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Autoxidation of polyethylene glycol (PEG) 600, which is a hydrophilic liquid
commonly filled in soft gelatin capsules, results in formaldehyde which is an oxidizing
agent. The objectives of the present study were to study the effect of formaldehyde on
fading of brilliant blue dye and crosslinking in the soft gelatin capsules; also to investigate
possibility of inhibition of PEG 600 autoxidation by a selected antioxidant. Nine PEG 600
based fill formulations were prepared according to a full factorial design with 2 factors and
3 levels of water (0, 5, 10 %w/w) and an antioxidant, i.e. d-O-tocopherol (0, 0.001, 0.05
%w/w). They were encapsulated in non-colored and brilliant blue colored shells. The
capsules were stored in ambler glass bottles under 30°C/75%RH for 90 days.
Physicochemical properties of capsules were evaluated. The results showed that
autoxidation of PEG 600 occurred and initial water content in the formulation had a
significant effect on formaldehyde formation analyzed at 14 days (p-value = 0.001). The
maximum level of d-O-tocopherol used in this study could not inhibit PEG 600
autoxidation. Color fading was not visually observed. However, delta E of capsule shells at
90 days was increased from that at first day and the total color content was reduced in
some formulations. Brilliant blue in the shell was found to migrate into PEG 600 based
liquid fill. Moreover, crosslinking of the gelatin shell could be detected by FT-IR
spectroscopy and it was confirmed by dissolution results. Overall, it could be concluded
that autoxidation of PEG 600 resulting in formaldehyde which could cause a problem of

gelatin cross-linking, rather than fading of brilliant blue dye.
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CHAPTER |
INTRODUCTION

Soft gelatin capsules have several advantages in pharmaceutical products
such as protecting the encapsulated drugs from external environment, improving
patients compliance, improving oral bioavailability of the low aqueous solubility
compounds (1).

The soft gelatin capsule is composed of shell and fill materials. Commonly,
gelatin is a main ingredient in the shell. Other ingredients in the shell are water and
plasticizer, also may include color that needs for aesthetic and identification
purposes. The fill material may be in a form of solution, suspension or emulsion
with lipophilic or hydrophilic based vehicles. An appropriate fill formulation will
allow an active ingredient to be absorbed better (2).

Physical and chemical quality attributes of soft gelatin capsules are usually of
concern to formulation scientists. Major challenges are interactions between the fill
and the shell material, as well as dynamic migration of chemicals including moisture
between fill material, capsule shell, and the external atmosphere.

Generally, vehicle used in soft gelatin capsules may be classified into 2 types.
The lipophilic vehicles such as soybean oil, corn oil are often used for dissolving oil
soluble active ingredient. The hydrophilic vehicles such as PEGs, propylene glycol
are used as solvent or co-solvent in the fill formulations of more polar active
ingredients. In this case, PEGs of molecular weight not less than 400 are more
desirable because relatively low molecular weights of PEGs are likely to diffuse into
gelatin shell and act as plasticizer (3).

PEG of pharmaceutical grade may contain formaldehyde which is limited at a
maximum of 30 ppm in European Pharmacopoeia 8.0. In addition, formaldehyde can
be further formed by PEG autoxidation under stress condition or aging (4-6).

Formaldehyde is an oxidizing agent which can affect the properties of the drug



products. It was proved to worsen stability of some drugs (7, 8) and induce
crosslinking in gelatin capsules (9-11). It may also be involved in color fading of
indigo carmine in coated tablets (12).

As for other solid dosage forms, color of soft gelatin capsules should be
maintained during shelf life indicating acceptable quality. However, color fading of
soft gelatin capsule can occur through migration of water soluble dye from the shell
into hydrophilic vehicles. For the capsule containing PEGs as vehicle, it is also
possible that during storage, aging of PEGs or autoxidation would produce
formaldehyde resulting in color degradation by oxidation reaction.

Consequently, in the present study, the effects of formaldehyde occurred in
PEG 600 on color fading and crosslinking of soft gelatin capsule shells were
investigated. Moreover, possibility of inhibition of PEG 600 oxidation by a selected

antioxidant was also studied.

Objective of the study

1. To investigate the effect of degradation product of PEG 600 on color fading
and crosslinking in soft gelatin capsule shells.

2. To determine the amount of antioxidant that can inhibit oxidation of

polyethylene glycol 600 in fill formulations of soft gelatin capsules.



CHAPTER Il
LITERATURE REVIEW

1. Soft gelatin capsules

Soft gelatin capsules are a single-unit solid dosage form that widely used in
pharmaceutical industry because several advantages such as masking unpleasant
odour and taste of drug substance, protecting the encapsulated drugs from light and
external environment, improving patients compliance and providing high content
uniformity of low-dose drugs. Moreover, fill materials can be developed as liquid and
semi-solid formulations which can improve bioavailability and decrease variability of
drug concentration in plasma through improved solubility and absorption.  Soft
gelatin capsules have two parts that must be considered in research and

development, so called fill and shell.
2. Fill compositions

Fill materials of soft gelatin capsules can be formulated as liquid or semi-
solid, suspensions, solutions or emulsions. It should be compatible with capsule
shells to accomplish physically stable capsule product. The fill materials have
broadly categorized into two groups:

1. Hydrophobic materials

This group of materials include free fatty acids (e.g., oleic acid), mineral oil,
soybean oil and vegetable oil. The formulation may be classified as lipid based fill
formulations.

2. Hydrophilic materials

This group of materials include polyethylene glycols (PEGs), propylene glycol,
polysorbate 80, poloxamers, glycerin, ethyl alcohol and water. PEGs have been
widely used as fill materials in soft gelatin capsules. They can improve solubility of
poorly soluble drugs and well miscible with water that sometimes required in

formulation. Appropriate molecular weights of PEGs in fill formulation are 400 to 600.



Earlier studies showed that PEGs with difference molecular weight had plasticizing
effect on gelatin film. Low molecular weight liquid PEGs such as 300 and PEG 400
could interact with gelatin more than higher molecular weight PEG such as 600
because of more polar groups (-OH) than can develop hydrogen bonds with gelatin
(3). The lower molecular weight PEGs also showed more affinity to water and
hygroscopicity (13). One of major problems of PEGs is that autoxidative reaction with
air can produce degradation products which may deteriorate product quality (7, 14-
16).

Autoxidation of polyethylene glycol

Autoxidation is an oxidation reaction of substrate by molecular oxygen, or
also called air-oxidation (17). Heat and light can expedite peroxides to become
peroxy radicals that induce chain propagation (18). During manufacturing process of
PEGs, hydrogen peroxide is often added as an initiator in polymerization and it
cannot be removed absolutely during purification (19). The peroxide impurities can
be further formed by autoxidative degradation of PEG, depending on aging and
storage conditions (20).

Autoxidation in PEG occurs by reaction of O, with PEG and then followed by
three chain processes - initiation, propagation and termination. The initiation process
is derived from cleavage of weak bond in PEG by electron transfer process producing
free radical. Then the propagation process is started when the free radical reacts with
molecular oxygen providing peroxyl radical. In the final process, termination occurs
through radical combination reaction which leads to producing aldehyde products
21).

Johnson and Taylor reported that peroxides as intermediate impurities in
autoxidation of PEG 400 solution could occur only when PEG was exposed to air.
When the storage condition was 80°C in nitrogen atmosphere autoxidation did not
occur (8). Another study was performed with PEG 6000 at 80°C in the air and
vacuum atmosphere. The results showed that no degradation of PEG 6000 in vacuum

atmosphere while in the air PEG degradation occurred and formic esters were formed



(22). This therefore indicated that oxygen in the air was needed in autoxidation of
PEG.

It was also possible that during manufacturing process of some dosage forms
such as, factors i.e. high temperature and agitation could increase the rate of
peroxide formation (23).

Formaldehyde has been reported as a major degradation product of PEG
oxidation (5-7). This substance can provide an undesirable effect in the product
formulated with PEG. For example, formaldehyde in soft gelatin capsule induced
gelatin crosslinking that led to a decrease in dissolution of the drug products (24).

Hom et al. studied about oxygen permeability into the fill material of soft
gelatin capsule. They found that oxygen permeability was increased with increasing
relative humidity of storage conditions. Moreover, when the plasticizer such as
glycerin in the capsule shell was increased oxygen permeability into the film was
increased (25).

The effect of stress conditions applied to PEG was studied by Li et al. PEG
400 and PEG 600 was filled into headspace vials which were then kept in a 40°C and
75%RH chamber for one night. The formaldehyde amounts determined by GC-MS
were 102.5 and 65.2 ppm in PEG 400 and PEG 600, respectively (26).

Hemenway et al. have studied about impurities formation in pure PEG 400
and 50% PEG 400 solution in water, stored in glass vials, at 40°C and 50°C. Aldehyde
and organic acid impurities in the samples were determined by high performance
liquid chromatography. The result showed that aqueous PEG 400 contained more
amounts of formaldehyde and formic acid than pure PEG 400 (6).

Frontini and Mielck investigated decomposition of PEG 6000 by oxidative
reaction and found that water was needed for formation of ethylene glycol which
was further oxidized to be formaldehyde (5). However, Mcginity and Hill reported
that 5-10% of water in formulation could prevent further peroxide production (27)
and hence formaldehyde formation in PEG, but could not reduce initially existed

peroxides.



Another study showed that formaldehyde initially presented in 40% PEG 400
solution containing Oé—benzylguanine in sealed glass ampules mainly caused
degradation of the drug (7).

Hemenway et al. studied about effects of adding some antioxidants into 50%
PEG 400 solution in water placed in sealed headspace glass vials stored at 40°C for
90 days. The result showed that 0.02% butylated hydroxyanisole (BHA), 0.02%
butylated hydroxytoluene (BHT), 0.5% ascorbic acid and 10% Vitamin E TPGS could
inhibit formation of formaldehyde in PEG 400 (6).

Puz et al. compared antioxidant activity of BHT, ferrous sulfate, and ethylene
diamine tetra acetic acid (EDTA) in coated controlled release tablet having PEG 3350
in the coating material. The result showed that BHT, a free radical scavenger
antioxidant was the most effective to inhibit sulfoxide formation through PEG
autoxidation (28).

Byun et al. investigated an antioxidant activity of o-tocopherol and BHT in
polylactic acid (PLA) films with or without PEG 400. The result showed that pure PLA
film, PLA film with BHT and PEG 400, and PLA film with BHT, PEG 400 and o-
tocopherol had 2-2-diphenyl-1-picryhydrazyl (DPPH) radical scavenging activity of 0,
14 and 90% respectively. This meant 0-tocopherol might have high activity in radical
scavenger activity (29).

Stein and Bindra studied effect of adding water into PEG based fill
formulation with and without BHA as antioxidant in hard gelatin capsules. The
formulation with water 5%w/w and BHA exhibited the best dissolution and no

pellicle formation was observed (30).

3. Shell compositions

Generally, shell formulation of soft gelatin capsule consists of film-forming
agent, such as gelatin, water and plasticizer. The formulation may have other
additives such as colors, flavors, opacifiers and preservatives. The type and amount

of additives, including plasticizers, can affect on shell properties. For example, the



plasticizer helps to improve flexibility of gelatin film. The common plasticizers used
are such as glycerol, sorbitol and propylene glycol. Water remained in the shell after
drying stage can also act as plasticizer because it can reduce sglass transition
temperature (T,) of anhydrous gelatin (31). However, upon storage water may further
evaporate resulting in brittleness of gelatin shell. Low-volatile substances such as
glycerol are more effective plasticizers. Plasticizing effectiveness of glycerol results
from its greater hygroscopicity than other polyols (32). Furthermore, glycerol has
lower T, (-93°C) when compared with sorbitol (-3°C) (32). When glycerol was used as
plasticizer in soft gelatin capsule, oxygen permeability was increased under high
humidity (25).

Properties of gelatin shells contributes to the quality of product. High
temperature and humidity can cause physicochemical properties of soft gelatin
capsule shell changed. One of critical problems of soft gelatin capsule is gelatin
crosslinking due to inappropriate storage conditions and chemicals (9, 10, 33). Hakata
et al. reported disintegration time of soft gelatin capsule was remarkably delayed
when stored at 40°C or higher (34).

Furthermore, color fading of soft gelatin shell is also a quality problem under
concern as it can indicate product quality and stability. As with other dosage forms,
coloring agents are mainly used in soft gelatin capsules for attractive appearance and
identification. Color fading may be caused by color migration from the shell into the

fill materials which contain favorable vehicle, and/or due to color instability.

4. Color stability

In pharmaceutical products, dye and lake that can be used must be certified
as FD&C and D&C grades. The chemical structure of dye molecule consists of two
parts including (1) chromophore which is the main skeleton indicating the light
stability of a dye and (2) auxochromes which are substituent groups (35). Each
coloring agent has different stability when exposed to chemicals and environment as

shown in Table 2-1.



Table 2- 1 Stability properties of some coloring agents (Modified from Handbook of

pharmaceutical excipient (36))

Color FD&C Oxidizing | Reducing | Heat Light Acid Base
grade agents agents

Brilliant blue FD&C Blue Moderate Poor Good Moderate Very Moderate

FCF no.1 good

Indigo carmine | FD&C Blue Poor Good Good Very poor Moderate Poor
no.2

Fast green FD&C Green | Poor Very poor Good Fair Good Poor

FCF no.3

Erythrosine FD&C Red Fair Very poor Good Poor Insoluble Good
no.3

Allura red AC FD&C Red Fair Fair Good Moderate Good Moderate
no.40

Tartrazine FD&C Fair Fair Good Good Good Moderate
Yellow no.5

Sunset yellow | FD&C Fair Fair Good Moderate Good Moderate
Yellow no.6

There were many published articles that reported about stability of certain
dyes.
Nalliah studied about food dyes, i.e. FD&C blue no.1, FD&C red no.40 and

FD&C yellow no.5 oxidized by oxidizing oxone, using iron (Il) sulfate as a catalyst.

Highly oxidative radicals, SO, could decolorize these dyes (37).

Garrett and Carper could predict thermal stability of coloring agents such as
FD&C yellow no. 6 and D&C red no. 33 in a liquid preparation of sulfa drugs at
various temperatures. The colors were mixed in liquid multisulfa preparation. The
results showed that high temperature could increase a decrease rate of color
absorbance (38).

Photosensitivity of certified dyes in tablet was studied under normal and
exaggerated light, with or without light protector (39-46). The results indicated that

high intensity of light increased color fading rate and ambler glass bottle could



provent color fading better than other colored glasses (georgia green, emerald green,
champagne green. Moreover, ultraviolet absorber (2,4-dihydroxybenzophenon) could
provent FD&C blue no.1 or brilliant blue from fading.

The effects of pH and temperature on some dyes, including FD&C red no. 4,
blue no. 1, and yellow no. 5 were also studied. The color of the tablet surface and
total dye contents were measured at different temperatures and pH. FD&C red no.4
was the most stable dye under all studied conditions. FD&C yellow no.5 showed
poor stability in pH 5 and 7 buffered tablets at high temperatures of 60 °C and 80 °C;
while FD&C blue no.1 was more stable. However, at 25 OC, all dyes were stable
under the studied pH levels (47).

Brownley and Lachman studied the stability of FD&C red no. 4, FD&C yellow
no. 5, FD&C green no. 3, and FD&C blue no. 1 and FD&C blue no. 2 with lactose in
pH 6.6 to 6.8 buffered solution. Only FD&C blue no. 2 (or indigo carmine) was
unstable under light. The degradation mechanism of FD&C blue no. 2 was explained
by reduction to a semiquinone which was followed by oxidation (48). Some
materials used as pharmaceutical excipients such as dextrose, lactose and sucrose in
solutions also increased fading rate of FD&C blue no. 2, while mannitol and sorbitol
did not (49).

Color instability has also been reported in several films with PEG. Teckoe et
al. investigated color stability of coated tablets with and without PEG in formulation
and concluded that formaldehyde appearing in PEG may lead to color fading in
coated tablets (12). This result was confirmed by Brown et al. who suggested that
fading of indigo carmine in film coated tablets was increased when PEG was used as
plasticizer in coating formulation (50).

Brilliant blue FCF, categorized in triarylmethane dyes is one of widely used
synthetic dyes in pharmaceutical industry. The structure shown in Figure 2-1 is based
on a central triphenylmethane structure which is substituted with amine derivatives,
with or without sulfonic acid groups. It is anionic with the disodium salt of sulfonic

acid. From Table 2-1, it is moderately stable when there is an oxidizing agent,
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suggesting that when it interacts with an oxidizing agent, oxidation occurs and hence
the color is faded.

Gosetti et al. had investigated degradation pathway of brilliant blue FCF
which was oxidized by potassium persulfate, under sunlight irradiation. LC-MS was
used to determine intermediates obtained from degradation of brilliant blue dye.
There were two intermediates, | or Il, occurring during degradation depending on
molar dye/persulfate ratio. At the 1/1 and 1/10 molar ratios of dye/persulfate, the
intermediate | (Figure 2-2(a)) could give change to solution color, observed by eyes,
from brilliant blue to dark blue color. This was because of hydroxylation of the dye
molecule, electrophilic addition reaction of hydroxyl group on aromatic rings. Five
aromatic rings, or the chromophore, of the blue color were still present. At 1/100
molar dye/persulfate ratios, intermediate II (Figure 2-2(b)) was formed by loss of a
methyl eroup of two -SO, groups and of a fragment of molecule bound to the
aminic group together with addition of -OH group to the central carbon atom. This

resulted in loss of one aromatic ring and the color was faded (51).

Figure 2- 1 Brilliant blue FCF structure (51)
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SOH

(@ (b)

Figure 2- 2 Structure of intermediate | (a) and Il (b) occurring during degradation of brilliant blue

FCF due to oxidation by potassium persulfate (51)

Nadupalli et al. used spectrophotometer to investigate oxidation mechanism
of the reaction between brilliant blue-R and hypochlorite. The experiment was
carried out at 25 "C. After oxidation reaction occurred, three separated products as

shown in Figure 2-3 (a,b,c) were identified by N and 13C—NI\/\R (52).

{O\" @/k o A

:<_2=<

(@ (b) (c)
Figure 2- 3 Structure of oxidation products of brilliant blue-R :
4-(4-ethoxyphenylamino)benzoic acid (a), 3-[(ethyl-hydroxyamino)methyllbenzene
sulfonic acid (b) and 6’-chloro-5’-hydroxybicyclohexylidene-2,5,2’-triene-4,4’-dione
(0), (52)

PEGs have been widely used as vehicle in fill formulation of soft gelatin

capsules. The reactive impurities and degradation product of PEG i.e. formic acid and
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formaldehyde may cause oxidative degradation of color such as brilliant blue in the
capsule shell.

However, as PEG is a hydrophilic vehicle which is miscible with water soluble
dye, it may be also possible that color fading results from dye migration from the
capsule shell in to the fill containing PEG. There has been reported that water
soluble dyes such as FD&C red no. 3, FD&C blue no.1, FD&C violet no.1, could form
hydrogen bonding with type A and B gelatin in solid solution at 1:10 to 1:5 dye
gelatin ratios, resulting in a slow release of dye in distilled water at 27°C (53).

Determination of color stability and color fading

The stability of coloring agents is one of quality control in soft gelatin capsule
formulation because of their sensitivity to environment and chemicals. As mentioned
above, color degradation could lead to color fading (51, 52, 54). The change in color
can be measured by several techniques.

Color measurement by spectrophotometry technique is based on full
spectrum color measurement and producing precise data from spectral analysis of
samples’ reflectance, absorbance and transmittance.

Yasri et al. used UV-vis spectrophotometer to measure absorbance of violet
colored product developed by telomerization of formaldehyde and tryptamine at a
maximum wavelength of 558 nm (55).

Liang et al. also applied UV-vis spectrophotometer to analyze absorption
spectra of yellow colored solution obtained from reaction between persulfate and
iodide and the absorbance of color was determined at 352 nm (56).

Turi et al. used fadeometer equipped with spectrophotometer to determine
fading and predict stability of lake colors, including aluminum lakes of FD&C yellow
no.5, FD&C blue no.1, FD&C red no.2, FD&C red no.3, FD&C red no.5 and FD&C
yellow no.6, in compressed and sugar-coat tablets that exposed to light (57), and to
predict light stability of dye colors, including FD&C blue no. 2, FD&C yellow no. 5,
and FD&C yellow no. 6, in solutions with and without excipient such as lactose,

sucrose, PEG 6000 (58).



13

Urbanyi et al. used reflectance attached Beckman DU spectrophotometer to
observe stability of colors, including FD&C violet no.1, FD&C blue no.1, FD&C red
no.1, FD&C green no.3, D&C yellow no.10, in tablets. The method could measure
the reflected light from upper or lower surface of the tablet (59).

However, due to full spectrum measurement, the measured data from
spectrophotometry technique is beyond the data that can be observed by human
eyes.

Alternatively, colorimetry which is a similar technique to spectrophotometry,
but with reducing color data that correlate to human color perception, is more
suitable for determination of color difference and hence it can be used for routine
color quality control of final product and during manufacturing process.

Basically, in colorimetry technique, color may be represented in three
characteristics of light: hue, saturation, and brightness. Commision de International
de UEclairage (CIE) has defined the system of color measurement on three main
stimuli: red (700 nm), green (546.1 nm), and blue (435.8 nm). Human eyes can see
all colors in combination of these stimuli, called tristimulus values, X, Y, Z
respectively.

However, tristimulus system is not simply understood in term of object’s
color. The theory of opponent color, so called 3-dimentional rectangular L, a, b
color space (CIELAB) were developed (60). As shown in Figure 2-4 which is L, a, b
rectangular color space, “lightness” is indicated by L-axis where the value of 0
signifies black and the value of 100 is white. The colors of “red and green” are
indicated by a-axis where the positive values are red and the negative values are
green. The colors of “yellow and blue” are indicated by b-axis where the positive

values are yellow and the negative values are blue (60).
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White
L* = 100
Yellow
Green 1b*
<& 5, Red
+a*
Blue /
-b*
Black
L*=0

Figure 2- 4 Diagram representing the CIELAB color space
The delta values in this color scale, i.e. delta L*, delta a* and delta b*, specify
difference between standard and sample in L*, a* and b*. The total color difference,
delta E* can be calculated by following formula.
AE* = ALY +(aa% + (a6
AL* = [ * sample - L* standard
Aa* = a* sample - a* standard
Ab* = b* sample - b* standard
Tolerances may be set for each delta value to indicate whether difference
between the standard and samples is too much, resulting in delta values are out of

tolerances. AE* is a single value, so it does not indicate which values are out of

tolerances.

5. Crosslinking in gelatin capsule shell

There are many factors such as external environment, humidity, temperature
or chemicals such as aldehydes that can cause gelatin crosslinking, so control of
these factors during manufacturing process and storage of gelatin capsule shell is
needed.

Hakata et al. studied the effect of storage temperature, i.e. 25 OC, 40 °C and
60 "C on physicochemical properties of soft gelatin capsule shell. Fifty capsules

were stored in an amber glass bottle with stopper. It was found that when the
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capsules were stored at 40°C for six months, disintegration time of capsules were
prolonged similar to that of capsule which was treated with 1% formaldehyde at 20
°C (34),

Dey et al. investigated effect of accelerated storage conditions, 40°C and
75%RH, of hard gelatin capsule, a decrease of etodolac dissolution was observed
after 20 weeks, while this was not observed when the capsules were stored at 25 °C
(61).

Regarding to chemicals, formaldehyde is the most frequently reported
chemical component that has been involved with gelatin crosslinking. Formaldehyde
can be found as an impurity or degradation product in many pharmaceutical
excipients such as polysorbate 80 (62, 63), polyethylene glycol (22, 64, 65) which
may be used in formulation in gelatin capsules. It was reported as volatile agent
found in soft gelatin capsules (66).

Dissolution problem of capsules due to formaldehyde induced gelatin
crosslinking was investigated by many researchers (10, 24, 63, 67). Ofner et al.
determined the amounts of formaldehyde that could result in crosslinking of hard
gelatin capsule. It was found that hard gelatin capsules with 120 ppm of
formaldehyde mixed with lactose showed slower dissolution, while hard gelatin
capsule with 20 ppm of formaldehyde had the same gelatin dissolution profile
compared with that of the control capsules (68).

Albert et al. also used “C NMR spectroscopy to investigate crosslinking
reaction of gelatin with formaldehyde solution. The result confirmed that the
reaction was initiated by formation of lysine-methylol (lysine-CH,OH) which was
followed by arginine-methylol (arginine-CH,OH) formation and subsequently led to
arginine-lysine crosslinking (69) and arginine-arginine crosslinking (70).

Gelatin cross-linked by formaldehyde could also be investigated by Fourier
transform infrared (FTIR) spectroscopy. The principle component regression (PCR)
was able to discriminate the spectra of crosslinked gelatin as a function of time. The

first three PCs, lysine-methylol as PC#3 (7%), followed by arginine-methylol as PC#2
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(14%) and by the arginine-lysine as PC#1 (68%) (71) agreed with the result from e

NMR (69).
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Figure 2- 5 Structure of the main methylols and crosslinks formed in the
hardening reaction of gelatin and formaldehyde(70).

Bottom et al. investigated the effect of formaldehyde levels in soft gelatin
capsule shell. It was shown that 80 ppm of formaldehyde in soft gelatin capsules led
to a reduction of dissolution compared with the capsules having 20 ppm
formaldehyde (24).

Hakata et al. spiked 0-3% formaldehyde into soft gelatin capsules to induce
different degrees of crosslinking. Disintegration time was significantly increased when
the capsules were stored at 40°C. Swelling was decreased, while gel strength of
capsule shell was increased when formaldehyde content was increased (72).

Tengroth et al. studied crosslinking in soft gelatin capsule by placing the
capsules in formaldehyde atmosphere for 6 h. Methylol peak was detected by FTIR
spectroscopy at 1030 and 1080 cm due to addition of formaldehyde to the primary
amines of lysine and arginine which led to crosslinking of gelatin (73). These results
were confirmed by Salsa et al, who used FT-IR spectroscopy to study crosslinking of

gelatin dispersed in a potassium bromide pellet on which formaldehyde was
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sprayed. High intensity of 1039 cm’ peak, identified as C-O stretching, appeared at
time 0 min. However, after 10 min, the intensity of this peak was decreased, while
the intensity of peak at 1,080 e’ was increased (71). Tengroth et al. also observed
that little downward shifted (about 2.5 cm) of amide | peak that consisted of C-N
stretching and N-H bending was shown for cross-linked capsule, compared with
untreated capsules. However, this downward shift may independent on aldehyde
used but it could be attributed to H-bond breaking due to loss of water observed in
hardened capsules (73).

Gold et al investigated crosslinking in soft gelatin capsules using near-infrared
spectroscopy. Different levels of formaldehyde were added into PEG 400 filled in
the soft gelatin capsules. The results showed that saturated crosslinking of soft
gelatin shell was found with 185 ppm of formaldehyde (74).

Gelatin crosslinking usually provides retardation of in vitro dissolution because
of formation of pellicle which is poorly soluble in medium used in in vitro testing.
However, this problem does not affect the bioavailability of drug because enzyme

can break down insoluble pellicle (61, 75).

6. Near-infrared (NIR) spectroscopy

Nowadays, NIR spectroscopy is one of process analytical technology that has
been used in both qualitative and quantitative analysis in pharmaceutical industry for
raw material control, product quality control, and process monitoring. It has many
advantages. For examples, it is a nondestructive technique and does not need to
prepare sample before analysis; it can be used in real time analysis. Thus, time taken
for quality control is reduced and use of organic solvent can be avoided. However, it
still has limited use because disadvantages such as strong absorbance of water can
interfere other compounds.

6.1 Source and type of absorption band in NIR

NIR region is in wavenumber of 780-2526 nm or wavelength 12820-3959 cm

Absorption band in NIR region caused by fundamental vibration of functional group —
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CH, -NH, -OH, -SH that are related to overtones and combinations. Overtones region,
in the wavenumber 780-2000 nm, is attributed to asymmetry in multilevel energy
transitions in molecule occurring at multiples of fundamental vibrational frequency,
called anharmonic oscillator. Combination vibration, in wavenumber 1900-2500 nm,
is caused by vibrational interactions in polyatomic molecules. The frequencies of this
vibration are the sum of the interacting frequencies. The characteristics of NIR
absorption band are broad, overlap and weak intensity when compared with mid-
infrared (76).

Sample characteristics need to be considered when choosing the optimal
measurement mode of NIR. For example, transmittance mode is usually used for
transparent samples, while modes of diffuse transmittance or diffuse reflectance
which relies on individual scattering and absorption is used for unclear liquid, semi-
solid and solid samples. Sample preparation is a very important step, especially for
solid sample that have large variation due to scattering effect caused by variation in
packing density of powder and/or particle size. While, for liquid sample, the
scattering effect was hardly observed (77). In addition, moisture in solid samples
should be removed and temperature of liquid samples should be controlled before

NIR measurement.

6.2 Quantitative analysis by NIR

NIR spectra are broad and overlapped. For quantitative analysis of material,
NIR has to be calibrated with a reference method.

Many physical and chemical characters of compounds can cause the
deviation from the linear relationship between NIR spectra and concentrations of
interested compound. Pretreatment of NIR raw spectra may be a necessary step to
reduce systematic variation of the spectra by diminishing or standardizing impact of
interfering parameters, such as noise, light scattering from physical variation in

samples, path length variations, in order to generate linear correlation between light
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absorption and concentration of interested compound that complies to Beer’s law
(77).

Two common techniques used in spectra pretreatment are (1) scatter
correction method including multiplicative scatter correction (MSC) and standard
normal variate (SNV)] and (2) spectral derivative including Norris-Williams derivation
and Savitzky-Golay derivation Both derivation techniques require smoothing the NIR
spectra before calculating the derivative values.

(1) Multiplicative scatter correction (MSC) and standard normal variate (SNV)

The principle of these methods is removing non-linearity in the spectra
caused by scattering effect of particles found in the samples. The calculation is
based on the MSC and SNV equations:

MSC equation zi = -alb
While, x; = raw NIR spectra

z; = NIR spectra after pretreatment
a = intercept
b = slope of least square regression of value x; xj..x, with reference

spectra ry,r,...1,

SNV equation z = (- m)/5s
While x; = raw NIR spectra
z; = NIR spectra after pretreatment
m = mean

s = standard deviation of the value x;

The main challenge of MSC is to determine suitable reference spectrum.
Generally, the reference spectrum is average of spectra in calibration set (78).
SNV is different from MSC in that the reference spectrum is not necessary.

Each spectrum is processed on its own. Consequently, SNV does not consist of a
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least square fitting in their factor assessment. However, the results from SNV and
MSC are the same in many applications.

(2) Spectral derivative

This technique can be used to remove the scattering effect produced by
diffuse reflectance and to decrease baseline shift, overlapping peaks and other
negative effects on the signal to noise ratio (79). This technique is worthy and most
frequently used in pretreatment. It can enhance resolution of NIR spectra when
increasing derivative order, but reduce the strength of spectra and signal to noise
ratio.  Consequently, optimal derivative order is important in this technique.
Commonly used methods are such as Savitzky-Golay derivation and Norris-Williams
derivation (or gap derivation). Derivation can be done as first, second or higher
derivative order. Mostly, first and second derivative orders are applied.

First-order derivative is the rate of change of absorption spectrum regarding
wavelength. First-order derivative spectral passes zero at the same wavelength as
maximum absorbance (A...,) of the absorption spectrum. It starts and finishes at
zero. Second-order derivative band, the lowest point is the same wavelength as a
zero order band’s maximum. When higher orders of derivatives are used, the signal-
to-noise ratio decreases. In addition, smoothing may be used to improve the signal-
to-noise ratio of spectrum (80).

Principal  component  regression  (PCR) and partial  least-squares
(PLS) regression are widely used in multivariate regression methods in quantitative
NIR analysis. Limitation of PCR is that calculation process uses only effect of
variation of independent variables, while PLS regression combines effect of
dependent and independent variables to generate calibration model.

The number of samples should be adequate to provide spectra for generating
a calibration model with acceptable performance in prediction. Two sets of
samples, i.e. calibration set and test set (or internal validation set), are required to
generate and verify the calibration model, respectively. Root mean square error of

calibration (RMSEC), root mean square error of prediction (RMSEP), and the regression
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coefficient (R) are calculated and used for choosing of a suitable calibration model
(81). RMSEC and RMSEP indicate the performance of NIR model. Generally, the closer
values of RMSEC and RMSEP to zero, the better model. Prediction residual error sum
of squares (PRESS) and root mean square error of cross validation (RMSECV) are used
to determine the optimum number of factors. Usually, PRESS is plotted as a
function of the number of PLS factors. When the PRESS value reaches minimum, its
corresponding PLS factors is selected as the optimum one for a PLS quantitative
model (82).

When the model is chosen, accuracy and precision of NIR model should be
compared with the reference method. This can be done by using the external
validation set. This sample set has to be prepared and the concentration of analyte
is determined by both NIR and the reference method. The deviation of the
predicted results from the results of reference method is then calculated.

The calibration model can be constructed with full range of spectra.
However, due to broaden and overlapped spectra of NIR, specific wavelength or
wavenumber ranges may be chosen to generate the appropriate calibration model

rather than full range.

6.3 Determination of water in NIR

NIR is a common method used for determination of water in various samples
because of the strength and unique combination band of water at 1940 nm (83).

Cho et al. used NIR spectroscopy to determine water content in ethanol. The
calibration set were prepared by varying water concentrations from 1-19% in the
total sample number of fifteen. For validation set, the samples were prepared with
water concentration at 3%, 5% and 7%. All spectra were collected at room
temperature. Water band at 1450 nm was noticeably observed with increasing water
concentrations. The 1120-1730 nm range was therefore used for construction of

calibration model. Partial Least Squares (PLS) technique was chosen to construct the
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calibration model with second derivative spectra. The predicted value agreed with
the result from the reference method with standard deviation of 0.15-0.19% (84).

Zhou et al. used NIR spectroscopy to determine moisture in a drug
substance, using Karl Fischer titration as reference method. The hygroscopic drug
substance consisted of 0.5-11.4 %w/w water content. A spectral range of 1350-1500
nm and 1850-1936 nm were chosen to build the calibration model. Total spectra of
129 resulted from 43 samples were pretreated and devided into a calibration set of
90 spectra and a test set of 39 spectra. The result showed that first derivative of
spectra in the region of 1850-1936 nm offered the best calibration model with
standard errors of prediction (SEP) 0.11 %w/w (85).

Mantanus et al. used NIR spectroscopy to determine 1-8% moisture content
in pellets using thermogravimetric balance as reference method. A region in
wavelength of 6102-4247 cm was chosen to build the calibration model. Pre-
treatment of raw spectra by multiplicative scatter correction (MSC) was the most

suitable. RMSEC and RMSEP was reported as 0.163% and 0.167% respectively (86).

7. Model drug

One advantage of soft gelatin capsules is improving solubility of poorly
soluble drugs through formulating in liquid form. Many of the Biopharmaceutics
Classification  System (BCS) class Il drugs that have low solubility and high
permeability have been formulated in this dosage form. Ibuprofen classified as BCS
class Il drug was chosen as model drug in this study. The structure of this drug is

shown in Figure 2-6. It has a carboxylic group in molecule and pKa is 4.5-4.6 (87).
CHy

£H; EONH

Hale

Figure 2- 6 Structure of ibuprofen
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Patel et al. investigated soft gelatin capsules of carboxylic drugs which had
PEG 400 and PEG 600 as vehicles. The results showed that factors affecting
decomposition of the drugs included hydroxyl group content of the vehicles, water
content, alkali level and drug concentrations in the formulations. It was postulated
that drug stability in the formulations could be improved by using ionized form of
the drug, decreasing hydroxyl group content of vehicle and increasing water in the

formulations (88).
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CHAPTER IlI
MATERIALS AND METHOD

Materials

Absolute ethanol (American Chemical Society grade, Merck KGaA., Darmstadt,
Germany)

Brilliant blue FCF dye or FD&C blue no.1 (Sensient Technologies (Thailand) Co., Ltd.,
Bangkok, Thailand)

D-a-tocopherol polyethylene glycol 1000 succinate (Sigma-Aldrich., Saint Louis, USA)
Deionized water

Formaldehyde 37% solution (Ajax Finechem Pty., Ltd., Scoresby, Australia)

Glycerine USP (99.5%, S. Tong Chemicals Co., Ltd., Nonthaburi, Thailand)

Ibuprofen (Albemarle Corporation, South Carolina, U.S.A.)

Magnesium chloride (MgCl,, Analytical reagent, Ajax Finechem Pty. Ltd., New South
Wales, Australia)

Pharmaceutical gelatin type A, bloom strength 180 (Cartino gelatin Co., Ltd.,
Samutprakarn, Thailand)

Polyethylene glycol 600 (Merck KGaA., Darmstadt, Germany)

Potassium dihydrogen orthophosphate (KH,PO,, Analytical reagent, Ajax Finechem
Pty. Ltd., New South Wales, Australia)

P-toluenesulfonic acid (Carlo Erba Reagents SAS., Val de Reuil, France)

Sodium chloride (NaCl, Analytical reagent, Ajax Finechem Pty. Ltd., New South Wales,
Australia)

Sodium hydroxide pellets (American Chemical Society grade, Carlo Erba Reagent SpA,
Rodano, Milan, Italy)
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Equipment

Analytical balance (A200S, Sartorius, Goettingen, Germany)

Amber glass bottle 100 ml (Tan Soon Huat product Co., Ltd., Bangkok, Thailand)
Clear glass vials 20 ml with PTFE/white silicone septa (Ligand Scientific Co., Ltd.,
Nonthaburi, Thailand)

Desiccator

Digital caliper (150 mm/0.01 mm, China)

Dissolution apparatus Il (VK7000, VanKel, New York City, USA)

Fourier transform infrared spectrometer (Nicolet iS10, Thermo Scientific, Wisconsin,
USA)

Hot plate (EGO, Oberderdingen, Germany)

Moisture analyzer (HR83 Halogen Moisture Analyzer, Mettler Toledo, Columbus, USA)
Near infrared spectrometer (Antaris Il, Thermo Scientific, Wisconsin, USA) and Antaris I
analyzer series S (Thermo Fisher Sciencetific Inc., USA)

Texture analyzer (TAXT plus, Stable Micro Systems, Ltd., Surrey, England)

UV spectrophotometer (UV-1800, Shimadzu, Tokyo, Japan)

Sonicator (S70H, Elmasonic, Frankfurt, Germany)

Method

1. Preparation of soft gelatin capsule

1.1 Fill formulation

The formulations were composed of polyethylene glycol (PEG) 600 and
contained varied amounts of water and/or D-0-tocopherol. PEG 600 was chosen as a
hydrophilic vehicle in this study because it shows lower hygroscopicity and hence
reduced water migration (1), also it has less plasticizing effect for gelatin film,
comparing with other liquid PEG such as PEG 400 (3).

Vitamin E TPGS as H-atom donor or free radical scavenger was chosen for
antioxidant activity to inhibit oxidation of PEG 600 and amounts of free d-tocopherol

were 0.001 and 0.05% based on recommended range in Handbook of
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Pharmaceutical Excipients (89). Furthermore, a certain amounts of water, i.e. 5% and

10% were added in PEG 600 because there was an evidence that 5%w/w of water

could inhibit formaldehyde formation by prevent peroxide formation (27).

Total of nine liquid-filled formulations were designed, as tabulated in Table

3-1.

Table 3- 1 Compositions of fill formulations in soft gelatin capsules

Formulation PEG 600 Water D-o-tocopherol

1 100 - -

2 90 10 -

3 95 5 -

4 100 - 0.001*
5 100 - 0.05%
6 90 10 0.001*
7 90 10 0.05%
8 95 5 0.001*
9 95 5 0.05%

*Percentage based on the amount of PEG 600

Effects of water and d-alpha-tocopherol levels were evaluated through

formulation 1, 2, 3, and formulation 1, 4 and 5, respectively. Combined effects of d-

alpha-tocopherol at high and low water levels were investigated through formulation

2,6, 7and 3, 8, 9, respectively. Statistical analysis, if any, was carried out by Minitab

17.

Only for in vitro dissolution test, 150 mg ibuprofen was added and dissolved

into the fill formulation.

1.2 Shell formulation

Gelatin shell was composed of gelatin, glycerin, brilliant blue and water.

Brilliant blue was chosen as a model color in this study because it is more stable

under light comparing with indigo carmine. Thus, the effect of light on color stability

during storage was reduced. The shell formulation is shown in Table 3-2.
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The gelatin shell was prepared by dispersing granular gelatin in the solution of
glycerin and brilliant blue and left for 20 min before heating the mixture in a water
bath at 60°C for 45 minutes. Subsequently, gelatin mass was sonicated for 2 hours
to eliminate bubbles. The warm gelatin mass was then spread on 20 cm x 29 cm
cooled glass plates to form two gelatin sheets. After that one gelatin sheet was laid
on an in-house die plate as shown in Figure 3-1. Pouches on the gelatin sheet were
formed with an aid of 2 bar compressed air. The pouches were sealed with another

gelatin sheet to form empty capsules.

Figure 3 - 1 A set of die plate used for soft gelatin capsule preparation

Table 3- 2 Ingredient of capsule shell

Ingredient Amount (g)
Gelatin 43
Deionized water 38
Glycerol 19
Brilliant blue 0.01
Total 100

The empty capsule was injected with the fill through the needle no.18. Each
capsule contained 600 mg of fill material.
The filled capsules were dried in a glass desiccator containing saturated

magnesium chloride solution to produce approximately 32% RH at an ambient
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temperature for 12 h. Then, 20 capsules of each formulation were kept in 100 ml
amber glass bottles and stored at 30°C and 75% relative humidity (RH). After storage
time of 1, 7, 14, 30, 60 and 90 days, unless otherwise stated, the capsules were
taken and characterized. The non-color capsules also prepared and tested for
control.

In this study, the whole colored and non colored capsules which contained
fill formulation numbers 1 to 9, were coded as CSG-1 to CSG-9, and SG-1 to SG-9,

respectively.

2. Characterization of soft gelatin capsules
2.1 Appearance

The color fading of soft gelatin capsules were visually inspected under white
background. Capsule swelling and leakage was observed.

2.2 Thickness

Thickness of capsule shell was determined by digital vernier caliper. At each
time point, three capsules of each formulation were cut and their shell thickness
were measured on 4 positions. The average value was reported.

2.3 Hardness

The hardness of soft gelatin capsules was measured by Texture Analyser TAXT
plus (Stable Micro Systems, Ltd., Surrey, England). The test was carried out using
compression mode at 50% strain. The speed of probe was 0.5 mm/s. Three
capsules were tested and average value was reported.

2.4 Moisture content

The moisture content of soft gelatin capsules shells was gravimetrically
determined at 105°C using moisture analyzer (HR83 Halogen Moisture Analyzer,
Mettler Toledo, Columbus, USA). The soft capsule shell was cut and the liquid on
the shell surface was removed using lint free wiper. Three capsule shells were

analyzed and the average value was reported.
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2.5 Determination of formaldehyde content and water in liquid fill

2.5.1 Gas chromatography/mass spectrometry (GC/MS)

Formaldehyde content in the fill formulations after storage time of 1, 14,
30 and 90 days was determined by GC/MS using Agilent model 7890B headspace
autosampling unit. The method was modified from the previous work (90). Briefly,
HP-INNOWAX, with 30 m length, 0.25 mm i.d. and 0.25 pm film thickness was used as
chromatography column. Helium was used as the carrier gas and flow rate was set
constantly at 1.5 mL/min with an initial loop fill pressure of 15 psi and final loop fill
pressure of 10 psi. Inlet temperature was 170°C and a ratio of gas flow through the
column and split line, i.e. split ratio, was 300:1. The standard solutions and samples
were equilibrated in headspace at 60 C for 15 min. The temperature of loop and
transfer line was set at 120° C. Mass selective detector performed at 20-150 amu
was used for identification and selected ion monitoring (SIM) mode was used for
quantitative analysis. The m/z values selected in SIM mode for diethoxymethane

which is derivatized compound of formaldehyde were 31, 59, 103.

Standard preparation

As formaldehyde content was determined though measuring
diethoxymethane which is its derivertized compound. Acidified ethanol was
prepared by 1% w/v of p-toluenesulfonic acid in ethanol ACS grade and used to
derivertize formaldehyde to obtain diethoxymethane.  Standard solutions of
formaldehyde were prepared by diluting a 50 pg/ml formaldehyde stock solution in
acidified ethanol to 0.5, 1, 2, 5, 10, 20 and 25 pg/ml. Five ml of the standard
solution was filled into 20 ml vials and seal immediately with septum and paraffin

film before use.
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Sample preparation

Fill material in the soft gelatin capsules were accurately weighed 500 mg
into 20 ml clear glass vials. Five ml of acidified ethanol was added and the vial was
sealed immediately with septum and paraffin film. After that, the solutions was

sonicated for 1 min to completely dissolved the mixture.

2.5.2 Near infrared spectroscopy (NIR)

NIR was used to determine formaldehyde and water contents in the fill.
The results were analysed by Unscrambler X 10.4. The reference values were
weights of formaldehyde and water. Calibration models were established as the
following:

Standard solutions of 10-200 ppm formaldehyde in PEG 600 which
contained a range of 10-200 mcg formaldehyde per gram of solution were diluted
from a 1000 mcg/g¢ formaldehyde stock solution.

Standard solutions of formaldehyde in PEG 600 with 5%w/w and 10%w/w
water were prepared in the same way as the standard solutions with no added
water.

Consequently, the total standard solutions of 767 were prepared and
examined by NIR in transmittance mode in a range of 4000-10000 cm’ with a setting
of 16 scans and 8 cm resolution via Thermo RESULT Integration program by Antaris
Il analyzer series S, Thermo Fisher Sciencetific Inc., USA.

The standard spectra were randomly divided by the software into 690
spectra and 77 spectra for calibration set and test set, respectively, and used for
construction of calibration model.

However, prior to constructing the model, the NIR spectra of full region

(4000-10000 cmfl) were pretreated with different methods as follows:
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First step

Second step

1 No pretreatment

2 Multiplicative Scatter
Correction, MSC

3 Standard Normal Variate,
SNV

a4 Multiplicative Scatter
Correction, MSC

1" derivative and Norris-Williams
derivation

1" derivative and Savitzky-Golay
derivation

2" derivative and Norris-Williams
derivation

2nd derivative and Savitzky-Golay

derivation

8 Standard Normal Variate,
SNV

10

11

1" derivative and Norris-Williams
derivation

1" derivative and Savitzky-Golay
derivation

2" derivative and Norris-Williams
derivation

2" derivative and Savitzky-Golay

derivation

After pretreament, PLS regression was used to generate the calibration

model. The values of root mean square error of calibration (RMSEC) and root mean

square error of prediction (RMSEP)were used for suggestion a predictive model.

Normally, the small values of RMSEC and RMSEP suggest better model.

The calibration model was then validated by using external validation set

of spectra which were obtained from the same concentrations of formaldehyde
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solution in PEG 600 (10-200 mcg/g) with no water or with 5%w/w and 10%w/w of
water. Each matrix contains 20 validation samples, so the total validation samples of
60 were prepared.

Aldehydes have carbonyl group in which C=0O stretching shows strong
absorption in the mid-infrared but relatively weak absorption in near-infrared. The
possibility of analyzing formaldehyde in PEG 600, therefore, was very poor, especially
when water which has strong absorption was present in the sample. In this case, the
technique of orthogonal signal correction (OSC) was also applied to eliminate
variation due to interfering strong absorbance data of water (OSC components) from
spectra that is not related to interested absorbance of formaldehyde.

In addition, for more information, standard solutions of 0-50 %w/w water
in PEG 600 were prepared. They were examined by NIR with the same setting and
resulting spectra were used to generate calibration model for prediction of water
content. The total standards spectra of 31 were randomly divided by the software
into 25 spectra and 6 spectra for calibration set and test set, respectively. These
spectra used for construction of calibration model. External validation set of O-
50%w/w water content were also prepared to validate the model.

Water region in NIR spectra was strongly observed at 5000-5400 cm ' and
5900-7700 cm . This region was chosen to generate water calibration model through
partial least square regression. The same pretreatment techniques as above
calibration model were tried to transform NIR spectra before generate the calibration

model.

Sample preparation
Three capsules of each formulation were cut and the fills were removed
and placed in clear glass vials. The vial was immediately closed with plastic cap

before examination by NIR.
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2.6 Color Determination

2.6.1 Colorimeter

The soft capsule was cut and the liquid on the shell surface was removed
using lint free wiper. The color of three capsule shells was measured with
spectrophotometer (Ultrascan XE, Hunterlab, Virginia, USA). Average delta L, delta a,
delta B and delta E values of shell color were compared with that of freshly
prepared (within 1 day) shell which was used as reference.

2.6.2 UV-Visible spectrophotometer

Brilliant blue dye standard solutions in water of 0.5, 1, 2, 3 and 4 pg/ml
were prepared and analysed at the maximum wavelength of 629 nm using UV-
visible spectrophotometer.

To measure the color of both shell and liquid fill, each soft gelatin capsule
was cut and the shell and liquid fill were weighed accurately. The shell was then
dissolved in deionized water under sonication for 15 min and made to the volume of
25 ml. The liquid fill was dissolved in deionized water and then adjusted to the
volume of 5 ml. The concentration of brilliant blue in the shell and the liquid fill
were analyzed using UV-Visible spectrophotometer (UV-1800, Shimadzu, Tokyo,
Japan) at the maximum wavelength of 629 nm. Three capsules were tested and

average values of color content were reported.

2.7 In vitro dissolution test

Soft gelatin capsules containing 150 mg ibuprofen in different fill
formulations were prepared and stored as previously described in section 1.1. After
storage time of 1, 30 and 90 days, dissolution of three colored capsules in each
formulation was studied using USP dissolution apparatus II, at a paddle speed of 50
rom (VK7000, Vankel, New York City, USA). A dissolution medium was 900 ml of pH
7.2 phosphate buffer solution kept at 37°C. Ten mL of samples were taken at 10, 20,

30, 45 and 60 min from dissolution vessels and analyzed wusing UV
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spectrophotometry at detection wavelength of 264 nm. The medium was replaced

with ten mL fresh medium after each sampling.

2.8 Investigation of molecular interaction in gelatin shell by Fourier

transform infrared spectroscopy (FT-IR)

The soft gelatin capsule with and without ibuprofen was cut and the liquid on
the shell surface was removed using lint free wiper. The gelatin capsule shell were
examined by FT-IR Nicolet iS10 (Thermo Scientific, Wisconsin, USA) in the region of

600-4000 cm + with 32 scans and 4 cm’ resolution.
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CHAPTER IV
RESULTS AND DISCUSSION

1. Characterization of soft gelatin capsule
1.1 Appearance

After preparation, soft gelatin capsules were in yellowish and transparent
blue colors for non colored and colored gelatin capsule shells, respectively (Figure 4-
1@@), 1(c). The capsules slightly leaked along the seal. This could be a result of
insufficient force applied during capsules preparation. Leakage could cause some
capsules sticked together. Color fading was not visually observed after storage for

90 days, as shown in Figure 4-1(b), 1(d).

(© (d)
Figure 4- 1 Soft gelatin capsules: non colored capsules after storage for 1 day (a) and

90 days (b); colored capsules after storage for 1 day (c) and 90 days (d),

1.2 Thickness

The thickness of capsule shell was varied in the range of 0.53 - 0.98 mm and
0.37 - 0.92 mm for non colored and colored capsules, respectively. Average values
were reported in the Table I-1 and Table I-2 (Appendix I). No swelling of capsule was
visually observed. However, inconsistently increased or decreased capsule thickness
may be caused by water loss due to evaporation and water absorption into the shell

(91).
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Hardness of capsules were measured at each time point and the results are

shown in Figure 4-2 and Figure 4-3.

In general, hardness of capsules was also changed inconsistently during

storage.  High hardness values resulted from hardening capsules and above

approximately 3000 g capsules were broken during the test. Relatively low hardness

values mostly observed at 90 days were caused by softening and sticky capsules

such as the values measured for formulations 2, 6 and 7 which contained high level

of added water (10%). Therefore, this behavior may be due to the water contents in

these capsules. It was also possible that gelatin shell absorbed more moisture from

atmosphere during storage. The water molecules can act as plasticizer in gelatin

film. Excess water molecule in gelatin film would provide softening gelatin shell.
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Figure 4- 2 Hardness (n=3) of gelatin capsule shells for non colored formulation 1, 2, 3 (a); non

colored formulation 1, 4, 5 (b); colored formulation 1, 2, 3 (c); colored formulation 1, 4, 5 (d)
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Figure 4- 3 Hardness (n=3) of gelatin capsule shells for non colored formulation 2, 6, 7 (a); non

colored formulation 3, 8, 9 (b); colored formulation 2, 6, 7 (c); colored formulation 3,8,9 (d)

In addition, the moisture content in the capsule shell could escape to the
atmosphere as well as into the liquid fill containing PEG 600 which is hygroscopic and
having high affinity to water. Loss of moisture in the shell may result in hardening
capsules, such as non colored capsule of formulation 4 at 30 and 60 days.

Serajuddin et al. investigated on water migration from soft capsule shell into
the liquid fills which have varied affinity to water. They found that the amount of
water migrating from the capsule shell into PEG 400 which is more affinity to water
was higher (6.3%) than Gelucire 44/14:PEG 400 (1.1%) (92). Upon water migration,
water soluble substances such as water soluble dye or drug could migrate together
with water (93).

Plasticizing effect may also result from intimate contact of PEG 600 with

gelatin shell during storage. PEG 600 could partition in glycerol plasticized gelatin
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shell and modify mechanical properties of the capsules. PEGs can also act as
plasticizer; and lower molecular weight PEGs have higher plasticizing effect for gelatin
films (3). Armstrong et al. reported a high water soluble substance, ie. 4-
hydroxybenzoic acid could migrate into the shell of soft gelatin capsule higher than
low water soluble substance, i.e. acetaminophen (3).

In this study, hardness of capsules could not be always systematically related
to the fill formulations. Statistical analysis of hardness at 90 days showed that there
is no significant factor affecting on hardness of capsules as shown in Table -1
(Appendix ) although there might be an effect of color on hardness (p-value of
block = 0.052).

Causes of change in capsule hardness due to chemical migration from or into
the shell maybe affected by many factors such as temperature, contact time and
nature of chemicals which may not be taken into account. It was also possible that
chemical migration could occur dynamically providing fluctuation of hardness value
during storage (94). In this study, the temperature was controlled in stability
chamber; therefore the hardness behavior could be caused by combining effect of

PEG contact time and dynamic water migration.
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1.4 Moisture content in capsule shell

In the shell formula of soft gelatin capsules studied, the water content was
38%; and normally final moisture content after tumbling and tray dryer in
manufacturing industry is 4-10% (95). Consequently, the water content which should
be added into the fill material and not deteriorate the gelatin shell has been
recommended at a maximum of 10% (96).

In the present study, after 12 h in 32%RH desiccator or 1 day in graphs, the
moisture content of the capsule shells were varied in the range of 2.32-4.77% and
1.73-2.56% for non colored and colored capsules, respectively. During storage, the
moisture contents of gelatin shell were varied slightly with a limit of 1.36-4.84% and

1.58-4.26% for non colored and colored capsules, respectively (Figure 4-4 and Figure

4-5.
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Figure 4- 4 %Moisture content (n=3) of gelatin capsule shells for non colored formulation 1, 2, 3
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Statistical analysis of moisture content in capsule shell at 90 days showed
that block or color addition affected moisture content (p-value = 0.027). Moreover,
alpha-tocopherol in the fill material was likely to be an important factor affecting
%moisture content in the capsule shells (p-value = 0.069). The results are shown in
Table II-2 (Appendix II).

As discussed earlier, moisture contents in the gelatin shell could be a factor
affecting capsule hardness. Scatter plots between hardness and % moisture content
of non-colored and colored capsules show that hardness of non colored capsules
were more related to the moisture content as R’ value, 0.2966 (p=0.000) was higher,
comparing with that of colored capsules which contained water soluble brilliant blue

and hence a more complex system (Figure 4-6 and Figure 4-7).
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Figure 4- 7 Scatter plot between hardness and moisture content of colored capsules
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1.5 Water content in liquid fill

Moisture content in the capsule shells can migrate into the liquid fill as
discussed earlier (92). This moisture content could be residual moisture after drying,
also atmospheric moisture that was absorbed and permeate through the shell into
PEG 600 which is hydrophilic material in the liquid fill. Any water soluble component
such as water soluble dye in the shell could migrate together with water (97).

In this study, water content in the liquid fill was determined by NIR. NIR spectra
are classified to three regions: (1) the high wavelength region between 6500 to 9000
e ascribed to first overtone of O-H stretching and second overtone of C-H
stretching; (2) the wavelength between 5350 to 5900 cm  ascribed to first overtone
of C-H stretching and (3) the wavelength between 4800 to 5300 e’ ascribed to
combination of O-H stretching and second overtone of C=0O carbonyl group
stretching of aldehyde (98).

For water determination, the spectrum in the range of 5,000-5,400 and 5,900-
7,700 cm’ was pretreated by different methods prior to constructing a calibration
model (Figure Ill-1 — Figure Ill-11, Appendix lll) and the results are shown as shown in
Table 4-1 and Figure IlI-12 — Figure ll-22  (Appendix ). The selected model for
calibration was W1 with RMSEP of 2.4270 and R of 0.9778 using three factors. The
results were validated with external validation set of samples as shown in Figure 4-8
from which water content could be predicted in a range of 0-50%w/w with deviation

1.07-3.47.
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Table 4- 1 Pretreatment of NIR spectra in the region of 5,000-5,400 and 5,900-7,700

cm&, RMSEC and r2 of calibration, also RMSEP and r2 of internal validation

2

Code Pretreatment of spectra RMSEC r RMSEP r Factor

Scatter Derivative | Smoothing
correction

w1 - - - 3.9628 | 0.9251 | 2.4270 | 0.9778 3*

W2 MSC - - 3.6708 | 0.9357 | 3.4398 | 0.9555 3

W3 SNV - - 4.097 | 0.9281 | 2.6014 | 0.9737 3

w4 MSC 1" Norris- 3919 | 0.9302 | 3.3784 | 0.9559 3
derivative Williams
derivation

W5 MSC ! Savitzky- 2.8268 | 0.9619 | 5.8131 | 0.8729 3
derivative Golay
derivation

W6 MSC 2" Norris- 3.9494 | 0.9256 | 5.3499 | 0.8923 3
derivative Williams
derivation

w7 MSC 2 Savitzky- 5.0022 | 0.8806 | 7.0778 | 0.8115 3
derivative Golay
derivation

W8 SNV B Norris- 4.151 | 0.9262 | 3.7076 | 0.9465 3
derivative Williams
derivation

W9 SNV 1" Savitzky- 43122 | 0.9203 | 3.0164 | 0.9646 3
derivative Golay
derivation

W10 SNV 2 Norris- 4.8434 | 0.8995 | 3.0162 | 0.9646 3
derivative Williams
derivation

W11 SNV 2 Savitzky- 4.1459 | 0.9264 | 2.6144 | 0.9734 3
derivative Golay

derivation
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Figure 4- 8 External validation of W1 model showing predicted water content in
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When the calibration model was applied to predict water content in the liquid
fill during storage, the predicted water contents ranged in 16.29-30.67%w/w and
16.07-40.22%w/w for non colored and colored capsules, respectively. Water content
in liquid fill that was predicted by model W1 and plotted in Figure 4- 9 and Figure 4-
10.

These predicted values of water contents may be higher than the actual
amount that should be in the liquid fill for soft capsules. It was possibly due to that
weighing which was the reference method was not a method of choice to determine
water content. In addition, external validation was carried out on the same day as
calibration set so temperature variation was not taken into the model.
Consequently, the results were used for investigating only trend of water content
from which the water content was found to increase during storage.  This

corresponded to high affinity of PEG 600 to water (13).



a5

50.0 500
_ 450 450
g H
2 100 2 00
2 £
# 350 £ 350 -
9 0]
E 30.0 £ 300 |
5 2
§ 250 % 250 -
200 = 200 |
150 150
1 7 14 30 60 90 1 7 14 30 60 90
Time (day) Time (Day)
(a) SG-1 ==l= SG-2 = o= SG-3 ssshes (C) CSG-]1 === (SG-2 = o= (CSG-3 =suhes
500 - 500 |
_. 450 . 40
& &
% 00 - T 400 |
g 8
£ 350 - e 350 -
2 £
§ 200 - 5
% 250 - &
E 2
200 -
150
1 7 14 30 60 90
Time (day) Time (Day)
(b) SG-1 =M= SG-4 == SG-5=+®8- (d) CSG-1 === (CSG-4 == (SG-5+"®"

Figure 4- 9 Water content in liquid fill (n=3) for non colored formulation 1, 2, 3 (a); non colored

formulation 1, 4, 5 (b); colored formulation 1, 2, 3 (c); colored formulation 1, 4, 5 (d)



a6

0.0 50.0 -
_. 450 . 450 -
£ g
a% 0.0 2 400 -
£ S
g #0 2 350
£ a
5§ 300 £ 300 -
o 3
] 2
g no 2 250 -
200 =z
200
150
1 7 14 30 &0 90 15.0
1 7 14 30 60 90
Time (day)
Time (Day)
(3) SG-2 =M= SG-6 === SG.7 asopss (c) CSG-2 =M= (SG-6 === (SG-T ssdhss
50.0 500 -
450 - 450 |
£ z
S
2 400 - < |
& § 40.0
g 350 £ 350
£ i [
g 00 § 300 -
f u
I 4 P
r;r 20 2 250
200 | 2
200 -
15.0
1 7 14 30 60 %0 150
1 7 14 30 60 90
Time (day)
Time (Day)

(b) SG-3 **h** SG-g == GGG == (d) CSG-3 **h** (SG-8 === (SG-9 ==
Figure 4- 10 Water content in liquid fill (n=3) for non colored formulation 2, 6, 7 (a); non colored

formulation 3, 8, 9 (b); colored formulation 2, 6, 7 (c); colored formulation 3,8,9 (d)



ar

1.6 Determination of formaldehyde content

1.6.1 Gas chromatography/mass spectrometry (GC/MS)
Formaldehyde has been reported as impurities with a limit of 30 ppm (99) and

degradation product of PEG (4).

Formaldehyde contents in the liquid fill of each formulation were analyzed by
GC-MS at 1, 14, 30 and 90 days. The results of formaldehyde content and
% formaldehyde increase are tabulated in Table I-3 in Appendix | and plotted in
Figure 4-11.

Overall results suggested that formaldehyde contents in the liquid fill were
increased up to 14 days of storage and then it was decreased continuously. The
maximum formaldehyde content was 61.9 ppm found at 14 days for formulation 1
containing neat PEG 600 in the liquid fill. The significant factor that affected both
formaldehyde contents and % formaldehyde increase at 14 days (Table II-3 and
Table II-4, Appendix II) was the initial water content in the liquid fill (p-value = 0.001).
More initial water contents resulted in less formaldehyde at 14 days (Figure 4-12).
The % formaldehyde increase was minimized when the initial moisture content was
5% as observed for formulation 3 and 9 (Figure 4-11(d)) and main effect plot shown
in Figure 4-13. This was because the formaldehyde content of these formulation
were greatest at 1 day after preparation.

The increase of formaldehyde content was reaction product of PEG
autoxidation. However, the results did not agree with that reported by Hemenway et
al. who indicated that the presence of water in 50% PEG 400 solution resulted in
more formaldehyde determined at 14 days being 99 and 73 ppm, respectively (6).
However, McGinity and Hill suggested that 5-10% water could decrease peroxide
intermediate that forms formaldehyde in autoxidation of PEG (27).

Hemenway et al. also reported that 10% vitamin E TPGS, which is H-atom

donor antioxidant, in 50% PEG 400 solution could inhibit formation of formaldehyde.
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In the present study, the maximum alpha-tocopherol of 0.05% which is equivalent to
vitamin E TPGS 0.153 % was too little to inhibit PEG autoxidation.

Formaldehyde is a volatile substance. It can diffuse into the gelatin shell,
also may be able to diffuse out from the shell into the atmosphere. The measured
formaldehyde was the remaining content in the liquid fill after it diffused and
reacted with any chemicals in the gelatin shells during storage time. Therefore, the
more formaldehyde diffused into the gelatin shell, the less remaining formaldehyde
content that was measured in the liquid fill. ~ However, measurement of
formaldehyde content in the liquid fill only could be misleading result because
formaldehyde formed in liquid fill could be consumed to the shell and loss during
storage (100).

The formaldehyde which diffused into the gelatin shell could be consumed
by gelatin cross-linking reaction and oxidation reaction in the shell. Shelley et al.
reported that aldehyde content greater than 100 ppm could cause gelatin
crosslinking in the soft gelatin capsules shell (100). Another evidence showing that
formaldehyde can migrate from liquid fill into the shell and adding formaldehyde at
least 185 ppm induced crosslinking was carried out by Gold et al. (74). While, Teckoe
et al. have found that color fading in film coated tablets was caused by
formaldehyde content 7-10 ppm measured after 6 months (12). In addition,
reduction of formaldehyde may be attributed to conversion to formic acid in PEG

solution (6).
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1.6.2 Near-infrared spectroscopy (NIR)

Absorbance

0

10,000 9,000 8,000 7,000 6,000 5,000 4,000

Wavelength (cm™)

Figure 4- 14 NIR spectrum in the range 4,000-10,000 cm ' of neat PEG 600

When PEG 600 was examined with NIR, the spectrum of PEG 600 showed
main peaks centered around 8187.36, 6920.7, 5770.28, 5197.47, 4858.96 and 4434.07
e’ (Figure 4-14). Hydroxyl groups of PEG 600 showed strong O-H stretching
vibration band at centered around 7030 cm " while O-H bending showed absorption
centered around 4331, 4872 and 5173 cm’”’ (101).

Formaldehyde has carbonyl group having C=0O stretching in the second
overtone of simple noncyclic aliphatic compounds. An example for second
overtone of aliphatic aldehyde, such as propionaldehyde, is at 5100 cm’ (102).

Calibration model were generated with whole NIR spectra, 4,000-10,000 cmfl,
and the weighed amounts of formaldehyde filled in neat PEG 600 and PEG 600 with
5% and 10% water. The NIR spectra were pretreated with different method, the
results shown in Figure IV-1 - Figure IV-18 (Appendix IV) and capability of the model
was suggested by the value of RMSEC, RMSEP, " and number of factors applied
(Table 4-2 and Figure IV-19 - Figure IV-29, Appendix IV).  Accordingly, model M35
with RMSEP of 35.592 and R* of 0.638 using five factors was selected. The model
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was validated with external validation set of samples from which formaldehyde
content ranging from -109.78 — 156.27 could be predicted with deviation 38.64-
139.21 (Figure 4-15). The great values of deviation signified that the selected model
was not appropriate for prediction of formaldehyde content in PEG 600 with and
without water.

The invalid model resulted from systematic variation in the NIR spectra that
was not related to interested response (formaldehyde concentration). This could be
explained that formaldehyde absorbed only in small NIR region (1890-1900 nm).
Therefore, variation in raw spectra which was not related to the response
contributed to inaccurate multivariate model.  To eliminate unwanted systematic
variation in the spectra, it could be done by removing the spectral region which is
unrelated to the response by mathematically orthogonal converting to the response.
In this study, the absorbance of water in the standard solutions interfered the
spectral region of formaldehyde, so the OSC method was used to remove the effect
of water in the standard set before pretreatment using common methods.

The results are shown as Model M34-2 — M40-2 in Table 4-3 and Figure IV-30 -
Figure IV-36 (Appendix IV). The values of RMSEP and R were improved. The best
model to predict formaldehyde in PEG 600 with water was M36-2, having RMSEP and
R’ of 24.208 and 0.832, respectively, using one factor. The results were validated with
external validation set of samples as shown in Figure 4-16 from which formaldehyde
content could be predicted ranging from 29.53 - 221.09 with deviation of 34.87 -
105.5.
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Table 4- 2 Pretreatment of NIR spectra in the region of 4,000-10,000 cm’1, RMSEC and r° of

calibration, also RMSEP and ¢ of internal validation

Code Pretreatment of spectra RMSEC v RMSEP v Factor
Scatter Derivative | Smoothing
correction
M34 - - - 42.064 | 0.494 | 38.698 | 0.571 a4
M35 MSC - - 41.453 | 0.508 | 35.592 | 0.638 5
M36 SNV - - 41.456 | 0.508 | 35.658 | 0.636 5
M37 MSC ! Norris- 43.998 | 0.446 | 37.288 | 0.602 5
derivative Williams
derivation
M38 MSC 1" Savitzky- 44.382 | 0.437 | 37.576 | 0.596 5
derivative Golay
derivation
M39 MSC 2" Norris- 50.112 | 0.282 | 48.645 | 0.323 a4
derivative Williams
derivation
M40 MSC 2" Savitzky- 49.58 | 0.297 | 47.357 | 0.358 a4
derivative Golay
derivation
Ma1 SNV 1" Norris- 51.128 | 0.252 | 50.64 | 0.266 a4
derivative Williams
derivation
Ma2 SNV B Savitzky- 50.661 | 0.266 | 49.961 | 0.286 a4
derivative Golay
derivation
M43 SNV o™ Norris- 50.069 | 0.283 | 48.692 | 0.322 a4
derivative Williams
derivation
Ma4q SNV 2 Savitzky- 49.444 | 0.300 | 47.257 | 0.361 a4
derivative Golay
derivation




Table 4- 3 Pretreatment of NIR spectra in the region of 4,000-10,000 cmfl, RMSEC and ¢ of

calibration, also RMSEP and ¢ of internal validation
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Code Pretreatment of spectra RMSEC r RMSEP r Factor
0sC Scatter Derivative Smoothing
correction
M34-2 4 - - - 32.302 0.702 29.943 0.743 1
M35-2 v MSC - - 27.952 0.776 26.774 0.795 1
M36-2 v SNV - - 26.518 | 0.799 24.208 0.832 1
M37-2 v - * Norris- 32.439 0.699 30.061 0.741 1
derivative Williams
derivation
M38-2 4 - » Savitzky- 32336 | 0.701 30.083 0.741 1
derivative Golay
derivation
M39-2 |V - 2 Norris- 32446 | 0699 | 30091 | 0.741 1
derivative Williams
derivation
Mao2 | v - 2" Savitzky- | 32115 | 0.705 | 30.127 | 0.740 1
derivative Golay
derivation
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However, when the model M36-2 was used to predict formaldehyde
content in liquid fill of the stored capsules, the predicted values and deviation were
considerably high and far beyond the values obtained from GC-MS method at the
same time points (Table I-3, Appendix I) This can be explained by inaccurate
reference method used as discussed earlier. Also the water content that was taken
in the calibration model did not represent actual water contents in the samples
during storage. Therefore, forms of the sample spectra and the spectra used in

constructing the model were rather different (Figure 4-17).

3.0
25
20 §
C
£
2
15 &
10
/ 05
10,000 9,000 8,000 7,000 6,000 5,000 4,000
Wavelength (cm™)
Figure 4- 17 Spectra of PEG 600 = , PEG 600 with 10% w/w water , liquid fill

of sample =
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1.7 Color determination

1.7.1 Colorimeter

Color of soft gelatin capsule shell was measured by CIELAB color scale. The
values are shown in three axes, L* axis which runs from top to bottom showing
brightness of color or called black and white. While the positive of a* axis is red and
negative of a* axis is green. The positive b* axis is yellow and negative b* axis is
blue. Delta E value is total color difference that can be calculated from three axes
values. The detail of the technique is described in Chapter 2

The color of capsule shells after 1 day of preparation was measured as
reference for each formulation. The delta E values of stored capsule shells are
plotted and shown in Figure 4-18 and Figure 4-19. The delta E value were up to
11.81 and 12.12 for non colored formulation 9 and colored formulation 7 containing
high level of d-alpha-tocopherol with 5% and 10% initial water content, respectively.
Although, color fading could not be visually observed, the delta E values of non
colored and colored capsules were likely to increase, indicating color change in both
non colored and colored capsules. The increased delta E value of non colored shell
was attributed to a more positive value, indicating yellow color, of b-axis. However,
variation of color change was relatively high for both non colored and colored

capsule shell.
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Figure 4- 19 Delta E (n=3) of gelatin capsule shells for non colored formulation 2, 6, 7 (a); non

colored formulation 3, 8, 9 (b); colored formulation 2, 6, 7 (c); colored formulation 3, 8, 9 (d)

Teckoe et al. found that fading of indigo carmine lake occurred in film coated
tablets in which PEG was use as detackifier after 6 months of storage. The delta E of
these tablets was more than 7 and the measured formaldehyde was 7-10 ppm.
Color fading was not visually observed for PEG-free coated tablet where the delta E
was 2.5. (12).

The delta E value can also differentiate haziness of film. Byun et al. reported
that polylactic acid (PLA) film with PEG 400, BHT and a-tocopherol gave a more hazy

film having delta E value about 0.08, while the pure PLA film had delta E value of 0
(29).
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Brilliant blue could be degraded by potassium persulfate as oxidizing agent
(51). There were two intermediates which were intermediate | which could be
visually observed in dark blue color, obtained when the molar dye/persulfate ratios
were 1/1 and 1/10. This was because the chromophore of brilliant blue color was
still present. Another intermediate Il was non-color when the molar dye/persulfate
ratio was increased to 1/100.

It was proposed that once the capsule shell was exposed to formaldehyde
which is an oxidizing agent, color oxidation could occur. Therefore, the delta E
values at 90 days were plotted against the maximum remaining formaldehyde that
present the formulation during storage. It is shown that the greater delta E values or
more color change were found at lower remaining formaldehyde (Figure 4-20). The
correlation between delta E at 90 days and maximum remaining formaldehyde in
liquid fill was not significant (p-value = 0.066)

Therefore, it was possible that formaldehyde was consumed in color
oxidation, resulting in color change. However, the delta E value cannot specify

shade of color change whether it was lighter or darker.
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Figure 4- 20 Scatter plot between delta E and maximum remaining formaldehyde

during storage of colored capsules

Statistical analysis (Table II-5, Appendix II) showed that addition of water

and/or d-alpha-tocopherol did not significantly affect color change or delta E value
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at 90 days. However, the results were significant difference between non colored and
colored capsules (p = 0.003).

1.7.2 UV-Visible spectrometer

UV visible spectroscopy was used for determine brilliant blue contents in
both shell and in liquid fill. Total color content in fill and shell at 1 and 90 days was
shown in Figure 4-21.

Statistical analysis using sample independent t-test comparing between the
total brilliant blue contents both in the shell and liquid fill at 1 day and 90 days
indicated significant color degradation only for formulation CSG-3 (p-value = 0.022),
CSG-5 (p-value = 0.021), CSG-6 (p-value = 0.006), and CSG-8 (p-value = 0.027) (Table
-6, Appendix 1l). The results could not be systematically related to liquid fill
formulation. There seemed to be other factors involved in color degradation such as
formaldehyde formation.

It was shown that the brilliant blue content in the shell was not always
related to the delta E value (R2 = 0.1307, p-value = 0.339, Figure 4-22). This can be
explained that the delta E value was influenced by yellow color of non colored
capsules which was also changed during storage. However, the brilliant blue
contents in capsule shell were fairy related to maximum remaining formaldehyde in
the liquid fill during storage for 90 days, as shown in R® = 0.3055 (Figure 4-23) but this
correlation was not significant at p-value = 0.123. The color content was less when
the maximum remaining formaldehyde was greater.

However, at the same level of remaining formaldehyde, the color content in
the liquid fill was increased (Figure 4-24). This could be explained by color migration
from the shell into the liquid fill. Brilliant blue is water soluble dye so it can migrate
together with water. Water soluble dye migration is commonly found when water
migration due to evaporation of water from the surface during drying of granules or
coating (103). In this study, the increased color contents in the liquid fill were
significantly related to a decrease in color content in the shell (Figure 4-25) with p-
value = 0.001) and corresponded to an increase in water content (Figure 4-26) with

significant correlation with p-value = 0.012.
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Color migration could also result in color fading of the capsule shell and it

may provide more significant effect than color oxidation. The migrating color was

predominantly greater than the color oxidized in the liquid fill.
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Figure 4- 21 Total color content of each formulation capsules at 1 and 90 days
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1.8 Investigation of molecular interaction in gelatin shell by Fourier transform

infrared spectroscopy (FT-IR)

Gelatin can be cross-linked when exposed to aldehydes and/or stored under
stressed conditions of high humidity, temperature and light for a period of time (11,
66).

Spectroscopic techniques such as NIR (74) and FT-IR (73) can be used to
investigate gelatin crosslinking. However, the NIR spectrum/ peaks at 1780 and 2200
nm around indicating gelatin cross-linking as reported by Gold et al. was not
observed in this study.

Alternatively, the gelatin capsule shells were examined by FT-IR; and the
spectrum of freshly prepared soft gelatin capsules, i.e. 1 day after preparation, is
shown in Figure 4-27. There was a major peak at 1632 e’ of carbonyl stretching for
amide | and 1548 cm™ of C-N stretching vibration and N-H bending for amide Il. The
peak around 1033 e’ was caused by elycerol. The bands at 3288 e’ could be
due to free water or amide Il which has vibrations in plane of C-N and N-H group of
bound amide. This results corresponded to that was reported by Tengroth et al.(73).

Gelatin crosslinking caused by formaldehyde could be detected by intensity
change at the peak position around 1030 and 1080 cm’ (73).
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Figure 4- 27 FTIR spectrum of freshly prepared soft gelatin capsule shell
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Figure 4- 28 FT-IR spectra of of gelatin capsule shell of non colored formulation 2
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containing no ibuprofen at different time points
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All FT-IR spectra of non-colored and colored gelatin shells of different fill

formulations are presented in Figure V-1 — Figure V-8 (Appendix V). It was shown that
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at 90 days all gelatin shells were crosslinked as the relative intensity between peak
1036 and 1082 cm " was changed. However, crosslinking began to occur at different
time points for studied fill formulations and the beginning time was also varied
between non colored and colored formulations. The beginning of crosslinking in the
non colored shells was likely to be different from that in the colored shell as shown
in Figure 4-28 - Figure 4-29. The relative intensity between two interested peaks
began to change at 14 days for SG-2 and 7 days for CSG-2.

The earliest beginning of crosslinking for non colored (formulation SG-4, SG-6
and SG-9) and colored formulation (formulation CSG-2, CSG-6, CSG-7 and CSG-8), was
shown at 7 days. It was hardly related to the fill formulations. It may be caused by
other factors such as variation in formaldehyde content and absorbed water. When
the maximum remaining formaldehyde was greater, or less consumed formaldehyde,
crosslinking began to occur later (Figure 4-30) with significant correlation with p-value
= 0.003. While moisture content in capsule shell was higher, beginning of crosslink

occurred earlier but it not significant correlated (p-value = 0.103).
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Figure 4- 30 Scatter plot between maximum remaining formaldehyde content during

storage and beginning time of crosslinking
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1.9 In vitro dissolution test

In vitro dissolution test can be an evidence to support presence of gelatin
crosslinking (75, 104). It has been reported that gelatin crosslinking leads to
retardation of in vitro dissolution. In this study, ibuprofen which could be dissolved in
PEG 600 was chosen as model drug. The dissolution test was studied at 1, 30 and 90
days. The results are shown in Figure VI-1 - Figure VI-4 (Appendix VI). Ibuprofen was
released not less than 90% in the pH 7.2 phosphate buffer after 60 min for all non
colored and colored formulations after 1 day of preparation. After storage for 90
days, some capsule formulations, such as colored formulation 2 provided retardation
of drug release as shown in Figure 4-32, while some capsule formulations such as
colored formulation 9 did not (Figure 4-33). This corresponded to FT-IR spectra of
formulation 2 and 9 as shown in Figure 4-34 and Figure 4-35, respectively. In
addition, pellicle formation was observed for formulation 2 (Figure 4-36), which could
explain retarded dissolution.

In general, the dissolution results corresponded to the gelatin crosslinking
detected by FT-IR for capsule shells. However, in some formulations, crosslinking
started to occur before retardation of dissolution was observed. These formulations

were formulation 2 and 8 in which crosslinking started to occur at 30 days but the
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ibuprofen dissolution was not retarded. It was possible that crosslinking began only
for some capsules; only 1 out of 3 capsules was detected. Also, it may be explained
that crosslinking in these capsules occurred only for some parts or fragments of
gelatin.

It is noted here that the inclusion of ibuprofen in the fill formulation was
found to affect the lag time of gelatin crosslinking as summarized in Figure 4-37.

For example, crosslinking for formulation CSG-2 which contained no
ibuprofen began to occur at 7 days (Figure 4-29), while it began to occur at 30 days
for formulation CSG-2 which contained ibuprofen (Figure 4-32). In addition, at 90
days, for some colored capsules containing ibuprofen such as formulation 9,
crosslinking was not detected due to no change in relative intensity between peak
1036 and 1082 cm " and their dissolution profile were not retard as shown in Figure
4-33.

Overall FT-IR and dissolution results suggested that there was existence of
gelatin crosslinking which could be caused by formaldehyde formation in the liquid

fill and variation of moisture content during storage.
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Figure 4- 32 Example of dissolution of cross-linked ibuprofen soft gelatin capsules for

colored formulation (CSG-2) at 1 (1D), 30 (30D) and 90 (90D) days
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Figure 4- 33 Example of dissolution of cross-linked ibuprofen soft gelatin capsules for

colored formulation CSG-9 at 1 (1D), 30 (30D) and 90 (90D) days
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containing ibuprofen at different time points
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CHAPTER V
CONCLUSIONS

In this study, the effect of degradation product of PEG 600 on color fading

and crosslinking in soft gelatin capsule shells was investigated. The results could be

concluded as the following:

Under storage condition of 30°C/75%RH for 3 months, autoxidation of PEG
600 occurred in the fill formulations and gave formaldehyde to a certain
level. The formation of formaldehyde was proved to be significantly affected
by initial water content in the liquid fill. There was no evidence that a
maximum level of d-Ol-tocopherol, i.e. 0.05% used in this study could inhibit
autoxidation of PEG.

The amount of formaldehyde formed could provide color fading and induce
crosslinking.  However, color fading was more affected by brilliant blue
migration from the shell into the liquid fill.

Water absorbed into the gelatin shell also showed a relation with the
presence of crosslinking.

In addition, chemical migration could cause variation in physical and chemical

properties, such as hardness and crosslinking, of the soft gelatin capsule studied.

Some effects, i.e. the effect of moisture content in the shell on capsule hardness,

were more prominent for the non-colored capsules which were less complicated

system.
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Appendix I: Physicochemical properties of soft gelatin capsules

Table I- 1 Average thickness (mm, n = 3) of non colored gelatin capsule shells

85

TIME (DAY) | SG-1 SG-2 SG-3 SG-4 SG-5 SG-6 SG-7 SG-8 SG-9
1 0.53 0.76 0.77 0.54 0.72 0.63 0.79 0.60 0.96
7 0.73 0.63 0.78 0.79 0.66 0.67 0.65 0.92 0.79
14 0.82 0.61 0.56 0.85 0.64 0.72 0.73 0.86 0.66
30 0.78 0.64 0.98 0.65 0.77 0.79 0.79 0.65 0.58
60 0.84 0.69 0.74 0.82 0.61 0.83 0.69 0.77 0.68
90 0.67 0.77 0.75 0.65 0.87 0.79 0.82 0.76 0.73

Table I- 2 Average thickness (mm, n = 3) of colored gelatin capsule shells

TIME (DAY) | CSG-1 | CSG-2 | CSG-3 | CSG-4 | CSG-5 | CSG-6 | CSG-7 | CSG-8 | CSG-9
1 0.80 0.80 0.70 0.85 0.68 0.73 0.78 0.79 0.71
7 0.45 0.37 0.64 0.43 0.43 0.60 0.41 0.64 0.58
14 0.49 0.47 0.46 0.46 0.48 0.44 0.45 0.58 0.55
30 0.78 0.85 0.71 0.71 0.57 0.77 0.77 0.74 0.76
60 0.80 0.78 0.80 0.89 0.82 0.92 0.90 0.75 0.92
90 0.65 0.77 0.78 0.88 0.83 0.92 0.85 0.82 0.66
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Table |- 3 Formaldehyde content (n=2, ppm) in the liquid fill of colored capsules

determined by GC-MS and model M36-2 of NIR technique

Formulation 1 day 14 days 30 days 90 days
GC-MS NIR GC-MS NIR GC-MS NIR GC-MS NIR
CSG-1 36.18 | 988.85 | 61.87 | 2357.89 | 26.74 | 4599.13 | 4.84 | 3595.14
C5G-2 25.72 | 214437 | 30.01 | 4582.40 | 15.82 | 3737.32 | 584 | 4421.21
CSG-3 4410 | 985.34 | 3558 | 3759.70 | 21.41 | 3618.93 | 7.15 | 4583.16
sSG-4 3421 | 76570 | 4328 | 1417.13 | 2261 | 2508.89 | 596 | 3968.19
C5G-5 37.80 | 421.05 | 4653 | 139839 | 1877 | 2508.84 | 6.44 | 4449.07
CsSG-6 29.68 | 2702.04 | 31.26 | 3083.68 | 24.58 | 4449.85 | 629 | 4828.88
CSG-7 2395 | 223391 | 27.18 | 2855.03 | 18.65 | 4400.00 | 537 | 5374.75
CSG-8 3220 | 1713.63 | 3442 | 1904.88 | 1354 | 4238.99 | 6.10 | 4859.92
5G9 51.56 | 1908.53 | 28.99 | 1816.87 | 19.94 | 2514.99 | 14.25 | 4888.26
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Appendix II: Statistical analysis

Table II- 1 ANOVA results for capsule hardness at 90 days

Measured df  AdjSS  AdjMS  F- R AdR  Pred- P-
2

response value R value
Hardness 9 1578752 175417 211 703% 36.92% 0.00%  0.154
Block 1 433660 433660 5.20 - - - 0.052
Water 2 559922 279961  3.36 - - - 0.087
d-A-tocopherol 2 365758 182879  2.19 - - - 0.174
Water* d-a-tocopheroL 4 219412 54853 0.66 - - - 0.638

SS = sum of squares; df = degree of freedom; MS = mean of squares; Adj—R2 = adjusted Rz; Pred-

R = predicted R’

Table II- 2 ANOVA results for % moisture content in capsule shells at 90 days

Measured df AdjSS AdjMS  Fwvalue R’ AdiR®  PredR P
response value
Moisture content 9 74917 0.8324 2.17 70.90  38.16%  0.00%  0.145
Block 1 28032 2.8032 1.29 % - - 0.027
Water 2 09628 0.4814 1.25 - - . 0.336
d-A-tocopherol 2 29144 1.4572 3.79 - - - 0.069
Water* d-Ol- 4 08113  0.2028 0.53 - - - 0.719
tocopherol -

SS = sum of squares; df = degree of freedom; MS = mean of squares; Adj—R2 = adjusted Rz; Pred-

R = predicted R’
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Table II- 3 ANOVA results for formaldehyde content in liquid fill at 14 days

Measured df AdjSS AdjMS  Fvalue R AdiR°  PredR® P
response value
Formaldehyde 8 199138 248.97 5.79 83.73  69.26% 3491%  0.008
content %
Water 2 15303 765.15 17.79 - - 0.001
d-A-tocopherol 2 2210 110.51 2.57 - - - 0.131
Water* d-Q- 4 2405 60.12 1.40 - - . 0.310

tocopherol -

SS = sum of squares; df = degree of freedom; MS = mean of squares; Adj—R2 = adjusted Rz; Pred-

R = predicted R’

Table II- 4 ANOVA results for % increase of formaldehyde at 14 days

Measured df AdjSS AdjMS  Fvalue R AdiR®  PredR° P
response value
%Increase of 8 15992 1999.0 6.60 85.44  72.5% 41.76 0.005
Formaldehyde %
Water 2 10428 5214.0 17.22 - - 0.001
d-A-tocopherol 2 1932 966.2 3.19 - - - 0.090
Water* d-Ql- 4 3631 907.8 3.00 - - - 0.079
tocopherol 2

SS = sum of squares; df = degree of freedom; MS = mean of squares; Adj—R2 = adjusted Rz; Pred-

R = predicted R’



Table II- 5 ANOVA results for delta E at 90 days

Measured df  AdjSS AdjMS  F- R’ AdiR®  Pred- p-
2

response value R value
Delta E 9 73310 8.146 3.21 78.30% 53.90% 0.00%  0.058
Block 1 44347 44347 1747 - - - 0.003
Water 2 11594 5797 2.28 - - - 0.164
d-A-tocopherol 2 5400 2700 @ 1.06 - - - 0.389
Water* d_d_tocopher0L 4 11.969 2.992 1.18 - - - 0.389

SS = sum of squares; df = degree of freedom; MS = mean of squares; Adj—R2 = adjusted RZ; Pred-

R = predicted R’

Table II- 6 Two-sample independent t-test between total color contents in the

capsules at 1 and 90 days

Formulation  df Estimate for difference P-value
CSG-1 2 b 0.234
CSG-2 2 -0.28 0.903
CSG-3 2 o) 0.022*
CSG-4 2 1.88 0.200
CSG-5 2 6.11 0.021*
CSG-6 2 7.179 0.006*
CSG-7 2 0.53 0.865
CSG-8 2 6.96 0.027*
CSG-9 2 7.95 0.104

df = degree of freedom
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Appendix lll: Pretreatment of NIR spectra, and calibration and validation of PLS

models for prediction of water in liquid fill

i .
05 —
10001.03 989833 9399347 910822 8809 236 3492 967 5198.84 7910567 76213 7370.8 7096.757 670208 6614.36 822508 583582 584655 535728 506301 477874 448947 42002

Figure Ill- 1 Pretreatment of NIR spectra for PLS model W1: No pretreatment

0
10001.03 9696.33 5407.061 9106.22 8813.093 3500682 8199.84 791057 76213 73706 7096757 6803.63 6514.36 622509 593532 564655 535728 5068.01 477874 448947 42002

Figure lll- 2 Pretreatment of NIR spectra for PLS model W2: MSC
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Figure lll- 3 Pretreatment of NIR spectra for PLS model W3: SNV

o1

-01
10001.03 969633 8399.347 9063076 B766.81 548911 §199.84 781057 76213 73706 70829 68422 865645 6313.8 6036.101 573526 544599 515672 4867 45 466975 430048 401121

Figure lll- 4 Pretreatment of NIR spectra for PLS model W4: MSC 1" derivative with

Norris-Williams
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Figure lll- 5 Pretreatment of NIR spectra for PLS model W5: MSC 1" derivative with

Savitzky-Golay
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Figure lll- 6 Pretreatment of NIR spectra for PLS model W6: MSC 2™ derivative with

Norris-Williams
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Figure lll- 7 Pretreatment of NIR spectra for PLS model W7: MSC 2™ derivative with

Savitzky-Golay
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Figure lll- 8 Pretreatment of NIR spectra for PLS model W8: SNV 1" derivative with

Norris-Williams
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Figure lll- 9 Pretreatment of NIR spectra for PLS model W9: SNV 1" derivative with

Savitzky-Golay
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Figure lll- 10  Pretreatment of NIR spectra for PLS model W10: SNV 2" derivative

with Norris-Williams
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Figure lll- 11 Pretreatment of NIR spectra for PLS model W11: SNV 2™ derivative with

Savitzky-Golay
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Figure lll- 13 Calibration and validation of PLS model W2
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Figure Ill- 14 Calibration and validation of PLS model W3
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Figure lll- 15 Calibration and validation of PLS model W4
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Figure lll- 16 ~ Calibration and validation of PLS model W5
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Figure lll- 17 Calibration and validation of PLS model W6
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Figure Ill- 18 Calibration and validation of PLS model W7
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Figure lll- 19 Calibration and validation of PLS model W8
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Figure lll- 20 Calibration and validation of PLS model W9



50 -
Slope Offzet RMSE R-Square pf’
454 0.8995018 27973251 48434091 0.8995013 e
a0 10061167 0859835 3.0161991 09645779 L
=40 4
E3s.
™
L
o 30
5
%25 .
20 4
=
T
5 15 1
B
& 1p 4
5
1] 3 10 15 20 23 30 33 40 45 50 35
Reference Y (J%water, Factor-3)
Figure lll- 21 Calibration and validation of PLS model W10
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Appendix IV: Pretreatment of NIR spectra and calibration and validation of the

PLS models for prediction of formaldehyde in liquid fill
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Figure IV- 1 Pretreatment of NIR spectra for PLS model M34: No pretreatment
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Figure IV- 2 Pretreatment of NIR spectra for PLS model M35: MSC
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Figure IV- 3 Pretreatment of NIR spectra for PLS model M36: SNV
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Figure IV- 4 Pretreatment of NIR spectra for PLS model M37: MSC 1" derivative with

Norris-Williams
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Figure IV- 5 Pretreatment of NIR spectra for PLS model M38: MSC 1" derivative with

Savitzky-Golay
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Figure IV- 6 Pretreatment of NIR spectra for PLS model M39: MSC 2™ derivative with

Norris-Williams
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Figure IV- 7 Pretreatment of NIR spectra for PLS model M40: MSC 2™ derivative with
Savitzky-Golay
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Figure V- 8 Pretreatment of NIR spectra for PLS model M41: SNV 1” derivative with

Norris-Williams
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Figure IV- 9 Pretreatment of NIR spectra for PLS model M42: SNV 1" derivative with

Savitzky-Golay
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Figure IV- 10 Pretreatment of NIR spectra for PLS model M43: SNV 2" derivative with

Norris-Williams
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Figure IV- 11 Pretreatment of NIR spectra for PLS model M44: SNV 2™ derivative with

Savitzky-Golay
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Figure IV- 12 Pretreatment of NIR spectra for PLS model M34-2: OSC
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Figure IV- 13 Pretreatment of NIR spectra for PLS model M35-2: MSC-OSC
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Figure IV- 14 Pretreatment of NIR spectra for PLS model M36-2: SNV-OSC
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Figure IV- 15 Pretreatment of NIR spectra for PLS model M37-2: 0SC-1" derivative

with Norris-Williams
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Figure IV- 16 Pretreatment of NIR spectra for PLS model M38-2: OSC 1" derivative

with Savitzky-Golay
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Figure IV- 17 Pretreatment of NIR spectra for PLS model M39-2: OSC 2" derivative

with Norris-Williams
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Figure IV- 18 Pretreatment of NIR spectra for PLS model M40-2: OSC 2™ derivative

with Savitzky-Golay
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Figure V- 19 Calibration and validation of PLS model M34
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Figure V- 20 Calibration and validation of PLS model M35
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Figure IV- 21 Calibration and validation of PLS model M36
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Figure V- 22 Calibration and validation of PLS model M37
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Figure IV- 23 Calibration and validation of PLS model M38
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Figure IV- 24 Calibration and validation of PLS model M39
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Figure IV- 25 Calibration and validation of PLS model M40
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Figure V- 26 Calibration and validation of PLS model M41
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Figure V- 27 Calibration and validation of PLS model M42
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Figure IV- 28 Calibration and validation of PLS model M43
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Figure V- 29 Calibration and validation of PLS model M44
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Figure IV- 30 Calibration and validation of PLS model M34-2
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Figure IV- 31 Calibration and validation of PLS model M35-2
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Figure IV- 32 Calibration and validation of PLS model M36-2
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Figure IV- 33 Calibration and validation of PLS model M37-2
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Figure IV- 34 Calibration and validation of PLS model M38-2
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Figure IV- 35 Calibration and validation of PLS model M39-2
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Figure IV- 36 Calibration and validation of PLS model M40-2
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Appendix V: IR spectra of gelatin capsule shell
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Figure V- 1 FT-IR spectra of of gelatin capsule shell formulation 1; non colored (a) and

colored (b) containing no ibuprofen at different time points
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Figure V- 2 FT-IR spectra of of gelatin capsule shell formulation 3; non colored (a)

and colored (b) containing no ibuprofen at different time points
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Figure V- 3 FT-IR spectra of of gelatin capsule shell formulation 4; non colored (a)

and colored (b) containing no ibuprofen at different time points
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Figure V- 4 FT-IR spectra of of gelatin capsule shell formulation 5; non colored (a)

and colored (b) containing no ibuprofen at different time points
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colored formulation 5 (b) containing ibuprofen at different time points
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Figure V- 12 FT-IR spectra of gelatin capsule shell of colored formulation 8 (a) and

colored formulation 9 (b) containing ibuprofen at different time points
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Appendix VI Dissolution profile of ibuprofen soft gelatin capsules
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Figure VI- 1 Dissolution profiles of ibuprofen soft gelatin capsules for colored

formulation 1 (a) and formulation 3 (b) at 1 (1D), 30 (30D) and 90 (90D) days
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Figure VI- 2 Dissolution profiles of ibuprofen soft gelatin capsules for colored

formulation 4 (a) and formulation 5 (b) at 1 (1D), 30 (30D) and 90 (90D) days
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Figure VI- 3 Dissolution profiles of ibuprofen soft gelatin capsules for colored

formulation 6 (a) and formulation 7 (b) at 1 (1D), 30 (30D) and 90 (90D) days
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Figure VI- 4 Dissolution profiles of ibuprofen soft gelatin capsules for colored

formulation 8 (a) and formulation 9 (b) at 1 (1D), 30 (30D) and 90 (90D) days
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