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In this thesis, the author proposed an intelligent radio spectrum 

monitoring system with implemented deep learning framework. Deep learning is a 
powerful method to handle hard tasks automatically. The system uses the RTL-
SDR USB dongle as the sensor to collect the spectrum data. This dongle is a low-
cost device that can measure the signal from 500kHz to 1700MHz. The maximum 
bandwidth of measurement is 2MHz. The main functions of this system are to 
collect the spectrum data and then detect the representation signals and extract 
their characteristics, such as bandwidth, center frequency, modulation type, and 
capacity. The modulation classification task was done with the deep learning Long 
Short-Term Memory model. The model can achieve up to 92% accuracy in the 
validated dataset. Compared to the result in the paper Convolutional radio 
modulation recognition networks O’Shea, T. J., Corgan, J., & Clancy, T. C. 
(2016), the model shows higher accuracy (92% vs. 87.4%). In addition, the model 
can run with a wide range of Signal-to-Noise Ratio values, while the other research 
papers often analyzes with a specific value. Finally, an algorithm of localization 
was implemented in the system in order to find the position of the unwanted or 
illegal signals. The average error of the algorithm in this thesis is 450m. 
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CHAPTER 1. INTRODUCTION 

 

Nowadays, wireless communication has a large portion of telecommunication 
technologies. Many new wireless technologies are upcoming, such as 5G, 6G, 
LoRaWAN, or NB-IoT. Wireless communication is convenient, efficient, and highly 
portable. With this rapid expansion, one of the most common problems is ensuring 
the signal source is relatively free from interference. The existence of an illegal or 
unlicensed signal will lead to a reduction in the capacity, bandwidth, and reliability 
required for other necessary transmissions. The interference signals could be easily 
detected by the report of the users (appear time, which application/service is a 
malfunction, repetition frequency), but detecting the illegal or unlicensed one is a 
significant challenge because it may not appear continuously or in the same 
frequency. Therefore, an automatic task that monitors and analyzes the current 
spectrum is essential. 

A spectrum monitoring system will automatically identify, report, and remove 
illegal or unlicensed interference signals. By monitoring the spectrum continually, 
problem signals can be identified as they occur in real time. This system can also 
examine and characterize the patterns of unwanted signals, then locate the 
transmission source, making the removal task can be done easier. In addition, the 
spectrum monitoring system can analyze the spectrum occupancy and make a 
report for government regulators, operators, and administrators to have a plan to 
utilize, optimize, provide solutions, allow new license registration, re-use, re-
establish, and avoid unnecessary violations between broadcasters. 

As mentioned above, the signal can be periodic or present at a different 
frequency over time. Therefore, one particular problem is promptly detecting the 
illegal or unlicensed frequency and its characteristics/location. In recent days, most 
of the work of spectrum monitoring has been done manually. The main function of a 
standard spectrum monitoring system is to measure the signals and broadcast their 
visualization to the monitor screen for supervision. Then the supervisor will use their 
acknowledgment and experiment to point out the unwanted ones. This work may 
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not be efficient and continuous because there will be several distractions when 
supervising and depending too much on personal decisions. In the Artificial 
Intelligence era, many tasks can be done automatically without humans. The 
evolution of computation machine's power could operate complex and huge tasks 
with incredible speed, accuracy, and reliability. Therefore, implementing AI in the 
spectrum monitoring system is also a good idea. 

The primary goal of this work is to design a spectrum monitoring system that 
automatically measures signals, detects all frequencies with their characteristics using 
deep learning, classifies them into legal and unwanted signals, and localizes the 
illegal or unwanted interference signal. This system will be simply designed to 
address the problem above. With this basement designation, we can apply it with 
several applications, which are given below: 

- Satellite earth station monitoring. 
- Government regulators enforcing spectrum policy. 
- Security at military facilities, national borders, utilities, airports, and 

other sensitive sites where monitors are positioned indoors. 
- Monitor jails/prisons for illegal broadcasts 
- Spectrum Monitoring usage surveys (white space). 
- Airport monitoring for interference. 
- Spectrum occupancy and frequency band clearing. 
- Sports venue monitoring.  
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CHAPTER 2. LITERATURE REVIEW 

 
Spectrum monitoring systems usually consist of a variety of functions, such as 

signal detection over a certain frequency of range, signal demodulation, signal 
waterfall recording, and feature extraction (bandwidth, center frequency, modulation 
type). There are several articles that mainly focus on determining the modulation 
type using Artificial Intelligent/Deep Learning. In addition, a few applications have 
been released for the user to use the essential functions of a spectrum monitoring 
system. They will be discussed in the sections below. 

2.1. Theoretical background: 
All wireless signals have a component path called Carrier Frequency/Signal. 

When transmitting information through a wireless signal, the information will be 
modulated with a carrier signal at a designated frequency. Depending on the 
modulation type, the transmitting signal will be different. When a device receives the 
signal, 𝑟(𝑡), the signal goes through the amplifier path, mixed path, and low-pass 
filter path, and then the Analog to Digital Conversion (ADC) Module will resample the 
signal at rate 𝑓𝑠 = 1/𝑇𝑠 [2]. The output of this step is the discrete version of the 
input signal. It includes two components, in-phase 𝑟𝑖 and quadrature-phase 𝑟𝑞 (IQ). 

𝑟𝑛 = 𝑟𝑛𝑖 + 𝑗𝑟𝑛𝑞 ( 2.1 ) 
From IQ data, the discrete signal can be re-perform as: 

𝑟𝑛 = 𝐴𝑛𝑐𝑜𝑠𝜃𝑛 + 𝑗𝐴𝑛𝑠𝑖𝑛𝜃𝑛 

{
𝑟𝑛𝑖 = 𝐴𝑛𝑐𝑜𝑠𝜃𝑛
𝑟𝑛𝑞 = 𝐴𝑛𝑠𝑖𝑛𝜃𝑛

 

( 2.2 ) 

𝐴𝑛 and 𝜃𝑛  are, respectively, the amplitude and phase of the signal at step 

𝑛. 
Fast Fourier Transform (FFT) is an algorithm that computes the Discrete 

Fourier Transform with less complexity. Applying the FFT to the IQ data will convert 
the IQ data from time-domain to frequency-domain, and then we can figure out the 
signal's frequency.  

With the frequency representation of a signal, the Signal-to-Noise Ratio is the 
difference between the signal amplitude and the base noise signal amplitude. The 
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Signal-to-Noise Ratio is an essential characteristic of the signal. SNR can determine 
how good the signal is. The data getting by Electrosense open APIs is a graph of 
SNRs. 

2.2. Wireless signal/modulation type classification articles: 
The authors of the paper [1] study the possibility of the convolutional neural 

network to the In-phase and Quadrature-phase (IQ) values of the temporal signal 
domain. They found that the efficiency and performance of the recent evolutional 
artificial intelligent methods are much higher than the classical method, which uses 
pure and classic theory. Therefore, they demonstrate an approach to radio signal 
modulation classification using Convolutional Neural Networks (CNNs) and Deep 
Neural Networks (DNNs), which offer flexibility to extract and learn the features in a 
wide range of applications and demonstrate proven classification accuracy against 
the classical approach. The dataset in this paper is available at radioml.com (which is 
now https://www.deepsig.ai/datasets). The dataset consists of 11 modulation types: 
eight in digital (BPSK, QPSK, 8PSK, 16QAM, BFSK, CPFSK, and PAM4) and three in 
analog (WB-FM, AM-SSB, and AM-DSB). Data was modulated at a rate of about eight 
samples per symbol with a normalized average transmit power of 0dB. They 
consequently extracted the dataset in the length of 128 samples and the shift step 
of 64 samples. They trained with several candidates for neural network and found 
that a 4-layer network, which consists of two convolutional layers and two dens fully 
connected layers, work very well. Figure 2.1 shows their proposed network. 

In general, they have approximately 96,000 examples for training and 64,000 
examples for testing and validation. After training, they achieved about 87.4% 
classification accuracy across all signal-to-noise ratios on the test dataset. 

The authors in [3] have proposed another model that uses Long-Short Term 
Memory architecture, which is a particular Recurrent Neural Network and very 
popular in extracting features from time-series data, to classify the signal’s 
modulation based on the RadioML dataset. In addition, they did not only train the 
model with In-phase and Quadrature-phase data but also applied the model to the 
average magnitude FFT data. In summary, they will build two general models with 
different input sizes. Figure 2.2 gives a view of their proposed model. 

https://www.deepsig.ai/datasets
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Figure 2.1 The authors in [1] propose the network to classify the signal. 
 

 
Figure 2.2 The proposed model in [3]. 
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The input of the model can be the average magnitude FFT bin at time t (with 
dimension n-by-1) or the amplitude (L2 normalized) and phase (normalized between 
-1 and 1) at time t (with dimension n-by-2). There are two LSTM layers with 128 cells 
connected to the input layer. The second LSTM layer would connect to a fully 
connected linear layer. Finally, a dense layer with softmax activation mapping with 
11 types of modulations. The authors gave several experiments to demonstrate the 
difference in performance with various parameters. Figure 2.3 show the confusion 
matrix for 2-layer amplitude-phase LSTM model on RadioML dataset at 0dB SNR. 
Figure 2.4 gives a result when changing the number of samples per symbol and 
sample length. Figure 2.5 demonstrates the result when changing the LSTM depth 
and number of cells in each LSTM layer. 

 
Figure 2.3 The confusion matrix for 2-layer amplitude-phase LSTM model on 

RadioML dataset at 0dB SNR. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

 
Figure 2.4 The corresponding result when changing the number of samples per 

symbol and sample length. 

 
Figure 2.5 The corresponding result when changing the LSTM depth and number of 

cells in each LSTM layer 
2.3. Signal detection: 

The authors in [4] proposed a model with Convolutional Neural Network in 
order to detect the representation of radar band signal through 
spectrogram/waterfall image. They considered a radio environment where three 
types of wireless technology may coexist: radars as incumbents, WLAN, and 
commercial downlink LTE. They performed this sample collection over three 
different bands: LTE 906 MHz, ISM 2462 MHz, and the 2300 MHz band, where the 
latter represented a radio medium that is free of interference. Their proposed model 
is given in Figure 2.6. The result of the research is demonstrated in Figure 2.7. 
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Figure 2.6 The proposed model of paper [4]. 

 
Figure 2.7 The detection result of paper [4]. 

 
2.4. Spectrum monitoring software: 

There are several released software for spectrum monitoring systems such as 
SDR-Sharp, HDSDR, SDR-RADIO.COM V2/V3, SDR++, Linrad, GQRX, CubicSDR, Studio1, 
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SDRUno, SigDigger, ShinySDR, WebRadio,… This software has various common 
functions as below: 

- Communicate with the hardware device. 

- Monitoring the spectrum at a certain frequency (normally with a 
range of 2 MHz) 

- Adjust antenna gain. 

- Demodulate and decode the signal. 

- Capture signal. 
Most of this software will not automatically detect the representation of a 

signal. Figure 2.8 gives a look at one of the spectrum monitoring software (SDR-
Sharp). 

 
Figure 2.8 SDR-Sharp’s graphical user interface. 
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CHAPTER 3. PROPOSED INTELLIGENT RADIO 

SPECTRUM MONITORING SYSTEM 

 

3.1. Hardware overview 

3.1.1. Client-sensor device: 
The remote sensing node used in this project is Electrosense, which consists 

of small-sized, low-cost, software-defined embedded computing devices connected 
to a simplistic RF frontend and a general-purpose antenna. The sensors can measure 
the spectrum ranging from 20 MHz up to 1.3 GHz. If an optional down-converter is 
applied, the measured range could expand to 6GHz. In general, the Electrosense 
sensor only consists of an embedded system, a radio frontend, and an antenna. The 
price of an Electrosense sensor varies from 184.45 to 238 Euros. Normally, the 
Electrosense sensor hardware will come along with the Electrosense software. The 
primary function of Electrosense is to monitor the radio spectrum over time. Besides, 
it can analyze the spectrum occupancy and decode the raw data (FM Radio, AM 
Radio, ADS-B, ACARS, AIS, LTE). In addition, the default Electrosense software could 
connect to the public Electrosense server to provide a visual of every function. 
Figure 3.1, Figure 3.2, and Figure 3.3 are, respectively, the homepage, monitoring 
page, and decoder page. 

 

 
Figure 3.1 Homepage of Electrosense server. 
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Table 3.1 Electrosense open-APIs information. 

Path Operation Description 
/sensor/list GET Get a list of all sensors 
/sensor/details/{serial} GET Get information about a single sensor 

/spectrum/aggregated 
GET Retrieve (aggregated) spectrum measurements 

of a particular sensor 

/spectrum/fft 
GET Retrieve FFT measurements as received by the 

sensor 
 

The format to use these APIs is shown below: 
https://username:password@electrosense.org/api/  + Path 

 

 
Figure 3.2 Monitoring page of Electrosense server. 

Furthermore, the Electrosense server provides several open APIs to retrieve 
the data. Table 3.1 gives an overview of these APIs. An example of a spectrum image 
is demonstrated in Figure 3.4. 

 

https://electrosense.org/#path--sensor-list
https://electrosense.org/#operation--sensor-list-get
https://electrosense.org/#path--sensor--serial-
https://electrosense.org/#operation--sensor--serial--get
https://electrosense.org/#path--spectrum-aggregated
https://electrosense.org/#operation--spectrum-aggregated-get
https://electrosense.org/#path--spectrum-fft
https://electrosense.org/#operation--spectrum-fft-get
https://username:password@electrosense.org/api/
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Figure 3.3 Decoding page of Electrosense server. 

 
Although almost necessary functions are provided in this server, it is still 

lacking for the most significant feature, which is raw IQ data retrieval. In the 
intelligent radio spectrum monitoring system, raw IQ is the most important data that 
would contain a lot of important information, such as modulation type and time 
shifting between receivers. Moreover, the Electrosense server will update the 
spectrum image of each sensor at a specific time, not in real time. Therefore, the 
system can not timely detect illegal or unlicensed interference signals, and then we 
miss our best chance to analyze and take action to remove them. Hence, the new 
software would be developed and implemented in a new fresh OS on Raspberry Pi 
3B+ to avoid the limitation of the Electrosense server. This software will have the 
basic functions given below: 

- Measuring and recording raw IQ data in real time. 

- Take the Fast-Fourier Transform on raw IQ data. 

- Send the required data to the server. 

- Receive command from the server. 
 
3.1.2. Central computational server: 
Because the sensor devices run with self-developed software, we could not 

use the Electrosense server. Therefore, another server should be deployed to fit with 
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the sensor’s functionality. There are two types of servers: cloud and local. With a 
cloud server, we do not need to maintain the machine periodically. Moreover, the 
cloud server can be upgraded and expanded (CPU, memory, storage). The data 
stored on the cloud server would not damage. The cloud server needs high 
bandwidth and internet speed for accessing, especially when we need to retrieve the 
data to the local machine for further processing. On the other hand, the local server 
has a high upload/download speed with the local area network or physical 
connection, while the price for the hardware and maintenance could be a significant 
problem. 

The local server will be used in this project. The local server machine's 
specification is given in Table 3.2. There are no GPUs in this machine, so the 
computation speed will not be considered in the result and discussion. 

Table 3.2 Local server machine’s specification. 
CPU Intel Xeon Silver 4214 
RAM 32GB Error-Correction Coding  
Storage 2TB – RAID 
GPU NO 
Operating System Window Server 2019 
 
The local server uses the MQTT protocol based on the Mosquitto platform 

for communicating with the sensor/client device. In addition, there is a web 
application on this server for the administrator to monitor and control all the devices 
in the network. This server has a few functions listed below: 

- Receiving and storing data from sensor/client devices. 

- Visualizing data and sensor information on the web application. 

- Controlling the sensor/client devices. 

- Detecting signals from spectrum data. 

- Extracting signal characteristics with deep learning. 

- Localizing the target signal source. 
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Figure 3.4 Example of spectrum image retrieved from Electrosense server. 

Furthermore, to enhance cyber security, a virtual private network (VPN) is a 
good idea to secure the connection between the clients and the server. All the data 
flow will be encrypted and routed only inside the VPN. Window Server 2019 has a 
VPN as a service. It contains a lot of protocols, such as PPTP, L2TP, and SSTP. 
Unfortunately, all of these protocols has fixed opened port on Window Server 2019 
and can not be modified, and the local server connects to the ethernet that only 
allow port 80 and 443 to be accessed. Therefore, another powerful VPN Server 
named Open VPN is a better choice because it is easily set up and has an editable 
port.  
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3.2. Data measurement 

RTL-SDR is a cheap USB dongle that provides a method for scanning the 
current presented wireless signal (FM, AM, DVB) in the designated set-up area. The 
received frequency range of RTL-SDR could be from 500kHz to 1.75 GHz, depending 
on the model. This thesis's intelligent spectrum monitoring system uses the RTL-SDR 
V3 with RT820T and RTL2832U inside it, given in Figure 3.5. This device could 
measure the signal frequency from 20MHz to 1766MHz in normal mode and from 
500kHz to 24MHz in direct resampling mode. The community developed lots of free 
software that supports the RTL-SDR, such as SDR-Sharp, HDSDR, and GQRX. The RTL-
SDR originates from the mass procedure DVB-T HDTV reception tuner dongle, which 
is used for receiving and demodulating the digital television signal. Later, with the 
effort of several contributors, the RTL-SDR has a new function that can directly 
access the raw IQ data from the built-in RTL2832U chipset. Consequently, the DVB-T 
could turn into a wideband SDR with a custom software driver. 

 
Figure 3.5 RTL-SDR USB dongle. 

The output of RTL-SDR is raw IQ data, a combination of In-phase and 
Quadrature-phase.  
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The RTL-SDR provides several resampling rates, where 2.048msps, 2.48msps, 
and 2.88msps are the most used resampling rate. For example, let's assume that 
RTL-SDR is now resampling a sine wave 10cos(2𝜋 ∗ 100 ∗ 106 ∗ 𝑡 + 𝜋/6) in 100 
nanoseconds with the three mentioned resampling rates above. Figure 3.6, Figure 3.7, 
and Figure 3.8 are the corresponding result. The higher the resampling rate, the more 
details the output is, but there could be a few missing samples. Figure 3.9 shows a 
demonstration of a real resampling case when plugging RTL-SDR into the PC and 
measuring the frequency of 101.5MHz and sampling rate of 2.048msps. 

 
Figure 3.6 Simulating the resampling example sine wave with sampling rate 

2.048msps 
In conclusion, the sensor device will measure the raw IQ data, take FFT on 

this data and then return both to the server. The simple code to retrieve raw IQ data 
and take FFT is demonstrated as Code 3.1. In addition, the RTL-SDR has a resampling 
bandwidth of 2.4MHz, and when coming far from the center, the FFT 
spectrum/power level seems to go down. Therefore, we need to combine two 
adjacent intervals with an overlapped value to avoid this issue. There is a library in 
python called "Soapy Power" that provide the function mentioned above. Hence, the 
sensor device will implement both "PyRtlSdr" and "Soapy Power" to retrieve the raw 
IQ data and FFT spectrum in real-time. Figure 3.11 gives an example of the spectrum 
image with the range of 300MHz-1000MHz. 
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Figure 3.7 Simulating the resampling example sine wave with sampling rate 

2.480msps 
 
 
 
 

 
Figure 3.8 Simulating the resampling example sine wave with sampling rate 

2.880msps 
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from rtlsdr import RtlSdr 

from pylab import * 

 

number_sample = 32*1024 

 

sdr = RtlSdr() 

sdr.center_freq = 101.5e6  # change frequency here 

sdr.sample_rate = 2.048e6  # change sample rate here 

sdr.gain = 37.2  # change antenna gain here 

sdr.read_samples(number_sample) 

data = sdr.read_samples(number_sample) 

magnitude_spectrum(data, Fc=sdr.center_freq, 

                   Fs=sdr.sample_rate, scale="dB")  # FFT 

show() 

 

 
 

Code 3.1 Example code for retrieving raw IQ data and take FFT. 
 
 
 

 

 
Figure 3.9 Example of IQ data retrieved from RTL-SDR 
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Figure 3.10 FFT magnitude of real raw IQ data. 

 

 
Figure 3.11 An example of spectrum image with the range of 300MHz-700MHz 
3.3. Signal identification over spectrum 

Once the system receives the spectrum data from the sensor device, it will 
process to the signal identification function. SNR value is one of the best criteria to 
determine whether there are signals represented or not. SNR is a value that describes 
the comparison between the power level of the existing signal and the background 
noise; in detail, it is a ratio of signal power over the noise power. The unit of SNR is 
decibels (dB), sometime decibels-miliWatt (dBm). An SNR value higher than 0dB 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 20 

indicates that the signal power is stronger than the noise power. In general, the 
formula of SNR is given as equation (3.1): 

𝑆𝑁𝑅 =
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
 ( 3.1 ) 

And equivalents to: 

𝑆𝑁𝑅(𝑑𝐵) = 10 ∗ log (
𝑃𝑠𝑖𝑔𝑛𝑎𝑙

𝑃𝑛𝑜𝑖𝑠𝑒
)

= 10 ∗ log(𝑃𝑠𝑖𝑔𝑛𝑎𝑙) − 10 ∗ log(𝑃𝑛𝑜𝑖𝑠𝑒) 
=> 𝑆𝑁𝑅(𝑑𝐵) = 𝑃𝑠𝑖𝑔𝑛𝑎𝑙(𝑑𝐵) − 𝑃𝑛𝑜𝑖𝑠𝑒(𝑑𝐵) 

( 3.2 ) 

 
Where 𝑆𝑁𝑅(𝑑𝐵), 𝑃𝑠𝑖𝑔𝑛𝑎𝑙 , 𝑃𝑠𝑖𝑔𝑛𝑎𝑙(𝑑𝐵), 𝑃𝑛𝑜𝑖𝑠𝑒 , 𝑃𝑛𝑜𝑖𝑠𝑒(𝑑𝐵) are, 

respectively, SNR values in dB, power of the signal, power of the signal in dB, power 
of noise, and power of noise in dB. 

Furthermore, the power is a proportion of the square of voltage with the 
value of a resistor as a scaler: 

𝑃 =
𝑉2

𝑅
 ( 3.3 ) 

Hence, 

𝑆𝑁𝑅(𝑑𝐵) = 10 ∗ log (
𝑉𝑠𝑖𝑔𝑛𝑎𝑙
2

𝑅
/
𝑉𝑛𝑜𝑖𝑠𝑒
2

𝑅
) = 10 ∗ log ((

𝑉𝑠𝑖𝑔𝑛𝑎𝑙

𝑉𝑛𝑜𝑖𝑠𝑒
)
2

) 

= 20 ∗ log (
𝑉𝑠𝑖𝑔𝑛𝑎𝑙

𝑉𝑛𝑜𝑖𝑠𝑒
) 

( 3.4 ) 

In the equation (3.4), both power of signal and noise use the same resistor 
value because they use the same antenna to measure. 

Looking at the spectrum in Figure 3.12, for example, we can manually find 
out the presented signal by determining the range that has a greater value than the 
surrounding.  

The SNR value is also a criterion for rating signal strength. Table 3.3 explains 
this criterion: 

Table 3.3 Criteria for rating the signal strength. 
SNR Description 
>40 Excellent signal. Lightning fast, always associated. 
25-40dB Very good signal. Very fast, always associated 
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15-25dB Low signal. Usually fast, always associated 
10-15dB Very low signal. Mostly slow, usually associated 
0-10dB No signal, almost never associated, agonizingly slow 
<0dB Impossible to associate. In reality, CDMA and WCDMA technology can 

make connection. 
 

 
Figure 3.12 Manually detecting the signal over spectrum image. 

Because the noise floor value is not an absolute value, the system will use 
the threshold of 10dB to indicate that there is a signal. 

Defining the noise power (noise floor) value is the most important step in 
finding out the SNR values from the FFT spectrum. From Figure 3.12, we can define 
the noise floor manually in Figure 3.13. Unfortunately, the intelligent radio spectrum 
monitoring system needs to do this step automatically. 

The noise spectra are often displayed in three formats: power spectral 
density (PSD), amplitude spectral density (ASD), or power spectrum. The equation 
(3.5) shows the relation between these formats: 

𝐴𝑆𝐷 = √𝑃𝑆𝐷 =
𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚

√∆𝑓 ∗ 𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 ( 3.5 ) 
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Figure 3.13 Manually defining the noise floor. 

Where 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚 is the FFT level spectrum (dB or W or V), ∆𝑓 is the FFT bin 
resolution (Hz), and 𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ can be found in Table 3.4. This 
project uses the default window in the Soapy Power library, which is the Hann 
window. 

Table 3.4 Window Scaling Factors. 
Window Noise Power Bandwidth 
Blackman Harris 3-term 1.73 
Blackman Harris 4-term 2.00 
Dolph-Chebychev 150 dB 2.37 
Dolph-Chebychev 200 dB 2.73 
Dolph-Chebychev 250 dB 3.05 
Equiripple 2.63 
Flat-top 3.83 
Gaussian 2.21 
Hamming 1.36 
Hann 1.50 
None (rectangular) 1.00 
None, move to bin center 1.00 
Rife-Vincent 4-term 2.31 
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Rife-Vincent 5-term 2.62 
 
The RMS noise level can be found by: 

𝑁𝑜𝑖𝑠𝑒 = √ ∑ 𝑃𝑆𝐷𝑖 ∗ ∆𝑓

𝑁𝑢𝑚𝐵𝑖𝑛𝑠

𝑖=1

= √
∑(𝐵𝑖𝑛𝑖)

2

𝑁𝑜𝑖𝑠𝑒𝑃𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
 ( 3.6 ) 

 
Where 𝑁𝑜𝑖𝑠𝑒 is the RMS noise level (W or V), and 𝐵𝑖𝑛𝑖 is the FFT level 

spectrum (W or V). Then, the noise power in dB is: 
𝑁𝑜𝑖𝑠𝑒(𝑑𝐵) = 20 ∗ log(𝑁𝑜𝑖𝑠𝑒) ( 3.7 ) 

Furthermore, whenever we double the number of FFT bins, the bin size 
reduces by half, as well as the noise power in each bin. This is equivalent to 3dB 
lower in the RMS noise value. The 𝑁𝑜𝑖𝑠𝑒(𝑑𝐵) in equation (3.7) is the general noise 
power, then the 𝑁𝑜𝑖𝑠𝑒(𝑑𝐵, 𝑛), the noise power corresponding to 𝑛 FFT 
bins/number samples, is: 

𝑁𝑜𝑖𝑠𝑒(𝑑𝐵, 𝑛) = 𝑁𝑜𝑖𝑠𝑒(𝑑𝐵) − 3 ∗ log2(𝑛) ( 3.8 ) 
Code 3.2 demonstrates how we compute the noise value, and the result 

shows in Figure 3.14. 

 
Figure 3.14 Noise floor calculation from simulation data without any signals. 
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import numpy as np 

import math 

from pylab import * 

from rtlsdr import RtlSdr 

sdr = RtlSdr() 

sdr.center_freq = 101.5e6 

sdr.sample_rate = 2.048e6 

sdr.gain = 0 

sdr.read_samples(1000000) 

num_sample = 256*1024 

data = sdr.read_samples(num_sample) 

[bin_mag, freq, _] = plt.magnitude_spectrum( 

    data, scale="dB", Fs=sdr.sample_rate, Fc=sdr.center_freq) 

bin_mag = 20*np.log10(np.array(bin_mag))# simulate the data sent from sensor 

device 

s = 0 

for i in bin_mag: 

    s += (10**(i/20))**2 

noise = 20*math.log10(math.sqrt(s/1.5))-3*(math.log2(num_sample)) 

print(noise) 

plt.plot([freq[0], freq[-1]], [noise, noise]) 

plt.show() 
 

 
Code 3.2 Noise floor calculation code. 

 
When changing to the frequency range with signal representation, the noise 

floor becomes like Figure 3.15. 

 
Figure 3.15 Noise floor calculation code from simulation data with signal 

representation. 
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Comparing Figure 3.14 and Figure 3.15, we see that the noise floor from 
Figure 3.14 can be applied to Figure 3.15. Therefore, we define a new critical, using 
only the noise floor where there is no signal that have SNR>10. Figure 3.16 
demonstrates determining the noise floor over a wide range of frequencies. 

 
Figure 3.16 Noise floor calculation from real data over wide range frequency 
3.4. Characteristic extraction with deep learning 

In information theory, we have several valuable characteristics to extract from 
the wireless signal, such as bandwidth, SNR value, bit rate, channel capacity, and 
modulation type. All of this information except modulation type can be determined 
through several formulas. This section will describe how to achieve these 
characteristics. 

First of all, is the SNR value. As mentioned in the previous section, we can 
find the noise power value. With this noise power value, we iterate all the bins in the 
spectrum curve and compare each bin with this value. Each bin's SNR value is easy 
to calculate by using equation (3.4). In addition, there may be several signal bins that 
have SNR values larger than the pre-defined threshold. Moreover, all types of 
wireless signals rarely have a bandwidth of a few kHz. Therefore, we will eliminate all 
the continuous bins with less than pre-defined bandwidth. In detail, the bandwidth 
threshold is 3kHz. When all the continuously satisfied SNR bins have been found, the 
general SNR value is their average or maximum. Furthermore, the bandwidth of the 
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signal is the combination of the beginning and the ending of these continuously 
satisfied SNR bins. Figure 3.17 gives an example of this step. 

 
Figure 3.17 Signal to Noise Ratio example 

The second is the bit rate and channel capacity. In the noiseless channel, bit 
rate, or Nyquist bit rate, is a formula that determines the maximum bit rate in theory 
or ideal. When a signal goes through a low-pass bandwidth filter, the system can 
reconstruct the signal with a sampling rate of about two times the bandwidth. It is 
pointless when the sampling rate exceeds two times the bandwidth because the 
signal's high-frequency components could be filtered out. The formula for the 
Nyquist theorem is: 

𝐵𝑖𝑡𝑅𝑎𝑡𝑒(𝑏𝑖𝑡𝑠/𝑠𝑒𝑐𝑜𝑛𝑑) = 2 ∗ 𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ log2(𝐿) ( 3.9 ) 
With 𝐿 is the number of discrete levels of the signal. 
Unfortunately, we cannot know the exact number of discrete levels the signal 

has. On the other hand, the Digital-to-Analog Converter of RTL-SDR quantized the 
signal at the 255 levels. Hence, we can assume that 𝐿 is equal to 255. In reality, the 
transmitted signals do not have the ideal condition, and there is always a noise 
effect to the signal. Hence, the Shannon capacity formula replaces the Nyquist to 
determine the highest possible data rate for a noisy channel. Equation (3.10) is the 
Shannon capacity formula: 

𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦 (
𝑏𝑖𝑡𝑠

𝑠𝑒𝑐𝑜𝑛𝑑
) = 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ ∗ log2(1 + 𝑆𝑁𝑅) ( 3.10 ) 
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Because the bandwidth is fixed, the channel capacity is the variable that 
depends on the SNR value. 

Last, modulation recognition is the hardest step in characteristic extraction. 
There are no general formulas or guidelines to do this. Therefore, deep learning is a 
good method to handle this step. Deep learning is a branch of machine learning, 
which is totally a neural network. Deep learning applications try to reproduce and 
simulate the behavior and action of the human brain on an actual task/work. These 
works may be so complicated that the machine cannot work perfectly, but it can 
maximize the ability to do that. In addition, the deep learning application can learn 
from a large amount of data and process them with high computation speed, which 
takes very much time for a human. Deep learning leverages various AI applications 
and services to improve accuracy, working speed, and reliability, promote automatic 
tasks, perform analysis, and learn patterns without human intervention. The 
intelligent radio spectrum monitoring takes action on modulation classification based 
on deep learning architecture, such as CNN and LSTN, as in the literature review 
chapter. 

The modulation classification task based on deep learning will use the 
training dataset from RadioML 2018. The dataset contains 24 modulation types: OOK, 
4ASK, 8ASK, BPSK, 8PSK, 16PSK, 32PSK, 16APSK, 32APSK, 64APSK, 128APSK, 16QAM, 
32QAM, 64QAM, 128QAM, 256QAM, AM-SSB-WC, AM-SSB-SC, AM-DSB-WC, AM-DSB-SC, 
FM, GMSK, OQPSK. There are more than two million samples in the dataset, with an 
equal rate between each class. The data were recorded at the sampling rate of 
2.048msps. The sample length is 1024 points of raw IQ data, and the SNR is from -
20dB to 30dB. Because the threshold of SNR is 10dB, we will take only the sample 
that has SNR over this threshold. First, the modulation classification task uses the 
CNN architecture; then, it will use the LSTM. Because the dataset is too large, the 
model will train with the incremental/online learning method to reduce average 
VRAM usage. In addition, online learning is very suitable for further data from RTL-
SDR. Figure 3.18 gives an overview of the model using CNN, and Table 3.6 
summarizes the model and the total number of parameters in it. 
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Figure 3.18 CNN model. 

Table 3.5 CNN model summary. 
Layer Output Shape Param 

Conv1D (1024, 16) 272 
Batch_Normalization (1024, 16) 64 
Max_Pooling1D (512, 16) 0 
Conv1D (512, 32) 4128 
Batch_Normalization (512, 32) 128 
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Max_Pooling1D (256, 32) 0 
Conv1D (256, 32) 8224 
Batch_Normalization (256, 32) 128 
Max_Pooling1D (128, 32) 0 
Conv1D (128, 64) 16448 
Batch_Normalization (128, 64) 256 
Max_Pooling1D (64, 64) 0 
Conv1D (64, 128) 65664 
Batch_Normalization 64, 128) 512 
Max_Pooling1D (32, 128) 0 
Conv1D (32, 128) 131200 
Batch_Normalization (32, 128) 512 
Average_Pooling1D (1, 128) 0 
Flatten 128 0 
Dense 128 16512 
Dense 24 3096 
Total params 247144 

 

 
Figure 3.19 CNN model’s training accuracy log. 
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With the LSTM model, it can achieve 96.25% accuracy in the training dataset 
and 87.51% in the validating dataset. It ran in a total of 92 epochs (2.8 hours). Figure 
3.19 and Figure 3.20 shows the log of training and testing accuracy. 
 

 
Figure 3.20 CNN model’s validating accuracy log. 

Figure 3.21 gives an overview of the model using LSTM, and Table 3.7 
summarizes the model and the total number of parameters in it. 

Table 3.6 LSTM model summary. 
Layer Output Shape Param 
BiLSTM (1024, 128) 34304 
Dense (1024, 64) 8256 
Conv1D (1024, 64) 4160 
Max_Pooling1D (512, 64) 0 
Conv1D (512, 64) 4160 
Max_Pooling1D (256, 64) 0 
Conv1D (256, 64) 4160 
Max_Pooling1D (128, 64) 0 
Conv1D (128, 64) 4160 
Max_Pooling1D (64, 64) 0 
Conv1D (64, 64) 4160 
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Max_Pooling1D (32, 64) 0 
Flatten (2048) 0 
Dense (32) 65568 
Dense (24) 792 
Total params 129720 

 

 
Figure 3.21 LSTM model. 

With the LSTM model, it can achieve 97% accuracy in the training dataset and 
91.28% in the validating dataset. It ran in a total of 36 epochs (8 hours). Figure 3.22 
and Figure 3.23 shows the log of training and testing accuracy. 

In conclusion, the training accuracy of CNN model and LSTM model is nearly 
equal, but the validating accuracy of CNN model is less than LSTM model. In 
addition, the validation loss of CNN method is much more higher; hence, we will 
apply LSTM to the intelligent radio spectrum monitoring system. 
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Figure 3.22 LSTM model’s training accuracy log. 

 

 
Figure 3.23 LSTM model’s validating accuracy log. 

 
3.5. Localizing source of signal 

When the abnormal signal is detected, we have to figure out the source 
location of the signal and prevent it from continuing to broadcast. Several algorithms 
can be implemented to detect the signal, such as Time of Arrival (TOA), Time 
Difference of Arrival (TDOA), Angle of Arrival (AOA), Received Signal Strength Indicator 
(RSSI), Two-Way Ranging (TWR),… Because the source will broadcast continuously, we 
cannot identify the time to start transmitting a package from the source. Therefore, 
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the time-on-air, or distance of arrival, is very hard to determine. The angle of arrival 
technique has the same situation. The received signal strength indicator technique is 
an easier way to determine the distance of arrival. However, the reliability and 
stability of this technique are not high because it depends too much on the 
environment. The Two-Way Ranging is an asynchronous technique that does not 
need to use synchronization in time, which is very difficult to handle. In contrast, the 
TWR needs communication between the target and anchor, which is not applicable 
because we can only receive the package from the target. Finally, the Time 
Difference of Arrival would calculate the difference in time where the same package 
arrived, and then a hyperbola of possible locations would be drawn. This technique's 
only mission is to locate the same packages between a pair of sensors and the 
timestamp of arrival. In addition, this technique is a synchronization one. Hence, we 
need to handle this complex problem as well. In conclusion, we will use TDOA as 
our proposed technique to find out the location of the interference signal. 

Firstly, we need to define the same package between a pair of sensors and 
the difference in time of arrival. It will cost more time and effort if we demodulate 
the signal to the original data. In addition, we have to know the signal's modulation 
type, which means we have to implement one more layer to detect it. If we do not 
demodulate it, there will be only raw IQ data to be processed. Thanks to the 
statistics, if we calculate the cross-correlation between two discrete time series data, 
we will know the lagging/delay between these two series. That means, in case the 
series start at the same time, we would know the time difference of arrival between 
a pair of sensors. 

For example: 
𝑎 = [−7, 6, −4, 1, −7, 2, −5, 3, 4, 5] 
𝑏 = [0, − 1, −7, 6, −4, 1, −7, 2, −5, 3] 

 
Hence, the normalized cross-correlation between 𝑎 and 𝑏 is: 
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Figure 3.24 An example of cross-correlation between two discrete time series data. 

As we can see, the maximum value lies on 𝑥 = −2; therefore, 𝑎 lag -2 steps 

when comparing with 𝑏, or we can say that 𝑎 is earlier than 𝑏 2 steps. Try with 𝑎 
and 𝑐 = 𝑏 + 𝑏𝑖𝑎𝑠, and the result would not change.  

Hence, we can conclude that the signal comes to receiver 𝑎 and receiver 𝑏 
has the Time Different of Arrival equal to -2. 

Then the principle of TDOA is demonstrated as Figure 3.25: 

 
Figure 3.25 The possible location of TX when the TDOA is determined [13]. 
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Secondly, the start time between a pair of sensors needs to be synchronized, 
which means both sensors must start to measure the signal at the same time. This is 
very hard for us to handle. Another transmitter signal source would be used as a 
reference to solve this issue. In detail, with the known location receivers and one 
known location and transmitted frequency transmitter, we can use the equation 
(3.11) and (3.12) to calibrate the synchronization. We assume that the difference in 
the distance from the reference transmitter to receivers 1 and 2 is 𝑑𝑙 (positive means 
receiver-1 is farther than receiver-2 and vice versa), the delay in the start is 𝑑𝑡, and 
the light speed is 𝑐. Hence, we got: 

𝑘𝑟𝑒𝑓_𝑎𝑠𝑦𝑛𝑐 = 𝑘𝑟𝑒𝑓_𝑠𝑦𝑛𝑐 + 𝑑𝑡 
=> 𝑑𝑡 = 𝑘𝑟𝑒𝑓_𝑎𝑠𝑦𝑛𝑐 − 𝑘𝑟𝑒𝑓_𝑠𝑦𝑛𝑐 

( 3.11 ) 

 
=> 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑦𝑛𝑐 = 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑠𝑦𝑛𝑐 − 𝑑𝑡

= 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑠𝑦𝑛𝑐 − 𝑘𝑟𝑒𝑓_𝑎𝑠𝑦𝑛𝑐 + 𝑘𝑟𝑒𝑓_𝑠𝑦𝑛𝑐 
( 3.12 ) 

Where 𝑘𝑋_𝑠𝑦𝑛𝑐 =
𝑑𝑙

𝑐
 is the delay received 𝑋 time series without delay in start 

time, 𝑘𝑋_𝑎𝑠𝑦𝑛𝑐 is the delay received 𝑋 time series with the delay in start time, and 𝑋 
is 𝑟𝑒𝑓 (reference) or 𝑡𝑎𝑟𝑔𝑒𝑡. 

The RTLSDR will resample the signal at 2,048,000 samples per second. 
Therefore, we can use the difference in samples to measure the time. In this case, 
the error would be ±0.5  sample, equal to ±75  meters. Assume that we will 
retrieve 2.048 million samples. Therefore the 𝑘𝑟𝑒𝑓_𝑎𝑠𝑦𝑛𝑐 and 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑦𝑛𝑐 must not 
be larger than 1 second. As a consequence, 𝑑𝑡 ≤ 1; the equal happens when 𝑑𝑙 =
0. Let's say in a different way, with known 𝑑𝑡, the number of samples to be 
retrieved is 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 > 𝑑𝑡 ∗ 2.048 ∗ 106. Let 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = 2 ∗ 𝑑𝑡 ∗ 2.048 ∗ 106: 

Through the two approaches above, we solve the synchronization and time 
difference issue in the TDOA technique. 

A TDOA system needs at least three anchors to determine the target, and the 
distance between a pair of sensors must be high enough (we choose at least 2km 
faraway each other). Because the three sensors were placed in three different 
locations, they would be in three different networks. Therefore, we need a 
communication technique that can control all three sensors. Therefore, the VPN 
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protocol described in the previous section may help. The sensor and all the sensors 
will now be in the same network and subnet. Hence, the SSH connection protocol is 
a good method to control the sensors to measure the data at the time. 

As mentioned above, we need to measure the reference signal and target 
signal. In order to increase the reliability and stability of the system, there should be 
no gap between the two measurements, which means we have to measure the two 
signals seamlessly. If not, we need to minimize the lost samples when changing the 
frequency. To fulfill this, we need a library named "librtlsdr-2freq"; this library will 
enable seamless switching of frequency during the reception. To reduce the error of 
lost samples when changing frequency, we would measure the reference signal again 
and then average the delay. Hence, 

𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑠𝑦𝑛𝑐 = 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑠𝑦𝑛𝑐 − 𝑑𝑡

= 𝑘𝑡𝑎𝑟𝑔𝑒𝑡_𝑎𝑠𝑦𝑛𝑐 − 𝑘𝑟𝑒𝑓_𝑎𝑠𝑦𝑛𝑐_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 + 𝑘𝑟𝑒𝑓_𝑠𝑦𝑛𝑐 
( 3.13 ) 

Finally, the order of measurement is Ref -> Target -> Ref. When we finish 
setting up the Server and Clients (Anchor/Receiver), the procedure for TDOA begins. 
Figure 3.26 is the process for the whole function. 

• The server commands the sensor to measure the data and transfer 
them back. 

• Synchronization: calculating the cross-correlation of the reference 
signal and computing the measured delay when changing the frequency. 

• Determining TDOA: calculating the delay of the signal between two 
receivers with the measured delay above. 

• Generating the TDOA hyperbola using geometry. 
• Using optimization method (gradient descent) to compute an optimal 

result.  

https://github.com/DC9ST/librtlsdr-2freq
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Figure 3.26 Signal processing for the calculation of a time-difference-of-arrival value 

for two receivers. 
echo "-------------------------------------" 

if [ $# != 9 ] 

  then 

   echo "parameters missing" 

   exit 1 

fi 

 

ip1=$1 

ip2=$2 

ip3=$3 

freq1=$4 

freq2=$5 

gain=$6 

num_samples=$7 

dev=$8 

location=$9 

 

echo "Specified parameters: reference frequency:" $freq1 ", measure frequency:" 

$freq2 ", samples_per_freq:" $num_samples 

echo "--------------------------------------" 

echo "Login to PI Radios and capture data simultaneously" 

ssh pi@$ip1 "echo LD_LIBRARY_PATH=/home/pi/librtlsdr-2freq/build/src; 

/home/pi/librtlsdr-2freq/build/src/rtl_sdr -f $freq1 -h $freq2 -n $num_samples -g 

$gain -d $dev -s 2.048e6 1_raspi.dat" &\ 

ssh pi@$ip2 "echo LD_LIBRARY_PATH=/home/pi/librtlsdr-2freq/build/src; 

/home/pi/librtlsdr-2freq/build/src/rtl_sdr -f $freq1 -h $freq2 -n $num_samples -g 

$gain -d $dev -s 2.048e6 2_raspi.dat" &\ 

ssh pi@$ip3 "echo LD_LIBRARY_PATH=/home/pi/librtlsdr-2freq/build/src; 

/home/pi/librtlsdr-2freq/build/src/rtl_sdr -f $freq1 -h $freq2 -n $num_samples -g 

$gain -d $dev -s 2.048e6 3_raspi.dat" 

 

echo "Copy received data to the master" 

scp pi@$ip1:/home/pi/1_raspi.dat $location/1_raspi.dat &\ 

scp pi@$ip2:/home/pi/2_raspi.dat $location/2_raspi.dat &\ 

scp pi@$ip3:/home/pi/3_raspi.dat $location/3_raspi.dat 

 

echo "done" 

 
 

Code 3.3 Script to command and retrieve data simultaneously. 
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Code 3.3 is the script to command the sensors to measure the data and send 
them back. 

Because the clients connect to the internet through 4G, the ping of each 
client to the server is different. In addition, the time to set up the SSH connection 
should be considered. The overall time would vary between 0.5-1.5s. Therefore, we 
can assume that 𝑑𝑡 < 1.5. Let 𝑑𝑡 = 1.5; we should retrieve 7.2 million samples. 
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CHAPTER 4. RESULT AND DISCUSSION 

 

4.1. Web page for monitoring the spectrum 

An indispensable vital part of the intelligent spectrum monitoring system is 
the graphical user interface (GUI). It is responsible for displaying the information of 
each sensor, visualizing the radio spectrum, summarizing the detail of the detected 
signals, and connecting to the backend for localization function. The GUI can be 
designed on several platforms, such as smartphones, computers, or web pages. A GUI 
based on the web application is good for more convenience and easier maintenance, 
update, and management.  

 
Figure 4.1 The intelligent radio spectrum monitoring dashboard. 

The general web application contains two components, the backend, and the 
front end. The intelligent radio spectrum monitoring uses the Flask framework on 
Python, which is more familiar to non-IT researchers than the other languages. 
NodeJS, HTML, and CSS are the primary language for the frontend GUI. The GUI was 
built with several basic functions in order to provide just enough features of the 
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system. Figure 4.1 gives an overview of the dashboard when entering the GUI web 
page. 

In general, the dashboard contains four sections. The header section is the 
logo of the Department of Electrical Engineering. The second section is a table that 
provides details information about each sensor. From this table, we can know the ID, 
assigned IP, location, and the last update event. When clicking on each row, the web 
directs us to the spectrum monitoring page, as shown in Figure 4.2 and Figure 4.3. 
The location on a map, the last spectrum image, and the details of each detected 
signal that corresponds to the current sensor will be displayed on this page. The 
third section is for the localization function. The footer section is the contact details. 

 
Figure 4.2 Spectrum monitoring page. 

In the localization section, there are several fields that the user has to input: 
three IPs corresponding to three sensors for running localizing, the details of the 
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reference station (frequency and location), and the target frequency to be 
determined the position. While the localization algorithm is running, the page 
displays the log below the third section. After that, a map with an estimated position 
will appear between the third section and the log section, like in Figure 4.4. 

 
Figure 4.3 Spectrum monitoring page. 

 
Figure 4.4 Localization result shows on map. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 42 

4.2. Analyzing the characteristic extraction result 

As described in the previous section, the LSTM model achieves higher 
validating accuracy and lower validating loss. Hence, the system will use the LSTM 
model to evaluate and implement in real-time processing. Figure 4.5 gives an 
overview of the confusion matrix when applying the LSTM model to validate data. 
The confusion matrix is a particular performance measurement for a machine-
learning classification problem. It forms a table/matrix with the row elements as 
actual labels and the column elements as predicted labels.  

There are 17 classes that have more than 99% accuracy. The model usually 
gets confused between AM-DSB-SC and AM-DSB-WC; and between AM-SSB-WC and 
AM-SSB-SC. In addition, the model AM-SSB-WC and AM-SSB-SC class can be predicted 
as 8ASK and OOK. Finally, the 8ASK class has a few percent that is predicted as 4ASK 
and OOK, and in the opposite situation, the 4ASK and OOK class are usually 
predicted as 8ASK. Compared to the result in the paper [1], the performance of the 
proposed model is higher, 91.28% vs. 87.4%. In detail, the FM class in [1] is usually 
confused with the AM-DSB, while the proposed model has nearly 100% accuracy. 
Compared to the LSTM model in the paper [3], The overall accuracy of the proposed 
model is higher. The QAM16 and QAM64 in [3] are confused with each other. In 
addition, both AM-DSB types in the proposed LSTM model are not confused with 
WBFM, while the [3] are. Furthermore, in each paper, the authors only run the model 
on the specific SNR value, not combine all of them. Therefore, the proposed model 
is more general for all cases.  
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Figure 4.5 Confusion matrix on validate dataset. 

From the confusion matrix, there are four values has to be concerned: 
• True Positive: the number of cases where the actual value is positive 

and the predicted value is positive. 
• False Positive: the number of cases where the actual value is negative 

and the predicted value is positive. 
• False Negative: the number of cases where the actual value is positive 

and the predicted value is negative. 
• True Negative: the number of cases where the actual value is negative 

and the predicted value is negative. 
The term "positive" and "negative" above are, respectively, the currently 

considered class and the rest. In the multi-class (more than two) classification 
problem, the False Negative value is the sum of all values in the same row except 
the True Positive value, and the False Positive is the sum of all values in the same 
column except the True Positive value. The True Negative is the sum of all remaining 
values. In addition, the confusion matrix values can be represented as a ratio. When 
the model results in the four values above, we can evaluate the model by two 
criteria: Precision and Recall metric. The high Precision value means the accuracy of 
the found case is high, and the High Recall value means the missing rate when 
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finding the positive case is low. Finally, the F1 score is a method that combines both 
Precision and Recall metrics. In multi-class classification problems, the overall 
accuracy of the model is usually the average of the F1 score of each class. Table 4.1 
describes all the mentioned metrics of the LSTM model. 

Table 4.1 Evaluation on validate dataset. 
 Precision Recall F1-Score Samples 

OOK 0.75 0.70 0.72 8191 
4ASK 0.95 0.60 0.73 8191 
8ASK 0.48 0.94 0.63 8191 
BPSK 1.00 1.00 1.00 8191 
QPSK 1.00 1.00 1.00 8191 
8PSK 1.00 1.00 1.00 8191 
16PSK 1.00 1.00 1.00 8191 
32APSK 1.00 1.00 1.00 8191 
64APSK 1.00 1.00 1.00 8191 
128APSK 1.00 1.00 1.00 8191 
16QAM 1.00 1.00 1.00 8191 
32QAM 1.00 1.00 1.00 8191 
64QAM 1.00 1.00 1.00 8191 
128QAM 1.00 1.00 1.00 8191 
256QAM 1.00 1.00 1.00 8191 

AM-SSB-WC 0.69 0.67 0.68 8191 
AM-SSB-SC 0.85 0.43 0.57 8191 
AM-DSB-WC 0.77 0.83 0.80 8191 
AM-DSB-SC 0.82 0.76 0.78 8191 

FM 1.00 1.00 1.00 8191 
GMSK 1.00 1.00 1.00 8191 
OQPSK 1.00 1.00 1.00 8191 

Accuracy  0.91 196584 
Macro avg 0.93 0.91 0.91 196584 
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Weighted avg 0.93 0.91 0.91 196584 
 
Implementing the LSTM model to the IQ data of the detected signal, we have 

the result like Figure 4.6. 

 
Figure 4.6 Result of the implemented model. 

As we know that the DVB-T2 support the QPSK, 16QAM, 64QAM, 256QAM, the 
model can detect that the signal from the station 1.00 in Bangkok as 256QAM. 
Hence, in conclusion, the model can work well.  

4.3. Analyzing the signal’s source localization 

The cross-correlation method can be perfectly applicable to digital time 
series data. The synchronization procedure is the most critical step in the TDOA 
algorithm because if there is no synchronization between the devices, all the 
following formulas will result in the wrong value. So, a digital broadcaster as a 
reference is a pre-requisite. In addition, the measured delay calculation also needs a 
good cross-correlation value to enhance the accuracy. Hence, the system could find 
the optimal position with high precision if the reference and target signal are digital 
broadcasts. There are several signal types in the range that the RTL-SDR can 
measure. The most popular types that can be considered are Analog FM Radio, 
Digital FM Radio (Digital Audio Broadcasting - DAB/DAB+), Digital Video Broadcasting 
(DVB), ISM, and LoRa. Furthermore, the ISM and LoRa signals have a low transmitting 
range that could not cover all three sensors in most situations, and the Analog FM 
Radio signal could lead to a low accuracy case. Unfortunately, there are no Digital 
Audio Broadcasting stations in Bangkok. Hence, Digital Video Broadcasting will be 
used. 
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Table 4.2 and Table 4.3 describe the detail of the Digital Video Broadcasting 
station in Bangkok: 

Table 4.2 DVB-T2 stations in Bangkok. 
Index Lat Long Height 

(m) 
#1 #2 #3 #4 #5 Power 

(kW) 
1.00 100.540270 13.754300 328 26 36 40 44 32 100.0 
1.01 100.949558 13.190653 40 45 48 29 25 43 1.00 
1.02 100.866450 12.921333 60 45 48 29 25 43 1.00 
1.03 99.613515 13.627185 80 33 37 41 30 27 5.00 
1.04 101.441810 13.291820 70 45 48 29 25 43 5.00 
1.05 99.994444 13.385428 70 26 36 40 44 32 0.50 
1.06 101.625020 13.473830 55 24 42 66 38 34 2.00 

Table 4.3 Channels' descriptions. 
Channel   Center Frequency 

 Lower bound Upper bound  
21 470 478 474 
22 478 486 482 
23 486 494 490 
24 494 502 498 
25 502 510 506 
26 510 518 514 
27 518 526 522 
28 526 534 530 
29 534 542 538 
30 542 550 546 
31 550 558 554 
32 558 566 562 
33 566 574 570 
34 574 582 578 
35 582 590 586 
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36 590 598 594 
37 598 606 602 
38 606 614 610 
39 614 622 618 
40 622 630 626 
41 630 638 634 
42 638 646 642 
43 646 654 650 
44 654 662 658 
45 662 670 666 
46 670 678 674 
47 678 686 682 
48 686 694 690 

 
Because the station's transmit power from 1.01 to 1.06 is too low, these 

stations could not cover all setting up regions. Therefore, we would use station 1.00 
as the reference station. After a few surveys on the spectrum from 450 MHz to 700 
Mhz, we found that in our setup region, the sensor could only receive the signal of 
channel 34 (574-582 MHz). Table 4.4 describes the setup locations. Figure 4.8, 4.9, 
4.10, 4.11, and 4.12 give a view of the spectrum in each location. 

Table 4.4 Setup locations. 
Station Name Latitude Longitude 
Lotus Rama I 13.749389149553245 100.52468698495306 
Engineering Building 4 13.736110644939403 100.53393449613192 
Lumphini Park View 13.725036661833437 100.54651079537058 

 
Because only one station can cover our setup place, we can not choose two 

stations with known locations to estimate the stability, reliability, and error of the 
reference signal. Hence, we could only use the same station as a reference and 
target to estimate the condition. 
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Now, we start to measure the signal several times and set it as the input of 
our system. The error is shown Table 4.5. 

 
Figure 4.7 Sensors’ setup locations. 

Table 4.5 The error of multiple running times. 
 Sample Rate Latitude Longitude Error 
1 

2048000 

13.75295 100.539 210.7344 
2 13.7496 100.5407 520.4556 
3 13.75132 100.5405 328.427 
4 13.75033 100.5385 482.1158 
5 13.74891 100.5392 609.2635 
6 

2480000 

13.75353 100.5424 234.7248 
7 13.75338 100.5403 99.21007 
8 13.74943 100.5372 640.6192 
9 13.74963 100.5385 557.1086 
10 13.74846 100.5396 651.6951 
11 2880000 13.75022 100.5441 604.3491 
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The average error of the sampling rate 2.048msps cases is 430m and the 

average error of the sampling rate 2.48msps is 450m. This is an average of more than 
20 times in each case. The cases of 2.88msps mostly fail and are unstable (there is 
only one good case) because the RTLSDR could lose several samples with a 
2.88msps sampling rate. One lost sample could lead to a considerable error. In 
addition, the case sample rate of 2.48msps is more stable than 2.88, but the error 
resolution is also higher (can reach 100m of error). The cases with a sample rate of 
2.048msps have the highest error resolution and are the most stable. 

 

 
Figure 4.8 Spectrum over DVB-T channel 26. 
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Figure 4.9 Spectrum over DVB-T channel 32. 

 
 
 

 
Figure 4.10 Spectrum over DVB-T channel 36. 
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Figure 4.11 Spectrum over DVB-T channel 40. 

 
 
 

 
Figure 4.12 Spectrum over DVB-T channel 40. 
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CHAPTER 5. CONCLUSION 

 

The intelligent radio spectrum monitoring system was successfully built. In 
this system, there are several skills needed, such as handling embedded systems, 
familiarity with IoT architecture and communication, designing backend server and 
frontend GUI, training and testing deep learning models, and mathematic skills with 
the localization function. In the thesis proposal, there are two objectives:  

• Design an autonomous system that detects active frequency signals with low-
cost sensors and deep learning. 

• Analyze the active signal in terms of center frequency and bandwidth and 
then determine the condition of the wireless signal spectrum. 
The first objective was fulfilled with the RTL-SDR. Figure 5.1 gives a result that 

the second objective was done.  

 
Figure 5.1 Signals’ information. 
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In addition, the Deep Learning architecture was implemented in the system 
and was very effective. The accuracy on the validated dataset can reach up to 92%, 
which is higher than 87.4% in [1]. The localization function works very well with the 
average error is 450m. 

With this system, the shortcomings of ordinary supervisors, such as distraction, 
illness, and personal decisions, will be compensated. The system could 
automatically self-operate continuously; therefore, the radio spectrum's current 
information could be updated immediately and stored as historical data for the 
supervisors to report and revise. In addition, the system could extract several 
characteristics, for example, SNR, center frequency, capacity, and especially 
modulation type of the signal. Signal modulation recognition is the most challenging 
task in the system and is very hard for a human to do it. Furthermore, the system 
can localize the signal transmission source with reasonable accuracy if it is a digital 
broadcaster. In conclusion, the contribution of this research work is to show the 
possibility of our proposed method, i.e. using Deep Learning, to help human-being in 
radio spectrum monitoring with reasonable high reliability and accuracy. 

The system still has several limitations that need to be investigated in the 
future. First, the system needs a wide bandwidth of internet to transmit the data. In 
detail, with the range of frequency from 300MHz to 1000MHz and the resolution of 
1kHz per each bin of FFT, it needs about 6MB for each message. This could lead to a 
lot of data storage and latency in transmitting. Moreover, when classifying the 
modulation type, the system needs 1024 samples per represented signal; hence, if 
there is a huge number of signals, the modulation classification task would take a 
long time to handle (retrieving and classification). Therefore, a better compression 
technique is required to reduce the storage and handling time. Second, the training 
dataset for the modulation classification task is for the USRP device, which has an 
ADC resolution of 14 bits, while the RTL-SDR has only 8 bits and is a low-cost device. 
As a consequence, there may be a reduction in accuracy. In addition, the overall 
accuracy when applying to RTL-SDR device cannot be examined because there is no 
information on the current signals in Bangkok. Hence, if we know the signal 
characteristics in Bangkok, we can build an online learning model to enhance the 
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accuracy and avoid the impacts of resolution reduction. Finally, the localization 
module is now using the Gradient Descent method to find out the optimal position 
of the target. The limitation of this technique is that it needs a good initial position, 
and the found point could be an optimal local one. For that reason, a new 
optimization technique could be implemented to find an optimal global position 
and reduce the operating time. 
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