FREE RADICAL SCAVENGING COMPOUNDS FROM DENDROBIUM LINDLEYI

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Sciences and Technology Common Course FACULTY OF PHARMACEUTICAL SCIENCES Chulalongkorn University Academic Year 2019 Copyright of Chulalongkorn University สารต้านอนุมูลอิสระจากเอื้องผึ้ง

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเภสัชศาสตร์และเทคโนโลยี ไม่สังกัดภาควิชา/เทียบเท่า คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2562 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	FREE RADICAL SCAVENGING COMPOUNDS				
	FROM DENDROBIUM LINDLEYI				
Ву	Mr. Pichayatri Khoonrit				
Field of Study	Pharmaceutical Sciences and Technology				
Thesis Advisor	Associate Professor BOONCHOO SRITULARAK, Ph.D.				
Thesis Co Advisor	Professor KITTISAK LIKHITWITAYAWUID, Ph.D.				

Accepted by the FACULTY OF PHARMACEUTICAL SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

> Dean of the FACULTY OF PHARMACEUTICAL SCIENCES

(Assistant Professor RUNGPETCH SAKULBUMRUNGSIL,

Ph.D.)

THESIS COMMITTEE

Chairman (Assistant Professor TAKSINA CHUANASA, Ph.D.) Thesis Advisor (Associate Professor BOONCHOO SRITULARAK, Ph.D.) Thesis Co-Advisor (Professor KITTISAK LIKHITWITAYAWUID, Ph.D.) Examiner (Assistant Professor CHAISAK CHANSRINIYOM, Ph.D.) External Examiner

(Duangpen Pattamadilok, Ph.D.)

พิชญาตรี ขุนฤทธิ์ : สารต้านอนุมูลอิสระจากเอื้องผึ้ง. (FREE RADICAL SCAVENGING COMPOUNDS FROM *DENDROBIUM LINDLEYI*) อ.ที่ปรึกษาหลัก : รศ. ภก. ดร.บุญชู ศรีตุลารักษ์, อ.ที่ปรึกษาร่วม : ศ. ภก. ดร.กิตติศักดิ์ ลิชิตวิทยาวุฒิ

อนุมูลอิสระก่อให้เกิด oxidative stress ซึ่งเป็นหนึ่งในสาเหตุสำคัญของการเกิดโรค หลายชนิด และในปัจจุบันมีการค้นพบสารที่มีฤทธิ์ยับยั้งอนุมูลอิสระจากพืชสกุล *Dendrobium* โดยเอื้องผึ้งเป็นพืชในสกุลนี้ที่ยังไม่เคยมีรายงานฤทธิ์ทางชีวภาพรวมถึงฤทธิ์ยับยั้งอนุมูลอิสระ งานวิจัยฉบับนี้จึงได้สกัดแยกสารสกัดเอทิลแอซีเทตของเอื้องผึ้งจนได้สารบริสุทธิ์ 5 ชนิด ซึ่ง ประกอบไปด้วยสารชนิดใหม่ 1 ชนิด โดยให้ชื่อว่า 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl และสารที่เคยค้นพบแล้วอีก 4 ชนิด โดยให้ชื่อว่า 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl และสารที่เคยค้นพบแล้วอีก 4 ชนิด ได้แก่ chrysotoxine gigantol cypripedin และ moscatilin ต่อมาจึงทดสอบฤทธิ์ยับยั้งอนุมูลอิสระโดยใช้ DPPH radical scavenging assay ร่วมกับ superoxide radical scavenging activity assay และ ORAC assay ผลการทดสอบพบว่า chrysotoxine gigantol และmoscatilin สามารถยับยั้ง DPPH radical ได้เทียบเท่า Trolox และ เมื่อทดสอบด้วย superoxide radical scavenging activity assay และ ORAC assay ผลการทดสอบพบว่า chrysotoxine gigantol และmoscatilin สามารถยับยั้ง DPPH radical ได้เทียบเท่า Trolox และ เมื่อทดสอบด้วย superoxide radical scavenging activity assay และ ORAC assay พบว่า 4,5dihydroxy-3,3',4'-trimethoxybibenzyl chrysotoxine gigantol และ moscatilin มีฤทธิ์ยับยั้ง อนุมูลอิสระมากกว่า Trolox ในขณะที่ cypripedin มีฤทธิ์น้อยที่สุดจากการทดสอบทั้งสามวิธี การ ค้นพบในครั้งนี้แสดงให้เห็นว่า 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl chrysotoxine gigantol และ moscatilin มีศักยภาพในการศึกษาเพิ่มเติมเพื่อพัฒนาไปเป็นยาที่ใช้รักษาโรคที่ เกี่ยวข้องกับ oxidative stress

จุฬาลงกรณิมหาวิทยาลัย Chulalongkorn University

สาขาวิชา เภสัชศาสตร์และเทคโนโลยี ปีการศึกษา 2562

ลายมือชื่อเ	วิสิต	
ลายมือชื่อ	อ.ที่ปรึกษาหลัก	
ลายมือชื่อ	อ.ที่ปรึกษาร่วม	

6270019033 : MAJOR PHARMACEUTICAL SCIENCES AND TECHNOLOGY

KEYWORD: Dendrobium lindleyi, free radical, bibenzyls, phenanthrenequinones, Dendrobium. Antioxidant

> Pichayatri Khoonrit : FREE RADICAL SCAVENGING COMPOUNDS FROM *DENDROBIUM LINDLEYI*. Advisor: Assoc. Prof. BOONCHOO SRITULARAK, Ph.D. Co-advisor: Prof. KITTISAK LIKHITWITAYAWUID, Ph.D.

Free radicals lead to oxidative stress which plays an important role in the development of many diseases. *Dendrobium lindleyi* belongs to *Dendrobium*, a genus the secondary metabolites of which were reported as free radical scavenging compounds. However, the bioactivity of *D. lindleyi* has never been revealed. In this study, the EtOAc extract of *D. lindleyi* was fractionated to give five pure compounds identified by spectroscopic techniques as a new constituent named 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl along with four known compounds including chrysotoxine, gigantol, cypripedin, and moscatilin. DPPH radical, superoxide radical, and ORAC assay were performed to evaluate their radical scavenging activities. Chrysotoxine, gigantol, and moscatilin exhibited comparable activity to Trolox in DPPH assay. In the superoxide radical and ORAC assays, the new compound, chrysotoxine, gigantol, and moscatilin were more potent than Trolox. Conversely, cypripedin was a poor radical scavenger in all tests. These findings encourage further research of the four active components for the treatment of conditions related to oxidative stress.

Field of Study:	Pharmaceutical Sciences	Student's Signature
	and Technology	
Academic Year:	2019	Advisor's Signature
		Co-advisor's Signature

ACKNOWLEDGEMENTS

First and foremost, I would like to express my deepest gratitude to my advisors, Associate Professor Boonchoo Sritularak, Ph.D. and Professor Kittisak Likhitwitayawuid, Ph.D., for their motivation, guidance, and extensive knowledge. It was a magnificent opportunity to research under their supervision. Everything they have offered is exceedingly appreciated.

I would like to extend my sincere thanks to Miss Kaskamol Chanpokapaiboon as well as Miss Thamonwan Trakranrungsie, supportive friends and research partners who mutually initiated this research. I express my special thanks to Mr. Virunh Kongkatitham, a doctoral student, who provided practical suggestions from his experiences. I also thank staff members of the Department of Pharmacognosy and Pharmaceutical Botany for their assistance and generousness throughout my study period.

The Chulalongkorn University Graduate scholarship to commemorate the 72nd anniversary of his Majesty King Bhumibala Aduladeja from the Graduate school and instrumental supports from Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University, are gratefully acknowledged.

Besides, I cannot leave my family without mentioning. I greatly appreciate their encouragement, caring, and love, especially, when the times got rough. It was a comfort and relief to know that they were always behind.

Chulalongkorn University

Pichayatri Khoonrit

TABLE OF CONTENTS

	Page
ABSTRACT (THAI)	iii
ABSTRACT (ENGLISH)	iv
ACKNOWLEDGEMENTS	V
TABLE OF CONTENTS	vi
LIST OF TABLES	xii
LIST OF FIGURES	xiv
ABBREVIATIONS AND SYMBOLS	1
CHAPTER I INTRODUCTION	5
CHAPTER II HISTORICAL	16
1. Chemical constituents of <i>Dendrobium</i> species	16
2. Free radical scavenging activities of <i>Dendrobium</i> species	90
	94
1. Source of plant materials	94
2. Extraction and isolation	94
2.1 General techniques	94
2.1.1 Thin-layer chromatography (TLC)	94
2.1.2 Adsorption column chromatography	94
2.1.3 Size-exclusion chromatography	94
2.2 Extraction	95
2.3 Isolation	95
2.3.1 Isolation of 4,5-dihydroxy-3,3′,4′-trimethoxybibenzyl	96

2.3.2 Isolation of chrysotoxine, gigantol, and cypripedin	96
 2.3.2 Isolation of chrysotoxine, gigantol, and cypripedin	96
2.4 Solvents	96
3. Identification of isolated compounds	97
3.1 General techniques	97
3.1.1 Mass spectrometry (MS)	97
3.1.2 Nuclear magnetic resonance (NMR) spectroscopy	97
3.1.3 Ultraviolet (UV) spectroscopy	98
3.1.4 Infrared (IR) spectroscopy	98
3.2 Physical and spectral data	98
3.2.1 compound 1 (4,5-dihydroxy-3,3',4'-trimethoxybibenzyl)	98
 2.3.3 Isolation of moscatilin	98
	99
3.2.4 compound 4 (cypripedin)	99
3.2.5 compound 5 (moscatilin)	99
4. Free radical scavenging assay	100
4.1 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay	
4.1.1 Materials and instruments	
4.1.2 DPPH radical scavenging method	101
4.2 Superoxide radical scavenging activity assay	
4.2.1 Materials and instruments	
4.2.2 Superoxide radical scavenging activity method	102
4.3 Oxygen radical absorbance capacity (ORAC) assay	103
4.3.1 Materials and instruments	

4.3.2 ORAC method10	5
CHAPTER IV RESULTS AND DISCUSSION	7
1. Identification of isolated compounds10	7
1.1 Identification of compound 1 (4,5-dihydroxy-3,3',4'-trimethoxybibenzyl)10	7
1.2 Identification of compound 2 (chrysotoxine)11	0
1.3 Identification of compound 3 (gigantol)11	3
1.4 Identification of compound 4 (cypripedin)11	6
1.5 Identification of compound 5 (moscatilin)11	9
2. Free radical scavenging activities12	2
CHAPTER V CONCLUSION	9
REFERENCES	0
APPENDICES	5
Appendix A: The spectral data of compound 114	5
A.1 Mass spectrum of compound 114	5
A.2 Infrared spectrum of compound 114	5
A.3 UV spectrum of compound 114	6
A.4 1 H NMR (500 MHz) spectrum of compound 1 in CDCl ₃ 14	6
A.5 1 H NMR (500 MHz) spectrum of compound 1 in CDCl3 (expansion from $\delta_{ m H}$	
6.00-7.00)14	7
A.6 1 H NMR (500 MHz) spectrum of compound 1 in CDCl3 (expansion from $\delta_{ m H}$	
2.60-4.10)	7
A.7 13 C NMR (125 MHz) spectrum of compound 1 in CDCl_314	8
A.8 HSQC spectrum of compound 1 in CDCl ₃ 14	8

A.9 HSQC spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ m C}$ 98.0-140.0
(F1) and $\delta_{ m H}$ 2.60-3.96 (F2))149
A.10 HSQC spectrum of compound 1 in CDCl $_{3}$ (expansion from $\delta_{ ext{C}}$ 24.0-64.0
(F1) and $\delta_{ m H}$ 2.60-4.80 (F2))
A.11 HSQC spectrum of compound 1 in CDCl $_{3}$ (expansion from $\delta_{ ext{C}}$ 50.0-62.0
(F1) and $\delta_{ m H}$ 3.68-4.06 (F2))150
A.12 HSQC spectrum of compound 1 in CDCl $_{ m 3}$ (expansion from $\delta_{ m c}$ 48.0-62.0
(F1) and $\delta_{ m H}$ 3.72-4.01 (F2))150
A.13 HSQC spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ m c}$ 52.5-60.0
(F1) and $\delta_{ m H}$ 3.80-3.89 (F2))
A.14 HMBC spectrum of compound 1 in CDCl ₃ 151
A.15 HMBC spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ ext{C}}$ 100.0-160.0
(F1) and $\delta_{ m H}$ 1.40-7.00 (F2))152
A.16 HMBC spectrum of compound 1 in CDCl3 (expansion from $\delta_{ m C}$ 28.0-66.0
(F1) and $\delta_{ m H}$ 2.60-6.90 (F2))152
A.17 HMBC spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ m C}$ 143.0-154.0
(F1) and $\delta_{ m H}$ 3.50-4.20 (F2))153
A.18 HMBC spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ extsf{C}}$ 52.5-60.8
(F1) and $\delta_{ m H}$ 3.48-4.20 (F2))
A.19 NOESY spectrum of compound 1 in CDCl ₃ 154
A.20 NOESY spectrum of compound 1 in CDCl $_{\scriptscriptstyle 3}$ (expansion from $\delta_{\scriptscriptstyle H}$ 1.10-4.00
(F1) and $\delta_{ m H}$ 4.80-7.05 (F2))154
A.21 NOESY spectrum of compound 1 in CDCl $_{\scriptscriptstyle 3}$ (expansion from $\delta_{\scriptscriptstyle H}$ 2.60-3.18
(F1) and $\delta_{ extsf{H}}$ 6.00-6.95 (F2))155

A.22 NOESY spectrum of compound 1 in CDCl $_3$ (expansion from $\delta_{ extsf{H}}$ 3.70-4.1	8
(F1) and $\delta_{ extsf{H}}$ 6.05-7.00 (F2))	.155
Appendix B: The spectral data of compound 2	.156
B.1 Mass spectrum of compound 2	.156
B.2 1 H NMR (300 MHz) spectrum of compound 2 in acetone- d_{6}	.156
B.3 13 C NMR (75 MHz) spectrum of compound 2 in acetone- d_6	.157
B.4 13 C NMR (75 MHz) spectrum of compound 2 in acetone- d_6 (expansion fr	om
δ _C 30.0-160.0)	.157
B.5 HSQC spectrum of compound 2 in acetone- d_6	.158
B.6 HMBC spectrum of compound 2 in acetone- d_6	.158
B.7 NOESY spectrum of compound 2 in acetone- d_6	.159
B.8 NOESY spectrum of compound 2 in acetone- d_6 (expansion from $\delta_{ m H}$ 2.50)-
4.15 (F1) and $\delta_{ m H}$ 6.19-7.14 (F2))	.159
Appendix C: The spectral data of compound 3	.160
C.1 Mass spectrum of compound 3	.160
C.2 1 H NMR (300 MHz) spectrum of compound 3 in acetone- d_{6}	.160
C.3 13 C NMR (75 MHz) spectrum of compound 3 in acetone- d_6	.161
C.4 HSQC spectrum of compound 3 in acetone- d_6	.161
C.5 HMBC spectrum of compound 3 in acetone- d_6	.162
C.6 HMBC spectrum of compound 3 in acetone- $d_{ m 6}$ (expansion from $\delta_{ m c}$ 92.5	-
172.5 (F1) and $\delta_{ m H}$ 2.70-6.90 (F2))	.162
C.7 NOESY spectrum of compound 3 in acetone- d_6	.163
C.8 NOESY spectrum of compound 3 in acetone- $d_{ m 6}$ (expansion from $\delta_{ m H}$ 2.45	5-
4.12 (F1) and $\delta_{\scriptscriptstyle extsf{H}}$ 6.13-6.95 (F2))	.163

Appendix D: The spectral data of compound 4	164
D.1 Mass spectrum of compound 4	164
D.2 ¹ H NMR (300 MHz) spectrum of compound 4 in acetone- d_6	164
D.3 13 C NMR (75 MHz) spectrum of compound 4 in acetone- d_6	165
D.4 HSQC spectrum of compound 4 in acetone- d_6	165
D.5 HMBC spectrum of compound 4 in acetone- d_6	166
D.6 HMBC spectrum of compound 4 in acetone- d_6 (expansion from δ	_C 132.0-
172.0 (F1) and $\delta_{ m H}$ 3.74-4.11 (F2))	166
D.7 NOESY spectrum of compound 4 in acetone- d_6	167
Appendix E: The spectral data of compound 5	168
E.1 Mass spectrum of compound 5	168
E.2 ¹ H NMR (300 MHz) spectrum of compound 5 in acetone- d_6	168
E.3 13 C NMR (75 MHz) spectrum of compound 5 in acetone- d_6	169
E.4 HSQC spectrum of compound 5 in acetone- d_6	169
E.5 HMBC spectrum of compound 5 in acetone- d_6	170
E.6 HMBC spectrum of compound 5 in acetone- d_6 (expansion from δ	_c 98.0-
151.0 (F1) and $\delta_{ m H}$ 2.70-7.10 (F2))	170
E.7 HMBC spectrum of compound 5 in acetone- d_6 (expansion from δ	_c 31.3-
45.5 (F1) and $\delta_{ extsf{H}}$ 2.70-6.90 (F2))	171
E.8 NOESY spectrum of compound 5 in acetone- d_6	171
E.9 NOESY spectrum of compound 5 in acetone- d_6 (expansion from δ	, Н 2.60-
3.96 (F1) and $\delta_{ extsf{H}}$ 6.37-7.06 (F2))	172
VITA	

LIST OF TABLES

Page
Table 1 Stilbenoids from Dendrobium 17
Table 2 Flavonoids from Dendrobium
Table 3 Terpenoids from Dendrobium 58
Table 4 Miscellaneous compounds from Dendrobium 68
Table 5 Radical scavenging compounds from <i>Dendrobium</i>
Table 6 The reagents added in 96-well microplate for superoxide radical scavenging
activity assay
Table 7 The reagents added in black 96-well microplate for ORAC assay
Table 8 The setting of microplate reader (CLARIOstar®) for ORAC assay
Table 9 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectral data of compound 1 in
CDCl ₃
Table 10 ¹ H NMR (300 MHz) and ¹³ C NMR (75 MHz) spectral data of compound 2 in acetone- d_6 and ¹ H NMR (500 MHz) and ¹³ C NMR (100 MHz) of chrysotoxine in CDCl ₃
Table 11 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound 3 in
acetone- d_6 and ¹ H NMR (500 MHz) and ¹³ C NMR (125 MHz) of gigantol in acetone- d_6
Table 12 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound 4 and
cypripedin in acetone-d ₆ 118
Table 13 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound 5 in
acetone- d_6 and $^1{ m H}$ NMR (500 MHz) and $^{13}{ m C}$ NMR (125 MHz) of moscatilin in acetone- d_6
Table 14 IC ₅₀ values of DPPH radical scavenging activity

Table	15	IC_{50} values	of superoxide	e radio	cal scavenging	activity			125
Table	16	Trolox equ	ivalent (TE) v	alues	of superoxide	radical	scavenging	activity	126

LIST OF FIGURES

	Page
Figure 1 Dendrobium lindleyi Steud	15
Figure 2 Structures of stilbenoids from <i>Dendrobium</i>	34
Figure 3 Structures of flavonoids from <i>Dendrobium</i>	55
Figure 4 Structures of terpenoids from <i>Dendrobium</i>	62
Figure 5 Structures of miscellaneous compounds from <i>Dendrobium</i>	78
Figure 6 Extraction of <i>Dendrobium lindleyi</i>	95
Figure 7 Isolation of the EtOAc extract from <i>Dendrobium lindleyi</i>	97
Figure 8 The reaction between DPPH and antioxidant (A)	100
Figure 9 The reaction in riboflavin-light-NBT system	102
Figure 10 The production of peroxyl radical from AAPH	104
Figure 11 Chemical structure of compound 1 [374] and key correlations of HMBC	and
NOESY	108
Figure 12 Chemical structure of compound 2 [7] and key correlations of HMBC a	nd
NOESY	111
Figure 13 Chemical structure of compound 3 [16], and key correlations of HMBC	and
NOESY	114
Figure 14 Chemical structure of compound 4 [92] and key correlations of HMBC	and
NOESY	117
Figure 15 Chemical structure of compound 5 [21] and key correlations of HMBC	and
NOESY	120
Figure 16 Concentration-dependent DPPH radical scavenging activity of compour	nd 1,
chrysotoxine, gigantol, cypripedin, moscatilin, and Trolox	123

Figure 17 Concentration-dependent superoxide radical scavenging activity of	
compound 1, chrysotoxine, gigantol, moscatilin, and Trolox.	124
Figure 18 Signal curve for different Trolox concentrations (A) and Trolox standard	
curve (B)	126
Figure 19 Signal curve for compound 1, chrysotoxine, gigantol, cypripedin, and	
moscatilin	127

ABBREVIATIONS AND SYMBOLS

AAPH	=	2,2'-Azobis(2-amidinopropane) dihydrochloride		
Acetone-d ₆	=	Deuterated acetone		
Ara	=	Arabinose		
AUC	=	Area under a curve		
α	=	Alpha		
β	=	Beta		
br s	=	Broad singlet (for NMR spectra)		
br d	= _	Broad doublet (for NMR spectra)		
BuOH	=	Butanol		
°C	= //	Degree Celsius		
CAT	=	Catalase		
CDCl ₃	=	Deuterated chloroform		
cm		Centimeter		
conc	จหาย	Concentration		
¹³ C-NMR	CHŪLA	Carbon-13 nuclear magnetic resonance		
C4H	=	Cinnamate-4-hydroxylase		
4CL	=	4-Coumaroyl CoA ligase		
2D NMR	=	Two-dimensional nuclear magnetic resonance		
d	=	Doublet (for NMR spectra)		
dd	=	Doublet of doublets (for NMR spectra)		
δ	=	Chemical shift		
DMSO	=	Dimethyl sulfoxide		
DPPH	=	2,2-Diphenyl-1-picrylhydrazyl		

3	=	Molar absorptivity
EDTA	=	Ethylenediamine tetraacetic acid
Em-filter	=	Emission filter
ESI-MS	=	Electrospray ionization mass spectrometry
EtOAc	=	Ethyl acetate
Ex-filter	=	Excitation filter
g	=	Gram
Gal	=	Galactose
Glc	=	Glucose
НМВС	= /	¹ H-detected heteronuclear multiple bond correlation
HR-ESI-MS	=	High resolution electrospray ionization mass
		spectrometry
¹ H-NMR	=	Proton nuclear magnetic resonance
HSQC	<u>-8</u>	¹ H-detected heteronuclear single quantum coherence
Hz	= (11)	Hertz
IC ₅₀	จุฬา: Cuu ภ	Half maximal inhibitory concentration
IR	=	Infrared
J	=	Coupling constant
kg	=	Kilogram
L	=	Liter
LED	=	Light emitting diode
λ_{max}	=	Wavelength at maximal absorption
[M+Na] ⁺	=	Sodium-adduct molecular ion
т	=	Multiplet (for NMR spectra)

МеОН	=	Methanol
MEP	=	Methylerythritol phosphate pathway
mg	=	Milligram
MHz	=	Megahertz
min	=	Minute
mL	=	Milliliter
mm	=	Millimeter
mМ	=	Millimolar
mol	=	Mole
MS	= /	Mass spectrum
MW	=	Molecular weight
MVA	=)	Mevalonic acid pathway
m/z	=	Mass to charge ratio
μg	-8	Microgram
μL	-	Microliter
μΜ	จุฬาล ค	Micromolar
NBT		Nitro blue tetrazolium
nm	=	Nanometer
nM	=	Nanomolar
NMR	=	Nuclear magnetic resonance
NOESY	=	Nuclear overhauser effect spectroscopy
OEt	=	Ethoxy group
OMe	=	Methoxy group
ORAC	=	Oxygen radical absorbance capacity

PAL	=	Phenylalanine ammonia-lyase
ppm	=	Part per million
PRX	=	Peroxiredoxins
Rha	=	Rhamnose
ROS	=	Reactive oxygen species
5	=	Singlet (for NMR spectra)
STS	=	Stilbene synthase
t	=	Triplet (for NMR spectra)
ТСМ	= *	Traditional Chinese medicine
TE	= 2	Trolox equivalent
TLC	=	Thin layer chromatography
TOF	=	Time-of-flight
UV	=	Ultraviolet
ν_{max}	-8	Wave number at maximal absorption
Xyl	= (11)	Xylose
		ลงกรณมหาวิทยาลิย

CHAPTER I

INTRODUCTION

A free radical can be described as an unstable atom or molecule with one or more unpaired electrons. It is a strongly reactive agent which able to attack other molecules by trapping their electrons to stabilize itself. This process is the initiation of a chain reaction because the attacked molecules become free radicals themselves. Both free radicals and molecules that can generate free radicals are called reactive oxygen species (ROS) (Halliwell, 2006; Phaniendra, Jestadi and Periyasamy, 2015). ROS is generally produced from metabolism in the cell, especially, organelles with high oxygen consumption including mitochondria, peroxisomes, and endoplasmic reticulum (Kontoghiorghes and Kontoghiorghe, 2019). On the other side, it can be generated from exogenous sources, for instance, alcohols, heavy metals, pesticides, radiations, and cigarette smoke (Phaniendra, Jestadi and Periyasamy, 2015). There are two different types of ROS which are radicals and non-radicals. The examples of radicals are superoxide radical $(\bullet O_2)$, hydroxyl radical $(\bullet OH)$, alkoxy radical $(RO \bullet)$, and peroxyl radical (ROO•). Non-radical species, for example, hydrogen peroxide (H₂O₂), hypochlorous acid (HOCl), hypobromous acid (HOBr), ozone (O_3) , and singlet oxygen $({}^1O_2)$, are also harmful. Even if they might not directly harm to other molecules, they involve in the formation of the destructive radicals in organisms (Phaniendra, Jestadi and Periyasamy,

2015). CHULALONGKORN UNIVERSITY

ROS level in our body is normally regulated by antioxidants, molecules that protect cells or tissues from ROS damage (Halliwell, 2011, Kontoghiorghes and Kontoghiorghe, 2019). It might alleviate ROS production or directly eliminate ROS (Jain and Ramawat, 2013). Superoxide dismutases, catalases, peroxiredoxins, and glutathione are examples of endogenous antioxidants. However, several types of food provide exogenous antioxidants such as vitamins C and E (Halliwell, 2012). Occasionally, excessive production of ROS and deficiency of antioxidants lead to oxidative stress. In the state, biomolecules including lipid, protein, and DNA can be damaged (Phaniendra, Jestadi and Periyasamy, 2015). As a consequence, organelles, cells, tissues, and organs will be impaired (Phaniendra, Jestadi and Periyasamy, 2015). These are causes of the various diseases, for example, cancer, diabetes mellitus, Parkinson's disease, Alzheimer's disease, cardiovascular disease, cataract, asthma, and rheumatoid arthritis (Phaniendra, Jestadi and Periyasamy, 2015; Prescott and Bottle, 2017). The molecules that possess antioxidant properties would be used for the treatment or prevention of these conditions.

The research and development of antioxidant compounds were reviewed by Kontoghiorghes and Kontoghiorghe (2019). These include N-acetylcysteine which acts as an antioxidant via the promotion of glutathione production. It has been used for the treatment of overdose acetaminophen in clinical settings and studied to treat several oxidative stress-related diseases including traumatic brain injury, psychosis, cancer, and Parkinson's disease in clinical trials. MitoQ, a coenzyme Q10 derivative, and vitamin C have been investigated for the treatment of Parkinson's disease and cancer, respectively. Various plant-derived compounds, such as ellagic acid (Rahimi et al., 2020) and quercetin (Tang et al., 2020), have also been researched for clinical cancer therapy.

Dendrobium, one of the largest genera in Orchidaceae, comprises of more than 1500 species distributing throughout tropical and subtropical regions of Asia and North Australia (Hou et al., 2017; Lam et al., 2015). Approximately forty species have been used in traditional Chinese medicine (TCM) for different indications (Cheng et al., 2019) including increasing body fluid production, reducing throat dryness, and nourishing eyes (Ng et al., 2012). Many secondary metabolites from *Dendrobium* were reported, for example, bibenzyls, phenanthrenes, alkaloids, fluorenones, coumarins, and sesquiterpenoids. Many compounds display considerable bioactivities including antioxidant, neuroprotective, antitumor, antidiabetic, antimicrobial, and immunomodulatory activities (Lam et al., 2015; Ng et al., 2012).

Thailand is one of the distribution areas of more than 150 *Dendrobium* species. They are listed in scientific and Thai names as follows (Office of the Forest Herbarium, 2014).

D. acerosum Lindl.	กล้วยไม้มีอนาง Kluai mai mue nang (Chumphon)
D. aciculare Lindl.	เอื้องใบเข็ม
D. acinaciforme Roxb.	เอื้องยอดสร้อย Ueang yot soi (Northern)
D. aduncum Lindl.	N/A
D. albosanguineum Lindl.	เอื้องตางัว Ueang ta ngua (Mae Hong Son)
D. aloifolium (Blume) Rchb.f.	เอื้องมณี Ueang mani (Bangkok)
D. anceps Sw.	N/A
D. angulatum Lindl.	N/A
D. anosmum Lindl.	เอื้องสาย Ueang sai (Chiang Mai, Peninsular)
D. aphyllum (Roxb.) C.E.C. Fisch.	เอื้องงวงช้าง Ueang nguang chang (Mae Hong Son)
D. bellatulum Rolfe	เอื้องแซะภู Ueng sae phu
D. bensoniae Rchb.f.	เอื้องสายดอกขาว
D. bicameratum Lindl.	เอื้องเข็ม Ueang khem (Northern)
D. bifarium Lindl.	N/A
D. bilobulatum Seidenf.	กล้วยไม้ก้างปลา Kluai mai kang pla (General)
D. blumei Lindl.	รณมหาวิทยาลย N/A
D. brevimentum Seidenf.	N/A
D. brymerianum Rchb.f.	เอื้องคำฝอย Ueang kham foi (Northern)
<i>D. calicopis</i> Ridl.	N/A
D. capillipes Rchb.f.	เอื้องคำกิ่ว Ueang kham kio (Lampang, Phrae)
D. cariniferum Rchb.f.	เอื้องกาจก Ueang kachok (Chiang Mai)
D. chittimae Seidenf.	เอื้องจิตติมา Ueang chittima (General)
D. christyanum Rchb.f.	เอื้องแซะภูกระดึง Ueang sae phu kradueng (Loei)
D. chrysanthum Lindl.	เอื้องสายมรกต Ueang sai morakot (Bangkok)

Л	chrycotoyum	Lind	
D.	Chrysoloxum	LINU(.	

D. ciliatilabellum Seidenf.

D. clavator Ridl.

D. compactum Rolfe ex Hackett

D. compressum Lindl.

D. concinnum Miq.

D. confinale Kerr

D. cowenii P. O'Byrne & J.J. Verm. N/A

D. crepidatum Lindl. & Paxton

D. cretaceum Lindl.

D. crocatum Hook.f.

D. cruentum Rchb.f.

D. crumenatum Sw.

D. crystallinum Rchb.f.

D. cumulatum Lindl.

D. curviflorum Rolfe

D. cuspidatum Lindl.
D. dantaniense Guillaumin
D. delacourii Guillaumin
D. deltatum Seidenf.
D. denneanum Kerr
D. densiflorum Lindl.

D. denudans D. Don

หวายเขาเขียว Wai khao khiao (General) N/A เอื้องข้าวตอก Ueang khao tok (Northern) หวายแบนตะนาวศรี Wai baen tanao si (General) หางเปีย Hang pia (Narathiwat)

เอื้องคำ Ueang kham (Northern)

เอื้องสายน้ำเขียว Ueang sai nam khiao (General)

เอื้องนางนวล Ueang nang nuan (Peninsular) เอื้องนกแก้ว Ueang nok kaeo (Bangkok) หวายตะมอย Wai tamoi (Central, Peninsular) เอื้องนางฟ่อน Ueang nang fon (Chiang Mai) เอื้องสายสี่ดอก Ueang sai si dok (Northern, Southeastern)

HULALONG<mark>N/APN UNIVERSITY</mark> เอื้องข้าวตอกปากแหลม

N/A

N/A

เอื้องเข็ม Ueang khem (Chiang Mai) เอื้องดอกมะขาม Ueang dok ma kham (General) N/A N/A

เอื้องมอนไข่ Ueang mon khai (Northern)

เอื้องสายจำปา Ueang sai champa (General)

- D. devonianum Paxton
- D. dickasonii L. O. Williams
- D. dixanthum Rchb.f.
- D. dixonianum Rolfe ex Downie
- D. draconis Rchb.f.
- D. elliottianum P. O'Byrne
- D. ellipsophyllum Tang & Wang
- D. erostelle Seidenf.
- D. erosum (Blume) Lindl.
- D. eserre Seidenf.
- D. exile Schltr.
- D. falconeri Hook.
- D. farmeri Paxton
- D. fimbriatum Hook.
- D. findlayanum E.C.Parish & Rchb.f. พวงหยก Phuang yok (Bangkok)
- D. flexile Ridl.
- D. formosum Roxb. ex Lindl.
- D. friedericksianum Rchb.f.
- เอื้องแซะภูกระดึง Ueang sae phukradueng (General) D. fuerstenbergianum Schltr.
- *D. fytchianum* Bateman ex Rchb.f. หวายพม่า Wai phama (General)
- หวายการ์เร็ต Wai karet (General) D. garrettii Seidenf.
- เอื้องคำสาย Ueang kham sai (Northern) D. gibsonii Paxton

(Bangkok)

รณ์มหาวิทยาลัย N/A

เอื้องแผงใบใหญ่ Ueang pheang bai yai (Peninsular) D. grande Hook.f.

เอื้องเมี่ยง Ueang miang (Chiang Mai)

เอื้องเคี้ยะ Ueang khia (Chiang Mai)

เอื้องเทียน Ueang thian (Northern)

เอื้องเงิน Ueang ngoen (Northern)

เอื้องทอง Ueang thong (Genaeral)

เอื้องเสี้ยน Ueang sian (General)

เอื้องสายวิสูตร Ueang sai wisut (Bangkok)

เอื้องมัจฉาน Ueang matchanu (Bangkok)

เอื้องคำน้อย Ueang kham noi (Chiang Mai)

เอื้องเงินหลวง Ueang ngoen luang (Chiang Mai)

เอื้องเหลืองจันทบูร Ueang lueang chantabun

หวายเจดีย์ Wai chedi (Kanchanaburi)

เอื้องข้าวตอกเหลือง

N/A

N/A

N/A

- D. gratiotissimum Rchb.f.
- D. gregulus Seidenf.
- D. griffithianum Lindl.
- D. harveyanum Rchb.f.
- D. hendersonii Hawkes & Heller
- D. henryi Schltr.
- D. hercoglossum Rchb.f.
- D. heterocarpum Lindl.
- D. hymenanthum Rchb.f.
- D. hymenopterum Hook.f. 🥖
- D. incurvum Lindl.
- D. indivisum (Blume) Miq. var. indivisum
- D. indivisum (Blume) Miq. var. lampangense Rolfe
- D. indivisum (Blume) Miq. ก้างปลา Kang var. pallidum Seidenf.
- D. indragiriense Schltr.
- D. infundibulum Lindl.
- D. intricatum Gagnep.
- D. jenkinsii Wall. ex Lindl.
- D. kanburiense Seidenf.
- D. keithii Ridl.
- D. kentrophyllum Hook.f.

เอื้องกิ่งดำ Ueang king dam (Bangkok) เอื้องมะต่อม Ueang ma tom (Chiang Mai) เอื้องมัจฉาเหลือง Ueang matcha lueang (Bangkok) เอื้องคำฝอย Ueang kham foi (Chiang Mai) หวายตะมอยน้อย Wai tamoi noi (Peninsular) เอื้องสุริยัน Ueang suriyan (Loei) เอื้องสอกมะเขือ Ueang dok ma kuea (Bangkok) เอื้องลีตาล Ueang si tan (Chiang Mai) เอื้องน้อยกลีบบาง Ueang noi klip bang (Chiang Mai, Kanchanaburi)

N/A

N/A

ตานเสี้ยนไม้ Tan sian mai (Chumphon)

ก้างปลา Kang pla (General)

N/A

เอื้องตาเหิน Ueang ta hoen (General)

เอื้องชมพู Ueang chomphu (Chanthaburi)

เอื้องผึ้งน้อย Ueang phueng noi (Chiang Mai)

หวายเมืองกาญจน์ Wai muang kan (Kanchanaburi)

หางเปีย Hang pia (General)

ก้างปลาใหญ่

D. kontumense Gagnep.	เอื้องเงินวิลาศ Ueang ngoen wilat (Northeastern)
D. kratense Kerr	N/A
D. lagarum Seidenf.	N/A
D. lanpongense J.J.Sm.	N/A
D. lamyaiae Seidenf.	N/A
D. leonis (Lindl.) Rchb.f.	เอื้องตะขาบใหญ่ Ueang ta khap yai (General)
D. lindleyi Steud.	เอื้องผึ้ง Ueang phueng (Northern)
D. linguella Rchb.f.	N/A
D. lituiflorum Lindl.	เอื้องสายม่วง Ueang sai muang (Northern, Bangkok)
D. lueckelianum Fessel & Wolff	N/A
D. mannii Ridl.	เอื้องหางปลา Ueang hang pla (General)
D. metachilinum Rchb.f.	N/A
D. monticola Hunt & Summerh	N/A
D. moschatum (BuchHam.) Sw.	เอื้องจำปา Ueang champa (Northern)
D. mucronatum Seidenf.	N/A
D. nanocompactum Seidenf.	รณมหาวิทยาลัย N/A
D. nathanielis Rchb.f.	เกล็ดนิ่ม Klet nim (Chantaburi)
D. ochreatum Lindl.	เอื้องตะขาบ Ueang ta khap (Chiang Mai)
D. oligophyllum Gagnep.	ข้าวตอกปราจีน Khao tok prachin (General)
D. pachyglossum Parish & Rchb.f	เอื้องขนหมู Ueang khon mu (Mae Hong Son)
<i>D. pachyphyllum</i> (Kuntze) Bakh.f.	เอื้องน้อย Ueang noi (General)
<i>D. palpebrae</i> Lindl.	เอื้องมัจฉา Ueang matcha (Bangkok)
<i>D. pandaneti</i> Ridl.	N/A
D. panduriferum Hook.f.	N/A

<i>D. parciflorum</i> Rchb.f. ex Lindl.	เอื้องดอกขาวใบแบน Ueang dok khao bai baen (General)
D. parcum Rchb.f.	เอื้องก้านกิ่ว Ueang kan kio (Bangkok)
D. parishii Rchb.f.	เอื้องครั่ง Ueang khrang (Northern)
D. parvum Seidenf.	N/A
D. peguanum Lindl.	หวายเปกู Wai peku (General)
D. pendulum Roxb.	เอื้องไม้เท้าฤๅษี Ueang mai thao ruesi (Bangkok,
	Chiang Mai)
D. perpaulum Seidenf.	เอื้องข้าวตอกอินทนนท์ Ueang khao tok inthanon
	(General)
D. planibulbe Lindl.	N/A
D. polyanthum Wall. ex Lindl.	เอื้องสายประสาท Ueang sai prasat (Bangkok)
D. porphyrochilum Lindl.	เอื้องเฉวียน Ueang chawian (General)
D. praecinctum Rchb.f.	หวายภูหลวง Wai phu luang (General)
D. proteranthum Seidenf.	หวายน้อยภูหลวง Wai noi phu luang (Loei)
D. pulchellum Roxb. ex Lindl.	เอื้องคำตาควาย Ueang kham ta khwai
Сни л ом	(Mae Hong Son)
D. pychnostachyum Lindl.	เศวตสอดสี Sawet sot si (Chiang Mai)
D. rhodostele Ridl.	N/A
D. salaccense (Blume) Lindl.	เอื้องใบไผ่ Ueang bai phai (Chiang Mai)
D. sanguinolentum Lindl.	N/A
D. scabrilingue Lindl.	เอื้องแซะ Ueang sae (Mae Hong Son)
D. schilhaueri Ormerod & Pederse	n N/A
D. secundum (Blume) Lindl.	เอื้องแปรงสีพีน Ueang preang si fan (Bangkok)
D. senile Parish & Rchb.f.	เอื้องซะนี Ueang chani (Bangkok)

D. setifolium Ridl.	N/A
D. signatum Rchb.f.	เอื้องเค้ากิ่ว Ueang khao kio (Northern)
D. singaporense Hawkes & Heller	N/A
D. sinuatum (Lindl.) Lindl. ex Rchb	.f. N/A
<i>D. sociale</i> J.J.Sm.	N/A
D. strongylanthum Rchb.f.	เอื้องเย้าลม Ueang yao lom (Northern)
D. stuposum Lindl.	เอื้องสาย Ueang sai (Chiang Mai)
D. subulatum (Blume) Lindl.	N/A
D. sukhakulii hort.	หวายสุขะกุล Wai sukhakun (General)
D. sulcatum Lindl.	เอื้องจำปาน่าน Ueang champa nan (Bangkok)
D. superbiens Rchb.f.	หวายคิง Wai khing (Bangkok)
D. sutepense Rolfe ex Downie	เอื้องมะลิ Ueang mali (Chiang Mai)
D. terminale Parish & Rchb.f	เอื้องแผงโสภา Ueang phaeng sopha (Peninsular)
D. thyrsiflorum Rchb.f	เอื้องมอนไข่ใบมน Ueang mon khai bai mon
	(Northern)
D. tortile Lindl.	เอื้องไม้ตึง Ueang mai tueng (Mae Hong Son)
D. trigonopus Rchb.f.	เอื้องคำเหลี่ยม Ueang kham liam (Chiang Mai)
D. trinervium Ridl.	เทียนลิง Thian ling (Chumphon)
D. truncatum Lindl.	N/A
D. umbonatum Seidenf.	N/A
D. unicum Seidenf.	เอื้องครั่งแสด Ueang krang saet (General)
D. uniflorum Griff.	เอื้องทอง Ueang thong (Pattani)
D. venustum Teijsm. & Binn	ข้าวเหนียวลิง Khao niao ling (Central)
D. villosulum Lindl.	กล้วยหญ้านา Kluai ya na (Bangkok)

<i>D. viridulum</i> Ridl.	N/A		
D. wardianum R. Warner	เอื้องมณีไตรรงค์ Ueang mani trairong (Northern)		
<i>D. wattii</i> (Hook.f.) Rchb.f.	เอื้องแซะ Ueang sae (Northern)		
D. williamsonii Day & Rchb.f.	N/A		
D. xanthophlebium Lindl.	เอื้องแซะภูลังกา		
D. ypsilon Seidenf.	เอื้องแบนปากตัด Ueang baen pak tat (General)		

Dendrobium lindleyi Steud, known as "Ueang Pueng" in Thailand (Vaddhanaphuti, 2005), distributes in India, China, Hongkong, Bhutan, Thailand, Myanmar, Laos, and Vietnam (Cheng et al., 2019). It is a 6-10-centimeter-tall epiphytic orchid. Leaves are in oblong-elliptic shape. It flowers with inflorescences having up to 20 pale to bright yellow flowers. Lip bases are golden yellow and pubescent, bordered with paler yellow (Vaddhanaphuti, 2005).

The chemical constituents of *D. lindleyi* have never been revealed until Shang, Li and Xiao (2020) recently published a short report describing the constituents including bibenzyls, 2,4-di-tert-butyl phenol ether, and β -sitosterol. Nevertheless, the pharmacological activities of this plant have never been revealed in any study. In this research, the methanol extract of *D. lindley* was firstly partitioned into ethyl acetate, *n*-butanol, and aqueous extracts. For the antioxidant activity screening, only ethyl acetate extract inhibited 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical by more than 70% at 100 µg/mL. This research aimed to discover the chemical components of *D. lindleyi* and determine their antioxidant activities. The findings might fulfill the phytochemical study of this plant and benefit for the development of medicines with antioxidant properties.

Figure 1 Dendrobium lindleyi Steud

CHAPTER II

HISTORICAL

1. Chemical constituents of *Dendrobium* species

Chemical constituents of *Dendrobium* species were reported. Here, they were classified into four main groups including stilbenoids, flavonoids, terpenoids, and miscellaneous compounds and summarized in Tables 1-4 and Figures 2-5.

Table 1 and Figure 2 show compounds belonging to stilbenoids which can be divided into stilbenes, bibenzyls, bisbibenzyls, phenanthrenoids, and oligomeric stilbenes. The main structural skeleton of this group composes of two aromatic rings linked by an ethylene bridge. Stilbenoids are constructed from *trans*-cinnamic acid and three malonyl-CoA units. In phenylpropanoid biosynthesis, L-phenylalanine is deaminated by phenylalanine ammonia-lyase (PAL) to give *trans*-cinnamic which is then hydroxylated by cinnamate-4-hydroxylase (C4H) to yield 4-coumaric acid. This compound is then activated by 4-coumaroyl CoA ligase (4CL) to form 4-coumaroyl-CoA. Subsequently, three acetate extender units from malonyl-CoA are added to 4-coumaroyl-CoA by stilbene synthase (STS) to make tetraketide intermediate which consequently folds and cyclizes to shape as a chalcone or a stilbene structure (Tsopmo, Awah and Kuete, 2013).

จุฬาลงกรณมหาวทยาลย

Flavonoids are produced from the modifications of a chalcone structure in the biosynthesis pathway. These processes include glycosylation, methylation, and hydroxylation (Dewick, 2009). The flavonoid compounds from *Dendrobium* are shown in Table 2 and Figure 3.

Terpenoids (Table 3 and Figure 4) can be synthesized by the mevalonic acid pathway (MVA) or the methylerythritol phosphate pathway (MEP). The two systems provide different important precursor unit for various types of terpenoids including isoprenes (C5), monoterpenes (C10), sesquiterpenes (C15), diterpenes (C20), sesterterpenes (C25), triterpenes (C30) and tetraterpenes (C40) (Tholl, 2015; Brahmkshatriya and Brahmkshatriya, 2013). Other constituents not mentioned above are grouped as miscellaneous compounds and presented in Table 4 and Figure 5. These comprise aliphatic compounds, phenolic compounds, benzoic acid derivatives, lignans, neolignans, alkaloids, phenylpropanoids, fluorenones, and coumarins.

Table 1 Stilbenoids from Dendrobium

Stilbenoids	Plant	Plant part	Reference
Aloifol I [1]	D. longicornu	Stem	Hu et al., 2008a
	D. williamsonii	Whole plant	Yang et al., 2018b
	D. infundibulum	Whole plant	Na Ranong et al., 2019
Amoenylin [2]	D. amoenum	Whole plant	Majumder, Guha and Sen, 1999
	D. williamsonii	Whole plant	Yang et al., 2018
Batatasin [3]	D. longicornu	Stem	Hu et al., 2008a
	D. plicatile	Stem	Yamaki and Honda, 1996
Batatasin III [4]	D. aphyllum	Whole plant	Chen et al., 2008a
-		Stem	Yang et al., 2015
จุ ห	D. cariniferum	Stem	Chen et al., 2008b
Сни	D. rotundatum	Whole plant	Majumder and Pal, 1992
	D. chrysotoxum	Whole plant	Li et al., 2009d
	D. draconis	Stem	Sritularak, Anuwat and Likhitwitayawuid, 2011
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. gratiosissimum	Stem	Zhang et al., 2008a
	D. loddigesii	Stem	Ito et al., 2010
	D. loddigesii	Stem	Ma et al., 2019b
	D. venustum	Whole plant	Sukphan et al., 2014

Stilbenoids	Plant	Plant part	Reference
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
	D. infundibulum	Whole plant	Na Ranong et al., 2019
Brittonin A [5]	D. secundum	Stem	Sritularak, Duangrak and
			Likhitwitayawuid, 2011
Chrysotobibenzyl [6]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha, Sritularak and
		2	Likhitwitayawuid, 2012
	D. chrysanthum	Stem	Yang et al., 2006
	D. chryseum	Stem	Ma et al., 1998
	D. chrysotoxum	Stem	Hu et al., 2012
	D. nobile	Stem	Zhang et al., 2007c
	D. pulchellum	Stem	Chanvorachote et al., 2013
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
Chrysotoxine [7] จุห CHUI	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum	วิทยาจัย	
	D. chrysanthum	Stem	Yang et al., 2006
	D. chryseum	Stem	Ma et al., 1998
	D. nobile	Stem	Zhang et al., 2007c
	D. pulchellum	Stem	Chanvorachote et al., 2013
Crepidatin [8]	D. aurantiacum	Whole plant	Liu et al., 2009b
	var. denneanum		
	D. capillipes	Stem	Phechrmeekha, Sritularak and
			Likhitwitayawuid, 2012
	D. chrysanthum	Stem	Yang et al., 2006

Stilbenoids	Plant	Plant part	Reference
	D. crepidatum	Whole plant	Majumder and Chatterjee,
			1989
	D. nobile	Stem	Zhang et al., 2007c
	D. pulchellum	Stem	Chanvorachote et al., 2013
	D. loddigesii	Stem	Ma et al., 2019b
Cumulatin [9]	D. cumulatum	Whole plant	Majumder and Pal, 1993
Dendrobin A [10]	D. nobile	Stem	Wang, Zhao and Che, 1985;
		2	Ye and Zhao, 2002
3,3'-Dihydroxy-4,5-	D. williamsonii	Whole plant	Rungwichaniwat, Sritularak
dimethoxybibenzyl [11]			and Likhitwitayawuid, 2014
	D. infundibulum	Whole plant	Na Ranong et al., 2019
3,4'-Dihydroxy-5-	D. amoenum	Whole plant	Majumder, Guha and Sen,
methoxybibenzyl [12]			1999
3,4'-Dihydroxy-5,5'-	D. nobile	Stem	Hwang et al., 2010
dimethoxydihydrostilbene			
[13]		10	
4,5-Dihydroxy-3,3'-	D. nobile	Stem	Ye and Zhao, 2002
dimethoxybibenzyl [14]	ALONGKORN	Universit	Y
Erianin [15]	D. chrysotoxum	Stem	Hu et al., 2012
Gigantol [16]	D. aphyllum	Whole plant	Chen et al., 2008b
	D. aphyllum	Stem	Yang et al., 2015
	D. aurantiacum	Whole plant	Liu et al., 2009b
	var. denneanum		
	D. brymerianum	Whole plant	Klongkumnuankarn et al.,
			2015
	D. densiflorum	Stem	Fan et al., 2001

Stilbenoids	Plant	Plant part	Reference
	D. devonianum	Whole plant	Sun et al., 2014
	D. draconis	Stem	Sritularak, Anuwat and
			Likhitwitayawuid, 2011
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. gratiosissimum	Stem	Zhang et al., 2008a
	D. loddigesii	Whole plant	Ito et al., 2010
	D. longicornu	Stem	Hu et al., 2008a
	D. nobile	Stem	Zhang et al., 2007c
	D. officinale	Stem	Zhao et al., 2018
	D. polyanthum	Stem	Hu et al., 2009
	D. trigonopus	Stem	Hu et al., 2008b
	D. venustum	Whole plant	Sukphan et al., 2014
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
S	D. loddigesii	Stem	Ma et al., 2019b
	D. palpebrae	Whole plant	Kyokong et al., 2019
4-Hydroxy-3,5,3'-	D. nobile	Stem	Ye and Zhao, 2002
trimethoxybibenzyl [17]	ALONGKORN	Universit	Y
5-Hydroxy-3,4,3',4',5'-	D. secundum	Stem	Phechrmeekha, Sritularak and
pentamethoxybibenzyl			Likhitwitayawuid, 2012
[18]			
Isoamoenylin [19]	D. amoenum	Whole plant	Majumder, Guha and Sen,
			1999
Moniliformine [20]	D. candidum	Stem	Li et al., 2008
	D. signatum	Whole plant	Mittraphab et al., 2016
	D. tortile	Whole plant	Limpanit et al., 2016
	D. williamsonii	Whole plant	Yang et al., 2018b
Stilbenoids	Plant	Plant part	Reference
--------------------------	----------------------------------	-------------	--
Moscatilin [21]	D. amoenum	Whole plant	Majumder, Guha and Sen, 1999
	D. aurantiacum var. denneanum	Stem	Yang, Wang and Xu, 2006
	D. brymerianum	Whole plant	Klongkumnuankarn et al., 2015
	D. chrysanthum	Stem	Yang et al., 2006
	D. densiflorum	Stem	Fan et al., 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar et al., 2014
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. gratiosissimum	Stem	Zhang et al., 2008a
Ş	D. loddigesii	Whole plant	Chen et al., 1994; Ito et al., 2010
	D. longicornu	Stem	Hu et al., 2008a
-	D. moscatum	Whole plant	Majumder and Sen, 1987
ຈຸ ທ	D. nobile	Stem 788	Miyazawa et al., 1999
Сни	D. polyanthum	Stem ERST	Hu et al., 2009
	D. pulchellum	Stem	Chanvorachote et al., 2013
	D. secundum	Stem	Sritularak, Duangrak and Likhitwitayawuid, 2011
	D. aphyllum	Stem	Yang et al., 2015
	D. williamsonii	Whole plant	Yang et al., 2018b
	D. parishii	Whole plant	Kongkatitham et al., 2018
	D. loddigesii	Stem	Ma et al., 2019b
	D. palpebrae	Whole plant	Kyokong et al., 2019

Stilbenoids	Plant	Plant part	Reference
	D. infundibulum	Whole plant	Na Ranong et al., 2019)
3,3′,4-Trihydroxybibenzyl	D. longicornu	Stem	Hu et al., 2008a
[22]			
3,3´,5-Trihydroxy	D. cariniferum	Whole plant	Liu et al., 2009a
bibenzyl [23]	D. loddigesii	Stem	Ma et al., 2019b
3,5,4´-Trihydroxybibenzyl	D. gratiosissimum	Stem	Zhang et al., 2008a
[24]		1 and the second	
4,5,4'-Trihydroxy-3,3'-	D. secundum	Stem	Sritularak, Duangrak and
dimethoxybibenzyl [25]			Likhitwitayawuid, 2011
	D.	Whole plant	Tanagornmeatar et al., 2014
	ellipsophyllum		
	D. parishii	Whole plant	Kongkatitham et al., 2018
	D. loddigesii	Stem	Ma et al., 2019b
S	D. palpebrae	Whole plant	Kyokong et al., 2019
Tristin [26]	D. aphyllum	Stem	Yang et al., 2015
จุ ห	D. chrysotoxum	Stem	Hu et al., 2012
Сни	D. densiflorum	Stem ERSI	Fan et al., 2001
	D. gratiosissimum	Stem	Zhang et al., 2008a
	D. longicornu	Stem	Hu et al., 2008a
	D. officinale	Stem	Zhao et al., 2018
	D. trigonopus	Stem	Hu et al., 2008b
	D. loddigesii	Stem	Ma et al., 2019b
Dendromoniliside E [27]	D. moniliforme	Stem	Zhao et al., 2003
5,4'-Dihydroxy-3,4,3'-	D. infundibulum	Whole plant	Na Ranong et al., 2019
trimethoxybibenzyl [28]			

Stilbenoids	Plant	Plant part	Reference
4,3′,4′-Trihydroxy-3,5- dimethoxybibenzyl [29]	D. parishii	Whole plant	Kongkatitham et al., 2018
		Channel	
Denarophenol [30]	D. canalaum	Stem	Li et al., 2008
4,4'-Dihydroxy-3,5-	D. candidum	Stem	Li et al., 2008
dimethoxybibenzyl [31]			
	D.	Whole plant	Tanagornmeatar et al., 2014
	ellipsophyllum		
	D. williamsonii	Whole plant	Yang et al., 2018b
Loddigesiinol C [32]	D. loddigesii	Whole plant	Ito et al., 2010
3-O-Methylgigantol [33]	D. candidum	Stem	Li et al., 2008
	D. nobile	Stem	Hwang et al., 2010
	D. plicatile	Stem	Yamaki and Honda, 1996
Dendrocandin A [34]	D. candidum	Stem	Li et al., 2008
Dendrocandin B [35]	D. candidum	Stem	Li et al., 2008
10	D. signatum	Whole plant	Mittraphab et al., 2016
Dendrocandin C [36]	D. candidum	Stem	Li et al., 2009a
Dendrocandin D [37]	D. candidum	Stem	Li et al., 2009a
Dendrocandin E [38]	D. candidum	Stem	Li et al., 2009a
	D. parishii	Whole plant	Kongkatitham et al., 2018
Dendrocandin F [39]	D. candidum	Stem	Li et al., 2009b
Dendrocandin G [40]	D. candidum	Stem	Li et al., 2009b
Dendrocandin H [41]	D. candidum	Stem	Li et al., 2009b
Dendrosinen A [42]	D. sinense	Whole plant	Chen et al., 2014
Dendrosinen B [43]	D. sinense	Whole plant	Chen et al., 2014
	D. infundibulum	Whole plant	Na Ranong et al., 2019

Stilbenoids	Plant	Plant part	Reference
Dendrosinen C [44]	D. sinense	Whole plant	Chen et al., 2014
Dendroscabrol B [45]	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
Dendrosinen D [46]	D. sinense	Whole plant	Chen et al., 2014
Dendrocandin I [47]	D. candidum	Stem	Li et al., 2009c
	D. signatum	Whole plant	Mittraphab et al., 2016
Dendrocandin J [48]	D. candidum	Stem	Li et al., 2014b
Dendrocandin K [49]	D. candidum	Stem	Li et al., 2014b
Dendrocandin L [50]	D. candidum	Stem	Li et al., 2014b
Dendrocandin M [51]	D. candidum	Stem	Li et al., 2014b
Dendrocandin N [52]	D. candidum	Stem	Li et al., 2014b
Dendrocandin O [53]	D. candidum	Stem	Li et al., 2014b
Dendrocandin P [54]	D. candidum	Stem	Li et al., 2014b
Dendrocandin Q [55]	D. candidum	Stem	Li et al., 2014b
Densiflorol A [56]	D. densiflorum	Stem	Fan et al., 2001
	D. loddigesii	Stem	Ma et al., 2019b
Longicornuol A [57] 🤤 🕅	D. longicornu	Stem 188	Hu et al., 2008a
Trigonopol A [58] CHU	D. trigonopus	Stem ERSI	Hu et al., 2008b
Trigonopol B [59]	D. chrysotoxum	Stem	Hu et al., 2012
	D. trigonopus	Stem	Hu et al., 2008b
	D. aphyllum	Stem	Yang et al., 2015
Crepidatuol A [60]	D. crepidatum	Stem	Li et al., 2013
Crepidatuol B [61]	D. crepidatum	Stem	Li et al., 2013
Loddigesiinol D [62]	D. loddigesii	Whole plant	Ito et al., 2010
Dencryol A [63]	D. crystallinum	Stem	Wang et al., 2009
Dencryol B [64]	D. crystallinum	Stem	Wang et al., 2009

Stilbenoids	Plant	Plant part	Reference
Dengraol A [65]	D. gratiosissimum	Stem	Zhang et al., 2008a
Dengraol B [66]	D. gratiosissimum	Stem	Zhang et al., 2008a
4-[2-(3-Hydroxyphenol)-1-	D. longicornu	Stem	Hu et al., 2008a
methoxyethyl]-2,6-			
dimethoxyphenol [67]			
Nobilin A [68]	D. nobile	Stem	Zhang et al., 2006
Nobilin B [69]	D. nobile	Stem	Zhang et al., 2006
Nobilin C [70]	D. nobile	Stem	Zhang et al., 2006
Nobilin D [71]	D. nobile	Stem	Zhang et al., 2007c
Nobilin E [72]	D. nobile	Stem	Zhang et al., 2007c
Dendrofalconerol A [73]	D. falconeri	Stem	Sritularak and
			Likhitwitayawuid, 2009
	D. signatum	Whole plant	Mittraphab et al., 2016
6	D. tortile	Whole plant	Limpanit et al., 2016
Dendrofalconerol B [74]	D. falconeri	Stem	Sritularak and
		10	Likhitwitayawuid, 2009
Dendrosignatol [75] 🧃 🕅	D. signatum	Whole plant	Mittraphab et al., 2016
2,2'-Dihydroxy- GHU	D. nobile	Stem ERST	Yang, Sung and Kim, 2007
3,3',4,4',7,7'-hexamethoxy-			
9,9',10,10'-tetrahydro-1,1'-			
biphenanthrene [76]			
2,2'-Dimethoxy-4,4',7,	D. plicatile	Stem	Yamaki and Honda, 1996
7'-tetrahydroxy-9,9',10,10'-			
tetrahydro-1,1'-			
biphenanthrene [77]			
Flavanthrin [78]	D. aphyllum	Whole plant	Chen et al., 2008b
Phoyunnanin C [79]	D. venustum	Whole plant	Sukphan et al., 2014

Stilbenoids	Plant	Plant part	Reference
Phoyunnanin E [80]	D. venustum	Whole plant	Sukphan et al., 2014
Amoenumin [81]	D. amoenum	Whole plant	Veerraju et al., 1989
Crystalltone [82]	D. crystallinum	Stem	Wang et al., 2009
Dendropalpebrone [83]	D. palpebrae	Whole plant	Kyokong et al., 2019
Chrysotoxol A [84]	D. chrysotoxum	Stem	Hu et al., 2012
Chrysotoxol B [85]	D. chrysotoxum	Stem	Hu et al., 2012
Confusarin [86]	D. chryseum	Stem	Ma et al., 1998
	D. chrysotoxum	Stem	Hu et al., 2012
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. nobile	Stem	Zhang et al., 2008c
	D. officinale	Stem	Zhao et al., 2018
Denthyrsinin [87]	D. densiflorum	Stem	Fan et al., 2001
	D. thyrsiforum	Stem	Zhang et al., 2005
(Je	D. palpebrae	Whole plant	Kyokong et al., 2019
Dendrochrysanene [88]	D. chrysanthum	Stem	Yang et al., 2006
Bulbophyllanthrin [89] 🧃 🕷	D. nobile	Stem 188	Yang, Sung and Kim, 2007
5-Hydroxy-2,4- GHU dimethoxyphenanthrene [90]	D. loddigesii	Whole plant	Ito et al., 2010
3-Hydroxy-2,4,7-	D. nobile	Stem	Yang, Sung and Kim, 2007
trimethoxyphenanthrene			
[91]			
Cypripedin [92]	D. densiflorum	Stem	Fan et al., 2001
Densiflorol B [93]	D. densiflorum	Stem	Fan et al., 2001
	D. venustum	Whole plant	Sukphan et al., 2014
Denbinobin [94]	D. moniliforme	Stem	Lin et al., 2001

Stilbenoids	Plant	Plant part	Reference
	D. nobile	Stem	Yang, Sung and Kim, 2007
Fimbriatone [95]	D. nobile	Stem	Zhang et al., 2008c
	D. pulchellum	Stem	Chanvorachote et al., 2013
Dendroscabrol A [96]	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
Loddigesiinol B [97]	D. loddigesii	Whole plant	Ito et al., 2010
Dendronone [98]	D. cariniferum	Whole plant	Chen et al., 2008b
	D. longicornu	Stem	Hu et al., 2008a
Ephemeranthoquinone [99]	D. plicatile	Stem	Yamaki and Honda, 1996
5-Methoxy-7-hydroxy-	D. draconis	Stem	Sritularak, Anuwat and
9,10-dihydro-1,4-			Likhitwitayawuid, 2011
phenanthrenequinone [100]	D. formosum	Whole plant	Inthongkaew et al., 2017
Moniliformin [101]	D. moniliforme	Stem	Lin et al., 2001
Moscatin [102]	D. aphyllum	Whole plant	Chen et al., 2008b
	D. chrysanthum	Stem	Yang et al., 2006
ຈຸນ	D. chrysotoxum	Whole plant	Li et al., 2009d
Сни	D. densiflorum	Stem ERST	Fan et al., 2001
	D. polyanthum	Stem	Hu et al., 2009
	D. rotundatum	Whole plant	Majumder and Pal, 1992
Coelonin [103]	D. nobile	Stem	Hwang et al., 2010
	D. aphyllum	Whole plant	Chen et al., 2008b
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. nobile	Stem	Yang, Sung and Kim, 2007
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018

Stilbenoids	Plant	Plant part	Reference
9,10-Dihydromoscatin	D. polyanthum	Stem	Hu et al., 2009
[104]			
9,10-Dihydrophenan	D. polyanthum	Stem	Hu et al., 2009
threne-2,4,7-triol [105]			
4,5-Dihydroxy-2,3-	D.	Whole plant	Tanagornmeatar et al., 2014
dimethoxy-9,10-	ellipsophyllum		
dihydrophenanthrene			
[106]			
	D. sinense	Whole plant	Chen et al., 2014
4,5-Dihydroxy-2,6-	D. chrysotoxum	Stem	Hu et al., 2012
dimethoxy-9,10-			
dihydrophenanthrene			
[107]	D. devonianum	Stem	Wu et al., 2019
4,5-Dihydroxy-3,7-	D. nobile	Stem	Ye and Zhao, 2002
dimethoxy-9,10-			
dihydrophenanthrene	- Alecter Posso		
[108]		3	
4,5-Dihydroxy-2-methoxy-	D. nobile	Stem	Yang, Sung and Kim, 2007
9,10-	าลงกรณ์มหา	เวิทยาลัย	
dihydrophenanthrene	D. devonianum	Stem EBST	Wu et al., 2019
[109]	ALONGNOTIN	UNIVENUI	,
Lusianthridin [110]	D. brymerianum	Whole plant	Klongkumnuankarn et al.,
			2015
	D. nobile	Stem	Yang, Sung and Kim, 2007;
			Hwang et al., 2010
	D. formosum	Whole plant	Inthongkaew et al., 2017
	D. plicatile	Stem	Yamaki and Honda, 1996
	D. venustum	Whole plant	Sukphan et al., 2014
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018

Stilbenoids	Plant	Plant part	Reference
	D. palpebrae	Whole plant	Kyokong et al., 2019
2,7-Dihydroxy-3,4,6- trimethoxy-9,10- dihydrophenanthrene [111]	D. rotundatum	Whole plant	Majumder and Pal, 1992
2,8-Dihydroxy-3,4,7- trimethoxy-9,10- dihydrophenanthrene [112]	D. nobile	Stem	Yang, Sung and Kim, 2007
4,7-Dihydroxy-2,3,6- trimethoxy-9,10- dihydrophenanthrene [113]	D. sinense	Whole plant	Chen et al., 2013
Ephemeranthol A [114]	D. nobile	Stem	Yang, Sung and Kim, 2007; Hwang et al., 2010
C	D. officinale	Stem	Zhao et al., 2018
1	D. infundibulum	Whole plant	Na Ranong et al., 2019
Ephemeranthol C [115]	D. nobile	Stem	Hwang et al., 2010
Erianthridin [116]	D. formosum	Whole plant	Inthongkaew et al., 2017
Onor	D. nobile	Stem	Hwang et al., 2010; Yang, Sung and Kim, 2007
	D. plicatile	Stem	Yamaki and Honda, 1996
Flavanthridin [117]	D. nobile	Stem	Hwang et al., 2010
Hircinol [118]	D. nobile	Stem	Hwang et al., 2010
	D. aphyllum	Stem	Yang et al., 2015
	D. draconis	Stem	Sritularak, Anuwat and Likhitwitayawuid, 2011
	D. formosum	Whole plant	Inthongkaew et al., 2017

Stilbenoids	Plant	Plant part	Reference
3-Hydroxy-2,4,7- trimethoxy-9,10- dihydrophenanthrene [119]	D. nobile	Stem	Yang, Sung and Kim, 2007
7-Hydroxy-2,3,4- trimethoxy-9,10- dihydrophenanthrene [120]	D. hainanense	Aerial part	Zhang et al., 2019
Dendroinfundin A [121]	D. infundibulum	Whole plant	Na Ranong et al., 2019
Dendroinfundin B [122]	D. infundibulum	Whole plant	Na Ranong et al., 2019
3,4-Dimethoxy-1- (methoxymethyl)-9,10- dihydrophenanthrene-2,7- diol [123]	D. hainanense	Aerial part	Zhang et al., 2019
2-Hydroxy-4,7-dimethoxy- 9,10- dihydrophenanthrene [124]	D. nobile	Stem	Yang, Sung and Kim, 2007
7-Methoxy-9,10- dihydrophenanthrene- 2,4,5-triol [125]	D. draconis	Stemาลัย Universit	Sritularak, Anuwat and Likhitwitayawuid, 2011
2,5,7-Trihydroxy-4- methoxy-9,10- dihydrophenanthrene [126]	D. formosum	Whole plant	Inthongkaew et al., 2017
Plicatol C [127]	D. plicatile	Stem	Honda and Yamaki, 2000
Rotundatin [128]	D. rotundatum	Whole plant	Majumder and Pal, 1992
2,5-Dihydroxy-3,4 dimethoxyphenanthrene [129]	D. nobile	Stem	Yang, Sung and Kim, 2007

Stilbenoids	Plant	Plant part	Reference
2,5-Dihydroxy-4,9-	D. nobile	Stem	Zhang et al., 2008c
dimethoxyphenanthrene			
[130]	D. palpebrae	Whole plant	Kyokong et al., 2019
2,8-Dihydroxy-3,4,7-	D. nobile	Stem	Yang, Sung and Kim, 2007
trimethoxyphenanthrene			
[131]			
Epheranthol B [132]	D. chrysotoxum	Stem	Hu et al., 2012
	D. plicatile	Stem	Yamaki and Honda, 1996
Fimbriol B [133]	D. nobile	Stem	Yang, Sung and Kim, 2007;
			Hwang et al., 2010
Flavanthrinin [134]	D. brymerianum	Whole plant	Klongkumnuankarn et al.,
	POS		2015
	D. nobile	Stem	Zhang et al., 2008c
	D. venustum	Whole plant	Sukphan et al., 2014
G	D. parishii	Whole plant	Kongkatitham et al., 2018
Loddigesiinol A [135]	D. loddigesii	Whole plant	Ito et al., 2010
Nudol [136]	D. formosum	Whole plant	Inthongkaew et al., 2017
Сни	D. nobile	Stem ERST	Yang, Sung and Kim, 2007
	D. rotundatum	Whole plant	Majumder and Pal, 1992
Plicatol A [137]	D. nobile	Stem	Yang, Sung and Kim, 2007
	D. plicatile	Stem	Honda and Yamaki, 2000
Plicatol B [138]	D. plicatile	Stem	Honda and Yamaki, 2000
2,3,5-Trihydroxy-4,9-	D. nobile	Stem	Yang, Sung and Kim., 2007
dimethoxyphenanthrene			
[139]			

Stilbenoids	Plant	Plant part	Reference
3,4,8-Trimethoxy	D. nobile	Stem	Hwang et al., 2010
phenanthrene-2,5-diol			
[140]			
Aphyllone A [141]	D. aphyllum	Stem	Yang et al., 2015
2,4,5,9S-Tetrahydroxy-	D. fimbriatum	Stem	Xu et al., 2014
9,10-dihydro			
phenanthrene [142]			
1,5,7-Trimethoxy	D. nobile	Stem	Kim et al., 2015
phenanthren-2-ol [143]			
1,5-Dihydroxy-3,4,7-	D. moniliforme	Whole plant	Zhao et al., 2016
trimethoxy-9,10-			
dihydrophenanthrene			
[144]	/ POA		
2,5,9 <i>S</i> -Trihydroxy-9,10-	D. primulinum	Whole plant	Ye et al., 2016
dihydrophenanthrene-4-	All concered and		
<i>O</i> - eta -D-glucopyranoside	4000000		
[145]		3	
Loddigesiinol G [146]	D. loddigesii	Stem	Lu et al., 2014
Loddigesiinol H [147]	D. loddigesii	Stem	Lu et al., 2014
Loddigesiinol I [148]	D. loddigesii	Stem	Lu et al., 2014
Loddigesiinol J [149]	D. loddigesii	Stem	Lu et al., 2014
Dendrowillol A [150]	D. williamsonii	Whole plant	Yang et al., 2018b
Dendrocandin P1 [151]	D. officinale	Stem	Zhao et al., 2018
Dendrocandin P2 [152]	D. officinale	Stem	Zhao et al., 2018
Orchinol [153]	D. officinale	Stem	Zhao et al., 2018
2,4,7-Trihydroxy-9,10-	D. officinale	Stem	Zhao et al., 2018
dihydrophenanthrene			
[154]			

Stilbenoids	Plant	Plant part	Reference
4-Methoxy-5,9 <i>R</i> -	D. nobile	Stem	Zhou et al., 2017
dihydroxy-9,10-dihydro			
phenanthrene-2- $\mathcal{O} extsf{-}eta$ -D-			
glucopyranoside [155]			
Dihydroresveratrol [156]	D. aphyllum	Stem	Yang et al., 2015
Aphyllone B [157]	D. aphyllum	Stem	Yang et al., 2015
Aphyllal C [158]	D. aphyllum	Stem	Yang et al., 2015
	D. loddigesii	Stem	Ma et al., 2019b
Aphyllal D [159]	D. aphyllum	Stem	Yang et al., 2015
Aphyllal E [160]	D. aphyllum	Stem	Yang et al., 2015
(-)-Dendroparishiol [161]	D. parishii	Whole plant	Kongkatitham et al., 2018
(<i>R</i>)-4,5,4'-Trihydroxy-	D. loddigesii	Stem	Ma et al., 2019b
3,3´, α -trimethoxybibenzyl			
[162]	A		
Dendrofindlaphenol A	D. findlayanum	Stem	Yang et al., 2018a
[163]		100	
6"-De-O-methyl	D. findlayanum	Stem	Yang et al., 2018a
dendrofindlaphenol A	19112569 N.	างอาสอ	
[164] GHU	ALONGKORN	UNIVERSIT	Y
Dendrofindlaphenol B	D. findlayanum	Stem	Yang et al., 2018a
[165]			
Dendrofindlaphenol C	D. findlayanum	Stem	Yang et al., 2018a
[166]			
Dendrodevonin A [167]	D. devonianum	Stem	Wu et al., 2019
Dendrodevonin B [168]	D. devonianum	Stem	Wu et al., 2019

Figure 2 Structures of stilbenoids from Dendrobium

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

[67] 4-[2-(3-Hydroxyphenol)-1-methoxyethyl]-2,6-dimethoxyphenol

Figure 2 Structures of stilbenoids from Dendrobium (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from Dendrobium (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

[143] 1,5,7-Trimethoxyphenanthren-2-ol

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Figure 2 Structures of stilbenoids from Dendrobium (continued)

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

[163] Dendrofindlaphenol A

R = Me

[165] Dendrofindlaphenol B

[164] 6"-De-O-methyldendrofindlaphenol A R = H

Figure 2 Structures of stilbenoids from *Dendrobium* (continued)

Table 2 Flavonoids from Dendrobium

Flavonoids	Plant	Plant part	Reference
(25)-Homoeriodictyol [169]	D. densiflorum	Stem	Fan et al., 2001
	D. ellipsophyllum	Whole plant	Tanagornmeatar et al.,
			2014
Naringenin [170]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum		
	D. densiflorum	Stem	Fan et al., 2001
	D. longicornu	Stem	Hu et al., 2008a
(2 <i>S</i>)-Eriodictyol [171]	D. trigonopus	Stem	Hu et al., 2008b
	D. ellipsophyllum	Whole plant	Tanagornmeatar et al.,
			2014
	D. tortile	Whole plant	Limpanit et al., 2016
Vicenin II [172]	D. aurantiacum	Stem	Xiong et al., 2013
R	var. denneanum		
Apigenin [173]	D. crystallinum	Stem	Wang et al., 2009
จุฬาย	D. williamsonii	Whole plant	Rungwichaniwat,
CHULA	ongkorn Univ	FRSITY	Sritularak and
		LIGHT	Likhitwitayawuid, 2014
5,6-Dihydroxy-4'-	D. chrysotoxum	Stem	Hu et al., 2012
methoxyflavone [174]			
Chrysoeriol [175]	D. ellipsophyllum	Whole plant	Tanagornmeatar et al.,
			2014
Luteolin [176]	D. aurantiacum	Whole plant	Liu et al., 2009b
	var. denneanum		
	D. ellipsophyllum	Whole plant	Tanagornmeatar et al.,
			2014

Flavonoids	Plant	Plant part	Reference
6-C-(α -Arabino pyranosyl)-8-C-[(2- <i>Ο</i> - α -	D. huoshanense	Aerial part	Chang et al., 2010
rhamnopyranosyl)-β-			
galactopyranosyl] apigenin [177]			
6-C-(α -Arabinopyranosyl)-8-	D. huoshanense	Aerial part	Chang et al., 2010
C-[(2-O- $lpha$ -rhamnopyranosyl)-			
eta-glucopyranosyl] apigenin [178]			
6‴-Glucosyl-vitexin [179]	D. crystallinum	Stem	Wang et al., 2009
Isoschaftoside [180]	D. huoshanense	Aerial part	Chang et al., 2010
Isoviolanthin [181]	D. crystallinum	Stem	Wang et al., 2009
6-C-[(2-O- α -Rhamno	D. huoshanense	Aerial part	Chang et al., 2010
pyranosyl)- β -	Alteration W		
glucopyranosyl]-8-C-(α -	ANN AND		
arabinopyranosyl) apigenin		XI)	
	D buosbapapsa	Acrial part	Chang at al. 2010
$6-C-(\mathbf{p}-Xylopyranosyl)-8-C-$	D. Huoshuhense	Aenatpart	Chang et al., 2010
glucopyranosyl] apigenin	ongkorn Univ	ERSITY	
[183]			
Kaempferol [184]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum		
Kaempferol-3- <i>Ο</i> - α -L-	D. secundum	Stem	Phechrmeekha, Sritularak
rhamnopyranoside [185]			and Likhitwitayawuid,
			2012
Kaempferol-3,7- <i>O</i> -di- α -L-	D. secundum	Stem	Phechrmeekha, Sritularak
rhamnopyranoside [186]			and Likhitwitayawuid,
			2012

Flavonoids	Plant	Plant part	Reference
Kaempferol-3- <i>O</i> - α -L-	D. capillipes	Stem	Phechrmeekha, Sritularak
rhamnopyranosyl-(1 $ ightarrow$ 2)- eta -			and Likhitwitayawuid,
D-glucopyranoside [187]			2012
Kaempferol-3- <i>Ο</i> - α -L-	D. capillipes	Stem	Phechrmeekha, Sritularak
rhamnopyranosyl-(1 $ ightarrow$ 2)- eta -			and Likhitwitayawuid,
D-xylopyranoside [188]			2012
Quercetin-3-0-α-L-	D. secundum	Stem	Phechrmeekha, Sritularak
rhamnopyranoside [189]	- 5 M 1122	-	and Likhitwitayawuid,
			2012
Quercetin-3-0-α-L-	D. capillipes	Stem	Phechrmeekha, Sritularak
rhamnopyranosyl-(1 \rightarrow 2)- β -			and Likhitwitayawuid,
D-xylopyranoside [190]			2012
5-Hydroxy-3-	D. devonianum	Stem	Sun et al., 2014
methoxyflavone-7 <i>-Ο</i> -[β -D-			
apiosyl-(1→6)]- β -D-			
glucoside [191]			
Isorhamnetin-3-O- β -D-	D. nobile	Stem	Zhou et al., 2017
rutinoside [192]	งกรณ์มหาวิทย	าลัย	
(<i>S</i>)-5,5',7-Trihydroxy-3',4'-	D. loddigesii	Stem	Ma et al., 2019b
dimethoxyflavanone [193]	UNGRURN UNIV	EU9111	

Figure 3 Structures of flavonoids from Dendrobium

Figure 3 Structures of flavonoids from Dendrobium (continued)

[189] Quercetin-3-O- α -L-rhamnopyranoside

R = O-Rha

[190] Quercetin-3-O- α -L-rhamnopyranosyl-(1 \rightarrow 2)- β -D-xylopyranoside R = O-Xyl-Rha

[191] 5-Hydroxy-3-methoxyflavone-7-O-[β -D-apiosyl-(1 \rightarrow 6)]- β -D-glucoside

[192] Isorhamnetin-3-O- β -D-rutinoside [193] (S)-5,5',7-Trihydroxy-3',4'-dimethoxyflavanone

Figure 3 Structures of flavonoids from *Dendrobium* (continued)

Table 3 Terpenoids from Dendrobium

Terpenoids	Plant	Plant part	Reference
Aduncin [194]	D. aduncum	Whole plant	Gawell and Leander, 1976
Amoenin [195]	D. amoenum	Whole plant	Dahmen and Leander,
			1978; Majumder, Guha and
			Sen, 1999
Amotin [196]	D. amoenum	Whole plant	Majumder, Guha and Sen,
			1999; Dahmen and
	SMI 11/2	Z	Leander, 1978
lpha-Dihydropicrotoxinin [197]	D. moniliforme	Stem	Bi, Wang and Xu, 2004
Dendrobane A [198]	D. nobile	Stem	Zhang et al., 2007a
Dendronobilin A [199]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin B [200]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin C [201]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin D [202]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin E [203]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin F [204]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin G [205]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin H [206]	D. nobile	Stem	Zhang et al., 2007b
Dendronobilin I [207]	D. nobile	Stem	Zhang et al., 2007b
	D. findlayanum	Stem	Yang et al., 2019a
Dendronobilin J [208]	D. nobile	Stem	Zhang et al., 2007a
Dendronobilin K [209]	D. nobile	Stem	Zhang et al., 2008b
Dendronobilin L [210]	D. nobile	Stem	Zhang et al., 2008b
Dendronobilin M [211]	D. nobile	Stem	Zhang et al., 2008b
Dendronobilin N [212]	D. nobile	Stem	Zhang et al., 2008b
	D. findlayanum	Stem	Yang et al., 2019a

Terpenoids	Plant	Plant part	Reference
Dendrowardol A [213]	D. wardianum	Stem	Fan et al., 2013
Dendrowardol B [214]	D. wardianum	Stem	Fan et al., 2013
Dendrowardol C [215]	D. wardianum	Stem	Fan et al., 2013
Corchoionoside C [216]	D. polyanthum	Stem	Hu et al., 2009
Crystallinin [217]	D. crystallinum	Stem	Wang et al., 2009
	D. findlayanum	Whole plant	Qin et al., 2011
Findlayanin [218]	D. findlayanum	Whole plant	Qin et al., 2011
3-Hydroxy-2-oxodendrobine	D. nobile	Stem	Wang, Zhao and Che, 1985
[219]			
Dendrobine [220]	D. nobile	Stem	Wang, Zhao and Che, 1985
	D. findlayanum	Stem	Yang et al., 2018a
2-Hydroxydendrobine [221]	D. findlayanum	Stem	Yang et al., 2018a
Findlayine A [222]	D. findlayanum	Stem	Yang et al., 2018a
Findlayine B [223]	D. findlayanum	Stem	Yang et al., 2018a
Findlayine C [224]	D. findlayanum	Stem	Yang et al., 2018a
Findlayine D [225]	D. findlayanum	Stem	Yang et al., 2018a
Dendromoniliside A [226]	D. nobile	Stem	Zhao et al., 2003
Dendromoniliside B [227]	D. moniliforme	Stem	Zhao et al., 2003
Dendromoniliside C [228]	D. moniliforme	Stem	Zhao et al., 2003
Dendromoniliside D [229]	D. moniliforme	Stem	Zhao et al., 2003
Dendronobiloside A [230]	D. nobile	Stem	Zhao et al., 2001
Dendronobiloside B [231]	D. nobile	Stem	Zhao et al., 2001
Dendronobiloside C [232]	D. nobile	Stem	Zhao et al., 2001; Ye and
			Zhao, 2002
Dendronobiloside D [233]	D. nobile	Stem	Zhao et al., 2001; Ye and
			Zhao, 2002

Terpenoids	Plant	Plant part	Reference
Dendronobiloside E [234]	D. nobile	Stem	Zhao et al., 2001; Ye and
			Zhao, 2002
Dendroside A [235]	D. moniliforme	Stem	Zhao et al., 2003
	D. nobile	Stem	Zhao et al., 2001
		Stem	Ye and Zhao, 2002
	D. findlayanum	Stem	Yang et al., 2019a
Dendroside B [236]	D. nobile	Stem	Ye and Zhao, 2002
Dendroside C [237]	D. moniliforme	Stem	Zhao et al, 2003
	D. nobile	Stem	Ye and Zhao, 2002
Dendroside D [238]	D. nobile	Stem	Ye and Zhao, 2002
Dendroside E [239]	D. nobile	Stem	Ye, Qin and Zhao, 2002
Dendroside F [240]	D. moniliforme	Stem	Ye, Qin and Zhao, 2002
Dendroside G [241]	D. nobile	Stem	Ye, Qin and Zhao, 2002
Dendrowillin A [242]	D. williamsonii	Whole plant	Yang et al., 2019b
Dendrowillin B [243]	D. williamsonii	Whole plant	Yang et al., 2019b
(-)-Picrotin [244] จุฬาล	D. williamsonii	Whole plant	Yang et al., 2019b
10 β ,12,14- CHULAL	D. findlayanum	Stem	Yang et al., 2019a
Trihydroxyaromadendrane			
10 β ,13,14-	D. findlayanum	Stem	Yang et al., 2019a
Irihydroxyaromadendrane			
Dendrofindlayanoside A [247]	D. findlayanum	Stem	Yang et al., 2019a
Dendrofindlayanoside B [248]	D. findlayanum	Stem	Yang et al., 2019a
Dendrofindlayanoside C [249]	D. findlayanum	Stem	Yang et al., 2019a
Dendrofindlayanobilin [250]	D. findlayanum	Stem	Yang et al., 2019a

Terpenoids	Plant	Plant part	Reference
(+)-(1 <i>R</i> ,2 <i>S</i> ,3 <i>R</i> ,4 <i>S</i> ,5 <i>R</i> ,6 <i>S</i> ,9 <i>R</i>)-	D. nobile	Stem	Ma et al., 2019a
3,11,12-Trihydroxypicrotoxane-			
2(15)-lactone [251]			
(-)-(1 <i>S</i> ,2 <i>R</i> ,3 <i>S</i> ,4 <i>R</i> ,5 <i>S</i> ,6 <i>R</i> ,9 <i>S</i> ,12 <i>R</i>)-	D. nobile	Stem	Ma et al., 2019a
3,11,13-Trihydroxypicrotoxane-			
2(15)-lactone [252]			
(+)-(1 <i>R</i> ,5 <i>R</i> ,6 <i>S</i> ,8 <i>R</i> ,9 <i>R</i>)-8,12-	D. nobile	Stem	Ma et al., 2019a
Dihydroxycopacamphan-3-en-	shind it a a		
2-one [253]		7	
Dendroterpene A [254]	D. nobile	Stem	Wang et al., 2019
Dendroterpene B [255]	D. nobile	Stem	Wang et al., 2019
Dendroterpene C [256]	D. nobile	Stem	Wang et al., 2019
Dendroterpene D [257]	D. nobile	Stem	Wang et al., 2019

จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

[**194**] Aduncin

[195] Amoenin

[**196**] Amotin

Figure 4 Structures of terpenoids from Dendrobium

OH

[209] Dendronobilin K

OH

OH

[206] Dendronobilin H

HO

н

[207] Dendronobilin I

HO.

HO OH

[210] Dendronobilin L [211] Dendronobilin M

[212] Dendronobilin N [213] Dendrowardol A

[**214**] Dendrowardol B

Chulalongkorn University

Figure 4 Structures of terpenoids from *Dendrobium* (continued)

anin [219] 3-Hydroxy-2-oxodendrobine

[220] Dendrobine R = H [221] 2-Hydroxydendrobine R = OH

Figure 4 Structures of terpenoids from *Dendrobium* (continued)

[233] Dendronobiloside D

[234] Dendronobiloside E

[238] Dendroside D

[236] Dendroside B R = OGlc [237] Dendroside C R = OH

0, O H١ ́ОН \cap ÓН

[**244**] (-)-Picrotin

[240] Dendroside F R = H [242] Dendrowillin A R = OH

- [241] Dendroside G R = OH
- [243] Dendrowillin B R = H

C

[245] 10 β ,12,14-Trihydroxyaromadendrane [246] 10 β ,13,14-Trihydroxyaromadendrane

Figure 4 Structures of terpenoids from *Dendrobium* (continued)

[235] Dendroside A

OGIc

ΟH

[239] Dendroside E

Figure 4 Structures of terpenoids from Dendrobium (continued)

[**256**] Dendroterpene C R = H

[**257**] Dendroterpene D R = OH

Chulalongkorn University

67

Figure 4 Structures of terpenoids from *Dendrobium* (continued)

Table 4 Miscellaneous compounds from Dendrobium

Categories and compounds	Plant	Plant part	Reference
Aliphatic acid derivatives			
Aliphatic acids [258]	D. clavatum var. aurantiacum	Stem	Chang, Lin and Chen, 2001
Aliphatic alcohols [259]	D. clavatum var. aurantiacum	Stem	Chang, Lin and Chen, 2001
Malic acid [260]	D. huoshanense	Aerial part	Chang et al., 2010
Dimethyl malate [261]	D. huoshanense	Aerial part	Chang et al., 2010
(-)-Shikimic acid [262]	D. fuscescens	Whole plant	Talapatra, Das and Talapatra, 1989
د	D. huoshanense	Aerial part	Chang et al., 2010
	D. longicornu	Stem	Hu et al., 2008a
	D. pulchellum	Stem	Chanvorachote et al., 2013
Isopentyl butyrate [263]	D. huoshanense	Aerial part	Chang et al., 2010
Dendrodevonic acid A [264]	D. devonianum	Stem	Wu et al., 2019
Dendrodevonic acid B [265]	D. devonianum	Stem	Wu et al, 2019
Benzoic acid derivatives and	d phenolic compound	ls	
3-Hydroxy-2-methoxy-5,6- dimethylbenzoic acid [266]	D. crystallinum	Stem	Wang et al., 2009
Salicylic acid [267]	D. huoshanense	Aerial part	Chang et al., 2010
	D. williamsonii	Whole plant	Yang et al., 2018b
Vanilloloside [268]	D. denneanum	Stem	Pan et al., 2012
	D. moniliforme	Stem	Zhao et al., 2003
Gallic acid [269]	D. longicornu	Whole plant	Li et al., 2009a

Categories and compounds	Plant	Plant part	Reference
Syringic acid [270]	D. crystallinum	Stem	Wang et al., 2009
Vanillic acid [271]	D. chrysotoxum	Whole plant	Li et al., 2009d
	D. williamsonii	Whole plant	Rungwichaniwat, Sritularak and Likhitwitayawuid, 2014
Protocatechuic acid [272]	D. nobile	Stem	Ye and Zhao, 2002
Antiarol [273]	D. chrysotoxum	Stem	Hu et al., 2012
Ethylhaematommate [274]	D. longicornu	Whole plant	Li et al., 2009a
<i>p</i> -Hydroxybenzaldehyde	D. devonianum	Whole plant	Sun et al., 2014
[275]	D. falconeri	Stem	Sritularak and Likhitwitayawuid, 2009
ل	D. tortile	Whole plant	Limpanit et al., 2016
	D. williamsonii	Whole plant	Yang et al., 2018b
Methyl β -orsellinate [276]	D. longicornu	Stem	Hu et al., 2008a
Tachioside [277]	D. denneanum	Stem	Pan et al., 2012
Alkyl 4'-hydroxy <i>trans</i> - cinnamates [278]	D. clavatum var. aurantiacum	Stem B188	Chang, Lin and Chen, 2001
Alkyl <i>trans</i> -ferulates [279]	D. clavatum var. aurantiacum	Stem	Chang, Lin and Chen, 2001
	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
Defuscin [280]	D. fuscescens	Whole plant	Talapatra, Das and Talapatra, 1989
	D. aurantiacum var. denneanum	Stem	Yang, Wang and Xu, 2006
<i>n</i> -Octacosyl ferulate [281]	D. aurantiacum var. denneanum	Stem	Yang, Wang and Xu, 2006

Categories and compounds	Plant	Plant part	Reference
	D. moniliforme	Stem	Bi, Wang and Xu, 2004
<i>n</i> -Triacontyl- <i>p</i> -hydroxy <i>cis</i> - cinnamate [282]	D. moniliforme	Stem	Bi, Wang and Xu, 2004
Tetratriacontanyl <i>trans-p-</i> coumarate [283]	D. williamsonii	Whole plant	Rungwichaniwat, Sritularak and Likhitwitayawuid, 2014
<i>p</i> -Hydroxyphenethyl <i>trans</i> - ferulate [284]	D. loddigesii	Stem	Ma et al., 2019b
n-Docosyl <i>trans</i> -ferulate [285]	D. longicornu	Whole plant	Li et al., 2009a
	D. williamsonii	Whole plant	Rungwichaniwat, Sritularak and Likhitwitayawuid, 2014
<i>trans</i> -Tetracosyl ferulate [286]	D. tortile	Whole plant	Limpanit et al., 2016
<i>cis</i> -Hexacosanoyl ferulate	D. tortile	Whole plant	Limpanit et al., 2016
Ferulaldehyde [288]	D. longicornu	Whole plant	Li et al., 2009
Ferulic acid [289]	D. secundum	Stem	Sritularak, Duangrak and Likhitwitayawuid, 2011
2-(p-Hydroxyphenyl) ethyl p-coumarate [290]	D. falconeri	Stem	Sritularak and Likhitwitayawuid, 2009
Dihydroconiferyl dihydro-p-	D. formosum	Whole plant	Inthongkaew et al., 2017
coumarate [291]	D. loddigesii	Stem	Ma et al., 2019b
	D. devonianum	Stem	Wu et al., 2019
	D. hainanense	Aerial part	Zhang et al., 2019

Categories and compounds	Plant	Plant part	Reference
1-[4-(β -D-	D. aurantiacum var.	Stem	Xiong et al., 2013
Glucopyranosyloxy)-3,5-	denneanum		
dimethoxyphenyl]-1-			
propanone [292]			
3-Hydroxy-1-(4-hydroxy-3,5-	D. williamsonii	Whole plant	Yang et al., 2018b
dimethoxyphenyl)-1-			
propanone [293]			
2-Hydroxy-3-(4-hydroxy-3-	D. hainanense	Aerial part	Zhang et al., 2019
methoxyphenyl)-3-			
methoxypropyl-3-(4-			
hydroxylphenyl)			
propanoate [294]			
Coniferyl alcohol [295]	D. trigonopus	Stem	Hu et al., 2008b
(E)-Coniferyl aldehyde [296]	D. hainanense	Aerial part	Zhang et al., 2019
Sinapicaldehyde [297]	D. hainanense	Aerial part	Zhang et al., 2019
Decumbic acid A [298]	D. nobile	Stem	Zhou et al., 2016
Decumbic acid B [299]	D. nobile	Stem	Zhou et al., 2016
(-)-Decumbic acid [300]	D. nobile	Stem	Zhou et al., 2016
(+)-Dendrolactone [301]	D. nobile	Stem	Zhou et al., 2016
4-(3-Hydroxyphenyl)-2-	D. nobile	Stem	Zhou et al., 2016
butanone [302]			
3-Hydroxy-1-(3-methoxy-4-	D. nobile	Stem	Zhou et al., 2016
hydroxyphenyl)-propan-1-			
one [303]			
3',4',5'-Trimethoxy	D. nobile	Stem	Zhou et al., 2016
cinnamyl acetate [304]			
Alatusol A [305]	D. hainanense	Aerial part	Zhang et al., 2019

Categories and compounds	Plant	Plant part	Reference
<i>p</i> -Hydroxyphenyl propionic	D. aphyllum	Whole plant	Chen et al., 2008a
methyl ester			
[306]			
Phloretic acid [307]	D. ellipsophyllum	Whole plant	Tanagornmeatar et al., 2014
Dihydroconiferyl alcohol	D. longicornu	Stem	Hu et al., 2008a
[308]			
Salidrosol [309]	D. chrysotoxum	Stem	Hu et al., 2012
Shashenoside I [310]	D. aurantiacum	Stem	Xiong et al., 2013
4	var. denneanum		
Syringin [311]	D. aurantiacum	Stem	Xiong et al., 2013
	var. denneanum		
cis-Melilotoside [312]	D. aurantiacum	Stem	Yang et al., 2007
	var. denneanum		
trans-Melilotoside [313]	D. aurantiacum	Stem	Yang et al., 2007
จุฬา	var. denneanum	เยาลัย	
Dihydromelilotoside [314]	D. aurantiacum	Stem	Yang et al., 2007
	var. denneanum		
Tetracosyl (<i>Z</i>)- <i>p</i> -coumarate	D. falconeri	Whole plant	Sritularak and
[315]			Likhitwitayawuid, 2009
(7 <i>5</i> ,8 <i>R</i>)-Dehydrodiconiferyl	D. nobile	Stem	Zhou et al., 2017
alcohol 9′- β -D-			
glucopyranoside [316]			
Koaburaside [317]	D. nobile	Stem	Zhou et al., 2017
Juniperoside [318]	D. nobile	Stem	Zhou et al., 2017

Categories and compounds	Plant	Plant part	Reference
Dehydrodiconiferyl alcohol-	D. nobile	Stem	Zhou et al., 2017
4- β -D-glucoside [319]			
(3R,3'S,4R,4'S)-3,3',4,4'-	D. williamsonii	Whole plant	Yang et al., 2018b
Tetrahydro-6,6'-			
dimethoxy[3,3'-bi-2H-			
benzopyran]-4,4′-diol [320]			
<i>threo-7-O-</i> Ethyl-9 <i>-O-</i> (4-	D. loddigesii	Stem	Ma et al., 2019a
hydroxyphenyl) propionyl-		1	
guaiacylglycerol [321]			
Coumarins			
Ayapin [322]	D. densiflorum	Stem	Fan et al., 2001
Coumarin [323]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum		
	D. clavatum var.	Stem	Chang, Lin and Chen, 2001
	aurantiacum		
Denthyrsin [324]	D. thyrsiflorum	Stem	Zhang et al., 2005
Scoparone [325]	D. densiflorum	Stem	Fan et al., 2001
GHULA	D. thyrsiflorum	Stem	Zhang et al., 2005
	D. williamsonii	Whole plant	Yang et al., 2018b
	D. palpebrae	Whole plant	Kyokong et al., 2019
Scopoletin [326]	D. densiflorum	Stem	Fan et al., 2001
Lignans and neolignans			
Episyringaresinol [327]	D. chrysotoxum	Stem	Hu et al., 2012
	D. longicornu	Stem	Hu et al., 2008a
	D. nobile	Stem	Zhang et al., 2008c

Categories and compounds	Plant	Plant part	Reference
Episyringaresinol 4"-O- eta -D-	D. moniliforme	Stem	Zhao et al., 2003
glucopyranoside [328]			
(-)-(7 <i>S</i> ,8 <i>R</i> ,7′ <i>E</i>)-4-Hydroxy	D. aurantiacum	Stem	Xiong et al., 2013
-3,3',5,5'-tetramethoxy-8,4'-	var. denneanum		
oxyneolign-7'-ene-7,9'-bis-			
$\mathit{O} extsf{-}eta extsf{-}D extsf{-}glucopyranoside$			
[329]			
Lyoniresinol [330]	D. chrysanthum	Stem	Ye, Zhao and Qin, 2004
(-)-Syringaresinol-4,4'-bis-O-	D. aurantiacum	Stem	Xiong et al., 2013
eta-D-glucopyranoside [331] —	var. denneanum		
Syringaresinol-4-0-D-	D. aurantiacum	Stem	Xiong et al., 2013
monoglucopyranoside	var. denneanum		
[332]			
Dendrocoumarin [333]	D. nobile	Stem	Zhou et al., 2018
Itolide A [334]	D. nobile	Stem	Zhou et al., 2018
(-)-Medioresinol [335]	D. loddigesii	Whole plant	Ito et al., 2010
จุ พา	D. nobile	Stem	Zhang et al., 2008c
(-)-Pinoresinol [336]	D. loddigesii	Whole plant	Ito et al., 2010
	D. nobile	Stem	Zhang et al., 2008c
(+)-Pinoresinol [337]	D. devonianum	Stem	Wu et al., 2019
erythro-1-(4-Ο- β -D-	D. longicornu	Stem	Hu et al., 2008a
Glucopyranosyl-3-			
methoxyphenyl)-2-[4-(3-			
hydroxypropyl)-2,6-			
dimethoxyphenoxy]-1,3-			
propanediol [338]			
Syringaresinol [339]	D. nobile	Stem	Zhang et al., 2008c

Categories and compounds	Plant	Plant part	Reference
	D. secundum	Stem	Sritularak, Duangrak and Likhitwitayawuid, 2011
	D. williamsonii	Whole plant	Yang et al., 2018b
Acanthoside B [340]	D. chrysanthum	Stem	Ye, Zhao and Qin, 2004
Liriodendrin [341]	D. brymerianum	Whole plant	Chen, Yu and Liu, 2014
	D. pulchellum	Stem	Chanvorachote et al., 2013
(-)-(8 <i>R</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	Li et al., 2014a
3,3',5,5'-tetramethoxy-8,4'-	denneanum		
oxyneolign-7'-ene-9,9'-diol			
4,9-bis- <i>O</i> - β -D-			
glucopyranoside [342]		D	
(-)-(8 <i>S</i> ,7′ <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	Li et al., 2014a
3,3',5,5'-tetramethoxy-8,4'-	denneanum		
oxyneolign-7′-ene-9,9′-diol			
4,9-bis- <i>O</i> - β -D-			
glucopyranoside [343]		R	
(-)-(8 <i>R</i> ,7' <i>E</i>)-4-Hydroxy-	D. auranticum var.	Stem	Li et al., 2014a
3,3',5,5',9'-pentamethoxy-	denneanum	ยาสย	
8,4'-oxyneolign-7'-ene-9-ol	LONGKORN UN	IVERSITY	
4,9-bis- <i>O</i> - β -D-			
glucopyranoside [344]			
Fluorenones			
Denchrysan B [345]	D. brymerianum	Whole plant	Klongkumnuankarn et al., 2015
	D. chrysotoxum	Whole plant	Li et al., 2009d
Denchrysan A [346]	D. chrysotoxum	Whole plant	Li et al., 2009d
Dendroflorin [347]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006
	var. denneanum		

Categories and compounds	Plant	Plant part	Reference
	D. brymerianum	Whole plant	Klongkumnuankarn et al., 2015
	D. palpebrae	Whole plant	Kyokong et al., 2019
Dengibsin [348]	D. aurantiacum	Stem	Yang, Wang and Xu, 2006b
	var. denneanum		
	D. chrysanthum	Stem	Yang et al., 2006a
	D. chrysotoxum	Whole plant	Li et al., 2009d
Nobilone [349]	D. brymerianum	Whole plant	Klongkumnuankarn et al., 2015
	D. nobile	Stem	Zhang et al., 2007c
الا ل	D. palpebrae	Whole plant	Kyokong et al., 2019
1,4,5-Trihydroxy-7- methoxy-9 <i>H</i> -fluoren-9-one [350]	D. chrysotoxum	Whole plant	Li et al., 2009d
2,4,7-Trihydroxy-1,5- dimethoxy-9-fluorenone [351]	D. chrysotoxum	Stem เยาลัย	Yang et al., 2004
Others			
3,6,9-Trihydroxy-3,4- dihydroanthracen-1-(2 <i>H</i>)- one [352]	D. chrysotoxum	Stem	Hu et al., 2012
Palmarumycin JC2 [353]	D. crystallinum	Stem	Wang et al., 2009
Dehydrovomifoliol [354]	D. loddigesii	Whole plant	Ito et al., 2010
2,6- Dimethoxybenzoquinone [355]	D. chryseum	Stem	Ma et al., 1998

Categories and compounds	Plant	Plant part	Reference
4-(2-Hydroxypropyl)-2(5 <i>H</i>)- furanone [356]	D. tortile	Whole plant	Limpanit et al., 2016
5,7-Dihydroxychromen-4- one [357]	D. ellipsophyllum	Whole plant	Tanagornmeatar et al., 2014
Balanophonin [358]	D. williamsonii	Whole plant	Yang et al., 2018b
Ergosta-8(9),22-diene- 3,5,6,7-tetraol [359]	D. williamsonii	Whole plant	Yang et al., 2018b
Stigmast-4-en-3 α ,6 β -diol [360]	D. williamsonii	Whole plant	Yang et al., 2018b
3 β -Hydroxy-5 α ,8 α - epidioxyergosta-6,9,22- triene [361]	D. williamsonii	Whole plant	Yang et al., 2018b
Betulin [362]	D. williamsonii	Whole plant	Yang et al., 2018b
β-Sitosterol [363]	D. williamsonii	Whole plant	Yang et al., 2018b
Daucosterol [364]	D. williamsonii	Whole plant	Yang et al., 2018b
Anosmine [365]	D. parishii ลงกรณ์มหาวิท	Whole plant	Hemscheidt and Spenser, 1991
Asiatic acid [366]	D. parishii	Whole plant	Klongkumnuankarn et al., 2015
Di- <i>p</i> - hydroxyphenylpropionic acidic- <i>p</i> -coumaric acid lactone [367]	D. chrysanthum	Whole plant	Cai et al., 2018
RF-3192C [368]	D. scabrilingue	Whole plant	Sarakulwattana et al., 2018
Crepidatumine C [369]	D. crepidatum	Stem	Xu et al., 2019
Crepidatumine D [370]	D. crepidatum	Stem	Xu et al., 2019
Crepidine [371]	D. crepidatum	Stem	Xu et al., 2019

Categories and compounds	Plant	Plant part	Reference
Isocrepidamine [372]	D. crepidatum	Stem	Xu et al., 2019
Crepidamine [373]	D. crepidatum	Stem	Xu et al., 2019

CH_3 - $(CH_2)_n$ - CH_2 -R

[258] Aliphatic acids R = COOH n = 19-31 [259] Aliphatic alcohols R = OH n = 22-32

Figure 5 Structures of miscellaneous compounds from Dendrobium

[284] *p*-Hydroxyphenethyl *trans*-ferulate

[294] 2-Hydroxy-3-(4-hydroxy-3-methoxyphenyl)-3-methoxypropyl-3-(4hydroxylphenyl) propanoate

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

Figure 5 Structures of miscellaneous compounds from Dendrobium (continued)

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

3,3',5,5'-tetramethoxy-8,4'-oxyneolign-

7'-ene-7,9'-bis-O- β -D-glucopyranoside

Figure 5 Structures of miscellaneous compounds from Dendrobium (continued)

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

[352] 3,6,9-Trihydroxy-3,4-

[353] Palmarumycin JC2 [354] Dehydrovomifoliol

dihydroanthracen-1-(2H)-one

[**359**] Ergosta-8(9),22-diene-3,5,6,7-tetraol

[**360**] Stigmast-4-en-3 α ,6 β -diol

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

[362] Betulin

[**361**] 3 β -Hydroxy-5 α ,8 α -epidioxyergosta-6,9,22-triene

[**368**] RF-3192C

ÒΗ

ΗÓ

[**369**] Crepidatumine C

N OH

[370] Crepidatumine D

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

Н

[**371**] Crepidine

[372] Isocrepidamine

[373] Crepidamine

Figure 5 Structures of miscellaneous compounds from *Dendrobium* (continued)

2. Free radical scavenging activities of Dendrobium species

Various studies indicated that numerous *Dendrobium* species provided different compounds with free radical scavenging properties. The plants and their active constituents were summarized in Table 5.

To seek the radical scavengers from *D. aurantiacum* var. denneanum, a bioguided fractionation strategy was applied in Yang et al. (2007). The *n*-butanol part manifested the highest DPPH radical scavenging activity. Subsequently, the *n*-butanol extract was further isolated by chromatographic procedures to give *cis*-melilotoside [312], trans-melilotoside [313], and dihydromelilotoside [314] with IC₅₀ of 280, 135, and 102 µg/mL for DPPH assay, respectively. In the preliminary study of Zhang et al. (2007c), EtOAc-soluble fraction, showed relevant DPPH scavenging activity, was separated to yield ten compounds. Of these, crepidatin [8], chrysotoxine [7], moscatilin [21], and dendroflorin [347] exhibited the activity higher than vitamin C in both DPPH and peroxyl radical scavenging tests. New bibenzyl derivatives were isolated from D. candidum in the studies of Li et al. (2009b); Li et al. (2009c); Li et al. (2014b). Four of these were potent DPPH radical scavengers including dendrocandins E [38], H [41], I [47], and P [54] with IC₅₀ of 15.6, 19.8, 21.3, and 22.3 μM, respectively. D. draconis, which has been used as a blood tonic, was extracted, isolated, and studied for the antioxidant activity in Sritularak, Anuwat and Likhitwitayawuid (2011). The result showed the effective DPPH radical scavenging property of 7-methoxy-9,10dihydrophenanthrene-2,4,5-triol [125] with IC₅₀ of 10.2 µM. Moscatilin [21], syringaresinol [339], 4,5,4'-trihydroxy-3,3'-dimethoxybibenzyl [25], and ferulic acid [289] isolated from *D. secundum* were reported as appreciable DPPH radical scavengers with IC₅₀ of 5.14, 11.38, 15.87, and 37.52 μ M in Sritularak, Duangrak and Likhitwitayawuid (2011), respectively. To evaluate the efficacy of *D. aphyllum* in clinical use, Yang et al. (2015) examined chemical components from D. aphyllum and assessed their antioxidant activity. Out of the tested compounds, aphyllone B [157] significantly scavenged DPPH free radical by 87.97% at 100 µg/mL. Recently, the results of Ma et al. (2019b) indicated that crepidatin [8], moscatilin [21], 4,5,4'-trihydroxy-3,3'dimethoxybibenzyl [25], gigantol [16], tristin [26], dihydroconiferyl dihydro-pcoumarate [**291**], and *p*-hydroxyphenethyl *trans*-ferulate [**284**] possessed significant DPPH scavenging capacities with the inhibition percentage ranging from 89.411 to 94.278% at 100 μ g/mL.

Scientific name	Radical scavenging compound	Assay	Reference
D. aurantiacum var. denneanum	2-glucosyloxycinnamic acid derivatives (<i>cis</i> -melilotoside [312], <i>trans</i> - melilotoside [313], dihydromelilotoside [314]	DPPH assay*	Yang et al., 2007
D. nobile	nobilin D [71], nobilin E [72], crepidatin [8], chrysotoxine [7], moscatilin [21], dendroflorin [349]	DPPH assay*	Zhang et al., 2007c
D. nobile	nobilin D [72], nobilone [351], crepidatin [8], chrysotoxine [7], moscatilin [21], gigantol [16], dendroflorin [347]	ORAC assay**	Zhang et al., 2007c
D. candidum	bibenzyl derivatives (dendrocandins C [36], D [37], E [38], F [39], G [40], H [41], I [47])	DPPH assay*	Li et al., 2009a; Li et al., 2009b; Li et al., 2009c
D. draconis	stilbene derivatives (7-methoxy-9,10- dihydrophenanthrene-2,4,5-triol [125], hircinol [118], gigantol [16])	DPPH assay*	Sritularak, Anuwat and Likhitwitayawuid, 2011
D. secundum	4,5,4'-trihydroxy-3,3'- dimethoxybibenzyl [25], moscatilin [21], syringaresinol [339], ferulic acid [289]	DPPH assay*	Sritularak, Duangrak and Likhitwitayawuid, 2011
D. candidum	bibenzyl derivatives (dendrocandins J [48], K [49], L [50], M [51], N [52], O [53], P [54], Q [55])	DPPH assay*	Li et al., 2014b

Table 5 Radical scavenging compounds from Dendrobium

Scientific name	Radical scavenging compound	Assay	Reference
D. aphyllum	phenanthrene derivative (aphyllone A	DPPH assay*	Yang et al., 2015
	[141]), bibenzyl derivatives (aphyllone		
	B [157], aphyllal C [158])		
D. parishii	asiatic acid [366], bibenzyl derivatives	DPPH assay*,	Kongkatitham et al.,
	(4,3',4'-trihydroxy-3,5-	ORAC assay**,	2018
	dimethoxybibenzyl [29], moscatilin	deoxyribose	
	[21], 4,5,4´-trihydroxy-3,3´-	assay	
	dimethoxybibenzyl [25], dendrocandin		
	E [38]), phenanthrene derivative		
	(flavanthrinin [134]), bibenzyl-		
	dihydrophenanthrene derivative ((-)-		
	dendroparishiol [161])		
D. parishii	bibenzyl-dihydrophenanthrene	RAW264.7	Kongkatitham et al.,
	derivative ((-)-dendroparishiol [161])	cells***	2018
D. palpebrae	fluorenone derivative (dendroflorin	deoxyribose	Kyokong et al., 2019
	[347])	assay,	
		RAW264.7	
		cells***	
D. loddigesii	bibenzyl derivatives (crepidatin [8],	DPPH assay*	Ma et al., 2019a
	moscatilin [21], 4,5,4´-trihydroxy-3,3´-	ខ	
	dimethoxybibenzyl [25], gigantol [16],	SITY	
	tristin [26]), dihydroconiferyl dihydro-p-		
	coumarate [291], <i>p</i> -hydroxyphenethyl		
	trans-ferulate [284], threo-7-0-ethyl-9-		
	O-(4-hydroxyphenyl) propionyl-		
	guaiacylglycerol [321]		

* 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay, **oxygen radical absorbance capacity (ORAC) assay, ***significantly decreased ROS in H_2O_2 -stimulated RAW264.7 cells and improved activity of antioxidant enzymes.

Furthermore, RAW264.7 cell, a mouse macrophage model, was utilized to evaluate isolated constituents from *D. parishii* and *D. palpebrae*. In research
conducted by Kongkatitham et al. (2018), (-)-dendroparishiol [**161**] showed the highest antioxidant activities against DPPH, peroxyl, and hydroxyl radical. Then, it was further investigated using RAW264.7 cell induced with hydrogen peroxide (H_2O_2). Noticeably, they found that (-)-dendroparishiol [**161**] attenuated the level of intracellular ROS by 65% at 50 µg/mL. Similarly, dendroflorin [**347**] which exhibited the highest activities against hydroxyl radical among isolated compounds from *D. palpebrae* was tested with RAW264.7 cell under oxidative stress in the study of Kyokong et al. (2019). The tested compound decreased the formation of intracellular ROS by more than 50% at 50 µg/mL.

Chulalongkorn University

CHAPTER III

EXPERIMENTAL

1. Source of plant materials

Dendrobium lindleyi was purchased from the Chatuchak market, Bangkok, Thailand, and identified by Assoc. Prof. Boonchoo Sritularak from Faculty of Pharmaceutical Sciences, Chulalongkorn University, together with the botanical information from The Botanical Garden Organization (2016) and Vaddhanaphuti (2005). A voucher specimen (BS-DL-092552) has been deposited at the Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University.

2. Extraction and isolation

2.1 General techniques

2.1.1 Thin-layer chromatography (TLC)

Ascending one-dimensional TLC was performed using aluminium plate coated with silica gel 60 F254 (Merck, layer thickness 0.2 mm, developing distance 6.5 cm) at room temperature. The resulting plate was detected under ultraviolet light (UV) at wavelengths of 254 nm.

2.1.2 Adsorption column chromatography

Adsorption chromatography was proceeded using silica gel 60 (Merck, No. 9385, particle size 0.040-0.063 mm) as an adsorbent. The gel was suspended and equilibrated in selected organic solvents. The slurry was then poured into a column and left for the firm packing. The sample was dissolved in an appropriate solvent and mixed with the adsorbent as much as needed. It was then ground, dried, and placed on top of the packed column. Fractions received from the column were determined by TLC.

2.1.3 Size-exclusion chromatography

Size-exclusion chromatography was carried out using Sephadex LH-20 (GE Healthcare) as an adsorbent. Column packing was performed as the same procedure of the adsorption column chromatography. The sample was dissolved in methanol and then filled on the top of the column. Methanol was used as a mobile phase. TLC was also used for the investigation of obtained fractions.

2.2 Extraction

The whole plant of *D. lindleyi* (1.2 kg) was dried and ground into fine powder. The powder was then macerated in methanol at room temperature for a week before collection of the extract. The maceration was repeated two times, all extracts were then mixed. The combined extract was filtered and evaporated under reduced pressure using rotary evaporator to give 97 g of methanol extract. The methanol extract was suspended in distilled water and partitioned with ethyl acetate (EtOAc) and *n*-butanol (*n*-BuOH), yielding 34 g of EtOAc extract, 24 g of *n*-BuOH extract, and 39 g of aqueous extract (Figure 6).

Figure 6 Extraction of Dendrobium lindleyi

2.3 Isolation

The EtOAc extract was fractioned by adsorption chromatography using a silica gel column (EtOAc-hexane, gradient) as described in section 2.1.2, yielding 10 fractions labeled as A-J (Figure 7).

2.3.1 Isolation of 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl

Adsorption chromatography (silica gel, EtOAc-hexane, gradient) was used to separate fraction G (2.6 g) to yield 8 fractions (GI-GVIII). GV (96 mg) was then separated by size-exclusion chromatography (see section 2.1.3) to give 47 mg of **compound 1** (Figure 7). This compound was identified as 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl.

2.3.2 Isolation of chrysotoxine, gigantol, and cypripedin

Fraction F (3.2 g) was divided into 13 fractions (FI-FXIII) by adsorption chromatography (silica gel, EtOAc-hexane, gradient). Fraction FVIII (140 mg) was fractionated by size-exclusion chromatography (see section 2.1.3) to yield **compound 2** (chrysotoxine, 90 mg), **compound 3** (gigantol, 20 mg) and **compound 4** (cypripedin, 25 mg) (Figure 7).

2.3.3 Isolation of moscatilin

Fraction FX (340 mg) obtained from the separation of fraction F (see section 2.3.2) was then separated by size-exclusion chromatography (see section 2.1.3) to give **compound 5** (90 mg). The compound was identified as moscatilin (Figure 7).

2.4 Solvents

Organic solvents used in the experiments were commercial grade. They were purified by distillation before use.

CHULALONGKORN UNIVERSITY

Figure 7 Isolation of the EtOAc extract from *Dendrobium lindleyi*

3. Identification of isolated compounds

3.1 General techniques

3.1.1 Mass spectrometry (MS)

Bruker micro TOF mass spectrometer (ESI-MS, Department of Chemistry, Faculty of Sciences, Mahidol University) was used for mass spectrometric analysis of isolated compounds.

3.1.2 Nuclear magnetic resonance (NMR) spectroscopy

One dimensional NMR (¹H NMR, 300 MHz and ¹³C NMR, 75 MHz) and 2 dimensional NMR spectroscopy (NOESY, HSQC and HMBC) were performed using a Bruker Avance DPX 300 MHz FT-NMR spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University) or Bruker Avance III HD/OXFORD 500 MHz FT-NMR spectrometer (Scientific and Technological Research Equipment Centre, Chulalongkorn University). Deuterated acetone (acetone- d_6) and deuterated chloroform (CDCl₃) were used as solvents. Chemical shifts were stated in ppm scale.

3.1.3 Ultraviolet (UV) spectroscopy

UV spectra were recorded by a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

3.1.4 Infrared (IR) spectroscopy

A Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University) was used for recording IR spectra.

3.2 Physical and spectral data

3.2.1 compound 1 (4,5-dihydroxy-3,3',4'-trimethoxybibenzyl)

Compound 1 was obtained as brown amorphous solid, soluble in methanol (47 mg, 0.0039% based on dried weight of whole plant).

HR-ESI-MS: m/z 327.1212 [M+Na]⁺ (calcd for C₁₇H₂₀O₅Na, 327.1208) (see Appendix A.1).

IR (film): V_{max}: 3428, 2924, 1724, 1629, 1605, 1515, 1453, 1263,

1093, 1027 cm⁻¹ (see Appendix A.2)

UV (MeOH): λ_{max} (log ϵ) 220 (4.09), 229 (4.08), 285 (3.76) nm (see

Appendix A.3)

¹H NMR: see Appendices A.4-A.6

¹³C NMR: see Appendix A.7

2D NMR (HSQC, HMBC, NOESY): see Appendices A.8-A.22

3.2.2 compound 2 (chrysotoxine)

Compound 2 was obtained as brown amorphous solid, soluble in methanol (90 mg, 0.0075% based on dried weight of whole plant).

(see Appendix B.1)

¹H NMR: see Appendix B.2

¹³C NMR: see Appendices B.3-B.4

2D NMR (HSQC, HMBC, NOESY): see Appendices B.5-B.8

3.2.3 compound 3 (gigantol)

Compound 3 was obtained as brown amorphous solid, soluble in methanol (20 mg, 0.0017% based on dried weight of whole plant).

HR-ESI-MS: *m/z* 297.1111 [M+Na]⁺ (calcd for C₁₆H₁₈O₄Na, 297.1103).

(see Appendix C.1).

¹H NMR: see Appendix C.2

¹³C NMR: see Appendix C.3

2D NMR (HSQC, HMBC, NOESY): see Appendices C.4-C.8

3.2.4 compound 4 (cypripedin)

Compound 4 was obtained as red amorphous solid, soluble in

methanol (25 mg, 0.0021% based on dried weight of whole plant).

HR-ESI-MS: m/z 307.0582 [M+Na]⁺ (calcd. for C₁₆H₁₂O₅Na, 307.0582)

(see Appendix D.1).

¹H NMR: see Appendix D.2

¹³C NMR: see Appendix D.3

2D NMR (HSQC, HMBC, NOESY): see Appendices D.4-D.7

3.2.5 compound 5 (moscatilin)

Compound 5 was obtained as brown amorphous solid, soluble in methanol (90 mg, 0.0075% based on dried weight of whole plant).

HR-ESI-MS: m/z 327.1219 [M+Na]⁺ (calcd for C₁₇H₂₀O₅Na, 327.1208)

(see Appendix E.1).

¹H NMR: see Appendix E.2

¹³C NMR: see Appendix E.3

2D NMR (HSQC, HMBC, NOESY): see Appendices E.4-E.9

4. Free radical scavenging assay

4.1 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay

DPPH is a stable free radical molecule that has a violet color. The antioxidant reacts with DPPH by transferring its electron and hydrogen atom to DPPH radical and makes DPPH in the reduced form which has a yellow color (Figure 8). To investigate the antioxidant activity, the UV absorbance at 517 nm needs to be measured after the reaction (Alam, Bristi and Rafiquzzaman, 2013; Al-Temimi, 2013; Raghavendra et al., 2013). The larger absorbance value, the stronger the scavenging activity the compound has. The result can be reported as IC₅₀ (half maximal inhibitory concentration) which is the sample concentration that can reduce DPPH by 50% (Antolovich et al., 2002). This method is one of the widely used assays for antioxidant activity determination because it is relatively fast but provides a precise result (Raghavendra et al., 2013). Furthermore, the procedure requires only simple reagents and instruments.

Figure 8 The reaction between DPPH and antioxidant (A)

4.1.1 Materials and instruments

DPPH, dimethyl sulfoxide (DMSO) and 6-hydroxy-2,5,7,8tetramethylchroman-2-carboxylic acid (Trolox) were purchased from Sigma-Aldrich (Missouri, USA). The experiment was performed using polystyrene 96-well microplates (SPL Life Sciences, Gyeonggi, Korea). Microplate reading was carried out on CLARIOstar[®] microplate reader (BMG Labtech, Ortenberg, Germany).

4.1.2 DPPH radical scavenging method

The assay was performed according to a procedure modified from the protocol of Alothman, Bhat and Karim (2009). Primarily, the samples were dissolved in 50% DMSO and diluted to give several concentrations. Each sample solution (20 μ L) was added into a 96-well microplate followed by 180 μ L of 150 μ M DPPH in methanol. The experimental plate was kept in dark and incubated at room temperature for 30 minutes. The absorbance at 517 nm was then measured by a microplate reader. Methanol, 50% DMSO and Trolox were used as a blank, a negative control, and a positive control, respectively. The percentage of inhibition was calculated according to the equation 1. Finally, the graphs between the concentration of the sample and the calculated percentage of inhibition were plotted to determine the IC₅₀ value.

% inhibition of DPPH radical =
$$\frac{(A_{neg} - A'_{neg}) - (A_{sample} - A'_{sample})}{(A_{neg} - A'_{neg})} \times 100 \quad (equation \ 1)$$

Where A_{neg} and A_{sample} are the absorbance of negative control and sample, respectively.; A'_{neg} and A'_{sample} are the absorbance of blank for negative control and sample, respectively.

4.2 Superoxide radical scavenging activity assay

Although the superoxide radical $(\bullet O_2^{-})$ is a common and less reactive radical generated in mitochondria (Phaniendra, Jestadi and Periyasamy, 2015), it causes the more reactive and dangerous ROS including hydroxyl radical (\bullet OH) and singlet oxygen $({}^{1}O_2)$ (Alam, Bristi and Rafiquzzaman, 2013). In the assay, the riboflavin-light-NBT system was utilized (Beauchamp and Fridovich, 1971). In the presence of light, the riboflavin

is generally degraded to yield the superoxide radical $(\bullet O_2^-)$ which then reacts to the NBT. Eventually, the purple-blue NBT formazan is produced. (Figure 9). The UV absorbance at 590 nm can be measured to determine the inhibition of formazan production which corresponds to the superoxide radical scavenging activity (Bagul et al., 2003).

4.2.1 Materials and instruments

Methionine, riboflavin, nitro blue tetrazolium (NBT) and Trolox were purchased from Sigma-Aldrich (Missouri, USA). Ethylenediamine tetraacetic acid (EDTA) was purchased from Merck (Darmstadt, Germany). The experiment was proceeded using polystyrene 96-well microplates (SPL Life Sciences, Gyeonggi, Korea). Microplate reading was accomplished by CLARIOstar[®] microplate reader (BMG Labtech, Ortenberg, Germany). The light used to activate the reaction was from 18-watt fluorescent LED lamp.

4.2.2 Superoxide radical scavenging activity method

The assay was carried out according to a method modified from the protocol of Bagul et al. (2003) and Anandjiwala et al. (2008). Firstly, the samples were dissolved in 30% methanol in 50 mM potassium phosphate buffer (pH 7.6) and diluted

to yield solutions with different concentrations. Then, the diluted samples and reagents were added to 96-well microplate as summarized in Table 6.

Order	Reagent	Volume	
1	50 mM potassium phosphate buffer (pH 7.6)	10 µL	
2	200 mM methionine	10 µL	
3	30 μM riboflavin	100 µL	
4	100 mM EDTA	20 µL	
5	samples	40 µL	
6	400 μM NBT	20 µL	
	Total volume	200 µL	

 Table 6 The reagents added in 96-well microplate for superoxide radical scavenging

 activity assay

For one sample, the two experimental plates were performed. One plate was exposed with the light from the 18-Watt fluorescent LED lamp for 20 seconds at room temperature to activate the reaction. The another was kept in dark and used as a blank. The absorbance at 590 nm was then measured by a microplate reader. The 30% MeOH in 50 mM potassium phosphate buffer (pH 7.6) was used as a negative control and Trolox was used as a positive control. The percentage of inhibition was calculated according to equation 2. The graphs between the concentration of the sample and the percentage of inhibition were plotted to investigate the IC₅₀ value.

% inhibition of superoxide radical =
$$\frac{(A_{neg} - A'_{neg}) - (A_{sample} - A'_{sample})}{(A_{neg} - A'_{neg})} \times 100$$
 (equation 2)

Where A_{neg} and A_{sample} are the absorbance of negative control and sample, respectively. A'_{neg} and A'_{sample} are the absorbance of blank for negative control and sample, respectively.

4.3 Oxygen radical absorbance capacity (ORAC) assay

Peroxyl radical is generally distributed throughout the body (Litescu et al., 2014). It relates to fatty acid peroxidation which is a major mechanism of cell death

caused by oxidative stress (Repetto, Semprine and Boveris, 2012). ORAC assay is the simulation of peroxyl radical production by using 2,2'-azobis(2-amidinopropane) dihydrochloride (AAPH). In the presence of heat, AAPH can be degraded to C-centred radicals which then react with an oxygen molecule to give peroxyl radical. This harmful radical can diminish fluorescent probes, for example, fluorescein (Figure 10). Hence, it has the potential to decrease the intensity and increase the degradation rate of fluorescence. In the condition that the antioxidant is present, the degradation rate is delayed (Litescu et al., 2014). This method is considerably sensitive because of the fluorescence measurement. Moreover, the result indicates both strength and time taken to inhibit the radical due to this assay eventually provides area under a curve (AUC) of fluorescence decay during a time (Cao and Prior, 1999).

Figure 10 The production of peroxyl radical from AAPH

4.3.1 Materials and instruments

AAPH and nitro blue tetrazolium (NBT) were purchased from Sigma-Aldrich (Missouri, USA). The experiment was conducted using black polystyrene 96well microplates (SPL Life Sciences, Gyeonggi, Korea). Fluorescence intensity was recorded by CLARIOstar[®] microplate reader (BMG Labtech, Ortenberg, Germany).

4.3.2 ORAC method

The test was carried out according to a method modified from the protocol of Huang et al. (2002). The samples were dissolved and diluted in the solvent containing 0.5% DMSO, 0.5% distilled water, and 20% MeOH in potassium phosphate buffer (pH 7.4) to yield solutions with desired concentrations. Reagents and samples were added into a black 96-well microplate as defined in Table 7.

 Table 7
 The reagents added in black 96-well microplate for ORAC assay

Order	Reagent	Volume			
1	Samples or Trolox	25 µL			
2	2 13.2 nM fluorescein (in potassium phosphate buffer pH 7.4)				
The microplate was incubated at 37 °C for 10 minutes					
3	240 mM AAPH (in potassium phosphate buffer pH 7.4)	25 µL			
	total volume	200 µL			

The solvent containing 0.5% DMSO, 0.5% distilled water, and 20% MeOH in potassium phosphate buffer (pH 7.4) was used as blank. After the addition of 240 mM AAPH, the fluorescence intensity was immediately measured every 90 seconds for 4 hours by the microplate reader which its parameters were previously set according to Table 8. The AUC of the fluorescence decay curve was then computed by CLARIOstar[®] software version 5.70. In this method, different dilutions of Trolox (3.125-100 μ M) were also tested by the same operation to generate Trolox standard curve which was utilized for Trolox equivalent (TE) calculation (equation 3).

		,
Parameter	Setting	

Table 8 The setting of microplate reader (CLARIOstar[®]) for ORAC assay

rurumeter	Setting	
Detection mode	fluorescence intensity	
Method	plate mode kinetic, top optic	
Optic settings	Ex-filter: excitation wavelength 483 nm	
	Em-filter: emission wavelength 530 nm	
Cycle time	90 seconds	
Number of cycles	cycles 160 cycles	
Temperature 37 ℃		

 $TE = \frac{\text{equivalent Trolox concentration (in \mu M) x MW}}{\text{sample conc (in \mu g/mL) x 1000}}$ (equation 3)

Where TE is Trolox equivalent (in mol Trolox/mol sample); equivalent Trolox concentration is the interpolated Trolox concentration (in μ M) obtained from Trolox standard curve using the net AUC result (the different between the AUC of sample and blank); MW is molecular weight of sample (in g/mol); sample conc is tested sample concentration (in μ g/mL).

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

106

CHAPTER IV RESULTS AND DISCUSSION

The dried powdered whole plant of *Dendrobium lindleyi* was extracted with MeOH. The dried MeOH extract was suspended in water and partitioned with EtOAc and *n*-BuOH to give EtOAc, *n*-BuOH, and aqueous extracts after removal of the solvents. In the screening for DPPH radical scavenging activity, the EtOAc extract exhibited more than 70% inhibition at 100 µg/mL, whereas the other extracts did not show activity. Therefore, the EtOAc extract was selected for further detailed investigation. Through chromatographic separation, five compounds were isolated, and their structures were characterized by spectroscopic methods. These compounds were then evaluated for antioxidant potential in several models.

1. Identification of isolated compounds

1.1 Identification of compound 1 (4,5-dihydroxy-3,3',4'-trimethoxybibenzyl)

The positive HR-ESI-MS showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 327.1212 (calcd. for C₁₇H₂₀O₅Na, 327.1208), suggesting the molecular formula C₁₇H₂₀O₅ (Appendix A.1).

The IR spectrum exhibited absorption bands for hydroxyl (3428 cm⁻¹), aromatic ring (2924, 1605 cm⁻¹) and methylene (1453 cm⁻¹) groups (Appendix A.2).

The UV absorption peaks at 220, 229 and 285 nm (Appendix A.3). were indicative of a bibenzyl nucleus (Zhang et al., 2007c). The ¹H NMR spectrum revealed the presence of five aromatic protons at $\delta_{\rm H}$ 6.26-6.82 ppm and three methoxy groups at $\delta_{\rm H}$ 3.85 (3H, *s*, MeO-3), 3.87 (3H, *s*, MeO-3') and 3.88 (3H, *s*, MeO-4'). The ¹³C NMR spectrum displayed signals for twelve aromatic ($\delta_{\rm C}$ 103.5-148.7), three methoxy ($\delta_{\rm C}$ 56.1, 55.9, and 55.8) and two methylene ($\delta_{\rm C}$ 37.6 and 38.0) carbons. In support of the bibenzyl skeleton, the HSQC spectrum showed cross peaks at $\delta_{\rm C}$ 38.0/ $\delta_{\rm H}$ 2.81 (C- α /H₂- α) and $\delta_{\rm C}$ 37.6/ $\delta_{\rm H}$ 2.84 (C- α '/ (H₂- α ').

In the ¹H NMR spectrum, two protons of the A ring appeared as doublets at $\delta_{\rm H}$ 6.26 (1H, J=2.0 Hz, H-2) and 6.48 (1H, J=2.0 Hz, H-6), which were correlated to C-

 α in the HMBC spectrum. The protons at $\delta_{\rm H}$ 6.69 (1H, *d*, *J*=2.0 Hz) and 6.73 (1H, *dd*, *J*=8.0, 2.0 Hz) were assigned to H-2' and H-6' of ring B, respectively from their HMBC correlations with C- α' . The H-6' proton showed *ortho*-coupling with H-5' ($\delta_{\rm H}$ 6.81, 1H d, *J* = 8.0 Hz). In order to locate the positions of the three methoxy substituents, a NOESY experiment was performed. The methoxy group at $\delta_{\rm H}$ 3.85 ppm should be placed at C-3 of ring A according to its NOESY correlation with H-2. This was confirmed from the HMBC correlations from these methoxyl protons to C-3 and from H-2 to C-3. The methoxyl group at $\delta_{\rm H}$ 3.87 should be located at C-3' of ring B based on its NOESY cross-peak with H-2'. The methoxyl group at $\delta_{\rm H}$ 3.88 should be positioned at C-4' from its NOESY correlation with H-5', and this was confirmed by the HMBC connectivities from C-4' to MeO-4' protons' and H-6'.

The HBMC spectrum was further analyzed to obtain NMR assignments for the other quaternary carbons. For example, the peak at δ_c 133.7 was assigned to C-1 from its HMBC correlations to H₂- α (δ_H 2.81) and H₂- α ' (δ_H 2.84). The carbon at δ_c 146.6 was assigned as C-3 from its HMBC 2-bond coupling with H-2 (δ_H 6.26) and 3bond couplings with HO-4 (δ_H 5.25) and MeO-3 (δ_H 3.85) protons. All of the HMBC correlations of **1** are summarized in Table 9 and the key HMBC are shown in Figure 11.

From the above spectroscopic data, **compound 1** was characterized as a new compound and assigned to be 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl [**374**].

Figure 11 Chemical structure of compound 1 [374] and key correlations of HMBC and NOESY

Position	¹ H	¹³ C	HMBC (correlation with ¹ H)
1	-	133.7	α*, α΄
2	6.26 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	103.5	6, α
3	-	146.6	3-OMe, 2*, 4-OH
4	-	130.5	2, 6, 4-OH*, 5-OH
5	-	143.7	6*, 4-OH, 5-OH*
6	6.48 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	108.6	2, α , 5-OH
1′		134.4	α, α′*, 5΄
2′	6.69 (1H, <i>d</i> , <i>J</i> = 2.0 Hz)	111.9	6', α '
3′		148.7	5′, 3′-OMe
4′		147.2	2′, 6′, 4′-OMe
5′	6.81 (1H, <i>d</i> , <i>J</i> = 8.0 Hz)	111.2	-
6′	6.73 (1H, <i>dd</i> , <i>J</i> = 8.0, 2.0 Hz)	120.3	2', Q '
α	2.81 (2H, <i>m</i>)	38.0	Q ′*, 2, 6
α	2.84 (2H, m)	37.6	α*, 2΄, 6΄
MeO-3	3.85 (3H, <i>s</i>)	56.1	-
MeO-3'	3.87 (3H, <i>s</i>)	55.9	-
MeO-4'	3.88 (3H, <i>s</i>)	55.8	- Y
HO-4	5.25 (1H, <i>s</i>)	-	-
HO-5	5.28 (1H, <i>s</i>)	-	-

Table 9 1 H NMR (500 MHz) and 13 C NMR (125 MHz) spectral data of compound 1 in CDCl $_3$

*Two-bond coupling

1.2 Identification of compound 2 (chrysotoxine)

The positive HR-ESI-MS demonstrated a sodium-adduct molecular ion $[M+Na]^+$ at m/z 341.1366 (calcd. for C₁₈H₂₂O₅Na, 341.1365), suggesting the molecular formula C₁₈H₂₂O₅ (Appendix B.1).

The ¹H NMR spectrum exhibited five aromatic protons at $\delta_{\rm H}$ 6.48-6.83 ppm, four methylene protons at $\delta_{\rm H}$ 2.81 ppm (4H, *s*, H₂- α , H₂- α') and four methoxy groups at $\delta_{\rm H}$ 3.75 ppm (6H, *s*) and 3.76 ppm (6H, *s*). Through comparison with the spectral data of **compound 1**, this isolated compound was suggested as one of the bibenzyls. In the HSQC spectrum, $\delta_{\rm C}$ 38.8 ppm (C- α) and 38.4 ppm (C- α') connected with H₂- α and H₂- α' , respectively.

The HMBC spectrum presented the correlation of C- α and C- α' with four aromatic protons at $\delta_{\rm H}$ 6.48 (2H, *s*, H-2, H-6), 6.71 (1H, *dd*, 1.8, 8.1, H-6'), and 6.80 (1H, br *s*, H-2'). The cross peaks of the methylene protons (H₂- α , H₂- α') and the four aromatic protons from NOESY strengthened these positions. For H-6', the coupling constants implied the *meta*-coupling (*J*=1.8) of H-2' and the *ortho*-coupling (*J*=8.1) of H-5' ($\delta_{\rm H}$ 6.82, d, 8.1).

According to NOESY spectrum, the first and the second methoxy groups were positioned at C-3 and C-5 due to the cross peaks of MeO-3 and MeO-5 ($\delta_{\rm H}$ 3.76, 6H, *s*) with H-2 and H-6 ($\delta_{\rm H}$ 6.48). While the third and the fourth methoxy groups were placed at C-3' and C-4' because MeO-3' and MeO-4' ($\delta_{\rm H}$ 3.75, 6H, *s*,) correlated with H-2' ($\delta_{\rm H}$ 6.80) and H-5' ($\delta_{\rm H}$ 6.82). These findings led to the symmetry of ring A which was supported by a singlet peak of the two protons at $\delta_{\rm H}$ 6.48 (2H, *s*, H-2, H-6).

The HSQC spectrum illustrated the correlative protons with C-2 and C-6 (δ_{c} 106.9), C-2' (δ_{c} 113.6), C-5' (δ_{c} 112.9), C-6' (δ_{c} 121.2), MeO-3 and MeO-5 (δ_{c} 56.6), 3'-OMe and 4'-OMe (δ_{c} 56.2 and 56.0).

The HMBC spectrum was also used to define the peaks of 13 C NMR spectrum. The peak at $\delta_{\rm C}$ 133.1 was identified as C-1 because its relationships with H-

2, H-6 ($\delta_{\rm H}$ 6.48), H- α , and H- α' ($\delta_{\rm H}$ 2.81). The carbon at $\delta_{\rm C}$ 148.5 was determined as C-3 and C-5 due to its correlations with H-2, H-6 ($\delta_{\rm H}$ 6.48), MeO-3, and MeO-5 ($\delta_{\rm H}$ 3.76). The peak at $\delta_{\rm C}$ 135.1 was defined as C-4 because of its correlations with H-2 and H-6 ($\delta_{\rm H}$ 6.48). The carbon at $\delta_{\rm C}$ 135.5 was specified as H-1' due to its correlations with H-5 ($\delta_{\rm H}$ 6.82), H-2' ($\delta_{\rm H}$ 6.80), H- α , and H- α' ($\delta_{\rm H}$ 2.81). The peak at $\delta_{\rm C}$ 148.6 was determined as C-3' based on its relationships with MeO-3' ($\delta_{\rm H}$ 3.75). The peak at $\delta_{\rm C}$ 150.2 was identified as C-4' because it correlated with H-2' ($\delta_{\rm H}$ 6.80), H-6' ($\delta_{\rm H}$ 6.71), and MeO-4' ($\delta_{\rm H}$ 3.75). These HMBC correlations were illustrated in Figure 12.

As per the spectroscopic evidence and the comparison of ¹H and ¹³C NMR spectra with those of Ono et al. (1995) (Table 10), **compound 2** was defined as chrysotoxine [**7**], a bibenzyl compound, which was previously discovered from *Dendrobium* plants including *D. pulchellum* (Chanvorachote et al., 2013).

Figure 12 Chemical structure of compound 2 [7] and key correlations of HMBC and NOESY

Position	Compound 2		Chrysotoxine ^a	
	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	-	133.1	-	132.8
2, 6	6.48 (2H, <i>s</i>)	106.9	6.36 (2H, <i>s</i>)	105.2
3, 5	-	148.5	-	146.8
4	- 	135.1	-	132.8
α	2.81 (4H, <i>s</i>)	38.4	2.83 (4H, <i>s</i>)	38.3***
α	α 2.81 (4H, s) 38.8 2.83		2.83 (4H, <i>s</i>)	37.8***
1′	<i>_</i> ///	135.5	<u> </u>	134.3
2′	6.80 (1H, br <i>s</i>)	113.6	6.66 (1H, <i>d</i> , 1.8)	111.9*
3′		148.6	a –	147.2
4′		150.2	-	148.7
5′	6.82 (1H, <i>d</i> , 8.1)	112.9	6.79 (1H, <i>d</i> , 8.1)	111.2*
6′	6.71 (1H, <i>dd</i> , 1.8, 8.1)	121.2	6.70 (1H, <i>dd</i> , 1.8, 8.1)	120.4
MeO-3, MeO-5	3.76 (6H, <i>s</i>)	56.6	3.84 (6H, <i>s</i>)*	56.2
MeO-3′	3.75 (3H, <i>s</i>)	56.2*	3.85 (3H, <i>s</i>)*	55.9**
MeO-4'	3.75 (3H, <i>s</i>)	56.0*	3.84 (3H, <i>s</i>)*	55.8**

Table 10 ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of compound 2 in acetone- d_6 and ¹H NMR (500 MHz) and ¹³C NMR (100 MHz) of chrysotoxine in CDCl₃

^a (Ono et al., 1995), *, **, *** Value in the same column are interchangeable

1.3 Identification of compound 3 (gigantol)

The positive HR-ESI-MS showed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 297.1111 (calcd. for C₁₆H₁₈O₄Na, 297.1103), suggesting the molecular formula C₁₆H₁₈O₄ (Appendix C.1).

The ¹H NMR spectrum represented six protons in aromatic rings at $\delta_{\rm H}$ 6.21-6.81 ppm, four methylene protons at $\delta_{\rm H}$ 2.78 ppm (4H, *s*, H₂- α H₂- α') and two methoxy substitutions at $\delta_{\rm H}$ 3.70 ppm (3H, *s*) and 3.798 ppm (3H, *s*). In comparison to the chemical structure of **compound 1**, bibenzyl skeleton was suggested as a core structure of **compound 3**.

In the HSQC spectral data, there is a correlation peak of methylene protons $(H_2-\alpha \text{ and } H_2-\alpha')$ and methylene carbons at δ_c 37.1 ppm (C- α') and 38.2 ppm (C- α). The HMBC spectrum revealed the correlation of C- α and C- α' with four aromatic protons at δ_H 6.30 (1H, *t*, 2.1, H-2), δ_H 6.31 (1H, *t*, 2.1, H-6), 6.66 (1H, *dd*, 1.8, 8.1, H-6'), and 6.81 (1H, *d*, 1.8, H-2'). Furthermore, NOESY spectrum supported these positions by showing the cross peaks of the methylene protons (H₂- α , H₂- α') and the aromatic protons (H-2, H-6, H-2', H-6'). For the position of H-6', the coupling constants presented the *meta*-coupling (*J*=1.8) of H-2' and the *ortho*-coupling (*J*=8.1) of H-5' (δ_H 6.73, *d*, 8.1, H-5'). At δ_H 6.24 (*t*, 2.1), the coupling constant indicated H-4 position due to two *meta*-couplings (*J*=2.1) of H-2 and H-6.

The NOESY displayed the relationship between the methoxyl protons at $\delta_{\rm H}$ 3.71 (3H, *s*, MeO-3) with H-2 ($\delta_{\rm H}$ 6.30) and H-4 ($\delta_{\rm H}$ 6.31). Hence, the methoxy groups at $\delta_{\rm H}$ 3.71 was positioned at C-3. In the same manner, the second methoxy group 3.80 (3H, *s*, MeO-3') was placed at C-3' due to its NOESY correlation with H-2' ($\delta_{\rm H}$ 6.81).

The HSQC was used to define ¹³C NMR peaks which indicated 3-OMe (δ_{c} 54.4), 3'-OMe (δ_{c} 55.3), C-4 (δ_{c} 98.8), C-6 (δ_{c} 105.4), C-2 (δ_{c} 108.0), C-2' (δ_{c} 112.0), C-5' (δ_{c} 114.7), and C-6' (δ_{c} 120.7).

The HMBC spectral data was applied to define ¹³C NMR. The carbon at $\delta_{\rm C}$ 144.7 was indicated as C-1 because of its correlations with H₂- α' ($\delta_{\rm H}$ 2.78). The carbon at $\delta_{\rm C}$ 161.0 was identified as C-3 due to its correlations with MeO-3 ($\delta_{\rm H}$ 3.71), H-2 ($\delta_{\rm H}$ 6.30), and H-4 ($\delta_{\rm H}$ 6.24). The carbon at $\delta_{\rm C}$ 158.4 was defined as C-5 because of its relationship with H-4 ($\delta_{\rm H}$ 6.24). The carbon at $\delta_{\rm C}$ 133.2 was specified as C-1' based on its correlations with H-5' ($\delta_{\rm H}$ 6.73) and H₂- α ($\delta_{\rm H}$ 2.78). The carbon at $\delta_{\rm C}$ 147.2 was identified as C-3' because it related to MeO-3' ($\delta_{\rm H}$ 3.80) and H-5' ($\delta_{\rm H}$ 6.73). The peak at $\delta_{\rm C}$ 144.3 was defined as C-4' due to its correlations with H-2' ($\delta_{\rm H}$ 6.81) and H-6' ($\delta_{\rm H}$ 6.66). These HMBC correlations were shown in Figure 13.

According to the spectroscopic information and the comparison of ¹H and ¹³C NMR data with that of Klongkumnuankarn et al. (2015) (Table 11), **compound 3** was proposed as gigantol [**16**], a compound belongs to bibenzyl group, which was previously found in genus *Dendrobium*, for example, *D. draconis* (Sritularak, Anuwat and Likhitwitayawuid, 2011), *D. venustum* (Sukphan et al., 2014), *D. brymerianum* (Klongkumnuankarn et al., 2015), and *D. formosum* (Inthongkaew et al., 2017).

Figure 13 Chemical structure of compound 3 [16], and key correlations of HMBC and NOESY

Position	Compound 3		Gigantolª	
FOSICION	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}
1	-	144.7	-	145.4
2	6.30 (1H, <i>t</i> , 2.1)	108.0	6.22 (1H, <i>t</i> , 2.0)	108.8
3	-	161.0	-	159.1
4	6.24 (1H, <i>t</i> , 2.1)	98.8	6.28 (1H, <i>t</i> , 2.0)	99.6
5	-	158.4	- >	161.7
6	6.31 (1H, <i>t</i> , 2.1)	105.4	6.30 (1H, <i>t</i> , 2.0)	106.2
α	2.78 (4H, s)	38.2	2.78 (4H, m)	39.0
α	2.78 (4H, <i>s</i>)	37.1	2.78 (4H, m)	37.9
1′	- //93	133.2	-	134.0
2′	6.81 (1H, <i>d</i> , 1.8)	112.0	6.79 (1H, <i>d</i> , 1.5)	115.4
3′	R	147.2	-	147.9
4′	-	144.3	-	145.1
5′	6.73 (1H, <i>d</i> , 8.1)	นั้ม114.7 ว ท	6.69 (1H, <i>d</i> , 8.0)	112.8
6′	6.66 (1H, <i>dd</i> , 8.1, 1.8)	120.7	6.64 (1H, <i>dd</i> , 8.0, 1.5)	121.5
MeO-3	3.71 (3H, <i>s</i>)	54.4	3.69 (3H, <i>s</i>)	55.2
MeO-3'	3.80 (3H, <i>s</i>)	55.3	3.78 (3H, <i>s</i>)	56.0

Table 11 1 H NMR (300 MHz) and 13 C NMR (75 MHz) spectral data of compound 3 inacetone- d_{6} and 1 H NMR (500 MHz) and 13 C NMR (125 MHz) of gigantol in acetone- d_{6}

^a (Klongkumnuankarn et al., 2015)

1.4 Identification of compound 4 (cypripedin)

The positive HR-ESI-MS displayed a sodium-adduct molecular ion $[M+Na]^+$ at m/z 307.0582 (calcd. for C₁₆H₁₂O₅Na, 307.0582), suggesting the molecular formula C₁₆H₁₂O₅ (Appendix D.1).

The ¹H NMR spectrum exhibited five aromatic protons at $\delta_{\rm H}$ 6.21-9.28 ppm, and two methoxyl groups at $\delta_{\rm H}$ 3.93 ppm (3H, *s*) and 3.94 ppm (3H, *s*). Unlike the spectrum of **compound 1-3**, this spectrum did not show the peak of methylene proton. After calculation of degree of unsaturation which equal to 11, the two unsaturations belonged to two carbonyl carbons which appeared in the ¹³C NMR spectrum at $\delta_{\rm c}$ 181.2 (C-4) and 189.1 (C-1).

The other nine unsaturations were proposed as a phenanthrene ring containing three closed rings and six double bonds for an aromatic system. Thus, this compound was suggested as a phenanthrenequinone structure which was regularly found in *Dendrobium* species. These findings were confirmed by the presence of aromatic proton peaks at high chemical shift due to deshielding of a large anisotropic field produced from an extended aromatic system (Pavia et al., 2009).

The HMBC spectrum established the correlation of the carbonyl carbon C-1 (δ_c 181.2) with aromatic protons H-3 (δ_H 6.21, 1H, *s*) and H-10 (δ_H 8.097, 1H, *d*, 9.0). The NOESY spectrum exhibited the correlation of H-3 with methoxyl proton at δ_H 3.93 (2-OMe). Therefore, the first methoxy group was located at C-2. The ¹H NMR indicated the H-9 position (δ_H 8.38, 1H, d, 9.0) which coupled with H-10 because of their similar coupling constants (*J*=9.0).

The second methoxy group (δ_{H} 3.94, MeO-8) was located at C-8 based on the HMBC correlations of C-8 (δ_{C} 141.1) with MeO (δ_{H} 3.94, MeO-8), H-9 (δ_{H} 8.38) and H-6 (δ_{H} 7.44).

Because of the absence of the cross peak of the methoxy group (δ_{H} 3.492, 3H, s, 8-OMe) with the other pair of protons in the NOESY spectrum, these aromatic protons were suggested to place at the position that was not adjacent to the methoxy.

Consequently, another couple of protons with the same coupling constant values (J=9.6) were positioned as H-5 ($\delta_{\rm H}$ 9.28, 1H, d, 9.6) and H-6 ($\delta_{\rm H}$ 7.44, 1H, d, 9.6, H-6).

The HSQC spectrum (Figure 60) presented the correlative protons with aromatic carbons at C-3 (δ_{c} 111.9), C-5 (δ_{c} 126.2), C-6 (δ_{c} 123.5), C-9 (δ_{c} 127.2), C-10 (δ_{c} 112.7), MeO-8 (δ_{c} 61.5), and MeO-2 (δ_{c} 56.7).

Lastly, the HMBC correlations were also used to identify the peaks of ¹³C NMR. The peak at δ_c 159.6 was defined as C-2 due to its correlations with H-3 (δ_{H} 6.21) and MeO-2 (δ_{H} 3.93). The carbon at δ_c 128.3 was defined as C-4a because of its connections with H-10 (δ_{H} 8.10) and H-3 (δ_{H} 6.21). The carbon at δ_c 125.8 was indicated as C-4b because it correlated with H-6 (δ_{H} 7.44) and H-9 (δ_{H} 8.38). The peak at δ_c 149.5 was identified as C-7 due to its relationship with H-5 (δ_{H} 9.28) and H-6 (δ_{H} 7.44). The peak at δ_c 134.0 was defined as C-8a because of its cross peaks with H-10 (δ_{H} 8.10) and H-5 (δ_{H} 9.28). The carbon at δ_c 130.0 was determined as C-10a due to it corelated with H-9 (δ_{H} 8.38). These HMBC correlations were illustrated in Figure 14.

In accordance with the spectroscopic evidence and the comparison of ¹H and ¹³C NMR spectra with those of Wattanathamsan et al. (2018) (Table 12), **compound 4** was identified as cypripedin [**92**], a phenanthrenequinone derivative, which was previously extracted from *Dendrobium* genus including *D. densiflorum* (Wattanathamsan et al., 2018; Fan et al., 2001) and *D. moniliforme* (Kim et al., 2018).

Figure 14 Chemical structure of compound 4 [92] and key correlations of HMBC and NOESY

Position	Compound	14	Cypripedin ^a	
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c
1	-	181.2	-	181.2
2	-	159.6	-	159.6
3	6.21 (1H, <i>s</i>)	111.9	6.20 (1H, s)	111.9
4	-	189.1	-	189.1
4a		128.3	-	128.3
4b	8	125.8	-	125.7
5	9.28 (1H, <i>d</i> , 9.6)	126.2	9.27 (1H, <i>d</i> , 9.6)	126.2
6	7.44 (1H, <i>d</i> , 9.6)	123.5	7.43 (1H, <i>d</i> , 9.6)	123.4
7		149.5	-	149.5
8	1	141.1	-	141.1
8a	-	134.0	-	134.0
9	8.38 (1H, <i>d</i> , 9.0)	127.2	8.37 (1H, <i>d</i> , 9.0)	127.2
10	8.10 (1H, <i>d</i> , 9.0)	122.7	8.09 (1H, <i>d</i> , 9.0)	122.7
10a	จุฬาลงกรณมห	130.0	£	130.0
MeO-8	3.94 (3H, <i>s</i>)	61.5	3.94 (3H, <i>s</i>)	61.5
MeO-2	3.93 (3H, <i>s</i>)	56.7	3.93 (3H, <i>s</i>)	56.7

Table 12 $^1\!{\rm H}$ NMR (300 MHz) and $^{13}\!{\rm C}$ NMR (75 MHz) spectral data of compound 4 and cypripedin in acetone- d_6

^a (Wattanathamsan et al., 2018)

1.5 Identification of compound 5 (moscatilin)

The positive HR-ESI-MS demonstrated a sodium-adduct molecular ion $[M+Na]^+$ at m/z 327.1219 (calcd. for $C_{17}H_{20}O_5Na$, 327.1208), suggesting the molecular formula $C_{17}H_{20}O_5$ (Appendix E.1).

The ¹H NMR spectrum illustrated five aromatic protons at $\delta_{\rm H}$ 6.49-6.79 ppm, four methylene protons at $\delta_{\rm H}$ 2.80 ppm (4H, *s*, H₂- α H₂- α) and three methoxy groups at $\delta_{\rm H}$ 3.77 ppm (6H, s) and 3.79 ppm (3H, *s*). These findings, along with the comparison with those of **compound 1**, were proposed as a bibenzyl derivative. In the HSQC spectrum, H₂- α and H₂- α demonstrated correlation peaks with $\delta_{\rm C}$ 37.6 ppm (C- α) and 38.2 ppm (C- α), respectively.

The HMBC spectrum disclosed the correlation of C- α and C- α ' with four aromatic protons including H-2, H-6 ($\delta_{\rm H}$ 6.49, 2H, *s*), H-2' ($\delta_{\rm H}$ 6.79, 1H, *d*, 1.8), and H-6' ($\delta_{\rm H}$ 6.65, 1H, *dd*, 8.1, 1.8). These positions were also supported by the cross peaks of the methylene protons and the aromatic protons from NOESY. For H-6' position, the coupling constants indicated the *meta*-coupling (*J*=1.8) of H-2' and the *ortho*-coupling (*J*=8.1) of H-5' ($\delta_{\rm H}$ 6.74, *d*, 8.1).

The NOESY spectral data exhibited the relationship of H-2 and H-6 ($\delta_{\rm H}$ 6.49) with methoxyl protons at $\delta_{\rm H}$ 3.77 (6H, MeO-3, MeO-5), therefore, the two methoxy groups were placed at C-3 and C-5. The data also showed the correlations of H-2′ ($\delta_{\rm H}$ 6.79) with methoxyl protons at $\delta_{\rm H}$ 3.79 (3H, MeO-3′). As a result, the third methoxy group ($\delta_{\rm H}$ 3.79, 3H, MeO-3′) was placed at C-3′. These conclusions resulted in the symmetric structure of ring A which was encouraged by a singlet peak of the six methoxyl protons at $\delta_{\rm H}$ 3.77.

The HSQC spectrum displayed the correlative protons with three methoxyl carbons at $\delta_{\rm C}$ 55.3 (3'-OMe) and $\delta_{\rm C}$ 55.7 (3-OMe, 5-OMe) and aromatic carbons at $\delta_{\rm C}$ 106.0 (C-2 and C-6), 112.2 (C-2'), 114.7 (C-5') and 120.8 (C-6').

The HMBC was used to defined ¹³C NMR. The carbon at δ_c 132.4 was specified as C-1 because of its correlations with H-2, H-6 (δ_H 6.49), and H₂- α' (δ_H 2.80). The carbon at δ_c 147.7 was defined as C-3 and C-5 due to the correlations with H-2, H-6 (δ_H 6.49), MeO-3, and MeO-5 (δ_H 3.77). The carbon at δ_c 134.1 was identified as C-4 because it correlated with H-2, and H-6 (δ_H 6.49). The carbon at δ_c 133.4 was determined as C-1' due to its relationships with H-5' (δ_H 6.74) and H₂- α (δ_H 2.80). The peak at δ_c 147.2 was defined as C-3' based on the correlations with MeO-3' (δ_H 3.79) and H-5' (δ_H 6.74). The peak at δ_c 144.7 was defined as C-4' because it correlated with H-2' to the correlations with MeO-3' (δ_H 3.79) and H-5' (δ_H 6.79) and H-6' (δ_H 6.65). The key HMBC correlations were shown in Figure 15.

In accordance with the spectroscopic data and comparison of ¹H and ¹³C NMR spectra with those in Klongkumnuankarn et al. (2015) (Table 13), **compound 5** was identified as moscatilin **[21]**, a bibenzyl compound, which was previously isolated from several *Dendrobiums* including *D. moscatum* (Majumder and Sen, 1987), *D. nobile* (Miyazawa et al., 1999), *D. secundum* (Sritularak, Duangrak and Likhitwitayawuid, 2011), *D. pulchellum* (Chanvorachote et al., 2013), and *D. brymerianum* (Klongkumnuankarn et al., 2015).

Figure 15 Chemical structure of compound 5 [21] and key correlations of HMBC and NOESY

Position	Compound 5	j	Moscatilin ^a	
i contoni	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ_{c}	$\delta_{\scriptscriptstyle H}$ (mult., J in Hz)	δ _c
1	-	132.4	-	133.1
2, 6	6.49 (2H, <i>s</i>)	106.0	6.48 (2H, <i>s</i>)	106.7
3, 5	-	147.7	-	148.3
4	\{{\(b)}e_{-}	134.1	-	134.8
α	2.80 (4H, s)	38.2	2.78 (4H, <i>m</i>)	38.3
α	2.80 (4H, <i>s</i>)	37.6	2.78 (4H, <i>m</i>)	38.8
1′		133.4	<u> </u>	134.1
2′	6.79 (1H, <i>d</i> , 1.8)	112.2	6.78 (1H, <i>d</i> , 2.0)	112.9
3′		147.2	-	147.9
4′	A CLEANER D	144.7	-	145.3
5′	6.74 (1H, <i>d</i> , 8.1)	114.7	6.75 (1H, <i>d</i> , 8.0)	115.4
6′	6.65 (1H, <i>dd</i> , 8.1, 1.8)	120.8	6.64 (1H, <i>dd</i> , 8.0, 2.0)	121.6
MeO-3, MeO-5	3.77 (6H, s)	55.7 g	ເລັຍ 3.75 (6H, s)	56.5
MeO-3'	GH 3.79 (3H, s)	55.3	RSIT 3.76 (3H, <i>s</i>)	56.1

Table 13 ¹H NMR (300 MHz) and ¹³C NMR (75 MHz) spectral data of **compound 5** in acetone- d_6 and ¹H NMR (500 MHz) and ¹³C NMR (125 MHz) of moscatilin in acetone- d_6

^a (Klongkumnuankarn et al., 2015)

2. Free radical scavenging activities

Only ethyl acetate extract exhibited DPPH radical scavenging activity by more than 70% inhibition in the preliminary test. Then, the antioxidant activity of all isolated compounds from the extract was determined using three different methods comprising DPPH assay, superoxide radical scavenging activity assay, and ORAC assay.

In the DPPH assay, five dilutions of each sample were tested for IC_{50} calculation. According to Figure 16, the bar charts represent the inhibition percentages of each concentration. All compounds manifested concentration-dependent inhibition.

The IC₅₀ values were stated in Table 14. Three known bibenzyls, chrysotoxine (compound 2, [7]), gigantol (compound 3, [16]), and moscatilin (compound 5, [21]), exhibited IC₅₀ values of 35.40, 31.51, and 38.00 μ M, respectively. Chrysotoxine (compound 2, [7]) and gigantol (compound 3, [16]) were significantly stronger than Trolox. While the activity of moscatilin (compound 5, [21]) was equivalent to that of Trolox. These findings were consistent with the results of Song et al. (2010); Sritularak, Anuwat and Likhitwitayawuid (2011); Sritularak, Duangrak and Likhitwitayawuid (2011). The new compound (4,5-dihydroxy-3,3',4'-trimethoxybibenzyl, compound 1, [374]) showed the IC₅₀ value of 91.28 μ M and cypripedin (compound 4, [92]), the only one phenanthrene, demonstrated the lowest inhibitory activity with the IC₅₀ value of 340.49 μ M.

CHULALONGKORN UNIVERSITY

Figure 16 Concentration-dependent DPPH radical scavenging activity of **compound 1**, chrysotoxine, gigantol, cypripedin, moscatilin, and Trolox.

On.

Compound	IC ₅₀ (μ M) \pm SD
4,5-dihydroxy-3,3',4'-trimethoxybibenzyl (compound 1, [374])	91.28 ± 2.90
chrysotoxine (compound 2 , [7])	35.40 ± 0.71*
gigantol (compound 3 , [16])	31.51±0.64*
cypripedin (compound 4 , [92])	340.49 ± 5.14
moscatilin (compound 5 , [21])	38.00 ± 0.31
Trolox	39.11 ± 0.48

	Table	14 IC ₅₀	values of	DPPH ra	dical scav	enging a	activity
--	-------	---------------------	-----------	---------	------------	----------	----------

*significantly stronger than Trolox (p<0.05)

To evaluate the inhibitory activity against superoxide radicals, the assay of NBT formazan in the riboflavin-light-NBT system was used. Figure 17 displays % inhibition

values of each dilution and Table 15 presents the IC₅₀ values. Among the isolated agents, cypripedin (**compound 4**, [**92**]), which inhibited only 39.64% of superoxide radical at 351.79 μ M, is the least competent antioxidant. Expectedly, the other four substances inhibited the radical in a concentration dependent manner. Gigantol (**compound 3**, [**16**]) revealed a considerable effect with an IC₅₀ value of 162.44 μ M. Interestingly, 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl (**compound 1**, [**374**]), chrysotoxine (**compound 2**, [**7**]), and moscatilin (**compound 5**, [**21**]) were approximately 3-fold more potent than Trolox (IC₅₀ 285.56 μ M).

Figure 17 Concentration-dependent superoxide radical scavenging activity of **compound 1**, chrysotoxine, gigantol, moscatilin, and Trolox.

Compound	IC ₅₀ (µM) 土 SD
4,5-dihydroxy-3,3′,4′-trimethoxybibenzyl (compound 1 , [374])	92.91 ± 9.68*
chrysotoxine (compound 2 , [7])	113.83 ± 4.91*
gigantol (compound 3 , [16])	162.44 ± 12.69*
cypripedin (compound 4 , [92])	> 351.79 ^ª
moscatilin (compound 5 , [21])	$101.40 \pm 5.14*$
Trolox	285.56 ± 3.03

Table 15 IC₅₀ values of superoxide radical scavenging activity

*significantly stronger than Trolox (p<0.05); ^acypripedin (**compound 4**, [**92**]) at 351.79 μ M (100 μ g/mL) exhibits only 39.64% inhibition.

The radical absorbance capacity was measured by ORAC assay. The fluorescence signal curves of Trolox have shown in Figure 18A. The AUCs of 3.125-100 µM Trolox were plotted for the Trolox standard curve (Figure 18B). The fluorescence signal curves of isolated compounds have shown in Figure 19. The net AUC values (the different between the AUC of sample and blank) were shown as the dark areas. The activity was expressed in TE (mol Trolox equivalent/mol sample) (Table 16). Surprisingly, all five compounds were significantly more powerful than Trolox. Especially gigantol (compound 3, [16]), it manifested 14.26 times more potent than Trolox. While TE values of 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl, (compound 1, [374]), chrysotoxine (compound 2, [7]), and moscatilin (compound 5, [21]), were 2.89, 4.32, and 6.10 mol Trolox equivalent/mol sample, respectively. Similar to the DPPH tests, cypripedin (compound 4, [92]), possessed the least potential with TE only 1.75 mol Trolox equivalent/mol sample.

Figure 18 Signal curve for different Trolox concentrations (A) and Trolox standard curve (B)

Compound	TE (mol Trolox/mol sample) \pm SD
4,5-dihydroxy-3,3',4'-trimethoxybibenzyl (compound 1, [374])	2.89 ± 0.32*
chrysotoxine (compound 2, [7])	4.32 ± 0.24*
gigantol (compound 3 , [16])	14.26 ± 0.27*
cypripedin (compound 4, [92])	1.75 ± 0.14*
moscatilin (compound 5 , [21])	6.10 ± 0.28*
Trolox จุฬาลงกรณ์มหา	วิทยาลัย 1

Table 16 Trolox equivalent (TE) values of superoxide radical scavenging activity

*significantly stronger than Trolox (p<0.05)

Figure 19 Signal curve for compound 1, chrysotoxine, gigantol, cypripedin, and moscatilin

Several reactive oxygen species are involved in oxidative stress and human diseases (Alam, Bristi and Rafiquzzaman, 2013; Kontoghiorghes and Kontoghiorghe, 2019). Accordingly, the evaluation of the antioxidant activity against the different reactive oxygen species strengthens the result and accomplishes the practical conclusion.

Overall tests, the phenanthrene derivative, cypripedin (**compound 4**, [**92**]), was unanimously defined as a poor radical scavenger, nevertheless, there was a report that

some phenanthrene exhibited considerable activity, for example, 2,4,8-trimethoxy-3,7phenanthrenediol isolated from *Dioscorea communis* showed DPPH radical scavenging ability comparable to that of Trolox. In the same experiment, chrysotoxene (2,3,4,8tetramethoxy-7-phenanthrenol), conversely, displayed poor scavenging activity because of the substitution of 3-methoxy instead of 3-hydroxy (Boudjada et al., 2019). The incompetence of chrysotoxene from *D. communis* and cypripedin (compound 4, [92]) from D. lindleyi might be explained by the hypothesis that the number of aromatic hydroxyl groups plays an essential role in the radical scavenging activity (Chen and Ho, 1997; Sroka and Cisowski, 2003; Zhang et al., 2007c). The bibenzyls, 4,5dihydroxy-3,3',4'-trimethoxybibenzyl (compound 1, [374]), chrysotoxine (compound 2, [7]), gigantol (compound 3, [16]), and moscatilin (compound 5, [21]) tended to exhibit greater radical scavenging activity than that of Trolox, however, there are some differences among the results of the three methods. Gigantol (compound 3, [16]) was superior to others in DPPH and ORAC tests but 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl (compound 1, [374]), chrysotoxine (compound 2, [7]), and moscatilin (compound 5, [21]) were prominent in the superoxide radical scavenging test. This dissimilarity was because their inhibitory mechanisms probably differed from each other (Villaño et al., 2005; Zhang et al., 2007c; Zhang et al., 2008c).

The discovery of the new bibenzyl derivative along with four known compounds from *D. lindleyi* would be an important extension for the phytochemistry of *Dendrobium*. Out of five compounds, four bibenzyls exerted notable radical scavenging activities. Chrysotoxine (compound 2, [7]) and moscatilin (compound 5, [21]), have been widely investigated for neuroprotective and anticancer properties, respectively (Cakova, Bonte and Lobstein, 2017). Interestingly, Song et al. (2010) found that chrysotoxine (compound 2, [7]) protected neuroblastoma model via suppression of neurotoxin-induced ROS, and Kowitdamrong et al. (2013) revealed that the cancer cell inhibitory effect of moscatilin (compound 5, [21]) was influenced by the alleviation of endogenous ROS. These encourage further studies of the four isolated bibenzyls for the treatment of diseases related to oxidative stress.
CHAPTER V CONCLUSION

The components of EtOAc extract were the target of this study because the fraction possessed more than 70% radical inhibition in the preliminary test. Therefore, it was fractionated by both adsorption and size-exclusion chromatographic techniques. Eventually, the new bibenzyl 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl together with four known compounds including chrysotoxine, gigantol, moscatilin, and cypripedin were successfully isolated from *D. lindleyi*. All of them were tested for free radical scavenging activities by DPPH radical, superoxide radical, and ORAC assays. Chrysotoxine and gigantol exhibited DPPH radical inhibitory effect which is significantly stronger than that of Trolox. In the superoxide radical and ORAC assays, 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl, chrysotoxine, gigantol, and moscatilin showed superior activities than Trolox. These findings would fulfill the phytochemical study of *Dendrobium* and support further research of 4,5-dihydroxy-3,3',4'-trimethoxybibenzyl, chrysotoxine, gigantol, invention.

REFERENCES

- Al-Temimi, A. (2013). Determination of antioxidant activity in different kinds of plants *in vivo* and *in vitro* by using diverse technical methods. <u>Journal of Nutrition and Food Sciences</u> 3(1), 1-6.
- Alam, M. N., Bristi, N. J. and Rafiquzzaman, M. (2013). Review on *in vivo* and *in vitro* methods evaluation of antioxidant activity. <u>Saudi Pharmaceutical Journal</u> 21(2), 143-52.
- Alothman, M., Bhat, R. and Karim, A. A. (2009). Antioxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. <u>Food Chemistry</u> 115(3), 785-788.
- Anandjiwala, S., Bagul, M. S., Parabia, M. and Rajani, M. (2008). Evaluation of free radical scavenging activity of an ayurvedic formulation, Panchvalkala. <u>Indian Journal of Pharmaceutical Sciences</u> 70(1), 31-35.
- Antolovich, M., Prenzler, P. D., Patsalides, E., Mcdonald, S. and Robards, K. (2002). Methods for testing antioxidant activity. <u>The Analyst</u> 127(1), 183-198.
- Bagul, M. S., Ravishankara, M. N., Padh, H. and Rajani, M. (2003). Phytochemical evaluation and free radical scavenging properties of rhizome of *Bergenia ciliata* (Haw.) Sternb. forma *ligulata* Yeo. <u>Journal of Natural Remedies</u> 3, 83-89.
- Beauchamp, C. and Fridovich, I. (1971). Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. <u>Analytical Biochemistry</u> 44(1), 276-287.
- Bi, Z. M., Wang , Z. T. and Xu, L. S. (2004). Chemical constituents of *Dendrobium moniliforme*. <u>Acta Botanica Sinica</u> 46(1), 124-126.
- Boudjada, A., Touil, A., Bensouici, C., Bendif, H. and Rhouati, S. (2019). Phenanthrene and dihydrophenanthrene derivatives from *Dioscorea communis* with anticholinesterase, and antioxidant activities. <u>Natural Product Research</u> 33(22), 3278-3282.
- Brahmkshatriya, P. P. and Brahmkshatriya, P. S. (2013). Terpenes: chemistry, biological role, and therapeutic applications. In: Ramawat, K. G. and Merillon, J. M. (eds.)

Natural products: phytochemistry, botany and metabolism of alkaloids, phenolics and terpenes. Heidelberg: Springer, 2665-2691

- Cai, J., Yang, C., Chen, T. and Zhao, L. (2018). Detection of new phenylpropanoids from *Dendrobium chrysanthum*. <u>Natural Product Research</u> 32(13), 1600-1604.
- Cakova, V., Bonte, F. and Lobstein, A. (2017). *Dendrobium*: sources of active ingredients to treat age-related pathologies. <u>Aging and Disease</u> 8(6), 827-849.
- Cao, G. and Prior, R. L. (1999). Measurement of oxygen radical absorbance capacity in biological samples. <u>Methods in Enzymology</u> 299, 50-62.
- Chang, C. C., Ku, A. F., Tseng, Y. Y., Yang, W. B., Fang, J. M. and Wong, C. H. (2010). 6,8-di-C-glycosyl flavonoids from *Dendrobium huoshanense*. <u>Journal of Natural</u> <u>Products</u> 73(2), 229-232.
- Chang, S. J., Lin, T. H. and Chen, C. C. (2001). Constituents from the stems of Dendrobium clavatum var. aurantiacum. Journal of Chinese Medicine 12(3), 211-218.
- Chanvorachote, P., Kowitdamrong, A., Ruanghirun, T., Sritularak, B., Mungmee, C. and Likhitwitayawuid, K. (2013). Anti-metastatic activities of bibenzyls from *Dendrobium pulchellum*. <u>Natural Product Communications</u> 8, 115-118.
- Chen, C. C., Wu, L. G., Ko, F. N. and Teng, C. M. (1994). Antiplatelet aggregation principles of *Dendrobium loddigesii*. <u>Journal of Natural Products</u> 57(9), 1271-1274.
- Chen, J. H. and Ho, C.-T. (1997). Antioxidant activities of caffeic acid and its related hydroxycinnamic acid compounds. <u>Journal of Agricultural and Food Chemistry</u> 45(7), 2374-2378.
- Chen, X. J., Mei, W. L., Cai, C. H., Guo, Z. K., Song, X. Q. and Dai, H. F. (2014). Four new bibenzyl derivatives from *Dendrobium sinense*. <u>Phytochemistry Letters</u> 9, 107-112.
- Chen, X. J., Mei, W. L., Zuo, W. J., Zeng, Y. B., Guo, Z. K., Song, X. Q. and Dai, H. F. (2013). A new antibacterial phenanthrenequinone from *Dendrobium sinense*. <u>Journal of Asian Natural Products Research</u> 15(1), 67-70.
- Chen, Y., Li, J., Wang, L. and Liu, Y. (2008a). Aromatic compounds from *Dendrobium aphyllum*. <u>Biochemical Systematics and Ecology</u> 36(5), 458-460.

- Chen, Y., Liu, Y., Jiang, J., Zhang, Y. and Yin, B. (2008b). Dendronone, a new phenanthrenequinone from *Dendrobium cariniferum*. <u>Food Chemistry</u> 111(1), 11-12.
- Chen, Y. G., Yu, H. and Liu, Y. (2014). Chemical constituents from *Dendrobium brymerianum* Rchb. f. <u>Biochemical Systematics and Ecology</u> 57, 175-177.
- Cheng, J., Dang, P. P., Zhao, Z., Yuan, L. C., Zhou, Z. H., Wolf, D. and Luo, Y. B. (2019).
 An assessment of the Chinese medicinal *Dendrobium* industry: supply, demand and sustainability. <u>Journal of Ethnopharmacology</u> 229, 81-88.
- Dahmen, J. and Leander, K. (1978). Amotin and amoenin, two sesquiterpenes of the picrotoxane group from *Dendrobium amoenum*. <u>Phytochemistry</u> 17(11), 1949-1952.
- Dewick, P. M. (2009). The shikimate pathway: aromatic amino acids and phenylpropanoids. In: Dewick, P. M. (ed.) Medicinal natural products: a biosynthetic approach. 3rd ed. New Jersey: John Wiley and Sons, Ltd., 137-186
- Fan, C., Wang, W., Wang, Y., Qin, G. and Zhao, W. (2001). Chemical constituents from *Dendrobium densiflorum*. <u>Phytochemistry</u> 57(8), 1255-1258.
- Fan, W. W., Xu, F. Q., Dong, F. W., Li, X. N., Li, Y., Liu, Y. Q., Zhou, J. and Hu, J. M. (2013). Dendrowardol C, a novel sesquiterpenoid from *Dendrobium wardianum* Warner. <u>Natural Products and Bioprospecting</u> 3(3), 89-92.
- Gawell, L. and Leander, K. (1976). The constitution of aduncin, a sesquiterpene related to picrotoxinin, found in *Dendrobium aduncum*. <u>Phytochemistry</u> 15(12), 1991-1992.
- Halliwell, B. (2006). Reactive species and antioxidants. redox biology is a fundamental theme of aerobic life. <u>Journal of Plant Physiology</u> 141(2), 312-322.
- Halliwell, B. (2011). Free radicals and antioxidants quo vadis? <u>Trends in</u> <u>Pharmacological Sciences</u> 32(3), 125-130.
- Halliwell, B. (2012). Free radicals and antioxidants: updating a personal view. <u>Nutrition</u> <u>Reviews</u> 70(5), 257-265.
- Hemscheidt, T. and Spenser, I. D. (1991). Biosynthesis of anosmine, an imidazole alkaloid of the orchid *Dendrobium parishii*. <u>Journal of the Chemical Society</u> (7), 494-497.

- Honda, C. and Yamaki, M. (2000). Phenanthrenes from *Dendrobium plicatile*. <u>Phytochemistry</u> 53(8), 987-990.
- Hou, B., Luo, J., Zhang, Y., Niu, Z., Xue, Q. and Ding, X. (2017). Iteration expansion and regional evolution: phylogeography of *Dendrobium officinale* and four related taxa in southern China. <u>Scientific Reports</u> 7, 43525.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008a). Five new compounds from *Dendrobium longicornu*. <u>Planta Medica</u> 74(5), 535-539.
- Hu, J. M., Chen, J. J., Yu, H., Zhao, Y. X. and Zhou, J. (2008b). Two novel bibenzyls from *Dendrobium trigonopus*. <u>Journal of Asian Natural Products Research</u> 10(7), 647-651.
- Hu, J. M., Fan, W. W., Dong, F. W., Miao, Z. H. and Zhou, J. (2012). Chemical components of *Dendrobium chrysotoxum*. <u>Chinese Journal of Chemistry</u> 30(6), 1327-1330.
- Hu, J. M., Zhao, Y. X., Miao, Z. H. and Zhou, J. (2009). Chemical components of Dendrobium polyanthum. <u>Bulletin of the Korean Chemical Society</u> 30(9), 2098-2100.
- Huang, D., Ou, B., Hampsch-Woodill, M., Flanagan, J. A. and Prior, R. L. (2002). Highthroughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. Journal of Agricultural and Food Chemistry 50(16), 4437-4444.
- Hwang, J. S., Lee, S. A., Hong, S. S., Han, X. H., Lee, C., Kang, S. J., Lee, D., Kim, Y., Hong, J. T., Lee, M. K. and Hwang, B. Y. (2010). Phenanthrenes from *Dendrobium nobile* and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells. <u>Bioorganic and Medicinal Chemistry Letters</u> 20(12), 3785-3787.
- Inthongkaew, P., Chatsumpun, N., Supasuteekul, C., Kitisripanya, T., Putalun, W., Likhitwitayawuid, K. and Sritularak, B. (2017). **α**-Glucosidase and pancreatic lipase inhibitory activities and glucose uptake stimulatory effect of phenolic

compounds from *Dendrobium formosum*. <u>Revista Brasileira de Farmacognosia</u> 27(4), 480-487.

- Ito, M., Matsuzaki, K., Wang, J., Daikonya, A., Wang, N. L., Yao, X. S. and Kitanaka, S. (2010). New phenanthrenes and stilbenes from *Dendrobium loddigesii*. <u>Chemical and Pharmaceutical Bulletin</u> 58(5), 628-633.
- Jain, N. and Ramawat, K. G. (2013). Nutraceuticals and antioxidants in prevention of diseases. In: Ramawat, K. G. and Merillon, J. M. (eds.) Natural products. Heidelberg: Springer, 2559-2580
- Kim, E., Lee, W., Cho, S. S., Shim, J. H., Kim, S. N., Kim, H. J. and Yoon, G. (2018). Inhibitory effect of phenanthrenes and dihydrostilbenes from *Dendrobium moniliforme* on protein tyrosine phosphatase 1B. <u>Bulletin of the Korean</u> <u>Chemical Society</u> 39(12), 1467-1470.
- Kim, J. H., Oh, S. Y., Han, S. B., Uddin, G. M., Kim, C. Y. and Lee, J. K. (2015). Antiinflammatory effects of *Dendrobium nobile* derived phenanthrenes in LPSstimulated murine macrophages. <u>Archives of Pharmacal Research</u> 38(6), 1117-1126.
- Klongkumnuankarn, P., Busaranon, K., Chanvorachote, P., Sritularak, B., Jongbunprasert, V. and Likhitwitayawuid, K. (2015). Cytotoxic and antimigratory activities of phenolic compounds from *Dendrobium brymerianum*. <u>Evidence-based</u> <u>Complementary and Alternative Medicine</u> 2015, 1-9.
- Kongkatitham, V., Muangnoi, C., Kyokong, N., Thaweesest, W., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2018). Anti-oxidant and anti-inflammatory effects of new bibenzyl derivatives from *Dendrobium parishii* in hydrogen peroxide and lipopolysaccharide treated RAW264.7 cells. <u>Phytochemistry Letters</u> 24, 31-38.
- Kontoghiorghes, G. J. and Kontoghiorghe, C. N. (2019). Prospects for the introduction of targeted antioxidant drugs for the prevention and treatment of diseases related to free radical pathology. <u>Expert Opinion on Investigational Drugs</u> 28(7), 593-603.
- Kowitdamrong, A., Chanvorachote, P., Sritularak, B. and Pongrakhananon, V. (2013). Moscatilin inhibits lung cancer cell motility and invasion via suppression of

endogenous reactive oxygen species. <u>BioMed Research International</u> 2013, 765894

- Kyokong, N., Muangnoi, C., Thaweesest, W., Kongkatitham, V., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2019). A new phenanthrene dimer from *Dendrobium palpebrae*. <u>Journal of Asian Natural Products Research</u> 21(4), 391-397.
- Lam, Y., Ng, T. B., Yao, R. M., Shi, J., Xu, K., Sze, S. C. and Zhang, K. Y. (2015). Evaluation of chemical constituents and important mechanism of pharmacological biology in *Dendrobium* plants. <u>Evidence-based Complementary and Alternative</u> <u>Medicine</u> 2015, 841752.
- Li, C. B., Wang, C., Fan, W. W., Dong, F. W., Xu, F. Q., Wan, Q. L., Luo, H. R., Liu, Y. Q., Hu, J. M. and Zhou, J. (2013). Chemical components of *Dendrobium crepidatum* and their neurite outgrowth enhancing activities. <u>Natural Products and</u> <u>Bioprospecting</u> 3(2), 70-73.
- Li, J. T., Yin, B. L., Liu, Y., Wang, L. Q. and Chen, Y. G. (2009a). Mono-aromatic constituents of *Dendrobium longicornu*. <u>Chemistry of Natural Compounds</u> 45(2), 234-236.
- Li, X. H., Guo, L., Yang, L., Peng, C., He, C. J., Zhou, Q. M., Xiong, L., Liu, J. and Zhang, T. M. (2014a). Three new neolignan glucosides from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytochemistry Letters</u> 937-940.
- Li, Y., Wang, C. L., Guo, S. X., Yang, J. S. and Xiao, P. G. (2008). Two new compounds from *Dendrobium candidum*. <u>Chemical and Pharmaceutical Bulletin</u> 56(10), 1477-1479.
- Li, Y., Wang, C. L., Wang, Y. J., Guo, S. X., Yang, J. S., Chen, X. M. and Xiao, P. G. (2009b). Three new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin (Tokyo)</u> 57(2), 218-219.
- Li, Y., Wang, C. L., Wang, Y. J., Wang, F. F., Guo, S. X., Yang, J. S. and Xiao, P. G. (2009c). Four new bibenzyl derivatives from *Dendrobium candidum*. <u>Chemical and</u> <u>Pharmaceutical Bulletin (Tokyo)</u> 57(9), 997-999.

- Li, Y., Wang, C. L., Zhao, H. J. and Guo, S. X. (2014b). Eight new bibenzyl derivatives from *Dendrobium candidum*. <u>Journal of Asian Natural Products Research</u> 16(11), 1035-1043.
- Li, Y. P., Qing, C., Fang, T. T., Liu, Y. and Chen, Y. G. (2009d). Chemical constituents of *Dendrobium chrysotoxum*. <u>Chemistry of Natural Compounds</u> 45(3), 414-416.
- Limpanit, R., Chuanasa, T., Likhitwitayawuid, K., Jongbunprasert, V. and Sritularak, B. (2016). **α**-Glucosidase inhibitors from *Dendrobium tortile*. <u>Records of Natural</u> <u>Products</u> 10(5), 609-616.
- Lin, T. H., Chang, S. J., Chen, C. C., Wang, J. P. and Tsao, L. T. (2001). Two phenanthraquinones from *Dendrobium moniliforme*. <u>Journal of Natural Products</u> 64(8), 1084-1086.
- Litescu, S. C., Eremia, S. V., Tache, A., Vasilescu, I. and Radu, G. L. (2014). The use of oxygen radical absorbance capacity (ORAC) and Trolox equivalent antioxidant capacity (TEAC) assays in the assessment of beverages' antioxidant properties. In: Preedy, V. R. (ed.) Processing and impact on antioxidants in beverages. 1st ed. Massachusetts: Academic Press.
- Liu, Y., Jiang, J. H., Yin, B. L. and Chen, Y. G. (2009a). Chemical constituents of *Dendrobium cariniferum*. <u>Chemistry of Natural Compounds</u> 45(2), 237-238.
- Liu, Y., Jiang, J. H., Zhang, Y. and Chen, Y. G. (2009b). Chemical constituents of Dendrobium aurantiacum var. denneanum. <u>Chemistry of Natural Compounds</u> 45(4), 525-527.
- Lu, Y., Kuang, M., Hu, G. P., Wu, R. B., Wang, J., Liu, L. and Lin, Y. C. (2014). Loddigesiinols G-J: alpha-glucosidase inhibitors from *Dendrobium loddigesii*. <u>Molecules</u> 19(6), 8544-8555.
- Ma, C., Meng, C. W., Zhou, Q. M., Peng, C., Liu, F., Zhang, J. W., Zhou, F. and Xiong, L. (2019a). New sesquiterpenoids from the stems of *Dendrobium nobile* and their neuroprotective activities. <u>Fitoterapia</u> 138, 104351.
- Ma, G. X., Wang, T. S., Yin, L., Pan, Y., Xu, G. J. and Xu, L. S. (1998). Studies on chemical constituents of *Dendrobium chryseum*. Journal of Chinese Pharmaceutical <u>Sciences</u> 7(1), 52-54.

- Ma, R. J., Yang, L., Bai, X., Li, J. Y., Yuan, M. Y., Wang, Y. Q., Xie, Y., Hu, J. M. and Zhou, J. (2019b). Phenolic constituents with antioxidative, tyrosinase inhibitory and antiaging activities from *Dendrobium loddigesii* Rolfe. <u>Natural Products and</u> <u>Bioprospecting</u> 9(5), 329-336.
- Majumder, P. L. and Chatterjee, S. (1989). Crepidatin, a bibenzyl derivative from the orchid *Dendrobium crepidatum*. <u>Phytochemistry</u> 28(7), 1986-1989.
- Majumder, P. L., Guha, S. and Sen, S. (1999). Bibenzyl derivatives from the orchid *Dendrobium amoenum*. <u>Phytochemistry</u> 52(7), 1365-1369.
- Majumder, P. L. and Pal, S. (1992). Rotundatin, a new 9,10-dihydrophenanthrene derivative from *Dendrobium rotundatum*. <u>Phytochemistry</u> 31(9), 3225-3228.
- Majumder, P. L. and Pal, S. (1993). Cumulatin and tristin, two bibenzyl derivatives from the orchids *Dendrobium cumulatum* and *Bulbophyllum triste*. <u>Phytochemistry</u> 32(6), 1561-1565.
- Majumder, P. L. and Sen, R. C. (1987). Moscatilin, a bibenzyl derivative from the orchid *Dendrobium moscatum*. <u>Phytochemistry</u> 26(7), 2121-2124.
- Mittraphab, A., Muangnoi, C., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2016). A new bibenzyl-phenanthrene derivative from *Dendrobium signatum* and its cytotoxic activity. <u>Natural Product Communications</u> 11(5), 657-659.
- Miyazawa, M., Shimamura, H., Nakamura, S., Sugiura, W., Kosaka, H. and Kameoka, H. (1999). Moscatilin from *Dendrobium nobile*, a naturally occurring bibenzyl compound with potential antimutagenic activity. <u>Journal of Agricultural and</u> <u>Food Chemistry</u> 47(5), 2163-2167.
- Na Ranong, S., Likhitwitayawuid, K., Mekboonsonglarp, W. and Sritularak, B. (2019). New dihydrophenanthrenes from *Dendrobium infundibulum*. <u>Natural Product</u> <u>Research</u> 33(3), 420-426.
- Ng, T. B., Liu, J., Wong, J. H., Ye, X., Wing Sze, S. C., Tong, Y. and Zhang, K. Y. (2012). Review of research on *Dendrobium*, a prized folk medicine. <u>Applied</u> <u>Microbiology and Biotechnology</u> 93(5), 1795-1803.
- Office of the Forest Herbarium (2014). Thai plant names Tem Smitinand revised edition. Bangkok: Office of the Forest Herbarium, Department of National Park, Wildlife and Plant Conservation.

- Ono, M., Ito, Y., Masuoka, C., Koga, H. and Nohara, T. (1995). Antioxidative constituents from Dendrobii Herba (Stems of *Dendrobium* spp.). <u>Food Science and</u> <u>Technology International</u> 1(2), 115-120.
- Pan, H. M., Chen, B., Li, F. and Wang, M. K. (2012). Chemical constituents of *Dendrobium denneanum*. <u>Chinese Journal of Applied Environmental Biology</u> 18(3), 378-380.
- Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (2009). Chapter 3 nuclear magnetic resonance spectroscopy part one: basic concepts. In: Pavia, D. L., Lampman, G. M., Kriz, G. S. and Vyvyan, J. R. (eds.) Introduction to spectroscopy. 4th ed. California: Brooks/Cole.
- Phaniendra, A., Jestadi, D. B. and Periyasamy, L. (2015). Free radicals: properties, sources, targets, and their implication in various diseases. <u>Indian Journal of</u> <u>Clinical Biochemistry</u> 30(1), 11-26.
- Phechrmeekha, T., Sritularak, B. and Likhitwitayawuid, K. (2012). New phenolic compounds from *Dendrobium capillipes* and *Dendrobium secundum*. <u>Journal of</u> <u>Asian Natural Products Research</u> 14(8), 748-754.
- Prescott, C. and Bottle, S. E. (2017). Biological relevance of free radicals and nitroxides. <u>Cell Biochemistry and Biophysics</u> 75(2), 227-240.
- Qin, X. D., Qu, Y., Ning, L., Liu, J. K. and Fan, S. K. (2011). A new picrotoxane-type sesquiterpene from *Dendrobium findlayanum*. <u>Journal of Asian Natural Products</u> <u>Research</u> 13(11), 1047-1050.
- Raghavendra, M., Reddy, A. M., Yadav, P. R., Raju, A. S. and Kumar, L. S. (2013). Comparative studies on the *in vitro* antioxidant properties of methanolic leafy extracts from six edible leafy vegetables of India. <u>Asian Journal of</u> <u>Pharmaceutical and Clinical Research</u> 6(3), 96-9.
- Rahimi, B. V., Ghadiri, M., Ramezani, M. and Askari, V. R. (2020). Anti-inflammatory and anti-cancer activities of pomegranate and its constituent, ellagic acid: evidence from cellular, animal, and clinical studies. <u>Phytotherapy Research</u> 34, 685-720.
- Repetto, M., Semprine, J. and Boveris, A. (2012). Lipid peroxidation: chemical mechanism, biological implications and analytical determination. In: Catala, A. (ed.) Lipid peroxidation. Rijeka: InTech, 3-30.

- Rungwichaniwat, P., Sritularak, B. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium williamsonii*. <u>Pharmacognosy Journal</u> 6(3), 36-41.
- Sarakulwattana, C., Mekboonsonglarp, W., Likhitwitayawuid, K., Rojsitthisak, P. and Sritularak, B. (2018). New bisbibenzyl and phenanthrene derivatives from *Dendrobium scabrilingue* and their alpha-glucosidase inhibitory activity. <u>Natural</u> <u>Product Research</u> 34(12), 1694-1701.
- Shang, Z., Li, X. and Xiao, S. (2020). Two new bibenzyl compounds from *Dendrobium lindleyi*. <u>Records of Natural Products</u>, 1-5.
- Song, J. X., Shaw, P. C., Sze, C. W., Tong, Y., Yao, X. S., Ng, T. B. and Zhang, Y. B. (2010). Chrysotoxine, a novel bibenzyl compound, inhibits 6-hydroxydopamine induced apoptosis in SH-SY5Y cells via mitochondria protection and NF-kappaB modulation. <u>Neurochemistry International</u> 57(6), 676-689.
- Sritularak, B., Anuwat, M. and Likhitwitayawuid, K. (2011). A new phenanthrenequinone from *Dendrobium draconis*. Journal of Asian Natural Products Research 13(3), 251-255.
- Sritularak, B., Duangrak, N. and Likhitwitayawuid, K. (2011). A new bibenzyl from Dendrobium secundum. <u>Zeitschrift Fur Naturforschung</u>. C, Journal of Biosciences 66(5-6), 205-208.
- Sritularak, B. and Likhitwitayawuid, K. (2009). New bisbibenzyls from *Dendrobium falconeri*. <u>Helvetica Chimica Acta</u> 92(4), 740-744.
- Sroka, Z. and Cisowski, W. (2003). Hydrogen peroxide scavenging, antioxidant and antiradical activity of some phenolic acids. <u>Food and Chemical Toxicology</u> 41(6), 753-758.
- Sukphan, P., Sritularak, B., Mekboonsonglarp, W., Lipipun, V. and Likhitwitayawuid, K. (2014). Chemical constituents of *Dendrobium venustum* and their antimalarial and anti-herpetic properties. <u>Natural Product Communications</u> 9(6), 825-827.
- Sun, J., Zhang, F., Yang, M., Zhang, J., Chen, L., Zhan, R., Li, L. and Chen, Y. (2014).
 Isolation of alpha-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. <u>Natural Product Research</u> 28(21), 1900-1905.

- Talapatra, B., Das, A. K. and Talapatra, S. K. (1989). Defuscin, a new phenolic ester from *Dendrobium fuscescens*: conformation of shikimic acid. <u>Phytochemistry</u> 28(1), 290-292.
- Tanagornmeatar, K., Chaotham, C., Sritularak, B., Likhitwitayawuid, K. and Chanvorachote, P. (2014). Cytotoxic and anti-metastatic activities of phenolic compounds from *Dendrobium ellipsophyllum*. <u>Anticancer Research</u> 34(11), 6573-6580.
- Tang, S. M., Deng, X. T., Zhou, J., Li, Q. P., Ge, X. X. and Miao, L. (2020). Pharmacological basis and new insights of quercetin action in respect to its anti-cancer effects. <u>Biomedicine and Pharmacotherapy</u> 121, 109604.
- The Botanical Garden Organization (2016). *Dendrobium lindleyi* Steud [Online]. Available at: http://www.qsbg.org/Database/plantdb/herbarium/herbariumspecimen.asp?qsbgno=10033. (Accessed: 28 Jun 2019)
- Tholl, D. (2015). Biosynthesis and biological functions of terpenoids in plants. In: Schrader, J. and Bohlmann, J. (eds.) Biotechnology of isoprenoids. Cham: Springer International Publishing Switzerland, 63–106
- Tsopmo, A., Awah, F. M. and Kuete, V. (2013). Lignans and stilbenes from African medicinal plants. In: Kuete, V. (ed.) Medicinal plant research in Africa. London: Elsevier Inc, 435-478.
- Vaddhanaphuti, N. (2005). A field guide to the wild orchids of Thailand. Chiang Mai: Silkworm Books.
- Veerraju, P., Rao, N. S. P., Rao, L. J., Rao, K. V. J. and Rao, P. R. M. (1989). Amoenumin, A 9,10-dihydro-5H-phenanthro-(4,5-b,c,d)-pyran from *Dendrobium amoenum*. <u>Phytochemistry</u> 28(3), 950-951.
- Villaño, D., Fernández-Pachón, M. S., Troncoso, A. M. and García-Parrilla, M. C. (2005). Comparison of antioxidant activity of wine phenolic compounds and metabolites *in vitro*. <u>Analytica Chimica Acta</u> 538(1-2), 391-398.
- Wang, H., Zhao, T. and Che, C. T. (1985). Dendrobine and 3-hydroxy-2-oxodendrobine from *Dendrobium nobile*. Journal of Natural Products 48(5), 796-801.

- Wang, L., Zhang, C. F., Wang, Z. T., Zhang, M. and Xu, L. S. (2009). Five new compounds from *Dendrobium crystallinum*. <u>Journal of Asian Natural Products Research</u> 11(11), 903-911.
- Wang, P., Chen, X., Wang, H., Huang, S., Cai, C., Yuan, J., Zhu, G., Xu, X., Mei, W. and Dai,
 H. (2019). Four new picrotoxane-type sesquiterpenes from *Dendrobium nobile*Lindl. <u>Frontiers in Chemistry</u> 7, 812.
- Wattanathamsan, O., Treesuwan, S., Sritularak, B. and Pongrakhananon, V. (2018). Cypripedin, a phenanthrenequinone from *Dendrobium densiflorum*, sensitizes non-small cell lung cancer H460 cells to cisplatin-mediated apoptosis. <u>Journal</u> <u>of Natural Medicines</u> 72(2), 503-513.
- Wu, L., Lu, Y., Ding, Y., Zhao, J., Xu, H. and Chou, G. (2019). Four new compounds from *Dendrobium devonianum*. <u>Natural Product Research</u> 33(15), 2160-2168.
- Xiong, L., Cao, Z. X., Peng, C., Li, X. H., Xie, X. F., Zhang, T. M., Zhou, Q. M., Yang, L. and Guo, L. (2013). Phenolic glucosides from *Dendrobium aurantiacum* var. *denneanum* and their bioactivities. <u>Molecules</u> 18(6), 6153-6160.
- Xu, F. Q., Xu, F. C., Hou, B., Fan, W. W., Zi, C. T., Li, Y., Dong, F. W., Liu, Y. Q., Sheng, J., Zuo, Z. L. and Hu, J. M. (2014). Cytotoxic bibenzyl dimers from the stems of *Dendrobium fimbriatum* Hook. <u>Bioorganic and Medicinal Chemistry Letters</u> 24(22), 5268-5273.
- Xu, X., Li, Z., Yang, R., Zhou, H., Bai, Y., Yu, M., Ding, G. and Li, B. (2019). Crepidatumines C and D, two new indolizidine alkaloids from *Dendrobium crepidatum* Lindl. ex Paxt. <u>Molecules</u> 24(17), 3071.
- Yamaki, M. and Honda, C. (1996). The stilbenoids from *Dendrobium plicatile*. <u>Phytochemistry</u> 43(1), 207-208.
- Yang, D., Cheng, Z. Q., Zi, C. T., Yang, L., Dong, F. W., Hu, J. M. and Zhou, J. (2019a). Four new sesquiterpene derivatives from *Dendrobium findlayanum*. <u>Chinese Journal</u> <u>of Natural Medicines</u> 17(12), 900-905.
- Yang, D., Cheng, Z. Q., Yang, L., Hou, B., Yang, J., Li, X. N., Zi, C. T., Dong, F. W., Liu, Z. H., Zhou, J., Ding, Z. T. and Hu, J. M. (2018a). Seco-dendrobine-type alkaloids and bioactive phenolics from *Dendrobium findlayanum*. <u>The Natural Products</u> <u>Journal</u> 81(2), 227-235.

- Yang, D., Liu, L. Y., Cheng, Z. Q., Xu, F. Q., Fan, W. W., Zi, C. T., Dong, F. W., Zhou, J., Ding, Z. T. and Hu, J. M. (2015). Five new phenolic compounds from *Dendrobium aphyllum*. <u>Fitoterapia</u> 100, 11-18.
- Yang, H., Chou, G. X., Wang, Z. T., Guo, Y. W., Hu, Z. B. and Xu, L. S. (2004). Two new compounds from *Dendrobium chrysotoxum*. <u>Helvetica Chimica Acta</u> 87(2), 394-399.
- Yang, H. K., Sung, S. H. and Kim, Y. C. (2007). Antifibrotic phenanthrenes of *Dendrobium nobile* stems. <u>Journal of Natural Products</u> 70(12), 1925–1929.
- Yang, L., Han, H., Nakamura, N., Hattori, M., Wang, Z. and Xu, L. (2007). Bio-guided isolation of antioxidants from the stems of *Dendrobium aurantiacum* var. *denneanum*. <u>Phytotherapy Research</u> 21(7), 696-698.
- Yang, L., Qin, L. H., Bligh, S. W., Bashall, A., Zhang, C. F., Zhang, M., Wang, Z. T. and Xu,
 L. S. (2006a). A new phenanthrene with a spirolactone from *Dendrobium chrysanthum* and its anti-inflammatory activities. <u>Bioorganic and Medicinal</u> <u>Chemistry</u> 14(10), 3496-3501.
- Yang, L., Wang, Z. T. and Xu, L. S. (2006b). Phenols and a triterpene from *Dendrobium* aurantiacum var. denneanum (Orchidaceae). <u>Biochemical Systematics and</u> <u>Ecology</u> 34(8), 658-660.
- Yang, M., Chen, L. J., Zhang, Y. and Chen, Y. G. (2019b). Two new picrotoxane-type sesquiterpenoid lactones from *Dendrobium williamsonii*. <u>Journal of Asian</u> <u>Natural Products Research</u> 21(2), 129-133.
- Yang, M., Zhang, Y., Chen, L. and Chen, Y. (2018b). A new (propylphenyl)bibenzyl derivative from *Dendrobium williamsonii*. <u>Natural Product Research</u> 32(14), 1-7.
- Ye, Q. H., Mei, Y., Yang, P. M., Cheng, L. and Kong, D. Y. (2016). A New 9,10dihydrophenanthrene glycoside from *Dendrobium primulinum*. <u>Chemistry of</u> <u>Natural Compounds</u> 52(3), 381-383.
- Ye, Q. H., Qin, G. W. and Zhao, W. M. (2002). Immunomodulatory sesquiterpene glycosides from *Dendrobium nobile*. <u>Phytochemistry</u> 61(8), 885-890.
- Ye, Q. H. and Zhao, W. M. (2002). New alloaromadendrane, cadinene and cyclocopacamphane type sesquiterpene derivatives and bibenzyls from *Dendrobium nobile*. <u>Planta Medica</u> 68(8), 723-729.

- Ye, Q. H., Zhao, W. M. and Qin, G. W. (2004). Lignans from *Dendrobium chrysanthum*. Journal of Asian Natural Products Research 6(1), 39-43.
- Zhang, C. F., Wang, M., Wang, L., Iinuma, M., Zhang, M., Xu, L. S. and Wang, Z. T. (2008a). Chemical constituents of *Dendrobium gratiosissimum* and their cytotoxic activities. <u>Indian Journal of Chemistry</u> 47B, 952-956.
- Zhang, G. N., Zhong, L. Y., Bligh, S. W., Guo, Y. L., Zhang, C. F., Zhang, M., Wang, Z. T. and Xu, L. S. (2005). Bi-bicyclic and bi-tricyclic compounds from *Dendrobium thyrsiflorum*. <u>Phytochemistry</u> 66(10), 1113-1120.
- Zhang, X., Gao, H., Han, H. Y., Liu, H., Wang, N. L., Yao, X. S. and Wang, Z. (2007a). Sesquiterpenes from *Dendrobium nobile*. <u>Chinese Traditional and Herbal Drugs</u> 38, 1771-1774.
- Zhang, X., Gao, H., Wang, N. L. and Yao, X. S. (2006). Three new bibenzyl derivatives from *Dendrobium nobile*. Journal of Asian Natural Products Research 8(1-2), 113-118.
- Zhang, X., Liu, H. W., Gao, H., Han, H. Y., Wang, N. L., Wu, H. M., Yao, X. S. and Wang, Z. (2007b). Nine New Sesquiterpenes from *Dendrobium nobile*. <u>Helvetica Chimica</u> <u>Acta</u> 90(12), 2386-2394.
- Zhang, X., Tu, F. J., Yu, H. Y., Wang, N. L., Wang, Z. and Yao, X. S. (2008b).
 Copacamphane, picrotoxane and cyclocopacamphane sesquiterpenes from *Dendrobium nobile*. <u>Chemical and Pharmaceutical Bulletin</u> 56(6), 854-857.
- Zhang, X., Xu, J. K., Wang, J., Wang, N. L., Kurihara, H., Kitanaka, S. and Yao, X. S. (2007c). Bioactive bibenzyl derivatives and fluorenones from *Dendrobium nobile*. <u>The</u> <u>Natural Products Journal</u> 70(1), 24-28.
- Zhang, X., Xu, J. K., Wang, N. L., Kurihara, H. and Yao, X. S. (2008c). Antioxidant phenanthrenes and lignans from *Dendrobium nobile*. <u>Journal of Chinese</u> <u>Pharmaceutical Sciences</u> 17, 314-318.
- Zhang, Y. Y., Wang, P., Song, X. Q., Zuo, W. J., Wang, H., Chen, L. L., Mei, W. L. and Dai,
 H. F. (2019). Chemical constituents from *Dendrobium hainanense*. <u>Journal of</u>
 <u>Asian Natural Products Research</u> 21(9), 873-880.
- Zhao, C. S., Liu, Q. F., Halaweish, F., Shao, B. P., Ye, Y. Q. and Zhao, W. M. (2003). Copacamphane, picrotoxane, and alloaromadendrane sesquiterpene glycosides

and phenolic glycosides from *Dendrobium moniliforme*. <u>Journal of Natural</u> <u>Products</u> 66(8), 1140-1143.

- Zhao, G. Y., Deng, B. W., Zhang, C. Y., Cui, Y. D., Bi, J. Y. and Zhang, G. G. (2018). New phenanthrene and 9,10-dihydrophenanthrene derivatives from the stems of *Dendrobium officinale* with their cytotoxic activities. <u>Journal of Natural</u> <u>Medicines</u> 72(1), 246-251.
- Zhao, N., Yang, G., Zhang, Y., Chen, L. and Chen, Y. (2016). A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. <u>Natural Product Research</u> 30(2), 174-179.
- Zhao, W. M., Ye, Q. H., Tan, X. J., Jiang, H. L., Li, X. Y., Chen, K. X. and Kinghorn, A. D. (2001). Three new sesquiterpene glycosides from *Dendrobium nobile* with immunomodulatory activity. *Journal of Natural Products* 64(9), 1196-1200.
- Zhou, X. M., Zhang, B., Chen, G. Y., Han, C. R., Jiang, K. C., Luo, M. Y., Meng, B. Z., Li, W.
 X. and Lin, S. D. (2018). Dendrocoumarin: a new benzocoumarin derivative from the stem of *Dendrobium nobile*. <u>Natural Product Research</u> 32(20), 1-4.
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Chen, J. and Sun, C. G. (2016). Five new lactone derivatives from the stems of *Dendrobium nobile*. <u>Fitoterapia</u> 115, 96-100.
- Zhou, X. M., Zheng, C. J., Wu, J. T., Chen, G. Y., Zhang, B. and Sun, C. G. (2017). A new phenolic glycoside from the stem of *Dendrobium nobile*. <u>Natural Product</u> <u>Research</u> 31(9), 1042-1046.

APPENDICES

Appendix A: The spectral data of compound 1

A.1 Mass spectrum of compound 1

A.7¹³C NMR (125 MHz) spectrum of compound 1 in CDCl₃

A.9 HSQC spectrum of compound 1 in $CDCl_3$

(expansion from δ_{C} 98.0-140.0 (F1) and δ_{H} 2.60-3.96 (F2))

A.11 HSQC spectrum of compound 1 in CDCl₃

(expansion from δ_{C} 50.0-62.0 (F1) and δ_{H} 3.68-4.06 (F2))

A.12 HSQC spectrum of compound 1 in $CDCl_3$

A.13 HSQC spectrum of compound 1 in $CDCl_3$

A.15 HMBC spectrum of compound 1 in CDCl₃

(expansion from δ_{C} 100.0-160.0 (F1) and δ_{H} 1.40-7.00 (F2))

A.17 HMBC spectrum of compound 1 in $CDCl_3$

(expansion from δ_{C} 143.0-154.0 (F1) and δ_{H} 3.50-4.20 (F2))

(expansion from $\delta_{\rm H}$ 2.60-3.18 (F1) and $\delta_{\rm H}$ 6.00-6.95 (F2))

Appendix B: The spectral data of compound 2

B.3 $^{\rm 13}{\rm C}$ NMR (75 MHz) spectrum of compound 2 in acetone- d_6

B.5 HSQC spectrum of compound 2 in acetone- d_6

B.7 NOESY spectrum of compound 2 in acetone- d_6

C.1 Mass spectrum of compound 3

C.3 $^{\rm 13}{\rm C}$ NMR (75 MHz) spectrum of compound 3 in acetone- d_6

C.4 HSQC spectrum of compound 3 in acetone- d_6

C.5 HMBC spectrum of compound 3 in acetone- d_6

C.7 NOESY spectrum of compound 3 in acetone- d_6

C.8 NOESY spectrum of compound 3 in acetone- d_6

(expansion from $\delta_{\rm H}$ 2.45-4.12 (F1) and $\delta_{\rm H}$ 6.13-6.95 (F2))

Appendix D: The spectral data of compound 4

D.1 Mass spectrum of compound 4

D.3 $^{\rm 13}{\rm C}$ NMR (75 MHz) spectrum of compound 4 in acetone- d_6

D.5 HMBC spectrum of compound 4 in acetone- d_6

D.7 NOESY spectrum of compound 4 in acetone- d_6

Appendix E: The spectral data of compound 5

E.1 Mass spectrum of compound 5

E.2 ¹H NMR (300 MHz) spectrum of compound 5 in acetone-d₆

E.3 13 C NMR (75 MHz) spectrum of compound 5 in acetone- d_6

E.4 HSQC spectrum of compound 5 in acetone-d₆

E.5 HMBC spectrum of compound 5 in acetone- d_6

E.6 HMBC spectrum of compound 5 in acetone- d_6 (expansion from $\delta_{\rm C}$ 98.0-151.0 (F1) and $\delta_{\rm H}$ 2.70-7.10 (F2))

 α, α' 2, 6 3-OMe, 3'-OMe 5-OMe 2' ^{5'} Mh DL10 HMBCGP F1 [ppm] 2,6 110 **OMe** 6 2' OH 0 0 5' В MeO 120 60 0 0 6' -0 А HO 130 ÓMe 1'4 140 4 3, 5 _____ 0 150 4 3 F2 [ppm] 6 5

E.7 HMBC spectrum of compound 5 in acetone- d_6

(expansion from δ_{C} 31.3-45.5 (F1) and δ_{H} 2.70-6.90 (F2))

E.9 NOESY spectrum of compound 5 in acetone- d_6

(expansion from $\delta_{\rm H}$ 2.60-3.96 (F1) and $\delta_{\rm H}$ 6.37-7.06 (F2))

VITA

NAME	PICHAYATRI KHOONRIT
DATE OF BIRTH	20 September 1994
PLACE OF BIRTH	Lopburi, Thailand
INSTITUTIONS ATTENDED	Faculty of Pharmaceutical Sciences, Chulalongkorn
	University
HOME ADDRESS	452/90 Ratchawithi Road, Thanon Phaya Thai, Ratchathewi
	Bangkok 10400
PUBLICATION	Chanpokapaiboon, K., Khoonrit, P., Yusakul, G.,
2	Juengwatanatrakul, T., Putalun, W., Tanaka, H., Sakamoto,
	S. and Morimoto, S. A Recombinant Fab Antibody Against
	Kwakhurin as a Tool for Sensitive Indirect Competitive
	ELISA. Curr Pharm Biotechnol. 2018;19(14):1170-6.
AWARD RECEIVED	Chulalongkorn University Graduate Scholarship to
	Commemorate the 72nd Anniversary of His Majesty King
	Bhumibala Aduladeja.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University