consumption and solar generation performance. Data from June 1, 2012 to May 31, 

2013 were utilized to conduct the experiment. Training of 80% and testing of 20% of 

the dataset is divided according to time-series split. Tables 12 and 13 focus on the 

varied types of data matching annual statistics of solar home datasets. 
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Table  12. Description of solar home electricity data. 
Column Name Description Range Unit 

Customer Customer ID 1-300 - 

Postcode Postcode location of 

customer 

- - 

Generator Capacity Solar panel capacity 

recorded on the application 

for connection for each 

customer, which is the solar 

panels peak power under 

full solar radiation and 

tested under standard 

conditions. 

1-9.99 Kilowatt 

Peak (kWp) 

Consumption 

Category 

Two letter code each 

meaning the following: 

GC = General Consumption 

for electricity supplied all 

the time (primary tariff, 

either inclining block or 

time of use rates), excluding 

solar generation and 

controlled load supply 

0-6.57 Kilowatt 

Hour (kWh) 

CL = Controlled Load 

Consumption (Off peak 1 or 

2 tariffs) 

0-4.09 

GG = Gross Generation for 

electricity generated by the 

0-4.33 
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Column Name Description Range Unit 

solar system with a gross 

metering configuration, 

measured separately to 

household loads 

 

 

Table  13. Annual statistics of solar home customers (year 2012-2013). 
Description  Mean  Median  

Annual consumption; kWh per year 6,387 5,862 

Annual gross generation; kWh per year 2,181 1,814 

Solar system size (kWp) 2 2 

Annual gross generation; kWh/kWp 1,297 1,326 

 

5.2.2. Hyper parameters setting and details 
The MB-A3C3 hyper parameters, which are divided into three modules in Figure 24, 

are specified in Table 14. In addition, the TensorFlow software library and the OpenAI 

Gym were utilized to assess RL algorithms and provide a customized environment 

employing P2P energy trade data. The Dyna conceptual framework takes into the 

account the constraints on such data.  

Table  14. MB-A3C3 hyper parameters and details. 
Modules Hyper parameter Setting and Details 

Policy model; A3C3-

Conv1D 

- Data is aggregated to hourly and divided by 24 for 

normalization. 
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Modules Hyper parameter Setting and Details 

- Ten actors, 300 agents in each, with 24 step size each 

episode due to hourly resolution of datasets. 

- Learning rate 0.00001 for actor and 0.0001 for critic 

network. 

- Discount factor (𝛾) is 0.01 for advantage estimation 

and reward discounting. 

- Tensorflow layer with 10 units, Rectified Linear Unit 

(ReLU) as activation function for both actor, critic, and 

communication networks. 

- The Adaptive Moment Estimation (Adam) optimizer. 

Agent’s daily trading 

behavior clustering; 

DTW 

- tslearn, for time series analysis package using machine 

learning. 

- Dynamic time warping (DTW) for cluster assignment and 

barycenter computation into four clusters. 

- Ten iterations of the k-means algorithm for a single run. 

MBRL 

framework; Multivariat

e-LSTM 

- Data is preprocessed by Min-max normalization. 

- Two Keras layers with 256 LSTM hidden nodes of each. 

- The Adam optimizer. 

- The MSE is evaluated for early stopping during training. 

 

5.2.3. Evaluation 
The MB-A3C3 model, which is used to reduce the agent's energy bill, is 

determined using the reward function. The energy bill, which is the cumulative reward 

of each episode consisting of 24 steps, is determined by the MB-A3C3 algorithm's action 

during training to maximize all parameters in A3C3-Conv1D. The innovative approach 

is then sorely tested to see how well MB-A3C3 performed against the policy model 
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within the three constraints imposed by the MBRL framework: agent trading behavior 

clustering, experience gained using the predicted trading quantity, and price. 

5.2.4. Experimental results 
The overall performance is described first in this section. The rest of the 

sections show the effects of each proposed module. 

5.2.4.1. Overall results 

In Table 15, the average community’s internal trade, external trade, and net 

energy bills per day of 8 and 300 households are compared to MARL algorithms.  

Table  15. The average community’s internal trade, external trade, and net energy 
bills per day: 8 to 300 households are compared to MARL algorithms. 

Algorithm 
Internal (kWh) ↑ External (kWh) ↓ Net bills ($) ↓  
8 300 8 300 8 300 

1: Deep Learning based A3C3 
A3C3-FF (baseline) 68.64 241.95 311.86 6,012.49 32.91 738.10 

A3C3-Conv 66.32 264.17 310.58 5,956.16 31.18 732.61 
A3C3-LSTM 65.58 242.05 313.95 6,114.99 34.59 742.79 

2: Model based RL + 3: Agent clustering (one model per cluster) 
MB-A3C3 (LSTM) 
-Randomly 

  65.58   272.22 309.07   5,705.82   30.89   730.69 

MB-A3C3 (LSTM) 
-Location-based 

 66.77     315.89    310.36    5,600.28    31.55   675.18 

MB-A3C3 (LSTM) 
-DTW 

 72.81    326.51   306.51   5,590.06   29.17   654.95 

MB-A3C3 (GRU) 
-Randomly 

67.89   314.44   312.59   5,649.13    33.03  674.10 

MB-A3C3 (GRU) 
-Location-based 

66.37   317.43   311.15   5,654.46    32.21  672.61 

MB-A3C3  
(GRU)-DTW 

69.37   321.77   310.71   5,597.87    32.54  672.26 

MB-A3C3 (Transformer) 
-Randomly 

69.22   315.68   316.66   5,697.35    33.10  738.86 
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Algorithm 
Internal (kWh) ↑ External (kWh) ↓ Net bills ($) ↓  
8 300 8 300 8 300 

MB-A3C3 (Transformer) 
-Location-based 

69.41   314.78   317.11   5,738.70    32.20  719.60 

MB-A3C3 (Transformer) 
-DTW 

70.86   317.80   318.67   5,601.17    32.80  723.73 

 

For the multi-agent model, there is one agent per household for the 

experiment with 8 households (no clustering is applied). For the experiment with 300 

households, there is only one agent per cluster. It is assumed that internal trade within 

communities should increase while external trade directly with the main grid should 

be reduced by the algorithm. 

The baseline MADDPG was extended from 8 to 300 households to ensure the 

validity of the algorithm. Subsequently, of all the 12 algorithms, the MB-A3C3 (LSTM)-

DTW algorithm was found to be the winner ($654.95). As a result, when compared with 

MADDPG ($789.85), household energy bills are seen to have fallen by more than $100. 

Energy bills turned out to be 17% lower than trading with the grid ($790.51).  At the 

end of the trading day, the community's net energy bills were greatly reduced via the 

algorithm. Meanwhile, internal trade increased, and external trade decreased while 

peak demand for energy dropped from above 600 to 589.26 kW. 

As depicted in Figure 37, the training time of the multi-threaded algorithms 

(A3C3 and MB-A3C3) was compared to the single-threaded (MADDPG) in both 8 (Figure 

37a) and extended 300 households (Figure 37b). Although consuming more training 

time, MB-A3C3 (LSTM)-DTW is efficiently processed by an agent's clustering and 

environment modeling.  

Training time will be 1,767.38 minutes if the number of agents is increased from 

8 to 300. (one model per each agent). The result approximated 149.36 minutes when 
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implemented to the model-based MB-A3C3. Such insights could greatly aid MB-ability 

A3C3's to support a large number of agents. 

  

(a) 8 Households    (b) 300 Households 
Figure  37. Training time (min) of each RL algorithms by number of households. 

 

In Figure 38, the community’s average energy bill per day for the training set is 

presented. The reward of the five RL algorithms' convergence during the training phrase 

is depicted to illustrate the superior performance of MB-A3C3 (LSTM)-DTW over other 

algorithms; providing faster convergence and lower energy bills. When trading within a 

community, the algorithm is optimized under certain constraints and environments. 

An agent's energy bill is reduced by having a price incentive scheme in the algorithm. 

It is seen that the reward tends to be lower as agents have no knowledge or experience 

of how to trade during the first stage. After the training phase, the optimized network 

parameters, which result from multi-threaded mechanisms, deep learning networks, 

agents' clustering, and environmental models, efficiently lower the community's 

energy bills, as shown by the green line in the graph. 
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Figure  38. The community’s energy bill per day over 4,000 episodes of training; a 
lower bill is preferred. 

 

It is proved that less external trade and more internal trade can contribute in 

lower energy bills. When trading within a community, the algorithm is tuned for trading 

constraints: purchasing less and selling more at local prices rather than grid prices. An 

agent's energy bill is reduced as profits and expenses increase. 

5.2.4.2. Effect of multithreaded and deep learning in policy model 

In this section, we aim to show that A3C3-FF outperforms the baseline (MADDPG). 

Also, the performance can be further improved by applying deep learning techniques 

(Conv1D) rather than the feed-forward architecture (FF). 

From Table 15, it is noted that the performance of the A3C3-Conv1D model is 

superior to that of the single-threaded MADDPG, having a 9.86% (from 34.59 to 31.18) 

and 7.25% (from 789.85 to 732.61) of energy bill reduction in 8 and 300 households, 

respectively. Moreover, by comparing results with different network architectures in 

Figure 39, the A3C3-Conv1D algorithm outperforms A3C3-FF and A3C3-LSTM, revealing 

the lowest energy bills in both 8 (Figure 38a) and extended 300 households (Figure 

38b).  
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(a) 8 Households    (b) 300 Households 
Figure  39. Community’s net energy bills of MARL algorithms by number of 

households. 
 

Because LSTM is typically used to analyse given sequences of data, CNN 

outperforms LSTM when a policy model evaluates the correlation between 

observations in a limited timestep to take appropriate action. CNN is designed to 

leverage "spatial correlation" in data. 

 

5.2.4.3. Effect of agent’s trading behavior time series clustering 

Figure 39 compares 300 agents' clustering methods: DTW and Euclidean. As 

projected in Figure 40, DTW is denser than the Euclidean method having a more 

different centroid (red line) and superior silhouette score of 0.23, while the Euclidean 

has a score of 0.17. 

As shown in Figure 41, three clustering methods were inspected: 1) randomly 

selected from eight households, 2) location-based, and 3) DTW to observe the results 

affected by clustering techniques in MB-A3C3 (LSTM). 
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(a) DTW    (b) Euclidean 
Figure  40. Agent’s daily trading behavior clustering results of four clusters; the red 

line is the centroid of each cluster. 
 

 

Figure  41. Community’s energy bill of each forecasting and clustering techniques in 
MB-A3C3 (LSTM) from 300 households. 

 

The algorithm utilizes forecasted values from centralized data from the clustering 

model as one of the states for the policy model. After being optimized during training, 

the policy will act due to its experience considering other factors. If incorrect 

categorization occurs in clustering, forecasted values will not be as accurate as before 

because it expects to get accurate forecasting values based on behavior. 
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5.2.4.4. Effect of forecasting models in MB-MADRL framework 

In Table 16, it is seen that the multivariate-LSTM provides superior root mean 

square error (RMSE) on testing sets over GRU and the transformer in both trading price 

and quantity forecasting model. 

 

Table  16. The performance of forecasting models in terms of RMSE (lower is 
preferred). There are two measures: predicted trading price and predicted trading 

quantity. Boldface refers to the winner. 
Method RMSE of predicted price RMSE of predicted quantity 

Multivariate-LSTM 0.0344 0.0263 

GRU 0.0582 0.0379 

Transformer 0.0412 0.0290 

 

In Figure 42, trading price and quantity forecasting results are depicted. According 

to the accurate forecast, the policy model can learn to act and minimize energy bills 

more efficiently. As illustrated in Table 14, MB-A3C3 (LSTM)-DTW outperforms other 

algorithms by providing higher internal trade, lower external trade, and reduced 

community energy bills in both 8 and 300 households. 

 

 

(a) The actual and predicted trading price.  
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(b) The actual and predicted trading quantity. 
Figure  42. Results are shown for actual and predicted trading price and quantity 
using the multivariate-LSTM model for the first 240 timesteps of the testing set. 

 

5.2.4.5. Effect of MB-A3C3 in each households 

Another benefit of P2P energy trading in communities is that each participant's 
net energy bill is reduced as each household attempts to trade their energy with 
others. In Table 17, each households’ average energy bills per day from P2P energy 
trading compared to directly grid trading is illustrated. 
 
Table  17. The average energy bills per day per household of MB-A3C3 compared to 
grid. 

Algorithm Internal trade 
(kWh) 

External trade 
(kWh) 

Net bills ($) 

Min. Max. Average 

Grid - 26.50 -0.02 0.33 2.64 
MB-A3C3 

(LSTM)-DTW 
1.09 18.63 -0.02 0.29 2.18  

(17% 
reduction) 

 
In Figure 43, the histogram of each household is shown to indicate the average 

energy net bills. Most households have successfully reduced their energy bills.  
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Figure  43. Histogram of the average energy bills of each households trading their 
energy with MB-A3C3. 

 

5.2.4.6. Effect of component removal test 

There are three main contributions for utilizing the novel MB-A3C3 in P2P energy 

trading: 

d. Multi-agent deep reinforcement learning (MADRL): This technique can 
effectively handle data complexity and many agents. 

e. Agent’s daily trading behavior clustering: Having insignificant 
consideration on prosumers’ trading behavior in previous research, this 
research problem is addressed by classifying prosumers into clusters 
based on their daily trading habits.  

f. Model-based framework: MADRL has been enhanced with the model-
based concept called “MB-MADRL”. It aims to manipulate the lack of 
local knowledge by allowing agents to generate a model of their 
environments.  

Figure 44. indicate the community’s net energy bill of 8 and 300 households 

having component removal to assess the importance of each following contributions. 
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Figure  44. The community’s net energy bill of 8 and 300 households for 
component removal analysis. 

 

The cost reduction of each component removal method is depicted in Table 18. 

Policy module is the most significant component in both 8 and 300 agents, following 

with model-based framework and agents’ clustering, respectively. If we remove policy 

module, it means no trading occurs. Agents trading their energy to main grid with ToU 

and FiT pricing. The cost has not been dropped; however, it is quite close since there 

is no clustering for 8 agents in agents’ clustering test. For MBRL framework removal 

test, we investigate by randomly select trading previous day value in 300 agents. The 

cost is also reduced in both. 

 

Table  18. The effect of component removal test by community’s net energy bill 
and percent of cost reduction of each. 

Method Test 
Community's net bill ($) Cost Reduction 

8 agents 
300 

agents 
8 agents 

300 
agents 

No Policy 38.32 790.51     

Have Policy 30.42 671.94 -20.62% -15.00% 

No Clustering 29.15 726.87     
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Method Test 
Community's net bill ($) Cost Reduction 

8 agents 
300 

agents 
8 agents 

300 
agents 

Have 
Clustering 

30.04 670.23 3.05% -7.79% 

No MB 32.42 734.95     

Have MB 29.27 670.14 -9.72% -8.82% 

 

5.3. Discussion 
For the implementation of the real-world P2P trading environment, there are 

issues found interesting for further discussion. 

5.3.1. MBRL with forecasting model 

As investigated in Chapter 4.2, the MBRL framework begins by collecting 

environmental data and training the model to forecast. It is a requirement for MBRL 

that the forecasting model be accurate to ensure precise information for agents. The 

algorithm must be able to utilize the productive information to optimize the reward 

for the community's energy bill. 

5.3.2. Number of k in clustering method 

The clustering method was introduced to reduce the number of forecasting 

models (one model per cluster), assuming that homes in the same cluster behave 

similarly. Since it is quite costly to develop a forecasting model separately for each 

household (a total of 300 households), three clustering techniques were tested to 

determine the winner: random matching, location-based clustering, and k-means 

(DTW) clustering. 

The results of clustering depend on the number of clusters (k); bias-variance 

trade-off determines the cluster number. If overfitting is taken into consideration, a 

large cluster will produce a tiny bias while a small number of clusters will produce a 
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minor variation (sometimes favorable for generalization or interpretation) and is 

typically great for prediction. In Figure 45, the community's energy bill and peak 

demand for 300 households diverge between k = 4 and 7; between k = 8 and 10, a 

tight race begins. It is projected that if k is increased to 300, the result will remain the 

same while requiring a significant amount of computational resources. It is significant 

that the winner of the selected number of clusters (k = 4) exhibits the lowest energy 

bill and peak demand. 

 

Figure  45. The inspection of energy bill and peak demand from k = 2 to 10 using 
the winner’s clustering method (k-means (DTW)). 

 

5.3.3. The variety of each households’ trading method  

It is thought to influence the model if some houses use their own method, 

such as ZI. These behaviors are then collected and trained in a recurrent manner to 

increase the experience for more suggestions. Trading behavioral information via 

different methods, such as buying without trust, at will, or based on experience, will 

make the model easier to categorize. Thus, the model provides more accurate 

forecasting. 

5.3.4. The scenario of P2P energy trading 

The manager-based energy market allows it to trade energy both inside the 

community and, if necessary, with other communities, but this market structure 
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requires gathering data on each market participant to create and resolve a centralized 

optimization problem. P2P energy trade, on the other hand, might be an excellent 

design for a society that is self-sufficient in terms of energy because it is decentralized, 

adaptable, and privacy-preserving. Meanwhile, P2P energy trading can ensure the 

network's security through ex post security verification. 

For the purposes of our investigation, the algorithm functions as a centralized 

system, gathering data from each agent, filtering out the house ID, and then modeling 

the trading information for each household. After obtaining those forecasting values, 

each household, which is considered to have no information about the source of the 

data, continues trading their energy to reduce their energy bills. The scenario is 

centralized-decentralized, combining the benefits of both a manager-based and a P2P 

energy market. 

5.3.5. The seasonality in time-series data 

Seasonality is a characteristic of a time series in which the data flows through 

predictable and recurring changes on a yearly basis. Seasonal refers to any predictable 

variation or pattern that recurs or repeats over the course of a year. In time-series 

forecasting, one of the key frontiers in deep learning is the attention mechanism, which 

was created to enhance performance on longer input sequences. The fundamental 

goal is to enable the decoder to access encoder data selectively when decoding. This 

is accomplished by creating a unique context vector for each time step of the decoder, 

computing it in function of the most recent hidden state and of all the hidden states 

of the encoder, and assigning trainable weights to each of them. 

In this way, the attention mechanism provides the various input sequence 

components with varying degrees of priority while paying closer attention to the inputs 

that are more pertinent. The model's name is explained by this). The attention weights 

also provide the attention mechanism the advantage of being simpler to understand 

than other deep learning models, which are frequently referred to as "black boxes" 

because they lack the ability to explain their results. 
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CHAPTER VI 

CONCLUSION 
 

 

In this dissertation, we propose a novel model-based deep reinforcement 

learning for two scales of energy markets: wholesale and retail. The model-based deep 

RL algorithm MB-A3C contributes significantly to wind energy strategic bidding in the 

wholesale energy market. Through (i) the attention-LSTM, (ii) Conv-A3C, and (iii) the 

MBRL framework, the MB-A3C utilizes a combination of a time-series forecasting model 

with advanced machine learning approaches. The superiority of MB-A3C over other RL 

algorithms was conclusively demonstrated by the reduction in average costs per day 

of bidding, especially in the five scenarios of the well-known Nord Pool datasets: 

Denmark and Sweden. The five scenarios having different adjustments of price ratios 

for the cost of reserve and dispatch energy were carried out to investigate the potential 

of MB-A3C. It is significant that MB-A3C outperformed all baselines and performed 

closely to the upper bound. Such a model is found to provide the lowest average cost 

per day, which maximizes WPP’s revenue. For P2P energy trading in the retail energy 

sector, a model-based multi-agent deep reinforcement learning algorithm called MB-

A3C3 is presented. Firstly, the baseline A3C3 was enhanced by using the 1D 

convolutional network. Secondly, RL can support a large number of households 

(agents) by clustering those houses based on their trading behaviors using dynamic 

time warping (DTW). Thirdly, the environment was forecasted using multivariate LSTM; 

this is called model-based RL. Besides, both the multivariate-LSTM and CNN network 

are seen to improve multi-agent deep reinforcement learning. For large-scale 

households, the time-series clustering strategy based on trading behavior was utilized 

as an agent-based model. The experiment was conducted on the Ausgrid data set 

based on 300 households in NSW, Australia. Results demonstrate that our MB-A3C3, 

being less time-consuming and less complex, proved to be superior to other RL 
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algorithms, producing costs 17% lower than traditional grid trading. It is significant that 

MB-A3C3 leveraged internal trading between households, thereby decreasing external 

trading under the grid's price incentives and constraints. Herein, the algorithms are seen 

to potentially aid in reducing customers' electricity bills.  

Further research must investigate various regulations to embrace more real-

world scenarios of electricity consumers, producers, and power system operators to 

create more opportunities for energy trading. Moreover, by adding other related 

factors, e.g., weather and system information, we can further improve the approach to 

make it more accurate. Training agents with more factors can provide more optimized 

policies. The algorithm can be enhanced and customized if energy storage 

components are enhanced and data is provided. More appropriate algorithms, 

optimization approaches, and deep learning methods will be included and designed 

to improve the algorithm's performance and generate more realistic results.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REFERENCES 
 

REFERENCES 
 

 

1. Nagbe, K., J. Cugliari, and J. Jacques, Short-Term Electricity Demand Forecasting 
Using a Functional State Space Model. Energies, 2018. 1. 

2. Lisi, F. and I. Shah, Forecasting next-day electricity demand and prices based 
on functional models. Energy Systems, 2020. 11. 

3. Shah, I., et al., Short-Term Electricity Demand Forecasting Using Components 
Estimation Technique. Energies, 2019. 

4. Weron, R., Electricity price forecasting: A review of the state-of-the-art with a 
look into the future. International Journal of Forecasting, 2014. 30. 

5. Kristiansen, T., Forecasting Nord Pool day-ahead prices with an autoregressive 
model. Energy Policy, 2012. 49: p. 328–332. 

6. Mulaosmanovic, M. and E. Ali. SHORT-TERM ELECTRICITY PRICE FORECASTING ON 
THE NORD POOL MARKET. 2017. 

7. Roungkvist, J., P. Enevoldsen, and G. Xydis, High-Resolution Electricity Spot Price 
Forecast for the Danish Power Market. Sustainability, 2020. 12: p. 4267. 

8. Nowotarski, J. and R. Weron, Recent advances in electricity price forecasting: A 
review of probabilistic forecasting. Renewable and Sustainable Energy Reviews, 
2017. 81. 

9. Panapakidis, I. and A. Dagoumas, Day-ahead electricity price forecasting via the 
application of artificial neural network based models. Applied Energy, 2016. 
172: p. 132-151. 

10. Kolberg, J.K. and K. Waage. Artificial Intelligence and Nord Pool s intraday 
electricity market Elbas : a demonstration and pragmatic evaluation of 
employing deep learning for price prediction : using extensive market data and 
spatio-temporal weather forecasts. 2018. 

11. Chinnathambi, R., et al., A Multi-Stage Price Forecasting Model for Day-Ahead 
Electricity Markets. Forecasting, 2018. 1: p. 3. 

12. Karabiber, O. and G. Xydis, Electricity price forecasting in the Danish day-ahead 
market using the TBATS, ANN and ARIMA methods. Energies, 2019. 12: p. 928. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

 

13. Rantonen, M. and J. Korpihalkola, Prediction of Spot Prices in Nord Pool’s Day-
Ahead Market Using Machine Learning and Deep Learning. 2020. p. 676-687. 

14. Foster, J., X. Liu, and S. McLoone, Load forecasting techniques for power 
systems with high levels of unmetered renewable generation: A comparative 
study. IFAC-PapersOnLine, 2018. 51: p. 109-114. 

15. Yan, K., et al., Short-Term Solar Irradiance Forecasting Based on a Hybrid Deep 
Learning Methodology. Information, 2020. 11: p. 32. 

16. Li, P., X. Wang, and J. Yang, Short-term Wind Power Forecasting Based on Two-
stage Attention Mechanism. IET Renewable Power Generation, 2020. 14. 

17. Yang, J.J., et al., A deep reinforcement learning method for managing wind farm 
uncertainties through energy storage system control and external reserve 
purchasing. International Journal of Electrical Power & Energy Systems, 2020. 
119: p. 105928. 

18. Zhang, F. and Q. Yang, Energy Trading in Smart Grid: A Deep Reinforcement 
Learning-based Approach. 2020. 3677-3682. 

19. Jia, S., et al., A Deep Reinforcement Learning Bidding Algorithm on Electricity 
Market. Journal of Thermal Science, 2020. 29. 

20. Zhang, G., et al., A data-driven approach for designing STATCOM additional 
damping controller for wind farms. International Journal of Electrical Power & 
Energy Systems, 2020. 117: p. 105620. 

21. Liu, Y., et al., Deep Reinforcement Learning Approach for Autonomous Agents in 
Consumer-centric Electricity Market. 2020. 37-41. 

22. Kim, J.-G. and B. Lee, Automatic P2P Energy Trading Model Based on 
Reinforcement Learning Using Long Short-Term Delayed Reward. Energies, 2020. 
13: p. 5359. 

23. Longoria, G., A. Davy, and L. Shi, Subsidy-Free Renewable Energy Trading: A 
Meta Agent Approach. IEEE Transactions on Sustainable Energy, 2019. PP: p. 1-1. 

24. Zhou, S., et al., Combined heat and power system intelligent economic 
dispatch: A deep reinforcement learning approach. International Journal of 
Electrical Power & Energy Systems, 2020. 120: p. 106016. 

25. Mnih, V., et al., Asynchronous Methods for Deep Reinforcement Learning. 2016. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

 

26. Cao, D., et al., Bidding strategy for trading wind energy and purchasing reserve 
of wind power producer – A DRL based approach. International Journal of 
Electrical Power & Energy Systems, 2020. 117: p. 105648. 

27. Lin, L., et al., Deep Reinforcement Learning for Economic Dispatch of Virtual 
Power Plant in Internet of Energy. IEEE Internet of Things Journal, 2020. PP: p. 1-
1. 

28. Guan, J., et al., A parallel multi-scenario learning method for near-real-time 
power dispatch optimization. Energy, 2020. 202: p. 117708. 

29. Sutton, R., Dyna, an integrated architecture for learning, planning, and reacting. 
ACM SIGART Bulletin, 1995. 2. 

30. Wang, X. and T. Dietterich, Model-based Policy Gradient Reinforcement 
Learning. 2003. 776-783. 

31. Pong, V., et al., Temporal Difference Models: Model-Free Deep RL for Model-
Based Control. 2018. 

32. Xu, H., et al., Algorithmic Framework for Model-based Reinforcement Learning 
with Theoretical Guarantees. 2018. 

33. Kostmann, M. and W. Härdle, Forecasting in Blockchain-Based Local Energy 
Markets. Energies, 2019. 12: p. 2718. 

34. Tushar, W., et al., Peer-to-Peer Trading in Electricity Networks: An Overview. IEEE 
Transactions on Smart Grid, 2020. PP: p. 15. 

35. Hayes, B., S. Thakur, and J. Breslin, Co-simulation of Electricity Distribution 
Networks and Peer to Peer Energy Trading Platforms. International Journal of 
Electrical Power & Energy Systems, 2019. 115. 

36. Vithanage, V., et al., A review on Multi-Agent system based energy management 
systems for micro grids. AIMS Energy, 2019. 7: p. 924-943. 

37. Xu, Y., et al., Deep Reinforcement Learning and Blockchain for Peer-to-Peer 
Energy Trading among Microgrids. 2020. 360-365. 

38. Gao, G., Y. Wen, and D. Tao, Distributed Energy Trading and Scheduling Among 
Microgrids via Multiagent Reinforcement Learning. IEEE Transactions on Neural 
Networks and Learning Systems, 2022: p. 1-15. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 5 

 

39. Ghasemi, A., et al., A Multi-Agent Deep Reinforcement Learning Approach for a 
Distributed Energy Marketplace in Smart Grids. 2020. 1-6. 

40. Xiaohan, F., et al., Multi-Agent Reinforcement Learning Approach for Residential 
Microgrid Energy Scheduling. Energies, 2019. 13: p. 123. 

41. Christensen, M., C. Ernewein, and P. Pinson, Demand Response through Price-
setting Multi-agent Reinforcement Learning. 2020. 

42. Munir, M., et al., A Multi-Agent System Toward the Green Edge Computing with 
Microgrid. 2019. 

43. Nguyen, T., N.D. Nguyen, and S. Nahavandi, Multi-Agent Deep Reinforcement 
Learning with Human Strategies. 2019. 1357-1362. 

44. Simoes, D., N. Lau, and L. Reis, Multi Agent Deep Learning with Cooperative 
Communication. Journal of Artificial Intelligence and Soft Computing Research, 
2020. 10: p. 189-207. 

45. Christianos, F., L. Schäfer, and S. Albrecht, Shared Experience Actor-Critic for 
Multi-Agent Reinforcement Learning. 2020. 

46. Nguyen, N.D., et al., A Visual Communication Map for Multi-Agent Deep 
Reinforcement Learning. 2020. 

47. Yang, J., et al., Deep Mean Field Games for Learning Optimal Behavior Policy of 
Large Populations. 2017. 

48. Yang, Y., et al., Mean Field Multi-Agent Reinforcement Learning, in Proceedings 
of the 35th International Conference on Machine Learning, D. Jennifer and K. 
Andreas, Editors. 2018, PMLR: Proceedings of Machine Learning Research. p. 
5571--5580. 

49. Zhou, S., et al., Multi-Agent Mean Field Predict Reinforcement Learning. 2020. 
625-629. 

50. Wang, B., J. Xie, and N. Atanasov, Coding for Distributed Multi-Agent 
Reinforcement Learning. 2021. 

51. Canese, L., et al., Multi-Agent Reinforcement Learning: A Review of Challenges 
and Applications. Applied Sciences, 2021. 11: p. 4948. 

52. Witt, C., et al., Deep Multi-Agent Reinforcement Learning for Decentralized 
Continuous Cooperative Control. 2020. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 6 

 

53. Khorasany, M., Market Design for Peer-to-Peer Energy Trading in a Distribution 
Network with High Penetration of Distributed Energy Resources. 2019. 

54. Cui, J., et al., Optimal Electricity Allocation Model Under China's Planning-
Market Double-Track Mechanism Considering Bidding Game of Generation 
Companies. Frontiers in Energy Research, 2021. 9. 

55. Bellman, R., A Markovian Decision Process. Journal of Mathematics and 
Mechanics, 1957. 6(5): p. 679-684. 

56. Telser, L., Dynamic Programming and Markov Processes Ronald A. Howard. 
Journal of Political Economy, 1961. 69: p. 296-297. 

57. Bertsekas, D., Dynamic Programming and Optimal Control. 1995. 
58. Sutton, R. and A. Barto, Reinforcement Learning: An Introduction. IEEE 

transactions on neural networks / a publication of the IEEE Neural Networks 
Council, 1998. 9: p. 1054. 

59. Hazeghi, K. and M. Puterman, Markov Decision Processes: Discrete Stochastic 
Dynamic Programming. Journal of the American Statistical Association, 1995. 90: 
p. 392. 

60. Soares, T., P. Pinson, and H. Morais, Wind offering in energy and reserve 
markets. Journal of Physics: Conference Series, 2016. 749: p. 012021. 

61. Otterlo, M. and M. Wiering, Reinforcement Learning and Markov Decision 
Processes. Reinforcement Learning: State of the Art, 2012: p. 3-42. 

62. Bradford, A., Reinforcement Learning: An Introduction Richard S. Sutton and 
Andrew G. Barto. 2021. 

63. Khorasany, M., Y. Mishra, and G. Ledwich, Market Framework for Local Energy 
Trading: A Review of Potential Designs and Market Clearing Approaches. IET 
Generation Transmission & Distribution, 2018. 12: p. 5899 – 5908. 

64. Soto, E.A., et al., Peer-to-peer energy trading: A review of the literature. Applied 
Energy, 2021. 283: p. 116268. 

65. Alam, M.R., M. St-Hilaire, and T. Kunz, Peer-to-peer energy trading among smart 
homes. Applied Energy, 2019. 238: p. 1434-1443. 

66. Aitzhan, N. and D. Svetinovic, Security and Privacy in Decentralized Energy 
Trading Through Multi-Signatures, Blockchain and Anonymous Messaging 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 

Streams. IEEE Transactions on Dependable and Secure Computing, 2016. PP: p. 
1-1. 

67. Guerrero, J., et al., Towards a transactive energy system for integration of 
distributed energy resources: Home energy management, distributed optimal 
power flow, and peer-to-peer energy trading. Renewable and Sustainable 
Energy Reviews, 2020. 132: p. 27. 

68. Friedman, D. and J. Rust, The Double Auction Market: Institutions, Theories and 
Evidence. 1993. 14. 

69. Qiu, D., et al., Multi-Agent Reinforcement Learning for Automated Peer-to-Peer 
Energy Trading in Double-Side Auction Market. 2021. 2913-2920. 

70. Alabdullatif, A., E. Gerding, and A. Perez-Diaz, Market Design and Trading 
Strategies for Community Energy Markets with Storage and Renewable Supply. 
Energies, 2020. 13: p. 972. 

71. Wooldridge, M., An Introduction to MultiAgent Systems / M.J. Wooldridge. 2022. 
72. Zhang, D., X. Han, and C. Deng, Review on the research and practice of deep 

learning and reinforcement learning in smart grids. CSEE Journal of Power and 
Energy Systems, 2018. 4: p. 362-370. 

73. Quan, W., et al., Comparative Study of CNN and LSTM based Attention Neural 
Networks for Aspect-Level Opinion Mining. 2018. 2141-2150. 

74. Vaswani, A., et al., Attention Is All You Need. 2017. 
75. Jing, R., A Self-attention Based LSTM Network for Text Classification. Journal of 

Physics: Conference Series, 2019. 1207: p. 012008. 
76. Wang, Y., et al., Attention-based LSTM for Aspect-level Sentiment Classification. 

2016. 606-615. 
77. Janner, M., et al., When to Trust Your Model: Model-Based Policy Optimization. 

2019. 
78. Lu, Y. and K. Yan, Algorithms in Multi-Agent Systems: A Holistic Perspective from 

Reinforcement Learning and Game Theory. 2020. 
79. Nowe, A., P. Vrancx, and Y.-M. De Hauwere, Game Theory and Multi-agent 

Reinforcement Learning. 2012. p. 30. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

 

80. Juliani, A., Simple Reinforcement Learning with Tensorflow Part 8: Asynchronous 
Actor-Critic Agents (A3C), in Emergent // Future. 2017. 

81. Heess, N., et al., Emergence of Locomotion Behaviours in Rich Environments. 
2017. 

82. Perera, A.T.D. and P. Kamalaruban, Applications of reinforcement learning in 
energy systems. Renewable and Sustainable Energy Reviews, 2021. 137: p. 
110618. 

83. An, Z., et al., High dimensional quantum optimal control with Reinforcement 
Learning. 2020. 

84. Anfu, G., et al., An Autonomous Path Planning Model for Unmanned Ships 
Based on Deep Reinforcement Learning. Sensors, 2020. 20: p. 426. 

85. Lowe, R., et al., Multi-Agent Actor-Critic for Mixed Cooperative-Competitive 
Environments. 2017. 

86. Charbonnier, F., T. Morstyn, and M.D. McCulloch, Scalable multi-agent 
reinforcement learning for distributed control of residential energy flexibility. 
Applied Energy, 2022. 314. 

87. Shih, S.-Y., F.-K. Sun, and H.-y. Lee, Temporal pattern attention for multivariate 
time series forecasting. Machine Learning, 2019. 108. 

88. Zhang, X., et al., AT-LSTM: An Attention-based LSTM Model for Financial Time 
Series Prediction. IOP Conference Series: Materials Science and Engineering, 
2019. 569: p. 052037. 

89. Abbasimehr, H. and R. Paki, Improving time series forecasting using LSTM and 
attention models. Journal of Ambient Intelligence and Humanized Computing, 
2022. 13: p. 1-19. 

90. Qiu, D., et al., Scalable coordinated management of peer-to-peer energy 
trading: A multi-cluster deep reinforcement learning approach. Applied Energy, 
2021. 292: p. 116940. 

91. Chabchoub, Y. and C. Fricker, Classification of the vélib stations using Kmeans, 
Dynamic Time Wraping and DBA averaging method. 2014 International 
Workshop on Computational Intelligence for Multimedia Understanding, IWCIM 
2014, 2015. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 9 

 

92. Khalid, K. and R. Sudirman, Dynamic Time Wraping, Speech: Current Features & 
Extraction Methods. 2008. 

93. Gold, O. and M. Sharir, Dynamic Time Warping and Geometric Edit Distance: 
Breaking the Quadratic Barrier. ACM Transactions on Algorithms, 2018. 14: p. 1-
17. 

94. Javed, A., B. Lee, and D. Rizzo, A Benchmark Study on Time Series Clustering. 
2020. 

95. Thorndike, R., Who belong in the family? Psychometrika, 1953. 18: p. 267-276. 
96. Rousseeuw, P., Silhouettes: A graphical aid to the interpretation and validation 

of cluster analysis. Journal of Computational and Applied Mathematics, 1987. 
20: p. 53-65. 

97. Alcaraz, R., F. Hornero, and J.J. Rieta, Dynamic time warping applied to estimate 
atrial fibrillation temporal organization from the surface electrocardiogram. 
Medical Engineering & Physics, 2013. 35(9): p. 1341-1348. 

98. Aghabozorgi, Sr., A.S. Shirkhorshidi, and T. Wah, Time-series clustering - A 
decade review. Information Systems, 2015. 53. 

99. See market data for all areas. Available from: 
https://www.nordpoolgroup.com/Market-data1/#/nordic/table. 

 

 

 

https://www.nordpoolgroup.com/Market-data1/#/nordic/table


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

VITA 
 

VITA 
 

NAME Manassakan Sanayha 

DATE OF BIRTH 5 August 1989 

PLACE OF BIRTH Bangkok, Thailand 

INSTITUTIONS ATTENDED Department of Computer Engineering, Faculty of 
Engineering, Chulalongkorn University 

HOME ADDRESS 101/2 Village no. 5, Bang Kruai-Sai Noi 9 Alley, Bang Kruai-
Sai Noi Rd., Bang Kruai Subdistrict, Bang Kruai District, 
Nonthaburi 11130 

PUBLICATION M. Sanayha and P. Vateekul, "Model-Based Approach on 
Multi-Agent Deep Reinforcement Learning with Multiple 
Clusters for Peer-To-Peer Energy Trading," in IEEE Access, 
2022, doi: 10.1109/ACCESS.2022.3224460.  
 
Sanayha, Manassakan & Vateekul, Peerapon. (2022). 
Model-based deep reinforcement learning for wind energy 
bidding. International Journal of Electrical Power & Energy 
Systems. 136. 107625. 10.1016/j.ijepes.2021.107625.  
 
Sanayha, Manassakan & Vateekul, Peerapon. (2019). 
Remaining Useful Life Prediction Using Enhanced 
Convolutional Neural Network on Multivariate Time Series 
Sensor Data. Walailak Journal of Science and Technology 
(WJST). 16. 669-679. 10.48048/wjst.2019.4144.   
 
Sanayha, Manassakan & Vateekul, Peerapon. (2017). Fault 
detection for circulating water pump using time series 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 12 

 

forecasting and outlier detection. 193-198. 
10.1109/KST.2017.7886095. 

  

 

 


	ABSTRACT (THAI)
	ABSTRACT (ENGLISH)
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER I
	INTRODUCTION
	1.1. Objectives
	1.2. The Scope of Work
	1.3. Research Funding
	1.4. Publication

	CHAPTER II
	BACKGROUND
	2.1. Day-Ahead (Spot) Market
	2.1.1. Single-Agent Reinforcement Learning (SARL)
	2.1.2. Problem Formulation

	2.2. Peer-to-peer energy trading
	2.2.1. The double auction market mechanism
	2.2.2. Multi-Agent Reinforcement Learning (MARL)
	2.2.3. Problem Formulation

	2.3 Energy trading in Thailand
	2.3.1 Current algorithms
	2.3.2. Market rules
	2.3.3. Effect of energy trading to main grid


	CHAPTER III
	RELATED WORKS
	3.1. Deep Learning
	3.1.1. Convolutional Neural Networks (CNNs)
	3.1.2. Recurrent Neural Network (RNN)

	3.2. Single-Agent Reinforcement Learning (SARL)
	3.2.1. Asynchronous Advantage Actor-Critic (A3C)
	3.2.2. Distributed Proximal Policy Optimization (DPPO)
	3.2.3. Deep Deterministic Policy Gradient (DDPG)
	3.2.4. Model-Based Policy Gradient (MBPG)

	3.3. Multi-Agent Reinforcement Learning (MARL)
	3.3.1. Multi-Agent Deep Deterministic Policy Gradient (MADDPG) [85]
	3.3.2. Asynchronous Advantage Actor-Critic with Communication (A3C3) [44]


	CHAPTER IV
	CONCEPT AND RESEARCH METHODOLOGY
	4.1. MB-DRL for Wind Energy Bidding in the Wholesale Electricity Market
	4.1.1. Forecasting Model
	4.1.2. Policy Model
	4.1.2.1. The Critic Networks
	4.1.2.2. The Actor Networks
	4.1.2.3. The Convolution A3C (Conv-A3C)

	4.1.3. Model-Based Reinforcement Learning (MBRL) Framework
	4.1.4. The overall process

	4.2. MB-MA-DRL for Energy Trading in the Solar-installed households
	4.2.1. Policy model: A3C3-Conv1D with DA mechanism
	4.2.1.1. The Actor Networks
	4.2.1.2. The Centralized Critic Networks
	4.2.1.3. The Communication Network

	4.2.3. Agent’s daily trading behavior clustering
	4.2.4. Model-based multi-agent deep reinforcement learning (MB-MADRL) framework
	4.2.5. The overall process of MB-A3C3


	EXPERIMENTS AND RESULTS
	5.1. Experiment on SARL for Wind Energy Bidding in the Wholesale Electricity Market
	5.1.1. Data Description
	5.1.2. Experimental Scenarios
	5.1.3. Hyperparameters Setting and Details
	5.1.4. Evaluation
	5.1.5. The Experimental Result
	5.1.5.1. Overall Results
	5.1.5.2. Effect of The Forecasting Model
	5.1.5.3. Effect of component removal test


	5.2. Experiment on MARL for Energy Trading in the Retail Electricity Market
	5.2.1. Data Description
	5.2.2. Hyper parameters setting and details
	5.2.3. Evaluation
	5.2.4. Experimental results
	5.2.4.1. Overall results
	5.2.4.2. Effect of multithreaded and deep learning in policy model
	5.2.4.3. Effect of agent’s trading behavior time series clustering
	5.2.4.4. Effect of forecasting models in MB-MADRL framework
	5.2.4.5. Effect of MB-A3C3 in each households
	5.2.4.6. Effect of component removal test


	5.3. Discussion
	5.3.1. MBRL with forecasting model
	5.3.2. Number of k in clustering method
	5.3.3. The variety of each households’ trading method
	5.3.4. The scenario of P2P energy trading
	5.3.5. The seasonality in time-series data


	CONCLUSION
	REFERENCES
	VITA

