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CHAPTER I

INTRODUCTION

The existence of Hamiltonian decompositions of graphs is one of the well-known

problems which has been studied widely for a longtime, and the Hamiltonicity has

been generalized to hypergraphs in various definitions of Hamiltonian cycles. In

this dissertation, we mainly establish a construction of Hamiltonian decomposi-

tions of three families of hypergraphs based on two versions of Hamiltonian cycles.

The first definitions follows from Katona and Kierstead (KK-definition) defined in

[11]. We provide a KK-Hamiltonian decomposition for some complete 3-uniform

hypergraphs and some complete multipartite 3-uniform hypergraphs. The second

definition follows from Wang and Jirimutu (WJ-definition) defined in [16]. We

study a WJ-Hamiltonian decomposition for complete bipartite 4-uniform hyper-

graphs.

We start the first part of the dissertation by providing all required definitions

and notations, a brief history of the problems and overview of this dissertation.

Moreover, we give some well-known results on graph decompositions which are the

important tools of our construction.

1.1 Definitions and notations

The following notations will be used for the rest of this dissertation. A hyper-

graph H is an ordered pair (V (H), E(H)) where V (H) is a finite set of elements

and E(H) is a collection of non-empty subsets of V (H). The elements in V (H)

and E(H) are called vertices and hyperedges, respectively. We refer to V (H) and

E(H) as the vertex set and the hyperedge set of H, respectively. If each hyperedge

has size k, we say that H is a k-uniform hypergraph. A Hamiltonian cycle of hy-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

pergraph is defined in several ways which we later provide four definitions of it in

Chapter II. A Hamiltonian decomposition of H is a family of Hamiltonian cycles

in a hypergraph H, {C1, C2, . . . , Cm}, where each hyperedge in H is contained in

exactly one cycle in the family.

Our work focuses on two families of hypergraphs as follows. The first one is

a complete k-uniform hypergraph of order n with n ≥ k vertices and k ≥ 2 on

the vertex set V , denoted by K
(k)
n or K

(k)
n (V ), which is a k-uniform hypergraph

on |V | = n vertices such that all k-subsets of the vertex set form its hyperedge

set. The other one is a complete t-partite k-uniform hypergraph on the vertex

set � V = V1 ∪ V2∪· · · ∪ Vt where |Vi| = ni for all i ∈ {1, 2, . . . , t} and t ≥ 2 ,

denoted by K
(k)
n1,n2,...,nt or K(k)

n1,n2,...,nt(V1, V2, . . . , Vt) which is a k-uniform hypergraph

on |V | =
∑t

i=1 ni vertices such that

E(K(k)
n1,n2,...,nt

) = {e : e ⊆ V, |e| = k and |e ∩ Vi| < k for i ∈ {1, 2, . . . , t}}.

In particular, if ni = n for all i ∈ {1, 2, . . . , t}, K(k)
n, n, . . . n︸ ︷︷ ︸

t

is denoted by K
(k)
t(n).

1.2 History and overview

The existence problem of Hamiltonian decompositions of hypergraphs is ex-

tended from those of graphs. A well-known result for graphs by Walecki [1] in

1892 says that the complete graphs of odd order can be decomposed into Hamil-

tonian cycles. Furthermore, any complete graph of even order in which a perfect

matching is removed also has a Hamiltonian decomposition.

Later on, this existence problem for graphs was extended into various versions

for k-uniform hypergraphs depending on the definition of Hamiltonian cycles. We

will discuss only four versions of Hamiltonian cycles, namely, Berge-Hamiltonian

cycles, KK-Hamiltonian cycles, WJ-Hamiltonian cycles and WX-Hamiltonian cy-

cles. We focus on the results for two families of hypergraphs; complete k-uniform

hypergraphs and complete t-partite k-uniform hypergraphs.
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The first one was defined by Berge [3] in 1979; a Berge-Hamiltonian cycle of

hypergraph H(V,E) is a sequence v0, e0, v1, e1, . . . , vn−1, en−1, vn of all n vertices

in V and some n distinct hyperedges in E, such that the hyperedge ei contains

both vi and vi+1, where vn = v0. The study of Berge-Hamiltonian decompositions

of complete 3-uniform hypergraphs, K(3)
n , was completely solved in 1976 and 1994

by Bermond [4], and Verrall [15], respectively. In 2014, Kuhn and Osthus [12]

studied the existence of Berge-Hamiltonian decompositions of complete k-uniform

hypergraphs K
(k)
n where 4 ≤ k ≤ n− 1 and n ≥ 30.

In 1999, a new variation of Hamitonicity for k-uniform hypergraphs was defined

by Katona and Kierstead in [11] as follows: a KK-Hamiltonian cycle of k-uniform

hypergraph H(V,E) is a cyclic ordering C = (v1 v2 · · · vn) of all n elements of

V such that each k-tuple of consecutive vertices in C is a hyperedge. A KK-

Hamiltonian cycle is a Berge-Hamiltonian cycle, but the other direction is not

always true. In 2010, Bailey and Stevens conjectured that a necessary condition

for the existence of a KK-Hamiltonian decomposition of K(k)
n , which states that(

n
k

)
is divisible by n, is also sufficient (which we call such an n “feasible”).

KK-Hamiltonian decompositions of complete 3-uniform hypergraph, K(3)
n , were

studied for feasible n by several authors in [2, 13, 18] and [10]. The results were

settled for n ≤ 46, n ̸= 43, and n = 2m and m ≥ 2, and also 4-uniform hypergraph,

K
(4)
9 . By using “clique finding” method and “difference pattern” method, Bailey

and Stevens [2] in 2010 obtained a KK-Hamiltonian decomposition for K
(4)
9 and

K
(3)
n where n = 7, 8, 10, 11, 16. Afterwards, Meszka and Rosa [13] modified the

“difference pattern” method to solve the problem for K(3)
n where n ≤ 32. Further-

more, the problem for K(3)
n where n = 2m and m ≥ 2 was studied by Xu and Wang

[18] in 2002, and for 8 ≤ n ≤ 46, n ̸= 13, 19, 25, 31, 43 was provided by Hong Huo

et al. [10] (published in Chinese) in 2015. While, for complete t-partite 3-uniform

hypergraphs, KK-Hamiltonian decompositions of K(3)
t(n) when t = 2 and t = 3, were

completely studied for all n by Xu and Wang [18] in 2002, and Boonklurb et al.

[6] in 2015, respectively.

In this dissertation, we establish a construction of KK-Hamiltonian decompo-
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sitions of complete t-partite 3-uniform hypergraph K
(3)
t(n) where t ≡ 4, 8 (mod 12)

for all positive integer n by using KK-Hamiltonian decompositions of K(3)
t . As the

matter of the fact that K(3)
t(2) = K

(3)
2t , our results provide a recursive construction for

a KK-Hamiltonian decomposition of a complete 3-uniform hypergraph K
(3)
2n from

one of K
(3)
n . Our method solves the existence problem of infinitely many com-

plete t-partite 3-uniform hypergraphs and complete 3-uniform hypergraphs from

the initial ones.

On the other hand, hypergraphs have been introduced in database theory in or-

der to model relational database schemes. We mention two definitions of Hamilto-

nian cycles using a new definition of cycles introduced by Wang and Lee [17] which

is defined to suit the structure properties of relational database in 1999 (Definition

3 in Chapter II. In 2001, Wang and Jirimutu adopted the definition of cycles to

define a WJ-Hamiltonian cycle of k-uniform hypergraph H with |V (H)| = n that

is a (k − 1)-dimensional cycle of length n. In [16], a WJ-Hamiltonian decompo-

sition of complete bipartite 3-uniform hypergraphs K
(3)
n,n where n is a prime can

be constructed successfully (which is also satisfied KK-definition). This motivates

us to construct WJ-Hamiltonian decompositions of complete bipartite 4-uniform

hypergraphs K
(4)
n,n where n is prime.

In 2002, using the new definition of cycles in [17], Wang and Xu [18] also defined

WX-Hamiltonian cycles of k-uniform hypergraph H that is a (k − 1)-dimensional

cycle which each vertex of H appears in exactly k − 1 nodes (common vertices

of consecutive hyperedges in a cycle). Then, they provided a WX-Hamiltonian

decomposition of K(3)
n,n and K

(3)
m where m = 2n and n ≥ 2 (which is also satisfied

KK-definition).

This dissertation is organized as follows. The first chapter is the introduction

including definitions, notations and some well-known results of graph decompo-

sitions which are important tools in our constructions. Chapter II investigates

some properties of these four definitions of Hamiltonian cycles, and also proves

that WX-Hamiltonian cycles are KK-Hamiltonian cycles.

Chapter III is devoted to construct a KK-Hamiltonian decomposition of com-
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plete t-partite 3-uniform hypergraph K
(3)
t(n) where t ≡ 4, 8 (mod 12) for all positive

integer n except when t = 4 and n is even. Later, Chapters IV provides the con-

struction for K
(3)
t(n) when t = 4 and n is even. Finally, our recursive construction

provides the results for a KK-Hamiltonian decomposition of complete 3-uniform

hypergraph K
(3)
2t from one of K(3)

t which will be concluded in Chapters III and VI.

In Chapter V, we establish a WJ-Hamiltonian decomposition of complete bi-

partite 4-uniform hypergraph K
(4)
n,n where n is a prime number using properties

of its hyperedges. Each WJ-Hamiltonian cycle in our construction is neither KK-

Hamiltonian cycle nor Berge-Hamiltonian cycle.

Finally, the last chapter concludes all of our results in the research including

some interesting open problems.

1.3 Graphs decompositions

Our constructions of Hamiltonian decompositions use several well-known re-

sults of graph decompositions such as 1-factorizations and Hamiltonian decom-

positions of graphs. A 1-factor of a a graph is a 1-regular spanning subgraph.

A 1-factorization of graph is a decomposition of a graph into 1-factors. As a 2-

uniform hypergraph is a graph, we use the usual notations such as Kn for K
(2)
n

and Kn,n for K(2)
n,n. In 1969, Harary [8] provided that Kn has a 1-factorization only

when n is even and Kn,n has a 1-factorization for all positive integer n.

Theorem 1.3.1. [8]

(i) The complete graph Kn has a 1-factorization whenever n is even,

(ii) The complete bipartite graph Kn,n has a 1-factorization for all positive

integer n.

In this dissertation, we refer to a 1-factor by its edge set. More precisely, if

a 1-factor F of K2m(V ) where V = {1, 2, . . . , 2m} is written as {{j, f(j)} : j ∈

{1, 2, . . . ,m}}, then the vertex set V is automatically relabeled to be {1, 2, . . . ,m,

f(1), f(2), . . . , f(m)}. (For example, if F = {{1, 2}, {3, 4}} is a 1-factor of K4([4]),

then the vertices 1, 2, 3 and 4 are relabeled to be 1, f(1), 2 and f(2), respectively.)
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The remaining tools are Hamiltonian decompositions of graphs and directed

graphs.

The complete graph Kn can be decomposed into Hamiltonian cycles only when

n is odd were proved by Hilton [9] in 1984.

Theorem 1.3.2. [9] Let n ∈ N. The complete graph Kn has a Hamiltonian

decomposition whenever n is odd.

Now, let us move to the decomposition of directed graph. We follows the

definitions from [7]. A digraph D consists of a finite nonempty set V (D) of vertices

and a set E(D) of ordered pairs of distinct vertices. Each element of E is a directed

edge. If (u, v) is a directed edge of a digraph, then u is said to be adjacent to v

and v is adjacent from u. A (directed) walk is a sequence (u = u1, u2, . . . , uk = v)

of vertices of D such that ui is adjacent to ui+1 for all i ∈ {0, 1, . . . , k−1}. A walk

is closed if u = v. A (directed) cycle is a closed walk of length at least 2 in which

no vertex is repeated except for the initial and terminal vertices. A cycle C in D

is a Hamiltonian cycle if C contains every vertex of D.

A complete digraph on n vertices is a digraph in which every pair u, v of distinct

vertices is connected by exactly two directed edges (u, v) and (v, u), denoted DKn.

Bermond and Faber [5] showed that a Hamiltonian decomposition of DK4 and

DK6 do not exist, while Tillson [14] proved that the decompositions of DKn exist

whenever n ̸= 4, 6.

Theorem 1.3.3. [14] Let n ∈ N. The complete digraph DKn has a Hamiltonian

decomposition if and only if n ̸= 4, 6.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

HAMILTONIAN CYCLES OF HYPERGRAPHS

Hamiltonian cycles of hypergraphs are generalized from those of graphs in sev-

eral ways. We focus on the following four definitions of Hamiltonian cycles;

1. Berge’s Definition,

2. Katona and Kierstead’s Definition,

3. Wang and Jirimutu’s Definition, and

4. Wang and Xu’s Definition.

In this chapter, we first give the definitions and examples of Hamiltonian cycles

of hypergraphs based on each definition. In Section 2.1, we investigate the relation

of these four definitions. In Section 2.2, we recall certain results of the existence

of Hamiltonian decompositions of hypergraphs based on each definition.

The first classic one was defined by Berge in 1973. He generalized Hamiltonian

cycles in graphs to k-uniform hypergraphs as follows:

Definition 1. [3] A Berge cycle is a sequence (v0, e0, v1, e1, . . . , vn−1, en−1, vn), and

v0, v1,. . ., vn−1∈ V (H) and e0, e1, . . . , en−1 ∈ E(H) are distinct elements, such that

the hyperedge ei contains both vi and vi+1 where vn = v0. A Berge cycle is a

Berge-Hamiltonian cycle if {v0, v1, . . . , vn−1} is the vertex set V (H).

Example 1. Let K(3)
5 be the complete hypergraph on the vertex set V = {0, 1, 2, 3,

4}. Consider

C1 = (0, {0, 3, 1}, 1, {1, 4, 2}, 2, {2, 0, 3}, 3, {3, 1, 4}, 4, {4, 2, 0}, 0),

C2 = (0, {0, 1, 2}, 2, {2, 3, 4}, 4, {4, 0, 1}, 1, {1, 2, 3}, 3, {3, 4, 0}, 0).
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Then, {C1, C2} is a Berge-Hamiltonian decomposition of K(3)
5 .

In 1999, Katona and Kierstead [11] provided the notion of a KK-Hamiltonian

cycle of k-uniform hypergraphs. This notion also satisfies the previous notion by

Berge while the other way is not always true.

Definition 2. [11] Let H be a k-uniform hypergraph. A KK-Hamiltonian cycle

is a cyclic ordering of the elements of V (H) such that each k-tuple of consecutive

vertices is a hyperedge.

Example 2. Let K(3)
7 be the complete hypergraph on the vertex set V = {0, 1, 2, 3,

4, 5, 6}. Based on KK-definition, the Hamiltonian cycle (1 2 4 6 0 5 3) consists of

hyperedges {1, 2, 4}, {2, 4, 6}, {4, 6, 0}, {6, 0, 5}, {0, 5, 3}, {5, 3, 1} and {3, 1, 2}.

Moreover, the following collection is a Hamiltonian decomposition of K(3)
7 .

{(1 2 4 6 0 5 3), (1 2 6 3 4 0 5), (1 3 4 5 6 2 0), (1 4 5 2 0 3 6), (1 6 5 3 2 4 0)}.

Next, hypergraphs have been introduced in database theory in order to model

relational database schemes. Also in 1999, Wang and Lee [17] introduced a new def-

inition of cycles in hypergraphs to suit the structure properties of relation database

In 2001, Wang and Jirimutu [16] adopted the new definition of cycles to define a

WJ-Hamiltonian cycle.

Definition 3. Let C = (e0, e1, . . . , er−1) be a sequence of hyperedges of H,

Si = ei∩ei+1 for i ∈ {0, 1, . . . , r−1} where indices of the hyperedges are considered

in the modulus r. We call Si a node and C a cycle with the node sequence S =

(S0, S1, . . . , Sr−1) if the following conditions are satisfied:

(p1) ei ̸= ej for i ̸= j

(p2) Si ̸= ∅ for i ∈ {0, 1, . . . , r − 1},

(p3) Si ∖ Sj ̸= ∅ for i ̸= j,

(p4) for any i ∈ {0, 1, . . . , r − 1} there is no hyperedge e ∈ E(H) such that

Si ∪ Si+1 ∪ Si+2 ⊆ e.
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C is called a t-dimensional cycle of length r if t = min{|Si| : i ∈ {0, 1, . . . , r− 1}}.

If H is a k-uniform hypergraph and |V (H)| = n, then any (k − 1)-dimensional

cycle of length n in H is called a WJ-Hamiltonian cycle of H.

Example 3. Let K
(4)
5,5 be the complete bipartite 4-uniform hypergraph on vertex

set V = V1 ∪ V2 where V1 = {0, 2, 4, 6, 8} and V2 = {1, 3, 5, 7, 9}. Let

C = (e0 = {0, 2, 1, 5}, e1 = {0, 2, 5, 9}, e2 = {0, 2, 3, 9}, e3 = {0, 2, 3, 7},

e4 = {0, 2, 1, 7}, e5 = {2, 4, 1, 7}, e6 = {2, 4, 3, 7}, e7 = {2, 4, 3, 9},

e8 = {2, 4, 5, 9}, e9 = {2, 4, 1, 5}).

Then, the sequence of nodes in C is

(S0 = {0, 2, 5}, S1 = {0, 2, 9}, S2 = {0, 2, 3}, S3 = {0, 2, 7}, S4 = {2, 1, 7},

S5 = {2, 4, 7}, S6 = {2, 4, 3}, S7 = {2, 4, 9}, S8 = {2, 4, 5}, S9 = {2, 1, 5}).

It can be verified directly that C satisfies properties (p1) − (p4) and |Si| = 3 for

all i. Thus, C is a WJ-Hamiltonian cycle of K(3)
5,5 . Note that vertices 6 and 8 do

not belong to any hyperedges in C, thus, C is not a Berge-Hamiltonian cycle.

In 2002, using the definition of cycles in Definition 3, Wang and Xu [18] also

defined another version of Hamiltonian cycles as follows.

Definition 4. [18] Let H be a k-uniform hypergraph. Then, any (k−1)-dimensional

cycle in H is called a WX-Hamiltonian cycle of H if each vertex of H appears in

exactly k − 1 nodes.

Example 4. Let K
(3)
3,3 be the complete bipartite 3-uniform hypergraph on vertex

set V = V1 ∪ V2 where V1 = {0, 2, 4} and V2 = {1, 3, 5}.

Figure 2.1 illustrates C1, C2 and C3 of K(3)
3,3(V1, V2) which can be verified directly

that each cycle satisfies properties (p1)− (p4). Also in each cycle, each vertex in V

appears in exactly two nodes and all nodes are of size two. Since each hyperedge
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Ci = (e1, e2, e3, e4, e5)

i e0 e1 e2 e3 e4 e5

1 {0, 1, 2} {1, 2, 3} {2, 3, 4} {3, 4, 5} {4, 5, 0} {5, 0, 1}

2 {0, 3, 2} {3, 2, 5} {2, 5, 4} {5, 4, 1} {4, 1, 0} {1, 0, 3}

3 {0, 5, 2} {5, 2, 1} {2, 1, 4} {1, 4, 3} {4, 3, 0} {3, 0, 5}

Figure 2.1: C1, C2 and C3 of K(3)
3,3(V1, V2).

in K
(3)
3,3 is contained in exactly one cycle in the collection {C1, C2, C3}, we have

that the collection is a Hamiltonian decomposition of K(3)
3,3 .

Moreover, these three cycles are KK-Hamiltonian cycles which can be written

as C1 = (0 1 2 3 4 5), C2 = (0 3 2 5 4 1) and C3 = (0 5 2 1 4 3).

2.1 The connection of four Hamiltonicity definitions

These four definitions of Hamiltonian cycles are related to each other as shown

in Figure 2.2, and in this section, we will show the examples of cycles to verify this

figure.

Berge
KK

WJ
WX

Figure 2.2: The connection of the four definitions of Hamiltonian cycles of hyper-

graphs.

First, notice that KK-Hamiltonian cycles satisfy the other three definitions.

While, Berge-definition and WJ-definition are distinct because of cycles in Example

1 and Example 3. In details, since the Berge-Hamiltonian cycle C of K
(3)
5 in

Example 1 has nodes of size one, C is not a WJ-Hamiltonian cycle. Also, Example
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3 illustrates a WJ-Hamiltonian cycle which is not a Berge-Hamiltonian cycle.

The next example shows a Hamiltonian cycle of a k-uniform hypergraph that

satisfying both Berge-definition and WJ-definition but it is not a KK-Hamiltonian

cycle.

Example 5. Let K
(4)
7 be the complete 4-uniform hypergraph on vertex set V =

{1, 2, 3, 4, 5, 6, 7}. Let

C = (e0 = {1, 2, 3, 4}, e1 = {1, 2, 4, 5}, e2 = {1, 2, 5, 6}, e3 = {2, 5, 6, 7},

e4 = {5, 6, 7, 1}, e5 = {6, 7, 1, 2}, e6 = {7, 1, 2, 3}).

Then, the sequence of nodes in C is

(S0 = {1, 2, 4}, S1 = {1, 2, 5}, S2 = {2, 5, 6}, S3 = {5, 6, 7}, S4 = {6, 7, 1},

S5 = {7, 1, 2}, S6 = {1, 2, 3}).

It can be verified directly that C satisfies properties (p1) − (p4) and |Si| = 3 for

all i. Thus, C is a WJ-Hamiltonian cycle of K
(4)
7 . Since C can be written as

(3, e0, 4, e1, 2, e2, 5, e3, 6, e4, 1, e5, 7, e6, 3), C is a Berge-Hamiltonian cycle. But the

vertex 2 belongs to six hyperedges in C; thus, it is not a KK-Hamiltonian cycle.

Finally, as Wang and Xu mentioned in [18] that a KK-Hamiltonian cycle is the

same as a WX-Hamiltonian cycle without a proof, we will provide the proof in the

next theorem.

Theorem 2.1.1. WX-Hamiltonian cycles and KK-Hamiltonian cycles are the

same.

Proof. Let H be a k-uniform hypergraph of order n. First, a KK-Hamiltonian

cycle of H satisfies WX-definition since it is a (k − 1)-dimensional cycle, every

nodes are all distinct and each vertex of H in appears in exactly k − 1 nodes.

Next, let C be a WX-Hamiltonian cycle of H and v ∈ V (H). Then, v appears

in exactly k− 1 nodes in C. It implies that v is contained in at least k hyperedges
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in C. Since C has n hyperedges each of k vertices, a vertex v appears in exactly k

hyperedges.

Suppose that k−1 nodes containing v are not consecutive. Then, v is contained

in more than k hyperedges in C which is impossible. Hence, k − 1 nodes and k

hyperedges containing v are consecutive.

Let C = (e1, e2, . . . , en). Since C is a (k−1)-dimensional cycle, ei and ei+k−1 has

at least one common vertex. Since there are exactly n collections of k consecutive

hyperedges in C, we have that ei, ei+1, . . . , ei+k−1 have exactly one common vertex.

Then, we can order such n vertices in C to be KK-Hamiltonian cycle as follows.

Let vi be the common vertex of k consecutive hyperedges, ei, ei+1, . . . , ei+k−1. Since

ei and ei+k are disjoint, vi ̸= vj if and only if i ̸= j. Hence, C can be written as

C = (v1 v2 · · · vn).

2.2 Literature review

The studies of Hamiltonian decompositions of complete uniform hypergraphs

and complete uniform multipartite hypergraphs based on four distinct definitions

are listed in this section for future references.

First, the study of Berge-Hamiltonian decompositions of complete 3-uniform

hypergraphs, K(3)
n , was completed by Bermond [5] in 1978 and Verrall [15] in 1994.

Theorem 2.2.1. [5, 15] There exists a Berge-Hamiltonian decomposition of K(3)
n

for all n ≥ 3.

Then, in 2014, Kuhn and Osthus [12] studied the existence of Berge-Hamiltonian

decompositions of K(k)
n for many pairs of n, k where n ≥ k ≥ 3.

Theorem 2.2.2. [12] There exists a Berge-Hamiltonian decomposition of K
(k)
n

where 4 ≤ k ≤ n− 1 for n ≥ 30.

Next, in 2010, Bailey and Stevens [2] conjectured that a necessary condition

for the existence of a KK-Hamiltonian decomposition of K
(k)
n , which is that

(
n
k

)
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is divisible by n, is also sufficient (which we call feasible n). When k = 3, the

necessary condition becomes n ≡ 1, 2 (mod 3).

Several authors has studied KK-Hamiltonian decompositions of K(k)
n for some

feasible n as follows. Bailey and Stevens [2] use “clique finding” method and

“difference pattern” method, and Meszka and Rosa [13] modified the “difference

pattern” method in 2010.

Theorem 2.2.3. [2] There exists a KK-Hamiltonian decomposition of K
(4)
9 and

K
(3)
n where n = 7, 8, 10, 11, 16.

Theorem 2.2.4. [13] There exists a KK-Hamiltonian decomposition of K(3)
n where

n is feasible and n ≤ 32.

Furthermore, KK-Hamiltonian decompositions (originally, WX-definition) of

K
(3)
n when n = 2m and m ≥ 2 were studied by Xu and Wang [18] in 2002, and

when 8 ≤ n ≤ 46, n ̸= 13, 19, 25, 31, 43 was provided by Hong Huo et al. [10]

(published in Chinese) in 2015.

Theorem 2.2.5. [18] There exists a KK-Hamiltonian decomposition (and WX-

Hamiltonian decomposition) of K(3)
n where n = 2m and m ≥ 2.

Theorem 2.2.6. [10] There exists a KK-Hamiltonian decomposition of K(3)
n where

n is feasible, 8 ≤ n ≤ 46 and n ̸= 13, 19, 25, 31, 43.

KK-Hamiltonian decompositions of K
(3)
t(n) was studied by several authors. In

2001, when t = 2, the study of WJ-Hamiltonian decompositions of complete bipar-

tite 3-unifom hypergraphs, K(3)
n,n, was begun by Wang and Jirimutu [16] for prime

n. Then, WX-Hamiltonian decompositions of K(3)
n,n was completed for all n ≥ 2 by

Xu and Wang [18] in 2002 based on WX-definition. By constructions, these two

results also satisfy KK-definition.

Theorem 2.2.7. [16] There exists WJ-Hamiltonian decompositions and KK-Hamil-

tonian decompositions of K(3)
n,n where n ≥ 3 and n is prime.

Theorem 2.2.8. [18] There exists WX-Hamiltonian decompositions and KK-

Hamiltonian decompositions of K(3)
n,n for all n ≥ 3.
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Later on, in 2015, KK-Hamiltonian decompositions of complete tripartite 3-

uniform hypergraphs, K(3)
n,n,n, were completely studied by Boonklurb et al. [6].

Theorem 2.2.9. [6] There exists a KK-Hamiltonian decomposition of K(3)
n,n,n for

all n ≥ 3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

HAMILTONIAN DECOMPOSITIONS OF COMPLETE

MULTIPARTITE 3-UNIFORM HYPERGRAPHS

3.1 Introduction

The Hamitonicity of cycles in hypergraphs in Definition 2 was defined by Ka-

tona and Kierstead in 1999 which states that KK-Hamiltonian cycle of H is a

cyclic ordering C = (v1 v2 · · · vn) of all n elements of V such that k consecutive

vertices form a hyperedge in E. In literatures, many authors have studied the

existence of KK-Hamiltonian decompositions of complete 3-uniform hypergraphs.

Bailey and Stevens [2] also conjectured that a necessary condition for the existence

of a Hamiltonian decomposition of K(k)
n , which is that

(
n
k

)
is divisible by n, is also

sufficient (which we call feasible n). Then, several authors have studied the prob-

lem for K
(3)
n with feasible n where n ≤ 46, n ̸= 43, and n = 2m and m ≥ 2 (see

[2, 13, 10, 18]). Moreover, the existence problem for complete t-partite 3-uniform

hypergraphs K
(3)
t(n) was completely studied when t = 2 and t = 3 for all n in [18]

and [6], respectively.

The main objective of this chapter is to construct a KK-Hamiltonian decompo-

sition of a complete t-partite 3-uniform hypergraph, K(3)
t(n), when t ≡ 4, 8 (mod 12).

Our construction also yeilds a recursive construction of a KK-Hamiltonian decom-

position of a complete 3-uniform hypergraph K
(3)
2t from one of K

(3)
t . Therefore,

together with the current results, we are able to construct a KK-Hamiltonian de-

composition of K(3)
n where n = 2m, 5 · 2m, 7 · 2m and 11 · 2m and m ≥ 2. Remark

that unless stated otherwise, Hamiltonian cycles in this chapter always mean KK-

Hamiltonian cycles in Definition 2 .

Before starting our construction, we start with the following notations which
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we use throughout this chapter. As our work focuses on 3-uniform hypergraph

K
(3)
t(n), we first classify hyperedges of K(3)

t(n) into two types. Let e be a hyperedge of

K
(3)
t(n), e is called a hyperedge of

Type 1 if e contains at most one vertex from each partite set, or

Type 2, otherwise (that is e contains two vertices from a partite set).

The following notations will be used for the rest of the chapter unless stated oth-

erwise.

n is the size of each partite set,

t is the number of partite sets of our complete multipartite 3-uniform hy-

pergraph,

Ti(K
(3)
t(n)) is the subhypergraph of K(3)

t(n) consisting of all hyperedges of Type

i for i ∈ {1, 2},

V1∪V2∪· · ·∪Vt where Vi = {ai1, ai2, . . . , ain} for i ∈ {1, 2, . . . , t} is the vertex

set of K(3)
t(n).

We represent any Hamiltonian cycle of K(3)
t(n) by a cyclic ordering (or a cyclic

permutation) of all tn vertices of K(3)
t(n). In our construction, we write a Hamiltonian

cycle C as (P1 P2 · · · Ps) if vertices along the cycle C are partitioned into paths

Pj (a sequence of vertices) along the cycle. On top of that, each hyperedge in C

is called

an inline hyperedge if it is a hyperedge within a path Pj or,

a joint hyperedge if it contains vertices from two consecutive paths.

Definition 5. A Hamiltonian cycle D = (D(1) D(2) · · · D(n)) of a hypergraph

of order n on the vertex set {1, 2, . . . , n} is written in standard form if D(1) = 1

and D(2) < D(n).

Note that we denote the set of integers {1, 2, . . . , n} by [n]. Next, a necessary

condition for the existence of a Hamiltonian decomposition of K(3)
t(n) is given in the

following theorem.
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Theorem 3.1.1. If K(3)
t(n) has a Hamiltonian decomposition, then t ≡ 1, 2 (mod 3)

or n ≡ 0 (mod 3).

Proof. Assume that t ≡ 0 (mod 3), then 3 ∤ t − 1 and 3 ∤ t + 1. Since each

Hamiltonian cycle of K(3)
t(n) contains tn hyperedges, the number of hyperedges of

K
(3)
t(n) must be divisible by tn. Then, 1

tn

((
tn
3

)
− t

(
n
3

))
= 1

6
n(t − 1)(n(t + 1) − 3)

is an integer. It follows that n ≡ 0 (mod 3). Therefore, t ≡ 1, 2 (mod 3) or

n ≡ 0 (mod 3) as desired.

Here, we focus on a construction of a Hamiltonian decomposition of K(3)
t(n) when

t ≡ 0 (mod 4). Our construction method relies on the existence of Hamiltonian

decompositions of complete 3-uniform hypergraphs, K(3)
t . Note that a necessary

condition for such existence for K
(3)
t is t ≡ 1, 2 (mod 3) (see more details in [2])

which is also a part of the necessary condition for K
(3)
t(n) in Theorem 3.1.1. There-

fore, our construction aims to solve the problem for K
(3)
t(n) when t ≡ 4, 8 (mod 12)

for all positive integer n which is concluded in Theorem A as follows.

Theorem A. (Main theorem) Let n ≥ 2 and t be a positive integer such that

t ≡ 4, 8 (mod 12). The complete multipartite 3-uniform hypergraphs K
(3)
t(n) has a

Hamiltonian decomposition provided that

(i) t = 4 and n is odd, or

(ii) t ≥ 8 and K
(3)
t has a Hamiltonian decomposition.

Our construction will create a collection of Hamiltonain cycles of K
(3)
t(n) con-

taining only hyperedges of the same type. The subhypergraph T1(K
(3)
t(n)) will be

decomposed in Section 3.2, while the subhypergraph T2(K
(3)
t(n)) will be decomposed

into Hamiltonian cycles in Sections 3.3 and 3.4 depending on the parity of n.

Besides, Section 3.4.1 is dedicated to establish a Hamiltonian decomposition of

complete multigraph 2Kn which is an important tool for Section 3.4. Finally, we

will prove our main theorem and provide the results for complete hypergraphs in

Section 3.5.
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3.2 Hamiltonian decomposition of T1(K(3)
t(n))

In this section, we will construct a Hamiltonian decomposition of the subhy-

pergraph T1(K
(3)
t(n)) containing all hyperedges of Type 1 when t ≡ 0 (mod 4) in

Theorem B. Our construction uses a Hamiltonian decomposition of K
(3)
t and a

1-factorization of Kn,n. Note that a necessary condition for such existence for K(3)
t

is t ≡ 1, 2 (mod 3) (see more details in [2]) which is also a part of the condition in

Theorem B. To obtain only hyperedges of Type 1, the construction creates each

Hamiltonian cycle consisting of n paths of order t; each path contains one vertex

from each partite set.

Theorem B. Let n, t ∈ N and t ≡ 4, 8 (mod 12). The hypergraph T1(K
(3)
t(n)) has a

Hamiltonian decomposition if K(3)
t has a Hamiltonian decomposition.

Hence, in this section, we constantly assume that t ≡ 4, 8 (mod 12) and K
(3)
t ([t])

has a Hamiltonian decomposition D . Let F be a 1-factorization of the complete

bipartite graph Kn,n(X, Y ) where X = [n] = Y , which exists by Theorem 1.3.1.

(with some abuse of notation, X ∪ Y consists of distinct 2n vertices.) Note that

|D | = 1
6
(t− 1)(t− 2) and |F | = n. We aim to establish the following collection of

cycles in K
(3)
t(n),

C = {Ci(D,F ) : i ∈ {0, 1, . . . , n− 1}, D ∈ D and F ∈ F}.

The collection C will contain a total of |D ||F | · n = n2

6
(t− 1)(t− 2) cycles.

Let D be any Hamiltonian cycle of K
(3)
t ([t]) in D and F any 1-factor of

Kn,n(X,Y ) in F , written

D = (D(1)D(2) · · · D(t)) and F = {(j, f(j)) : j ∈ X, f(j) ∈ Y, j ∈ {1, 2, . . . , n}},

which D is written in standard form. As we need to distinguish the partite sets

containing vertices in an edge of 1-factor F , we represent each edge in F by an

ordered pair instead of a set of vertices.
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We will construct n cycles from D and F as follows. For i ∈ {0, 1, . . . , n− 1},

define

Ci(D,F ) =
(
P i
1(D,F ) P i

2(D,F ) · · · P i
n(D,F )

)
where, for j ∈ {1, 2, . . . , n},

P i
j (D,F ) = a

D(1)
j+i a

D(2)
f(j+i) a

D(3)
j a

D(4)
f(j) a

D(5)
j+i a

D(6)
f(j+i) . . . a

D(t−3)
j+i a

D(t−2)
f(j+i) a

D(t−1)
j a

D(t)
f(j) .

and j + i is considered in the modulus n.

Figure 3.1 illustrates Ci(D,F ) in which the jth row represents path P i
j (D,G)

and the mth column consists of vertices from VD(m). In addition, for r ∈ {0, 1, . . . , t
4
−

1}, vertices in the (4r+1)th and the (4r+2)th columns are the ith-rotation of those

in C0(D,F ), the other columns (indicated by the framed columns) are left the same

as C0(D,F ). Since t ≡ 4, 8 (mod 12), vertices along Ci(D,F ) alternate between

two fixed vertices and two ith-rotated vertices when compare to C0(D,F ).

VD(1) VD(2) VD(3) VD(4) VD(5) VD(6) · · · VD(t−3) VD(t−2) VD(t−1) VD(t)

Ci(D,F ) = ( a
D(1)
1+i a

D(2)
f(1+i) a

D(3)
1 a

D(4)
f(1) a

D(5)
1+i a

D(6)
f(1+i) . . . a

D(t−3)
1+i a

D(t−2)
f(1+i) a

D(t−1)
1 a

D(t)
f(1)

a
D(1)
2+i a

D(2)
f(2+i) a

D(3)
2 a

D(4)
f(2) a

D(5)
2+i a

D(6)
f(2+i) . . . a

D(t−3)
2+i a

D(t−2)
f(2+i) a

D(t−1)
2 a

D(t)
f(2)

... ... ... . . . ... ...

a
D(1)
n+i a

D(2)
f(n+i) a

D(3)
n a

D(4)
f(n) a

D(5)
n+i a

D(6)
f(n+i) . . . a

D(t−3)
n+i a

D(t−2)
f(n+i) a

D(t−1)
n a

D(t)
f(n) )

Figure 3.1: Hamiltonian cycle Ci(D,F ).

Example 6. Figure 3.2 illustrates the three Hamiltonian cycles C0(D,F ), C1(D,F )

and C2(D,F ) of T1(K
(3)
8(3)) constructed from a Hamiltonian cycle D = (D(1)D(2) · · ·

D(8)) and a 1-factor F = {(j, f(j)), : j ∈ {1, 2, 3}}. Each vertex axℓ in the cycle

Ci(D,F ) is represented by its subscript ℓ. The last column duplicates the first

column. The solid lines indicate two consecutive vertices in the same path, while

the dash lines indicate two consecutive vertices from different paths.

Next, Lemma 3.2.1 guarantees that certain hyperedges are used to construct

cycles in C . For D ∈ D and A ⊆ F , let E(D,A ) stand for the collection of
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C0(D,F )

VD(1) VD(2)

1

2

3

f (1)

f (2)

f (3)

VD(3) VD(4)

1

2

3

f (1)

f (2)

f (3)

VD(5) VD(6)

1

2

3

f (1)

f (2)

f (3)

VD(7) VD(8)

1

2

3

f (1)

f (2)

f (3)

VD(1)

1

2

3

C1(D,F )

VD(1) VD(2)

1

2

3

f (1)

f (2)

f (3)

VD(3) VD(4)

1

2

3

f (1)

f (2)

f (3)

VD(5) VD(6)

1

2

3

f (1)

f (2)

f (3)

VD(7) VD(8)

1

2

3

f (1)

f (2)

f (3)

VD(1)

1

2

3

C2(D,F )

VD(1) VD(2)

1

2

3

f (1)

f (2)

f (3)

VD(3) VD(4)

1

2

3

f (1)

f (2)

f (3)

VD(5) VD(6)

1

2

3

f (1)

f (2)

f (3)

VD(7) VD(8)

1

2

3

f (1)

f (2)

f (3)

VD(1)

1

2

3

Figure 3.2: C0(D,F ), C1(D,F ) and C2(D,F ) of T1(K
(3)
8(3)).

hyperedges of all cycles constructed by D and all F ∈ A . When A = {F},

we write E(D,F ) instead. In other words, E(D,F ) =
∪n−1

i=0 E(Ci(D,F )) and

E(D,F ) =
∪

F∈F

∪n−1
i=0 E(Ci(D,F )).

Lemma 3.2.1. E(D,F ) contains all hyperedges from the collection

A = {{aD(ℓ)
i , a

D(ℓ+1)
j , a

D(ℓ+2)
k } : i, j, k ∈ [n], ℓ ∈ [t]}.

Proof. Let F ∈ F . Let eij(1), e
i
j(2), . . . , e

i
j(t) be the sequence of t hyperedges

along the path P i
j (D,F ) in Ci(D,F ), beginning with the two inline hyperedges

eij(1) = {aD(1)
j+i , a

D(2)
f(j+i), a

D(3)
j }, eij(2) = {aD(2)

f(j+i), a
D(3)
j , a

D(4)
f(j) } and so on. Note that

they are inline hyperedges except the last two hyperedges are joint hyperedges

connecting P i
j (D,F ) and P i

j+1(D,F ), Then, for ℓ ∈ [t− 2],

eij(ℓ) =



{aD(ℓ)
j+i , a

D(ℓ+1)
f(j+i) , a

D(ℓ+2)
j }, if ℓ ≡ 1 (mod 4),

{aD(ℓ)
f(j+i), a

D(ℓ+1)
j , a

D(ℓ+2)
f(j) }, if ℓ ≡ 2 (mod 4),

{aD(ℓ)
j , a

D(ℓ+1)
f(j) , a

D(ℓ+2)
j+i }, if ℓ ≡ 3 (mod 4),

{aD(ℓ)
f(j) , a

D(ℓ+1)
j+i , a

D(ℓ+2)
f(j+i) }, if ℓ ≡ 0 (mod 4),
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eij(t− 1) = {aD(t−1)
j , a

D(t)
f(j) , a

D(t+1)
j+1+i } and eij(t) = {aD(t)

f(j) , a
D(t+1)
j+1+i , a

D(t+2)
f(j+1+i)} where the

operation i+ j in D(i+ j) is considered in the modulus t.

First, let ℓ be odd. Then, each hyperedge, eij(ℓ), contains two vertices in VD(ℓ)

and VD(ℓ+1) induced by the ordered pair (j, f(j)) or (j + i, f(j + i)) in the 1-factor

F .

Let BF = {{aD(2m−1)
x , a

D(2m)
f(x) , a

D(2m+1)
y } : x, y ∈ [n],m ∈ [ t

2
]}. Then, we have

that

BF = {{aD(ℓ)
j+i , a

D(ℓ+1)
f(j+i) , a

D(ℓ+2)
j } : i ∈ {0, 1, . . . , n− 1}, j ∈ [n], ℓ ∈ [t− 2],

ℓ ≡ 1 (mod 4)} ∪ {{aD(ℓ)
j , a

D(ℓ+1)
f(j) , a

D(ℓ+2)
j+i } : i ∈ {0, 1, . . . , n− 1},

j ∈ [n], ℓ ∈ [t− 2], ℓ ≡ 3 (mod 4)} ∪ {{aD(t−1)
j , a

D(t)
f(j) , a

D(t+1)
j+1+i }}

= {eij(ℓ) : i ∈ {0, 1, . . . , n− 1}, j ∈ [n], ℓ ∈ [t], ℓ ≡ 1, 3 (mod 4)}

⊆ E(D,F ).

Now, for hyperedges eij(ℓ) in Ci(D,F ) when ℓ is even, since each hyperedge

contains two vertices in VD(ℓ+1) and VD(ℓ+2) induced by the ordered pair (j, f(j))

or (j + i, f(j + i)) in the 1-factor F , we can conclude in the similar way that

CF = {{aD(2m)
f(y) , aD(2m+1)

x , a
D(2m+2)
f(x) } : x, y ∈ [n],m ∈ [ t

2
]}

= {eij(ℓ) : i ∈ {0, 1, . . . , n− 1}, j ∈ [n], ℓ ∈ [t], ℓ ≡ 2, 0 (mod 4)}

⊆ E(D,F ).

Finally, let e ∈ A, written e = {aD(ℓ)
u , a

D(ℓ+1)
v , a

D(ℓ+2)
w } for some u, v, w ∈ [n] and

ℓ ∈ [t]. If ℓ is odd, consider u and v as vertices in two partite sets in Kn,n(X, Y ).

Then, there exists F ′ = {(j, f ′(j)) : j ∈ {1, 2, . . . , n}} ∈ F such that v = f ′(u).

Since (u, f ′(u)) is an edge in F ′, e = {aD(ℓ)
u , a

D(ℓ+1)
f ′(u) , a

D(ℓ+2)
w } ∈ BF ′ ⊆ E(D,F ′).

Similarly, if ℓ is even, then there exists F ′′ = {(j, f ′′(j)) : j ∈ {1, 2, . . . , n}} ∈ F

and z ∈ [n] such that w = f ′′(v), u = f ′′(z) and (v, f ′′(v)) is an edge in F ′′. Thus,

e = {aD(ℓ)
f ′′(z), a

D(ℓ+1)
v , a

D(ℓ+2)
f ′′(v) } ∈ CF ′′ ⊆ E(D,F ′′).
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Lemma 3.2.2. For i ∈ {0, 1, . . . , n − 1}, Ci(D,F ) is a Hamiltonian cycle of

T1(K
(3)
t(n)).

Proof. A path P i
j (D,F ) in Ci(D,F ) contains one vertex from each partite set since

D is a Hamiltonian cycle of K(3)
t ([t]). Note that in C0(D,F ), each path P 0

j (D,F )

is determined by an edge (j, f(j)) in F . Since F is a 1-factor, all nt vertices

in C0(D,F ) are distinct. When compare P i
j (D,F ) to P 0

j (D,F ), vertices from

the partite sets VD(4m+1) and VD(4m+2) are determined by (j + i, f(j + i)) instead

of (j, f(j)) for m ∈ {1, 2, . . . , t
4
− 1}. It means that Ci(D,F ) is a Hamiltonian

cycle of K
(3)
t(n) for all i. Moreover, three consecutive vertices in Ci(D,F ) always

come from three different partite sets. Hence, Ci(D,F ) is a Hamiltonian cycle of

T1(K
(3)
t(n)).

Now, we are ready to prove Theorem B.

Proof of Theorem B. C is a collection of Hamiltionian cycles of T1(K
(3)
t(n)) by

Lemma 3.2.2. It remains to show that C is a decomposition of T1(K
(3)
t(n)). Let

E(C ) be the set of all hyperedges of all cycles in C . Hence, E(C ) contains a total

of n3t
6
(t− 1)(t− 2) hyperedges of Type 1 (counted repeatedly). Since the number

of hyperedges of Type 1 in K
(3)
t(n) is also n3t

6
(t − 1)(t − 2), it suffices to show that

each hyperedge of Type 1 in K
(3)
t(n) is in at least one cycle in C .

Let e be a hyperedge of Type 1 containing vertices from Vp, Vq and Vr, written

e = {apu, aqv, arw} where u, v, w ∈ [n]. Without loss of generality, there exists a

unique Hamiltonian cycle D ∈ D such that p = D(ℓ), q = D(ℓ + 1) and r =

D(ℓ+2) for some ℓ ∈ [t]. Then, e = {aD(ℓ)
u , a

D(ℓ+1)
v , a

D(ℓ+2)
w }. By Lemma 3.2.1, e ∈

E(D,F ) ⊆ E(C ). Therefore, C is a Hamiltonian decomposition of T1(K
(3)
t(n)).

3.3 Hamiltonian decomposition of T2(K(3)
t(n)) where n is even

In this section, we decompose the subhypergraph T2(K
(3)
t(n)) containing all hy-

peredges of Type 2 when n is even in the following theorem.
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Theorem C. Let n, t ∈ N. The subhypergraph T2(K
(3)
t(n)) has a Hamiltonian de-

composition if n and t ̸= 4, 6 are even.

Hence, in this section, we constantly assume that n and t are even such that

t ̸= 4, 6. The construction is similar to one in Section 3.2, but here we use a

Hamiltonian decomposition of DKt instead of K
(3)
t and a 1-factorization of Kn

instead of Kn,n. To have only hyperedges of Type 2 in the cycles, we will create

each cycle comprised with n
2

paths of length 2t, where each path contains two

vertices from each partite set.

Let D be a Hamiltonian decomposition of DKt([t]) and G be a 1-factorization of

the complete graph Kn([n]), which exist by Theorem 1.3.3 as t ̸= 4, 6 and Theorem

1.3.1 as n is even, respectively. We aim to establish the following collection of cycles

in K
(3)
t(n),

C = {Ci(D,G) : i ∈ {0, 1, . . . , n
2
− 1}, D ∈ D and G ∈ G }.

Thus, C will contain a total of n
2
(n−1)(t−1) cycles. Now, let D be any Hamiltonian

cycle of DKt([t]) in D and G any 1-factor of Kn([n]) in G , written

D = (D(1) D(2) · · ·D(t)) and G = {{j, g(j)} : j ∈ {1, 2, . . . , n
2
}},

where D(1) = 1. Consequently, the vertex set [n] of Kn is relabeled according to G

to be {1, 2, . . . , n
2
, g(1), g(2), . . . , g(n

2
)}. Thus, all vertices in VD(ℓ) are automatically

relabeled according to G to be {aD(ℓ)
1 , a

D(ℓ)
2 , . . . , a

D(ℓ)
n
2

, a
D(ℓ)
g(1) , a

D(ℓ)
g(2) , . . . , a

D(ℓ)
g(n

2
)} for all

ℓ ∈ [t]. (For example, if G = {{1, 2}, {3, 4}} is a 1-factor of K4([4]), then the

vertices 1, 2, 3 and 4 could be relabeled to be 1, g(1), 2 and g(2), respectively.)

We will construct n
2

cycles from D and G as follows. For i ∈ {0, 1, . . . , n
2
− 1},

define

Ci(D,G) =
(
P i
1(D,G) P i

2(D,G) · · · P i
n
2
(D,G)

)
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where, for j ∈ {1, 2, . . . , n
2
},

P i
j (D,G) = a

D(1)
j+i a

D(1)
g(j+i) a

D(2)
j a

D(2)
g(j) a

D(3)
j+i a

D(3)
g(j+i) . . . a

D(t−1)
j+i a

D(t−1)
g(j+i) a

D(t)
j a

D(t)
g(j)

and j + i is considered in the modulus n
2
.

VD(1) VD(1) VD(2) VD(2) VD(3) VD(3) · · · VD(t−1) VD(t−1) VD(t) VD(t)

Ci(D,G) = ( a
D(1)
1+i a

D(1)
g(1+i) a

D(2)
1 a

D(2)
g(1) a

D(3)
1+i a

D(3)
g(1+i) . . . a

D(t−1)
1+i a

D(t−1)
g(1+i) a

D(t)
1 a

D(t)
g(1)

a
D(1)
2+i a

D(1)
g(2+i) a

D(2)
2 a

D(2)
g(1) a

D(3)
2+i a

D(3)
g(2+i) . . . a

D(t−1)
2+i a

D(t−1)
g(2+i) a

D(t)
2 a

D(t)
g(1)

... ... ... . . . ... ...

a
D(1)
n
2
+i a

D(1)
g(n

2
+i) a

D(2)
n
2

a
D(2)
g(n

2
) a

D(3)
n
2
+i a

D(3)
g(n

2
+i) . . . a

D(t−1)
n
2
+i a

D(t−1)
g(n

2
+i) a

D(t)
n
2

a
D(t)
g(n

2
) )

Figure 3.3: Hamiltonian cycle Ci(D,G).

In the same fashion as in Figure 3.1, Figure 3.3 illustrates Ci(D,G) where

the framed columns indicate fixed columns. Note that both (2m− 1)th and (2m)th

columns consist of vertices from VD(m) for m ∈ {1, 2, . . . , t}. Since t is even, vertices

in Ci(D,G) are alternate between two fixed vertices and two ith-rotated vertices.

Example 7. Figure 3.4 illustrates the three Hamiltonian cycles C0(D,G), C1(D,G)

and C2(D,G) of T2(K
(3)
8(6)) constructed from D = (D(1) D(2) · · ·D(8)) and 1-factor

G = {{j, g(j)} : j ∈ {1, 2, 3}}. Each vertex axℓ is represented in the figure by its

subscript ℓ. The last column duplicates the first column. The solid lines indi-

cate two consecutive vertices in the same path, while the dash lines indicate two

consecutive vertices from different paths.

For D ∈ D and G ∈ G , let E(D,G) stand for the collection of hyperedges of

all cycles constructed by D and G. In other words, E(D,G) =
∪n

2
−1

i=0 E(Ci(D,G)).

Lemma 3.3.1. E(D,G) contains hyperedges in the following two collections.

(a) A = {{aD(m)
i , a

D(m)
g(i) , a

D(m+1)
j } : i, j ∈ [n

2
],m ∈ [t]} and

(b) B = {{aD(m)
g(i) , a

D(m+1)
j , a

D(m+1)
g(j) } : i, j ∈ [n

2
],m ∈ [t]}}.
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Figure 3.4: C0(D,G), C1(D,G) and C2(D,G) of T2(K
(3)
8(6)).

Proof. Let eij(1), e
i
j(2), . . . , e

i
j(2t) be a sequence of 2t hyperedges along the path

P i
j (D,G) in Ci(D,G) beginning with the two inline hyperedges eij(1) = {aD(1)

j+i ,

a
D(1)
g(j+i), a

D(2)
j }, eij(2) = {aD(1)

g(j+i), a
D(2)
j , a

D(2)
g(j) } and so on. Note that they are inline

hyperedges except the last two hyperedges which are joint hyperedges connecting

P i
j (D,G) and P i

j+1(D,G). Then, for m ∈ [t− 1],

eij(2m− 1) =


{aD(m)

j+i , a
D(m)
g(j+i), a

D(m+1)
j }, if m ≡ 1 (mod 2),

{aD(m)
j , a

D(m)
g(j) , a

D(m+1)
j+i }, if m ≡ 0 (mod 2),

eij(2m) =


{aD(m)

g(j+i), a
D(m+1)
j , a

D(m+1)
g(j) }, if m ≡ 1 (mod 2),

{aD(m)
g(j) , a

D(m+1)
j+i , a

D(m+1)
g(j+i) }, if m ≡ 0 (mod 2),

eij(2t− 1) = {aD(t)
j , a

D(t)
g(j) , a

D(t+1)
j+1+i } and eij(2t) = {aD(t)

g(j) , a
D(t+1)
j+1+i , a

D(t+1)
g(j+1+i)}.

We claim that {eij(2m − 1) : i ∈ {0, 1, . . . , n
2
− 1}, j ∈ [n

2
],m ∈ [t]} = A and

{eij(2m) : i ∈ {0, 1, . . . , n
2
− 1}, j ∈ [n

2
],m ∈ [t]} = B.

First note that for each m ∈ [t], a hyperedge eij(2m− 1) contains two vertices

in D(m) induced by an edge {j, g(j)} or {j + i, g(j + i)} in the 1-factor G. In
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addition, the other vertex in eij(2m− 1) is in D(m + 1) with subscript j or j + i.

Since for each j ∈ [n
2
], {j + i (mod n

2
) : i ∈ {0, 1, . . . , n

2
− 1}} = [n

2
], we have that

{{aD(m)
j+i , a

D(m)
g(j+i), a

D(m+1)
j } : i ∈ {0, 1, . . . , n

2
− 1}, j ∈ [n

2
],m ∈ [t],m is odd} ∪

{{aD(m)
j , a

D(m)
g(j) , a

D(m+1)
j+i } : i ∈ {0, 1, . . . , n

2
− 1}, j ∈ [n

2
],m ∈ [t],m is even}

equals to A as claimed.

Similarly, we can show that {eij(2m) : i ∈ {0, 1, . . . , n
2
− 1}, j ∈ [n

2
],m ∈ [t]} =

B. Since eij(ℓ) ∈ E(D,G) for all i ∈ {0, 1, . . . , n
2
− 1}, j ∈ [n

2
] and ℓ ∈ [2t],

E(D,G) = A ∪B.

Lemma 3.3.2. For i ∈ {0, 1, . . . , n
2
− 1}, Ci(D,G) is a Hamiltonian cycle of

T2(K
(3)
t(n)).

Proof. Each path P i
j (D,G) in Ci(D,G) contains two vertices from each partite

set since D is a Hamiltonian cycle of DKt([t]). In C0(D,G), each path P 0
j (D,G)

is determined by an edge {j, g(j)} in G. Since G is a 1-factor, all nt vertices in

C0(D,G) are distinct. When compare P i
j (D,G) to P 0

j (D,G), vertices from the

partite set VD(2m−1) are determined by {j+ i, g(j+ i)} instead of {j, g(j)} for m ∈

{1, 2, . . . , t
2
}. Hence, Ci(D,G) are Hamiltonian cycles for all i. Moreover, three

consecutive vertices in Ci(D,G) are from two partite sets. The cycle contains only

hyperedges of Type 2. Therefore Ci(D,G) is a Hamiltonian cycle of T2(K
(3)
t(n)).

Now, we are ready to prove our main result of this section.

Proof of Theorem C. C is a collection of Hamiltionian cycles of T2(K
(3)
t(n)) by

Lemma 3.3.2. It remains to show that C is a decomposition of T2(K
(3)
t(n)). Let E(C )

denote the set of all hyperedges of all cycles in C . Hence, E(C ) contains a total

of n2t
2
(n− 1)(t− 1) hyperedges of Type 2 (counted repeatedly). Since the number

of hyperedges of Type 2 in K
(3)
t(n) is also n2t

2
(n − 1)(t − 1), it suffices to show that

each hyperedge of Type 2 in K
(3)
t(n) is in at least one cycle in C .

Let e be any hyperedge in T2(K
(3)
t(n)). Then, e = {apu, apv, aqw} for some u, v, w ∈

[n] and p, q ∈ [t] where p ̸= q and u ̸= v. Since D is a Hamiltonian decomposition
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of DKt([t]), there exist exactly two distinct Hamiltonian cycles, say D and D′ in

D such that (p, q) and (q, p) are the directed edges in D and D′, respectively. Then

p = D(r) and q = D(r + 1), and

p = D′(s+ 1) and q = D′(s).

for some r, s ∈ [t]. Since G is a 1-factorization of Kn([n]), there exists unique

G = {{j, g(j)} : j ∈ {1, 2, . . . , n
2
}} ∈ G and c ∈ [n

2
] such that without loss of

generality, u = c and v = g(c); thus, {apu, apv} = {apc , a
p
g(c)}. Consequently, there

exists a unique d ∈ [n
2
] such that w = d or w = g(d).

If w = d, then e can be written as {aD(r)
c , a

D(r)
g(c) , a

D(r+1)
d }. By Lemma 3.3.1(a),

e ∈ E(D,G) ⊆ E(C ). If w = g(d), then e can be written as {aD
′(s+1)

c , a
D′(s+1)
g(c) ,

a
D′(s)
g(d) }. By Lemma 3.3.1(b), e ∈ E(D′, G)⊆ E(C ). Therefore, C is a Hamiltonian

decomposition of T2(K
(3)
t(n)).

3.4 Hamiltonian decomposition of T2(K(3)
t(n)) where n is odd

The last construction will decompose the subhypergraph T2(K
(3)
t(n)) containing

all hyperedges of Type 2 when n is odd. Similar to Theorem C in Section 3.3, the

construction works for an even t. However, the construction uses quite different

technique. The following is our main result in this section.

Theorem D. Let n, t ∈ N where n ≥ 3. The subhypergraph T2(K
(3)
t(n)) has a

Hamiltonian decomposition if t is even and n is odd.

Our construction requires a certain decomposition of 2-fold complete graph 2Kt

which we first construct it in Section 3.4.1.

3.4.1 The Canonical Decompositions of 2Kn

The 2-fold complete graph, 2Kn is a multigraph on n vertices with any pair of

vertices is joined by exactly two edges. As our construction in Section 3.4 requires
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a Hamiltonian decomposition of 2Kn when n is even with certain properties, we

will provide the decomposition along with such properties named the Canonical

Decomposition D as follows.

Let n be even integer. Define

D = {Dλ = Eλ ∪ En
2
+λ : λ ∈ {1, 2, . . . , n− 1}}

where Ex = {{x, n}, {x− i, x+ i} : i ∈ {1, 2, . . . , n
2
− 1}} such that its operation

is taken modulo n− 1.

Example 8. An illustration of D1 and D4 in D when n = 6. Then,

D1 = (1 6 4 3 5 2) and D4 = (1 2 6 4 5 3)

Figure 3.5 illustrates D1 and D4 where red pairs and blue pairs are joined by solid

and dash lines, respectively.

4 3
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Figure 3.5: D1, D2, D3, D4 and D5 in D when n = 6.

Lemma 3.4.1. D is a collection of Hamiltonian cycles of the 2-fold complete graph

2Kn([n]) for all even n.

Proof. We write Eλ = {e0 = {λ, n}, ei = {λ− i, λ+ i} : i ∈ {1, 2, . . . , n
2
− 1}} and

En
2
+λ = {h0 = {n

2
+ λ, n}, hi = {n

2
+ λ− i, n

2
+ λ+ i} : i ∈ {1, 2, . . . , n

2
− 1}}.

Then we order all edges in Dλ by alternating between edges in En
2
+λ and En

2
+λ

as follows; e0, hn
2
−1, e1, hn

2
−2, . . . , en

2
−1, h0 which is {n, λ}, {λ, λ + 1}, {λ + 1, λ −

1}, {λ−1, λ+2}, . . . , {λ+ n
2
−1, λ− n

2
+1}, {λ+ n

2
, n}. Remark that λ− n

2
+1 ∈ en

2
−1

and λ+ n
2
∈ h0 are the same because of the operations in the modulus n−1. Hence,
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Dλ = (n λ λ + 1 λ − 1 λ + 2 · · · λ + n
2
) and it is a Hamiltonian cycle of

2Kn([n]).

Theorem 3.4.2. Let n be an even integer. D is a Hamiltonian decomposition of

the 2-fold complete graph 2Kn([n]).

Proof. By Lemma 3.4.1, Dλ is a Hamiltonian cycle. Note that {Eλ : λ ∈ {1, 2, . . . ,

n− 1}} is a 1-factorization of Kn([n]). Since each edge of Kn([n]) is an edge

in two cycles in D which are Dλ and Dn
2
+λ for some λ, D is the Hamiltonian

decomposition of the 2-fold complete graph 2Kn([n]).

By the proof of Lemma 3.4.1, the consecutive edges of a cycle Dλ = (Dλ(1)

Dλ(2) · · · Dλ(n)) are alternate between an edge in Eλ and En
2
+λ. Furthermore, if

{Dλ(1), Dλ(2)} ∈ Eλ for each Dλ ∈ D , D is called the Canonical Decomposition

of 2Kn[n]. It follows that in any Canonical Hamiltonian cycle Dλ,

Eλ = {{Dλ(2j − 1), Dλ(2j)} : j ∈ {1, 2, . . . , n
2
}} and

En
2
+λ = {{Dλ(2j), Dλ(2j + 1)} : j ∈ {1, 2, . . . , n

2
}},

and edges in Eλ and En
2
+λ will be referred to as red pairs and blue pairs, respec-

tively. This will be used in our construction in Section 3.4.

Since {Eλ : λ ∈ {1, 2, . . . , n − 1}} and {En
2
+λ : λ ∈ {1, 2, . . . , n − 1}} are

1-factorizations of Kn([n]), any pair {p, q} in Kn([n]) is a red pair once in Dλ and

a blue pair once in Dλ′ for some λ, λ′ ∈ {1, 2, . . . , n− 1}. Hence, we can conclude

this fact in Proposition 3.4.3 for future reference.

Proposition 3.4.3. Let n ∈ N be even and D the Canonical Decomposition of

2Kn([n]). For any p, q ∈ [n] where p ̸= q, Then, {p, q} is a red pair and a blue pair

once in D .

3.4.2 The construction

For the rest of this section, we constantly assume that n is odd, n ≥ 3 and t is

even.
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Let D be the Canonical Decomposition of 2Kt([t]) and Q a Hamiltonian de-

composition of Kn([n]) which always exists by Theorem 3.4.2 as t is even and

Theorem 1.3.2 as n is odd, respectively.

We again construct the following collection C of Hamiltonian cycles of T2(K
(3)
t(n))

in which each cycle is composed of t
2

paths of length 2n.

C = {Ci(D,Q) : i ∈ {0, 1, . . . , n− 1}, D ∈ D and Q ∈ Q}.

Thus, C will contain a total of n
2
(n − 1)(t − 1) cycles. Unlike the two previous

subsections, here each path contains vertices from only two partite sets. For each

pair of Hamiltonian cycles

D = (D(1) D(2) · · · D(t)) ∈ D and Q = (Q(1) Q(2) · · · Q(n)) ∈ Q

which are written in standard form. Consequently, the vertex set [n] of Kn is

relabeled according to Q to be {Q(1), Q(2), . . . , Q(n)}. Thus, all vertices in VD(ℓ)

are automatically relabeled according to Q to be aD(ℓ)
Q(1), a

D(ℓ)
Q(2), . . . , a

D(ℓ)
Q(n) for all ℓ ∈ [t].

We will construct n Hamiltonian cycles, Ci(D,Q) where i ∈ {0, 1, . . . , n − 1},

of T2(K
(3)
t(n)) in the collection C . For each i ∈ {0, 1, . . . , n − 1}, Ci(D,Q) consists

of t
2

paths, written

Ci(D,Q) =
(
P i
1(D,Q) P i

2(D,Q) . . . P i
t
2
(D,Q)

)
where each path P i

j (D,Q) consists of 2n vertices from VD(2j−1) and VD(2j) ordered

as follows. For all j ∈ {1, 2, . . . , t
2
},

P i
j (D,Q) = bn c1 bn−1 c2 · · · b2 cn−1 b1 cn,

where for r ∈ {1, 2, . . . , n},

br = a
D(x(j,r))
Q(r+i) , cr = a

D(x̄(j,r))
Q(r+i) ,
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x(j, r) =

2j − 1, if r = n or r = n+1
2
,

2j, otherwise and

x̄(j, r) ∈ {2j − 1, 2j}∖ {x(j, r)}

except the case when n = 3 and r = 2, x(j, 2) = 2j and x̄(j, 2) = 2j − 1.

We say that Ci(D,Q) is the ith rotation of C0(D,Q). In other words, C0(D,Q)

is an initial cycle which is rotated n− 1 times to create additional n− 1 cycles.

Example 9. An illustration of C0(D,Q) of T1(K
(3)
8(9)) when

D = (D(1) D(2) · · ·D(8)) and Q = (Q(1) Q(2) · · · Q(9)).

Figure 3.6 shows the Hamiltonian cycle C0(D,Q) of T1(K
(3)
8(9)) constructed from D

and Q where each vertex a
D(x)
Q(ℓ) is represented by Q(ℓ) in column VD(x). The solid

lines join two consecutive vertices in the same path, while the dash lines join two

consecutive vertices from different paths. Figure 3.7 shows the values x(j, r) and
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Figure 3.6: C0(D,Q) of T1(K
(3)
8(9)).

x̄(j, r) for the superscripts of vertices br and cr in P 0
j (D,Q), respectively.

From our construction, we have the following two observations of Ci(D,Q)

which will later be referred to in Lemma 3.4.7. Given a path P i
j (D,Q), Observation
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x(j, r) of br and x̄(j, r) for cr
PPPPPPPPPPPPPP
P 0
j (D,Q)

br, cr
b9 c1 b8 c2 b7 c3 b6 c4 b5 c5 b4 c6 b3 c7 b2 c8 b1 c9

P 0
1 (D,Q) 1 1 2 1 2 1 2 1 1 2 2 1 2 2 2 1 2 2

P 0
2 (D,Q) 3 3 4 3 4 3 4 3 3 4 4 3 4 3 4 3 4 4

P 0
3 (D,Q) 5 5 6 5 6 5 6 5 5 6 6 5 6 5 6 5 6 6

P 0
4 (D,Q) 7 7 8 7 8 7 8 7 7 8 8 7 8 7 8 7 8 8

Figure 3.7: The values x(j, r) and x̄(j, r) for vertices br and cr, respectively.

1◦ reveals two partite sets in the path and Observation 2◦ shows the order of vertices

in each partite set along the path.

Observation 1◦ In each path P i
j (D,Q), the superscripts D(x(j, r)) and

D(x̄(j, r)) indicate the partite sets in {VD(2j−1), VD(2j)} for

br and cr, respectively. All shaded columns and unshaded

columns in Figure 3.7 correspond to VD(2j−1) and VD(2j) for

j ∈ {1, 2, . . . , t
2
}, respectively.

Observation 2◦ In each path P i
j (D,Q), the subscripts Q(r+ i) for br and cr

determines the vertices in the position r + i of the partite

set ordered by Q which is invarient for each path in the

cycle Ci(D,Q). Furthermore, the subscripts of the shaded

entries form an arithmetic sequence with difference 1 in the

modulus n, while those of the unshaded entries in Figure

3.7 form an arithmetic sequence with difference −1 in the

modulus n. For example, Figure 3.8 illustrate when i = 0,

the sequence from shaded entries is 9, 1, 2, 3, 4, 5, 6, 7, 8 and

the sequence from unshaded entries is 8, 7, 6, 5, 4, 3, 2, 1, 9 as

shown in .

Lemma 3.4.4. For i ∈ {0, 1, . . . , n − 1}, Ci(D,Q) is a Hamiltonian cycle of

T2(K
(3)
t(n)).
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P 0
j (D,Q) b9 c1 b8 c2 b7 c3 b6 c4 b5 c5 b4 c6 b3 c7 b2 c8 b1 c9

Figure 3.8: P 0
j (D,Q) with shaded entries from VD(2j−1) and unshaded entries from

VD(2j).

Proof. Since Q is a Hamiltonian cycle of Kn([n]), for each j ∈ {1, 2, . . . , t
2
}, a

path P i
j (D,Q) contains all 2n vertices from VD(2j−1) and VD(2j). Since D is a

Hamiltonian cycle of 2Kt([t]), paths P i
j (D,Q) and P i

ℓ (D,Q) are disjoint for all

j ̸= ℓ. Then, Ci(D,Q) is a Hamiltonian cycle. Moreover, any three consecutive

vertices in Ci(D,Q) always come from exactly two partite sets. Thus, Ci(D,Q)

contains only hyperedges of Type 2 as desired.

We will next discuss the properties of hyperedges of Type 2 corresponding to

Q.

Definition 6. A hyperedge with ⟨p, q⟩-partite sets is a hyperedge of Type 2 con-

taining two vertices in Vp and one vertex in Vq.

Let e be a hyperedge with ⟨p, q⟩-partite sets. Then, e = {apu, apv, aqw} for some

u ̸= v ∈ [n]. Consider u and v as vertices of Kn([n]), there exists a unique Q ∈ Q

such that {u, v} ∈ E(Q). As Q is written in standard form, there exists a unique

s ∈ [n] such that {apu, apv} = {apQ(s), a
p
Q(s+1)}. Consequently, there exists unique

d ∈ {0, 1, . . . , n−1} such that aqw = aqQ(s+d). Therefore, e = {apQ(s), a
p
Q(s+1), a

q
Q(s+d)}.

Hence, given Q, each hyperedge with ⟨p, q⟩-partite sets can be written in a unique

form; thus, we can define the delta value of each hyperedge with ⟨p, q⟩-partite sets

in our construction as follows.

Definition 7. Let Q be a Hamiltonian decomposition of Kn([n]). For each hyper-

edge e with ⟨p, q⟩-partite sets written e = {apQ(s), a
p
Q(s+1), a

q
Q(s+d)} where Q ∈ Q,

the delta value of e, denoted by δ(e), is d. It follows that there are n possible delta

values in {0, 1, . . . , n− 1} denoted by D.

Example 10. Figure 3.9 illustrates the delta values of hyperedges in the cycle

C0(D,Q) in Example 9. Since vertices in this cycle are relabeled according to D
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and Q, the delta values of hyperedges are depending on Hamiltonian cycle Q. As

each three consecutive vertices along the cycle form a hyperedge, we label its delta

value at the middle vertex of each hyperedge.
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Figure 3.9: Delta values of hyperedges in C0(D,Q) of T1(K
(3)
8(9)).

Remark 3.4.5. For i ∈ {0, 1, . . . , n − 1}, the ith-rotation of an initial cycle

C0(D,Q) preserves the delta values of hyperedges in the resulting cycle.

Lemma 3.4.7 will investigate the delta values of all hyperedges in an initial

cycle C0(D,Q), which yields the result for other cycles Ci(D,Q) in C by Remark

3.4.5. We begin by observing properties of hyperedges in P 0
j (D,Q) regarding to

red pairs and blue pairs in D in the next remark.

For j ∈ {1, 2, . . . , t
2
}, let ej(1), ej(2), . . . , ej(2n− 2) be 2n− 2 inline hyperedges

along the path P 0
j (D,Q) and ej(2n−1), ej(2n) be two joint hyperedges connecting

P 0
j (D,Q) and P 0

j+1(D,Q). Let ID and JD be the collections of red pairs and

blue pairs in D, respectively. In other words, ID = {{D(2j − 1), D(2j)} : j ∈

{1, 2, . . . , t
2
}} and JD = {{D(2j), D(2j + 1)} : j ∈ {1, 2, . . . , t

2
}}.

Remark 3.4.6. The following statements hold.

(i) For ℓ ∈ {1, 2, . . . , 2n},

δ(e1(ℓ)) = δ(e2(ℓ)) = · · · = δ(e t
2
(ℓ)).
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(ii) The set of inline hyperedges in P 0
j (D,Q) consists of hyperedges with ⟨D(2j−

1), D(2j)⟩-partite sets and hyperedges with ⟨D(2j), D(2j − 1)⟩-partite sets

where {D(2j−1), D(2j)} is a red pair in ID. Moreover, for ℓ ∈ {1, 2, . . . , 2n},

if e1(ℓ) is with ⟨D(1), D(2)⟩-partite sets, then ej(ℓ) is with ⟨D(2j−1), D(2j)⟩-

partite sets, and

if e1(ℓ) is with ⟨D(2), D(1)⟩-partite sets, then ej(ℓ) is with ⟨D(2j), D(2j −

1)⟩-partite sets.

(iii) The set of joint hyperedges connecting P 0
j (D,Q) and P 0

j+1(D,Q), consists of

ej(2n− 1) with ⟨D(2j), D(2j + 1)⟩-partite sets and

ej(2n) with ⟨D(2j + 1), D(2j)⟩-partite sets

where {D(2j), D(2j + 1)} is a blue pair in JD.

Lemma 3.4.7. The cycle C0(D,Q) consists of the following :

(i) for each red pair {x, y} ∈ ID, one inline hyperedge with ⟨x, y⟩-partite sets of

delta value λ, and one inline hyperedge with ⟨y, x⟩-partite sets of delta value

λ, for each λ ∈ D∖ {0}, and

(ii) for each blue pair {x, y} ∈ JD, one joint hyperedge with ⟨x, y⟩-partite sets of

delta value 0, and one joint hyperedge in with ⟨y, x⟩-partite sets of delta value

0.

Proof. The number of hyperedges in the statements (i) and (ii) are t(n− 1) and t,

respectively. Since |E(C0(D,Q))| = tn, it remains to show that C0(D,Q) contains

hyperedges in the statements (i) and (ii).

By Remark 3.4.6, it suffices to consider only the first 2n hyperedges of C0(D,Q),

ej(1), ej(2), . . . , ej(2n) when j = 1. For convenience, rewrite a hyperedge e1(ℓ) as

e(ℓ). Then, e(1), e(2), . . . , e(2n) are formed by three consecutive vertices in the

sequence of the following 2n+ 2 vertices,

bn c1 bn−1 c2 . . . b2 cn−1 b1 cn b′n c′1.
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where P 0
1 (D,Q) = bn c1 bn−1 c2 . . . b2 cn−1 b1 cn and P 0

2 (D,Q) = b′n c′1 . . .

Let p = D(1), q = D(2) and w = D(3).

Claim 1: δ(e(2n− 1)) = 0 = δ(e(2n)). It holds straightforwardly as e(2n− 1) =

{b1, cn, b′n} = {aqQ(1), a
q
Q(n), a

w
Q(n)} and e(2n) = {cn, b′n, c′1} = {aqQ(n), a

w
Q(n), a

w
Q(1)}.

Therefore, statement (ii) follows from Remark 3.4.6(i), (iii) and Claim 1.

Now we will find the delta values of the remaining 2n − 2 inline hyperedges,

δ(e(ℓ)) when ℓ ∈ {1, 2, . . . , 2n−2}. By the construction of the path P 0
1 (D,Q), one

can observe that vertices br and cr come from partite sets which are complement to

each other in {Vp, Vq} (see Figure 3.7). This implies that for ℓ ∈ {1, 2, . . . n− 1},

e(ℓ) is with ⟨p, q⟩-partite sets if and only if e(2n− 1− ℓ) is with ⟨q, p⟩-partite sets,

(3.1)

e(ℓ) is with ⟨q, p⟩-partite sets if and only if e(2n− 1− ℓ) is with ⟨p, q⟩-partite sets.

(3.2)

Statements (3.1) and (3.2) together with the fact that the list of subscripts

of vertices in path P 0
1 (D,Q) is symmetrical about the middle of the path (see

Figure 3.8), we have that for ℓ ∈ {1, 2, . . . , n− 1},

δ(e(ℓ)) = δ(e(2n− 1− ℓ)). (3.3)

Consequently, it is enough to determine only the delta values of the first n − 1

hyperedges.

Claim 2: The delta values of e(1), e(2), . . . , e(n− 1) spans the set D∖ {0}.

We verify separately for n = 3 and 5. If n = 3, then δ(e(1)) = 2 and δ(e(2)) = 1.

If n = 5, then δ(e(1)) = 4, δ(e(2)) = 3, δ(e(3)) = 2 and δ(e(4)) = 1.
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Now, let n ≥ 7. First, it can be verified that

δ(e(1)) = n− 1, δ(e(n− 1)) = 1 and δ(e(n− 2)) = 2.

For the remaining cases, note that δ(e(2)) = n − 2 and δ(e(3)) = 4, and let

ℓ ∈ {4, 5, . . . n− 3}. By Observations 1◦ and 2◦, if ℓ is even, then e(ℓ− 2) =

{apQ(r), a
q
Q(s), apQ(r+1)} and e(ℓ) = {apQ(r+1), a

q
Q(s−1), a

p
Q(r+2)} for some r, s ∈ [n];

thus, δ(e(ℓ)) = δ(e(ℓ− 2))−2. Similarly, if ℓ is odd, then δ(e(ℓ)) = δ(e(ℓ− 2))+2.

Thus,

δ(e(ℓ)) =

δ(e(ℓ− 2))− 2, if ℓ is even,

δ(e(ℓ− 2)) + 2, if ℓ is odd

where δ(e(2)) = n− 2 and δ(e(3)) = 4. That is,

{δ(e(2)), δ(e(4)), . . . , δ(e(n− 5)), δ(e(n− 3))} = {n− 2, n− 4, . . . , 5, 3}, and

{δ(e(3)), δ(e(5)), . . . , δ(e(n− 6)), δ(e(n− 4))} = {4, 6, . . . , n− 5, n− 3}.

Hence, the claim is completed.

From Claim 2, and statements (3.1), (3.2) and (3.3), we have that for λ ∈

D∖{0}, and the collection of inline hyperedges {e(1), e(2), . . . , e(2n−2)} contains

exactly one hyperedge with ⟨p, q⟩-partite sets of delta value λ, and one hyper-

edge with ⟨q, p⟩-partite sets of delta value λ. Therefore, by Remark 3.4.6(ii), the

statement (i) is proved.

Now, we are ready to prove that C is a Hamiltonian decomposition of T2(K
(3)
t(n)).

Let E(C ) denote the set of all hyperedges of all cycles in C . For D ∈ D and Q ∈ Q,

let E(D,Q) stand for the collection of hyperedges of all cycles constructed by D

and Q. In other words, E(D,Q) =
∪n−1

i=0 E(Ci(D,Q)).

Proof of Theorem D. Since the size of E(T2(K
(3)
t(n))) and E(C ) are the same, it
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is enough to show that each hyperedge of T2(K
(3)
t(n)) is contained in at most one

cycle in C .

Let e ∈ E(C ) be any hyperedge with ⟨x, y⟩-partite sets for some distinct x, y ∈

[t]. Assume that e ∈ E(D,Q) for some D ∈ D and Q ∈ Q. There exist a unique

Q ∈ Q, a unique s ∈ [n] and a unique d ∈ {0, 1, . . . , n− 1} such that

e = {axQ(s), a
x
Q(s+1), a

y
Q(s+d)} and δ(e) = d.

Then, Q = Q. By the property of D in Proposition 3.4.3, there exist unique

D,D′ ∈ D such that {x, y} is a red pair in D and a blue pair in D′. Thus, D = D

or D′. By Lemma 3.4.7 and the uniqueness of d, a hyperedge e cannot be both an

inline hyperedge in E(D,Q) and a joint hyperedge in E(D′, Q) at the same time.

Thus, we will consider the following two cases depending on d.

Case 1 d ̸= 0. By Lemma 3.4.7, e is an inline hyperedge in E(D,Q). Then,

it suffices to show that inline hyperedges with ⟨x, y⟩-partite sets of the same delta

value in E(D,Q) are distinct. Now, let λ ∈ D ∖ {0}. By Lemma 3.4.7(i), since

C0(D,Q) has only one hyperedge with ⟨x, y⟩-partite sets of delta value λ, such

hyperedge can be written as {axQ(m), a
x
Q(m+1), a

y
Q(m+λ)} for a unique m.

For i ∈ {1, 2, . . . , n − 1}, since Ci(D,Q) is the ith rotation of C0(D,Q), and

the rotation preserves the delta values of hyperedges, the cycle Ci(D,Q) also

contains exactly one hyperedge with ⟨x, y⟩-partite sets of delta value λ, namely

{axQ(m+i), a
x
Q(m+1+i), a

y
Q(m+λ+i)}. Since {axQ(m+j), a

x
Q(m+1+j), a

y
Q(m+λ+j)} ̸= {axQ(m+k),

axQ(m+1+k), a
y
Q(m+λ+k)} if and only if j ̸= k, all hyperedges with ⟨x, y⟩-partite sets

of delta value λ in E(D,Q) are distinct.

Case 2 d = 0. By Lemma 3.4.7, e is a joint hyperedge in E(D′, Q). Similarly

to the proof of Case 1, we can show that joint hyperedges with ⟨x, y⟩-partite sets

of the delta value 0 in E(D′, Q) are distinct.

Hence, by these two cases, each hyperedge of Type 2 of K(3)
t(n) is contained in at

most one cycle in C . Therefore, C is a Hamiltonian decomposition of T2(K
(3)
t(n)).
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3.5 Conclusions

The results in Sections 3.2-3.4 provide a construction of a Hamiltonian decom-

position of K(3)
t(n) when t ≡ 4, 8 (mod 12) excepts when t = 4 and n is even. As the

assumption in Theorem B includes all requirements in Theorems C and D, we can

conclude Theorem A as follows:

Theorem A. (Main theorem) Let n ≥ 2 and t be a positive integer such that

t ≡ 4, 8 (mod 12). The complete multipartite 3-uniform hypergraphs K
(3)
t(n) has a

Hamiltonian decomposition provided that

(i) t = 4 and n is odd, or

(ii) t ≥ 8 and K
(3)
t has a Hamiltonian decomposition.

Proof. Let t be a positive integer such that t ≡ 4, 8 (mod 12). If t ≥ 8, then assume

that K
(3)
t has a Hamiltonian decomposition. Then, T1(K

(3)
t(n)) has a Hamiltonian

decomposition by Theorem B, and T2(K
(3)
t(n)) has a Hamiltonian decomposition by

Theorems C and D.

However, when t = 4, we cannot apply Theorem C to decompose T2(K
(3)
t(n))

which n is even. While, Theorems B and D still work (since the hyperedge set of

K
(3)
4 form a Hamiltonian cycle). Therefore, K(3)

4(n) has a Hamiltonian decomposition

only when n is odd.

Here, we connect our results to the complete uniform hypergraphs. By a simple

but essential fact that K
(3)
t(2) = K

(3)
2t , together with our main theorem when n = 2,

we have that the existence problem of Hamiltonian decompositions of complete

3-uniform hypergraphs can be recursively solved as follows.

Theorem 3.5.1. Let t ≥ 8 such that t ≡ 4, 8 (mod 12). If K(3)
t has a Hamiltonian

decomposition, so does K
(3)
2t .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

HAMILTONIAN DECOMPOSITIONS OF COMPLETE

4-PARTITE 3-UNIFORM HYPERGRAPHS

4.1 Introduction

The existence problem of KK-Hamiltonian decompositions of complete 3-unifo-

rm hypergraphs, K(k)
t(n), have been studied when t = 2 and t = 3 in [18] and [6].

Chapter III establishes a construction of a KK-Hamiltonian decomposition of K(3)
t(n)

when t ≡ 4, 8 (mod 12) excepts when t = 4 and n is even which we separately

construct KK-Hamiltonian decompositions of T1(K
(3)
t(n)) and T2(K

(3)
t(n)). In details,

in Theorem B in Chapter III, we use a KK-Hamiltonian decomposition of K(3)
4 to

construct one of T1(K
(3)
t(n)), and in Theorem C in Chapter III, we use a Hamiltonian

decomposition of DK4 to construct a KK-Hamiltonian decomposition of T2(K
(3)
t(n)).

In fact, to construct a KK-Hamiltonian decomposition of K
(3)
t(n) when t = 4

and n = 2m, since K
(3)
4 has trivial Hamiltonian decomposition, the subhyper-

graph T1(K
(3)
4(2m)) can be decomposed into KK-Hamiltonian cycles by Theorem B.

While, we cannot provide a KK-Hamiltonian decomposition of the subhypergraph

T2(K
(3)
4(2m)) by Theorem C since a Hamiltonian decomposition of DK4 does not ex-

ist. Then, we dedicate this chapter to decompose a complete 4-partite 3-uniform

hypergraph, K(3)
4(2m) into KK-Hamiltonian cycles. The following is our main theo-

rem of the chapter.

Theorem 4.1.1. K
(3)
4(2m) has a KK-Hamiltonian decomposition for all positive

integer m.

Thus, Hamiltonian cycles in this chapter always mean KK-Hamiltonian cycles

in Definition 2. Also, the notations in this chapter are the same as Section 3.1 in
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Chapter III. Hence, to construct a Hamiltonian decomposition of K(3)
4(2m) in Theo-

rem 4.1.1, it remains to construct one of the subhypergraph T2(K
(3)
4(2m)) containing

all hyperedges of Type 2. The construction is revealed in Sections 4.2 and 4.3

depending on the parity of m.

We will construct a collection of Hamiltonian cycles where each cycle consists

of two paths of order 4m. The construction uses the following tools :

the collection of 4-tuples D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)} and

a 1-factorization F of K2m([2m]) which always exists by Theorem 1.3.2.

Now, we aim to establish the following two collections of cycles in K
(3)
4(2m) which

are

C = {Ct(D,F ) : t ∈ {0, 1, . . . ,m− 1}, D ∈ D , and F ∈ F} for odd m, and

C = {Ct(D,F ), Ct(D,F ) : t ∈ {0, 1, . . . , m
2
− 1}, D ∈ D , and F ∈ F} for even m.

in Sections 4.2 and 4.3, respectively.

Thus, each collection will contain 3m(2m− 1) cycles. For the construction, let

D be any tuple in D , and F any 1-factor of K2m([2m]) in F , written

D = (p, q, r, s) and F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}},

consequently, the vertex set [2m] of K2m is relabeled according to F to be {1, 2, . . . ,

m, f(1),f(2),. . . , f(m)}. Thus, all vertices in Vx are automatically relabeled ac-

cording to F to be {ax1 , ax2 , . . . , axm, axf(1), axf(2), . . . , axf(m)} for all x ∈ {p, q, r, s}.

(For example, if F = {{1, 2}, {3, 4}} is a 1-factor of K4([4]), then the vertices

1, 2, 3 and 4 could be relabeled to be 1, f(1), 2 and f(2), respectively.)

We will construct m Hamiltonian cycles of T2(K
(3)
4(2m)) in C from D and F when

m is odd in Section 4.2, namely

C0(D,F ), C1(D,F ), . . . , Cm−1(D,F ) and
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m Hamiltonian cycles of T2(K
(3)
4(2m)) in C from D and F when m is even in Section

4.3, namely

C0(D,F ), C1(D,F ), . . . , Cm
2
−1(D,F ), C0(D,F ), C1(D,F ), . . . , C m

2
−1(D,F ).

Then, we later show that both collections are Hamiltonian decompositions of

T2(K
(3)
4(2m)) in each section.

4.2 Hamiltonian decomposition of T2(K(3)
4(2m)) where m is odd

Let m be an odd integer. We define Ct(D,F ) where t ∈ {0, 1, . . . ,m − 1} to

consist of two paths of order 4m, written

Ct(D,F ) = (P t
1 P t

2)

where for j ∈ {1, 2},

(x, y) =

 (p, q), if j = 1,

(r, s), if j = 2, and

P t
j = ax1+t axf(1+t) ayf(m+t) aym+t

ax2+t axf(2+t) ayf(m−1+t) aym−1+t

... ... ... ...

axm+1
2

+t
ax
f(m+1

2
+t)

ay
f(m+1

2
+t)

aym+1
2

+t

... ... ... ...

axm−1+t axf(m−1+t) ayf(2+t) ay2+t

axm+t axf(m+t) ayf(1+t) ay1+t,

We say that Ct(D,F ) is the tth-rotation of C0(D,F ). In other words, C0(D,F )

is an initial cycle which is rotated m− 1 times to create additional m− 1 cycles.

Example 11. An illustration of C0(D,F ) which are in the construction of K(3)
4(2m)

when m = 5, D = (1, 3, 4, 2) and F = {{j, f(j)} : j ∈ {1, 2, 3, 4, 5}}. In Figure
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4.1, each vertex axℓ in the cycle C0(D,F ) is represented by its subscript ℓ. The

solid lines join two consecutive vertices in the same path, while the dash lines join

two consecutive vertices from different paths.

V1

1 f (1)

2 f (2)

3 f (3)

4 f (4)

5 f (5)

V3

f (5) 5

f (4) 4

f (3) 3

f (2) 2

f (1) 1

V4

1 f (1)

2 f (2)

3 f (3)

4 f (4)

5 f (5)

V2

f (5) 5

f (4) 4

f (3) 3

f (2) 2

f (1) 1

Figure 4.1: C0(D,F ) of T2(K
(3)
4(10)).

Lemma 4.2.1. Let D ∈ D , F ∈ F and t ∈ {0, 1, . . . ,m − 1}. Ct(D,F ) is a

Hamiltonian cycle of T2(K
(3)
4(2m)).

Proof. Write D = (p, q, r, s) ∈ D , we have that P t
1 consists of 4m vertices from Vp

and Vq and, P t
2 consists of 4m vertices from Vr and Vs. Since (p, q, r, s) is a permu-

tation of {1, 2, 3, 4} and F is a 1-factor of K2m, the 8m vertices in Ct(D,F ) are all

distinct. Furthermore, the construction yields that any three consecutive vertices

in Ct(D,F ) are always from only two partite sets. Therefore, all hyperedges in

Ct(D,F ) are of Type 2.

Next, let us observe a certain property of hyperedges in T2(K
(3)
4(2m)). Recall that

a hyperedge with ⟨p, q⟩-partite sets stands for a hyperedge of Type 2 containing two

vertices in Vp and one vertex in Vq (Definition 6 in Chapter III). Let e be a hyper-

edge with ⟨x, y⟩-partite sets where x ̸= y, written e = {axu, axv , ayw}. Now, consider

u, v as vertices in K2m([2m]). Since F is a 1-factorization of K2m([2m]), there

exists a unique F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such that {u, v} ∈ E(F ).

According to F , without loss of generality, there exists a unique i ∈ {1, 2, . . . ,m}

where u and v are relabeled as i and f(i), respectively. In such vertex set relabeled

by F , we also consider w as another vertex. Then, there exists a unique j such



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44

that w is relabeled as j or f(j). Thus, e must be one of the followings :

{axi , axf(i), a
y
j} or {axi , axf(i), a

y
f(j)}.

Consequently, given two partite sets in order, we can define the length of each

hyperedge of Type 2 from such partite sets as follows.

Definition 8. Let (x, y) ∈ {(p, q) : p, q ∈ {1, 2, 3, 4}, p ̸= q} and e a hyperedge of

Type 2 with two partite sets Vx and Vy. Then, there exist a unique F = {{j, f(j)} :

j ∈ {1, 2, . . . ,m}} ∈ F and unique i, j ∈ {1, 2, . . . ,m} such that e can be written

in one of the following four distinct forms,

{axi , axf(i), a
y
j}, {axi , axf(i), a

y
f(j)}, {ayj , a

y
f(j), a

x
i }, and {ayj , a

y
f(j), a

x
f(i)}.

Define the length with respect to (x, y) of hyperedge e by

L(x,y)(e) =

 i− j, if e = {axi , axf(i), a
y
j} or {ayj , a

y
f(j), a

x
i },

(i− j)′, if e = {axi , axf(i), a
y
f(j)} or {ayj , a

y
f(j), a

x
f(i)}.

where i − j and (i − j)′ are considered in the modulus m. Then, there are 2m

possible lengths in {0, 1, . . . ,m− 1, 0′, 1′, . . . , (m− 1)′} denoted by L .

Remark 4.2.2. Let e be a hyperedge with ⟨x, y⟩-partite sets, x, y ∈ {1, 2, 3, 4},

x ̸= y. L(x,y)(e) = ℓ if and only if L(y,x)(e) = −ℓ (in the modulus m). In

particular, L(x,y)(e) and L(y,x)(e) are both zero (0 and 0′) or both nonzero.

Moreover, in the construction, as the partite sets of vertices are determined

by D ∈ D , we consider the length of hyperedges in Ct(D,F ) according to D as

follows.

Definition 9. Let D = (p, q, r, s) ∈ D , F ∈ F and e ∈ Ct(D,F ). Then, e is

a hyperedge of Type 2 with ⟨x, y⟩-partite sets or ⟨y, x⟩-partite sets for a unique

(x, y) ∈ {(p, q), (q, r), (r, s), (s, p)}. The length of a hyperedge e is L(x,y)(e).
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Example 12. Figure 4.2 illustrates the lengths of hyperedges in the cycle C0(D,F )

in Example 11. As each three consecutive vertices along the cycle form a hyperedge,

we label its length at the middle vertex of such hyperedge.

V1

0 1′

2 3′

4 0′

1 2′

3 4′

V3

1′ 2

3′ 4

0′ 1

2′ 3

4′ 0

V1

0 1′

2 3′

4 0′

1 2′

3 4′

V3

1′ 2

3′ 4

0′ 1

2′ 3

4′ 0

Figure 4.2: Lengths of hyperedges in C0(D,F ) of T2(K
(3)
4(10)).

The next lemma discusses the lengths of hyperedges in C0(D,F ), which yields

the same result for other cycles in C as a rotation of an initial cycle preserves the

lengths of hyperedges in a new cycle.

Lemma 4.2.3. Let D = (p, q, r, s) ∈ D , F ∈ F , ID = {(p, q), (r, s)} and JD =

{(q, r), (s, p)}. The cycle C0(D,F ) consists of the following :

(i) for (x, y) ∈ ID, one inline hyperedge with ⟨x, y⟩-partite sets of length λ and

one inline hyperedge with ⟨y, x⟩-partite sets of length λ, for each λ ∈ L ∖{0},

(ii) for (x, y) ∈ JD, one joint hyperedge with ⟨x, y⟩-partite sets of length 0 and

one joint hyperedge with ⟨y, x⟩-partite sets of length 0.

Proof. Let F ∈ F , written F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}}. Let e1, e2, . . . , e8m

be 8m hyperedges around the cycle C0(D,F ) orderly, beginning with the first four

inline hyperedges e1 = {ap1, a
p
f(1), a

q
f(m)}, e2 = {apf(1), a

q
f(m), a

q
m}, e3 = {aqf(m), a

q
m, a

p
2},

e4 = {aqm, a
p
2, a

q
f(2)} and so on. Note that e4m−1, e4m, e8m−1 and e8m are joint hy-

peredges while the others 8m− 4 hyperedges are inline hyperedges.

By our construction, the lengths of inline hyperedges of P 0
1 and P 0

2 have the

same spectrum. More precisely, for ℓ ∈ {1, 2, . . . , 4m− 2},

L(p,q)(eℓ) = L(r,s)(e4m+ℓ).
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For ℓ ∈ {4m − 1, 4m}, eℓ and e4m+ℓ are joint hyperedges satisfying L(q,r)(eℓ) =

L(s,p)(e4m+ℓ). Then, it suffices to determine the lengths the first 4m hyperedges.

It is clear that L(q,r)(e4m−1) = 0 and L(q,r)(e4m) = 0, that is, the lengths of joint

hyperedges are all 0. Thus, the statement (ii) is proved.

For other hyperedges, Table 4.1 reveals the length of inline hyperedge eℓ where

ℓ ∈ {1, 2, . . . , 4m− 2}.

e4d+k where d ∈ {0, 1, . . . ,m− 1} and 4d+ k ≤ 4m− 2

k e4d+k L(p,q)(e4d+k)

1 {ap1+d, apf(1+d), aqf(m−d)} (1 + 2d (mod m))′

2 {apf(1+d), aqf(m−d), aqm−d} (1 + 2d (mod m))′

3 {aqf(m−d), aqm−d, ap2+d} 2 + 2d (mod m)

4 {aqm−d, ap2+d, apf(2+d)} 2 + 2d (mod m)

Table 4.1: Lengths of e1, e2, . . . , e4m−2.

With some abuse of notation, we refer to (λ + 2)′ as λ′ + 2 . Then, it can

be noticed further that the sequence of the lengths of inline hyperedges satisfies a

recurrence relation

L(p,q)(eℓ) = L(p,q)(eℓ−4) + 2

for ℓ ∈ {5, 6, . . . , 4m− 2} where L(p,q)(e1) = 1′, L(p,q)(e2) = 1′, L(p,q)(e3) = 2,

L(p,q)(e4) = 2.

Now, all inline hyperedges with ⟨p, q⟩-partite sets in C0(D,F ) are hyperedges

eℓ for all ℓ ≡ 0, 1 (mod 4) and ℓ ≤ 4m − 1. Since the modulus m is odd, the

recurrence relation yields that the lengths of such 2m − 1 inline hyperedges span

the set L ∖ {0} (see Tables 4.2 and 4.3). That is,

{L(p,q)(eℓ) : ℓ ≡ 0, 1 (mod 4), ℓ ∈ {1, 2, . . . , 4m− 2}} = L ∖ {0}.

Similarly, inline hyperedges with ⟨q, p⟩-partite sets in C0(D,F ) are hyperedges
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ℓ 1 5 9 · · · m−3
2

m+1
2

m+9
2

· · · 4m− 7 4m− 3

L(p,q)(eℓ) 1′ 3′ 5′ · · · (m− 2)′ 0′ 2′ · · · (m− 3)′ (m− 1)′

Table 4.2: Lengths of eℓ where ℓ ≡ 1 (mod 4) and ℓ ≤ 4m− 2.

ℓ 4 8 12 · · · m−1
2

m+7
2

m+15
2

· · · 4m− 8 4m− 4

L(p,q)(eℓ) 2 4 6 · · · m− 1 1 3 · · · m− 4 m− 2

Table 4.3: Lengths of eℓ where ℓ ≡ 0 (mod 4) and ℓ ≤ 4m− 2.

eℓ for all ℓ ≡ 2, 3 (mod 4) and ℓ ≤ 4m − 2 which also have lengths spanning the

set L ∖ {0} as follows.

{L(p,q)(eℓ) : ℓ ≡ 2, 3 (mod 4), ℓ ∈ {1, 2, . . . , 4m− 2}} = L ∖ {0}.

Hence, for λ ∈ L ∖ {0}, C0(D,F ) contains exactly one hyperedge with ⟨p, q⟩-

partite sets of length λ, and one hyperedge with ⟨q, p⟩-partite sets of length λ.

Therefore, the statement (i) is proved.

Now, we are ready to prove that C is a Hamiltonian decomposition.

Notations

Let E(C ) be the set of all hyperedges of all cycles in C .

For D ∈ D and A ⊆ F , let E(D,A ) stand for the collection of hyperedges

of all cycles in C constructed by D and all F ∈ A . When A = {F}, we

write E(D,F ) instead.

In other words, E(D,F ) =
∪

F∈F

∪m−1
i=0 E(Ci(D,F )) and

E(D,F ) =
∪m−1

i=0 E(Ci(D,F )).

Theorem 4.2.4. The subhypergraph T2(K
(3)
4(2m)) has a Hamiltonian decomposition

when m is odd.
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Proof. Let D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)}, F a 1-factorization of K2m and

C = {Ct(D,F ) : t ∈ {0, 1, . . . ,m− 1}, D ∈ D and F ∈ F}.

By Lemma 4.2.1, C is a collection of Hamiltionian cycles of T2(K
(3)
4(2m)). It remains

to show that C is a decomposition of T2(K
(3)
4(2m)).

First, we consider an essential property of D . The following two collections I

and J contain ordered pairs induced by D ;

I = {(p, q), (r, s) : (p, q, r, s) ∈ D} = {(1, 2), (1, 3), (1, 4), (3, 4), (4, 2), (2, 3)} and

J = {(q, r), (s, p) : (p, q, r, s) ∈ D} = {(2, 3), (3, 4), (4, 2), (4, 1), (2, 1), (3, 1)}.

Given D = (p, q, r, s), E(D,F ) consists of

(i) inline hyperedges with partite sets Vp and Vq, and with partite sets Vr and

Vs, and

(ii) joint hyperedges with partite sets Vq and Vr, and with partite sets Vs and Vp.

Since any pair of elements in {1, 2, 3, 4} occurs once in I and once in J , each pair of

partite sets is used to construct inline hyperedges once and joint hyperedges once.

Note that the number of hyperedges in E(C ) is 24m2(2m− 1) counted repeat-

edly. Since the number of hyperedges of Type 2 in K
(3)
4(2m) is also 24m2(2m− 1), it

suffices to show that each hyperedge of Type 2 is contained in at most one cycle

in C .

Let e ∈ E(C ) be a hyperedge with ⟨x, y⟩-partite sets, say e = {axu, axv , a
y
d}.

Assume that e ∈ E(D,F ) for some D ∈ D and F ∈ F . By the property of D , x

and y appear together in both I once and J once. Then, there exist unique D,D′ ∈

D which pair of partite sets Vx and Vy are used to construct inline hyperedges in

E(D,F ) and joint hyperedges in E(D′,F ). Then, D = D or D′. Therefore,

e ∈ E(D,F ) ∪ E(D′,F ). Moreover, since F is a 1-factorization of K2m, there

exists a unique F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such that {u, v} ∈ E(F ).
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Thus, F = F. Therefore, e ∈ E(D,F ) ∪ E(D′, F ). By Remark 4.2.2, it is enough

to consider the following two cases.

Case 1 L(x,y)(e) and L(y,x)(e) are not 0. By Lemma 4.2.3, e is an inline hyper-

edge in E(D,F ). To conclude that e is in at most one cycle, it suffices to show that

inline hyperedges with ⟨x, y⟩-partite sets of the same length in E(D,F ) are distinct.

Let λ ∈ {1, 2, . . . ,m − 1}. By Lemma 4.2.3(i), C0(D,F ) has only one hyperedge

of length λ with ⟨x, y⟩-partite sets which is {axi , axf(i), a
y
i−λ} for a unique i. For

t ∈ {1, 2, . . . ,m− 1}, since Ct(D,F ) is the tth-rotation of C0(D,F ) and the rota-

tion preserves the lengths of hyperedges, the cycle Ct(D,F ) also contains exactly

one hyperedge of length λ with ⟨x, y⟩-partite sets, namely {api+t, a
p
f(i+t), a

q
i−λ+t}.

Since {api+t, a
p
f(i+t), a

q
i−λ+t} ̸= {api+w, a

p
f(i+w), a

q
i−λ+w} if and only if t ̸= w, all hyper-

edges of length λ are distinct. Let γ ∈ {0′, 1′, . . . , (m− 1)′}. Similarly, by Lemma

4.2.3(i) and the rotation of cycles, all hyperedges of length γ are distinct.

Case 2 L(x,y)(e) and L(y,x)(e) are both 0. By Lemma 4.2.3, e is a joint hy-

peredge in E(D′, F ). Similarly, by Lemma 4.2.3(ii) and the rotation of cycles, all

hyperedges of length 0 in E(D′, F ) are distinct.

Hence, each hyperedge is contained in at most one cycle in C . Therefore, C is

a Hamiltonian decomposition of T2(K
(3)
4(2m)).

4.3 Hamiltonian decomposition of T2(K(3)
4(2m)) where m is

even

Let m be an even integer, say m = 2µ. We have two initial cycles C0(D,F ) and

C0(D,F ), each of which is rotated which rotates µ− 1 times to create additional

µ− 1 cycles. For t ∈ {0, 1, . . . , µ− 1},

Ct(D,F ) = (P t
1 P t

2) and Ct(D,F ) = (P
t

1 P
t

2)
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where

(x, y) =

 (p, q), if j = 1,

(r, s), if j = 2

and

P t
j = ap1+t apf(1+t) aqf(2µ+t) aq2µ+t

ap2+t apf(2+t) aqf(2µ−1+t) aq2µ−1+t

... ... ... ...

apµ+t apf(µ+t) aqf(µ+1+t) aqµ+1+t

apµ+1+t apf(µ+1+t) aqf(µ+t) aqµ+t

... ... ... ...

ap2µ−1+t apf(2µ−1+t) aqf(2+t) aq2+t

ap2µ+t apf(2µ+t) aqf(1+t) aq1+t,

P
t

j = apf(1+t) ap1+t aq2µ+t aqf(2µ+t)

apf(2+t) ap2+t aq2µ−1+t aqf(2µ−1+t)
... ... ... ...

apf(µ+t) apµ+t aqµ+1+t aqf(µ+1+t)

apf(µ+1+t) apµ+1+t aqµ+t aqf(µ+t)
... ... ... ...

apf(2µ−1+t) ap2µ−1+t aq2+t aqf(2+t)

apf(2µ+t) ap2µ+t aq1+t aqf(1+t).

We say that Ct(D,F ) and Ct(D,F ) are the tth-rotation of C0(D,F ) and C0(D,

F ), respectively.

Example 13. An illustration of the two initial cycles C0(D,F ) and C0(D,F )

which are in the construction of a Hamiltonian decomposition of K
(3)
4(2m) when

m = 6, D = (1, 3, 4, 2) and F = {{j, f(j)} : j ∈ {1, 2, 3, 4, 5, 6}}. In the Figures

4.3(a) and 4.4(a), each vertex axℓ in the initial cycles C0(D,F ) and C0(D,F ) is

represented by its subscript ℓ. Moreover, Figures 4.3(b) and 4.4(b) illustrate the

lengths of hyperedges. As each three consecutive vertices along the cycle form a

hyperedge, we label its length at the middle vertex of such hyperedge.
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V1

1 f (1)

2 f (2)

3 f (3)

4 f (4)

5 f (5)

6 f (6)

V3

f (6) 6

f (5) 5

f (4) 4

f (3) 3

f (2) 2

f (1) 1

V4

1 f (1)

2 f (2)

3 f (3)

4 f (4)

5 f (5)

6 f (6)

V2

f (6) 6

f (5) 5

f (4) 4

f (3) 3

f (2) 2

f (1) 1

V1

0 1′

2 3′

4 5′

0 1′

2 3′

4 5′

V3

1′ 2

3′ 4

5′ 0

1′ 2

3′ 4

5′ 0

V4

0 1′

2 3′

4 5′

0 1′

2 3′

4 5′

V2

1′ 2

3′ 4

5′ 0

1′ 2

3′ 4

5′ 0

(a) (b)

Figure 4.3: (a) C0(D,F ) of T2(K
(3)
4(12)) and (b) the lengths of hyperedges in

C0(D,F ).

V1

f (1) 1

f (2) 2

f (3) 3

f (4) 4

f (5) 5

f (6) 6

V3

6 f (6)

5 f (5)

4 f (4)

3 f (3)

2 f (2)

1 f (1)

V4

f (1) 1

f (2) 2

f (3) 3

f (4) 4

f (5) 5

f (6) 6

V2

6 f (6)

5 f (5)

4 f (4)

3 f (3)

2 f (2)

1 f (1)

V1

0′ 1

2′ 3

4′ 5

0′ 1

2′ 3

4′ 5

V3

1 2′

3 4′

5 0′

1 2′

3 4′

5 0′

V4

0′ 1

2′ 3

4′ 5

0′ 1

2′ 3

4′ 5

V2

1 2′

3 4′

5 0′

1 2′

3 4′

5 0′

(a) (b)

Figure 4.4: (a) C0(D,F ) of T2(K
(3)
4(12)) and (b) the lengths of hyperedges in

C0(D,F ).

Now, we will prove that C is a Hamiltonian decomposition.

Notations

For any set A, 2A denotes a multi-set containing two repeated elements of

each element in A.

Let E(C ) be the set of all hyperedges of all cycles in C .

For D ∈ D and A ⊆ F , let E(D,A ) stand for the collection of hyperedges

of all cycles in C constructed by D and all F ∈ A . When A = {F}, we

write E(D,F ) instead.

In other words, E(D,F ) =
∪µ−1

t=0 E(Ct(D,F )) ∪
∪µ−1

t=0 E(Ct(D,F )) and

E(D,F ) =
∪

F∈F

(∪µ−1
t=0 E(Ct(D,F )) ∪

∪µ−1
t=0 E(Ct(D,F ))

)
.

Theorem 4.3.1. The subhypergraph T2(K
(3)
4(2m)) has a Hamiltonian decomposition

when m is even.
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Proof. We will define the collection C of Hamiltonian cycles and prove that C is

the decomposition of T2(K
(3)
4(2m)) by using the lengths of hyperedge.

1. The construction.

Let m = 2µ, D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)}, F a 1-factorization of

K2m([2m]) and

C = {Ct(D,F ), Ct(D,F ) : t ∈ {0, 1, . . . , µ− 1}, D ∈ D , and F ∈ F}.

Let D ∈ D and F ∈ F , written

D = (p, q, r, s) and F = {{j, f(j)} : j ∈ {1, 2, . . . ,m}}.

Similar to Lemma 4.2.1, the cycles Ct(D,F ) and Ct(D,F ) constructed by D and

F are Hamiltonian cycles of T2(K
(3)
4(2m)), thus, C is a collection of Hamiltionian

cycles of T2(K
(3)
4(2m)). It remains to show that C is a decomposition of T2(K

(3)
4(2m)).

2. The length of hyperedges.

We write 8m hyperedges in E(C0(D,F )) and 8m hyperedges in E(C0(D,F ))

in order around the cycles as e1, e2, . . . , e8m, and e1, e2, . . . , e8m, respectively, be-

ginning with

e1 = {ap1, a
p
f(1), a

q
f(2µ)} and e2 = {apf(1), a

q
f(2µ), a

q
2µ} and so on, and

e1 = {apf(1), a
p
1, a

q
2µ} and e2 = {ap1, a

q
2µ, a

q
f(2µ)} and so on.

Note that C0(D,F ) is defined exactly the same as in Section 4.2, except even

m. Besides, here we rotate C0(D,F ) to construct additional m
2
− 1 cycles instead

of m− 1 cycles. By our construction, for ℓ ∈ {1, 2, . . . , 4m− 2},

L(p,q)(eℓ) = L(r,s)(e4m+ℓ).

For ℓ ∈ {4m − 1, 4m}, eℓ and e4m+ℓ are joint hyperedges satisfying L(q,r)(eℓ) =

L(s,p)(e4m+ℓ). Then, it suffices to determine the lengths of the first 4m hyperedges.
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First, we consider the following two observations of hyperedges of the same length.

Observation 1◦ Since m is even, the lengths of eℓ and e2m+ℓ are the same for

ℓ ∈ {1, 2, . . . , 2m}. In particular, for ℓ ∈ {1, 2, . . . , 2m− 2},

e2m+ℓ and eℓ are the µth-rotation of each other.

Observation 2◦ Since e2m = {aqµ+1+t, a
p
µ+1+t, a

p
f(µ+1+t)} and e4m = {aq1+t,

ar1+t, a
r
f(1+t)}, if p = r, then e2m and e4m are the µth-rotation

of each other, so are e2m−1 and e4m−1.

Next, we have that e2m is an inline hyperedge of length 0 with ⟨p, q⟩-partite

sets, and e4m is a joint hyperedge of length 0 with ⟨r, q⟩-partite sets.

For ℓ ≡ 0, 1 (mod 4), ℓ ≤ 4m and ℓ ̸= 2m, 4m, eℓ is an inline hyperedge with

⟨p, q⟩-partite sets in C0(D,F ) of length λ ̸= 0. Tables 4.4 and 4.5 show such

lengths.

ℓ 4 8 12 . . . 2m− 4 2m 2m+ 4 2m+ 8 2m+ 12 . . . 4m− 4 4m

Length of eℓ 2 4 6 . . . m− 2 0 2 4 6 . . . m− 2 0

Table 4.4: Lengths of eℓ where ℓ ≡ 0 (mod 4) and ℓ ≤ 4m.

ℓ 1 5 9 . . . 2m− 3 2m+ 1 2m+ 5 2m+ 7 . . . 4m− 3

Length of eℓ 1′ 3′ 5′ . . . (m− 1)′ 1′ 3′ 5′ . . . (m− 1)′

Table 4.5: Lengths of eℓ where ℓ ≡ 1 (mod 4) and ℓ ≤ 4m.

Let L1 = {2, 4, . . . ,m− 2}∪{1′, 3′, . . . ,(m− 1)′}. By Observation 1◦, the set of

the lengths of 2m− 2 inline hyperedges with ⟨p, q⟩-partite sets in C0(D,F ) is

{L(p,q)(eℓ) : ℓ ≡ 0, 1 (mod 4), ℓ ∈ {1, 2, . . . , 4m− 2}∖ {2m}} = 2L1.

For the lengths of eℓ where ℓ ≡ 2, 3 (mod 4) and ℓ ≤ 4m, we have the similar

results for hyperedges with ⟨q, p⟩-partite sets and ⟨q, r⟩-partite sets as follows.

e2m−1 and e4m−1 are hyperedges of length 0. By Observation 1◦, the set of lengths
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of 2m− 2 inline hyperedges with ⟨q, p⟩-partite sets in C0(D,F ) is

{L(p,q)(eℓ) : ℓ ≡ 2, 3 (mod 4), ℓ ∈ {1, 2, . . . , 4m− 2}∖ {2m− 1}} = 2L1.

Next, consider the lengths of hyperedges in C0(D,F ). Observe that Ct(D,F )

is a modification of Ct(D,F ) by swapping axi and axf(i) for all x ∈ {p, q, r, s} and

i ∈ [m]. Thus, for ℓ ∈ {1, 2, . . . , 8m} and λ ∈ {0, 1, . . . ,m− 1},

L(eℓ) = λ′ if and only if L(eℓ) = λ,

L(eℓ) = λ if and only if L(eℓ) = λ′.

Then, the lengths of all joint hyperedges and inline hyperedges e2m−1, e2m, e2m−1

and e2m are 0′. Let L2 = {2′, 4′, . . . , (m − 2)′}∪{1, 3, . . . ,m − 1}. The remaining

2m−2 inline hyperedges with ⟨p, q⟩-partite sets in C0(D,F ) have lengths spanning

the multiset 2L2 (see Tables 4.6 and 4.7). Also, 2m − 2 inline hyperedges with

⟨q, p⟩-partite sets have lengths spanning the multiset 2L2.

ℓ 4 8 12 . . . 2m− 4 2m 2m+ 4 2m+ 8 2m+ 12 . . . 4m− 4 4m

Length of eℓ 2′ 4′ 6′ . . . (m− 2)′ 0′ 2′ 4′ 6′ . . . (m− 2)′ 0′

Table 4.6: Lengths of eℓ where ℓ ≡ 0 (mod 4) and ℓ ≤ 4m.

ℓ 1 5 9 . . . 2m− 3 2m+ 1 2m+ 5 2m+ 7 . . . 4m− 3

Length of eℓ 1′ 3′ 5′ . . . (m− 1)′ 1′ 3′ 5′ . . . (m− 1)′

Table 4.7: Lengths of eℓ where ℓ ≡ 1 (mod 4) and ℓ ≤ 4m.

Hence, inline hyperedges with ⟨p, q⟩-partite sets (or ⟨q, p⟩-partite sets) in both

C0(D,F ) and C0(D,F ) except those of lengths 0 and 0′ have lengths spanning the

multiset 2L1 ∪ 2L2. Remark that the multiset 2L1 ∪ 2L2 = 2L ∖ 2{0, 0′}.

Let (x, y) ∈ {(p, q), (q, p), (r, s), (s, r)}. In conclusion, we have that for λ1 ∈ L1,

C0(D,F ) contains exactly two hyperedges of length λ1 with ⟨x, y⟩-partite sets, and
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for λ2 ∈ L2, C0(D,F ) contains exactly two hyperedges of length λ2 with ⟨x, y⟩-

partite sets.

3. The decomposition.

We will use the lengths of hyperedges in the cycles to prove that C is the

decomposition of T2(K
(3)
4(2m)). By a similar argument as in Theorem 4.2.4, we

count the number of hyperedges in E(C ) and in E(T2(K
(3)
4(2m))). It suffices to show

that any hyperedge of Type 2 with ⟨x, y⟩-partite sets is contained in at most one

cycle in E(C ).

Now, let e ∈ E(C ). Assume that e ∈ E(D,F ) for some D ∈ D and F ∈

F . Similarly to the proof of Theorem 4.2.4, the essential property of D implies

that each pair of partite sets is used to construct inline hyperedges once and

joint hyperedges once. Then, there exist unique D′, D′′ ∈ D and a unique F ′ =

{{j, f ′(j)} : j ∈ {1, 2, . . . ,m}} ∈ F such that e is an inline hyperedge in E(D′, F ′)

or a joint hyperedge in E(D′′, F ′). Thus, F = F and D = D or D′. By Remark

4.2.2, it is enough to consider the following two cases.

Case 1 L(x,y)(e) and L(y,x)(e) are not in {0, 0′}. Then, e is an inline hyperedge

in E(D′, F ′). Since hyperedges in the same Hamiltonian cycle are always distinct,

to conclude that e is in at most one cycle, we will claim that hyperedges with

⟨x, y⟩-partite sets of the same length excepts 0 and 0′ in E(D′, F ′) are all distinct.

The lengths of hyperedges in C0(D
′, F ′) and hyperedges in C0(D

′, F ′) are in

L1 ∪ {0} and L2 ∪ {0′}, respectively. Since L1 ∪ {0} and L2 ∪ {0′} are disjoint

and Ct(D,F ) is a modification of Ct(D,F ), it is enough to show that hyperedges

of the same length excepts 0 and 0′ with ⟨x, y⟩-partite sets in
∪µ−1

t=0 E(Ct(D
′, F ′))

are distinct.

Let λ ∈ L1 ∖ {1′, 3′, . . . ,(m − 1)′}. Then, C0(D
′, F ′) contains exactly two

distinct hyperedges of length λ with ⟨x, y⟩-partite sets and By Observation 1◦, such

two hyperedges are µ-rotation of each other, say {axi , axf(i), a
y
i−λ} and {axi+µ, a

x
f(i+µ),

ayi+µ−λ} for a unique i ∈ [m]. By the proof of Theorem 4.2.4, hyperedges of the

same length obtained by the rotation are all distinct. Since we rotate each initial
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cycle in our construction at most µ− 1 times, hyperedges obtained from rotating

such two hyperedges are all distinct. Hence, hyperedges with ⟨x, y⟩-partite sets of

length λ in
∪µ−1

t=0 E(Ct(D
′, F ′)) are all distinct. Similarly, for γ ∈ {1′, 3′, . . . ,(m−

1)′}, hyperedges with ⟨x, y⟩-partite sets of length γ in
∪µ−1

t=0 E(Ct(D
′, F ′)) are all

distinct. Our claim holds.

Case 2 L(x,y)(e) and L(y,x)(e) are in {0, 0′}. Then, e is an inline hyperedge in

E(D′, F ′) or a joint hyperedge in E(D′′, F ′). By Remark 4.2.2, L(x,y)(e) and

L(y,x)(e) are both 0 or both 0′.

Suppose that L(x,y)(e) = 0 = L(y,x)(e). It is enough to show that hyperedges

of the length 0 with ⟨x, y⟩-partite sets in E(D′, F ′) ∪ E(D′′, F ′) are distinct. By

Observation 2◦, inline hyperedge of length 0 with ⟨x, y⟩-partite sets in C0(D
′, F ′)

and a joint hyperedge with ⟨x, y⟩-partite sets in C0(D
′′, F ′) are the µth-rotation

of each other. From the same reason in the proof of Case 1, all inline hyperedges

and joint hyperedges with ⟨x, y⟩-partite sets of length 0 in
∪µ−1

t=0 E(Ct(D
′, F ′))

∪
∪µ−1

t=0 E(Ct(D
′′, F ′)) are all distinct.

Similarly, if L(x,y)(e) = 0′ = L(y,x)(e), then we can conclude that hyperedges

with ⟨x, y⟩-partite sets of length 0′ in
∪µ−1

t=0 E(Ct(D
′, F ′)) ∪

∪µ−1
t=0 E(Ct(D

′′, F ′))

are all distinct.

By these two cases, any hyperedges of Type 2 is contained in at most one cycle

in C , and therefore, C is a Hamiltonian decomposition of T2(K
(3)
4(2m)).

4.4 Conclusion and further remark

The construction of a Hamiltonian decomposition of T2(K
(3)
4(2m)) in this chapter

uses mainly the following tools :

(1) the collection of 4-tuples D = {(1, 2, 3, 4), (1, 3, 4, 2), (1, 4, 2, 3)} and

(2) a 1-factorization F of K2m([2m]) which always exists by Theorem 1.3.2.

For each cycle in our construction, D and F are used to arrange partite sets and

vertices in each partite set, respectively.
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We actually can extended this technique to create a Hamiltonian decomposi-

tion of T2(K
(3)
t(n)) when t > 4 and n ≡ 0 (mod 2). We generalize the construction in

Sections 4.2 and 4.3 by replacing the collection D with the Canonical Decompo-

sition of 2Kt. This technique works because the following two properties are the

same;

(i) the property of the Canonical Decomposition of 2K4 in Proposition 3.4.3

and

(ii) the property of the collection D that each pair of partite sets is used to

construct inline hyperedges once and joint hyperedges once.

Then, the modified construction gives a Hamiltonian decomposition of T2(K
(3)
t(n))

when t > 4 and n ≡ 0 (mod 2).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

HAMILTONIAN DECOMPOSITIONS OF COMPLETE

BIPARTITE 4-UNIFORM HYPERGRAPHS

5.1 Introduction

Hypergraphs have been introduced in database theory in order to model rela-

tional database schemes. A new definition of cycles in hypergraphs (Definition 3

in Chapter II) was introduced in 1999 by Wang and Lee [17] which defined to suit

the structure properties of relation database in computer science. In 2001, Wang

and Jirimutu [16] adopted this new definition of cycles to define a WJ-Hamiltonian

cycle in Definition 3 (Chapter II) which states as follows. Let C = (e0, e1, . . . , er−1)

be a sequence of hyperedges of H and Si = ei ∩ ei+1 for i ∈ {0, 1, . . . , r− 1} where

er = e0. We call Si a node and C a cycle with the node sequence S = (S0, S1, . . . ,

Sr−1) if the following conditions are satisfied:

(p1) ei ̸= ej for i ̸= j

(p2) Si ̸= ∅ for i ∈ {0, 1, . . . , r − 1},

(p3) Si ∖ Sj ̸= ∅ for i ̸= j,

(p4) for any i ∈ {0, 1, . . . , r − 1} there is no edge e ∈ E(H) such that

Si ∪ Si+1 ∪ Si+2 ⊆ e.

C is called a t-dimension cycle of length r if t = min{|Si| : i ∈ {0, 1, . . . , r − 1}}.

If H is a k-uniform hypergraph and |V (H)| = n, then any (k − 1)-dimension

cycle of length n in H is called a WJ-Hamiltonian cycle of H.
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Remark first that Hamiltonian cycles in this chapter always mean WJ-Hamilto-

nian cycles. Wang and Jirimutu [16] was studied a Hamiltonian decomposition of

complete bipartite 3-uniform hypergraph K
(3)
n,n where n is prime in 2001. This work

motivates us to construct a Hamiltonian decomposition of 4-uniform hypergraph

K
(4)
n,n where n is prime. We focus on bipartite hypergraph K

(4)
n,n(V1, V2) where V1 ≡

Zn and V2 ≡ Zn. Moreover, to distinguish the partite sets, we will use a notation

of vertices for elements in Zn as follows.

V1 = {0, 1, . . . , n− 1} and V2 = {0, 1, . . . , n− 1}.

We first consider a necessary condition for the existence of Hamiltonian decom-

position of K
(4)
n,n. Note that the number of hyperedges in K

(4)
n,n is

(
2n
4

)
− 2

(
n
4

)
=

n2

12
(n− 1)(7n− 11).

Lemma 5.1.1. If K(4)
n,n has a Hamiltonian decomposition, then n ≡ 0, 1, 5 (mod 8).

Proof. If a decomposition exists, the number of hyperedges in K
(4)
n,n must be divis-

ible by the number of hyperedges of each Hamiltonian cycle which is 2n. Hence,
n
24
(n − 1)(7n − 11) is an integer, which implies that n ≡ 0, 1, 5 (mod 8) as de-

sired.

Next, we classify hyperedges of 4-uniform hypergraph K
(4)
n,n into three types

depending on the number of members from partite set V1. In particular, hyperedges

of each type can be written as follows,

Type 1 : {a ; x, y, z},

Type 2 : {a, b ; x, y} and

Type 3 : {a, b, c ; x}

for some a, b, c, x, y, z ∈ Zn. Let Ti(K
(4)
n,n) denote the subhypergraph of K(4)

n,n con-

sisting of all hyperedges of Type i for i ∈ {1, 2, 3}. Note that K(4)
n,n) = ∪3

i=1Ti(K
(4)
n,n).
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First, we partition the hyperedge set of K
(4)
n,n into collections of hyperedges

named patterns in Section 5.2. Our construction uses difference pattern of hy-

peredges from the construction of a KK-Hamiltonian decomposition of 3-uniform

hypergraph K
(3)
n in [2] to create a WJ-Hamiltonian decomposition of 4-uniform

hypergraph K
(4)
n,n. We use difference pattern to partition the hyperedge set of

T1(K
(4)
n,n) and T3(K

(4)
n,n) in Subsection 5.2.1. While the hyperedge set of T2(K

(4)
n,n) is

partitioned by pair-pattern in Subsection 5.2.2.

In Section 5.3, we construct two kinds of collections of Hamiltonian cycles

which the first one containing hyperedges of the same type and, the other one

containing hyperedges of two types. Our method creates a collection of Hamilto-

nian cycles from two collections of hyperedges which each collection has the same

difference pattern or pair-pattern. Finally, we apply these collections to construct

a Hamiltonian decomposition of K(4)
n,n where n is prime in Section 5.4.

5.2 Pattern of hyperedges

First, we can partition the hyperedges into collections of hyperedges called

patterns as follows.

Definition 10. Let e = {v1, v2, . . . , vk} ∈ E(K
(4)
n,n) and

αi(e) = {v1 + i, v2 + i, . . . , vk + i} for each i ∈ {0, 1, . . . , n− 1},

where vj + i is considered in the modulus n. The pattern of e is the collection

P(e) = {e, α(e), α2(e), . . . , αn−1(e)}.

Lemma 5.2.1. Let n ≥ 3 be an odd integer. Then, |P(e)| = n for any e ∈ E(K
(4)
n,n).

Proof. Let e ∈ E(K
(4)
n,n). Note that |P(e)| ≤ n as each orbit has size at most n.

If e is of Type 1 (or Type 3), then all hyperedges in the pattern P(e) are distinct

because they contain a distinct vertex from V1 (or V2, respectively).

Assume that e is of Type 2. Write e ={u, v ; x, y} where u, v ∈ V1 and x, y ∈

V2. Suppose that there exists i ∈ {1, 2 . . . , n − 1} such that e = αi(e). Then
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x ≡ y+ i (mod n) and y ≡ x+ i (mod n) which imply that 2i ≡ 0 (mod n). This is

a contradiction as n is an odd number. Thus, each pattern of hyperedges contains

exactly n hyperedges.

Remark 5.2.2. The following statements hold.

(i) All hyperedges in any pattern are of the same type.

(ii) P({a ; b, c, d}) = P({0 ; b− a, c− a, d− a}) and,

P({a, b ; c, d}) = P({0, b− a ; c− a, d− a}) or P({0, a− b ; c− b, d− b}).

Lemma 5.2.3. Let n ≥ 3 be an odd integer. Let

A1 =
∪

{b,c,d}⊆V2
P({0 ; b, c, d}),

A2 =
∪

a≤n
2
,{c,d}⊆V2

P({0, a ; c, d}) and

A3 =
∪

{b,c,d}⊆V1
P({b, c, d ; 0})

Then, Ai is a disjoint union and E(Ti(K
(4)
n,n)) = Ai for all i ∈ {1, 2, 3}.

Proof. Obviously, Ai ⊆ E(Ti(K
(4)
n,n)). By Remark 5.2.2(ii), any hyperedge of Type

1 or Type 3 is contained in A1 or A3 respectively. For any hyperedge of Type

2, {a, b ; c, d}, is contained in both P({0, b− a ; c − a, d − a}) and P({0, a− b ;

c − b, d − b}). Since either a − b ≤ n
2

or b − a ≤ n
2
, {a, b ; c, d} is contained in

A2. Thus, E(Ti(K
(4)
n,n)) = Ai for all i ∈ {1, 2, 3}. It remains to show that Ai is a

disjoint union.

Note that P({0 ; b, c, d}) ̸= P({0 ; u, v, w}) if and only if {b, c, d} ̸= {u, v, w}.

Thus, A1 is a disjoint union; so does |A3|. Now, consider A2. Let {0, u ; v, w}

and {0, a ; b, c} be hyperedges of Type 2 where a, u ∈ {1, 2 . . . , n−1
2
} and ā ̸= ū.

Suppose {0, a ; b, c} ∈ P({0, u ; v, w}). Then

{0, a ; b, c} = αi({0, u ; v, w}) = {i, u+ i ; v + i, w + i}

for some i ∈ {1, 2 . . . , n− 1}. It implies that i = a and u+ i = 0. Since n is odd,

u = −a = n− a > n−1
2
, which is a contradiction. Therefore, P({0, a ; b, c} ) ̸= P(
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{0, u ; v, w}) if a ̸= u. Besides, P({0, a ; b, c}) ̸= P( {0, a ; v, w}) if and only if

{b, c} ̸= {v, w}. Thus, A2 is a disjoint union.

Next, we will group hyperedges in some patterns of hyperedges of each type

together depending on some common properties of hyperedges in the patterns.

Certain properties of hyperedges of each type will be investigated separately in

two subsections.

5.2.1 Hyperedges of Type 1 and Type 3

As each hyperedge of Type 1 contains three vertices from V2, we will classify

hyperedges of Type 1 depending on a property of a triple of vertices from V2. The

property is the difference pattern of triple of elements in Zn that Bailey and Steven

studied in [2] to investigated the existence of a KK-Hamiltonian decomposition of

3-uniform hypergraph K
(3)
n .

Definition 11. [2] Let T = {a, b, c} be a triple of distinct elements of V1 or

V2. Then, its difference pattern, π(T ) is the equivalence class of ordered triples

containing all cyclic rotations of (b− a, c− b, a− c) and (b− c, a− b, c− a) (where

the differences are taken modulo n).

We will use above terminology for hyperedges of Type 1 and Type 3 in our

4-uniform hypergraph K
(4)
n,n.

Definition 12. A difference pattern of a hyperedge of Type 1 {v ; a, b, c} (or

hyperedge of Type 3 {a, b, c ; v}) is defined by π({a, b, c}).

Example 14. In K
(4)
13,13, difference patterns of hyperedge of Type 1, {0 ; 1, 4, 7}

and hyperedge of Type 3, {3, 11, 5 ; 2}, are

π({1, 4, 7}) = {(3, 3, 7), (3, 7, 3), (7, 3, 3), (10, 10, 6), (10, 6, 10), (6, 10, 10)} and

π({3, 11, 5}) = {(2, 6, 5), (6, 5, 2), (5, 2, 6), (8, 7, 11), (7, 11, 8), (11, 8, 7)},

respectively.
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Since three differences sum to zero, if we know that the first two differences are

x and y, then the third is −x−y. By some abuse of notation, we use (x, y,−x−y)

to denote the whole equivalence class that contains it. For convenience in our

work, we will represent π({a, b, c}) where a, b, c ∈ Zn and a < b < c by one of the

cyclic rotations of ordered triple (b− a, c− b, a− c). For examples,

π({1, 4, 7}) = (3, 3, 7) or (3, 7, 3) or (7, 3, 3).

π({3, 11, 5}) = (5, 2, 6) or (2, 6, 5) or (6, 5, 2).

Note that an order triple (x, y, z) represents the class {(x, y, z), (y, z, x), (z, x, y),

(−y,−x,−z), (−x,−z,−y), (−z,−y,−x)}. Thus, from any order triple (x, y, z) we

can find its unique class.

Furthermore, when n is not divisible by 3, Bailey and Steven [2] can find the

number of triples with the same difference pattern. This number is also the number

of patterns of hyperedges of Type 1 (or Type 3) with the same difference pattern

in K
(4)
n,n.

Lemma 5.2.4. [2] Suppose that n is not a multiple of 3. Then, there are exactly n

triples of elements in Zn with the same difference pattern. Moreover, the number

of distinct difference pattern of element of Zn is 1
n

(
n
3

)
.

However, there are important terminologies of difference pattern from [2] in

Definition 13. We also introduce some more terminologies to use in this chapter

in Definition 14.

Definition 13. [2] A difference pattern (x, x, n−2x) is called an isosceles difference

pattern, and the two difference patterns (x, y, n − x − y) and (y, x, n − x − y) is

called a conjugate pair. Besides, we also say that (x, y, n − x − y) is conjugate to

(y, x, n− x− y).

Definition 14. A difference pattern (x, y, n − x − y) where x, y, n − x − y are

all distinct, is called a non-isosceles difference pattern. Furthermore, a hyperedge
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with isosceles or non-isosceles difference pattern is called isosceles hyperedge or

non-isosceles hyperedge, respectively.

Remark 5.2.5. The following statements hold.

(i) An isosceles difference pattern (x, x, n− 2x) is conjugate to itself.

(ii) If a conjugate pair (x, y, n − x − y) and (y, x, n − x − y) are two distinct

different difference patterns, then x, y, n− x− y are all distinct.

(iii) Each difference pattern is either isosceles or non-isosceles with a unique

conjugate pair.

It can be noticed that hyperedges of the same pattern also have the same

difference pattern. Then, we can group hyperedges in some patterns together by

their difference patterns.

Definition 15. P(x, y, n−x−y) and P ′(x, y, n−x−y) are the collections of all

hyperedges of Type 1 and Type 3 of K(4)
n,n with difference pattern (x, y, n− x− y),

respectively.

Consequently, we can partition E(T1(K
(4)
n,n)) depending on their difference pat-

tern in the following remark.

Remark 5.2.6. Let n be an odd integer where n is not a multiple of 3. Then,

E(T1(K
(4)
n,n)) =

 ·
∪

1≤x≤n−1
2

P(x, x, n− 2x)

 ·
∪

 ·
∪

1≤x,y≤n−1
2

x ̸=y ̸=n−x−y
x ̸=n−x−y

P(x, y, n− x− y)

 ,

where P(x, y, n− x− y) =
∪

0≤i≤n−1P({0 ; i, x+ i, x+ y + i}) and

|P(x, y, n− x− y)| = n2.

Proof. Obviously,
∪

1≤x,y≤n−1
2

P(x, y, n−x−y) ⊆ E(T1(K
(4)
n,n)). Let P({0 ; b, c, d})

⊆ E(T1(K
(4)
n,n)) where b < c < d. Then, the difference pattern of {0 ; b, c, d} is
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(c − b, d − c, b − d). Without loss of generality, c − b, d − c ≤ n−1
2

. Then, P({0

; b, c, d}) ∈
∪

1≤x,y≤n−1
2

P(x, y, n − x − y). By Remark 5.2.5 (iii), the union of

isosceles patterns and non-isosceles patterns is a disjoint union.

Note that P({0 ; b, c, d}) ̸= P({0 ; u, v, w}) if and only if {b, c, d} ̸= {u, v, w}.

Since n is not a multiple of 3, {i, x + i, x + y + i} ̸= {j, x + j, x + y + j} for all

i ̸= j. It follows that

P({0 ; i, x+ i, x+ y + i}) ̸= P({0 ; j, x+ j, x+ y + j}).

Therefore, |P(x, y, n− x− y)| = n2.

Example 15. The collections of hyperedges of Type 1 of K
(4)
5,5 with difference

pattern (2, 2, 1) and (1, 1, 2) are the following.

P(2, 2, 1) =P({0 ; 0, 2, 4}) ∪ P({0 ; 1, 3, 5}) ∪ P({0 ; 2, 4, 1}) ∪ P({0 ; 3, 0, 2})∪

P({0 ; 4, 1, 3})

P(1, 1, 2) =P({0 ; 1, 2, 3}) ∪ P({0 ; 2, 3, 4}) ∪ P({0 ; 3, 4, 0}) ∪ P({0 ; 4, 0, 1})∪

P({0 ; 0, 1, 2})

Similarly, patterns of hyperedges of Type 3 are concluded in Remark 5.2.7.

Remark 5.2.7. Let n be an odd integer where n is not a multiple of 3. Then,

E(T3(K
(4)
n,n)) =

 ·
∪

1≤x≤n−1
2

P ′(x, x, n− 2x)

 ·
∪

 ·
∪

1≤x,y≤n−1
2

x ̸=y ̸=n−x−y
x ̸=n−x−y

P ′(x, y, n− x− y)

 ,

where P ′(x, y, n− x− y) =
∪

0≤i≤n−1 P({i, x+ i, x+ y + i ; 0}) and

|P ′(x, y, n− x− y)| = n2.
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5.2.2 Hyperedges of Type 2

Each hyperedge of Type 2 contains a pair of vertices from each partite set.

Similar to hyperedge of Type 1, we will classify hyperedges of Type 2 depending

on their properties of two pairs of vertices from two partite sets.

Definition 16. Let {u, v} ⊆ V1 (or {u, v} ⊆ V2). The length of a pair {u, v} (or

{u, v}) are min{v−u, u−v} where v−u and u−v are considered in the modulus n.

Remark that since both V1 and V2 are Zn, all possible lengths are in {1, 2, . . . ,
⌊
n
2

⌋
}

denoted by L.

Definition 17. Let e ={x, y ; u, v} be a hyperedge of Type 2 of K
(4)
n,n. Then,

pair-pattern of e is an ordered pair (a, b) where a and b are the lengths of {x, y}

and {u, v}, respectively.

It can be noticed that hyperedges of the same pattern also have the same

pair-pattern. Then, we can group hyperedges in some patterns together by their

pair-patterns.

Definition 18. P̃(a, b) is the collection of all hyperedges with pair-pattern (a, b)

of K(4)
n,n.

Therefore, we can partition the set of hyperedges of Types 2 depending on its

pair-pattern.

Remark 5.2.8. Let n be an odd integer. The collection of patterns of hyperedges

of Type 2,

E(T2(K
(4)
n,n)) =

∪
a,b∈L

P̃(a, b)

where P̃(a, b) =
∪

1≤i≤n−1P({0, a ; i, i+ b}) and |P̃(a, b)| = n.

Proof. Let P({0, x ; y, z}) ⊆ E(T3(K
(4)
n,n)), and a and b lengths of {0, x} and {y, z},

respectively. Obviously, P({0, x ; y, z}) ∈ ∪a,b∈LP̃(a, b).

Note that P({0, a ; b, c}) ̸= P({0, a ; v, w}) if and only if {b, c} ̸= {v, w}. Since

n is odd, {i, i + b} ̸= {j, j + b} for all i ̸= j. Thus, P({0, a ; i, i + b}) ̸= P({0, a ;

j, j + b}) for all i ̸= j. Therefore, |P̃(a, b)| = n2.
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Example 16. The collections of hyperedges of Type 2 in K
(4)
5,5 with pair-patterns

(2, 2) and (2, 1) are the following.

P̃(2, 2) =P({0, 2 ; 0, 2}) ∪ P({0, 2 ; 1, 3}) ∪ P({0, 2 ; 2, 4}) ∪ P({0, 2 ; 3, 0})∪

P({0, 2 ; 4, 1}) and

P̃(2, 1) =P({0, 2 ; 0, 1}) ∪ P({0, 2 ; 1, 2}) ∪ P({0, 2 ; 2, 3}) ∪ P({0, 2 ; 3, 4})∪

P({0, 2 ; 4, 0}).

5.3 Initial cycles

To construct the Hamiltonian cycles in our decomposition, we first create an

initial Hamiltonian cycle C with hyperedges from 2n distinct patterns. The set of

all hyperedges with such 2n patterns will be partitioned into n Hamiltonian cycles

resulting from rotating C n times.

Definition 19. Let C be a cycle of K(4)
n,n. Then, the ith rotation of C that is the

cycle C+ i obtained by adding i in the modulus n to each vertex of each hyperedge

e in C.

Example 17. Let C = {e1 = {0, 1 ; 0, 3}, e2 = {1 ; 0, 3, 1}, . . . , e9 = {4, 0 ; 2, 0}}

be a cycle in K
(4)
5,5 . Then, the 2nd rotation of C is

C + 2 = {e′1 = {2, 3 ; 2, 0}, e′2 = {3 ; 2, 0, 3}, . . . , e′9 = {1, 2 ; 4, 2}}.

Hamiltonian cycles in Lemmas 5.3.2 - 5.3.7 will be our initial cycles. Each

initial cycle except the last one in Lemma 5.3.7 contains 2n hyperedges from 2n

distinct patterns. While our initial cycle in Lemma 5.3.7 is created by a special

construction for the case n = 5 which contain 2n hyperedges from the same pattern.

To claim that each initial cycle in our constructions is a Hamiltonian cycle,

it suffices to show that all nodes are of size three, and all hyperedges and all

nodes are distinct. Recall that in C = (e0, e1, . . . , en−1), a node Si is ei ∩ ei+1 for

i ∈ {0, 1, . . . , n− 1} where en = e0.
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Remark 5.3.1. Let C = (e0, e1, . . . , en−1) be a hyperedge sequence of length n in

k-uniform hypergraph. If ei ̸= ej and Si ̸= Sj for i ̸= j and |Si| = k − 1 for all

i ∈ {0, 1, . . . , n− 1}, then C is a Hamiltonian cycle.

Proof. (p1)−(p3) in Definition 3 are immediately satisfied. Let i, j ∈ {0, 1, . . . , n−

1}. Since |Si| = k − 1 and Si ̸= Sj for all i ̸= j, we have Si ∪ Si+1 = ei+1. Then,

|Si∪Si+1∪Si+2| = |ei+1∪ei+2| = k+1 because all hyperedges are distinct. However,

each hyperedge contains k vertices, (p4) is followed. Therefore, C is a cycle. Since

C is (k − 1)-dimensional cycle of length n, it is a Hamiltonian cycle.

In the construction, there are two kinds of initials cycles. The first one is a

collection of cycles containing hyperedges of the same type which is constructed

in Section 5.3.1 and the other one is a collection of cycles containing hyperedges

of two types constructed in Section 5.3.2. For convenience, if C is a collection of

cycles, then we denote E(C ) be the set of all hyperedges of all cycles in C .

5.3.1 Initial cycles with hyperedges of the same type

Each Hamiltonian cycle in this section contains only hyperedges of the same

type. We begin with a cycle using only hyperedges of Type 2 in Lemma 5.3.2.

Then, we establish cycles containing only hyperedges of Type 1 and Type 3 in

Lemma 5.3.3 and in Lemma 5.3.4, respectively.

Let C22(a, b, c) denote the cycle of K(4)
n,n with 2n hyperedges defined by

C22(a, b, c) = { ei = {0, a ; ci, c(i+ 1)},

en+i = {a, a+ b ; c(n− i), c(n− 1− i)} : i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.2. Let a, b, c ∈ L, a ̸= b and gcd(c, n) = 1. Then, C22(a, b, c)

is a Hamiltonian cycle of K
(4)
n,n with 2n hyperedges; one from each pattern in

P̃(a, c) ∪ P̃(b, c). Moreover, if C = {C22(a, b, c) + i : i ∈ {0, 1, . . . , n− 1}}, then

E(C ) = P̃(a, c) ∪ P̃(b, c).
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Proof. The nodes of C22(a, b, c) are the following. For i ∈ {0, 1, . . . , n− 2 },

Si = {a, 0 ; c(i+ 1)}, Sn+i = {a, b ; c(n− 1− i)},

Sn−1 = {a ; 0, c(n− 1)} and S2n−1 = {a ; 0, c}.

We have Sn−1 ̸= S2n−1 and both of them are different from the other nodes since

gcd(c, n) = 1 and these two nodes contain only one vertex from V1. Since {a, 0} ̸=

{a, b}, we have Si ̸= Sn+j for all i, j. For i ̸= j, since gcd(c, n) = 1, we have Si ̸= Sj

and Sn+i ̸= Sn+j. Thus, the nodes of C22(a, b, c) are all distinct.

Next, we will show that all hyperedges in C22(a, b, c) are from distinct patterns

which also implies that they are all distinct. Observe that

P(ei) =P({0, a ; ci, c(i+ 1)}) and

P(en+i) =P({0, b ; c(n− i)− a, c(n− 1− i)− a}).

Since gcd(c, n) = 1 and a, b, c ∈ L, we have

∪
1≤i≤n−1

P(ei) =
∪

1≤i≤n−1

P({0, a ; i, i+ c}) = P̃(a, c) and

∪
1≤i≤n−1

P(en+i) =
∪

1≤i≤n−1

P({0, b ; i, i− c}) = P̃(b, c).

Hence, e0, e1, . . . , en−1 are from distinct patterns in P̃(a, c) and

en, en+1, . . . , e2n are from distinct patterns in P̃(b, c).

Since a ̸= b, all hyperedges in C22(a, b, c) are distinct. By Remark 5.3.1, the cycle

C22(a, b, c) is a Hamiltonian cycle of K(4)
n,n. Let C be the collection of cycles resulting

from the rotations of C22(a, b, c), C = {C22(a, b, c) + i : i ∈ {0, 1, . . . , n − 1}}.

Therefore, E(C ) = P̃(a, c) ∪ P̃(b, c).

Example 18. In K
(4)
5,5 , Figure 5.1 illustrates 10 hyperedges of Type 2 in C22(1, 2, 2)

with distinct patterns from P̃(1, 2) ∪ P̃(2, 2) and its nodes.
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e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

0 0 0 0 0 1 1 1 1 1
V1

1 1 1 1 1 3 3 3 3 3

0 2 4 1 3 0 3 1 4 2
V2

2 4 1 3 0 3 1 4 2 0

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

0 0 0 0 0 1 1 1 1 1
V1

1 1 1 1 1 3 3 3 3 3

V2 2 4 1 3 0 3 1 4 2 0

Figure 5.1: Hyperedges of Type 2 and nodes in C22(1, 2, 2) of K(4)
5,5 .

Let C11(a, b) denote the cycle of K(4)
n,n with 2n hyperedges defined by

C11(a, b) = { e2i = {0 ; bi, bi+ a, bi+ b},

e2i+1 = {0 ; bi+ a, bi+ b, bi+ b+ a} : i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.3. Let 0 < a < b < n, 2a ̸= n, 2a ̸= 2b and gcd(b, n) = 1. If

a, b − a and n − b are all distinct, then C11(a, b) is a Hamiltonian cycle of K
(4)
n,n

with 2n hyperedges; one from each pattern in P(a, b−a, n− b)∪P(b−a, a, n− b).

Moreover, if C = {C11(a, b) + i : i ∈ {0, 1, . . . , n − 1}}, then E(C ) = P(a, b −

a, n− b) ∪ P(b− a, a, n− b).

Proof. The nodes of C11(a, b) are the following. For i ∈ {0, 1, . . . , n− 1},

S2i = {0 ; bi+ a, bi+ b} and S2i+1 = {0 ; bi+ b, bi+ b+ a}.

Let i, j ∈ {1, 2, . . . , n− 1} such that i ̸= j. Since 2a ̸= n, we have {bi+ b, bi+

b + a} ̸= {bj + b, bj + b + a} which implies that S2i+1 ̸= S2j+1. Since 2a ̸= 2b

and 2a ̸= b, we have {bi + a, bi + b} ̸= {bj + a, bj + b} and {bi + a, bi + b} ̸=

{bj + b, bj + b+ a}, respectively. These imply that S2i ̸= S2j and S2i ̸= S2j+1. We

also have S2i ̸= S2i+1 since 0 < b < n. Thus, the nodes of C11(a, b) are all distinct.

Next, we will show that all hyperedges in C11(a, b) are from distinct patterns

which also imply that they are all distinct.
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Note that

P(e2i) =P({0 ; bi, bi+ a, bi+ b}) and

P(e2i+1) =P({0 ; bi, bi+ b− a, bi+ b}).

Since gcd(b, n) = 1,

∪
1≤i≤n−1

P(e2i) =
∪

1≤i≤n−1

P( {0 ; i, i+ a, i+ b}) = P(a, b− a, n− b) and

∪
1≤i≤n−1

P(e2i+1) =
∪

1≤i≤n−1

P({0 ; i, i+ b− a, i+ b}) = P(b− a, a, n− b).

Since a, b − a and n − b are all distinct, and b − a > 0, difference patterns

(a, b− a, n− b) and (b− a, a, n− b) are distinct which this pair is a conjugate pair.

Hence, e0, e2, . . . , e2n−2 are from distinct patterns in P(a, b− a, n− b) and

e1, e3, . . . , e2n−1 are from distinct patterns in P(b− a, a, n− b).

Then, all hyperedges in C22(a, b, c) are distinct. By Remark 5.3.1, the cycle

C11(a, b) is a Hamiltonian cycle of K(4)
n,n. Let C be the collection of cycles resulting

from the rotations of C22(a, b, c), C = C11(a, b), {C11(a, b)+i : i ∈ {0, 1, . . . , n−1}}.

Therefore, E(C ) = P(a, b− a, n− b) ∪ P(b− a, a, n− b).

Example 19. In K
(4)
7,7 , Figure 5.2 illustrates 14 hyperedges of Type 2 in C11(1, 3)

with distinct patterns from P(1, 2, 4) ∪ P(2, 1, 4) and its nodes.

Let C33(a, b) denote the cycle of K(4)
n,n with 2n hyperedges defined by

C33(a, b) = { e2i = {ib, ib+ a, ib+ b ; 0},

e2i+1 = {ib+ a, ib+ b, ib+ b+ a ; 0} : i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.4. Let 0 < a < b < n, 2a ̸= n, 2a ̸= 2b and gcd(b, n) = 1. If

a, b − a and n − b are all distinct, then C33(a, b) is a Hamiltonian cycle of K
(4)
n,n

with 2n hyperedges; one from each pattern in P(a, b−a, n− b)∪P(b−a, a, n− b).

Moreover, if C = {C33(a, b) + i : i ∈ {0, 1, . . . , n − 1}}, then E(C ) = P ′(a, b −

a, n− b) ∪ P ′(b− a, a, n− b).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13

V1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 3 4 6 0 2 3 5 6 1 2 4 5

1 3 4 6 0 2 3 5 6 1 2 4 5 0V2

3 4 6 0 2 3 5 6 1 2 4 5 0 1

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13

V1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 3 4 6 0 2 3 5 6 1 2 4 5 0
V2

3 4 6 0 2 3 5 6 1 2 4 5 0 1

Figure 5.2: Hyperedges of Type 1 and nodes in C11(1, 3) of K(4)
7,7 .

5.3.2 Initial cycles with hyperedges of two types

We create an initial Hamiltonian cycle C12(a, b) containing hyperedges of Types

1 and 2 in Lemma 5.3.5. Then, define C32(a, b) containing hyperedges of Types 2

and 3 in Lemma 5.3.6. Moreover, for the case that n = 5, we have to construct the

special initial cycle C12(a, a)(d) with some certain properties of in Lemma 5.3.7.

First, let C12(a, b) denote the cycle of K(4)
n,n with 2n hyperedges defined by

C12(a, b) = { e2i = {ai ; b(i− 1), bi, b(i+ 1)},

e2i+1 = {ai, a(i+ 1) ; bi, b(i+ 1)} : i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.5. Let a, b > 0, 2b ̸= n and gcd(a, n) = gcd(b − a, n) = 1. Then,

C12(a, b) is a Hamiltonian cycle of K(4)
n,n with 2n hyperedges; one from each pattern

in P(b, b, n−2b)∪P̃(a, b). Moreover, if C = {C12(a, b)+ i : i ∈ {0, 1, . . . , n−1}},

then E(C ) = P(b, b, n− 2b) ∪ P̃(a, b).

Proof. The nodes of C12(a, b) are the following. For i ∈ {0, 1, . . . , n− 1},

S2i = {ai ; bi, b(i+ 1)} and S2i+1 = {a(i+ 1) ; bi, b(i+ 1)}.

For i ̸= j, since gcd(a, n) = 1, we have ai ̸= aj and a(i+ 1) ̸= a(j + 1) which

imply that S2i ̸= S2j and S2i+1 ̸= S2j+1, respectively. Since 2b ̸= n, we have
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{bi, b(i+ 1)} ̸= {bj, b(j + 1)} which implies that S2i ̸= S2j+1 for all i, j. Thus, the

nodes of C12(a, b) are all distinct.

Next, we will show that all hyperedges in C12(a, b) are from distinct patterns

which also implies that they are all distinct. Observe that

P(e2i) = P({0 ; i(b− a)− b, i(b− a), i(b− a) + b}) and

P(e2i+1) = P({0, a ; i(b− a), i(b− a) + b}).

Since gcd(b− a, n) = 1, we have

∪
1≤i≤n−1

P(e2i) =
∪

1≤i≤n−1

P( {0 ; i− b, i, i+ b}) = P(b, b, n− 2b) and

∪
1≤i≤n−1

P(e2i+1) =
∪

1≤i≤n−1

P({0, a ; i, i+ b}) = P̃(a, c).

Hence, e0, e2, . . . , e2n−2 have distinct patterns in P(b, b, n− 2b) and

e1, e3, . . . , e2n−1 have distinct patterns in P̃(a, c).

Therefore, C12(a, b) is a Hamiltonian cycle of K(4)
n,n by Remark 5.3.1. Moreover,

let C be the collection of cycles resulting from the rotations of C12(a, b), C =

{C12(a, b)+ i : i ∈ {0, 1, . . . , n− 1}}. Therefore, E(C ) = P(b, b, n− 2b)∪ P̃(a, b).

Example 20. In K
(4)
5,5 , Figure 5.3 illustrates 10 hyperedges of Type 2 in C12(1, 2)

with distinct patterns from P(2, 2, 1) ∪ P̃(1, 2) and its nodes.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

0 0 1 1 2 2 3 3 4 4
V1

1 2 3 4 0

3 0 2 4 1 0

0 0 2 2 4 4 1 1 3 3V2

2 2 4 4 1 1 3 3 0 0

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

V1 0 1 1 2 2 3 3 4 4 0

0 0 2 2 4 4 1 1 3 3V2

2 2 4 4 1 1 3 3 0 0

Figure 5.3: Hyperedges of Type 1 and Type 2 and nodes in C12(1, 2) of K(4)
5,5 .
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Next, let C32(b, a) denote the cycle of K(4)
n,n with 2n hyperedges defined by

C32(b, a) = { e2i = {b(i− 1), bi, b(i+ 1) ; ai},

e2i+1 = {bi, b(i+ 1) ; ai, a(i+ 1)} : i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.6. Let a, b > 0, 2b ̸= n and gcd(a, n) = gcd(b − a, n) = 1. Then,

C32(b, a) is a Hamiltonian cycle of K(4)
n,n with 2n hyperedges; one from each pattern

in P ′(b, b, n−2b)∪P̃(b, a). Moreover, if C = {C32(b, a)+i : i ∈ {0, 1, . . . , n−1}},

then E(C ) = P(b, b, n− 2b) ∪ P̃(b, a).

Now, we will construct the special initial cycle as follows. Let C12(a, a)(d)

denote the cycle of K(4)
n,n with 2n hyperedges defined by

C12(a, a)(d) = { e2i = {ai ; ai+ d, a(i+ 1) + d, a(i+ 2) + d},

e2i+1 = {ai, a(i+ 1) ; a(i+ 1) + d, a(i+ 2) + d}

: i ∈ {0, 1, . . . , n− 1}}.

Lemma 5.3.7. Let a > 0, d ≥ 0 and gcd(a, n) = 1. Then, C12(a, a) is a Hamilto-

nian cycle of K(4)
n,n with all 2n hyperedges from two patterns P({0 ; d, d+ a, d+ 2a})

and P({0, a ; d+ a, d+ 2a}). Moreover, if C = {C12(a, a)(d) : d ∈ {0, 1, . . . , n −

1}}, then E(C ) = P(a, a, n− 2a) ∪ P̃(a, a).

Proof. The nodes of C12(a, b) are the following. For i ∈ {0, 1, . . . , n− 1},

S2i = {ai ; a(i+1)+d, a(i+2)+d} and S2i+1 = {a(i+ 1) ; a(i+1)+d, a(i+2)+d}.

For all i ̸= j, since gcd(a, n) = 1, we have ai ̸= aj and {a(i+1)+d, a(i+2)+d} ̸=

{a(j+1)+d, a(j+2)+d} which imply that S2i ̸= S2j, S2i+1 ̸= S2j+1 and S2i ̸= S2j+1.

We also have S2i ̸= S2i+1 since ai ̸= a(i+ 1).

Next, we will shows that all hyperedges in C12(a, a)(d) are distinct hyperedges

in two patterns. For i ̸= j, since gcd(a, n) = 1, we have ai ̸= aj and {ai, a(i+ 1)} ̸=

{aj, a(j + 1)} which yield e2i ̸= e2j and e2i+1 ̸= e2j+1. Hence, all hyperedges and

all nodes are distinct. Therefore, C12(a, a)(d) is a Hamiltonian cycle of K
(4)
n,n by
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Remark 5.3.1. Observe that

P(e2i) = P({0 ; d, d+ a, d+ 2a}) and P(e2i+1) = P({0, a ; d+ a, d+ 2a})

for all i ∈ {0, 1, . . . , n− 1}.

Hence, e0, e2, . . . , e2n−2 are all n hyperedges in the pattern P({0 ; d, d+ a, d+ 2a})

and e1, e3, . . . , e2n−1 are all n hyperedges in the pattern P({0, a ; d+ a, d+ 2a}).

Consequently, let C be the collection of cycles C = {C12(a, a)(d) : d ∈ {0, 1, . . . ,

n− 1}}. Therefore, E(C ) = P(a, a, n− 2a) ∪ P̃(a, a).

Example 21. In K
(4)
5,5 , Figure 5.4 illustrates 10 hyperedges of Types 1 and 2 in

C12(1, 1)(3) with two patterns P({0 ; 3, 4, 0}) and P({0, 1 ; 4, 0}) and nodes.

e0 e1 e2 e3 e4 e5 e6 e7 e8 e9

0 0 1 1 2 2 3 3 4 4
V1

1 2 3 4 0

3 4 0 1 2

4 4 0 0 1 1 2 2 3 3V2

0 0 1 1 2 2 3 3 0 0

S0 S1 S2 S3 S4 S5 S6 S7 S8 S9

V1 0 1 1 2 2 3 3 4 4 0

4 4 0 0 1 1 2 2 3 3
V2

0 0 1 1 2 2 3 3 0 0

Figure 5.4: Hyperedges of Type 1 and Type 2 in C12(1, 1)(3) of K(4)
5,5 and its nodes.

We summarize Lemmas 5.3.3-5.3.7 in Table 5.1. The table shows the conditions

of the parameters to construct each initial cycle along with collections of hyperedges

that have the same patterns as hyperedges used to construct each initial cycle.

5.4 Main Theorem

We will construct a Hamiltonian decomposition of K(4)
n,n when n is prime and

n ≡ 0, 1, 5 (mod 8) using the initial cycles in the previous sections. The construc-

tion in the case n = 5 is different from the others; thus, we first decompose K
(4)
5,5

into Hamiltonian cycles separately.

Theorem 5.4.1. There exists a Hamiltonian decomposition of K(4)
5,5 .
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Lemma Cycles (C) Conditions
Collection of hyperedges

containing hyperedges in C

5.3.2 C22(a, b, c) a, b, c ∈ L, a ̸= b and gcd(c, n) = 1 P̃(a, c) ∪ P̃(b, c)

5.3.3 C11(a, b)
0 < a < b < n, 2a ̸= n,

2a ̸= 2b, gcd(b, n) = 1, and

P(a, b− a, n− b)∪

P(b− a, a, n− b)

5.3.4 C33(a, b) a, b− a and n− b are all distinct
P ′(a, b− a, n− b)∪

P ′(b− a, a, n− b)

5.3.5 C12(a, b) a, b > 0, b ̸= n
2

P(b, b, n− 2b) ∪ P̃(a, b)

5.3.6 C32(a, b) and gcd(a, n) = gcd(b− a, n) = 1 P ′(b, b, n− 2b) ∪ P̃(a, b)

5.3.7 C12(a, a)(d) a > 0, d ≥ 0, gcd(a, n) = 1
P({0 ; d, d+ a, d+ 2a})∪

P({0, a ; d+ a, d+ 2a})

Table 5.1: Initial cycles.

Proof. First, observe that in K
(4)
5,5 , there are exactly two distinct difference patterns

of hyperedges of Type 1 (and Type 3) which are (1, 1, 2) and (2, 2, 1). Also, there

are exactly four pair-patterns of hyperedge of Type 2 which are (1, 1), (2, 2), (1, 2)

and (2, 1). Then, we construct collections of cycles,

C1 = {C32(1, 2) + i : i ∈ {0, 1, 2, 3, 4}},C2 = {C32(2, 1) + i : i ∈ {0, 1, 2, 3, 4}},

C3 = {C12(1, 1)(d) : d ∈ {0, 1, 2, 3, 4}} and C4 = {C12(2, 2)(d) : d ∈ {0, 1, 2, 3, 4}}

By Lemma 5.3.6, E(C1) = P ′(1, 1, 2)∪P̃(1, 2) and E(C2) = P ′(2, 2, 1)∪P̃(2, 1).

By Lemma 5.3.7, E(C3) = P(1, 1, 2)∪ P̃(1, 1) and E(C4) = P(2, 2, 1)∪ P̃(2, 2).

Let C = C1 ∪ C2 ∪ C3 ∪ C4. Therefore, C is a Hamiltonian decomposition of

K
(4)
5,5 .

Next, for feasible prime n ≥ 5, we will construct a Hamiltonian decomposition

of K(4)
n,n as follows.

Theorem 5.4.2. Let n be a prime such that n ≡ 1 (mod 4) and n ≥ 5. There

exists a Hamiltonian decomposition of K(4)
n,n.

Proof. When n = 5 the statement holds by Theorem 5.4.1. Now, let n ≥ 13.
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In K
(4)
n,n, let I1 (or I3) be the subhypergraph consisting of all non-isosceles

hyperedges of Type 1 (or I3), I1 (or I3) the subhypergraph consisting of all isosceles

hyperedges of Type 1 (or Type 3). Then, T1(K
(4)
n,n) = I1∪I1 and T3(K

(4)
n,n) = I3∪I3.

Note first that

K
(4)
5,5 = I1 ∪ I1 ∪ T2(K

(4)
n,n) ∪ I3 ∪ I3.

Claim 1 : I1 ∪ I3 has a Hamiltonian decomposition.

By Remark 5.2.6, we have that

E(I1) =
∪

1≤x,y≤n−1
2

x ̸=y ̸=n−x−y

P(x, y, n− x− y) and E(I3) =
∪

1≤x,y≤n−1
2

x ̸=y ̸=n−x−y

P ′(x, y, n− x− y).

Now, let x, y ∈ {1, 2, . . . , n−1
2
} where x, y and n− x− y are all distinct. Let

C1(x, y) = {C11(x, x+ y) + j : j ∈ {0, 1, . . . , n− 1}}.

Note that 0 < x < x + y < n. Since n is a prime number, we have that 2x ̸= n

and 2x ̸= 2(x + y) in the modulus n, and gcd(x + y, n) = 1. Thus, x and x + y

satisfy the requirements in Lemma 5.3.3; so, E(C1(x, y)) = P(x, y, n − x − y) ∪

P(y, x, n− x− y). Thus, I1 has a Hamiltonian decomposition.

Similarly, let C2(x, y) = {C33(x, x + y) + j : j ∈ {0, 1, . . . , n− 1}}. By Lemma

5.3.4, E(C2(x, y)) = P(x, y, n− x− y) ∪ P(y, x, n− x− y). Therefore, I3 has a

Hamiltonian decomposition.

Claim 2 : I1 ∪ I3 ∪ T2(K
(4)
n,n) has a Hamiltonian decomposition.

By Remark 5.2.6, we have that

E(I1) =
∪

1≤a≤n−1
2

P(a, a, n− 2a) and E(I3) =
∪

1≤a≤n−1
2

P ′(a, a, n− 2a).

First, we will construct a Hamiltonian decomposition of I1 ∪ I3 ∪ I ′
2 where I ′

2 is
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the subhypergraph consists of hyperedges of Type 2 in

∪
a∈L

P̃(a− 1, a) ∪
∪
a∈L

P̃(a− 2, a)

such that a− 1 and a− 2 are consider in the modulus n−1
2

.

Let a ∈ {1, 2, . . . , n−1
2
} and

C3(a) = {C12(a− 1, a) + j : j ∈ {0, 1, . . . , n− 1}},

where C12(0, 1) = C12(
n−1
2
, 1).

Since n is prime and 0 < a < n−1
2

, we have that 2a ̸= n and gcd(a, n) = 1.

These facts satisfy conditions in Lemma 5.3.5. Then, E(C3(a)) = P̃(a − 1, a) ∪

P(a, a, n− 2a).

Similarly, let C4(a) = {C32(a−2, a)+j : j ∈ {0, 1, . . . , n−1}}, where C32(0, 2) =

C32(
n−1
2
, 2) and C32(−1, 1) = C32(

n−1
2

−1, 1). By Lemma 5.3.6, E(C4(a)) = P̃(a−

2, a) ∪ P ′(a, a, n − 2a). Hence, we can decompose I1 ∪ I3 ∪ I ′
2 into Hamiltonian

cycles. It remains to construct a Hamiltonian decomposition of T2(K
(4)
n,n)∖ I ′

2.

By Remark 5.2.8, the hyperedge set of T2(K
(4)
n,n) can be written as

E(T2(K
(4)
n,n)) =

∪
a,b∈L

P̃(a, b) =
∪
a∈L

 ∪
0≤i≤n−5

4

(P̃(a+ 2i, a) ∪ P̃(a+ 2i+ 1, a))


where a+ 2i and a+ 2i+ 1 are consider in the modulus n−1

2
. Note that

E(I ′
2) =

∪
a∈L

(P̃(a− 1, a) ∪ P̃(a− 2, a))

and P̃(a− 1, a) and P̃(a− 2, a) equal to P̃(a+2i, a) and P̃(a+2i+1, a) when

i = n−5
4

, respectively. Note that n−5
4

is an integer since n ≡ 1 (mod 4).

Finally, the left over of hyperedges of Type 2 in T2(K
(4)
n,n)∖ I ′

2 will be form the
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Hamiltonian cycles by Lemma 5.3.2. Let a ∈ L, i ∈ {0, 1, . . . , n−5
4
}, i ̸= n−5

4
, and

C5(a) = {C22(a+ 2i, a+ 2i+ 1, a) + j : j ∈ {0, 1, . . . , n− 1}}

where a+2i and a+2i+1 are consider in the modulus n−1
2

. Since a+2i, a+2i+1 ∈ L

and gcd(a, n) = 1, by Lemma 5.3.2, all cycles in E(C5(a)) = P̃(a+2i, a)∪ P̃(a+

2i+ 1, a). Hence, our claim is proved.

Therefore, K(4)
n,n has a Hamiltonian decomposition.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER VI

CONCLUSIONS AND OPEN PROBLEMS

6.1 Conclusions

In this dissertation, we establish KK-Hamiltonian decompositions and WJ-

Hamiltonian decompositions of uniform hypergraphs.

The results of KK-Hamiltonian decompositions are in Chapters III and IV.

Theorem A and Theorem 3.5.1 in Chapter III, and Theorem 4.1.1 in Chapter IV

can be combined to the following Theorems.

Theorem 6.1.1. Let n ≥ 2 and t be a positive integer such that t ≡ 4, 8 (mod 12).

If K
(3)
t has a KK-Hamiltonian decomposition, then K

(3)
t(n) has a KK-Hamiltonian

decomposition.

Theorem 6.1.2. Let t ≡ 4, 8 (mod 12). If K(3)
t has a KK-Hamiltonian decompo-

sition, then K
(3)
2t has a KK-Hamiltonian decomposition.

Therefore, our construction method in Theorem 6.1.2 yields infinitely many

results for K
(3)
2t from the current results of KK-Hamiltonian decompositions of

K
(3)
t . The studies of the existence problem of KK-Hamiltonian decompositions of

K
(3)
t were completed for feasible t when 3 ≤ t ≤ 46, t ̸= 43, t = 2m and m ≥ 2 in

[2, 13, 18, 10] which are collected in Chapter II.

Corollary 6.1.3. K(3)
t has a Hamiltonian decomposition when t = 2m, 5 ·2m, 7 ·2m

and 11 · 2m and m ≥ 2.

Proof. Let m ≥ 2. By Theorems 2.2.4 and 2.2.6, K
(3)
t has a Hamiltonian de-

composition when t = 4, 20, 28 and 44. Therefore our recursive construction in

Theorem 6.1.2 confirms that K
(3)
t also has a Hamiltonian decomposition when

t = 2m, 5 · 2m, 7 · 2m and 11 · 2m.
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Thus, the construction in Theorem 6.1.1 together with Corollary 6.1.3 yield

infinitely many results for K
(3)
t(n) as follows.

Corollary 6.1.4. Let n ≥ 2. K
(3)
t(n) has a Hamiltonian decomposition when t =

2m, 5 · 2m, 7 · 2m and 11 · 2m and m ≥ 2.

Furthermore, Bailey and Stevens [2] observed that the results for K(k)
n also yield

the results for K
(n−k)
n due to complementary (see details in [2]). Similarly, since

the complement of each hyperedge of K(3)
t(n) is not a subset of any partite sets of

K
(3)
t(n), a collection of complement of hyperedges of K

(3)
t(n) is the hyperedge set of

K
(tn−3)
t(n) . Hence the results for K

(3)
t(n) also yield the results for K

(tn−3)
t(n) as follows.

Corollary 6.1.5. K(t−3)
t has a Hamiltonian decomposition when t = 2m, 5·2m, 7·2m

and 11 · 2m and m ≥ 2.

Corollary 6.1.6. Let n ≥ 2. K
(tn−3)
t(n) has a Hamiltonian decomposition when

t = 2m, 5 · 2m, 7 · 2m and 11 · 2m and m ≥ 2.

Finally, in Chapter V, we provide the result for 4-uniform hypergraphs us-

ing properties of their hyperedges. We construct a WJ-Hamiltonian decomposi-

tion of complete bipartite 4-uniform hypergraph K
(3)
n,n where n is a prime number

which each cycle in the construction is neither Berge-Hamiltonian cycle nor KK-

Hamiltonian cycle in the following theorem.

Theorem 6.1.7. Let n be a prime such that n ≡ 1 (mod 4) and n ≥ 5. There

exists a WJ-Hamiltonian decomposition of K(4)
n,n.

6.2 Open problems

Several open problems concerning our work are the following.

1. The existence of a KK-Hamiltonian decomposition of K
(3)
t(n) when t ≡

2 (mod 4) and n ≥ 2. Since Theorems C, D, 4.2 and 4.3 can construct

a KK-Hamiltonian decomposition of T2(K
(3)
t(n)), it remains to show that

T1(K
(3)
t(n)) has a Hamiltonian decomposition to complete the problem.
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2. The existence of a KK-Hamiltonian decomposition of K
(3)
t(n) when t ≥ 5

and n ≡ 0 (mod 3).

3. The existence of a WJ-Hamiltonian decomposition of a complete 4-uniform

bipartite hypergraph K
(4)
n,n for all n ≥ 3.
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