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CHAPTER |
INTRODUCTION

Rationale

Inflammation is the biological process which responds to the harmful
conditions and stimuli such as tissue damage, infections and toxic substances and
maintains the tissue homeostasis steadily (Medzhitov, 2008; Serhan, 2017). The
inflammatory response is also associated with innate immune cells including
neutrophils, dendritic cells, macrophages and monocytes (Muszynski et al., 2016).
These immune cells also regulate the inflammation through interaction with
endogenous and exogenous molecules (Nowarski et al., 2013). In addition, the
dysregulated inflammatory response can induce acute and chronic inflammation
resulting to cause several diseases, for instance, cardiovascular diseases, immune
disorders, pancreatitis, hepatitis, chronic kidney disease (CKD), asthma and chronic
obstructive pulmonary disease (COPD), inflammatory bowel diseases (IBD) and
central nervous system diseases (Parkinson’s disease and Alzheimer’s disease) (Chen
et al., 2018; Roe, 2021; Shukla et al., 2021; Sorriento & laccarino, 2019). Innate
immune cells express the receptors which recognize pathogens such as
lipopolysaccharide (LPS), known as pathogen-associated molecular patterns (PAMPs)
or danger-associated molecular patterns (DAMPS) from tissue damages (Amarante-
Mendes et al., 2018; Tang et al., 2012). The interaction between the pathogens or
PAMPs with the immune receptors also activates several intracellular signals, for
example, intracellular phosphorylated molecules and store-operated Ca?* entry

(SOCE) pathway resulting in the increasing of inflammatory cytokines production such
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as interleukin-2 (IL-2) and interferon-gamma (IFN-y) and tumor necrosis factor (TNF)
(Machura et al., 2007; Phongpreecha et al., 2020; Shaw & Feske, 2012).

Human peripheral blood mononuclear cells (PBMCs), isolated from the whole
blood using density gradient centrifugation, are common widely used in toxicology
and inflammatory studies (Klinder et al., 2018; Obasanmi et al., 2023; Puleo et al.,
2017). To stimulate the inflammatory condition in PBMCs, LPS and phorbol-12-
myristate-13-acetate/ionomycin (PMA/lono) are usually used for inducing the
inflammatory response resulting to increase the expression of inflammatory cytokines
(Ngkelo et al., 2012; Ye et al., 2011). Therefore, the inhibition of the inflammatory
mediators in human PBMCs is considered as a model for anti-inflammatory activity
(Leelawat & Leelawat, 2018; Ramirez-Pérez et al., 2020).

To regulate the inflammatory cytokines expression in the immune cells is the
target of anti-inflammation. Nowadays, there are several natural products or active
compounds showed the potential anti-inflammation based on immune modulatory
effects. The phytochemical constituents act through many pathways such as
enhancing the immune response, decreasing inflammatory cytokines secretion and
inhibition of inflammation-associated genes expression (Haddad et al., 2005; Moudgil
& Venkatesha, 2022; Zhong et al,, 2022). These active compounds which showed
immune modulatory effects in in vitro, in vivo and clinical trials were isolated from
various plants such as Vitis vinifera, Curcuma longa, Camellia sinensis and so on
(Chugtai et al., 2018; Moudgil & Venkatesha, 2022; Zhong et al., 2022).

Dendrobium genus is one of the largest genera in the Orchidaceae family and
discovered more than 1,500 species around Asia and Australia (Pridgeon et al., 2014,
Wang et al., 2020). The phytochemical investigations of Dendrobium species have

been reported and divided to several phytochemical groups such as bibenzyls,



11

phenanthrenes, terpenoids, alkaloids, phenolics and polysaccharide (He et al., 2020;
Lam et al,, 2015). Furthermore, the secondary metabolites from this genus have
been showed the various pharmacological activities such as anticancer, antidiabetic,
antibacterial, hepatoprotective and neuroprotective, antioxidant, anti-inflammatory
and immune modulatory activity (Lam et al., 2015; Teixeira da Silva & Ng, 2017).

A number of immune modulatory compounds from Dendrobium plants have
been showed in many studies. For instance, polysaccharides from Dendrobium
officinale Kimura et Migo and water extracts from Dendrobium thyrsiflorum
B.S.Williams showed immune modulatory effects in THP-1 and RAW264.7
macrophage cells, respectively (Qiang et al., 2018; M. Zhang et al., 2018). Moreover,
the potent immunomodulatory constituents such as polysaccharides from
Dendrobium devonianum and D. officinale have been reported in the mice models
(Sun et al,, 2022; Wei et al., 2022; Xie et al., 2022). Particularly, a bibenzyl derivative,
4,5-dihydroxy-3,3",4 -trimethoxybibenzyl, from Dendrobium lindleyi Steud. exhibited
the downmodulation of the TNF expression in monocytes in human PBMCs (Khoonrit
et al,, 2020). Based on the immunomodulatory activity from Dendrobium species, the
bibenzyl and isolated compounds from Dendrobium plants showed potent anti-
inflammation and immunomodulatory effects. Therefore, in this dissertation, the
isolated compounds from Dendrobium crumenatum and bibenzyl compounds from
Dendrobium species were selected for investigating of anti-inflammatory activities
based on immune modulatory effects in human PBMCs. The research article
“Immunomodulatory effects of new phenanthrene derivatives from
Dendrobium crumenatum” published in Journal of Natural Products and the

manuscript “Diverse modulatory effects of bibenzyls from Dendrobium species
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on human immune cell responses under inflammatory conditions” submitted

into the journal were included in this dissertation.

Objectives

1. To isolate the chemical constituents from Dendrobium crumenatum and

determine the chemical structure of each isolated compound.

2. To investigate the anti-inflammation based on immunomodulatory effect of D.
crumenatum’s compounds in PMA/lono-treated human PBMCs and mechanism of

action.

3. To determine the immune modulatory activity of known bibenzyl compounds

from Dendrobium plants in LPS-treated human PBMCs and mechanism of action.

Hypothesis

1. The chemical constituents of D. crumenatum might be isolated and elucidated
the structure of each compound.

2. The active compounds from D. crumenatum could be shown the anti-
inflammation based on immunomodulatory effect in PMA/lono-treated human
PBMCs through decreasing of activated T cells.

3. The bibenzyl compounds from Dendrobium species could exhibit immune
modulatory activity in LPS-treated human PBMCs through reduction of inflammatory

immune cells.

Scope

The chemical constituents were isolated from Dendrobium crumenatum and
elucidated the structures using spectroscopic data. These isolated compounds were

tested in anti-inflammation and immunomodulatory effects in PMA/lono-treated
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human PBMCs. In addition, the known bibenzyls from Dendrobium plants were
determined the immune modulatory activity in LPS-treated human PBMCs and

investigated the related inflammatory immune cells.
Benefits

This study can be the information of Dendrobium’s phytochemical studies

and for developing to herbal medicine for treatment of inflammatory diseases.
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CHAPTER Il
LITERATURE REVIEWS

2.1 Pathways of inflammation

Inflammation is the defense mechanism associated with immune cells
including neutrophils, dendritic cells, macrophages and monocytes and immune
response against irritant such as pathogens, toxic substances or damaged cells
(Medzhitov, 2010; Muszynski et al., 2016). It responses to cellular changing and
results to recovery the damaged tissues. If the cause of inflammation is still remained
or the abnormality of control mechanisms is occurred, it can be developed to
various chronic diseases such as cardiovascular diseases, immune disorders,
pancreatitis, hepatitis, chronic kidney disease (CKD), asthma and chronic obstructive
pulmonary disease (COPD), inflammatory bowel diseases (IBD) and central nervous
system diseases (Parkinson’s disease and Alzheimer’s disease) (Chen et al., 2018;
Roe, 2021; Shukla et al., 2021; Sorriento & laccarino, 2019). The inflammation that is
occurred by the immune response can react to microbials with conserved motifs
called pathogen associated molecular patterns (PAMPs) (Geremia et al., 2014). The
microbial antigens such as lipopolysaccharide (LPS) are recognized by the receptors,
known as pattern-recognition receptors (PRRs) which classified to four different
classes including C-type lectin receptors (CLRs) and Toll-like receptors (TLRs) which
found in transmembrane, and Retinoic acid-inducible gene (RIG)-I-like receptors (RLRs)
and NOD-like receptors (NLRs) which found in cytoplasm (Takeuchi & Akira, 2010).
TLRs are mainly found in immune cells such as monocytes, macrophages and
dendritic cells and represent ten groups in mammals, especially TLR4 (Hari et al.,
2010). LPS, the endotoxins from gram-negative bacteria, is recognized by TLR4 on the
cell surface and promotes various signaling cascades resulting to increase the
production of the pro-inflammatory cytokines (Mazgaeen & Gurung, 2020). Several

functional proteins have been reported for interaction with TLRs such as myeloid
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differentiation primary response protein 88 (MyD88), Toll/interleukin -1
receptor/resistance protein (TIR) domain-containing adaptor protein including MyD88
adaptor-like protein, known as Mal, TIR domain-containing adaptor molecule 1 or TIR-
domain containing adapter-inducing IFN-B (TICAM-1 or TRIF) and TIR domain-
containing adaptor molecule 2 (TICAM-2 or TRAM) is important for cell signaling
(O'Neill et al., 2003). The MyD88 is mainly interacted with most of TLRs. TLR signaling
cascade is mainly divided into two pathways including the MyD88-dependent and
MyD88-independent pathways (Joosten et al., 2016).

MyD88 is the main protein for all TLRs downstream signaling except TLR3
(Akira et al,, 2006). After the recognition from TLR4, MyD88 is linked to TLR by
bridging of Mal and binds with IL-1 receptor-associated kinase (IRAK)-4 and IRAK1/2 to
form Myddosome which is necessary for immune response against inflammation (Lin
et al,, 2010). Further downstream, the IRAK complex from Myddosome formation
interacts with tumor necrosis factor receptor-associated factor 6 (TRAF6). Then,
TRAF6 interacts with transforming growth factor-b-activated kinase 1 (TAK1) and forms
complex with TAK1-binding protein 1 (TAB1), TAB2, and TAB3 by the ubiquitin-
conjugating enzyme 13 (UBC13) and ubiquitin-conjugating enzyme variant 1A (UEVIA)
(Chen, 2012). After that, TAK1 activates two different cascades including inhibitory kB
(IkB) kinase (IKK) in nuclear factor kappa B (NF-KB) and mitogen-activated protein
kinases (MAPK) pathways (Wang et al., 2001). TAK1 binds to IKK complex including

IKKa, IKKb and IKKY and activates NF-KB inhibitory protein IkB phosphorylation
resulting in degradation of proteosome and releasing the transcription factor NF-KB.
Then, the free NF-KB translocates into the nucleus and regulates the expression of
proinflammatory cytokine genes (O'Neill & Bowie, 2007). Moreover, TAK1 also
activates the MAPK members including extracellular signal-regulated kinase (ERK), c-
Jun N-terminal kinase (JNK) and p38 resulting to activates the activator protein 1 (AP-
1) (Vallejo, 2011). The activation of AP-1 and NF-KB via MyD88 can regulate the
expression of proinflammatory cytokines such as TNF-a., interleukin 1 and 6 (IL-1 and

IL-6) (Terrell et al., 2006).
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The second main pathway of TLR signaling is the M, J88-independent
pathway or TRIF-dependent pathway. TLR is initiated linked with TRIF and connected
to TRAM (Fitzgerald et al., 2003). Then, TRIF associated with TRAM reacts with TRAF3
to activate TANK-binding kinase 1 (TBK1) and IKKg resulting to phosphorylate the
interferon regulatory factor 3 (IRF3) and activate IRAK1 and IKKg resulting to
phosphorylate the interferon regulatory factor 7 (IRF7) (Tatematsu et al., 2010).
Activated IRFs dimers translocate to nucleus and increase the expression of IFN
genes (Tenoever et al.,, 2007). Furthermore, TRIF can promote the NF-KB in MyD88-
independent pathway through the same pathway of MyD88-dependent via the
activation of TRAF6 and TAK1 (Sato et al., 2003). Moreover, TRIF can bind the adapter
receptor-interacting protein 1 (RIP1) resulting to activate the NF-KB and translocate
into nucleus to promote several proinflammatory cytokine genes (Gay et al., 2014).

Moreover, LPS can induce the inflammatory response in the immune cells
through the phosphorylated molecules such as phosphorylated signal transducer
and activator of transcription 3 and 5 (pSTAT3 and pSTAT5) in the Janus kinase/signal
transducer and activator of transcription (JAK/STAT) pathway (Cacciapaglia et al,
2020; Phongpreecha et al., 2020).

Otherwise, phorbol 12-myristate 13-acetate (PMA), a potent inflammatory
agent, is used to stimulate the inflammatory condition in PBMCs (Chang et al., 2020).
PMA/lono stimulation is related to the complex signaling of T cells receptor (TCR).
PMA stimulates the inflammatory proteins such as IKK and MAPK; while ionomycin
activates the calcineurin and the level of intracellular Ca®* (Macian et al., 2002).
These two stimulations also activate the intracellular molecules including NF-KB, AP-
1 and nuclear factor of activated T cells (NFAT) resulting to induce the expression of

inflammatory cytokines such as IL-2 and IFN-y (Brignall et al., 2017; Macian et al,,

2002).
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2.2 Store-operated calcium entry (SOCE) pathway

PMA/lono not only activates the inflammatory pathway through NF-kB and
MAPK but also stimulates the expression of inflammatory cytokines through the
activation of intracellular Ca2" level via SOCE pathway (Haverstick et al.,, 1997). The
activation of TCR in T cells transfers the second signaling molecules, inositol-1,4,5-
trisphosphate (IP3) (Prakriya & Lewis, 2015). Subsequently, IP; bind to IP5 receptors
(IPRs) at the endoplasmic reticulum (ER) which are the permeable Ca?* channels
(Feske et al., 2015). IPRs are then opening resulting in the decreasing of the Ca*" level
in ER (Prakriya & Lewis, 2015). After that, the stromal interaction molecule 1 and 2
(STIM1 and STIM2) in ER which changing the conformation bind to and open the Ca?*-
release activated Ca®* (CRAC) channel including calcium release-activated calcium
modulator 1, 2 and 3 (ORAI1, ORAI2 and ORAI3) in plasma membrane resulting in the
Ca®* influx, called store-operated Ca?* entry (SOCE) (Avila-Medina et al., 2018). The
Ca®* influx also activates calcineurin to dephosphorylate NFAT which translocate to
nucleus and then activates the several intracellular molecules resulting to promote

the cytokines expression (Hann et al., 2020).

2.3 Natural products for anti-inflammation based on immune modulatory

effects

Nowadays, there are several natural products or active compounds showed
the potential anti-inflammation based on immune modulatory effects via many
pathways such as promoting the immune response and reduction of inflammatory
gene expression and cytokines secretion (Haddad et al., 2005; Moudgil & Venkatesha,
2022; Zhong et al., 2022). For example, parthenolide, a sesquiterpene lactone, from
Tanacetum parthenium L. (feverfew) exhibited significant reduction of the
inflammatory cytokines secretion including interleukin-1 (IL-1), IL-6, TNF-a. and
prostaglandin E2 (PGE2) in LPS-induced human PBMCs (Shah et al., 2010). A stilbene
named resveratrol from Vitis vinifera or Polygonum cuspidatum can activate

adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 resulting to
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inhibit NF-KB function in T cells and also inhibit TLR expression NF-KB activity in
dendritic cells (Malaguarnera, 2019). In dextran sulfate sodium (DSS)-induced colitis
model, resveratrol deducted the infiltration of T cells and neutrophils in lamina
propria and lymph nodes and inhibited p53 and NF-KB pathway (Singh et al., 2010).
Furthermore, resveratrol demonstrated strong inhibition of IL-1, IL-6, TNF-t and
malondialdehyde (MDA) level and increasing of glutathione level in monocytes
isolated from PBMCs of myocardial infarction patients (Chugtai et al., 2018). In
addition, curcumin from Curcuma longa diminished the production of IL-6 and IL-23
in dendritic cells, reduced IL-17 production in T cells and inhibited IFN-y production
through modulating the STAT4 function (Fahey et al,, 2007; Zhao et al, 2017).
Moreover, curcumin showed the reduction of IL-12 through inhibition of STAT3, STAT4
and JAK2 in JAK-STAT pathway in multiple sclerosis mice model and decreased the
inflammatory cytokines including IL-7, IL-15 and IL-21 via blocking JAK1 and STAT5
(Natarajan & Bright, 2002; Zhong et al., 2021). Boswellic acids, pentacyclic triterpenes,
isolated from the gum resin of the Boswellia genus exhibited the inhibition of IFN-y
and IL-2 production in T cells (Chevrier et al., 2005). Epigallocatechin gallate (EGCG), a
polyphenol catechin from tea, suppressing the TNF-o and IFN-y expressed levels in
the joints of mice and inhibited the IL-17 and IFN-y production from T cells in
multiple sclerosis mouse model (Byun et al., 2014; Sun et al.,, 2013). In DSS-induced
colitis model, EGCG showed anti-inflammatory and immunomodulatory activities
through many pathways including deduction of TNF-a, decreasing of IL-6 and IL-17
through the blocking of STAT3 expression and inhibition of inflammatory cytokines via
mediation of TLR4/MyD88 and NF-KB pathway (Bing et al., 2017; Oz et al., 2013; Xu
et al,, 2015). A diterpene triperoxide, triptolide, from Chinese herb Tripterygium
wilfordii Hook f. exhibited the inhibition of IL-2 and IFN-y production in human T cells
(Chan et al., 1999). Triptolide also decreased IL-6, IL-1b and TNF-a though inhibition
of JAK2 and STAT3 in arthritic rats and inhibited the p-lkBa level of NF-KB pathway in

multiple sclerosis mice model (Fan et al,, 2016; Wang et al., 2008). In SOCE model,
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ellagic acid showed significant suppressing of IL-2 and IFN-y expression levels through

inhibition of SOCE-mediated Ca®* influx in T cells (Murphy et al., 2020).

2.4 Dendrobium genus: Phytochemical and biological activities

Dendrobium is one of the largest genera in Orchidaceae family distributed
around Asia and Australia with more than 1,500 species (Pridgeon et al., 2014; Wang
et al,, 2020). Dendrobium plants such as Dendrobium nobile, Dendrobium
chrysotoxum Lindl. And Dendrobium officinale Kimura et Migo and their various parts
have been used as folk medicine in many Asian countries for a long time (Mou et al,,
2021). For instance, Dendrobium plants are known as “Shi hu” in China and have
been used as traditional Chinese medicine (TCM) for treatment various symptoms
such as reducing fever, nourishing Yin, promoting the production of body fluids and
enhancing the immunity (Lin et al., 2018; Yang, Wang, et al., 2006b). In Thailand, they
found Dendrobium draconis Rchb.f. used as a blood tonic in traditional medicine (Ng
et al.,, 2012). Moreover, D. officinale was approved by China FDA to use as medicinal
materials and other three plants including Dendrobium fimbriatum Hook., D.
chrysotoxum and D. nobile are available for clinical usage (Y. Wang et al., 2019).

In Thailand, Dendrobium plants have been discovered and reported more

than 100 species as follows (Herbarium, 2014; Phueakkhlai et al., 2018; Rujichaipimon

et al,, 2019).

Dendrobium acerosum Lindl. naqeldidiauns Kluai mai mue nang
D. aciculare Lindl. Lﬁyaﬂmﬁu

D. acinaciforme Roxb. Lﬁyaeaama%aa Ueang yot soi

D. aduncum Lindl. N/A

D. albosanguineum Lindl. Lgaamfi"a Ueang ta ngua

D. aloifolium (Blume) Rchb.f. \Beaudl Ueang mani

D. anceps Sw. N/A



D. angulatum Lindl.

D. anosmum LindL.

D. aphyllum (Roxb.) C.E.C. Fisch.
D. bellatulum Rolfe

D. bensoniae Rchb.f.

D. bicameratum LindLl.
D. bifarium Lindl.

D. bilobulatum Seidenf.
D. blumei LindL.

D. brevimentum Seidenf.
D. brymerianum Rchb.f.
D. calicopis Ridl.

D. capillipes Rchb.f.

D. cariniferum Rchb.f.

D. chittimae Seidentf.

D. christyanum Rchb.f.
D. chrysanthum Lindl.

D. chrysocrepis C.S.P.Parish & Rchb f.

ex Hookf.

D. chrysotoxum Lindl.

D. ciliatilabellum Seidenf.
D. clavator Ridl.

D. compactum Rolfe ex Hackett

20

N/A

Lgaﬂmﬂ Ueang sai

L?l'yawm%'w Ueang nguang chang
Lé’a\‘lLL%Q Ueng sae phu
Lgax‘lﬁ']ﬂﬂ’e]ﬂ‘l]'n

Lﬁyam,%u Ueang khem

N/A

naaeldiinelan Kluai mai kang pla
N/A

N/A

Basirla Ueang kham foi

N/A

\3e9/na Ueang kham kio
Lﬁyaﬂmﬂn Ueang kachok
Lﬁy’aﬁﬂam Ueang chittima
Lgaangns:ﬁa Ueang sae phu kradueng
Lﬁyaemamnm Ueang sai morakot

189999129 Ueang thung thong

1889A1 Ueang kham
UIYWVY Wai khao khiao
N/A

198991208n Ueang khao tok



. compressum Lindl.
. concinnum Mig.

. confinale Kerr

. cowenii P. O’Byrne & J.J. Verm.

. crepidatum Lindl. & Paxton
. cretaceum Lindl.

. crocatum Hook.f.

. cruentum Rchb.f.

. crumenatum Sw.

. crystallinum Rchb.f.

. cumulatum Lindl.

. curviflorum Rolfe

. cuspidatum Lindl.

. dantaniense Guillaumin
. delacourii Guillaumin

. deltatum Seidentf.

. denneanum Kerr

. densiflorum Lindl.

. denudans D. Don

. devonianum Paxton

. dickasonii L. O. Williams

. dixanthum Rchb.f.

WYUUUAZUIIAT Wai baen tanao si
#1908 Hang pia

N/A

N/A

Basenetnden Ueang sai nam khiao
N/A

Lgaeu'mma Ueang nang nuan
Lgaeuml,ﬁ'q Ueang nok kaeo
#MYASUDY Wai tamoi

Bawnsau Ueang nang fon
Lga\‘lms?ilﬂan Ueang sai si dok

N/A

Lg‘EN‘iJ’TWIE]ﬂU']ﬂLL‘WaN

Lﬁyaw‘fm Ueang khem
Lﬁyamanmmu Ueang dok ma kham
N/A

N/A

Bewauly Ueang mon khai
\Besaesiu Ueang sai champa
Lga%ﬁ&l\‘l Ueang miang

Lgaﬂl,??&lx Ueang khia

199491918 Ueang thian
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D. dixonianum Rolfe ex Downie
D. draconis Rchb.f.

D. elliottianum P. O’Byrne

D. ellipsophyllum Tang & Wang
D. erostelle Seidenf.

D. erosum (Blume) Lindl.

D. eserre Seidenf.

D. exile Schltr.

D. falconeri Hook.

D. farmeri Paxton

D. fimbriatum Hook.

D. findlayanum C.S.P.
Parish & Rchb.f.

D. flexile Ridl.

D. formosum Roxb. ex Lindl.

D. friedericksianum Rchb.f.

D. fuerstenbergianum Schiltr.

D. fyychianum Bateman ex Rchb.f.
D. garrettii Seidenf.

D. gibsonii Paxton

D. grande Hook.f.

D. gratiotissimum Rchb.f.

D. gregulus Seidenf.

22

\Besdnenmdes

\Beaiu Ueang ngoen
#ELaRg Wai chedi

Lgaewm Ueang thong

N/A

N/A

N/A

Lga\‘ll,gﬂu Ueang sian
L"gaqmﬂ"“aqm Ueang sai wisut
Lgaﬂﬁﬁlmm Ueang matchanu
Basinton Ueang kham noi

WAUYN Phuang yok

N/A

\Bealtunans Ueang ngoen luang
Lgaamﬁaﬁwgi Ueang lueang chantabun
Lgaungns:ﬁe Ueang sae phukradueng
#2181 Wai phama

wMEMIIA Wai karet

\Basdane Ueang kham sai

Lﬁyammiﬂmyj Ueang pheang bai yai
L‘gaeﬁlaﬁw Ueang king dam

1999UZFaN Ueang ma tom



D. eriffithianum Lindl.

D. harveyanum Rchb.f.

D. hendersonii Hawkes & Heller
D. henryi Schltr.

D. hercoglossum Rchb.f.

D. heterocarpum LindL.

D. hymenanthum Rchb.f.

D. hymenopterum Hookf.

D. incurvum LindL.

D. indivisum (Blume) Miq.

var. indivisum

D. indivisum (Blume) Miq.

var. lampangense Rolfe

D. indivisum (Blume) Miq.

var. pallidum Seidenf.

D. indragiriense Schltr.

D. infundibulum LindL.

D. intricatum Gagnep.

D. jenkinsii Wall. ex Lindl.
D. kanburiense Seidenf.
D. keithii Ridl.

D. kentrophyllum Hook f.

D. kontumense Gagnep.

Lﬁaeﬁamm Ueang matchanu
1909ABY Ueang kham foi
wMeRzURYLaY Wai tamoi noi

1899g38U Ueang suriyan

1989ABNNLLID Ueang dok ma kuea

19998018 Ueang si tan

190sdaanduune Ueang noi klip bang

N/A
N/A

arusdeuld Tan sian mai
N/A
fineUan Kang pla

N/A
1989 Ueang ta hoen
1889%uW Ueang chomphu
U

g X o .
L@RINNUBY Ueang phueng noi

IS ¢ .
NIYLUBINIEYIU Wai muang kan
w1y Hang pia
fnadanlvigy

199904UIaA Ueang ngoen wilat
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D.

D

D. pachyphyllum (Kuntze) Bakh.f.

D

D

. kratense Kerr

. lagarum Seidenf.

. lanpongense J.J.Sm.

. lamyaiae Seidenf.

. leonis (Lindl.) Rchb f.

. lindleyi Steud.

. linguella Rchb f.

. lituiflorum Lindl.

. lueckelianum Fessel & Wolff
. mannii Ridl.

. metachilinum Rchb f.

. monticola Hunt & Summerh
. moschatum (Buch.-Ham.) Sw.
. mucronatum Seidenf.

. nanocompactum Seidenf.

. nathanielis Rchb.f.

. ochreatum LindL.
oligophyllum Gagnep.

. pachyglossum Parish & Rchb.f

. palpebrae Lindl.

. pandaneti Ridl.

N/A

N/A

N/A

N/A

\8a9nzu1ulng) Ueang ta khap yai

Lgaﬁﬁd Ueang phueng

N/A

(Bosaneiag Ueang sai muang
N/A

Bawnalan Ueang hang pla
N/A

N/A

13993101 Ueang champa
N/A

N/A

ndafin Klet nim

\Benzuy Ueang ta khap
1708nUs13U Khao tok prachin
Lgawwyj Ueang khon mu
\3esties Ueang noi

Lgaﬂﬁﬁlm Ueang matcha

N/A
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D. panduriferum Hook.f.

D. parciflorum Rchb.f. ex Lindl.
D. parcum Rchb.f.

D. parishii Rchb f.

D. parvum Seidentf.

D. peguanum LindLl.

D. pendulum Roxb.

D. perpaulum Seidenf.

D. planibulbe Lindl.

D. polyanthum Wall. ex LindLl.
D. porphyrochilum Lindl.

D. praecinctum Rchb.f.

D. proteranthum Seidenf.

D. pulchellum Roxb. ex Lindl.
D. pychnostachyum Lindl.

D. rhodostele Ridl.

D. ruckeri Lindl.

D. salaccense (Blume) Lindl.
D. sanguinolentum LindLl.

D. scabrilingue Lindl.

D. schilhaueri Ormerod &

Pedersen

D. secundum (Blume) Lindl.

N/A

1989nanU2TuLlUY Ueang dok khao bai baen

L?l'yaeﬁ"mﬁ"a Ueang kan kio
Lé’a\‘lﬂ%’\‘l Ueang khrang
N/A

wwLdn Wai peku

10asldiwinme Ueang mai thao ruesi

1999912M8NBUNUUN Ueang khao tok inthanon

N/A

BassneUszam Ueang sai prasat
Lﬁyaam%u Ueang chawian
$3189%a39 Wai phu luang
1818 nale Wai noi phu luang
\3e3fm1A8 Ueang kham ta khwai
LANEaAE Sawet sot si

N/A

N/A

Baaluln Ueang bai phai

N/A

LgaQLL% Ueang sae

N/A

1999uU598WU Ueang preang si fan
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. senile Parish & Rchb.f.

. setifolium Ridl.

. siecnatum Rchb.f.

. singaporense Hawkes & Heller
. sinuatum (LindL.) Lindl. ex Rchb.f.
. sociale J.J.Sm.

. strongylanthum Rchb.f.

. stuposum Lindl.

. subulatum (Blume) LindL.

. sukhakulii hort.

. sulcatum LindL.

. superbiens Rchb.f.

. sutepense Rolfe ex Downie
. terminale Parish & Rchb.f

. thyrsiflorum Rchb.f

. tortile LindLl.

. trigonopus Rchb.f.

. trinervium Ridl.

. truncatum Lindl.

. umbonatum Seidenf.

. unicum Seidentf.

. uniflorum Griff.

. venustum Teijsm. & Binn

Lgawzﬁ Ueang chani

N/A

Lga%ﬁ'ﬂﬁ’a Ueang khao kio

N/A

N/A

N/A

Lﬁyax‘ll,é"lau Ueang yao lom
Lgaﬂmﬂ Ueang sai

N/A

nIeguena Wai sukhakun
Bassninu Ueang champa nan
#8AS Wai khing

GERTT Ueang mali
Lﬁyam,mﬂam Ueang phaeng sopha
\Basuaulylunu Ueang mon khai bai mon
L?';lae‘lﬁﬁq Ueang mai tueng
\Besdwaeu Ueang kham liam
LWigUAS Thian ling

N/A

N/A

Lga\‘lﬂ%"ﬁl,l,aﬂ Ueang krang saet
Lgawaa Ueang thong

g1wtienae Khao niao ling
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D. villosulum LindL. NAWNYIUN Kluai ya na

D. viridulum RidL. N/A

D. wardianum R. Warner Lgaﬂuiﬁ‘lﬂiﬁ\iﬁ Ueang mani trairong

D. wattii (Hook.f.) Rchb.f. Boauey Ueang sae (

D. williamsonii Day & Rchb.f. N/A

D. xanthophlebium Lindl. Lgaangé'am

D. ypsilon Seidenf. \Beauuunga Ueang baen pak tat (General)

The phytochemical studies of Dendrobium plants have been reported and
categorized based on the structure of their secondary metabolites such as bibenzyls,
phenanthrenes, terpenoids, fluorenones, coumarins and lignans (He et al., 2020; Lam

et al., 2015) [Figure 1-8 and Table 1-8].



Table 1 Bibenzyls and derivatives in the Dendrobium species.

Compounds Plant name Plant part References
Aloifol | [1] D. longicornu Stem (Hu et al.,, 2008a)
D. williamsonii Whole plant | (M. Yang et al,,
2018)
D. infundibulum Whole plant | (Na Ranong et al,,
2019)
D. scabrilingue Whole plant | (Sarakulwattana et
al., 2020)
D. gibsonii Whole plant | (Thant et al., 2020)
D. senile Whole plant | (Pann Phyu et al.,
2022)
Amoenylin [2] D. amoenum Whole plant | (Majumder et al,,
1999)
D. williamsonii Whole plant | (M. Yang et al,,
2018)
Batatasin [3] D. longicornu Stem (Hu et al., 2008a)
D. plicatile Stem (Yamaki & Honda,
1996)
Batatasin Ill [4] D. aphyllum Whole plant | (Chen, Li, et al,,
2008)
Stem (Yang et al.,, 2015)
D. cariniferum Stem (Chen, Liu, et al.,
2008)
D. chrysotoxum Whole plant | (Y.-P. Li et al,,

2009)




Table 1 Bibenzyls and derivatives in the Dendrobium species (Continued).
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Compounds

Plant name

Plant part

References

Batatasin Il [4]

D. draconis

Stem

(Sritularak, Anuwat,

et al., 2011)

D. formosum

Whole plant

(Inthongkaew et

al.,, 2017)

D. gratiosissimum | Stem (Zhang et al,,
2008)

D. loddigesii Stem (Ito et al., 2010)

D. venustum

Whole plant

(Sukphan et al,,
2014)

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

D. plicatile Stem (Chen et al., 2020)
Brittonin A [5] D. secundum Stem (Sritularak,
Duangrak, et al,,
2011)
Chrysotobibenzyl [6] D. aurantiacum Stem (Yang, Wang, et al,,
var. denneanum 20062)
D. capillipes Stem (Phechrmeekha et
al., 2012)
D. chrysanthum Stem (Yang, Qin, et al,,
2006)
D. chryseum Stem (Ma, Wang, Yin, et

al., 1998)




Table 1 Bibenzyls and derivatives in the Dendrobium species (Continued).
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Compounds Plant name Plant part References
Chrysotobibenzyl [6] D. chrysotoxum Stem (Hu et al,, 2012)
D. nobile Stem (Zhang et al,,
2007)
D. pulchellum Stem (Chanvorachote et
al., 2013)
Chrysotoxine [7] D. aurantiacum Stem (Yang, Wang, et al,,
var. denneanum 2006a)
D. chrysanthum Stem (Yang, Qin, et al,,
2006)
D. chryseum Stem (Ma, Wang, Yin, et
al., 1998)
D. nobile Stem (Zhang et al,,
2007)
D. pulchellum Stem (Chanvorachote et

al., 2013)

D. lindleyi

Whole plant

(Khoonrit et al.,
2020)

Crepidatin [8]

D. aurantiacum

var. denneanum

Whole plant

(Liu et al., 2009)

D. capillipes Stem (Phechrmeekha et
al., 2012)
D. chrysanthum Stem (Yang, Qin, et al,,

2006)
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Compounds

Plant name

Plant part

References

Crepidatin [8]

D. crepidatum

Whole plant

(Majumder &
Chatterjee, 1989)

D. crepidatum Root (Ding et al., 2021)
D. nobile Stem (Zhang et al., 2007)
D. pulchellum Stem (Chanvorachote et

al., 2013)

Cumulatin [9]

. cumulatum

Whole plant

(Majumder & Pal,
1993)

Dendrobin A [10]

D. nobile

Stem

(Wang et al., 1985)

3,3’-Dihydroxy-4,5-
dimethoxybibenzyl [11]

D. williamsonii

Whole plant

(Rungwichaniwat et

al., 2014)

. infundibulum

Whole plant

(Na Ranong et al,,

2019)

3,4'-Dihydroxy-5-

methoxybibenzyl [12]

..amoenum

Whole plant

(Majumder et al.,,

1999)

. catenatum Stem (Zhu et al., 2021)
3,4’-Dihydroxy-5,5"- . nobile Stem (Hwang et al., 2010)
dimethoxydihydro
stilbene [13]
4,5-Dihydroxy-3,3 - . nobile Stem (Ye & Zhao, 2002)
dimethoxybibenzyl [14]
Erianin [15] . chrysotoxum Stem (Hu et al., 2012)

. terminale

Whole plant

(Cheng et al., 2022)
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Compounds

Plant name

Plant part

References

Gigantol [16]

D. aphyllum

Whole plant

(Chen, Li, et al,,
2008)

D. aurantiacum

var. denneanum

Whole plant

(Liu et al., 2009)

D. brymerianum

Whole plant

(Klongkumnuankarn

et al., 2015)

D. densiflorum

Stem

(Fan et al.,, 2001)

D. devonianum

Whole plant

(Sun et al., 2014)

D. draconis

Stem

(Sritularak, Anuwat,

et al., 2011)

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

D. gratiosissimum

Stem

(Zhang et al., 2008)

D. loddligesii Whole plant | (Ito et al., 2010)

D. longicornu Stem (Hu et al., 2008a)
D. nobile Stem (Zhang et al., 2007)
D. officinale Stem (Zhao et al,, 2018)
D. polyanthum Stem (Hu et al.,, 2009)

D. trigonopus Stem (Hu et al., 2008b)

D. venustum

Whole plant

(Sukphan et al.,
2014)

D. palpebrae

Whole plant

(Kyokong et al,,
2019)
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Compounds

Plant name

Plant part

References

Gigantol [16]

D. lindleyi

Whole plant

(Khoonrit et al.,
2020)

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

D. pachysglossum

Whole plant

(Warinhomhoun et

al., 2021)

4-Hydroxy-3,5,3 - D. nobile Stem (Ye & Zhao, 2002)
trimethoxybibenzyl [17]
5-Hydroxy-3,4,3",4",5'- D. secundum Stem (Phechrmeekha et

pentamethoxybibenzyl

(18]

al., 2012)

Isoamoenylin [19]

D. amoenum

Whole plant

(Majumder et al,,

1999)

Moniliformine [20]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

Moscatilin [21]

D. amoenum

Whole plant

(Majumder et al,,

1999)

D. aurantiacum

var. denneanum

Stem

(Yang, Wang, et al,,
2006a)

D. brymerianum

Whole plant

(Klongkumnuankarn

et al., 2015)

D. chrysanthum

Stem

(Yang, Qin, et al,,
2006)
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Compounds

Plant name

Plant part

References

Moscatilin [21]

D. densiflorum

Stem

(Fan et al,, 2001)

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al., 2014)

D. formosum

Whole plant

(Inthongkaew et al.,

2017)

D. gratiosissimum

Stem

(Zhang et al., 2008)

D. loddigesii

Whole plant

(Chen et al, 1994)

D. longicornu

Stem

(Hu et al.,, 2008a)

D. moscatum

Whole plant

(Majumder & Sen,
1987)

D. nobile Stem (Miyazawa et al.,
1999)

D. polyanthum Stem (Hu et al., 2009)

D. pulchellum Stem (Chanvorachote et
al,, 2013)

D. secundum Stem (Sritularak,

Duangrak, et al,,

2011)

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

D. parishii

Whole plant

(Kongkatitham et
al., 2018)

D. palpebrae

Whole plant

(Kyokong et al,,
2019)
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Compounds

Plant name

Plant part

References

Moscatilin [21]

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

D. lindleyi Whole plant | (Khoonrit et al.,
2020)
D. plicatile Stem (Chen et al., 2020)

D. pachyglossum

Whole plant

(Warinhomhoun et

al., 2021)

D. crepidatum

Root

(Ding et al., 2021)

D. terminale

Whole plant

(Cheng et al., 2022)

D. senile

Whole plant

(Pann Phyu et al,,
2022)

3,3, 4-Trihydroxy bibenzyl
[22]

D. longicornu

Stem

(Hu et al., 2008a)

3,3",5-Trihydroxy

bibenzyl [23]

D. cariniferum

Whole plant

(Chen, Liu, et al.,
2008)

3,5,4-Trihydroxy bibenzyl | D. gratiosissimum | Stem (Zhang et al., 2008)
[24]
45,4 -Trihydroxy-3,3'- D. secundum Stem (Sritularak,

dimethoxybibenzyl [25]

Duangrak, et al,,

2011)

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al,, 2014)
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Compounds

Plant name

Plant part

References

4,5,4'-Trihydroxy-3,3'-
dimethoxybibenzyl [25]

D. parishii

Whole plant

(Kongkatitham et
al,, 2018)

D. palpebrae

Whole plant

(Kyokong et al,,

2019)
D. parishii Whole plant | (Kongkatitham et
al., 2018)
Tristin [26] D. palpebrae Whole plant | (Kyokong et al.,
2019)
D. chrysotoxum Stem (Hu et al,, 2012)
D. densiflorum Stem (Fan et al,, 2001)
D. gratiosissimum | Stem (Zhang et al., 2008)
D. longicornu Stem (Hu et al., 2008a)
D. officinale Stem (Zhao et al,, 2018)
D. trigonopus Stem (Hu et al., 2008b)
Dendromoniliside E [27] D. nobile Stem (Miyazawa et al.,
1999)
4,3 d’-Trihydroxy-3,5- D. parishii Whole plant | (Kongkatitham et

dimethoxybibenzyl [28]

al., 2018)

5,4’-Dihydroxy-3,4,3'-

trimethoxybibenzyl [29]

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

4,5-Dihydroxy-3,3",4 - D. lindleyi Whole plant | (Khoonrit et al.,
trimethoxybibenzyl [30] 2020)
2-Chloro-3,4 -dihydroxy- D. plicatile Stem (Chen et al,, 2020)

3',5-dimethoxybibenzyl

(31]
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Compounds Plant name Plant part References
Dendrophenol [32] D. candidum Stem (Li et al., 2008)
D. crepidatum Root (Ding et al., 2021)
3,4-Dihydroxy-5,4'- D. candidum Stem (Li et al., 2008)
dimethoxybibenzyl [33] D. signatum Whole plant | (Mittraphab et al,,
2016)
D. signatum Aerial part (Khumploy et al,,
2021)
D. tortile Whole plant | (Limpanit et al,,

2016)

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

D. harveyanum

Whole plant

(Maitreesophone et

al., 2022)

4,4’-Dihydroxy-3,5-
dimethoxybibenzyl [34]

D. candidum

Stem

(Li et al., 2008)

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al., 2014)

D. williamsonii Whole plant | (M. Yang et al,,
2018)
D. signatum Aerial part (Khumploy et al,,
2021)
Loddigesiinol C [35] D. loddigesii Whole plant | (Ilto et al., 2010)
3-O-Methylgigantol [36] D. candidum Stem (Li et al., 2008)
D. plicatile Stem (Yamaki & Honda,

1996)
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Compounds Plant name Plant part References
Dendrocandin A [37] D. candidum Stem (Li et al., 2008)
Dendrocandin B [38] D. candidum Stem (Li et al., 2008)
D. signatum Whole plant | (Mittraphab et al,,
2016)
D. signatum Aerial part (Khumploy et al,,
2021)
D. harveyanum Whole plant | (Maitreesophone et
al,, 2022)
Dendrocandin C [39] D. candidum Stem (Li et al,, 2008)
Dendrocandin D [40] D. candidum Stem (Li et al.,, 2008)
Dendrocandin E [41] D. candidum Stem (Li et al., 2008)
D. parishii Whole plant | (Kongkatitham et
al.,, 2018)
Dendrocandin F [42] D. candidum Stem (Li et al., 2008)
Dendrocandin G [43] D. candidum Stem (Li et al., 2008)
Dendrocandin H [44] D. candidum Stem (Li et al., 2008)
Dendrosinen A [45] D. sinense Whole plant | (Chen et al., 2014)
Dendrosinen B [46] D. sinense Whole plant | (Chen et al.,, 2014)
D. infundibulum | Whole plant | (Na Ranong et al,,

2019)

Dendrosinen C [47]

. sinense

Whole plant

(Chen et al.,, 2014)

Dendrosinen D [48]

. sinense

Whole plant

(Chen et al., 2014)
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Compounds

Plant name

Plant part

References

Dendrocandin | [49]

D. candidum

Stem

(Li et al., 2008)

D. signatum Whole plant | (Mittraphab et al.,
2016)
D. signatum Aerial part (Khumploy et al,,
2021)

Dendrocandin V [50] D. catenatum Stem (Zhu et al., 2021)
Dendrocandin W [51] D. catenatum Stem (Zhu et al., 2021)
Densiflorol A [52] D. densiflorum Stem (Fan et al,, 2001)
Longicornuol A [53] D. longicornu Stem (Hu et al., 2008a)
Trigonopol A [54] D. trigonopus Stem (Hu et al., 2008b)
Trigonopol B [55] D. chrysotoxum Stem (Hu et al,, 2012)

D. trigonopus Stem (Hu et al., 2008b)
Crepidatuol A [56] D. crepidatum Stem (Lietal, 2013)
Crepidatuol B [57] D. crepidatum Stem (Lietal, 2013)
Loddigesiinol D [58] D. loddigesii Whole plant | (Ito et al., 2010)
Dencryol A [59] D. crystallinum Stem (Wang et al., 2009)
Dencryol B [60] D. crystallinum Stem (Wang et al., 2009)
Dengraol A [61] D. gratiosissimum | Stem (Zhang et al., 2008)
Dengraol B [62] D. gratiosissimum | Stem (Zhang et al., 2008)
4-[2-(3-Hydroxyphenol)-1- | D. longicornu Stem (Hu et al., 2008a)
methoxyethyl]-2,6-
dimethoxy phenol [63]
Nobilin A [64] D. nobile Stem (Zhang et al., 2006)
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Compounds Plant name Plant part References
Nobilin B [65] D. nobile Stem (Zhang et al., 2006)
D. crepidatum Root (Ding et al., 2021)
Nobilin C [66] D. nobile Stem (Zhang et al., 2006)
Nobilin D [67] D. nobile Stem (Zhang et al., 2007)
Nobilin E [68] D. nobile Stem (Zhang et al., 2007)
Dendrofalconerol A [69] D. falconeri Stem (Sritularak &
Likhitwitayawuid,
2009)
D. signatum Whole plant | (Mittraphab et al,,
2016)
D. tortile Whole plant | (Limpanit et al,,

2016)

D. harveyanum

Whole plant

(Maitreesophone et

al., 2022)

Dendrofalconerol B [70]

D. falconeri

Stem

(Sritularak &
Likhitwitayawuid,
2009)

D. harveyanum

Whole plant

(Maitreesophone et

al., 2022)

Dendrosignatol [71] D. signatum Whole plant | (Mittraphab et al,,
2016)
(-)-Dendroparishiol [72] D. parishii Whole plant | (Kongkatitham et

al,, 2018)
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Compounds Plant name Plant part References
6"-de-O-methyldendro- D. findlayanum Stem (D. Yang et al,,
findlaphenol A [73] 2018)
D. signatum Aerial part (Khumploy et al,,
2021)
Dendrofindlaphenol A [74] | D. findlayanum Stem (D. Yang et al,,
2018)
Dendrofindlaphenol B [75] | D. findlayanum Stem (D. Yang et al,,
2018)
D. catenatum Stem (Zhu et al., 2021)
Dendrofindlaphenol C D. findlayanum Stem (D. Yang et al,,
[76] 2018)
Dendronbibisline C [77] D. nobile Stem (Cheng et al., 2020)
Dendronbibisline D [78] D. nobile Stem (Cheng et al., 2020)

Dendroscabrols B [79]

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

Dendropachol [80]

D. pachyglossum

Whole plant

(Warinhomhoun et

al., 2021)

Dengratiol A [81] D. gratiosissimum | Stem (Sun et al,, 2021)
Dengratiol B [82] D. gratiosissimum | Stem (Sun et al,, 2021)
Dengratiol C [83] D. gratiosissimum | Stem (Sun et al,, 2021)
Dengratiol D [84] D. gratiosissimum | Stem (Sun et al,, 2021)
Dendrosonside B [85] D. ‘Sonia’ Stem (Qiu et al., 2023)
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species.



[15] Erianin
[16] Gigantol

[17] 4-Hydroxy-3,5,3

trimethoxybibenzyl

[18] 5-Hydroxy-3,4,3",4',5

pentamethoxybibenzyl
[19] Isoamoenylin
[20] Moniliformine
[21] Moscatilin
[22] 3,3 4-Trihydroxybibenzyl
[23] 3,3 5-Trihydroxybibenzyl

[24] 3,5,4'-Trihydroxybibenzyl

Figure 1 Structures of bibenzyls and derivatives from Dendrobium species

(Continued).
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[25] 4,5,4'-Trihydroxy-3-3"- OMe OH OH OH OMe

dimethoxybibenzyl
[26] Tristin OH H OH OH OMe
[27] Dendromoniliside E OGlc OGlc OMe OMe H
[28] 4,3 ,4"-Trihydroxy-3,5- OMe OH OMe OH OH
dimethoxybibenzyl
[29] 5,4'-Dihydroxy-3,4,3'- OMe OMe OH OH OMe
trimethoxybibenzyl
[30] 4,5-Dihydroxy-3,3",4 - OMe OH OH OMe OMe
trimethoxybibenzyl

OMe

[31] 2-Chloro-3,4 -dihydroxy-3,5-dimethoxybibenzyl

Figure 1 Structures of bibenzyls and derivatives from Dendrobium species

(Continued).



[32] Dendrophenol

[33] 3,4-Dihydroxy-5,4'-

dimethoxybibenzyl

[34] 4,4"-Dihydroxy-3,5-

dimethoxybibenzyl
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species

(Continued).



R HO OH
) oo
O

o
o)
OMe
[42] Dendrocandin F: R = OMe

[43] Dendrocandin G: R = OH

MeO
R, OH
D eavy
HO
[45] Dendrosinen A R; = OMe R, = OH
[46] Dendrosinen B R, =0OH, R, = H
HO OH

[48] Dendrosinen D

46

OMe
HO O
(0]
Cr
HO (0] OH
(0] OMe
[44] Dendrocandin H

[47] Dendrosinen C

OMe

[49] Dendrocandin |
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species
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[63] 4-[2-(3-Hydroxyphenol)-1- OMe H OH  OMe
methoxyethyl]-2,6-dimethoxyphenol
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[68] Nobilin E [69] Dendrofalconerol A: R; = OH, R, = R; = OMe

[70] Dendrofalconerol B: R; = H, R, = R; = OH

Figure 1 Structures of bibenzyls and derivatives from Dendrobium species

(Continued).
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species
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Figure 1 Structures of bibenzyls and derivatives from Dendrobium species

(Continued).
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Compounds Plant name Plant part References

4.,4' 8,8 -tetramethoxy[1,1- | D. senile Whole plant | (Pann Phyu et al,,
biphenanthrene]-2,2',7,7'- 2022)

tetrol [86]

2,2',7,7-tetrahydroxy-4,4- | D. senile Whole plant | (Pann Phyu et al,,
dimethoxy-1,1"- 2022)
biphenanthrene [87]

2,2"-Dihydroxy-3,3,4,4,7,7- | D. nobile Stem (Yang et al., 2007)
hexamethoxy-9,9,10,10"-

tetrahydro-1,1"-

biphenanthrene [88]

2,2"-Dimethoxy-4,4" 7, D. plicatile Stem (Yamaki & Honda,
T"-tetrahydroxy-9,9,10,10"- 1996)
tetrahydro-1,1"-

biphenanthrene [89]

Flavanthrin [90] D. aphyllum Whole plant | (Chen, Lj, et al,,

2008)

Phoyunnanin C [91]

D. venustum

Whole plant

(Sukphan et al.,
2014)

Phoyunnanin E [92]

D. venustum

Whole plant

(Sukphan et al,,
2014)

Amoenumin [93]

D. amoenum

Whole plant

(Veerraju et al,,

1989)

Crystalltone [94]

D. chrysotoxum

Stem

(Hu et al., 2012)

D. crystallinum

Stem

(Wang et al., 2009)
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Compounds Plant name Plant part References
Chrysotoxol A [95] D. chrysotoxum Stem (Hu et al,, 2012)
Chrysotoxol B [96] D. chrysotoxum Stem (Hu et al,, 2012)
Confusarin [97] D. chryseum Stem (Ma, Wang, Yin, et
al., 1998)
D. chrysotoxum Stem (Hu et al,, 2012)

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

D. nobile Stem (Zhang et al., 2008)
D. officinale Stem (Zhao et al,, 2018)
2,6-Dihydroxy-1,5,7- D. densiflorum Stem (Fan et al., 2001)
trimethoxy-
phenanthrene [98]
D. palpebrae Whole plant | (Kyokong et al.,
2019)
Dendrochrysanene [99] D. chrysanthum Stem (Yang, Qin, et al,,
2006)
Bulbophyllanthrin [100] D. nobile Stem (Hwang et al., 2010)
Denthyrsinin [101] D. thyrsiforum Stem (Zhang et al., 2005)
D. plicatile Stem (Chen et al., 2020)
5-Hydroxy-2,4-dimethoxy- | D. loddigesii Whole plant | (Ilto et al., 2010)
phenanthrene [102]
3-Hydroxy-2,4,7- D. nobile Stem (Yang et al., 2007)

trimethoxy-

phenanthrene [103]
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Compounds

Plant name

Plant part

References

Cypripedin [104]

D. densiflorum

Stem

(Fan et al,, 2001)

D. lindleyi

Whole plant

(Khoonrit et al,,
2020)

Densiflorol B [105]

D. densiflorum

Stem

(Fan et al,, 2001)

D. venustum

Whole plant

(Sukphan et al.,

2014)
Denbinobin [106] D. moniliforme Stem (Lin et al,, 2001)
D. nobile Stem (Yang et al.,, 2007)
Fimbriatone [107] D. nobile Stem (Zhang et al., 2008)
D. pulchellum Stem (Chanvorachote et
al,, 2013)
Loddigesiinol B [108] D. loddigesii Whole plant | (Ito et al., 2010)

Dendronone [109] D. chrysanthum Stem (Yang, Qin, et al,,
2006)
D. longicornu Stem (Hu et al., 2008a)
Ephemeranthoquinone D. plicatile Stem (Yamaki & Honda,
[110] 1996),
5-Methoxy-7-hydroxy- D. draconis Stem (Sritularak, Anuwat,

9,10-dihydro-1,4-
phenanthrenequinone

[111]

et al,, 2011)

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

Moniliformin [112]

D. moniliforme

Stem

(Lin et al., 2001)
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Compounds

Plant name

Plant part

References

Moscatin [113]

D. aphyllum

Whole plant

(Chen, Li, et al,,
2008)

D. chrysanthum

Stem

(Yang, Qin, et al,,
2006)

D. chrysotoxum

Whole plant

(Y-P. Li et al., 2009)

D. densiflorum

Stem

(Fan et al., 2001)

D. polyanthum

Stem

(Hu et al., 2009)

D. senile

Whole plant

(Pann Phyu et al,,
2022)

Dendroscabrols A [114]

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

2,5,7-trihydroxy-4- D. senile Whole plant | (Pann Phyu et al,,

methoxyphenanthrene 2022)

[115]

Bleformin G [116] D. senile Whole plant | (Pann Phyu et al,,
2022)

Coelonin [117] D. aphyllum Whole plant | (Chen, Li, et al,,

2008)

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

D. nobile

Stem

(Yang et al.,, 2007)

D. devonianum

Stem

(Wu et al,, 2019)

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

D. plicatile

Stem

(Chen et al., 2020)
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Compounds Plant name Plant part References
9,10-Dihydromoscatin D. polyanthum Stem (Hu et al., 2009)
[118]

9,10-Dihydrophenan D. polyanthum Stem (Hu et al., 2009)

threne-2,4,7-triol [119]

4,5-Dihydroxy-2,3-
dimethoxy-9,10-
dihydrophenanthrene
[120]

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al., 2014)

D. sinense

Whole plant

(Chen et al.,, 2014)

D. pachysglossum

Whole plant

(Warinhomhoun et

al., 2021)

4,5-Dihydroxy-2,6-
dimethoxy-9,10-
dihydrophenanthrene
[121]

D. chrysotoxum

Stem

(Hu et al., 2012)

D. devonianum

Stem

(Wu et al., 2019)

4,5-Dihydroxy-3,7-
dimethoxy-9,10-
dihydrophenanthrene
[122]

D. nobile

Stem

(Ye & Zhao, 2002)

4,5-Dihydroxy-2- methoxy-
9,10-
dihydrophenanthrene
[123]

D. nobile

Stem

(Zhang et al., 2007)
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Compounds Plant name Plant part References
Lusianthridin [124] D. brymerianum | Whole plant | (Klongkumnuankamn
et al., 2015)

D. formosum

Whole plant

(Inthongkaew et al.,

2017)

D. venustum

Whole plant

(Sukphan et al,,
2014)

D. palpebrae

Whole plant

(Kyokong et al.,
2019)

D. scabrilingue

Whole plant

(Sarakulwattana et

al., 2020)

D. gibsonii Whole plant | (Thant et al., 2020)
D. plicatile Stem (Chen et al., 2020;
Yamaki & Honda,
1996)
2,7-Dihydroxy-3,4,6- D. densiflorum Stem (Fan et al., 2001)
trimethoxy-9,10-
dihydrophenanthrene
[125]
2,8-Dihydroxy-3,4,7- D. nobile Stem (Yang et al.,, 2007)

trimethoxy-9,10-
dihydrophenanthrene
[126]
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Compounds

Plant name

Plant part

References

4,7-Dihydroxy-2,3,6-
trimethoxy-9,10-
dihydrophenanthrene
[127]

D. rotundatum

Whole plant

(Majumder & Pal,
1992)

Ephemeranthol A [128]

D. nobile Stem (Hwang et al., 2010;
Yang et al., 2007)
D. officinale Stem (Zhao et al., 2018)

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

D. gibsonii

Whole plant

(Thant et al., 2020)

Ephemeranthol C [129]

D. nobile

Stem

(Hwang et al., 2010;
Yang et al., 2007)

Erianthridin [130]

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

D. nobile Stem (Hwang et al., 2010)
D. plicatile Stem (Chen et al., 2020;
Yamaki & Honda,
1996)
Flavanthridin [131] D. nobile Stem (Hwang et al., 2010)
Hircinol [132] D. aphyllum Stem (Yang et al., 2015)
D. draconis Stem (Sritularak, Anuwat,

et al., 2011)

D. formosum

Whole plant

(Inthongkaew et al.,

2017)
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Compounds Plant name Plant part References
3-Hydroxy-2,4,7- D. nobile Stem (Yang et al., 2007)
trimethoxy-9,10-

dihydrophenanthrene D. hainanense Aerial part | (Zhang et al., 2019)
[133]

3,4-dimethoxy-1- D. hainanense Aerial part (Zhang et al,, 2019)

(methoxymethyl)-9,10-
dihydrophenanthrene-2,7-
diol [134]

2,4, 7-trihydroxy-3-
methoxy-9,10-
dihydrophenanthrene
[135]

D. terminale

Whole plant

(Cheng et al., 2022)

Dendroinfundin A [136]

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

4,7-dihydroxy-2,3,8-
trimethoxy-9,10-
dihydrophenanthrene
[137]

D. terminale

Whole plant

(Cheng et al., 2022)

Dendroinfundin B [138]

D. infundibulum

Whole plant

(Na Ranong et al,,

2019)

2-Hydroxy-4,7-dimethoxy-
9,10-dihydrophenanthrene
[139]

D. nobile

Stem

(Yang et al.,, 2007)
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Compounds

Plant name

Plant part

References

7-Methoxy-9,10-
dihydrophenanthrene-
2,4 5-triol [140]

D. draconis

Stem

(Sritularak, Anuwat,

et al., 2011)

2,5,7-Trihydroxy-4-
methoxy-9,10-

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

dihydrophenanthrene D. longicornu Stem (Hu et al., 2008a)
[141]
Plicatol C [142] D. plicatile Stem (Honda & Yamaki,

2000)

Rotundatin [143]

D. rotundatum

Whole plant

(Majumder & Pal,
1992)

2,5-Dihydroxy-3,4 D. nobile Stem (Yang et al.,, 2007)

dimethoxyphenanthrene

[144]

2,5-Dihydroxy-4,9- D. nobile Stem (Zhang et al., 2008)

dimethoxyphenanthrene

[145] D. senile Whole plant | (Pann Phyu et al,,
2022)

D. palpebrae Whole plant | (Kyokong et al,,

2019)

2,8-Dihydroxy-3,4,7- D. nobile Stem (Yang et al.,, 2007)

trimethoxyphenanthrene

[146]
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Compounds Plant name Plant part References
Epheranthol B [147] D. chrysotoxum Stem (Hu et al,, 2012)
D. plicatile Stem (Yamaki & Honda,
1996)
Fimbriol B [148] D. nobile Stem (Hwang et al., 2010;

Yang et al., 2007)

Flavanthrinin [149]

D. brymerianum

Whole plant

(Klongkumnuankarn

et al,, 2015)

D. nobile

Stem

(Zhang et al., 2008)

D. venustum

Whole plant

(Sukphan et al.,

2014)
D. parishii Whole plant | (Kongkatitham et
al., 2018)
Loddigesiinol A [150] D. loddigesii Whole plant | (Ito et al., 2010)

Nudol [151]

D. formosum

Whole plant

(Inthongkaew et al,,

2017)

D. nobile

Stem

(Yang et al., 2007)

D. rotundatum

Whole plant

(Majumder & Pal,
1992)

D. plicatile Stem (Chen et al., 2020)
Plicatol A [152] D. nobile Stem (Yang et al., 2007)
D. plicatile Stem (Honda & Yamaki,
2000)
Plicatol B [153] D. plicatile Stem (Honda & Yamaki,

2000)
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Compounds Plant name Plant part References
2,3,5-Trihydroxy-4,9- D. nobile Stem (Yang et al., 2007)
dimethoxyphenanthrene

(154]

3,4,8-Trimethoxy D. nobile Stem (Hwang et al., 2010)
phenanthrene-2,5-diol

[155]

Aphyllone [156] D. nobile Stem (Hwang et al., 2010)
(5)-2,4,5,9-Tetrahydroxy- D. fimbriatum Stem (Xu et al,, 2014)
9,10-dihydro

phenanthrene [157]

1,5,7-Trimethoxy D. nobile Stem (Kim et al,, 2015)

phenanthren-2-ol [158]

1,5-Dihydroxy-
3,4,7-trimethoxy-9,10-
dihydrophenanthrene
[159]

D. moniliforme

Whole plant

(Lin et al., 2001)

2,5,95-Trihydroxy-9,10-
dihydro
phenanthrene-4-O-B-D-
glucopyranoside [160]

D. primulinum

Whole plant

(Ye et al,, 2016)

Loddigesiinol G [161] D. loddigesii Stem (Lu et al, 2014)
Loddigesiinol H [162] D. loddigesii Stem (Lu et al, 2014)
Loddigesiinol | [163] D. loddigesii Stem (Lu et al,, 2014)
Loddigesiinol J [164] D. loddigesii Stem (Lu et al, 2014)
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Compounds Plant name Plant part References

Dendrocandin P1 [165] D. officinale Stem (Zhao et al., 2018)

Dendrocandin P2 [166] D. officinale Stem (Zhao et al., 2018)

Orchinol [167] D. officinale Stem (Zhao et al., 2018)

2,4,7-Trihydroxy- D. officinale Stem (Zhao et al,, 2018)

9,10-dihydro-

phenanthrene [168]

4-Methoxy-5,9R- D. nobile Stem (Zhou et al., 2017)

dihydroxy-9,10-dihydro

phenanthrene 2-O-B-D-

glucopyranoside [169]

Dendropalpebrone [170] | D. palpebrae Whole plant | (Kyokong et al.,
2019)

Dendrodevonin A [171] D. devonianum Stem (Wu et al,, 2019)

Dendrodevonin B [172] D. devonianum Stem (Wu et al,, 2019)

Dendronbibisline A [173] | D. nobile Stem (Cheng et al., 2020)

Dendronbibisline B [174] | D. nobile Stem (Cheng et al., 2020)

Dendrosonside A [175] D. ‘Sonia’ Stem (Qiu et al., 2023)
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HO HO
[86] 4,4',8,8"-tetramethoxy [87] 2,2',7,7"-tetrahydroxy-4,4'-
[1,1"-biphenanthrene]-2,2,7,7"-tetrol dimethoxy-1,1" biphenanthrene
R, R, R Rs Ry R¢ R, Rs
[88] 2,2-Dihydroxy- OMe OH OMe OMe OH OMe OMe OMe

3,3',4,4'7,7-hexamethoxy-9,9',10,10™-
tetrahydro-1,1-biphenanthrene

[89] 2,2-Dimethoxy- OH OMe H OH OMe H OH OH
4.,4'7,7"-tetrahydroxy-9,9,10,10"-tetrahydro-

1,1-biphenanthrene

[90] Flavanthrin OH OH H OMe OH H OMe OH

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species.



[95] Chrysotoxol A: R =H [97] Confusarin: R; = OMe, R, = OH

[96] Chrysotoxol B: R = OMe [98] 2,6-Dihydroxy-1,5,7
trimethoxyphenanthrene:

Rl 5 OH, R2 = OMe

[99] Dendrochrysanene

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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Rq
[100] Bulbophyllanthrin OH OH H H
[101] Denthyrsinin OH H OH OMe
[102] 5-Hydroxy-2,4-dimethoxy- H OH H H
phenanthrene
[103] 3-Hydroxy-2,4,7-trimethoxy- OH H OMe H
phenanthrene
Rs
[104] Cypripedin H OH OMe OMe H
[105] Densiflorol B H OH H OMe H
[106] Denbinobin OH OMe H H OMe

Fimbriatone [107] [108] Loddigesiinol B

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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[109] Dendronone OH OMe H
[110] Ephemeranthoquinone H OH OMe
[111] 5-Methoxy-7-hydroxy- OMe OH H

9,10-dihydro-1,4-phenanthrenequinone

[112] Moniliformin [113] Moscatin

oG oo o g o

MeO OMe MeO HO

[114] Dendroscabrols A [115] 2,5,7-trihydroxy-4-methoxyphenanthrene

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).



OMe

0k = o
(<
Wl

[116] Bleformin G

[117] Coelonin OH H
[118] 9,10-Dihydromoscatin® H H

[119] 9,10-Dihydrophenan ~ OH H
threne-2,4,7-triol

[120] 4,5-Dihydroxy-2,3- OMe OMe
dimethoxy-9,10-dihydrophenanthrene
[121] 4,5-Dihydroxy-2,6- OMe H
dimethoxy-9,10-dihydrophenanthrene
[122] 4,5-Dihydroxy-3,7- H OMe
dimethoxy-9,10-dihydrophenanthrene
[123] 4,5-Dihydroxy-2- OMe

methoxy-9,10-dihydrophenanthrene

[124] Lusianthridin OMe H

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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[125] 2,7-Dihydroxy-3,4,6-

OH

OMe OMe

trimethoxy-9,10-dihydrophenanthrene

[126] 2,8-Dihydroxy-3,4,7-

OH

OMe OMe

trimethoxy-9,10-dihydrophenanthrene

[127] 4,7-Dihydroxy-2,3,6-

OMe

OMe OH

trimethoxy-9,10-dihydrophenanthrene

[128] Ephemeranthol A
[129] Ephemeranthol C
[130] Erianthridin

[131] Flavanthridin
[132] Hircinol

[133] 3-Hydroxy-2,4,7-

OH

OH

OH

OH

OH

OMe

H H
OH OMe
OMe OMe
H H
H OMe
OH OMe

trimethoxy-9,10-dihydrophenanthrene

[134] 3,4-dimethoxy-1-

(methoxymethyl)-9,10-dihydrophenanthrene-2,7-diol

[135] 2,4,7-trihydroxy-3-

OH

OH

H  H

H H

methoxy-9,10-dihydrophenanthrene

[136] Dendroinfundin A

OMe

H H

OH

OH

OMe

OH

OMe

OH

OH

OMe

OMe

OMe

OMe

OMe

OH

OMe

OH

OMe

OH

OMe

OMe

OH

OH

OMe

OH

CHz'OMe

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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MeOQO OH MeO OH OH
ol o e
OMe OMe
[137] 4,7-dihydroxy-2,3,8- [138] Dendroinfundin B

trimethoxy-9,10-dihydrophenanthrene

Segos

[139] 2-Hydroxy-4,7- OMe H OMe H H
dimethoxy-9,10-dihydrophenanthrene

[140] 7-Methoxy-9,10- OH OH OMe H H
dihydrophenanthrene-2,4,5-triol

[141] 2,5,7-Trihydroxy- OMe OH OH H H
4-methoxy-9,10-dihydrophenanthrene

[142] Plicatol C H OMe OH H OMe

[143] Rotundatin H OMe OH H OH

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).



[144] 2,5-Dihydroxy-3,4- OH OMe OMe

dimethoxyphenanthrene

[145] 2,5-Dihydroxy-4,9- OH H OMe

dimethoxyphenanthrene

[146] 2,8-Dihydroxy-3,4,7- OH OMe OMe

trimethoxyphenanthrene

[147] Epheranthol B H H OMe
[148] Fimbriol B OH OMe OH
[149] Flavanthrinin H H OMe

OH

OH

72

OMe

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).



73

[150] Loddigesiinol A H OMe H H OH H
[151] Nudol OMe H OH H H H
[152] Plicatol A H OH H H OMe OMe
[153] Plicatol B H OH H H H H
[154] 2,3,5-Trihydroxy- OH  OH H H OMe H

4,9-dimethoxyphenanthrene

[155] 3,4,8-Trimethoxy OMe OH H OMe H H

HO O OH
HO ‘

OH

phenanthrene-2,5-diol

[156] Aphyllone [157] (5)-2,4,5,9-Tetrahydroxy-9,10-
dihydrophenanthrene

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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(= <
OMe OH OmMeOMe

[158] 1,5,7-Trimethoxyphenanthren-2-ol [159] 1,5-Dihydroxy-3,4,7-trimethoxy-

9,10-dihydrophenanthrene

OH

0]
HO

OH

[160] 2,5,95-Trihydroxy-9,10-dihydro-
phenanthrene-4-O-B-D-glucopyranoside

[161] Loddigesiinol G: R = H
[162] Loddigesiinol H: R = OH

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).



MeO w0
HO

OMe
[163] Loddigesiinol |

[165] Dendrocandin P1

oy

HO HO
[167] Orchinol

MeO w0
HO

OMe
[164] Loddigesiinol J
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[168] 2,4,7 Tnhydroxy -9,10-dihydro

phenanthrene

HO
OH
MeO O
HO,,
X “O‘
HO” " Yo “'OH

[169] 4-Methoxy-5,9R-dihydroxy-9,10-dihydro

phenanthrene 2-O-B-D-glucopyranoside

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).



[171] Dendrodevonin A [172] Dendrodevonin B

OH
[173] Dendronbibisline A [174] Dendronbibisline B

oG )on

GlcO OGlc

[175] Dendrosonside A

Figure 2 Structures of phenanthrenes and derivatives from Dendrobium species

(Continued).
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Table 3 Flavonoids in the genus Dendrobium.

r

Compounds Plant Plant part Reference
(25)-Homoeriodictyol | D. densiflorum Stem (Fan et al,, 2001)
[176] )
D. ellipsophyllum | Whole plant (Tanagornmeatar et
al,, 2014)
Naringenin [177] D. aurantiacum Stem (Yang, Wang, et al,,
2006a)
var. denneanum
D. densiflorum Stem (Fan et al,, 2001)
D. longicornu Stem (Hu et al., 2008a)
(2S)-Eriodictyol [178] D. trigonopus Stem (Hu et al.,, 2008b)
D. ellipsophyllum | Whole plant (Tanagornmeatar et
al,, 2014)
D. tortile Whole plant (Limpanit et al,,
2016)
Vicenin-2 [179] D. aurantiacum Stem (Xiong et al., 2013)
var. denneanum
Apigenin [180] D. crystallinum Stem (Wang et al.,, 2009)
D. williamsonii Whole plant (Rungwichaniwat et
al,, 2014)
5,6-Dihydroxy-4'- D. chrysotoxum Stem (Hu et al., 2012)

methoxyflavone [181]
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Compounds

Plant

Plant part

Reference

Chrysoeriol [182]

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al,, 2014)

Luteolin [183]

D. aurantiacum

var. denneanum

Whole plant

(Liu et al., 2009)

D. ellipsophyllum

Whole plant

(Tanagornmeatar et

al., 2014)

6-C-(0L-Arabino
pyranosyl)-8-C-[(2-O-at-
rhamnopyranosyl)-B-
galactopyranosyl]
apigenin [184]

D. huoshanense

Aerial part

(Chang et al., 2010)

6-C-(0L-Arabino
pyranosyl)-8-C-[(2-O-at-
rhamnopyranosyl)-B-
glucopyranosyl]
apigenin [185]

D. huoshanense

Aerial part

(Chang et al., 2010)

6""-Glucosyl-vitexin

[186]

D. crystallinum

Stem

(Wang et al., 2009)

Isoschaftoside [187]

D. huoshanense

Aerial part

(Chang et al., 2010)

Isoviolanthin [188]

D. crystallinum

Stem

(Wang et al., 2009)
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Compounds Plant Plant part Reference
6-C-[(2-O-0-Rhamno D. huoshanense | Aerial part (Chang et al., 2010)
pyranosyl)-B-gluco
pyranosyl]-8-C-(at-
arabinopyranosyl)
apigenin [189]
6-C-(B-Xylopyranosyl)- | D. huoshanense | Aerial part (Chang et al., 2010)
8-C-[(2-O-a-rhamno
pyranosyl)-B-gluco
pyranosyllapigenin
[190]
Kaempferol [191] D. aurantiacum Stem (Yang, Wang, et al,,
2006a)
var. denneanum
Kaempferol-3-O-0L-L D. secundum Stem (Phechrmeekha et
rhamnopyranoside al,, 2012)
[192]
Kaempferol-3,7-O-di-O- | D. secundum Stem (Phechrmeekha et
L-rhamnopyranoside al., 2012)
(193]
Kaempferol-3-O-0L-L- D. capillipes Stem (Phechrmeekha et

rhamnopyranosyl-
(1—>2)-B-D-gluco
pyranoside [194]

al,, 2012)
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Compounds Plant Plant part Reference
Kaempferol-3-O-0-L- D. capillipes Stem (Phechrmeekha et
rhamnopyranosyl- al,, 2012)
(1—>2)-B-D-xylo

pyranoside [195]

Quercetin-3-O-L- D. secundum Stem (Phechrmeekha et
rhamnopyranoside al,, 2012)

[196]

Quercetin-3-O-0L-L- D. capillipes Stem (Phechrmeekha et
rhamnopyranosyl- al,, 2012)
(1—>2)-B-D-

xylopyranoside [197]

5-Hydroxy-3-methoxy- | D. devonianum Stem (Sun et al,, 2014)
flavone-7-O-[B-D-

apiosyl-(1—>6)]-B-D-

glucoside [198]

Isorhamnetin-3-O-B-D- | D. nobile Stem (Zhou et al., 2017)

rutinoside [199]




R
OH
Hom‘\\\

OH O
[176] (25)-Homoeriodictyol: R = OMe

[177] Naringenin: R = H

[178] (25)-Eriodictyol: R = OH

OH O
[179] Vicenin-2

R, R,
[180] Apigenin H OH
[181] 5,6-Dihydroxy-4 - OH H
methoxyflavone
[182] Chrysoeriol H OH
[183] Luteolin H OH

[184] 6-C-(0-Arabinopyranosyl)-8-  -Ara OH

H

H

-Gal-Rha

C-[(2-O-a-rhamnopyranosyl)-B-galactopyranosyl]apigenin

[185] 6-C-(0-Arabinopyranosyl)-8-  -Ara OH

-Glc-Rha

C-[(2-O-a-rhamnopyranosyl)-B-glucopyranosyllapigenin

Figure 3 Structures of flavonoids from Dendrobium species.
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R, R, Rs
[186] 6"""-Glucosyl-vitexin H H -Glc
[187] Isoschaftoside H -Ara -Glc
[188] Isoviolanthin H -Rha -Glc
[189] 6-C-[(2-O-al-Rhamnopyranosyl)- H -Glc-Rha -Ara

B-glucopyranosyl]-8-C-(at-arabinopyranosyl)apigenin

[190] 6-C-(B-Xylopyranosyl)-8-C- H Xyl -Glc-Rha
[(2-O-0l-rhamnopyranosyl)-B-slucopyranosylapigenin

[191] Kaempferol OH H H

Ro
[192] Kaempferol-3-O-0L-L-rhamnopyranoside O-Rha OH
[193] Kaempferol-3,7-O-di-Ol-L-rhamnopyranoside  O-Rha O-Rha
[194] Kaempferol-3-O-0t-L-rhamnopyranosyl- O-Glc-Rha OH
(1—>2)-B-D-glucopyranoside
[195] Kaempferol-3-O-0L-L-rhamnopyranosyl- O-Xyl-Rha OH

(1—>2)-B-D-xylopyranoside

Figure 3 Structures of flavonoids from Dendrobium species (Continued).



R
[196] Quercetin-3-O-0-L- O-Rha
rhamnopyranoside
[197] Quercetin-3-O-0L-L- O-Xyl-Rha

rhamnopyranosyl-(1—>2)-B-D-xylopyranoside

HO OH

(o]

OH O

OH O \OH
o
//,,’ O 0
OH
Ho” > ""oH OH
OH

[199] Isorhamnetin-3-O-B-D-rutinoside

Figure 3 Structures of flavonoids from Dendrobium species (Continued).
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Table 4 Terpenoids and alkaloids in the genus Dendrobium.
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Compounds Plant Plant part Reference
Aduncin [200] D. longicornu Stem (Hu et al.,, 2008a)
Amoenin [201] D. aduncum Whole plant | (Dahmén &
Leander, 1978)
D. williamsonii | Whole plant | (M. Yang et al,,
2018)
Amotin [202] D. amoenum Whole plant | (Majumder et al,,
1999)
o-Dihydropicrotoxinin D. amoenum Whole plant | (Majumder et al,,
(203] 1999)
Dendrobane A [204] D. moniliforme Stem (Bi et al., 2004)
Dendronobilin A [205] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin B [206] D. wardianum Stem (Fan et al., 2013)
D. williamsonii | Whole plant | (Yang et al,,
2019)
Dendronobilin C [207] D. crystallinum | Stem (Wang et al,,
2009)
Dendronobilin D [208] D. nobile Stem (Zhang et al,,

2007)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Dendronobilin E [209] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin F [210] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin F [210] D. signatum Aerial part (Khumploy et al.,
2021)
Dendronobilin G [211] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin H [212] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin | [213] D. nobile Stem (Zhang et al,,
2007)
D. findlayanum | Stem (Dan et al,, 2019)
Dendronobilin J [214] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin K [215] D. wardianum Stem (Fan et al., 2013)
Dendronobilin L [216] D. nobile Stem (Zhang et al,,
2007)
Dendronobilin M [217] D. nobile Stem (Zhang et al,,

2008)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Dendronobilin N [218] D. nobile Stem (Zhang et al,,
2008)
D. findlayanum | Stem (Dan et al,, 2019)
Dendrowardol A [219] D. nobile Stem (Zhang et al,,
2008)
Dendrowardol B [220] D. nobile Stem (Zhang et al,,
2008)
Dendrowardol C [221] D. wardianum Stem (Fan et al., 2013)
Corchoionoside C [222] D. wardianum Stem (Fan et al., 2013)
Crystallinin [223] D. wardianum Stem (Fan et al., 2013)
Findlayanin [224] D. polyanthum | Stem (Hu et al., 2009)
3-Hydroxy-2-oxodendrobine | D. findlayanum | Whole plant | (Qin et al., 2011)
[225]
Dendrobine [226] D. nobile Stem (Wang et al,,
1985)
D. findlayanum | Stem (D. Yang et al,,
2018)
Dendromoniliside A [227] D. nobile Stem (Zhang et al,,
2007)
Dendromoniliside B [228] D. moniliforme | Stem (Zhao et al,,

2003)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Dendromoniliside C [229] D. moniliforme | Stem (Zhao et al,,
2003)
Dendromoniliside D [230] D. moniliforme | Stem (Zhao et al,,
2003)
Dendronobiloside A [231] D. moniliforme | Stem (Zhao et al,,
2003)
D. nobile Stem (Zhang et al,,
2007)
Dendronobiloside B [232] D. nobile Stem (Ye & Zhao,
2002; Zhao et
al.,, 2001)
Dendronobiloside C [233] D. nobile Stem (Ye & Zhao,
2002; Zhao et
al., 2001)
Dendronobiloside D [234] D. nobile Stem (Ye & Zhao,
2002; Zhao et
al., 2001)
Dendronobiloside E [235] D. nobile Stem (Ye & Zhao,

2002; Zhao et
al,, 2001)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Dendroside A [236] D. moniliforme | Stem (Zhao et al,,
2003)
D. nobile Stem (Ye & Zhao,
2002; Zhao et
al., 2001)
D. findlayanum | Stem (Dan et al,, 2019)
Dendroside B [237] D. nobile Stem (Ye & Zhao,
2002)
Dendroside C [238] D. moniliforme | Stem (Zhao et al,,
2003)
D. nobile Stem (Ye & Zhao,
2002)
Dendroside D [239] D. nobile Stem (Ye & Zhao,
2002)
Dendroside E [240] D. nobile Stem (Ye & Zhao,
2002)
Dendroside F [241] D. moniliforme | Stem (Zhao et al,,
2003)
Dendroside G [242] D. nobile Stem (Ye & Zhao,
2002)
Dendrowillin A [243] D. williamsonii | Whole plant | (M. Yang et al,,

2018)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Dendrowillin B [244] D. williamsonii | Whole plant | (M. Yang et al,,
2018)
(-)-Picrotin [245] D. williamsonii | Whole plant | (M. Yang et al,,
2018)
Asiatic acid [246] D. parishii Whole plant | (Kongkatitham et
al,, 2018)
Dendroterpene A [247] D. nobile Stem (P. Wang et al,,
2019)
Dendroterpene B [248] D. nobile Stem (P. Wang et al,,
2019)
Dendroterpene C [249] D. nobile Stem (P. Wang et al,,
2019)
Dendroterpene D [250] D. nobile Stem (P. Wang et al,,
2019)
Dendroterpene E [251] D. nobile Stem (Wang et al.,
2022)
Dendrofindlayanoside A [252] | D. findlayanum | Stem (Dan et al,, 2019)
Dendrofindlayanoside B [253] | D. findlayanum | Stem (Dan et al,, 2019)
Dendrofindlayanoside C [254] | D. findlayanum | Stem (Dan et al,, 2019)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference

Dendrofindlayanobilin A D. findlayanum | Stem (Dan et al,, 2019)

[255]

Dendroxine [256] D. signatum Aerial part (Khumploy et al.,
2021)

7-hydroxy D. signatum Aerial part (Khumploy et al.,

dendroterpene B [257] 2021)

N-methoxylcarbonyl D. nobile Stem (Zhang et al,,

dendrobine [258] 2022)

Dendronboic acid [259] D. nobile Stem (Zhang et al,,
2022)

2-hydroxydendrobine [260] D. findlayanum | Stem (D. Yang et al,,
2018)

Findlayine A [261] D. findlayanum | Stem (D. Yang et al,,
2018)

Findlayine B [262] D. findlayanum | Stem (D. Yang et al,,
2018)

Findlayine C [263] D. findlayanum | Stem (D. Yang et al,,
2018)

Findlayine D [264] D. findlayanum | Stem (D. Yang et al,,

2018)




Table 4 Terpenoids and alkaloids in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference
Crepidine [265] D. crepidatum Stem (Xu et al,, 2019)
Isocrepidamine [266] D. crepidatum Stem (Xu et al.,, 2019)
Crepidamine [267] D. crepidatum Stem (Xu et al., 2019)
Dendrocrepine [268] D. crepidatum Stem (Xu et al., 2020)
Dendrocrepidine B [269] D. crepidatum Stem (Xu et al., 2020)
Crepidatumines A [270] D. crepidatum Stem (Xu et al., 2020)
Crepidatumines B [271] D. crepidatum Stem (Xu et al., 2020)
Crepidatumines C [272] D. crepidatum Stem (Xu et al,, 2019)
Crepidatumines D [273] D. crepidatum Stem (Xu et al,, 2019)
Dendrocrepidamine [274] D. crepidatum Root (Ding et al,,
2021)
Dendroxine B [275] D. nobile Stem (Zhang et al,,
2023)
Denrine B [276] D. nobile Stem (Zhang et al,,
2023)
Anosmine [277] D. parishii Whole plant | (Kongkatitham et

al., 2018)
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[200] Aduncin [201] Amoenin

0T

[205] Dendronobilin A

[204] Dendrobane A

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species.
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[207] Dendronobilin C

[208] Dendronobilin D [209] Dendronobilin E

[210] Dendronobilin F [211] Dendronobilin G

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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[212] Dendronobilin H

[214] Dendronobilin J

—OH

[216] Dendronobilin L

(Continued).

[213] Dendronobilin |

[215] Dendronobilin K

[217] Dendronobilin M

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species
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OH

[220] Dendrowardol B

[222] Corchoionoside C

N ‘\\\\ e)
T

/N0

[224] Findlayanin [225] 3-Hydroxy-2-oxodendrobine

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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[226] Dendrobine [227] Dendromoniliside A

[228] Dendromoniliside B [229] Dendromoniliside C [230] Dendromoniliside D

OGlc

Py

H
~,, ~OGlc

[231] Dendronobiloside A: R = H

[232] Dendronobiloside B: R = OH

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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OGlc OGlc
GlcO
H
H OGlc
[233] Dendronobiloside C [234] Dendronobiloside D
: §H —OGilc
: HOG
—"'H
- =’ —OH
2 H R )
.,///OH
OGilc
[235] Dendronobiloside E [236] Dendroside A

HI-P?_OGIC

[237] Dendroside B: R = OGlc

[238] Dendroside C: R = OH

[239] Dendroside D [240] Dendroside E

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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[241] Dendroside F: R = H

[242] Dendroside G: R = OH

OH OH

[243] Dendrowillin A: R = OH [245] (-)-Picrotin

[244] Dendrowillin B: R = H

HO,,

HO

OH

[246] Asiatic acid

0]
H -,
N\ N

[247] Dendroterpene A [248] Dendroterpene B

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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[251] Dendroterpene E [252] Dendrofindlayanoside A

HO

[255] Dendrofindlayanobilin A [256] Dendroxine

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).
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[258] N-methoxylcarbonyldendrobine

[261] Findlayine A: R = Me [263] Findlayine C

[262] Findlayine B: R = H

H

[264] Findlayine D [265] Crepidine

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).



HO,

[266] Isocrepidamine

[268] Dendrocrepine

gas:

N6
"OH

[270] Crepidatumines A

o H | H
1t
N/ oH

[272] Crepidatumines C

101

OH

[267] Crepidamine

ol

[269] Dendrocrepidine B

[273] Crepidatumines D

[273] Crepidatumines D

Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).



Figure 4 Structures of terpenoids and alkaloids from Dendrobium species

(Continued).

[276] Denrine B

[275] Dendroxine B

O

[277] Anosmine
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Table 5 Fluorenones and fluorenes in the genus Dendrobium.
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Compounds Plant Plant part | Reference
Denchrysan A [278] D. chrysotoxum | Whole (Y.-P. Li et al., 2009)
plant
D. gibsonii Whole (Thant et al., 2020)
plant
Denchrysan B [279] D. brymerianum | Whole (Klongkumnuankarn
plant et al,, 2015)
D. chrysotoxum | Whole (Y.-P. Li et al., 2009)
plant
Dendroflorin [280] D. aurantiacum | Stem (Yang, Wang, et al,,
2006a)
var.
denneanum
D. brymerianum | Whole (Klongkumnuankarn
plant et al,, 2015)
D. palpebrae Whole (Kyokong et al.,
plant 2019)
Dengibsin [281] D. aurantiacum | Stem (Yang, Wang, et al,,
2006a)
var.
denneanum
D. chrysanthum | Stem (Yang, Qin, et al,,
2006)
D. chrysotoxum | Whole (Y.-P. Li et al., 2009)

plant




104

Table 5 Fluorenones and fluorenes in the genus Dendrobium (Continued).

Nobilone [282] D. brymerianum | Whole (Klongkumnuankarn
plant et al., 2015)
D. nobile Stem (Zhang et al., 2007)
D. palpebrae Whole (Kyokong et al.,
plant 2019)
D. gibsonii Whole (Thant et al., 2020)
plant
D. terminale Whole (Cheng et al., 2022)
plant
1,4,5-Trihydroxy-7-methoxy- | D. chrysotoxum | Whole (Y-P. Li et al,, 2009)
9H- plant
fluoren-9-one [283]
2,4,7-Trihydroxy-1,5- D. chrysotoxum | Stem (Yang et al., 2004)
dimethoxy-9-fluorenone
[284]
Dengibsinin [285] D. gibsonii Whole (Thant et al., 2020)
plant
Fluorene
4-Methoxy-9H-fluorene- D. gibsonii Whole (Thant et al., 2020)
2,5,9-triol [286] plant
Dihydrodengibsinin [287] D. gibsonii Whole (Thant et al., 2020)

plant




R; R4

[278] Denchrysan A H OH OH OMe
[280] Dendroflorin OH H OH OMe
[281] Dengibsin H OH OMe OH
[282] Nobilone H OH H OMe
[283] 1,4,5-Trihydroxy-7-methoxy- OH H OH OH

9H-fluoren-9-one
[284] 2,4,7-trihydroxy-1,5-dimethoxy- OMe OH OH OMe

9-fluorenone

OMe OH OH OMe

[279] Denchrysan B [285] Deng|bsm|n

OH OMe OH OMe

GB. &
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OH

OH

OH

OMe

OH

[286] 4-Methoxy-9H- ﬂuorene 2,5,9-triol [287] D|hydrodeng|bsm|n

Figure 5 Structures of fluorenones and fluorenes from Dendrobium species.



Table 6 Coumarins in the genus Dendrobium.
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Compounds Plant Plant part Reference
Ayapin [288] D. densiflorum | Stem (Fan et al,, 2001)
Coumarin [289] D. aurantiacum | Stem (Yang, Wang, et
al,, 2006a)
var. denneanum
D. clavatum var. | Stem (Chang et al,,
aurantiacum 2001)
Denthyrsin [290] D. thyrsiflorum Stem (Zhang et al,,
2005)
Scoparone [291] D. densiflorum | Stem (Fan et al., 2001)
D. thyrsiflorum | Stem (Zhang et al,,
2005)
D. williamsonii Whole plant | (M. Yang et al,,
2018)
D. palpebrae Whole plant | (Kyokong et al.,
2019)
Scopoletin [292] D. densiflorum Stem (Fan et al., 2001)
Dendrocoumarin [293] D. nobile Stem (Zhou et al,,
2017)
ltolide A [294] D. nobile Stem (Zhou et al.,

2017)
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SO Sos

[288] Ayapin [289] Coumarin

[290] Denthyrsin [291] Scoparone: R = OMe

[292] Scopoletin: R = OH

[293] Dendrocoumarin: R; = H, R, = OH

[294] Itolide A: R; = OH, R, = H

Figure 6 Structures of coumarins from Dendrobium species.



Table 7 Lignans and neolignans in the genus Dendrobium.
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Compounds Plant Plant part Reference
Episyringaresinol [295] D. chrysotoxum | Stem (Hu et al,, 2012)
D. longicornu Stem (Hu et al., 2008a)
D. nobile Stem (Zhang et al., 2008)
Episyringaresinol 4"-O- B-D- D. moniliforme | Stem (Zhao et al., 2003)
glucopyranoside
[296]
(-)(7S,8R,7'E)-4-Hydroxy D. aurantiacum | Stem (Xiong et al., 2013)
-3,3",5,5-tetramethoxy-8,4"- var. denneanum
oxyneolign-7"-ene- 7,9"-bis-O-
B-D-gslucopyranoside [297]
Lyoniresinol [298] D. chrysanthum | Stem (Yang, Qin, et al,,
2006)
(--Syringaresinol-4,4"-bis-O-p— | D. aurantiacum | Stem (Xiong et al., 2013)
D- glucopyranoside [299] var. denneanum
Syringaresinol-4-O-D- D. aurantiacum | Stem (Xiong et al., 2013)

monoglucopyranoside

[300]

var. denneanum

(-)-Medioresinol [301]

D. loddigesii

Whole plant

(Ito et al., 2010)




109

Table 7 Lignans and neolignans in the genus Dendrobium (Continued).

Compounds

Plant

Plant part

Reference

(-)-Pinoresinol [302]

D. loddigesii

Whole plant

(Ito et al., 2010)

D. devonianum | Stem (Wu et al,, 2019)
D. nobile Stem (Cheng et al., 2020)
Syringaresinol [303] D. secundum Stem (Sritularak,

Duangrak, et al,,

2011)

D. williamsonii

Whole plant

(M. Yang et al,,

2018)

D. nobile Stem (Cheng et al., 2020)
Erythro-1-(4-O-B-D- D. longicornu Stem (Hu et al., 2008a)
glucopyranosyl-3-
methoxyphenyl)-2-[4-(3-
hydroxypropyl)-2,6-
dimethoxyphenoxy]-1,3-
propanediol [304]
Acanthoside B [305] D. chrysanthum | Stem (Yang, Qin, et al,,

2006)

Liriodendrin [306]

D. brymerianum

Whole plant

(Klongkumnuankarn

et al.,, 2015)

D. pulchellum

Stem

(Chanvorachote et

al., 2013)




Table 7 Lignans and neolignans in the genus Dendrobium (Continued).
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Compounds Plant Plant part Reference

(-8R, 7'E)-4-Hydroxy-3,3',5,5"- | D. aurantiacum | Stem (Li et al,, 2014)

tetramethoxy-8,4 - var. denneanum

oxyneolign-7"-ene-9,9"-diol

4,9-bis-O-B-D-glucopyranoside

[307]

(-)(8S,7'E)-4-Hydroxy-3,3",5,5"- | D. aurantiacum | Stem (Li et al,, 2014)

tetramethoxy-8,4 - var. denneanum

oxyneolign-7"-ene-9,9-diol

4,9-bis-O-B-D-glucopyranoside

[308]

(-)>-(8R,7'E)-A-Hydroxy- D. aurantiacum | Stem (Li et al, 2014)

3,355 9"-penta var. denneanum

methoxy-8,4-oxyneolign-7'-

ene-9-ol 4,9-bis-O-B-D-

glucopyranoside [309]

(75,8R)-Dehydrodiconiferyl D. nobile Stem (Zhou et al.,

alcohol 9"-B-D- 2017)

glucopyranoside [310]

Dehydrodiconiferylalcohol- D. nobile Stem (Zhou et al,,
2017)

4-B-D-glucoside [311]

Balanophonin [312]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)
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[295] Episyringaresinol: R = H

[296] Episyringaresinol 4”-O-B-D-glucopyranoside: R = Glc

M
°0 061
OH
(0]
MeO OMe
OGlc
HO
OMe
[297] (-)-(7S,8R, 7’ E)-4-Hydroxy- [298] Lyoniresinol

3,3,5,5"-tetramethoxy-8,4 -oxyneolign-
7'-ene-7,9"-bis-O-B-D-glucopyranoside

OMe
OR

OMe

[299] (-)-Syringaresinol-4,4 -bis-O-B-D-glucopyranoside: R = Glc

[300] Syringaresinol-4-O-D-monoglucopyranoside: R = H

Figure 7 Structures of lignans and neolignans from Dendrobium species.
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OMe

[301] (-)-Medioresinol: R = OMe

[302] (-)-Pinoresinol: R = H

OMe
GlcO HOWMeO
OH
OH
(0]
H OMe

[303] Erythro-1-(4-O-B-D-glucopyranosyl-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-
dimethoxyphenoxy]-1,3-propanediol

R,
O w\
' OMe

OMe
R, R,
[304] Syringaresinol OH OH
[305] Acanthoside B OGlc OH
[306] Liriodendrin OGlc  OGlc

Figure 7 Structures of lignans and neolignans from Dendrobium species (Continued).
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HO
MeO NN R
HO O o
HO™ " on N0
M
MeO OMe
o (e}
HO OMe
OH

HOHo
[307] (-)-(8R,7'E)-4-Hydroxy-3,3',5,5-tetramethoxy-8,4 -oxyneolign-

7"-ene-9,9’-diol 4,9-bis-O-B-D-glucopyranoside: R = OH; 8R

[308] (-)-(8S,7'F)-4-Hydroxy-3,3",5,5"-tetramethoxy-8,4 -oxyneolign-

7-ene-9,9"-diol 4,9-bis-O-B-D-glucopyranoside: R = OH; 85

[309] (-)-(8R,7'E)-4-Hydroxy-3,3',5,5',9"-pentamethoxy-8,4"-oxyneolign-

7'-ene-9-ol 4,9-bis-O-B-D-glucopyranoside: R = OMe; 8R

OH

N OH
HO - ARSI
o)

MeO OMe

[310] (75,8R)-Dehydrodiconiferyl alcohol 9'-B-D-glucopyranoside

Figure 7 Structures of lignans and neolignans from Dendrobium species (Continued).
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[311] Dehydrodiconiferyl alcohol-4-B-D-glucoside

OH
0]
AN
H
HO I
@]
MeO OMe

[312] Balanophonin

Figure 7 Structures of lignans and neolignans from Dendrobium species (Continued).



Table 8 Miscellaneous compounds in the genus Dendrobium.
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Compounds Plant Plant part Reference

Aliphatic acid derivatives

Aliphatic acids [313] D. clavatum var. | Stem (Chang et al,,
aurantiacum 2001)

Aliphatic alcohols [314] D. clavatum var. | Stem (Chang et al,,
aurantiacum 2001)

Dendrodevonic acid A [315] | D. devonianum | Stem (Wu et al., 2019)

Dendrodevonic acid B [316] | D. devonianum | Stem (Wu et al., 2019)

Malic acid [317] D. huoshanense | Aerial part (Chang et al,,

2010)
Dimethyl malate [318] D. huoshanense | Aerial part (Chang et al,,

2010)

(-)-Shikimic acid [319]

D. fuscescens

Whole plant

(Talapatra et al,,

1989)
D. huoshanense | Aerial part (Chang et al,,
2010)
D. longicornu Stem (Hu et al., 2008a)
D. pulchellum Stem (Chanvorachote
et al.,, 2013)
Isopentyl butyrate [320] D. huoshanense | Aerial part (Chang et al,,

2010)




116

Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference

Benzoic acid derivatives and phenolic compounds

3-Hydroxy-2-methoxy-5,6- D. crystallinum | Stem (Wang et al,,

dimethylbenzoic acid [321] 2009)

Salicylic acid [322] D. huoshanense | Aerial part (Chang et al,,
2010)

D. williamsonii | Whole plant | (M. Yang et al,,

2018)
Vanilloside [323] D. denneanum | Stem (Pan et al,, 2012)
Gallic acid [324] D. longicornu Whole plant | (J-T. Li et al,,
2009)
Syringic acid [325] D. crystallinum | Stem (Wang et al.,
2009)
Vanillic acid [326] D. crystallinum | Stem (Wang et al,,
2009)

D. williamsonii | Whole plant | (Rungwichaniwat

et al,, 2014)

Antiarol [327] D. chrysotoxum | Stem (Hu et al., 2012)

Ethylhaematommate [328] D. longicornu Whole plant | (J.-T. Li et al,,
2009)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference
p-Hydroxy- D. devonianum | Whole plant | (Sun et al., 2014)
benzaldehyde [329] D. falconeri Stem (Sritularak &
Likhitwitayawuid,
2009)
D. tortile Whole plant | (Limpanit et al.,
2016)
D. williamsonii Whole plant | (M. Yang et al,,
2018)
Methyl B-orsellinate [330] D. longicornu Stem (Hu et al.,, 2008a)
Protocatechuic acid [331] D. nobile Stem (Ye & Zhao,
2002)
Tachioside [332] D. denneanum | Stem (Pan et al,, 2012)
Alkyl 4"-hydroxy-trans- D. clavatum var. | Stem (Chang et al,,
cinnamates [333] aurantiacum 2001)
Alkyl trans-ferulate D. clavatum var. | Stem (Chang et al,,
[334] aurantiacum 2001)
Defuscin [335] D. aurantiacum | Stem (Yang, Wang, et
al.,, 2006a)
var. denneanum
D. moniliforme | Stem (Bi et al., 2004)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference
n-Octacosyl ferulate [336] D. aurantiacum | Stem (Yang, Wang, et
al., 2006a)
var.
denneanum
D. moniliforme | Stem (Bi et al., 2004)
n-Triacontyl p-hydroxy-cis- D. moniliforme | Stem (Bi et al., 2004)

cinnamate [337]

Tetratriacontanyl-trans-p-

D. williamsonii

Whole plant

(Rungwichaniwat

coumarate [338] et al., 2014)
n-Docosyl trans-ferulate D. longicornu Whole plant | (J.-T. Li et al,,
[339] 2009)

D. williamsonii

Whole plant

(Rungwichaniwat

et al., 2014)
trans-Tetracosyl ferulate D. tortile Whole plant | (Limpanit et al.,
(340] 2016)
cis-Hexacosanoyl ferulate D. tortile Whole plant | (Limpanit et al.,

[341]

2016)

Ferulaldehyde [342]

D. longicornu

Whole plant

(J-T. Li et al,,
2009)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference
Ferulic acid [343] D. secundum Stem (Sritularak,
Duangrak, et al,,
2011)
2-(p-Hydroxyphenyl) D. falconeri Stem (Sritularak &
ethyl p-courarate Likhitwitayawuid,
2009)
[344]
Dihydroconiferyl dihydro-p- D. formosum Whole plant | (Inthongkaew et
coumarate [345] al., 2017)
D. nobile Stem (Cheng et al,,
2020)
D. hainanense Aerial part (Zhang et al,,
2019)

D. devonianum | Stem (Wu et al,, 2019)
1-[4-(B-D-Glucopyranosyloxy)- | D. aurantiacum | Stem (Xiong et al,,
3,5-dimethoxyphenyl]-1- var. denneanum 2013)
propanone [346]
3-Hydroxy-1-(4-hydroxy-3,5- D. williamsonii | Whole plant | (M. Yang et al,,
dimethoxyphenyl)-1- 2018)
propanone [347]

Coniferyl alcohol [348] D. trigconopus Stem (Hu et al., 2008b)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part | Reference

Decumbic acid A [349] D. nobile Stem (Zhou et al.,
2016)

Decumbic acid B [350] D. nobile Stem (Zhou et al.,
2016)

(-)-Decumbic acid [351] D. nobile Stem (Zhou et al.,
2016)

(+)-Dendrolactone [352] D. nobile Stem (Zhou et al.,
2016)

4-(3-Hydroxyphenyl)-2- D. nobile Stem (Zhou et al,,

butanone [353] 2016)

3-Hydroxy-1(3-methoxy-4- D. nobile Stem (Zhou et al,,

hydroxyphenyl)-propan-1- 2016)

one [354]

3.4’ 5-Trimethoxy D. nobile Stem (Zhou et al.,

cinnamyl acetate [355] 2016)

p-Hydroxyphenyl D. aphyllum Whole (Chen, Lj, et al,,

propionic methyl ester plant 2008)

[356]

Phloretic acid [357] D. ellipsophyllum | Whole (Tanagornmeatar

plant et al,, 2014)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference
Dihydroconiferyl alcohol D. longicornu Stem (Hu et al., 2008a)
[358]
Salidrosol [359] D. chrysotoxum Stem (Hu et al,, 2012)
Shashenoside | [360] D. aurantiacum Stem (Xiong et al,,

var. denneanum 2013)
Syringin [361] D. aurantiacum Stem (Xiong et al,,

2013)

var. denneanum

Tetracosyl(2)-p-coumarate | D. falconeri Whole plant | (Sritularak &

[362] Likhitwitayawuid,
2009)

Koaburaside [363] D. nobile Stem (Zhou et al.,,
2017)

Juniperoside [364] D. nobile Stem (Zhou et al.,
2017)

(3R,3'S,4R,A'S)-3,3 4.4~ D. williamsonii Whole plant | (M. Yang et al,,
2018)

Tetrahydro-6,6'-
dimethoxy[3,3"-bi-2H-

benzopyran]-4,4"-diol [365]
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds Plant Plant part Reference

2-hydroxy-3-(d-hydroxy-3- | D. hainanense Aerial part | (Zhang et al,,

methoxyphenyl)-3- 2019)

methoxypropyl

3-(d-hydroxyphenyl)

propanoate [366]

Others

3,6,9-Trihydroxy-3,4- D. chrysotoxum Stem (Hu et al., 2012)

dihydroanthracen-1-(2H)-

one [367]

Palmarumycin JC2 [368] D. crystallinum Stem (Wang et al.,
2009)

Dehydrovomifoliol [369]

D. loddigesii

Whole plant

(Ito et al., 2010)

2,6-Dimethoxy

Benzoquinone [370]

D. chryseum

Stem

(Ma et al., 1998)

4-(2-Hydroxypropyl)- 2(5H)- | D. tortile Whole plant | (Limpanit et al.,
furanone [371] 2016)
5,7-Dihydroxy-chromen- 4- | D. ellipsophyllum | Whole plant | (Tanagornmeatar
one [372] et al,, 2014)
Ergosta-8(9),22-diene- D. williamsonii Whole plant | (M. Yang et al,,
3,5,6,7-tetraol [373] 2018)
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Table 8 Miscellaneous compounds in the genus Dendrobium (Continued).

Compounds

Plant

Plant part

Reference

Stigmast-4-

en-30., 6B-diol [374]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

3B-Hydroxy-50.,80t-

epidioxyergosta-6,9,22-

triene [375]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

Betulin [376]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

B-Sitosterol [377]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

Daucosterol [378]

D. williamsonii

Whole plant

(M. Yang et al,,
2018)

D. harveyanum

Whole plant

(Maitreesophone

et al., 2022)

(-)-6R-signatone [379]

D. signatum

Aerial part

(Khumploy et al.,
2021)
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CHj3-(CH,),-CH,-R

[313] Aliphatic acids: R = COOH, n = 19-31

[314] Aliphatic alcohol: R = OH, n = 22-32

OH
O OR OH (@)

HO OW
OH

[315] Dendrodevonic acid A: R = H
[316] Dendrodevonic acid B: R = Acetyl

HO (0]
O
R1NR2 HO" > YOH
O OH OH
[317] Malic acid: R; = R, = OH [319] (-)-Shikimic acid
[318] Dimethyl malate: R; = R, = OMe
MeO OH
HO
o
W \/\( 4
O
[320] Isopentyl butyrate [321] 3-Hydroxy-2-methoxy-5,6-

dimethylbenzoic acid

Figure 8 Structures of miscellaneous compounds from Dendrobium species.
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OH
o) OMe
OH O HO 0
©/U\OH H
HO OH
@)
[322] Salicylic acid [323] Vanilloside
COOH CHO
HO OH
R R, COOEt
OH CHs
[324] Gallic acid: R; = OH, R, = OH [327] Antiarol
[325] Syringic acid: R; = OMe, R, = OMe
[326] Vanillic acid: R; = H, R, = OMe
[331] Protocatechuic acid: R; = H, R, = OH
OMe
HO OMe HO
[328] Ethylhaematommate [329] p-Hydroxybenzaldehyde

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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HO CH,
OGilc OMe
COOMe \@

OH OH
[330] Methyl B-orsellinate [332] Tachioside
R4
HO \ OR,
6]

[333] Alkyl 4"-hydroxy-trans-cinnamates: Ry = H, Ry = C Hypyq, N =22-32
[334] Alkyl trans-ferulate: Ry = OMe, R, = CHyny1, N = 18-28, 30

[335] Defuscin: R; = OMe, R, = (CH,),7CH5

[336] n-Octacosyl ferulate: Ry = OMe, R, = (CH,),5CH5

[337] n-Triacontyl p-hydroxy-cis-cinnamate: R, = H, R, = C3oHg;

[338] Tetratriacontanyl-trans-p-coumarate: Ry = H, R, = (CH,)33CH3

MeO xR
ST
[339] n-Docosyl trans-ferulate: R = COOCH,(CH,),,CHs
[340] trans-Tetracosyl ferulate: R = COOCH,(CH,),,CHs
[341] cis-Hexacosanoyl ferulate: R = COOCH,(CH,),4CH5
[342] Ferulaldehyde: R = CHO
[343] Ferulic acid: R = COOH

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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MN@

[344] 2-(p-Hydroxyphenyl) ethyl p-coumarate

e

[345] Dihydroconiferyl dihydro-p-coumarate

MeO MeO
© © OH

GlcO HO
OMe OMe

[346] 1-[4-(B-D-Glucopyranosyloxy)-3,5- [347] 3-Hydroxy-1-(4-hydroxy-3,5-
dimethoxyphenyl]-1-propanone dimethoxyphenyl)-1-propanone

[348] Coniferyl alcohol [349] Decumbic acid A

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).



[350] Decumbic acid B

MeO (@)

HO
OMe

[352] (+)-Dendrolactone
(0]

MeO
€ D)J\/\OH
HO

[354] 3-Hydroxy-1(3-methoxy-4-

hydroxyphenyl)-propan-1-one

128

[351] (-)-Decumbic acid

How

[353] 4-(3-Hydroxyphenyl)-2-butanone
MeO AN 0
MeO o)\
OMe

[355] 3',4",5"-Trimethoxy

cinnamyl acetate

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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OH
COOR

OMe
[356] p-Hydroxyphenyl propionic [358] Dihydroconiferyl alcohol

methyl ester: R = CH,

[357] Phloretic acid: R = OH

GlcO =
. o

OMe
[359] Salidrosol [360] Shashenoside |
MeO Xx_OH
X
GlcO
OMe HO O™ O(CHg)23CH;
[361] Syringin [362] Tetracosyl (2)-p-coumarate

OMe
@[OH
(0] OMe
\OH
HO
: OH

OH

[363] Koaburaside [364] Juniperoside

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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0
o,y OH
o) o)

[365] (3R,3'S,4R,4'S)-3,3",4,4"-Tetrahydro-6,6"-

dimethoxy[3,3"-bi-2H-benzopyran]-4,4"-diol

OMe 0]
MeOD)\‘/\O)K/\@\
HO o OH
[366] 2-hydroxy-3-(4-hydroxy-3-methoxyphenyl)-3-
methoxypropyl3-(4-hydroxyphenyl) propanoate

O OH
OH © HO™ "o
[367] 3,6,9-Trihydroxy-3,4- [368] Palmarumycin JC2
dihydroanthracen-1-(2H)-one
0]
o] MeO Me

' AN

“OH
o o
[369] Dehydrovomifoliol [370] 2,6-Dimethoxybenzoquinone

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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[371] 4-(2-Hydroxypropyl)-2(5H)-furanone ~ [372] 5,7-Dihydroxy-chromen-4-one

HO™
OH

[374] Stigmast-d-en-3QL, 6B-diol

¢ —//
7,
/, //
. ‘.

>
7
7, /

)

HO

[375] 3B-Hydroxy-50.,80L-epidioxyergosta- [376] Betulin
6,9,22-triene

@)
1
RO OH
[377] B-Sitosterol: R = H [379] (-)-6R-signatone

[378] Daucosterol: R = Glc

Figure 8 Structures of miscellaneous compounds from Dendrobium species

(Continued).
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The pharmacological studies of this plants also have been revealed to several
activities such as anticancer, antidiabetic, antimicrobial, hepatoprotective and
neuroprotective, antiplatelet aggregation, immunomodulating, antioxidant, and
especially anti-inflammatory activity (Teixeira da Silva & Ng, 2017). For the anti-
inflammatory activity based on immunomodulatory effects, the extracts and active
compounds from Dendrobium genus have been reported in several studies. For
instance, the water extracts of D. chrysotoxum and D. thyrsiflorum inhibited nitric
oxide (NO) in LPS-indued RAW264.7 macrophage cells (Qiang et al., 2018). Moreover,
the water extracts of D. thyrsiflorum showed the suppressing of IL-6 and TNF-a
through inhibition of ERK and JNK phosphorylation in MAPK pathway (Qiang et al,,
2018). The polysaccharides isolated from D. officinale demonstrated the anti-
inflammatory activity. For example, polysaccharides isolated from D. officinale \eaves
significantly inhibited the expression of TLR-4, MyD88 and TRAF-6 in LPS-stimulated
THP-1 cells (M. Zhang et al., 2018). Furthermore, polysaccharides from D. officinale
leaves showed the suppressing of pro-inflammatory cytokines including TNF-a., IL-6,
and IL-1B in cyclophosphamide-treated mice (Xie et al., 2022). In addition, 4,5-
dihydroxy-3,3",4 -trimethoxybibenzyl [30], a bibenzyl derivative, isolated from D.
lindleyi exhibited the downmodulation of the TNF expression in a dose-dependent
manner in LPS-induced human peripheral blood mononuclear cells (Khoonrit et al,,
2020).

Dendrobium crumenatum Sw.

The pigeon orchid named “Dendrobium crumenatum” was first published in
Journal fur die Botanik by Swedish botanist in 1799 (Wiart, 2012). It is distributed in
China, India and southeast Asia including in Thailand called “Wai Tamoi” (Meesawat
& Kanchanapoom, 2007). Using this orchid in traditional medicine has been reported
including treatment of earache using juices from D. crumenatum in Malaysia and
applying as poultice for curing boils and pimples (Wiart, 2012). This plant is an
epiphytic orchid (size 40-100 cm) with pseudobulbs. The flower is 3-4 cm, white,

having white three sepals and two petals with yellow disc on the lip (Meesawat &
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Kanchanapoom, 2007; Ram et al., 2015). However, the phytochemical studies and

biological activities of this plant have not been reported.

Figure 9 Dendrobium crumenatum Sw.
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CHAPTER IlI

Research articles

3.1 Immunomodulatory Effects of New Phenanthrene Derivatives from

Dendrobium crumenatum

Virunh Kongkatitham, Adeline Dehlinger, Meng Wang, Preeyaporn Poldorn, Carl
Weidinger, Marilena Letizia, Chatchai Chaotham, Carolin Otto, Klemens Ruprecht,
Friedemann Paul, Thanyada Rungrotmongkol, Kittisak Likhitwitayawuid, Chotima

Bottcher,* and Boonchoo Sritularak®

ABSTRACT: Three new phenanthrene derivatives (1, 2, 4), one new fluorenone (3),
and four known compounds (5-8) were isolated from the ethyl acetate extract of
Dendrobium crumenatum Sw. stems using column chromatography. The chemical
structures were elucidated by analysis of spectroscopic data. The absolute
configuration of 4 was determined by electronic circular dichroism calculation. We
also evaluated the immunomodulatory effects of compounds isolated from D.
crumenatum in human peripheral blood mononuclear cells from healthy individuals
and those from patients with multiple sclerosis in vitro. Dendrocrumenol B (2) and
dendrocrumenol D (4) showed strong immunomodulatory effects on both CD3* T
cells and CD14" monocytes. Compounds 2 and 4 could reduce IL-2 and TNF
production in T cells and monocytes that were treated with phorbol-12-myristate-13-
acetate and ionomycin (PMA/Iono). Deep immune profiling using high-dimensional
single-cell mass cytometry could confirm immunomodulatory effects of 4, quantified
by the reduction of activated T cell population under PMA/lono stimulation, in
comparison to the stimulated T cells without treatment.

Dendrobium is one of the largest genera in the flowering family Orchidaceae,
with more than 1500 species, mostly found in Asia and Australia (Zhang et al., 2007).

Several species of Dendrobium plants have been used as traditional medicines in
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China, India, and Southeast Asia for treatment of skin disorders, reducing fever,
headache and stomachache, and promoting body fluids (Wang, 2021a, 2021b).
Dendrobium crumenatum Sw. (Thai name Wai Tamoi) is an epiphytic plant that is
distributed around Southeast Asia (Thailand, Philippines, Indonesia), India, and Hawaii
(Meesawat et al,, 2008; Ram et al., 2015; Vaddhanaphuti, 2005). D. crumenatum has
been used in traditional medicine as juices for treatment of earache and a poultice
for curing boils and pimples (Wiart, 2012). Extracts from D. crumenatum exhibited
potential antimicrobial activity (Sandrasagaran et al.,, 2014). Since this invasive orchid
is easy to grow (Clifford & Kobayashi, 2012; Foster et al.,, 2019), it is of interest to
evaluate its potential use in phytomedicine. Therefore, we aimed to screen the
active immunomodulatory effects of isolated compounds from D. crumenatum in
human peripheral blood mononuclear cells (PBMCs). The phytochemical study of this
orchid has not yet been reported. Dendrobium species are important sources of
bibenzyls, phenanthrenes, alkaloids, flavonoids, and sesquiterpenoids (Lam et al,,
2015), very often reported with biological activities (Cakova et al., 2017; Khoonrit et
al,, 2020; Teixeira da Silva & Ng, 2017). The inflammatory response is a body
defending process to regulate injury or infection involving diverse immune cell types
(e.g., monocytes, dendritic cells, neutrophil T and B cells) and multiple cell signaling
pathways (Muszynski et al, 2016). In the present investigation, the
immunomodulatory effects of compounds from D. crumenatum were evaluated
using experimental ex vivo model of stimulated human PBMCs. Two new
phenanthrenes, dendrocrumenols B and D, showed anti-inflammatory effects,
characterized by a reduced production of inflammatory cytokines. These effects were
detected in both myeloid and lymphoid compartments of the immune system and
could be explained by the reduction of activated T cells and inflammatory
monocytes, quantified by using high-dimensional single-cell mass cytometry (CyTOF).
Our findings suggested promising therapeutic potential of compounds purified from

D. crumenatum in regulating immune responses to inflammatory conditions, a
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common feature in diverse diseases including neuroinflammation such as in multiple
sclerosis.
RESULTS AND DISCUSSION

Compound 1, a brown amorphous solid, gave a [M - H]" at m/z 285.0811
(calcd for 285.0763 Cy4H1305) by HR-ESI-MS analysis, suggesting the molecular formula
Ci6H140s. The IR spectrum showed absorption bands for a hydroxyl (3273 cm™Y) and
an aromatic ring (2962, 1618 cm™). The UV absorption peaks at A, (log €) 224 (2.51),
280 (1.20), and 295 (1.07) nm and two ortho-coupled doublets of H-9 (dy; 8.03, d, J =
9.5 Hz) and H-10 (Jy 7.89, d, J = 9.5 Hz) in the 'H NMR spectrum supported a
phenanthrene skeleton of 1 (Sarakulwattana et al., 2020). The 'H NMR spectrum also
exhibited two doublet aromatic protons at 0y, 8.89 (1H, d, J = 9.0 Hz, H-5) and 0}, 7.42
(1H, d, J = 9.0 Hz, H-6), one singlet aromatic proton at d, 7.39 (1H, s, H-1), two
methoxy groups at 0y 4.11 (3H, s, MeO-2) and 3.97 (3H, s, MeO-8), and one hydroxyl
proton at dy 8.48 (1H, s, HO-7) (Table 9). On ring A, a doublet proton of H-5 was
assigned by HMBC correlations of H-5 and H-10 with C-8a (J¢ 127.5). The assignment
of H-6 was based on the HMBC correlations of H-6 and H-9 with C-db (J¢ 123.0) and
'H-'H COSY correlations of H-5 and H-6 (Figure 12). The hydroxyl group (J 8.48) was
placed at C-7 according to its NOESY cross-peak with H-6 (Figure 12). The first
methoxy group was located at C-8, as shown by its NOESY interactions with H-9 and
HO-7. It was confirmed by three-bond correlations of H-6, H-9, HO-7, and MeO-8 with
C-8 (0c 142.5) in the HMBC spectrum. On ring B, the singlet proton at dy 7.39 was
assigned as H-1 on the basis of the HMBC correlation between H-10 and C-1 (O¢
105.3) and its NOESY correlation with H-10. A NOESY cross-peak between MeO-2 and
H-1 placed the second methoxy group at C-2. Based on the above spectral evidence,
1 was characterized as 3,4,7- trihydroxy-2,8-dimethoxyphenanthrene and named
dendrocrumenol A.

Compound 2 was obtained as a brown amorphous solid. The molecular
formula Cy4H1405 was determined from its HR-ESI-MS [M + H]™ at m/z 289.1072 (calcd
for CigHi170s, 289.1076). The IR spectrum showed the absorption bands at 3390
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(hydroxyl), 2961, 1615 (aromatic ring), and 1490 (methylene) cm ™" and the UV at Ay
(log &) 224 (2.51), 280 (1.20), and 295 (1.07) nm, suggestive of a dihydrophenanthrene
nucleus (Na Ranong et al., 2019). It was confirmed by the presence of two methylene
proton signals at dy 2.73 (2H, dd, J = 7.8, 6.0 Hz, H2-9) and d 2.60 (2H, dd, J = 7.8,
6.0 Hz, H,-10), which exhibited one-bond correlation to the carbon atom at dc 21.7
(C-9) and 29.3 (C-10) in the HSQC spectrum. For ring A of 2, the 'H NMR disclosed the
presence of two ortho-coupled aromatic protons at dy 7.69 (1H, d, J = 8.4 Hz, H-5)
and 0y 6.73 (1H, d, J = 8.4 Hz, H-6) (Table 9). The assigcnment of H-5 was confirmed
by the three-bond correlations of H-5 and H,-10 with C-8a (dc 124.9). For ring B, the
'H NMR spectrum showed one aromatic singlet proton at dy 6.65, which was assigned
as H-1 based on its HMBC correlation with C-10 (¢ 29.3) (Figure 12). The location of
the methoxy groups at C-2 (¢ 146.4) and C-4 (0¢ 145.6) was determined according to
their NOESY cross-peak with H-1 and H-5, respectively (Figure 12). Therefore,
compound 2 was identified as 3,7,8-trihydroxy-2,4-dimethoxydihydrophenanthrene
and has been named dendrocrumenol B.

Compound 3 was isolated as a red powder. The negative HR-ESI-MS displayed
a [M - HI" at m/z 287.0557 (calcd for CisH,,0¢, 287.0556), indicating the molecular
formula CysH1,06. The IR spectrum showed absorptions for hydroxyl (3336 cm™),
carbonyl (1727 cm™), and aromatic ring (2925, 1671 cm™) groups. The presence of a
fluorenone skeleton was based on the UV at A, (log &) 219 (3.70), and 249 (1.44)
nm (Zhang et al, 2007). This was supported by 12 aromatic carbons and one
carbonyl carbon (¢ 193.9) in the °C NMR spectrum (Table 10). The 'H NMR
spectrum revealed signals for three aromatic protons at 0y 6.60-6.86, two methoxy
groups at dy 4.08 (3H, s, MeO-1) and 3.96 (3H, s, MeO-4), and one hydroxyl proton at
Oy 8.64 (1H, s, HO-8). On ring A, three substituents were attached to the aromatic
ring, as suggested by the presence of a signal for one singlet proton at dy, 6.86, which
was assigned as H-2 based on its HMBC correlations with C-4 (d¢ 142.8) and C-8b (J¢
121.7). The first methoxy group (dy 4.08) was attached at C-1 as evidenced by its
NOESY cross-peak with H-2 (Figure 12).
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Table 9 'H and ">C-NMR Spectral Data of 1 and 2 in Acetone-ds (J in ppm, J in Hz).

1 2’
Position 50 type 5H 50 type 5H
1 105.3, CH 7.39,s 107.3, CH 6.65, s
2 150.7, C 146.4, C
3 132.2, C 138.6, C
4 149.2, C 145.6, C
4a 113.0, C 120.7, C
ab 123.0, C 125.4, C
5 123.3, CH 8.89, d (9.0) 118.7, CH 7.69,d (8.4)
6 119.2, CH 7.42,d(9.0) 112.3, CH 6.73,d (8.4)
7 147.8, C 143.3, C
8 142.5, C 141.3, C
8a 127.5, C 124.9, C
9 120.6, CH 8.03, d (9.5) 21.7, CH, 2.73,dd (7.8, 6.0)
10 127.8, CH 7.89,d (9.5) 29.3, CH, 2.60,dd (7.8, 6.0)
10a 130.7, C 128.7, C
MeO-2 56.4, CH, 411, s 55.5, CH, 3.83, s
MeO-4 58.9, CHs, 3.62,s
MeO-8 61.5, CH, 397, s
HO-7 8.48, s

9Recorded at 500 MHz for 'H and 125 MHz for *C-NMR data.

®Recorded at 300 MHz for *H and 75 MHz for *C-NMR data.

The HMBC correlations of H-2 and MeO-4 (Jy 3.96) with C-4 (0c 142.8) indicated the

substitution of the second methoxy group at C-4. For ring B, the 'H NMR spectrum

displayed two ortho-coupled aromatic proton signals at 0y, 6.60 (1H, d, J = 9.0 Hz, H-

6) and 0y 6.85 (1H, d, J = 9.0 Hz, H-7) and one singlet proton signal of a hydroxyl
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group at 0y 8.64 (1H, s, HO-8). The hydroxyl group was placed at C-8 (¢ 145.3), in
agreement with NOESY correlations observed between MeO-1 and HO-8 (Figure 12).
The assignment of H-6 was deduced from its 'H-'H COSY correlation with H-7 and
three-bond couplings of H-6 with C-8 (¢ 145.3) and C-9a (dc 117.7) in the HMBC
spectrum (Figure 12). The HMBC correlation between H-7 and C-8a (Jc 123.8) was
also observed. This compound almost had the same structure as that of
chrysotoxone, a fluorenone previously isolated from Dendrobium chrysotoxum (Ma,
Wang, Xu, et al,, 1998), except for the hydroxyl group on ring A of compound 3 was
located at C-3. Based on the above spectral evidence, compound 3 was concluded
as  3,5,8-trihydroxy-1,4-dimethoxy-9-fluorenone and given the ftrivial name
dendrocrumenol C.

Compound 4 was isolated as a dark green powder. The molecular formula
C1H,005 was obtained from its [M + Na]* ion at m/z 543.1067 (calcd for Cs;Hy,OgNa
543.1056) in the HR-ESI-MS. The IR spectrum displayed absorption bands for hydroxyl
(3394 cm™), carbonyl (1647 cm™), aromatic (2924, 1621 cm™), and ether (1228 cm™)
functionalities. The UV spectrum showed absorptions at A, (log &) 219 (4.99), 274
(2.24), 320 (1.46), and 396 (0.41) nm. The chemical structure of 4 was proposed as a
dimer of a phenanthrene derivative based on the analysis of its HR-ESI-MS and NMR
data (Kyokong et al,, 2019). First, we determined 'H NMR in acetone-d,, but H-9 and
H-10 of the phenanthrene skeleton displayed as a sharp singlet signal at dy; 8.06 (2H).
Therefore, we changed the solvent to CDCls;, and the phenanthrene structure was
confirmed by the presence of two pairs of ortho-coupled doublet protons at 0y 7.40
(1H, d, J = 9.0 Hz, H-10), 8, 7.90 (1H, d, J = 8.7 Hz, H-9), 8y, 8.15 (1H, d, J = 8.7 Hz, H-
10), and Oy 8.18 (1H, d, J = 9.0 Hz, H-9) in the 'H NMR spectrum (Table 11). The
analysis of the 'H-'H COSY spectrum supported an ortho-coupled correlation of H-9
with H-10 and H-9" with H-10" (Figure 12).



Table 10 'H and >C-NMR Spectral Data of 3 in Acetone-ds (0 in ppm, J in Hz).

30
Position Oc, type Ou

1 149.3, C

2 107.2, CH 6.86, s

3 1533, C

4 1428, C

da 126.1, C

5 153.0, C

6 119.6, CH 6.60, d (9.0)
7 128.5, CH 6.85,d (9.0)
8 1453, C

8a 1238, C

8b 121.7,C

9 $25.9, C

9a 117.7,C

MeO-1 57.9, CHs 4.08, s
MeO-4 62.4, CH, 3.96, s
HO-8 8.64, s

9Recorded at 500 MHz for 'H and 125 MHz for *C-NMR data.
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The '"H NMR of 4 also displayed additional four aromatic proton signals at oy

6.81-9.56, two olefinic proton signals at dy 5.84 (1H, s, H-3") and dy 5.97 (1H, s, H-3),

and resonances for three methoxyl groups at dy 3.65 (3H, s, MeO-2), 0y 3.93 (3H, s,

MeO-8), and dy, 4.00 (MeO-7). For the first phenanthrene nucleus, an ortho-quinone

structure of ring A was supported by signals of two carbonyl carbons at d¢ 177.6 (C-1)

and d¢ 180.0 (C-2) in the *C NMR spectrum. The HMBC correlations of H-3 and H-10

with C-1 established the position of the carbonyl group at C-1. For ring B, the 'H NMR
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exhibited two broad singlet proton signals at dy 6.81 (1H, br s, H-6) and &y 6.94 (1H,
br s, H-8). The assicnment of H-8 was deduced from its three-bond correlation with
C-9 (Oc 129.3) observed in the HMBC spectrum. The first methoxyl group (Jy 4.00)
should be attached at C-7 (d¢ 162.7), according to NOESY interactions between H-6
and H-8 (Figure 12). Regarding the second phenanthrene derivative, the 'H NMR
spectrum of ring A" showed signals for two doublets at dy, 7.46 (1H, d, J = 9.6 Hz, H-6")
and 0y 9.56 (1H, d, J = 9.6 Hz, H-5). The proton signal of H-5" was assigned by the
HMBC correlations of H-5" and H-10" with C-8a" (0c 129.3). The NOESY correlations
between MeO-8 (¢ 3.93) and H-9" placed the second methoxyl at C-8' (¢ 139.2). For
ring B, the singlet olefinic proton signal at dy 5.84 was assigned as H-3" based on its
HMBC correlation with C-4a’ (0c 124.9). The third methoxyl group (dc 3.65) was
located at C-2, as evidenced by its NOESY cross-peak with H-3" (Figure 12). The two
monomers were connected through a C-C linkage between C-4 (¢ 149.9) and C-1'
(0c 78.0) and an ether bond between C-1' and the oxygen atom at C-5 (O¢ 152.7),
forming a spiro skeleton. This was supported by the HMBC correlations of H-3, H-3',
and H-10" with C-1. The absolute configuration of C-1" was determined by
comparison of the experimental electronic circular dichroism (ECD) spectrum with
the calculated ECD curves. The ECD spectrum of 4 showed the positive and negative
Cotton effects at 217 and 229 nm, respectively, which matched the 4 (R) curve in the
calculated ECD (Figure 10). The assignment of the configuration of C-1" was proposed
as R. On the basis of the above spectral evidence, the structure of 4 was established

as shown, and the trivial name dendrocrumenol D was given to the compound.



Table 11 'H (300 MHz) and "C-NMR (75 MHz) Spectral Data of 4 in CDCls

(0 in ppm, J in Hz).

4
Position 50 type 5H

1 177.6, C

2 180.0, C

3 126.0, CH 597, s

q 149.9, C

da 125.7, C

ab 113.0, C

5 152:-€

6 104.4, CH 6.81, brs

7 162.7, C

8 100.6, CH 6.94, br s
8a 1382, C

9 129.3, CH 7.90, d (8.7)
10 125.8, CH 8.15,d (8.7)
10a 123.9, C

1! 78.0, C

2 169.5, C

3! 103.4, CH 5.84,s

aq' 186.9, C

aa’ 124.9, C

ap’ 125.7, C

5 125.5, CH 9.56, d (9.6)
6 120.8, CH 7.46, d (9.6)
7' 146.7, C

g 139.2, C

8a’ 129.3, C

9' 127.1, CH 8.18,d (9.0)
10’ 124.7, CH 7.40, d (9.0)
10a" 125.8, C

MeO-7 55.8, CH, 4.00, s
MeO-2' 56.7, CH, 3.65,s
MeO-8' 62.1, CH, 3.93,s

9Recorded at 300 MHz for *H and 75 MHz for *C-NMR data.
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Known compounds including gigantol (5) (Sritularak, Anuwat, et al., 2011), 3,7-
dihydroxy- 2,4,8-trimethoxyphenanthrene (6) (Majumder et al., 1998), densiflorol B (7)
(Sukphan et al,, 2014), and cypripedin (8) (Wattanathamsan et al, 2018) were

isolated, and the structures were identified by comparison of their NMR and MS

spectra with literature data [Figure 11].
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Figure 12 HMBC (arrow), NOESY (double headed dashed arrow) and *H-'H COSY

(bold line) correlations of compounds 1-4.

To investigate the immune modulatory effects from D. crumenatum’s
compounds on human immune cells, we induced the inflammatory conditions in
human PBMCs using PMA/ionomycin ex vivo stimulation in the presence of six

purified compounds from D. crumenatum, including dendrocrumenol B (2),
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dendrocrumenol D (4), gigantol (5), 3,7-dihydroxy-2,4,8- trimethoxyphenanthrene (6),
densiflorol B (7), and cypripedin (8). The isolation yield of dendrocrumenol A (1) and
dendrocrumenol C (3) was not enough for biological testing. All compounds were
diluted in DMSO, and therefore DMSO-treated PBMCs were also used as a control
condition. Briefly, after 4 h of PMA/ionomycin stimulation, PBMCs were characterized,
and the immune modulatory effects of the compounds were evaluated using flow
cytometry. Under PMA/ionomycin stimulation, we detected an increased frequency
of TNF-expressing CD3°CD14" cells, as well as the increased frequencies of IL-2- and
IFN-y-expressing CD3" T cells (Figure 13), compared to the untreated PBMCs. In
comparison to the PMA/ionomycin-treated condition, we quantified significantly
diminished frequencies of PMA/ ionomycin-induced IL-2-expressing CD3" T cells after
the treatment with D. crumenatum compounds, more significantly with compounds
2, 4, 6, and 8. Only compound 4 could reduce the abundance of IFN-y-expressing
CD3" activated T cells as well as the frequency of TNF-expressing CD14"
inflammatory monocytes (Figure 14). We also detected decreased frequencies of
IL-2- and IFN-y-expressing CD3" activated T cells in control PBMCs treated with high-
dose DMSO (an equal amount used for 20 uM compound solutions), compared to
the nonstimulated PBMCs (Figure 14).

Taken together, we found immune modulatory effects on the CD3" T cell
population of all D. crumenatum compounds, including two new compounds,
dendrocrumenols B and D. Only dendrocrumenol D provided strong immune
modulatory effects on both CD3" T cell and CD3™ monocyte populations. To exclude
the causes of cell death from active compounds from D. crumenatum which may
interfere with the results showing decreased frequency of activated immune cells
that were obtained from flow cytometry, we determined the state of apoptosis in
human PMBCs in the presence of D. crumenatum compounds. Both
dendrocrumenols B (2) and D (4) did not present any significant increased cell death
in both early and late apoptotic states (Figure 15). Hence, dendrocrumenols B and D

were selected for further investigation.
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Figure 14 Determination of immune modulatory effects. Bar graphs show the percent
of frequency of inflammatory cytokine (TNF-ai, IL-2, and IFN-y) expression in the
immune cells of healthy PBMCs (three biological replicates) after 4 h of treatment
with 1-20 uM DMSO and six isolated compounds from D. crumenatum with or
without PMA/ionomycin stimulation. Two repeated experiments were performed.
One-way ANOVA followed the correction of multiple comparisons (Tukey test), ***P <

0.001, **P < 0.01, *P < 0.05.
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We tested whether immune modulatory effects of dendrocrumenols B and D,
which were observed in PMA-treated PBMCs from healthy individuals, could also be
found in PBMCs from patients with inflammatory conditions. We performed the same
ex vivo stimulation experiment of PBMCs from patients with multiple sclerosis (MS)
using PMA/ ionomycin conditions. The immunopathogenesis of MS occurs throughout
the disease course involving multiple cell types including T and B cells as well as
myeloid and nature killer cells. Immunopathogenesis results in chronic inflammatory
responses across different body compartments including the central nervous system
(CNS) (Bar-Or & Li, 2021). Inhibition or diminishing imbalanced interactions between
activated/inflammatory and regulatory subpopulations will more likely lead to an
improvement of disease severity. In line with the results obtained from PBMCs from
healthy individuals, both dendrocrumenols B (2) and D (4) showed strong immune
modulatory effects, resulting in strong reduction of IL-2-, IFN-y-, and TNF-expressing
CD3" T cells (Figure 16). However, the effects appeared to be restricted to T cells,
and no significant differences were found in CD14" monocytes.

Next, we investisated whether immune modulatory effects on T cells
provided by dendrocrumenols B and D may be controlled by store-operated calcium
entry (SOCE), as has been shown previously in inflammatory bowel disease (Letizia et
al.,, 2022). Similar to our previous study (Letizia et al., 2022), the reduction of SOCE
dependent Ca* influx by active compounds dendrocrumenols B and D was
determined by flow cytometry in comparison to the calcium release-activated
channel inhibitor (CM4620).

After incubation with 1 uM CM4620, 10 pM DMSO, and dendrocrumenol B or
D for 4 h, we observed that DMSO treated PBMCs showed no different changing of
Ca’* influx rate compared to untreated control cells (Figure 17). The treatment of
CMd620 in PBMCs strongly decreased the Ca?" influx rate in CD4* and CD8" T cells
compared to untreated control and DMSO-treated cells (Figure 17). However, the
treatment of dendrocrumenols B and D in PBMCs showed no significant differences in

the rate of Ca?" influx in CD4* and CD8" T cells, compared to the control groups. In
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conclusion, dendrocrumenols B and D exhibited an inhibition of inflammatory

cytokine production in T cells independently of SOCE pathway.
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Figure 15 Cytotoxicity of compounds 2 and 4. Bar graphs show the percent of
frequency of changing number of live cells and state of apoptosis in human PBMCs
treated with DMSO and the two new compounds 2 and 4 from D. crumenatum,

compared to cells with medium. Three biological replicates were used in this study.
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Figure 16 Bar graphs show the percent of frequency of inflammatory cytokines (TNF-
0, IL-2, and IFN-y) expression in the immune cells of MS PBMCs after 4 h treatment
with DMSO and the two new active compounds 2 and 4 from D. crumenatum with
or without PMA/ionomycin stimulation. Two repeated experiments were performed.
One-way ANOVA followed the correction of multiple comparisons (Tukey test), ***P <

0.001, **P < 0.01.
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Figure 17 Determination of Ca*" influx. Dot plots and bar graphs demonstrate the

reduction of Ca?" influx in CD4* and CD8" T cells treated with CM4620, DMSO, and

the two new active compounds 2 and 4 from D. crumenatum compared with

untreated PBMCs (three biological replicates). Two repeated experiments were

performed. One-way ANOVA followed the correction of multiple comparisons (Tukey

test), ¥**P < 0.001, **P < 0.01, *P < 0.05.

Due to the limitation of cell numbers of PBMCs from MS patients, we decided

to further investigate only dendrocrumenol D (4). Although dencrocrumenols B and D

provided similar immune modulatory effects and showed low/no cytotoxicity,

dendrocrumenol D seemed to provide higher effects and less cytotoxicity (Figures
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15, 16 and 17). To deeply characterize the immune modulatory effects of
dendrocrumenol D (4) on PMA-treated PBMCs, we simultaneously immune profiled
PBMCs with all conditions using our previously validated CyTOF workflow with some
optimization (see Experimental Section for more details) (Bottcher, Fernandez-
Zapata, et al,, 2019). Briefly, the antibodies, which was designed to encompass the
major circulating immune cell subsets [T & B cells, myeloid cells (monocytes,
macrophages, and dendritic cells), natural killer (NK) cells], activity-related markers,
chemokine receptors, and cell subset markers. After CyTOF acquisition, the data
were preprocessed as previously described, including the steps of debarcoding,
compensation, and quality control (Figure 18A) (Bottcher, Fernandez-Zapata, et al,,
2019; Bottcher, Schlickeiser, et al., 2019; Fernandez Zapata et al., 2022). To further
evaluate the phenotypic differences of immune cells between the analyzed groups,
we performed the clustering analysis using our previous data analysis workflow
(Fernandez Zapata et al,, 2022). A total of 20 clusters were identified (Figure 18B).
We detected three differential abundant clusters between the experimental groups,
clusters 11, 15, and 17 (Figure 18C).

Among three different treatment groups of PBMCs from healthy individuals,
we detected one differentially abundant cluster, cluster 11: CD161" CD3'T-
bet"CD4"CD8°CD14™ double negative T cells. This subpopulation of T cells was found
to increase after PMA treatment in all three control PBMCs analyzed (Figure 18D).

The frequency of this subpopulation was decreased after dendrocrumenol D
(Comp-4) treatment in all individuals. However, this subpopulation was not
significantly different between the analyzed conditions of PBMCs from MS patients.
Instead, we detected an increased frequency of CTLAG'CRTH2" CD8" T cells in both
PMA-stimulated and 4-treated, PMA-stimulated (Comp-4+PMA) groups (Figure 18E).
Interestingly, similar subsets of CD8" T cells were suggested to play a regulatory role
in different conditions of immune challenge (Chan et al,, 2014; Tsuda et al,, 2001).
Strikingly, we also detected a reduction of the frequency of reactive ICOS™ CD4™ T
cells in all PMA-stimulated, Comp-4-treated PBMCs from MS patients (Figure 18F).
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Figure 18 Evaluation of immune modulatory effects using deep immune profiling by

CyTOF. (A) Gating strategy for CyTOF data prior to downstream analysis, selection of
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single CD45" cells, and de-barcoding based on Boolean gating of palladium barcodes.
(B) UMAP projection (left image) from all samples; coloring indicates 1-20 clusters
representing diverse immune cell phenotypes, defined by the FlowSOM algorithm,
and the heatmap cluster (right image) depicting the median expression levels of all
markers analyzed. Heat colors of expression levels have been scaled for each marker
individually (to the 1°* and 5™ quintiles) (black, high expression; white, no expression).
(O) Line graph of the arcsinh marker expression (mean + SD) between differentially
abundant clusters (C11, C15, and C17). (D) The frequency plot of differentially
abundant cluster CD161" T cells between different treatment conditions of PBMCs
from all three control individuals. (E and F) The frequency plots of differentially
abundant clusters CD8'CTLA4"CRTH2'CD8" (E) and ICOS'CCR7'CD4™ (F) T cells

between different treatment conditions of PBMCs from all five MS patients.

Taken together, we demonstrated herein immune modulatory effects of
active compounds from D. crumenatum in both healthy PBMCs and those from MS
patients. Interestingly, these positive effects appeared to be different between
healthy and disease PBMCs. These compounds, especially dendrocrumenol D,
appear as promising compounds for further development in preclinical settings for
the treatment of (neuro)inflammatory diseases/conditions. In  summary, we
demonstrated herein immune modulatory effects of the new compounds
dendrocrumenols B and D on both healthy T cells and monocytes in vitro, resulting
in the reduction of T cells and monocytes expressing inflammatory mediators.
Reduced proportion of these inflammatory subpopulations of T cells and monocytes
was independent of SOCE pathway and Ca?* influx. In MS-PBMCs, immune
modulatory effects were detected only in T cell populations. Results obtained from
both flow cytometry and CyTOF confirmed immune modulatory effects of
dendrocrumenol D in MS-PBMCs, possibly via the improvement of the balance
between regulatory and reactive (inflammatory mediator expressing) T cell

subpopulations. Our results suggest that dendrocrumenol D may potentially be of
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interest as an in vivo immune modulatory lead compound in a broad spectrum of
inflammation-driven diseases. Although Dendrobium species used as medicinal herbs
in the pharmaceutical industry are harvested from the wild, causing the decrease of
wild populations, D. crumenatum is useless and invasive, and thus can ideally be

harvested and used for future investigations.

EXPERIMENTAL SECTION

General Experimental Procedures. The optical rotation was recorded using
an ATAGO POLAX-2L polarimeter (Minato-ku, Tokyo, Japan). CD spectra were
measured by a Jasco J-815 CD spectrophotometer (Hachioji, Tokyo, Japan).
Ultraviolet-visible (UV-vis) spectra were recorded with a Milton Roy Spectronic 3000
Array spectrophotometer (Rochester, Monroe, NY, USA). Infrared (IR) spectra were
recorded using a PerkinElmer FT-IR 1760X spectrophotometer (Boston, MA, USA).
Nuclear magnetic resonance (NMR) spectra were recorded on a Bruker Avance DPX-
300FT NMR spectrometer or a Bruker Avance lll HD 500 NMR spectrometer (Billerica,
MA, USA). High-resolution mass (HR-ESI-MS) spectra were obtained from a Bruker
MicroTOF mass spectrometer ESI-MS (Billerica). Vacuum-liquid chromatography (VLC)
and column chromatography (CC) were carried out on silica gel (Merck, NJ, USA) at a
particle size of 63-200 um and 40-63 pm, respectively. Sephadex LH-20 (Merck, NJ,
USA) was used for fractionation and purification. Thin-layer chromatography (TLC) was
performed on silica gel 60 F254 plates (Merck, NJ, USA) under UV light. Phorbol-12-
myristate-13-acetate (PMA), ionomycin, brefeldin A, dimethyl sulfoxide (DMSO), and
CRAC channel inhibitor (CM4620) were purchased from Sigma-Aldrich (St. Louis, MO,
USA). Roswell Park Memorial Institute (RPMI) 1640, fetal bovine serum (FBS),
phosphate buffered saline (PBS), 16% w/v formaldehyde (FA), and SMART TUBE INC
Proteomic Stabilizer were purchased from Thermo Fisher Scientific Inc. (Rockford, IL,
USA). Cell staining buffer was purchased from Fluidigm (South San Francisco, CA,
USA).
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Plant Material. Samples of Dendrobium crumenatum were purchased from
Chatuchak market in August 2018. Plant identification was performed by one of the
authors (B.S.). A voucher specimen (BS-Dcrum-082561) has been deposited at the
Department of Pharmacognosy and Pharmaceutical Botany, Faculty of
Pharmaceutical Sciences, Chulalongkorn University.

Extraction and Isolation. Dried and powdered stems of D. crumenatum (4.3
kg) were extracted with MeOH (3 x 20 L) at room temperature, giving a MeOH extract
(220 ). The MeOH extract was diluted in 1000 mL of H,O-MeOH (1:1) and partitioned
with EtOAc (3 x 1000 mL) to obtain an EtOAc extract (126 ¢). The aqueous phase was
then partitioned with n-BuOH (3 x 1000 mL) to give a butanol extract (50 g) and an
aqueous extract (35 g). The EtOAc fraction was subjected to VLC on silica gel with
EtOAc-hexane gradient mixtures (0:100 — 8:2) to obtain 11 fractions (A-K). These
obtained fractions were checked by TLC analysis. Fraction G (5.2 ¢) was fractionated
by chromatography on Sephadex LH-20 (MeOH) to give six fractions (GI-GVI). Fraction
Gll (1.9 ¢) was further purified by CC over silica gel using a gradient elution of
EtOAc-hexane (3:7 — 1:1) to give gigantol (5) (41.6 mg) and 1 (1.8 mg). Fraction GlII
(1.2 g) was separated by CC on silica gel with a gradient of EtOAc-hexane (2:8 —
7:3) to vyield six fractions (GIII1-GllI6). Fraction GllI2 (269.4 mg) was separated by
chromatography on Sephadex LH-20 (MeOH) and then purified by CC on silica gel
using elution of EtOAc-toluene (1:9) to furnish  3,7-dihydroxy-2,4,8-
trimethoxyphenanthrene (6) (54.4 mg). Fraction Glll4 (210.4 mg) was fractionated by
chromatography on Sephadex LH-20 (acetone) to give two fractions (Glllda and
Glll4b). Densiflorol B (7) (37.5 mg) and cypripedin (8) (56.0 mg) were obtained from
fractions Glllda and Gllldb, respectively, after purification by CC on silica gel, eluted
with MeOH-toluene (5:95) from Gllida and EtOAc-toluene (2:8) from Gllldb. Fraction
GllI6 (70.2 mg) was separated by chromatography on Sephadex LH-20 (MeOH) and
then by CC on silica gel with EtOAc-toluene mixture (3:7) to give 2 (10.7 mg).
Compound 3 (10.7 mg) was obtained from fraction GIV (368.1 mg) after isolation by
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CC over silica gel using gradient elution of EtOAc-hexane (0:100 — 1:1) and
chromatography on Sephadex LH-20 (MeOH). Fraction H (10.5 ¢) was separated by CC
on silica gel with an acetone-hexane gradient (1:9 — 6:4) and further subjected to
repeated CC on silica gel with a MeOH-CH,Cl, gradient (0:100 — 5:95) to give four
fractions (HV1-HV4). Separation of fraction HV2 (1.0 ¢) by CC over silica gel using
gradient elution of acetone-CH,Cl, (5:95 — 3:7) and then purification by CC on silica
gel with an EtOAc-toluene mixture (1:1) yielded 4 (28.9 mg).

Dendrocrumenol A (1): brown amorphous solid, UV (MeOH) A, (log €) 224
(2.51), 280 (1.20), 295 (1.07) nm; IR Vyuy 3273, 2962, 1618, 1594, 1484, 1289 cm™'; HR-
ESI-MS [M - HI” m/z 285.0811 (calcd for C4H1305 285.0763); *H and °C NMR data, see
Table 9.

Dendrocrumenol B (2): brown amorphous solid, UV (MeOH) A, (log €) 224
(2.51), 280 (1.20), 295 (1.07) nm; IR Viax 3390, 2961, 1615, 1490, 1281 cm™!; HR-ESI-MS
M + H]* m/z 289.1072 (calcd for CiHi70s 289.1076); 'H and °C NMR data, see
Table 9.

Dendrocrumenol C (3): red powder, UV (MeOH) A, (log &) 219 (3.70), 249
(1.44) nm; IR Vinax 3336, 2956, 2925, 1727, 1671, 1493, 1286 cm™*; HR-ESI-MS [M — H]
m/z 287.0557 (calcd for CysH,,04 287.0556); *H and *C NMR data, see Table 10.

Dendrocrumenol D (4): dark green powder, [a]3’-6.18 (c 0.05, MeOH); UV
(MeOH) ) Anax (log €) 219 (4.99), 274 (2.24), 320 (1.46), 396 (0.41) nm; ECD (MeOH) A,y
(Ag) 217 (+0.01), 229 (-0.03) nm; IR Vay 3394, 2924, 2853, 1647, 1621, 1471, 1424,
1282, 1228 cm™; HR-ESI-MS [M + Nal* m/z 543.1067 (calcd for CsH,00sNa 543.1056);
'H and *C NMR data, see Table 11.

ECD Calculation. The possible configurations of compound 4 were optimized
using DFT calculation at the B3LYP/6-31g(d,p) level. The computed ECD spectra were
calculated using time-dependent density functional theory (TD-DFT) at the B3LYP/6-
311++¢(d,p) level. The geometry optimization and TD-DFT calculations were both
performed with the continuum model (PCM) solvation model with MeOH. All
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calculations were performed using the Gaussian16 program package (Frisch et al,,
2016). The ECD spectra were simulated with overlapping Gaussian functions with a
0 = 0.25 eV fitting parameter using the SpecDis1.64 program (Bruhn et al., 2013). The
more reliable length gauge representation was used for ECD spectra.

Ethics and Cells. This study was approved by the Ethics Committee of
Charité-Universitatsmedizin Berlin (EA1/187/17). Buffy coats used in this research
were obtained from three healthy donors and five patients with multiple sclerosis.
Hurman PBMCs were isolated and aliquoted at 20 x 10° cells/mL, as described in the
previous study (Khoonrit et al.,, 2020), and were then cryopreserved in a liquid
nitrogen tank.

PMA/lonomycin Stimulation in PBMCs. Frozen PBMCs were resuspended in
RPMI 1640 medium with 10% FBS, and then the concentration was adjusted to 10 x
10° cells/mL. Cells were seeded at a density of 5 x 10° cells per well in an ultralow-
attachment 96-well plate (Corning, New York, USA). Different concentrations of DMSO
and compounds were added in the corresponding well. Subsequently, PMA (20
ng/mL) and ionomycin (100 pg/mL) were added into the well plate for stimulation of
the cultured cells and incubated 37 °C for 2 h. After incubation, brefeldin A (10
ug/mL) was added into the wells and further incubated for 2 h. Cells were then
harvested and washed with PBS. Finally, cells were incubated with 10% bovine
serum albumin (BSA) and SMART TUBE INC Proteomic Stabilizer at RT for 12 min and
were then stored at —80 °C before staining.

Measurement of Cytokines in PMA/lonomycin-Treated PBMCs Using Flow
Cytometry. PMA/ionomycin-treated PBMCs were thawed and washed twice with
staining buffer. For blocking unspecific antibodies, cells were incubated with FcR-
blocking buffer (1:100; Miltenyi Biotec, Bergisch Gladbach, Germany) at 4 °C for 10
min. Cells were then stained at 4 °C for 20 min with immunofluorescent-conjugated
antibodies for extracellular proteins including CD14 (FITC, RMO52, Beckman Coulter),
CD3 (APC, HIT3a, Biolegend), HLA-DR (APC/Cy7, 1243, Biolegend), and CD19 (PE, HIB19,
Biolegend) diluted in staining buffer (0.5% BSA in PBS containing 2 mM EDTA). After



158

that, cells were washed with staining buffer and were then fixed with 2% MeOH-free
FA at 4 °C for 30 min. Cells were washed with staining buffer and were then stained
at 4 °C for 30 min with immunofluorescent-conjugated intracellular antibodies
including IFN-y (PE/Cy7, 4S.B3, Biolegend), IL-2 (PerCP/Cy5.5, MQ1-17H12, Biolegend),
and TNF (brilliant violet, MAb11, Biolegend) diluted in permeabilization buffer
(eBioscience, CA, USA). After incubation with intracellular antibodies, cells were
washed and then fixed with 4% MeOH-free FA at 4 °C for 10 min. Fixed cells were
washed with staining buffer and centrifugated at 600 ¢ at 12 °C for 5 min. The
supernatants were discarded and collected only as pellets. Finally, pellets were
resuspended in staining buffer and were measured by a BD CANTO Il flow cytometer
(BD Biosciences, NJ, USA) with BD DIVA version 8.1 software. Data analysis was
performed using FlowJo software version 10.1 (Ashland, OR, USA).
PMA/lonomycin-Treated  Healthy PBMCs Analyzed by CyTOF.
PMA/ionomycin-treated PBMCs were stained and analyzed using our previous
standard protocol (Bottcher, Fernandez-Zapata, et al., 2019). Briefly, after fixation and
storage at -80 °C, cells were thawed and subsequently stained with premade
combinations of the palladium isotopes '%%Pd, '°pd, '%Pd, '%Pd, %pd, and '°Pd
(Cell-ID 20-plex Pd barcoding kit, Fluidigm). There is a unique combination of three
different palladium isotopes, which allows having up to 20 different unique barcodes.
Cells were stained for 30 min at RT and then washed twice with cell staining buffer
(0.5% bovine serum albumin in PBS, containing 2 mM EDTA). The samples were
pooled together, washed, and further stained with antibodies, purchased
preconjugated to metal isotopes (Fluidigm) or conjugated in house by using the
MaxPar X8 kit (Fluidigm) following the manufacturer’s protocol (Table 12). The
pooled samples were resuspended in 50 pL of antibody cocktail against surface
markers and incubated for 30 min at 4 °C. After incubation, cells were washed twice
with staining buffer and subsequently fixed overnight with 2% MeOH-free
formaldehyde solution. Fixed cells were washed with staining buffer, then

resuspended with 100 pL of intracellular antibody cocktail in permeabilization buffer.
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After 30 min of incubation at RT, the samples were washed twice with staining buffer
and resuspended in 1 mL of iridium mix (1:1000 iridium in PBS containing 2% FA) for
30 min at RT. Cells were washed twice with staining buffer and kept at 4 °C until
CyTOF measurement.

Mass cytometry data processing and analysis were performed as previously
described (Bottcher, Fernandez-Zapata, et al.,, 2019). Briefly, initial manual gating of
CD45"DNA" and gating out of CD3'CD19" cells and de-barcoding according to the
barcode combination were performed on FlowlJo. De-barcoded samples were
exported as individual FCS files for further analysis. Using the R package CATALYST,
each file was compensated for signal spillover. For further analysis we used
previously described scripts and workflows. We created multidimensional scaling
(MDS) plots on median marker expression from all markers for first evaluation of the
overall similarities between samples and conditions. In order to perform
unsupervised clustering, we used the FlowSOM/ConsensusClustserPlus algorithms of
the CATALYST package. We opted for a total number of 20 meta-clusters based on
the phenotypic heatmaps and the delta area plot. We generated UMAP
representations including all markers as input in order to have a dimensionality-
reduction visualization of the clusters.

Cytotoxicity Determined by Annexin V and 7-AAD Staining in Human
PBMCs. Frozen PBMCs were resuspended in RPMI 1640 medium with 10% FBS, and
then the concentration was adjusted to 20 x 10° cells/mL. Cells were plated in an
ultralow-attachment 96-well plate at a density of 5 x 10° cells per well. Different
concentrations of DMSO and compounds were added in the corresponding well and
incubated at 37 °C for 4 h. Cells were then harvested and washed with PBS. After
washing, cells were stained at 4 °C for 20 min with CD45 antibody (APC, HI30,
Biolegend) diluted in staining buffer. After washing, cells were resuspended with 100
uL of Annexin V binding buffer. Subsequently, 50 pL of cell suspensions was further
stained with Pacific Blue Annexin V apoptosis detection kit with 7-AAD (Biolegend) at
RT for 15 min in the dark. Finally, Annexin V binding buffer was added to each
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sample. Stained cells were measured by a BD CANTO Il flow cytometer (BD

Biosciences) with BD DIVA version 8.1 software. Data analysis was performed using

FlowJo software version 10.1.

Table 12 The CyTOF antibody list.

target Isotope tag clone company
CD45 89Y HI30 Fluidigm
HLA-DR 141Pr L243 Biolegend
CXCR1 142Nd 8F1 Fluidigm
cPARP 143Nd F21-852 Fluidigm
CD69 144Nd EN50 Fluidigm
Cha 145Nd RPA-T4 Fluidigm
CDé64 146Nd 10.1 Fluidigm
CXCR2 147Sm 5.00E+08 Fluidigm
CD16 148Nd 3G8 Fluidigm
CD56 149Sm NCAM16.2 Fluidigm
MIP-1B
(CCL4) 150Nd D211351 Fluidigm
ICOS 151Eu C398.4A Fluidigm
CD66b 152Sm 80H3 Fluidigm
CD68 153Eu Y1/82A Biolegend
CD3 154Sm UCHT1 Fluidigm
CD11c 155Gd Bulb Biolegend
IL-6 156Gd MQ2-13AS Fluidigm
CCR4 158Gd L291H4 Biolegend
TIGIT 159Tb MBSA43 Fluidigm
CD14 160Gd RM052 Fluidigm
CTLA4 161Dy 14D3 Biolegend




Table 12 The CyTOF antibody list (Continued).

target Isotope tag clone company
CD8 162Dy RPA-T8 Fluidigm
CRTH2 163Dy BM16 Fluidigm
CD28 164Dy L293 Biolegend
IFNy 165Ho B27 Fluidigm
CD141 166Er M80 Fluidigm
CCR7 167Er GO43H7 Biolegend
CCR9 168Er LO53E8 Biolegend
CD33 169Tm WM53 Fluidigm
Thet 170Er 4B10 Biolegend
CD161 171Yb HP-3G10 Biolegend
OPN 172Yb polyclonal LSBio
CXCR4 173Yb 12G5 Fluidigm
IL-1B 174Yb CRM56 eBioscience
TNF 175Lu Mab11 Fluidigm
CD127 176Yb A019D5 Fluidigm
Ccbar 209Bi CC2Co6 Fluidigm

161

Calcium Influx Measurement in Human PBMCs. PBMCs were cultured in

RPMI 1640 medium with 10% FBS. Cells were seeded in an ultralow-attachment 96-

well plate with or without 1 uM CM4620 (Letizia et al.,, 2022) or active compounds

from D. crumenatum or DMSO and were then incubated at 37 °C for 4 h. After

incubation, cells were stained with calcium indicator Fluo-4 AM on ice for 30 min in

the dark. Subsequently, cells were washed with PBS in 5% BSA and were then

incubated with anti-human antibodies including CD3 (PE/Cy7, UCHT1, Biolegend), CD4

(APC, OKT4, eBioscience), and CD8 (APC/Cy7, SK1, Biolegend) for 15 min on ice

protected from the light. CM4620 and active compounds from D. crumenatum were
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added in stained cells before flow cytometric measurement. All samples were
analyzed using flow cytometry following a previous standard protocol (Bottcher,
Fernandez-Zapata, et al., 2019).

PMA/Ionomycin-Treated Multiple Sclerosis PBMCs Using Flow Cytometry.
For PMA/ionomycin-treated MS PBMC sample measurement, cells were stimulated
with a final concentration of 20 ng/mL of PMA and 100 pg/mL of ionomycin for 2 h.
Then, 10 pg/mL of brefeldin A was added into the cultured cells and incubated for 2
h. After incubation, cells were harvested and washed with PBS. Finally, cells were
incubated with 10% BSA and SMART TUBE INC Proteomic Stabilizer at RT for 12 min
and were then stored at -80 °C before staining. PMA/ionomycin-treated MS PBMCs
were stained and measured with the same protocol as previously described
(Bottcher, Fernandez-Zapata, et al., 2019).

PMA/lonomycin-Treated Multiple Sclerosis PBMCs Analyzed by CyTOF.
PMA/ionomycin-treated MS PBMCs were stained and analyzed using the same
protocol as previously described (Bottcher, Fernandez-Zapata, et al., 2019).

Statistical Analysis. GraphPad Prism v.9.0 software (San Diego, CA, USA) was
used for statistical analysis in this study. Data were expressed as the mean =+
standard deviation (SD). Group analysis was analyzed using one-way ANOVA followed
by Tukey’s test. The p values that were less than 0.05 were interpreted as statistical

significance.
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Abstract

Dendrobium plants are widely used in traditional medicine. Their secondary
metabolites such as bibenzyls and phenanthrenes show various pharmacological
benefits such as immunomodulating effects and inhibitory effects on cancer cell
growth. However, our previous study also showed that some of these promising
compounds (i.e., gigantol and cypripedin) also induced expression of inflammatory
cytokines including TNF in monocytes obtained from human donors. Our findings
have raised caution about the use of these compounds in clinical application.
Furthermore, the effects of these therapeutic compounds on multiple immune cell
types apart from monocytes remain to be evaluated. In this study, we aim to analyze
the immunomodulatory effects of seven known bibenzyl compounds purified from
Dendrobium species in human peripheral blood mononuclear cells (PBMCs). In this
study, the immunomodulatory effects of seven known bibenzyls from Dendrobium
orchids were screened by flow cytometry in LPS-stimulated PBMCs (three biological
replications). Annexin V Apoptosis Detection Kit with 7-AAD was used to determine
cytotoxicity of the defined active bibenzyls. We use high-dimensional single-cell mass
cytometry (CyTOF) to assess immunomodulatory effects and the phosphorylation
state of multiple phosphor-proteins of the active compounds on multiple immune
cell types. The LPS stimulation exhibited significant increase of TNF expression only
in CD14" cells. Two bibenzyls (i.e.,, moscatilin (3) and crepidatin (4)) showed
significant inhibitory effects in a dose-dependent manner of TNF expression in LPS-
stimulated PBMCs. For cytotoxicity staining with Annexin V. and 7-AAD, only
compound 4 at 20 uM revealed significant increase in cell death in late apoptosis
state. Treatment of LPS-stimulated PBMCs with moscatilin and crepidatin (both at the
concentration of 10 uM) revealed a reduction of NK cells with effector functions, as
well as pSTAT5" non-classical monocytes and monocytes expressing co-stimulatory
molecule CD86. Our study demonstrated board immunomodulatory effects of
Dendrobium compounds on multiple immune cell types, apart from CD14"

monocytes. Our findings suggest a broad spectrum of activity on immune responses
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of Dendrobium compounds, which may lead to effectively therapeutic potential of
these compounds in complex disease conditions including inflammation. However,
these results could also imply possible adverse effects in diverse immune cell types,
and thus a good monitoring is required. To evaluate therapeutic effects as well as
adverse effects of such active compounds on multiple human immune cell

populations, multi-parameter immune profiling method is required.

Introduction

Orchidaceae is one of the most prominent families of flowering plants with
approximately 25,000 species known worldwide (S. Zhang et al., 2018). Dendrobium
is one of the largest genera in the orchid family with more than 1,500 species and
distributed in a wide area including tropical and subtropical Asia and Oceania region
(Hou et al,, 2017; Zheng et al.,, 2018). In China, some of the native species of
Dendrobium have been used in the tradition Chinese medicine and have become a
big plant industry (Cheng et al,, 2019). In China, Dendrobium, known as "Shihu", is
also used as functional food in many dietary supplements such as Shihu wine and
Fengdou Shihu (Liu et al.,, 2015). Secondary metabolites from Dendrobium such as
flavonoids, bibenzyls, phenanthrenes, alkaloids and sesquiterpenoids have been
reported to provide various pharmacological activities, for instance, anti-
inflammatory, antioxidant, antiangiogenic, anticancer, antimicrobial, neuroprotective
and immunomodulatory activities (Busaranon et al., 2016; Chanvorachote et al,,
2013; He et al., 2020; Khoonrit et al., 2020; Lam et al,, 2015; Teixeira da Silva & Ng,
2017; Treesuwan et al,, 2018; Unahabhokha et al., 2016, Wang, 2021b). However,
these studies were mostly performed in cell lines or animal models. Very few were
performed using primary human cell culture, for example, a study of
immunomodulatory effects of a bibenzyl compound (i.e., 4,5-dihydroxy-3,3 4 -
trimethoxybibenzyl) isolated from D. lindleyi Steud. in CD14" monocytes under
inflammatory conditions (Khoonrit et al,, 2020). Furthermore, we have previously

shown that gigantol and cypripedin could also induce the expression of inflammatory
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cytokines TNF and IL-6 in monocytes, suggesting also adverse effects of these
compounds on primary human immune cells. Therefore, the evaluation of both
therapeutic potential and mechanism of action as well as potential adverse effects
of natural active compounds in human system is required before an application in
clinical settings.

Inflammation is a defense mechanism against various stimuli such as
pathogens, toxic substances or damaged cells (Medzhitov, 2010). During the
inflammatory response, innate immune cells including dendritic cells (DCs),
neutrophils, monocytes and macrophases interact with exogenous or endogenous
molecules to mediate inflammation (Nowarski et al., 2013). These cells express
receptors such as Toll-like receptors 9 (TLR9) which recognize DNA from damaged
tissues, known as danger-associated molecular patterns (DAMPS), or TLR4 for
pathogen-associated molecular patterns (PAMPs) such as lipopolysaccharide (LPS)
(Chen et al,, 2018; Mogensen, 2009; Roh & Sohn, 2018). LPS, an outer membrane
substance of gram-negative bacteria, is widely used as a model for inflammatory
conditions (Ngkelo et al., 2012). LPS is bound to CD14, a glycosylphosphatidylinositol
(GPI)-linked surface protein which is mostly expressed on myeloid cells and
transferred to TLR4 complex. This interaction activates various intracellular signaling
responses resulting in the promotion of expression of inflammatory cytokines such as
tumor necrosis factor (TNF), interleukin-2 (IL-2) and interferon-gamma (IFN-y)
(Ciesielska et al., 2021; Ptociennikowska et al., 2015; Ramirez-Pérez et al., 2020). LPS
stimulation induces the production of inflammatory mediators via intracellular
phosphor-molecules such as phosphorylated extracellular signal-regulated kinase 1/2
(PERK1/2), phosphorylated signal transducer and activator of transcription 1 and 5
(pSTAT1 and pSTATS) (Phongpreecha et al., 2020).

In this study, we screened the potential immunomodulatory and anti-
inflammatory effects of seven known bibenzyls from Dendrobium plants on multiple
human immune cells. We demonstrated herein decreased inflammatory responses of

LPS-treated CD14" monocytes, demonstrated by the reduction of inflammatory
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cytokine TNF. Further deep immune profiling showed that the natural active
compounds also modulated (apart from CD14" monocytes) the LPS-induced
responses of non-classical monocytes and nature killer cells. Finally, we also
reported here potential modulation of the active compounds on the human immune

cells in non-inflammatory conditions.

Materials and methods
Plant materials

The whole plants of Dendrobium scabrilingue Lindl., Dendrobium capillipes
Rchb.f., Dendrobium secundum (Blume) Lindl. and Dendrobium signatum Rchb. f.
were purchased from Jatuchak market, Bangkok (Mittraphab et al, 2016;
Phechrmeekha et al,, 2012; Sarakulwattana et al., 2020). D. scabrilingue was identified
by one of authors (B.S.) (Sarakulwattana et al., 2020). D. secundum and D. capillipes
were identified by comparison with the authentic samples (BKF Nos 110498 and
114946 for D. secundum and D. capillipes, respectively) (Phechrmeekha et al., 2012)
and D. signatum was authenticated by a comparison with herbarium specimens at
the Department of National Park, Wildlife and Plant Conservation, Ministry of National
Resources and Environment (Mittraphab et al., 2016). The voucher specimens of
D. scabrilingue (BS-DScab-12255), D. secundum (DS/BS-092552), D. capillipes (DC-
082553) and D. signatum (BS-DS-102555) have been deposited at the Department of
Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences,
Chulalongkorn University (Mittraphab et al., 2016; Phechrmeekha et al, 2012;
Sarakulwattana et al., 2020).
Compounds and reagents

Seven bibenzyls [Figure 19] were isolated from Dendrobium plants. The ethyl
acetate (EtOAc) extract from Dendrobium scabrilingue Lindl. was subjected to
vacuum-liquid chromatography (VLC) over silica gel using EtOAc-hexane, gradient to
give 8 fractions (A-H). Fraction D was fractionated by column chromatography (CC) on

silica gel (EtOAc-hexane, gradient) to obtain 14 fractions (DI-DXIV). Fraction DIX was
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purified by Sephadex LH-20 (MeOH) and then separated by CC (silica gel, EtOAc-
CH,CLl,, gradient) to give batatasin Il (1). Aloifol | (7) was obtained from fraction DX
after purification on Sephadex LH-20 (MeOH) and CC (silica gel, CH,Cl,)
(Sarakulwattana et al, 2020). The methanol (MeOH) extract from Dendrobium
secundum was separated by VLC over silica gel (EtOAc-hexane and MeOH-CH2CL2,
gradient) to give 8 fractions (A-H) Fraction G was fractionated by VLC on silica gel
(MeOH-CH,Cl,, gradient) to obtain six fractions (G1-G6). Fraction G4 was further
separated by CC (silica gel, acetone-CH,Cl,, gradient) and purified by CC (EtOAc-
hexane, gradient) to yield 4,5,4 -trihydroxy-3,3 -dimethoxybibenzyl (2) (Phechrmeekha
et al,, 2012). The MeOH extract from Dendrobium capillipes was subjected to VLC on
silica gel (MeOH-EtOAc-CH,Cl,, gradient) to give 7 fractions (I-VII). Fraction IV was
fractionated by VLC over silica gel (EtOAc-hexane, gradient) to obtain 13 fractions (IV-
A to IV-J). Fraction IV-J was separated by CC (silica gel, acetone-petroleum ether,
gradient) and further purified on Sephadex LH-20 (MeOH-CH,Cl,, 1:1) to vyield
crepidatin (4). Moscatilin (3) and chrysotoxine (5) were obtained from fraction V after
separation by VLC over silica gel using gradient elution of MeOH-EtOAc-CH,Cl,-
hexane, further separation by CC (silica gel, acetone-CH2Cl2, gradient) and
purification on Sephadex LH-20 (acetone) (Phechrmeekha et al., 2012). The EtOAc
extract from Dendrobium signatum Rchb. f. was subjected to VLC on silica gel
(acetone-hexane, gradient) to give 8 fractions (A-H). 3,4-Dihydroxy-5,4 -dimethoxy-
bibenzyl (6) was yielded from fraction E after fractionation by CC (silica gel, acetone-
hexane, gradient) and purification on Sephadex LH-20 (acetone) (Mittraphab et al,,
2016). Dimethyl sulfoxide (DMSO), LPS and brefeldin A were purchased from Sigma
Aldrich (St. Louis, MO, USA). Roswell Park Memorial Institute (RPMI) 1640, fetal bovine
serum (FBS), phosphate buffered saline (PBS), SMART TUBE INC Proteomic Stabilizer
and 16% w/v formaldehyde (FA) were purchased from Thermo Fisher Scientific Inc.
(Rockford, IL, USA). Anti-human antibodies were purchased pre-conjugated to metal
isotopes (Fluidigm) or conjugated in house following the manufacturer’s protocol by

using the MaxPar X8 kit (Fluidigm).
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Figure 19 Chemical structures of seven known bibenzyls from Dendrobium plants.

Ethics and cells

This study was approved by the Ethics Committee of Charité -
Universitatsmedizin Berlin. Buffy coats from three healthy blood donors were
obtained from the German Red Cross (GRC) for research use. Human PBMCs were
isolated, aliquoted at 20 x 10° cells/mL and were cryopreserved in liquid nitrogen

tank, as described in the previous study (Khoonrit et al., 2020).

LPS stimulation in human PBMCs

Frozen PBMCs were resuspended in RPMI 1640 medium with 10% FBS and
cell concentration was adjusted to 20 x 10° cells/mL. Cells were plated in an
ultralow-attachment 96-well plate (Corning, New York, USA) at a density of 5 x 10°
cells per well. Four different concentrations of compounds were then added to the
corresponding well. For cell stimulation, a final concentration of 100 ng/mL of LPS
was added into the cultured cells. After a 2 h incubation, a total concentration of 10
ue/mL of brefeldin A was added into the wells and further incubated for another 2 h.

Cells were then harvested into 1.5 mL microtubes and washed with PBS. Finally,
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cells were resuspended in 10% BSA and incubated with SMART TUBE INC Proteomic

Stabilizer for 12 min at RT. Stabilized cells were stored at -80 °C before staining.

Flow cytometry

Cells were thawed, washed twice and transferred into 1.5 mL microtubes.
Cells were incubated in FcR-blocking buffer (1:100; Miltenyi Biotec, Bergisch
Gladbach, Germany) at 4 °C for 10 min to block unspecific antibodies binding to Fc
receptors. Cells were incubated for 20 min at 4 °C with fluorochrome-conjugated
extracellular antibodies for CD3 (APC, HIT3a, Biolegend), CD14 (FITC, RMO52,
Beckman Coulter), CD19 (PE, HIB19, Biolegend) and HLA-DR (APC/Cy7, 1243,
Biolegend) diluted in staining buffer (0.5% BSA in PBS containing 2 mM EDTA). Cells
were washed with staining buffer and were then fixed with 2% methanol-free FA at
4 °C for 30 min. After washing with staining buffer, cells were incubated for 30 min at
4 °C with fluorochrome-conjugated antibodies for intracellular proteins including TNF
(brilliant violet, MAb11, Biolegend), IL-2 (PerCP/Cy5.5, MQ1-17H12, Biolegend) and
IFN-y (PE/Cy7, 4S.B3, Biolegend) diluted in permeabilization buffer (eBioscience,
California, USA). Furthermore, cells were washed with staining buffer and were fixed
with 4% methanol-free FA at 4 °C for 10 min, then washed with staining buffer and
centrifugated at 600 x g at 12 °C for 5 min. Subsequently, pellets were resuspended
in staining buffer and were acquired on BD CANTO Il flow cytometer (BD Biosciences,
New Jersey, USA) with software BD DIVA version 8.1. Data analysis was performed

using FlowJo software version 10.1 (Ashland, OR, USA).

CyTOF measurement

For phosphoproteins measurement, cells were incubated with 100 ng/mL of
LPS for 15 min. Cells were incubated with Cisplatin-'*"Pt (1:3000) for 1 min at RT and
then fixed with 16% methanol-free FA. Cells were harvested into 1.5 mL microtubes
and washed with PBS. Finally, cells were resuspended in 10% BSA and incubated
with SMART TUBE INC Proteomic Stabilizer for 12 min at RT. Stabilized cells were
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stored at -80°C before staining. Cells were stained and analysed according to our

standard protocol (Linsley & Ledbetter, 1993).

Intracellular Barcoding

After fixation and storage at -80 °C, cells were thawed and subsequently
stained with premade combinations of the palladium isotopes '%Pd, **Pd, 'Pd,
%%pd, pd and °Pd (Cell-ID 20-plex Pd Barcoding Kit, Fluidigm). Each sample
received a unique combination of three different palladium isotopes. Therefore, it
was possible to generate up to twenty different unique barcodes. One sample did
not receive a barcode allowing to increase the sample size to 21 samples. Cells were
stained with the barcodes for 30 min at RT and then washed twice with cell staining
buffer. The 21 samples were pooled together, washed and further stained with

antibodies.

Antibody staining

Samples were pooled, then resuspended in 50 uL of antibody cocktail against
surface markers and incubated for 30 min at 4 °C. Cells were washed twice with
staining buffer and subsequently fixed overnight with 2% methanol-free FA solution.
Fixed cells were washed with staining buffer, then permeabilized with 100 pL ice-
cold methanol for 10 min at 4 °C. Cells were washed twice in staining buffer and
resuspended with 100 uL of antibody cocktail against phosphor-protein markers.
After 30 min of incubation at RT, samples were washed twice with staining buffer and
resuspended in 1 mL of iridium mix (1:1000 Iridium in PBS containing 2% FA) for 30
min at RT. Cells were washed twice with staining buffer and kept at 4 °C until CyTOF

measurement. All antibodies used are listed in Table 13.

Mass cytometry data processing and analysis
Initial manual gating of CD45"DNA™ and gating out of CD3'CD19" cells and de-

barcoding according to the barcode combination were performed on FlowlJo. De-
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barcoded samples were exported as individual FCS files for further analysis. Using the
R package CATALYST, each file was compensated for signal spillover. Using FlowJo,
dead cells, which are Cisplatin®, were gated out and FCS files were exported. For
further analysis, we used previously described scripts and workflows. We created
multi-dimensional scaling (MDS) plots on median marker expression from all markers
for first evaluation of the overall similarities between samples and conditions. In
order to perform unsupervised clustering, we used the FlowSOM/
ConsensusClustserPlus algorithms of the CATALYST package. We opted for a total
number of 20 meta clusters based on the phenotypic heatmaps and the delta area
plot. We generated UMAP representations including all markers as input in order to

have a dimensionality reduction visualization of the clusters.

Cytotoxicity determined by Annexin V and 7-AAD staining in human PBMCs
Frozen PBMCs were resuspended in RPMI 1640 medium with 10% FBS and
cell concentration was adjusted to 20 x 10° cells/mL. Cells were seeded at a density
of 5 x 10° cells/10 pL in each well of an ultra-low attachment 96-well plate. Different
concentrations of compounds were then added to the corresponding wells and
incubated for 4 h. Cells were harvested, washed and transferred into 1.5 mL
microtubes. Cells were subsequently incubated in CD45 antibody (APC, HI30,
Biolegend) diluted in staining buffer at 4 °C for 20 min. After washing, cells were
resuspended with 100 pL of Annexin V binding buffer. Cell suspensions were then
transferred into new microtubes, and further incubated with Pacific Blue™ Annexin V
Apoptosis Detection Kit with 7-AAD (Biolegend) at RT for 15 min in the dark. Annexin
V binding buffer was added to each cell suspension. Stained cells were acquired on
BD CANTO Il flow cytometer (BD Biosciences, New Jersey, USA) with software BD DIVA
version 8.1. The obtained data were analysed using Flowlo software version 10.1

(Ashland, OR, USA).
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Statistical analysis

Data expressed as the mean + standard deviation (SD) were analyzed for
statistical significance (p < 0.05) using one-way ANOVA with Tukey's test in GraphPad
Prism v.9.0 software (San Diego, CA, USA).

Results
Immune modulatory effects of bibenzyls from Dendrobium species on primary
human immune cells

To evaluate immunomodulatory effects, we first induced inflammatory
conditions in human PBMCs using LPS, as previously described (Khoonrit et al., 2020).
LPS-stimulated PBMCs were treated with seven known bibenzyl compounds isolated
from Dendrobium plants including batatasin Il (1), 4,5,4'—trihydroxy—3,3'—
dimethoxybibenzyl (2), moscatilin (3), crepidatin (4), chrysotoxine (5), 3,4-dihydroxy-
5,4 -dimethoxy-bibenzyl (6) and aloifol | (7) were diluted in DMSO. Four known
concentrations (1, 5 ,10 and 20 uM) that have been previously investigated were
used (Khoonrit et al., 2020; Unahabhokha et al., 2016). In addition, DMSO with the
same concentration as the compounds was used as control. After 4 h of LPS
stimulation, we determined the specifically increased frequency of TNF-expressing
CD14" monocyte population, whereas IL-2 and IFN-y were detected unchanged,
showing specific responses of monocytes to LPS in TNF expression [Figure 20]. We
detected significantly decreased frequencies of LPS-induced TNF expression in CD14"
monocytes treated with all bibenzyl compounds, except batatasin Ill (1) [Figure 21].
This effect was not found in other immune cell populations, as well as in DMSO-
treated condition. No changes in LPS-induced IL-2 and IFN-y expression were
detected in either monocytes or other immune subsets and DMSO-treated PBMCs.
Nevertheless, only two compounds (i.e., moscatilin (3) and crepidatin (4)) exhibited
inhibitory effects in a dose-dependent manner and decreased LPS-induced TNF
expression significantly at the concentration of 5, 10 and 20 pM [Figure 21].

Therefore, we selected both compounds 3 and 4 for further investigations.



Table 13 The CyTOF antibody list.

Target Isotope tag Clone Company
CD45 86y HI30 Fluidigm
HLADR 141p, L243 BioLegend
CD19 142Nd HIB19 Fluidigm
p53 14304 7F5 Fluidigm
CD69 144Nd FN50 Fluidigm
CD4 145Nd RPA-T4 Fluidigm
CD64 146Ng 10.1 Fluidigm
pH2AX 147gm JBW301 Fluidigm
CD16 148N 3G8 Fluidigm
CD56 149¢m NCAM16.2 BD Biosciences
pSTATS 150Nd 47 Fluidigm
ICOS 51e, C398.4A Fluidigm
pAKT 152 D9E DVS Science
pSTAT1 153, 58D6 Fluidigm
CD3 1545m UCHT1 Fluidigm
CD11c 155Gd Bul5 BioLegend
CD86 156G 1T2.2 Fluidigm
pSTAT3 1584 4/P-Stat3 Fluidigm
CD1c 159Th Li61 BioLegend
CD14 16054 RMO052 Fluidigm
CTLA4 161py 14D3 Fluidigm
CcD8 1%2py RPA-T8 Fluidigm
CRTH2 163Dy BM16 Fluidigm
lkba D) L35A5 Fluidigm
pCREB 18540 87G3 DVS Science
pnFkBp65 166p, K10895.12.50 Fluidigm
CCR7 167, G043H7 Fluidigm
CCR9 168, LO53E8 Fluidigm
CD33 1691 WMS53 Fluidigm
Thet 170g, 4B10 BioLegend
pERK1/2 71y D13.14 .4E Fluidigm
CX3CR1 172y 2A9-1 BioLegend
CXCR4 173yh 12G5 Fluidigm
PD1 174y EH12.2H7 Fluidigm
pS6 SIETTEY N7-548 Fluidigm
CD11b 209p; ICRF44 Fluidigm
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Figure 20 Flow cytometry analysis. Dot plots exhibit gating strategy of human primary
T cells (G5), monocytes (G6), CD19HLADR (G7), CD19HLADR" (G8) and B cells (G9).
The histograms plots show LPS-induced expression of inflammatory cytokines (i.e.,

TNF-a, IL-2 and IFN-y) in G5, G6 and G9.
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Figure 21 Bar graphs show the mean frequency (%) of inflammatory cytokines (TNF-
0, IL-2 and IFN-y) expression in T cells, monocytes and B cells after 4 h incubation
with 1, 5, 10 or 20 uM seven known bibenzyls with or without LPS stimulation. One-
way ANOVA, corrected for multiple comparisons by Tukey Test, *p < 0.05, **p < 0.01.
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Investigation of potential cytotoxicity of moscatilin and crepidatin

We next proved whether the immune modulatory effects through inhibition
of TNF expression from moscatilin (3) and crepidatin (4) were not caused by
cytotoxicity of the compounds resulted in decreased cell number or cell death. To
do so, we determine apoptotic states of human PMBCs using the same tested
concentrations of DMSO, moscatilin (3) and crepidatin (4) after 4 h co-incubation. No
significant increase in cell death in either early or late apoptotic state after treatment
with DMSO and moscatilin (3) [Figure 22]. However, we detected significant increase
in cell death at late apoptotic state after treatment with 20 uM of crepidatin (4)
[Figure 22]. For further deep immune profiling using mass cytometry, we therefore

decided to use the concentration of 10 uM for both moscatilin and crepidatin.

Deep immune profiling revealed a broad spectrum of immunomodulatory
effects of moscatilin and crepidatin

To further characterize the modulatory effects of moscatilin and crepidatin on
a wide spectrum of immune cell types, we applied our previously validated immune
profiling workflow using CyTOF (Bottcher, Ferndndez-Zapata, et al., 2019). PBMCs
from three healthy donors were incubated with either LPS, an active compound (i.e.,
moscatilin or crepidatin) or LPS together with an active compound. After 4 hours
incubation, we stained the samples with an antibody panel of 37 antibodies
including ten phospho-molecule antibodies (i.e., pNFkBp65, pSTAT1, pSTAT3, pSTATS,
CREB, pS6, p53, pH2AX, pAKT, pERK). The antibody panel also allows to determine
the major circulating immune cell subsets such as T and B cells, myeloid cells (i.e.,
monocytes and dendritic cells) and natural killer (NK) cells. As previously described,
the acquired CyTOF data were preprocessed (i.e., de-barcoding, compensation and
quality control), then clustering analysis was performed using our previously
established data analysis workflow [Figure 23A] (Bottcher, Fernandez-Zapata, et al,,
2019). A total of twenty clusters were identified [Figure 23B and 23C]. The highest

cell frequency was detected in cluster 1 and 9 [Figure 23C, lower panel]. Decreased
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abundance of CD56'CD16 Tbet" effector NK cells [cluster 4, Figure 23D], CD14
CD16"CD11c'CXCR4"  non-classical monocytes [cluster 7, Figure 23E] and
CD14"CD16low monocytes expressing co-stimulatory molecule CD86 [cluster 19,
Figure 23F] have been detected in LPS-treated PBMCs after the treatment with
crepidatin  (4), compared to LPS-treated PBMCs. Interestingly, non-classical
monocytes (cluster 7) were positive for pSTATS5 [Figure 23G], thus could be identified
as inflammatory monocytes. On the contrary, we couldn’t observe these positive
effects in moscatilin-treated samples.

Of note, we have observed that the abundance of these three activated
clusters were also increased in PBMCs after an incubation with both moscatilin and
crepidatin. Nevertheless, one of the three donors showed high abundance of all
three activated immune cell types at the baseline (ie, at “no stimulation”
condition), and no changes in immune phenotypes were observed in this donor
across conditions. This result suggests possible high variation of immune responses
between individuals, which most likely will occur in the real clinical application.
Hence, an application of these active compounds or other natural products from
Dendrobium plants with immunomodulatory effects requires a well monitoring of

changes in immune phenotypes.
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Figure 22 (A) Dot plots demonstrate gating strategy from flow cytometry in
cytotoxicity staining with Annexin V and 7-AAD in human PBMCs used to obtain CD45
cells (G4) and determine the apoptosis state including live cells (G5), early (G6) and
late apoptosis (G7). (B) Bar graphs show the mean frequency (%) changes of live cells
and apoptosis state in human PBMCs treated with bibenzyl compounds 3, 4 and
DMSO, compared with only cells with medium. One-way ANOVA, corrected for
multiple comparisons by Tukey Test, *p < 0.05.
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Discussion

In this study we wused LPS-induced PBMCs as a model for studying
immunomodulatory activity of isolated known Dendrobium bibenzyl compounds. We
showed here immunomodulatory effects of moscatilin (3) and crepidatin (4),
indicated by the reduction of TNF expression of CD14" monocytes in dose-
dependent manner, suggesting potentially immune modulatory effects of these
compounds. The others known bibenzyls including batatasin Il (1), 4,5,4 -trihydroxy-
3,3 -dimethoxybibenzyl (2), chrysotoxine (5), 3,4-dihydroxy-5,4 -dimethoxy-bibenzyl
(6) and aloifol | (7) were tested in the same condition. However, they showed less
dose-dependent inhibitory effects to LPS-induced TNF expression in CD14"
monocytes, compared to the compound 3 and 4. Deep immune profiling using mass
cytometry revealed immunomodulatory effects under LPS-induced inflammatory
conditions of both moscatilin and crepidatin in multiple immune cell subsets,
including effector NK cells, CD86-expressing non-classical monocytes and pSTAT5"
monocytes.

In line with our previous study (Khoonrit et al., 2020), these findings confirm a
common immunomodulatory effects of Dendrobium compounds and further suggest
a possible mechanism of action, an inhibition of an activation of phospho-molecule
such as STATS5. In the immune modulatory effects test, compound 3 and 4 showed
immune modulatory effects which could be related to their structure-activity
relationships (SAR). They contain the similar core structure including one hydroxy
group at C-4" and three methoxy groups at C-3, C-5 and C-3’, suggesting this core
structure may be specific as a pharmacophore for inhibition of LPS-induced TNF
expression possibly via an activation of STAT5 in monocytes. In addition to reduction
of pSTAT5" monocytes, we also detected decreased abundance of Tbet™ NK cells in
LPS-stimulated cells treated with active compounds. It has been shown that Tbet is
an important transcription factor, which is essential for NK cell effector functions
including sustained IFN-y production as well as rapid production of perforin and

granzymes for cytolytic activity (Huang & Bi, 2021). Furthermore, CD86-expressing
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CD14" monocytes were also found reduced in the presence of active compounds
under LPS stimulation. The co-stimulatory molecule CD86 expressed on monocytes
is required for activating lymphocytes (Linsley et al., 1994; Linsley & Ledbetter, 1993).
CD86 can bind two main receptors present on the surface of T lymphocytes, CD28
and cytotoxic T lymphocyte associated protein 4 (CTLA-4). Binding to CD28 results in
T cell activation and can consequently enhance the immune response, whereas
binding to CTLA-4 can lead to inhibition of T cell activation, thereby downregulating
immunity (Hathcock et al, 1994; Zheng et al., 2004). It remains unclear how
moscatilin (3) and crepidatin (4) can regulate T cell function via this CD86-expressing

monocyte.

Conclusions

In summary, we have demonstrated herein immunomodulatory effects of
bibenzyl compounds from Dendrobium species, especially moscatilin (3) and
crepidatin (4), on multiple immune cell types, which can consequently result in
either the resolution of inflammation or, in the case of imbalance of immune
responses, enhancement of inflammation. Therefore, although bibenzyl compounds
from Dendrobium plants have high therapeutic potentials in treatment of
inflammatory diseases or cancer, a well monitoring of immune cell responses apart
from therapeutic effects is essential to evaluate the balance between beneficial

effects and immune responses.
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algorithm (C) (top left) heatmap cluster illustrating the median expression levels of
all markers analyzed with heat colors of expression levels scaled for each marker
individually (to the 1* and 5™ quintiles) (black: high expression, white: no expression);
(top right) Cell type of each cluster and its respective frequency (mean + SD); (lower
panel) frequency plot (mean + SD) of each cluster. (D-F) Frequency plots of
differentially abundant clusters i.e., CD56"CD16 Tbet'CD45" NK cells (D), CD14
CD16"CXCR4™ non-classical monocytes (E) and CD147CD16lowCD86" monocytes (F)
between different PBMC-treated conditions from the three healthy donors. (G) Line
graph of the arcsinh marker expression (mean + SD) of the phosphor specific markers

in each cluster.
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CHAPTER IV
DISCUSSION

In this dissertation, four new compounds and four known compounds
isolated from D. crumenatum were demonstrated for anti-inflammation based on
immune modulatory activity in human PBMCs. The new phenanthrene derivatives,
dendrocrumenols B and D, exhibited the most promising anti-inflamsmatory effects
indicated by inhibition of inflammatory cytokines in both monocytes and T cells of
PMA/lono-treated PBMCs when compared to the other compounds. The
inflammatory condition in PBMCs was stimulated by PMA/lonomycin. PMA
stimulation is related to T cells receptor and co-stimulation signaling. It activates
several intracellular molecules such as IKK and MAPK, whereas ionomycin activates
intracellular Ca®*, calmodulin and calcineurin (Macian et al.,, 2002). The activation
from PMA and ionomycin affects the activation of intracellular inflammatory
molecules such as AP-1, NF-kB and NFAT resulting to promote the production of
inflammatory cytokines (Brignall et al., 2017; Macian et al., 2002).

Furthermore, dendrocrumenols B and D showed the similar effects through
inhibition of TNF, IL-2 and IFN-y in only T cells of PMA/lono-treated PBMCs of MS
patients. MS is a chronic inflammatory autoimmune demyelinating and neuro-
degenerative disease in the human CNS (Dahmardeh & Amirifard, 2018; Huang et al,,
2017). The immune cells such as monocytes and macrophages have been proposed
to be associated in MS pathology. The pathologies of MS are initiated from infiltration
of T helper (Th) 1 and Th17 with specificity for CNS antigens resulting to damage the
myelin sheets (Dendrou et al,, 2015). From this effect, microglia and infiltrating
myeloid cells respond to local inflammatory signals and T cell-derived cytokines,
whereas disease emergence and progression are considered to be an outcome of
systemic immune deviation, and not intrinsic dysregulation of the CNS. From the

previous study, the immune profiling of PBMCs from early MS patient using CyTOF
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revealed the imbalanced interactions between T cells, myeloid cells, B cells and
their effector and regulatory subpopulations which could affect the disease state and
response to treatment of MS (Bottcher, Fernandez-Zapata, et al., 2019).

Nevertheless, PMA/lonomycin induced the inflammation through the
activation of intracellular Ca** level via SOCE pathway. For instance, natural
compound, ellagic acid, has been shown to exhibit the reduction of cytokine
production via inhibiting SOCE mediated Ca®" influx (Murphy et al., 2020). To prove
this SOCE pathway involving the inflammation, thapsigargin was used to permeate
the entry of extracellular Ca** to the cells regulated by ORAI1, STIMs 1 and 2 which
associated with the complexation of CRAC channel (Avila-Medina et al,, 2018). The
changed level of intracellular Ca** also activates calcineurin to dephosphorylate
NFAT which translocate to nucleus resulting to promote the expression of
inflammatory cytokines (Hann et al., 2020). The CRAC channel inhibitor, CM4620,
from previous study was used as a positive control to block this SOCE pathway
(Letizia et al.,, 2022). The result showed that CM4620 significantly inhibited the Ca**
influx rate in both CD4" and CD8"* T cells, whereas dendrocrumenols B and D showed
no different inhibition of Ca®" influx rate in T cells. Therefore, the immune
modulatory effects from dendrocrumenols B and D were independent of SOCE
pathway. The deep immune profiling of dendrocrumenol D was determine using
single-cell CyTOF. The result from CyTOF revealed that the PMA/lon stimulation
increased the frequency of subpopulation of CD161" T cells in healthy PBMCs and
CTLA4TCRTH2CD8" T cells in PBMCs from MS patients. In addition, dendrocrumenol
D treated with PMA/lono increased the proportion of CTLA4*CRTH2" CD8" T cells,
however it also decreased the frequency of ICOS*CCR7*CD4" T cells in PBMCs from
MS patients. This result confirmed the immune modulatory effects of
dendrocrumenol D through the reduction of activated T cells population.

Next, the seven known bibenzyl compounds from Dendrobium plants were
investigated for anti-inflammation based on immune modulatory effects in human

PBMCs. LPS was used to stimulate the inflammatory condition in PBMCs. LPS
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stimulates the inflammatory response through the activation of TLR4 associated with
CD14 monocytes (Ciesielska et al.,, 2021). The interaction between TLR4 and LPS
affects to activate intracellular inflammatory pathways such as MAPK and NF-kB
pathways resulting to promote the expression of inflammatory cytokines (Yesudhas
et al,, 2014). From this study, two bibenzyls, moscatilin and crepidatin, exhibited the
most promising immune modulatory effects through inhibition of TNF-expressed
CD14 monocytes in dose-dependent manner in LPS-treated PBMCs. The others
bibenzyls also showed these effects but less dose-dependent inhibitory activity. This
result also confirmed by the immunomodulatory effects of bibenzyl named 4,5-
dihydroxy-3,3",4 -trimethoxybibenzyl from D. lindleyi which showed the potent
immunomodulatory effects of this bibenzyl from Dendrobium species in LPS-treated
PBMCs (Khoonrit et al,, 2020). In addition, this immunomodulatory effects of
bibenzyls could be related to their structure-activity relationships (SAR). The
pharmacophore of these two bibenzyls should be one hydroxy group at C-4° and
three methoxy groups at C-3, C-5 and C-3" which are the same substitute positions of
moscatilin and crepidatin. Furthermore, moscatilin and crepidatin were determined
the deep immune profiling using CyTOF. The result from CyTOF showed the
decreasing of the frequency of CD56"CD16"Thet™ NK cells, CD14'CD16"CD11c"CXCR4"
non-classical monocytes with effector pSTAT5" and CD14'CD16low monocytes
expressing co-stimulatory molecule CD86 from the treatment of crepidatin in LPS-
treated PBMCs. On the other hand, the treatment of moscatilin in LPS-treated PBMCs
did not show this effect. This result confirmed the immune modulatory effects of

crepidatin through the reduction of the frequency of NK cells and monocytes.
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CHAPTER V
CONCLUSION

In these two studies, first, the EtOAc extract of Dendrobium crumenatum Sw.
was isolated by chromatographic methods to obtain four new compounds
(dendrocrumenols A-D) and four known compounds including gigantol [16], 3,7-
dihydroxy-2,4,8-trimethoxyphenanthrene, densiflorol B [105], and cypripedin [104].
The isolated compounds from D. crumenatum were evaluated for their
immunomodulatory effects in human healthy and MS patient’s PBMCs. The new
compounds dendrocrumenols B and D exhibited the most promising anti-
inflammatory effects through reduction of TNF and IL-2 production in monocytes and
T cells which were treated with PMA/Iono. Moreover, the deep immune profiling of
dendrocrumenol D using CyTOF revealed the reduction of the population of
activated T cells in PMA/lono-treated PBMCs when compared with untreated control.
In the second study, the seven known bibenzyls from Dendrobium plants were
investigated for their immunomodulatory activity in LPS-treated human PBMCs. The
two bibenzyl compounds including moscatilin [21] and crepidatin [8] showed the
strongest inhibition of TNF-expressed monocytes in LPS-treated PBMCs when
compared to other bibenzyls. Furthermore, the deep immune profiling of crepidatin
by CyTOF established the decreasing of NK cells, pSTAT5" non-classical monocytes
and monocytes expressing co-stimulatory molecule CD86.  Therefore, the
phytochemical data from D. crumenatum would be the information for the
chemotaxonomic study of Dendrobium plants. The data of anti-inflammation based
on immunomodulatory effects of isolated D. crumenatum’s compounds and known
bibenzyls from Dendrobium plants would be the information to develop the

medicine from natural products using for treatment of inflammatory diseases.
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EtOAc extract from D. crumenatum
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Figure 26 The Flow chart of the extraction steps from D. crumenatum.
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Figure 40 HR-ESI-MS spectrum of dendrocrumenol B (2).
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Figure 43 °C NMR spectrum of dendrocrumenol C (3) (125 MHz) in acetone-dj.
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Figure 48 HR-ESI-MS spectrum of dendrocrumenol C (3).
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