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In the video application, slow motion is visually 

attractive and gets more attention in video super resolution. To 

generate the high-resolution (HR) slow motion video frames 

from the low-resolution (LR) frames, two sub-tasks are 

required, including video super-resolution (VSR) and video 

frame interpolation (VFI). However, the interpolation 

approach is not successful to extract low level feature attention 

to get the maximum advantage from the property of space-time 

relation. To this extent, we propose a deep consecutive 

attention network-based method. The multi-head attention and 

an attentive temporal feature module are designed to achieve 

better prediction of interpolation feature frame. Bi-directional 

deformable ConvLSTM module aggregates and aligns with the 

information from the multi-head attention and temporal feature 

block to improve the quality of video frames. This method 

synthesizes the HR video frames from LR video frames. The 

experimental results in terms of PSNR show the proposed 

method of deep consecutive attention outperforms 0.27 dB and 

0.31 dB for Vid4 and SPMC datasets respectively, in average 

of PSNR compared to state-of-the-art baseline method. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation and Research Problem 

There are numerous important moments in the daily routine of our life that 

everyone wants to record with a camera, i.e., baby first time strolling, some tricky 

skateboard moves, playing with loving pets. It is conceivable to have 240 frame-per-

second (fps) video with a smartphone, high-speed professional cameras are however 

expected a high frame rate. Furthermore, millions of images and videos are published 

daily. Users can access these multimedia streams to learn more about topics that 

interest them or share special images with their loved ones. People appear to want 

high resolution more and more, mainly because they want a realistic and vivid visual 

experience. This is another aspect of the market-driven production of Ultra High-

Definition TV by manufacturing businesses today [1]. However, the resources you 

often access are low-resolution because they have either been compressed to fit within 

uploading constraints or are constrained by the capabilities of devices. The use of 

high-resolution displays in homes and mobile devices is increasingly widespread. 

Therefore, everyone demands for methods to convert LR images and videos into HD 

versions [2]. Reconstructing the HR version from the LR version is known as an 

image or multi-frame super-resolution. A video is a collection of images shown one 

after the other at a set frame rate. Video super-resolution is supposedly more flexible 

than single-image super-resolution because it can choose from various useful pieces 

of information to get superior results. The same scene of a video frame sequence is 

shown in Figure 1 with different resolutions. Consequently, numerous multimedia 

applications are expected to embrace it, including surveillance cameras [3], video 

streaming [4], high-definition television [5], video compression [6], [7], remote 

sensing [8], and video conferencing [9]. Many life events, like opening a bottle of 

champagne or seeing lightning, take place quickly and are challenging to watch in real 

time. A high frame rate camera can capture these moments effectively, and slow-

motion resulting video can be viewed. Slow-motion videos are becoming more and 

more common since modern smartphones can capture high frame rate video. 
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Figure  1: Video frame of same scene with different resolutions 
 

However, due to their constrained bandwidth, these cameras boost their frame rate 

at the expense of their spatial resolution. Moreover, a significant number of the events 

we might like to have with slow-motion are unpredictable, and these events are 

recorded with the frame rates having defined standard. It is impractical to record 

videos having a high rate of because it requires considerable memory and power for 

smart phones. Hence it is phenomenal to generate video with slow-motion having 

high quality from the recorded ones. Making a video in slow-motion from high-

quality recorded ones is incredibly interesting. These converted videos with higher 

frame rates benefit from smoothness due to video interpolation [10]. 

 

 

 

 

 

 

 

 

 

 

Figure  2: General process for video frame 
 

Other intriguing new uses include learning optical flow through the analysis of 

unlabeled videos utilizing a supervisory signal. Usually, a camera has limited spatial 

resolution and temporal resolution. The sensor’s spatial density in the camera and the 

blur of these sensors describes the spatial resolution. These reasons regulate the 

miniature size of spatial features detected visually. The video camera’s frame rate and 

time describe temporal resolution. This normalizes the utmost speed of active events 

Low Resolution 112×64 

High Resolution 448×256 
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reflected in a video sequence. Continuous and streaming visual data is typically 

recorded in the video with discrete consecutive frames. While the high-fidelity video 

is luxurious, it primarily accumulates at low-resolution (LR) and low-frame rates 

(LFR). The effort on spatiotemporal video super-resolution (VSR) has been recently 

established to blend temporal and spatial interpolation in a cohesive framework. It is 

expected to have a high-level spatiotemporal resolution of video sequences. Videos or 

images having large sizes can now be delivered in less time after the development of 

5th-generation mobile communication technology. In the meantime, video super-

resolution is garnering greater attention due to the increasing recognition of high-

definition (HD) and ultra-high-definition (UHD) display. Video is one of the most 

dominant forms of multimedia, so enhancing low-resolution videos has become 

crucial. While VSR algorithms deal with many consecutive images or frames at same 

time to take advantage of relationships between frames to resolve the targeted frame, 

image SR techniques typically handle one image at one time. VSR can manage frame 

by image SR algorithms and is seen as an increase of image SR. Still, the SR 

performance is always not excellent due to the prospect of introducing artifacts and 

jams, which results in unwelcome temporal incoherence within frames, [11]. 

Instant dynamical events that occur faster than the frame rate of cameras is not 

seen or captured improperly in recording of video sequences. This matter is often seen 

in action-packed sports, such as tennis, wrestling, and hockey, where it is hard to 

discern the motion or the actions of the ball or puck due to its rapid movement. In 

video sequences, two common visual effects are brought on by swift motion. The 

exposure duration of the camera is the cause of motion blur, and the temporal 

sampling presented by the frame rate of camera because of the other effect aliasing in 

motion. 

(i) Motion Blur: The camera creates frame by combining the scenes during 

the exposure time. Objects having fast motion therefore cause a visible 

blur beside their path, frequently leading to deformed or unrecognizably 

shaped things. This impact intensifies with speed, notably if the object's 

trajectory deviates from a straight line. Without distinguishing motionless 

and dynamic scene features or approximating their motions, spatial 
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aberrations like blur in motion can be handled by increasing the temporal 

resolution utilizing information from different video sequences [12]. 

Contrary to spatial SR, motion-deblurring in temporal SR requires minimal 

input cameras (video sequences) [13]. 

 

 

 

 

 

 

 

 

Figure  3: Distorted shape of ball in fast motion 
 

(ii) Motion Aliasing: Incorrect visual effects taken on by aliasing in point in 

time are a very significant concern in sequences of video with quickly 

changing situations. When a fast-moving object generates a trajectory with 

frequencies greater than the camera's frame rate, this is known as motion 

aliasing. The temporal resolution having high frequencies are "folded" into 

the temporal resolution having low frequencies. A distorted or inaccurate 

trajectory of the object with motion is visible. The well-recognized optical 

effect known as "wagon wheel effect" illustrates motion-based aliasing. 

When a wheel is quickly spinning, over a particular motion, it will seem 

revolving in the "wrong" way [14]. 

Temporal interpolations with complexity are used to increase the frame rate. The 

aliasing and blur because of motion cannot be improved by performing such 

sequences of video in "slow motion." This is so that the missing details of extremely 

quick dynamic occurrences can be retrieved from the information in one sequence of 

videos. A huge number of frames are extracted per second while creating slow-motion 

videos. If we don't record enough frames, the fast video will look rough and 

unwatchable unless we use sophisticated AI techniques to expect the additional 

frames by applying deep learning procedures to convert appealing, 240 fps slow-

motion from 30 fps video. The framework of AI chooses two different frames and 

then builds intermediate motion by following the sequence of objects from one frame 
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to the other. Although it doesn't provide outcomes quite as accurate as a human 

intellect would, it comes near. Before the technique can prosper commercially, it 

needs to be improved. The extreme temporal resolution has been missed because of 

too much time being subsampled and blurred [15] shown in Figure 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4: Image of occlusion and motion ambiguity challenges 
 

On the other hand, numerous sequences offer more illustrations of the dynamic 

scene. While none of the specific sequences has adequate visual information, 

combining the data from every sequence facilitates the creation of a high-resolution 

video sequence that accurately depicts dynamic occurrences. Thus, even though the 

wagon wheel appears erroneously in all the input sequences, a reconstructed HR 

sequence will appear as the appropriate motion. [15]. 

Regardless of having extremely different attributes, the spatial dimensions and 

temporal dimensions are associated. This introduces spatial and temporal visual 

tradeoffs particular to spatiotemporal SR and is not present in more conventional 

spatial SR. For example, the same input sequences can create output sequences with 

various space-time resolutions. Typically, a high increase in the spatial resolution 

must be offset by a substantial increase in temporal resolution. Additionally, blending 

input images with various spatial resolutions is not beneficial in classic image-based 

SR because a HR image will merge the data in a LR image. Information from several 

camera kinds and space-time resolutions may be complementary. To create a better 

video sequence with a more spatial and more temporal resolution, data can be a 

combine from high-quality cameras—which have good spatial resolution but have 
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very less "temporal resolution"—with information from traditional video cameras. 

Motion interpolation occasionally accompanies visual anomalies in the screen, such 

as a tiny tear or glitch that appears briefly. The innovation's impact is most obvious 

when it suddenly appears during a rapid camera pan. The number of artifacts in 

contemporary commercial displays has decreased over time due to the advancement 

of related technology but has not eliminated it. It is crucial to research and fill in the 

significant space between frames. The soap opera effect, however, destroys the 

theatrical appearance of the film works by making it appear as though the viewer is 

either on set or seeing the background elements [10], [15]. As a result, almost all 

manufacturers have sought to reduce the feature's functionality or impact quality. The 

main issue of a typical solution in problem setups that generate several intermediate 

frames is not only to approximate appropriate motion among successive images but 

also to monitor occlusion to avoid excessive artifacts across motion limitations in the 

interpolated output. Motion interpolation is widely accepted despite its flaws because 

it improves visual clarity by dropping motion uncertainties by camera shakes and 

defective cameras. Additionally, it makes it easier to develop computer games with a 

better frame rate for a further convincing experience, although the additional input lag 

can be an involuntary side effect. The key differences between a frequently captured 

high frame rate and an inserted high frame rate are that the latter is reliant on none of 

those as overhead mentioned flaws, contains increasingly accurate image data and 

demands extra memory and transmission speed for the reason that frames are not 

formed in real-time. 

High-speed internet, efficient storage space opportunities, and high-proportion 

compression methodologies, like MPEG-1, MPEG-2, and MPEG-4, have all made it 

simpler to comprehend accessible video data. Therefore, there is a considerable 

requirement for the automated detection of semantically significant results for video 

reviews to aid in video utilization, handling, and indexing. Computer vision literature 

comprises many methodologies to programmed event-based recognition and outlining 

in action-packed sports applications. Most tactics, resulting in domain-specific 

methodologies, are developed for certain games, visual editing, or explicit scenarios. 

For instance, some limit the events to football games, while others limit them to 
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baseball, soccer, or basketball. Some of them also mandate that cameras observe the 

events [10]. 

Because of the motion dynamics of high-resolution (HR) video with slow motion, 

it is visually evident and finely detailed. However, maintaining the perceptual quality 

and photo-realistic video sequence while converting LR and LFR videos into HR is a 

crucial challenge [16]. Shechtman et al. [14] recently developed the Space-Time VSR 

model, which enhanced the temporal resolution and spatial resolutions from the LR 

sequence. Additionally, the application of this STVSR model in real-world scenarios 

is constrained by its high processing cost and poor performance in video sequences 

with fast-varying motions and complex analytic forms. VFI and VSR are two machine 

learning tasks where deep learning-based techniques [17], [18] have shown promise in 

recent years. First, the missing intermediate LR frames from the sequences are 

interpolated with VFI, and after this HR frames are recreated with VSR. The spatial 

resolution and the time interpolation are connected in this instance. This method fails 

to fully use the space-time relation property because it cannot draw attention to low-

level features. 

SR methods established on deep learning are deeply researched because of the 

massive accomplishment of deep learning in many disciplines. Many deep neural 

network VSR methods have been created. They frequently use LR and HR sequences 

to input the network for alignment within the frame, extraction of features, and their 

fusion. They create HR sequences for the corresponding LR sequences. Many VSR 

methods have a pipeline consisting of a module of alignment, a feature extraction and 

a reconstruction [11], as shown in Figure 5. 

 

 

 

Figure  5 Pipeline of VSR tasks 
 

Latest convolutional neural network (CNN) based techniques to create a unified 

framework [19], [20], [21] have been developed to solve these shortcomings. This 
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means that within a deep learning network, the LR features are first retrieved from the 

LFR and then up-sampled in time and space. Although the unified end-to-end 

framework outperforms the previous models in terms of implementation, the state-of-

the-art baseline method [19] cannot completely exploit mutual relations because of 

shortcomings in the outcomes of feature temporal interpolation. Due to this flaw, 

reconstruction errors accumulate in both temporal and spatial domains, leading to 

undesirable effects in the super-resolved results, such as blurring and aliasing. 

The thesis is structured as follows: Chapter 2 explains the related works 

comprising of video frame interpolation (VFI), video super-resolution (VSR), channel 

attention (CA), Multi-head attention (MHA), and space-time video super-resolution 

(STVSR). The overall framework with a deep consecutive attention network is 

introduced in chapter 3 of the methodology. Experimental results of deep consecutive 

attention networks for video super-resolution have been demonstrated in chapter 4. 

Lastly, the conclusion of the research work is described in chapter 5. 

1.2 Objectives 

a. Develop an algorithm to generate high-resolution (HR) slow-motion video 

sequences. 

b. Develop a deep consecutive multi-head channel attention network for 

video super-resolution (VSR). 

1.3 Scope of Research 

a. Measured the performance of the proposed video super-resolution (VSR) 

model by PSNR and SSIM at scale ×4. 

b. Evaluate the performance of the proposed video super-resolution (VSR) 

algorithm with state-of-the-art methods in terms of objective and 

subjective scores. 

1.4 Expected Output 

a. Produce better quality slow-motion HR video output compared to previous 

models. 

b. The algorithm can be operated in real-time scenarios.  
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CHAPTER 2 

RELATED WORKS 

This chapter goes through the related work on video frame interpolation (VFI), 

video super-resolution (VSR), Channel Attention (CA), Multi-head attention (MHA), 

and space-time video super-resolution (STVSR), respectively. 

2.1 Video Frame Interpolation (VFI) 

The key goal of the VFI is to generate smooth motion with the least amount of 

visual blur while maintaining the local information of objects with motion in the 

produced intermediate frames. By creating an intermediate frame from two 

neighboring original frames [22], VFI tries to improve temporal resolution. The 

picture sequence estimation problem serves as the foundation for conventional 

approaches. This method falls short in scenes with intricate image textures and quick 

movements. This VFI technique includes path-based and phase-based. There are three 

types of interpolation methods: flow-based, GAN-based, and CNN-based, as shown in 

Figure 6. 

 

 

 

 

 

 

Figure  6: A taxonomy of video frame interpolation approaches 
 

A self-supervised framework was introduced by Liu et al. [1] and automatically 

modifies the network to calculate improved optical flow and distort images to make 

an intermediate frame. Compared to traditional supervised techniques, substantial 

results are obtained. However, their approach fails the optical flow estimate method 

because it generates undesirable effects like ghosts and halo because of occlusion. 
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Liu et al. [23] introduce method to enhance optical flow estimation by the 

captivating closeness among input and mapped-back images. This method also used 

motion linearity to work with large-scale motion and rich texture problems. Still, the 

method does not exhibit improved occlusion and complex motion results. There are 

now practical approaches for processing occlusion. Tianfan et al. [24] formed a 

system with three sub-associations, where main network combines interpolated 

frames using estimated parameters. 

In contrast, the networks calculate occlusion mask and optical flow. Jiang et al. 

[25] applied visibility maps that only blend the unoccluded picture element into the 

interpolated image to address occlusion analysis. In response to this issue, Bao et al. 

[26] work on depth awareness, shown in Figure 7. These methods outperform other 

techniques with glaringly superior outcomes. However, these interpolation techniques 

fall short when used with high-resolution movies beyond 4K and substantially record 

large-scale motion. Color and depth consistency can help to enhance the accuracy of 

estimated depth maps [27]. 

 

 

 

 

 

 

Figure  7: Depth-aware VFI network 
 

Contextual data and optical flow were both used by Niklaus et al. [28] to create a 

context-aware network. This system is created from Gridnet [29], which take together 

warping and pixel blending in one stride, in contrast to conventional interpolation 

techniques. Despite the significant state-of-the-art performance, this approach cannot 

analyze HR frames of video due to the inherent network complexity's memory 

constraints. Meyer et al. [30] designed a convolution neural based network, this 

model is not well-known for its texture, to control huge motion successfully. This is 
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illustrated in Figure 8. A network created by Niklaus et al. [31] estimates pixel-wise 

spatially adaptable kernels, including information about the optical flow between 

successive input frames with pixel warping. Their technology requires more computer 

resources when processing high-resolution video frames but offers cutting-edge 

performance for straightforward small-scale movements. Niklaus et al. [32] method 

substitutes the interpolation of 2-dimentional kernels frame with two distinguishable 

1-dimentional kernels to resolve the high-level memory requirement. Their method 

cannot process video frames at a resolution of 4K or higher since it requires more 

computation than current approaches. A remainder learning method that combines a 

multi-level residual estimate section, which creates the synthesized frame and 

expected flow, this method was suggested by Amersfoort et al. [33]. Interpolated 

economic motion neural networks for resolution with HD have been proposed by 

Peleg et al. [34] and Vidanpathirana et al. [35]. They suggest a real-time temporally 

aligned frame output in a block-wise way on CNN platforms [36]. A hybrid network 

created by Ahn et al. [37] comprises of temporal interpolation and spatial 

interpolation sub-layers that gradually generate a intermediate frame with high-quality 

subject to large-scale motion and complicated structural alterations cutting-edge 

performance is achieved. 

2.1.1 Phase-based approach 

Frame interpolation having phase information was primarily applied by Meyer et 

al. [22]. This methodology was established on the concept that for each pixel's phase 

shift values it will deliver small motion information. Though, they could not get their 

system to work well for significant motion. The establishment of phase-based 

methods is the idea that the motion of certain signals can be signified as a phase shift. 

The system's aim is to create an intermediate image from the input of two neighboring 

images. Our network directly predicts the steerable pyramid decomposition values 

rather than the color pixel values. They suggested a multi-scale pyramid-level 

structure Meyer et al. [30] to propagate phase information. 
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Figure  8: PhaseNet block by Meyer 
 

2.1.2 Flow-based approach 

Flow-based algorithms [25], [28],  improve temporal resolution by calculating the 

optical flow between neighboring frames. To enhance the feature of the 

accompanying video, it is required to explicitly synthesize intermediate frames and 

identify the kind of flow among appropriate objects in successive frames. 

Jiang et al. [25], model shown in Figure 8, this network learns to explain the 

presence of the two images taken as input in supplement to the motion models. The 

massive RGB color space makes it difficult to generate high-quality intermediate 

images. Figure 10 illustrates an approximation for optical flow for intermediate frame.  

 

 

 

 

 

 

Figure  9: Context-aware Frame Synthesis 
 

Niklaus et al. [28], this technique bends the frames taken as input and context 

maps o these inputs by optical flow. It uses forward warping that makes use of optical 
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flow, specifically. This method produced holes in the distorted output, primarily 

occlusion, as shown in Figure 11. 

 

 

 

 

 

 

 

Figure  10: Optical flow between pixels 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  11: Occlusion and Optical flow between pixels 
 

a. Optical Flow Based Interpolation 

This technique delivers upscaling of frame rate by leveraging optical flow in 

bidirectional, which identifies information of motion among consecutive images and 

gathers dense pixel similarities. The visible motion of frames moving with bi-

dimensional motion space is recommended by optical flow, and it can be examined as 

a trouble for the image interpolation area. Traditional methods utilized a variational 

version with an energy-saving method. Another research topic is improving the pixel 

synthesis stage, which involves merging the pixels of warped frames to produce an 

interpolated frame. Occlusion is handled concurrently with the aid of bidirectional 

information [38], [39], but is limited to pixel-by-pixel blending. As demonstrated in 

Figure 12, latest pixel synthesis method based on deep learning like Super SlowMo 

[25] and CtxSyn [28] . 
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Figure  12: Framework of interpolation based on optical flow 
 

Super SloMo [25], SepConv [32], and DAIN [26] are traditional techniques that 

have so far attained state of the art resolution of videos of the UCF101 [40] and 

Middlebury [38] standards. In contrast to earlier methods, it rebuilds information 

instead of just adjusting pixel information to decrease the blur generated by traditional 

video enhancement methods [41]. Implementation is evaluated using improved Vimeo 

datasets, SJTU Media datasets, and Ultra Video datasets with sufficient 4K image 

resolution. 

b. Motion Compensated Interpolation 

This method uses motion vectors to determine the transformation strategy from a 

given reference frame to the target frame. These techniques were developed to 

address the shortcomings of prior non-motion-compensated frame estimation 

techniques. It is a three-step sequential motion vector smoothing, motion estimation 

(ME), and motion-compensated (MCI) interpolation. The "velocity" vector of motion 

estimate is programmed to be calculated. Every pixel in the input frame, or the path, is 

taken by a picture in a time frame. Additionally, estimated motion determines 

constituent motion, and vectors spatially compensate each pixel halfway. 

 

 

 

 

 

 

 

 

Figure  13: Full search motion 
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This work seeks to assess the accomplishment of modern up-conversion of frame 

rate with advanced MC techniques. Using a multi-hypothesis Bayesian FRUC model, 

Hongbin Liu et al.  [42] unified a model to revise the optimization standard for 

forecasting the interpolated frame. As a replacement for optimal solution, the model 

builds a group of motion trajectory hypotheses using a set of "optimal" motion fields, 

as shown in Figure 13. After examining the numerous behaviors, dependencies, and 

interactions between different levels of consecutive video frames, Zhefei Yu et al. 

[43] proposed a self-correcting multilevel model that included a three-pixel block 

level, and sequence level. Each level implements constructive algorithms, such as 

block-level ME, by removing faulty MVs, and so on. The main goal of this technique 

is to effectively use level-wise benefits while learning from selected information to 

get beyond inherent restrictions. A method based on occlusion reasoning was put out 

by Won Hee Lee et al. [44], who predicted four interpolated frames utilizing the 

accuracy of estimated motion vector fields generated by a sophisticated optical flow 

framework [38]. 

Zhao et al. [45] offered an edge-based enhancement of estimated MVFs using 

hole filling in the MCI unit and edge information from the variable block ME module. 

Comparing the edge-based component to the traditional optical flow-guided and 

MSEA methods, the computation overhead of the edge-based component is countered 

by the visibly high quality of the findings. To reduce accuracy degradation before 

BME, Li et al. [46] created a low-complex version with an advanced EPF that 

subsamples high-frequency parts of video frames. By assisting BME in reducing 

mismatched blocks and neutralizing the negative impacts of homogenous forms in 

texture sections of video frames, the real-time EPF implements edge preservation of 

fundamental objects. 

2.1.3 Kernel-based approach 

The kernel-based approaches [32], [31], [26] integrate the image by working 

across local patches across each pixel rather than using solely pixel-wise information 

to maintain the local textual characteristics of the frame. 

Niklaus et al. [19] create pixel interpolation as a local convolution over patches in 

the input images and blends motion estimation and pixel synthesis into a single step. 
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To prevent the two-step method from being hampered when optical flow is unreliable 

because of occlusion, motion blur, and texture deficiency. This method's primary goal 

is to calculate the ideal convolutional kernel that will be used to synthesize each 

output pixel in the interpolated images. This approach’s convolution kernel 

coefficients must be non-negative and sum to one, which is a crucial requirement. 

 

 

 

 

 

 

 

 

 

Figure  14: Context extraction network 
 

Bao et al. [20] developed a depth-aware flow projection layer to get intermediate 

flows. The input frames, depth maps, and contextual data were then warped within the 

adaptive warping layer. Flow estimation, depth estimation, context extraction, kernel 

estimation, and frame synthesis networks are among the submodules that make up this 

model. This network produces the output frame via residual learning. This 

composition of the context extraction system is illustrated in Figure 14 and Figure 15. 

By using self-developed frame-warping techniques, many existing methods 

frequently locate regions with relevant information to correctly assess each output 

pixel. However, the bulk of present methods have a limited degree of freedom (DoF) 

and cannot go through the real-time challenges of complex motions. The most recent 

warping module, dubbed adaptive collaboration of flows (AdaCof), was created by 

Lee et al. [47] to address this problem. It is established on an operation that utilizes 

any number of pixels in any point. In contrast to SepConv [32], this approach creates 

the output frame by processing discrete offset vectors and kernel weights for every 

target pixel. 
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Figure  15: Residual block 
 

In contrast to traditional optical flow approaches [38], [43], [48], it offers a more 

generalized warping framework and redefines the majority of those as special cases of 

it. To reasonably construct real-time intermediate frames, the network architecture 

integrates dual-frame adversarial loss with a fully convolutional neural network 

advancing over DSepConv [49]. Cheng et al. (2020) proposed utilizing additional 

pertinent pixels to approximate kernels adaptively under deformable separable 

convolution [49], using a smaller kernel size with pertinent features to handle 

significant motion. DSepConv uses the encoder-decoder network to extract features. 

These attributes are utilized for each pixel in the frame to estimate separable kernels, 

masks, and offsets. In EDSC [50], the developers of DSepConv enhanced their earlier 

model. They could train with fewer parameters while still getting the same outcomes. 

They were also the first kernel-based method to successfully produce numerous 

interpolated frames between two consecutive frames. However, the outcomes for 

arbitrary time interpolation were inferior to cutting-edge flow-based methods. 

2.1.4 Deformable-convolution-based approach 

Flow-based and kernel-based approaches shown in Figure 16, combined in the 

deformable-convolution-based approach [47], [51], [50], [52]. The deformable 

convolution approach illustrates the benefit of variable spatial sampling, which is 

utilized in this method. This approach addresses the issues of intricate image texturing 

and quick scene movement. Low-cost deep learning techniques are very popular that 

efficiently exploit the color and motion information of high-quality sequences of 

video changes to interpolation processing techniques, great progress has been made. 
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Deep learning methods have shown encouraging outcomes on a variety of restricted 

datasets. Despite this progress, much more work needs to be done to provide 

outcomes that meet real-time requirements. Creating an effective, intelligent 

interpolation system is extremely laborious. Numerous difficulties arise from such an 

idea. 

 

 

 

 

Figure  16: Deformable convolution approach 

2.1.5 Visual artifacts and occlusion 

These between-frame differences, which are calculated using depth maps [26], 

[27] may result in viewpoint fluctuation that obscures the details of repeated arrivals 

of the same activities. To reduce occlusion, several frequently employed datasets 

involve subjects to perform actions in a constrained and visible background 

knowledge, resulting in less obstructed but constrained view data gathering. However, 

interactions in real-world scenarios are inevitably occluded, making it difficult to 

separate entities in overlapping regions and extract the features of individual objects. 

As a result, many existing approaches are ineffective. 

2.2 Video Super-Resolution (VSR) 

Several different VSR techniques have been put forth recently. Traditional 

approaches and deep learning make up most of them. As to Schultz and Stevenson, 

some conventional techniques only use affine models to estimate the motions (1996). 

For VSR, Protter et al. [53] and Takeda et al. [54] utilize non-local mean and 3D 

steering kernel regression, respectively. Liu and Sun [55] recommended a Bayesian 

method to reconstruct high-resolution frames to simultaneously estimate the 

underlying motion, blur kernel, and noise level. Ma et al. [56] utilize the probability 

maximization (EM) methodology to approximate the blur kernel and direct the 

reconstruction of HR frames. These explicit HR video versions are still inadequate to 

accommodate different video consequences. 
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SR methods established on deep learning are the topic of substantial research due 

to deep learning's outstanding performance in several fields [57].  

 

 

 

 

Figure  17: Basic concept of VSR tasks 

 

There have been many deep neural network-based video superresolution 

techniques developed. A taxonomy for VSR methods is illustrated in Figure 18. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  18: A taxonomy for VSR methods 
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2.2.1 Methods with Alignment 

Most methods for VSR alignment use motion estimation and compensation 

procedures. Motion estimation is particularly managed to obtain motion information 

within the frame. In contrast, motion compensation is employed to warp the frames 

after the motion information from the inter-frames and align them. The optical flow 

method is used to carry out most motion estimating procedures. 

a. Deep-DE 

Figure 19 describes the two stages of the deep draft-ensemble learning 

methodology Deep-DE [58]. Four convolutional layers make up the CNN in Deep-

DE: the first 3 stages are of deconvolution layers, while the fourth one is a typical 

convolution layer. The kernel dimensions of these layers are 11 by 11, 1 by 1, 3 by 3, 

and 25 by 25, and there are correspondingly 256, 512, 1, and 1 channels. 

 

 

 

Figure  19: The architecture of Deep-DE 

b. VSRnet 

The network design of VSRnet [59], based on the image SR method, is illustrated 

in Figure 20. Three convolutional layers and three motion estimation and 

compensation modules make up most of VSRnet. Each convolutional layer, except 

the final one, which is followed by the rectified linear unit (ReLU). 

 

 

Figure  20: VSRnet architecture 
 

The quantity of input frames is the primary distinction between VSRnet and 

SRCNN. In other words, while VSRnet employs a series of subsequent, adjusted 

frames, SRCNN only accepts a single input frame.  
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c. VESPCN 

A spatial motion compensation transformer (MCT) segment is recommended by 

the video-efficient sub-pixel convolutional network (VESPCN) [60] for motion 

estimation and motion compensation. In Figure 21, the modified frames are input into 

various convolutional layers for extraction of features and fusion. At end, a sub-pixel 

convolutional layer for upsampling is utilized to generate the SR results. 

 

 

 

Figure  21: The network architecture of VESPCN 

d. DRVSR 

Corresponding to the optical flow information, the detail-revealing deep video 

super-resolution (DRVSR) [61] illustrated in Figure 23, methodology suggests a sub-

pixel motion compensation layer (SPMC) that can carry out the upsampling and 

motion compensation procedures at the same time for neighboring input frames. 

 

 

 

 

 

 

 

 

 

Figure  22: Motion estimation and compensation 

 

 

a. A targeted frame b. Its neighboring 

frame 

c. Compensated image d. Estimated optical flow image 
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Figure  23: Architecture of DRVSR 

e. FRVSR 

Frame recurrent video super-resolution (FRVSR) [62] mainly recommends  to 

utilize the formerly inferred HR approximate to super-resolve the following frame to 

get temporally consistent outcomes. An optical estimate network is used in the 

detailed implementation to compute the optical flow from the preceding frame to the 

target frame. The LR flow is upsampled utilizing bilinear interpolation to the similar 

resolution as the HR video. 

 

 

 

Figure  24: Architecture of FRVSR 
 

f. SOFVSR 

It is recommended to super-resolve LR expected optical flow for video super-

resolution (SOFVSR) to get exceptional SR performance. The optical flow 

reconstruction network (OFRnet) is utilized to estimate the optical flow among frames 

ultimately generates HR optical flow. After that, a space-to-depth transformation is 

used to change the HR optical flow into the LR optical flow. The LR optical flow 

warps the adjacent frames to create the target frame lines up with its neighbors.  

 

 

 

Figure  25: Architecture of SOFVSR 
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g. TOFlow 

The task-oriented flow's (TOFlow) [24] architecture is shown in Figure 26. 

TOFlow operates SpyNet as the network for estimation, and a spatial transformer 

network (STN) is employed to warp the neighboring frame to calculate optical flow. 

The image processing segment for the VSR task comprises of 4 layers of convolution, 

having kernel sizes of 9 by 9, 9 by 9, 1 by 1, and 1 by 1, and channel counts of 64, 64, 

64, and 3, respectively. 

 

 

 

Figure  26: Architecture of TOFlow 
 

2.2.2 Methods with Deformable convolution 

Dai [63] originally presented the deformable convolutional network, and the 

enhanced version was proposed in 2019. Because it is customary in conventional 

CNNs to utilize fixed geometric formations in every layer, the network's capability to 

model geometric transformations is restricted. Figure 27 illustrates the deformable 

convolution for feature alignment. By projecting the target feature maps onto the 

nearby feature maps, further convolutional layers can be used to achieve offsets.  

 

 

 

 

 

 

 

Figure  27: Deformable convolution  
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a. EDVR  

The winning model in the NTIRE19 Challenge is the improved deformable video 

restoration (EDVR) [64], which is shown in Figure 28. The temporal-spatial attention 

(TSA) fusion module and the pyramid, cascading, and deformable (PCD) alignment 

segment is utilized by EDVR to proficiently fuse several frames and solve large 

motions in videos, respectively. 

 

 

 

Figure  28: The network architecture of EDVR 

 

 

 

 

 

Figure  29: Overview of Enhanced Deformable Video Restoration (EDVR) 
 

b. DNLN 

Consisting on deformable convolution [63], [65] and non-local networks, the 

deformable non-local network (DNLN) [66] creates an alignment segment and a non-

local attention segment [67], respectively. The alignment segment uses the original 

deformable convolution's hierarchical feature fusion module (HFFB) [68] to produce 

convolutional parameters. Additionally, DNLN employs numerous deformable 

convolutions in a cascaded approach, enhancing inter-frame alignment. 

 

 

 

 

Figure  30: Architecture of DNLN 
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c. TDAN 

The targeted and neighboring frames are subjected to deformable convolution by 

the temporally deformable alignment network (TDAN) [16], which accomplishes 

matching offsets. The adjacent frame is then offset-warped to line up with the target 

frame. A feature extraction section, a deformable convolution section, and a 

reconstruction section make up the three sections of TDAN. 

 

 

 

 

Figure  31: Overview of Temporally Deformable Alignment Network (TDAN) 
 

d. D3Dnet 

Figure 32. illustrates the layout of the deformable 3D convolution network 

(D3Dnet) [69]. To achieve strong spatiotemporal feature modeling capabilities, 

D3Dnet suggests 3D deformable convolution. The inputs are fed into a 3D 

convolutional layer to generate features, and then to Residual Deformable 3D 

Convolution (ResD3D) blocks to compensate for motion information and capture 

spatial information. 

 

 

 

Figure  32: Architecture of D3Dnet 

e. VESR-Net 

Video enhancement and super-resolution network (VESR-Net) [70], illustrated in 

Figure 33. A feature encoder, a fusion section, and a reconstruction section makes 

most of the VESR-Net. Separate NL can fuse the data through frames of video and 

pixels in each frame with a small number of parameters and a lighter network than the 

standard non-local architecture [67]. The reconstruction module employs CARBs 

followed by a feature decoder for upsampling, while the upsampled module is 
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implemented via a sub-pixel convolutional layer. Additionally, it generates the super-

resolved frame by blending it with the LR target frame by applying bicubic 

interpolation. 

 

 

 

 

Figure  33: VESRNet architecture 
 

2.2.3 Methods without alignment 

These methods which are working without alignment cannot align neighboring 

frames for VSR. For feature extraction, these algorithms primarily use spatial or 

spatiotemporal information. 

a) 2D convolution methods 

The frames are directly fed to the 2D convolutional network to perform processes 

such as feature extraction, fusion, and SR to perform alignment tasks. The network is 

forced to learn the correlation information inside frames, this might be a 

straightforward solution to the VSR problem. The exemplary techniques are FFCVSR 

[71] and VSRResFeatGAN [72]. 

 

 

 

Figure  34: The architecture of the generator in VSRResFeatGAN 

 

 

 

 

Figure  35: The architecture of FFCVSR 
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b) 3D convolution methods 

The 3D convolutional module [73] acts on the spatiotemporal domain. As a result, 

the correlations between frames are considered while processing video sequences, 

which is advantageous. The representative 3D convolution techniques for VSR 

include DUF [74]. 

 

 

 

 

 

Figure  36: Overview of Dynamic Up-sampling Filters (DUF) 
 

2.2.4 Recurrent back-projection network 

A Recurrent Back-projection Network (RBPN) that acquires the flow maps of 

multi-frames and concatenates them with LR video frames was proposed by Haris et 

al. [75]. However, it is difficult to establish precise flow in RBPN and unpleasant 

artifacts appear in aligned frames. Figure 37 illustrates the overview of RBPN. 

 

 

 

 

 

Figure  37: Overview of RBPN 
 

2.2.5 Convolutional LSTMs 

Convolutional LSTMs [76] (ConvLSTM) are applied to VSR algorithms because 

of the latest CNNs' ability to simplify the learning of the sequence-to-sequence (S2S) 

model and subsequently improve utilizing the temporal information. Although using 

ConvLSTM considerably enhances the VSR outcomes, the Recurrent Neural Network 
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(RNN) performs poorly in big and complex motions of the frames due to the absence 

of explicit temporal alignment. Xiang et al. [19] demonstrate a novel ConvLSTM 

approach by embedding it with an explicit state update cell to improve the efficiency 

of VSR. This means that the one-stage space-time VSR concurrently learns the spatial 

SR and the temporal feature interpolation without needing the supervision of 

intermediate LR frames. 

2.3 Channel Attention (CA) 

In convolutional neural networks, we create a channel attention map by leveraging 

the link between features across channels. A feature map's channels are feature 

detectors, so channel attention focuses on "what" is significant input image. We 

reduce the input feature map's spatial dimension to compute the channel attention 

effectively. 

It is widely acknowledged that human vision depends heavily on attention [77], 

[78]. Human vision does not seek to process an entire scene at once, an important 

characteristic of the human visual system. Instead people use a series of fragmentary 

glimpses to better understand the visual organization  and focus on relevant portions 

[79]. Recently, various attempts [80], [81] have been made to add attention processing 

to enhance CNN performance in challenging classification tasks.  

2.3.1 Channel attention module 

A feature map's channel is regarded as a feature detector [82]. When provided an 

input image, channel attention concentrates on "what" is significant. We reduce the 

input feature map's spatial dimension to compute the channel attention effectively. 

Average pooling has been widely used to aggregate spatial data so far. 

 

 

 

 
Figure  38: Channel Attention Module 
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The key-value set pair at the side of the output and the mapping query is the 

defined functions of attention, wherever the values, keys, query, and output are the 

vector quantities. The output is determined by the addition of values having some 

weight. The weight of every value is determined by the compatibility function of a 

query with its key corresponding to it. 

2.3.2 Scaled Dot-Product Attention  

This attention is illustrated in Figure 39. The queries, dimension values dv, and the 

dimension keys dk are attention inputs. The dot product is determined by all the keys 

with the query and divided by each dimension key after that. Each carries the identical 

input sequence that has been enhanced and encoded with positional information in the 

encoder stage. The queries and keys represent the identical target sequence. Values 

sent into the first attention block on the decoder side following this, which would also 

have been enhanced and embedded with positional information. The decoder's second 

attention block gets the encoder output as keys and values and the first attention 

block's normalized output as queries. The dimension of the keys and queries is 

represented by dk, whereas the dimension of the values is represented by dv. These 

queries, keys, and values are sent as inputs to the scaled dot-product attention, which 

then computes the dot-product of the queries with the keys. The attention scores are 

then created by scaling the result by the square root. After feeding them into a 

SoftMax function, a collection of attention weights is obtained. The values are finally 

scaled using the attention weights via a weighted multiplication process. The whole 

procedure can be mathematically stated Q, K, and V are the queries, keys, and values, 

respectively. In the end, the SoftMax function will be applied to attain the weight of 

the values [83].  

 

 

 

Figure  39: Attention with Scaled Dot-Product 
 

𝐴𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛 (𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ∗ [
𝑄𝐾𝑇

√𝑑𝑘
] ∗ 𝑉                                      (2.1) 
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Generally, the attention function is determined on the sets of queries, at the same 

time, are wrapped into a matrix Q. Similarly, the values and the keys are also wrapped 

in the shape of matrix K and V. 

2.3.3 Multi-Head Attention 

This attention is comprised of various single-attention functions. It also performs 

attention to the queries, values, and keys. It is beneficial after linearly projecting the 

keys, queries and values, n times with several linearly projected dimensions, i.e., dk, 

dq and dv respectively. The attention function is applied to each projected type of key, 

query, and value parallelly, yielding the output values of dv dimension. In the end, the 

result is a computer after applying concatenation [83]. 

The input was duplicated as vectors for the queries, keys, and values. These 

Query, Key, and Value inputs were each passed through a fully linked layer to 

decrease the parameters. A correlation matrix was generated using the condensed 

Query and Key inputs; it was then scaled down and placed through SoftMax to 

produce a weighted correlation matrix. Contextualized embedding vector that can be 

supplied to the decoder was created by multiplying the reduced value vector by this 

correlation matrix. This contextualized vector representation can be improved further. 

Additionally, we can divide our single input vector into numerous smaller chunks. 

Let's say divide the embedding vectors of 768 sizes into 4 blocks. These learned 

embeddings are what we employ in the embedding layer. Each word has a relevant 

meaning or concept attached to it. Different concepts are present in various 

embedding positions. After the input is divided into blocks, each block can present a 

notion. The final contextualized vector blocks will have more precise control over the 

notion they represent with the other words in the input when the attention model is 

applied on top of this. The Multi-head Attention Model refers to this. The input is 

divided into several heads, and the attention model runs on each of these heads 

separately. Information collection from various subspaces with different positions is 

allowed to the model by the multi-head attention. Expanding the single attention head 

is expressed below in the equation and illustrated in Figure 40. 
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Figure  40: Attention with Multi-Head 
 

𝑀𝑢𝑙𝑡𝑖 − ℎ𝑒𝑎𝑑 (𝑄, 𝐾, 𝑉) = 𝑐𝑜𝑛𝑐. (ℎ𝑒𝑎𝑑1, … … . , ℎ𝑒𝑎𝑑𝑛) ∗  𝑊𝑜,              (2.2)    

Where., 

ℎ𝑒𝑎𝑑𝑖 = 𝐴𝑡𝑡𝑒𝑛. (𝑄𝑊𝑖
𝑄 , 𝐾𝑊𝑖

𝑘 , 𝑉𝑊𝑖
𝑣)                                        (2.3) 

2.4 Space-Time Video Super-Resolution (STVSR) 

The objective of STVSR is to simultaneously improve the spatial and temporal 

resolution of video. Video spatial super-resolution (S-SR) and temporal super-

resolution (T-SR) have performed remarkably well thanks to the development of 

CNN. To execute STVSR, it is thus simple to do T-SR and S-SR in that order (two-

stage). However, spatial augmentation and temporal interpolation are inextricably 

linked and may work best together. It is challenging to benefit from this attribute 

when it is being processed separately. The two-stage method also frequently contains 

many parameters and is difficult to implement. STVSR aims to super-resolve the LR 

frames into HR frames while considering spatial fusion and temporal alignment. As a 

result, it is crucial to properly utilize the temporal relationships between various 

frames. Shechtman et al. [84] groundbreaking space-time SR tackled the issue of 

simultaneous spatial and temporal super-resolution.  
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Mudenagudi et al. [85] developed graph-cuts [86] optimization and maximum a 

posteriori-Markov Random Field [87] to address the STVSR model's reconstruction 

problem. Although STVSR models have improved in the ways mentioned above, they 

still have high computational costs and cannot simulate complex space-time visual 

patterns. 

Recent learning-based STVSR models combine the spatial and temporal 

challenges into a single-stage framework [19], [20], [21], [88] to overcome these 

problems. Based on the single-stage framework, the U-net design is used in the Kim 

et al. [88] model to offer a multi-scale spatial-temporal loss. To improve the frame 

interpolation process, Haris et al. [20] single-stage model is applied with the 

pretrained optical flow. Deformable convolution and bidirectional deformable 

ConvLSTM were employed by Xiang et al. [19], and a unified STVSR model was 

proposed to improve interpolation between intermediate frames and boost global 

temporal correlations. 

 

 

 

 

Figure  41: Overview Zooming Slow-Mo 
 

Xu et al. [21] presented a locally temporal feature comparison module and 

improved performance to address the local motion feature limitation of the Xiang et 

al. [19] model. The difficulty of extracting local motion cues, however, still exists. 
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CHAPTER 3 

PROPOSED METHOD 

The fundamental structure of the suggested methodology is explained in this 

section. Following that, we arrive at an empirical conclusion on the multi-head 

channel attention (MHA) block by analyzing the impact of careful feature temporal 

interpolation of LR frames. 

3.1 Overall Framework 

We first acquire the following visual features: 𝐹𝑡−1
𝐿  and 𝐹𝑡+1

𝐿  by feature extraction, 

as illustrated in Figure 42, from 𝐼𝑡−1
𝐿  and 𝐼𝑡+1

𝐿  respectively. The deep consecutive 

channel attention module receives the retrieved LR features as input, and multi-head 

attention is applied. CNNs make considerable use of the channel attention strategy. 

Assume that 𝑋 ∈  ℝ𝐶×𝐻×𝑊, which is an image feature in a network. Channel count as 

a whole is represented by C. The dimensions of a feature are H and W, respectively. 

The multi-head attention mechanism takes the LR feature frames and extracts the 

important data. The module for attentive feature temporal interpolation synthesizes 

the feature map 𝐹𝑡
𝐿 , corresponding to the missing intermediate feature map. In 

addition, to better exploit temporal information, a deformable ConvLSTM processes 

the temporally consecutive feature maps {𝐹𝑡
𝐿}𝑡=1

2𝑛+1. The quality of the features is 

currently high enough to use convolution. After applying the PixelShuffle [60] to 

features, high-resolution frames are rebuilt. 

 

 

 

 

 

 

Figure  42: The framework of Deep Consecutive Attention Network for VSR (DCAN) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 34 

3.2 Deep consecutive attention model 

Two steps make up the deep consecutive attention model: (i) the early stage of 

feature extraction and (ii) the attentive feature temporal interpolation stage. Below is a 

summary of these phases. 

3.2.1 The early stage of feature extraction 

From 𝐼𝑡−1
𝐿  and 𝐼𝑡+1

𝐿 , respectively, which include LR frames, this segment extracts 

visual features 𝐹𝑡−1
𝐿  and 𝐹𝑡+1

𝐿 . The 3-D feature maps having spatial information of 

frames are extracted with the help of feature extraction module. The network for 

feature extraction consists of a layer of convolutional and residual blocks, designated 

𝑘1 . After this 1 × 1 convolutional layer performs linear adaptation to make the desired 

dimension d of the features. Given 𝑋 ∈  (0, 255)3×𝐻×𝑊, which is the input feature 

maps having the size of visual feature as 𝑽 ∈  ℝ𝑤×ℎ×𝑑, the (w, h) represents the W/32 

and H/32. Then, these feature maps flatten into 2D as Vf = (v1, v2, …., vl). The l = w × 

h and the (v1, 2, …, l) ∈  ℝ𝑑contains the spatial information. 

By paying attention to the feature maps in this design, multi-head attention 

supports the task to get attentive features providing the meaningful information of the 

feature maps. Moreover, these maps contain supplementary data and capture the 

subtleties of elements absent from supporting frames. As a result, feature temporal 

resolution aids in the effective extraction of characteristics of the intermediate missing 

frame. 

3.2.2 Multi-head Attention 

In a multi-head attention module, the attention mechanism operated 

simultaneously in a parallel manner for all input sequences. The outputs of the 

attention mechanisms concatenate together and transform linearly into the desired 

dimension. Generally, the multi-head concept helps our model to have attention to the 

LR features in different shorter and longer feature aspects.  

We used scaled dot-product attention to concentrate on the important spatial 

regions for frame representation. The advantage of this architecture is that the 

representation vectors of a frame maintain the important information throughout the 

scene. The multi-head attention module is applied over the feature extractor of each 
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modality. Our objective is to learn a series of attention weight vectors, each of which 

focuses on a distinct subset of spatial features and is used to refine significant spatial 

characteristics. 

Step No 1: 

We use three different linear layers to create Query (Q), Key (K), and Value (V) 

and these linear layers have their own weights. The matrix of shape of feature is 

generated multiplying the embedding size of the features with the weight matrices. 

Then, this input is fed to the linear layers for the creation of Q, K, and V matrices. 

The information is spread across each head to apply attention across every single 

head. Basically, the Q, K, and V are logically divided into different matrices not 

physically because they contain the same information. This is done by using a single 

data matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  43: Query, Key and Value 
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Step 2:  

At this stage, we have our input vectors for the attention mechanism to calculate 

the score of the attention. This mechanism is illustrated in figure 44. 

 

 

 

Figure  44: Calculation of attention Score 

 

The attention score is calculated by the dot product between the Q and the 

transpose of K which is (Q * KT). 

Step 3: 

We use the √𝑑𝑘 to have stable value of attention otherwise, the gradient of 

features will become very small. The attention score will be divided with the 

dimension of the K while taking the square root of it. This mechanism helps us to 

have more stable gradients. Then we pass it through SoftMax by multiplying the 

attention score with it to normalize the attention score. 

 

 

 

 

 

 

Figure  45: Scaled Dot-Product Attention 

 

Here now we have separate scores of attentions of individual head. This needs to 

be merged into a one single score. For this first reshape the matrix of attentions core 
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by swapping of the sequence and the head dimensions i.e., (Batch size, Height × 

Width, Head). Basically queries, keys, and values expressed as head h individually 

learned linear projections. These head h projected queries, keys, and values are 

simultaneously fed into attention. The final output is created by concatenating the 

outputs from attention and learned linear projection. Multi-head attention is described 

as learning linear transformation using fully connected linear layers. 

 

 

 

 

 

 

 

 

Figure  46: Multi-head attention 

 

Mathematically it will be represented as: 

• Query 𝒒 𝜖 ℝ𝑑𝑞  

• Key 𝒌 𝜖 ℝ𝑑𝑘  

• Value 𝒗 𝜖 ℝ𝑑𝑣  

• Attention head Ai (i = 1, . . . , h) 

hi will be computed as: 

ℎ𝑖 = (𝑾𝑖
(𝑞)

, 𝑾𝑖
(𝑘)

, 𝑾𝑖
(𝑣)

)  ∈  ℝℎ𝑑𝑣 × 𝑑𝑚𝑜𝑑𝑒𝑙                                         (3.1) 

The output of multi-head has a linear transformation from the learnable 

parameters of each head 𝒉 after concatenation. In summary, three identical inputs are 

sent to the multi-head attention module. Three trainable matrices (Linear layers) are 
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used to create three vectors for each feature (query, key and value). These vectors fill 

the matrices Q, K, and V, one characteristic after another. Each query vector is 

compared to all the keys, and a key represents a vector. A query should be similar to 

the keys for terms that have some link for affinity, or connection with the query itself. 

In the QKT matrix, this similarity is represented by the dot products of the rows and 

columns. To prevent an excessive increase in the size of the products, a division by 

scale, the square root of dim_head, is used. We employ parallel layers of attention or 

heads h = 8. For every layer 𝑑𝑘 = 𝑑𝑣 =  𝑑𝑚𝑜𝑑𝑒𝑙/  ℎ =  64. The total computing cost 

is comparable to that of single-head attention with full dimensionality because of the 

lower dimension of each head. Using single matrix operation, the computations of all 

the heads are calculated instead of several operations. By doing this with the help of a 

few linear layers the model remains simple and provides efficient computations. 

Applying multi-head attention on extracted features of 𝐹𝑡−1
𝐿  and 𝐹𝑡+1

𝐿   which will 

become the attentive feature 𝐹𝑡−1
′𝐿  and 𝐹𝑡+1

𝐿 .  

𝑀𝑢𝑙𝑡𝑖ℎ𝑒𝑎𝑑 (𝑄, 𝐾, 𝑉) [𝐹𝑡−1
𝐿 , 𝐹𝑡+1

𝐿 ]  ⟹  𝐹𝑡−1
′𝐿 , 𝐹′𝑡+1

𝐿                                  (3.2) 

3.2.3 Attentive feature temporal interpolation 

Using the output feature maps from the LR sequences, 𝐹𝑡−1
𝐿  and 𝐹𝑡+1

𝐿 , as input to 

create the intermediate feature map 𝐹𝑡
𝐿. To generate the 𝐹𝑡

𝐿, the interpolation function 

f(.) for one stage STVSR can be represented as follows in equation (3.3). 

𝐹𝑡
𝐿 =  𝑓(𝐹𝑡−1

𝐿 , 𝐹𝑡+1
𝐿 ) ⟹  𝐵(𝑆𝑡−1(𝐹𝑡−1

𝐿 , 𝜑𝑡−1) , 𝑆𝑡+1(𝐹𝑡+1
𝐿 ,  𝜑𝑡+1))                    (3.3) 

The sampled features are aggregated using the blending function B(.). The 

sampling functions are 𝑆𝑡−1(·) & 𝑆𝑡+1(·), and the sampling parameters are 𝜑𝑡−1 & 

 𝜑𝑡+1, respectively. This makes it easier to distinguish between characteristics that 

move forward and backward. In contrast, it is impossible to compute forward and 

backward motion information using 𝐹𝑡
𝐿 . To alleviate this issue, the motion 

information is carefully interpolated and an interim feature map, 𝐹𝑡
𝐿 , is generated. 

This module can handle high motion rates in videos. The sampling functions have 

different weight sizes but use the same network design. To understand this 𝑆𝑖(·) taken 
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as an illustration. As input, it operates feature maps with LR frame 𝐹𝑡−1
𝐿  and 𝐹𝑡+1

𝐿  , to 

determine an offset for testing the 𝐹𝑡
𝐿 . 

∆𝑝t−1  =  𝑔t−1([𝐹𝑡−1
𝐿  , 𝐹𝑡+1

𝐿 ])                                              (3.4) 

 

 

 

 

 

 

 

 

Figure  47: Attentive feature temporal interpolation module 
 

here ∆𝑝t−1 is learnable offset and 𝑔t−1 represents a common function of various 

convolution layers. The following equation expressed the deformable convolution for 

the learned offset ∆𝑝t−1. 

𝑆t−1(𝐹t−1
𝐿 , 𝜑t−1)  =  𝐷𝐶𝑜𝑛𝑣(𝐹t−1

𝐿 , ∆𝑝t−1)                                 (3.5) 

Likewise, offset for ∆𝑝t+1  =  𝑔t+1([𝐹t+1
𝐿  , 𝐹t+1

𝐿 ]) with 𝜑t+1 as sampling 

parameter. The following equation expressed the deformable convolution for the 

learned offset ∆𝑝t+1. 

𝑆𝑡+1(𝐹𝑡+1
𝐿 , 𝜑𝑡+1)  =  𝐷𝐶𝑜𝑛𝑣(𝐹𝑡+1

𝐿 , ∆𝑝𝑡+1)                         (3.6) 

 

Simple linear B(.) is used to blend the sampled features: 

𝐹𝑡
𝐿  =  𝛼 ∗  𝑆t−1(𝐹t−1

𝐿 , 𝜑t−1)   +   𝛽 ∗  𝑆t+1(𝐹𝑡+1
𝐿 , 𝜑𝑡+1)                 (3.7) 
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𝛼 , 𝛽 = 1 × 1 learnable kernels of convolution and ∗ = operator of convolution. 

Intermediate feature maps {𝐹2𝑡
𝐿 }𝑡=1

𝑛  can be obtained after applying the function of 

deformable temporal interpolation to {𝐹2𝑡−1
𝐿 }𝑡=1

𝑛+1 

3.3 Bidirectional deformable ConvLSTM 

To generate an HR slow motion video frame with sequence-to-sequence mapping, 

we got the successive attentive feature maps: {𝐹𝑡
𝐿}𝑡=1

2𝑛+1. Previously, in different 

restoration tasks [89], [61], [64], it is confirmed that temporal information is very 

important. Before reconstructing HR frames from adjacent frames, we accumulate 

temporal contexts. ConvLSTM [76] is a standard 2-Dimensional sequence data 

modeling procedure, and it is adapted to execute temporal accumulation. Given that at 

the time (t), the cell state ct and the hidden state ht, updated by the ConvLSTM with: 

 

ℎ𝑡 , 𝑐𝑡  =  𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀(ℎ𝑡−1, 𝑐𝑡−1, 𝐹𝑡
𝐿)                                               (3.8) 

 

 

 

 

 

 

 

Figure  48: Deformable ConvLSTM 

 

 

After an in-depth study, it is found that the ConvLSTM has the inadequate 

aptitude to handle large motions in video sequences. Because it only tacitly captures 

motion among the previous states: ℎ𝑡−1 and 𝑐𝑡−1. This creates unembellished 

temporal divergence among ℎ𝑡−1, 𝑐𝑡−1and 𝐹𝑡
𝐿. As a result, instead of producing 

meaningful global temporal contexts it promulgates incompatible “noisy” content. 
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Therefore, the reconstructed HR frame will experience severe annoying artifacts. 

Deformable alignment is set as a state cell in the ConvLSTM to eliminate large 

motion video sequence problems and get efficient global temporal contexts. 

 

 ℎ𝑡 , 𝑐𝑡  =  𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀(ℎ𝑡−1
𝑎 , 𝑐𝑡−1

𝑎 , 𝐹𝑡
𝐿)                                       (3.9) 

 

Furthermore, to completely delve into temporal information, bidirectional 

deformable ConvLSTM is adapted [90]. Feature maps that are temporally inverted are 

encouraged to use in the deformable ConvLSTM by concatenating the hidden states 

from backward and forward pass to get the result in the shape of the final hidden state 

ℎ𝑡 
2
 for HR frame reconstruction. Moreover, bidirectional deformable ConvLSTM is 

used to improve temporal information, to deal with the successive feature maps: 

{𝐹𝑡
𝐿}𝑡=1

2𝑛+1.  

3.4 Frame Reconstruction 

We obtained successive feature maps to construct HR video slow-motion frames 

with sequence-to-sequence mapping. A temporally synthesized shared network takes 

each hidden state as the input and outputs the corresponding high-resolution frame. 

Bidirectional deformable ConvLSTM enhances temporal information. The residual 

block 𝑘2 has been stacked by the network to help it understand deep features. 

Reconstruction uses the upscaling module PixelShuffle [60]. The time and space 

super-resolution problems in STVSR are intra-related. This method can be trained and 

comprehend spatial-temporal interpolation at the same time. 

3.4.1 Pixel Shuffle 

The traditional methods result in new pixel information being formed when an 

image is enlarged (spatially, along the width and height), which frequently worsens 

the image quality and produces a blurred image. One of the newest layer types in 

contemporary deep-learning neural networks is the pixel shuffle layer. Its use is 

closely related to single-image super-resolution (SISR) research, which studies a 

group of techniques designed to create a high-resolution image from a single low-
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resolution one. The first SISR neural networks begin with a bicubic up-sample pre-

processing of the input low-resolution image. The model is then fed an image with the 

same dimensions as the desired output to improve resolution and fix details. In this 

way, although the quantity of image processing required is less, the number of 

parameters and additional computational power required by the training section 

increase (by a factor equal to the square of the desired up-sample scale). To overcome 

this difficulty a Pixel Shuffle conversion is also identified as sub-pixel convolution. 

In our framework, the pixel shuffle is used to enlarge the features reconstructed 

with the scale factor 4. The pixel shuffle shows efficient and superior performances 

due to rearranging the feature map without losing information and the padding effect. 

The sub-pixel convolution combines every single pixel on a multi-channel feature into 

an independent pixel on an image. In the picture below, you can see an illustration in 

Figure 48 of this transformation: 

Let’s assume that the feature map with the dimensions H and W is up-sampling on 

a scale of t-4. This model groups the feature map into sets of t2 = 4 channels C. Then 

rearrange each group into a 4 × 4 block of the pixels. Finally, the output size is (H × 

r, W × r). In other words, the tensor shape (C × t2, H, W) is rearranged to the tensor 

shape of (C, H × r, W × r) without losing information. 

 

 

 

 

 

Figure  49: Pixel Shuffle 
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CHAPTER 4 

EXPERIMENTAL RESULTS AND DISCUSSIONS 

In this chapter, the model estimates the results of well-known parameters of PSNR 

and SSIM which are compared with the baseline method. 

4.1 Experimental Setup 

Initially, 15,000 iterations are performed to compare our method with the baseline 

method [19]. Bicubic downscale interpolation is applied to get LR frames. These are 

randomly cropped with a patch size of 32×32. We use 𝑘1=5 and 𝑘2 =40, residual 

blocks are utilized in the extracting features and for the construction module of HR 

frames, respectively. Data augmentation is performed by horizontal flipping and 

randomly rotating 90◦, 180◦, and 270◦. To employ the deformable alignment Pyramid, 

Cascading and Deformable (PCD) structure is adopted as in [64]. Adam optimizer 

[91] is applied with  𝛽1 = 0.9 and 𝛽1 = 0.99 , where the cosine annealing gradually 

reduces the learning rate frame 4e-4 to 1e-7 for each batch. The batch size is set to be 8 

and trained on the GPU of Nvidia Titan XP. 

4.2 Evaluation metrics 

4.2.1 Peak signal-to-noise ratio (PSNR) 

The peak signal-to-noise ratio (PSNR) compares the peak signal to the corrupting 

noise. Equations 4.1 and 4.2 show the calculation in detail. Where n is the image's 

width, m is its height, 𝑥(𝑖, 𝑗) and 𝑦(𝑖, 𝑗)  are its high-resolution and low-resolution 

pixels, respectively. 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔 255

𝑀𝑆𝐸
                                                     (4.1) 

 

𝑀𝑆𝐸 =  
Σ𝑖=0

𝑛 Σ𝑗=0
𝑚 (𝑥(𝑖,𝑗)−𝑦(𝑖,𝑗))2

𝑛×𝑚
                                                    (4.2) 

4.2.2 Structural similarity index measure (SSIM) 

The structural similarity index measure (SSIM), is a technique that assesses the 

resemblance between the two pictures. The index can demonstrate how well the 
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prediction's output image performs compared to the reference image. The equation is 

as follows. 

𝑆𝑆𝐼𝑀 (𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦+𝑐1)(2𝜎𝑥𝑦+𝑐2)

(𝜇
𝑥2+𝜇

𝑦2+𝑐1)(𝜎
𝑥2+𝜎

𝑦2+𝑐2)
                                  (4.3) 

Where: 

• 𝜇𝑥 is the average of x, 𝜇𝑦  is the average of y, 

• 𝜎𝑥  is the variance of x, 𝜎𝑦  is the variance of y,  

• 𝜎𝑥𝑦 is the covariance of x and y, 

• 𝑐1 and 𝑐2 are constants needed to keep the formula valid and prevent the 

denominator from being zero. 

4.3 Datasets 

• For training, Vimeo-90K is used. These training sets include more than 

60,000 7-frame video sequences training. The dataset has been used 

extensively in earlier VFI and VSR investigations. 

 

 

 

 

 

 

 

 

 

 

 

Figure  50: Example images from Vimeo 90K dataset 
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• For testing, SPMC and Vid4 test sets are utilized. 

→ SPMC consists of 30 different videos, each of them contains 31 frames. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  51: Example images from SPMC dataset 
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→ Vid4 consists of four sequences, walks (740×480, 47 frames), foliage (740×480, 

49 frames), city (704×576, 34 frames), and calendar (720×576, 41 frames). 

 

 

 

 

 

 

 

 

 

 

 

Figure  52: Example images from Vid4 dataset 

 

4.4 Evaluation 

The well-known parameter’s structure similarity index (SSIM) and peak signal-to-

noise ratio (PSNR) is assumed to estimate STVSR performance. To estimate the 

effectiveness of numerous networks, we evaluate the model sizes and interpretation 

time of the Vid4 dataset determined on the GPU of Nvidia Titan XP. Figure 54 to 

Figure 59 are the visual comparisons of frames of different images taken from the 

Vid4 dataset with the scale ×4. Figure 60, Figure 61, and Figure 62 are the visual 

comparisons of frames of different images taken from the Vid4 dataset with the scale 

×4. 

The following figures show the comparison of each iteration between the baseline 

and our method. According to this, the value of PSNR and SSIM are increasing with 

the increase in the number of iterations.  
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Figure  53: Visual comparisons of frames of “LDVTG_009” from SPMC dataset on 

scale ×4 

 

 

 

 

 

 

 

 

 

 

Figure  54: Visual comparisons of frames of “NYVTG_006” from SPMC dataset on 

scale ×4 
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Figure  55: Visual comparisons of frames of “Veni3_011” from SPMC dataset on 

scale ×4 

 

 

 

 

 

 

 

 

 

 

Figure  56: Visual comparisons of frames of “hdclub_001” from SPMC dataset on 

scale ×4 
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Figure  57: Visual comparisons of frames of “car05” from SPMC dataset on scale ×4 

 

 

 

 

 

 

 

 

 

 

 

Figure  58: Visual comparisons of frames of “jvc_004” from SPMC dataset on scale 

×4 
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Figure  59: Visual comparisons of frames of “calendar” from Vid4 dataset on scale ×4 

 

 

 

 

 

 

 

Figure  60: Visual comparisons of frames of “walk” from Vid4 dataset on scale ×4 

 

 

 

 

 

 

 

Figure  61: Visual comparisons of frames of “city” from Vid4 dataset on scale ×4 
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The visual comparison of overlayed LR video frames of two videos between the 

DCAN, our method, and the baseline is illustrated in Figure 63 and Figure 64, 

respectively. As seen in detail, after applying the different models, the LR frames give 

blurry artifacts in the baseline case 

Figure  62 Visual comparison of video frames of “city” 

 

Frame 1 
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Frame 3 
 

   

Overlayed LR frames Zooming slow-mo DCAN (our) 
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However, our method outperforms in this regard and can reconstruct more 

visually appealing HR video frames with more accurate image structures and fewer 

blurring artifacts. 

Figure  63 Visual comparison of video frames of “foliage” 

Frame 1 
   

   

Frame 2 
   

   

Frame 3 
 

   

Overlayed LR frames Zooming slow-mo DCAN (our) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 53 

The experiments show the results have good progress with our method of DCAN 

as shown in Table 1 and Table 2. 

Table  1: Comparison of the proposed method on Vid4 dataset 

 

Table  2: Comparison of the proposed method on SPMC dataset 

 

Models Zooming Slow-Mo DCAN (Ours) 

Iterations PSNR SSIM PSNR SSIM 

SPMC_5000_G 23.35 0.6665 23.43 0.6670 

SPMC_10000_G 23.45 0.6671 23.50 0.6706 

SPMC_15000_G 23.79 0.6674 23.97 0.6717 

 

The baseline method is compared based on PSNR and SSIM with the proposed 

method at different iterations, i.e., 5000_G to 15000_G with two different datasets. As 

shown in the tables, the PSNR increases with the increase in iterations and 

outperforms 0.27 dB and 0.31dB for Vid4 and SPMC respectively, in average PSNR 

compared to the state-of-the-art baseline method. 

  

Models Zooming Slow-Mo DCAN (Ours) 

Iterations PSNR SSIM PSNR SSIM 

Vid4_5000_G 24.31 0.6914 24.46 0.6986 

Vid4_10000_G 24.28 0.7034 24.79 0.7096 

Vid4_15000_G 24.76 0.7167 24.93 0.7231 
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CHAPTER 5 

CONCLUSION 

5.1 Conclusion 

In terms of the well-known parameters of PSNR and SSIM, the methodology of 

our work described in this study outperforms. The space-time VSR consecutive deep 

attention network reconstructs video sequences with HR frames obtained from the LR 

frames. The deep consecutive channel attention module is added to get the desired 

outcomes. Especially the multi-head attention controls the information mixing 

between features of the frame. This leads to the creation of rich representations. The 

network thoroughly studied the intra-relatedness between the SR tasks. After 

employing a deep consecutive attention network, this method adaptively learns about 

the advantageous local and global contexts to resolve the problems with video motion. 

Testing with several iterations produces beneficial results and achieves the necessary 

effectiveness above the prior network. This method is skilled and equipped to manage 

the captivating motion in video sequences. 

5.2 Future Work 

Implement the high-quality dataset to further improve the performance of the 

proposed algorithm. 

Implement the transformer-based technique to analyze the behavior of the model. 
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