COMPOUNDS WITH ANTI-NEUROINFLAMMATORY ACTIVITY FROM AERIDES FALCATA

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmaceutical Sciences and Technology FACULTY OF PHARMACEUTICAL SCIENCES Chulalongkorn University Academic Year 2022 Copyright of Chulalongkorn University สารที่มีฤทธิ์ต้านการอักเสบในระบบประสาทจากเอื้องกุหลาบกระเป๋าเปิด

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต สาขาวิชาเภสัชศาสตร์และเทคโนโลยี ไม่สังกัดภาควิชา/เทียบเท่า คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2565 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

Thesis Title	COMPOUNDS WITH ANTI-NEUROINFLAMMATORY
	ACTIVITY FROM AERIDES FALCATA
Ву	Mr. Bachtiar Rivai
Field of Study	Pharmaceutical Sciences and Technology
Thesis Advisor	Associate Professor BOONCHOO SRITULARAK, Ph.D.
Thesis Co Advisor	Professor KITTISAK LIKHITWITAYAWUID, Ph.D.

Accepted by the FACULTY OF PHARMACEUTICAL SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science

Dean of the FACULTY OF

PHARMACEUTICAL SCIENCES

(Professor PORNANONG ARAMWIT, Ph.D.)

THESIS COMMITTEE

..... Chairman

(Assistant Professor CHAISAK CHANSRINIYOM, Ph.D.)

Thesis Advisor

(Associate Professor BOONCHOO SRITULARAK, Ph.D.)

...... Thesis Co-Advisor

(Professor KITTISAK LIKHITWITAYAWUID, Ph.D.)

..... Examiner

(Associate Professor PASARAPA TOWIWAT, Ph.D.)

..... External Examiner

(Associate Professor Veena Satitpatipan, Ph.D.)

บาชเทียร์ ริไว : สารที่มีฤทธิ์ต้านการอักเสบในระบบประสาทจากเอื้องกุหลาบกระเป๋าเปิด. (COMPOUNDS WITH ANTI-NEUROINFLAMMATORY ACTIVITY FROM *AERIDES FALCATA*) อ. ที่ปรึกษาหลัก : รศ. ภก. ดร.บุญชู ศรีตุลารักษ์, อ.ที่ปรึกษาร่วม : ศ. ภก. ดร.กิตติศักดิ์ ลิขิตวิทยาวุฒิ

การศึกษาองค์ประกอบทางเคมีที่มีฤทธิ์ยับยั้งการอักเสบในเซลล์ประสาทจากกุหลาบกระเป๋าปิด สามารถแยกสารบริสุทธิ์และหาโครงสร้างได้ 10 ชนิด โดยเป็นสารใหม่ 1 ชนิด คือ aerifalcatin และสารที่เคยมี การรายงานไว้แล้วอีก 9 ชนิด ได้แก่ *n*-eicosyl-*trans*-ferulate, denthyrsinin, 2,4-dimethoxy-3,7-2,7-dihydroxy-3,4,6-trimethoxyphenanthrene, dihydroxyphenanthrene, 3,7-dihydroxy-2,4,6trimethoxyphenanthrene, agrostonin, syringaresinol, *trans-n*-feruloyltyramine, และ trans-ncoumaroyltyramine สารทุกชนิดถูกนำไปทดสอบฤทธิ์ยับยั้งการอักเสบในเซลล์ประสาท ยกเว้น trans-ncoumaroyltyramine เนื่องจากมีปริมาณน้อย การทดสอบฤทธิ์ในหลอดทดลองถูกทำในเซลล์ไมโครเกลีย BV2 ที่ถูกกระตุ้นด้วยไลโพพอลิแซคคาไรด์ (LPS) เพื่อประเมินศักยภาพของสารในฤทธิ์ยับยั้งการอักเสบในเซลล์ ประสาทโดยใช้แบบจำลองการยับยั้งไนตริกออกไซด์ (NO) ซึ่งมี minocycline เป็นตัวควบคุมเชิงบวก จากการ ทดสอบพบว่ามีสาร 4 ชนิดที่แสดงความแตกต่างอย่างมีนัยสำคัญทางสถิติในการยับยั้งการสร้าง NO เมื่อ เปรียบเทียบกับ minocycline (ค่า IC₅₀ 3.41 ± 0.30 µM) ได้แก่ aerifalcatin (ค่า IC₅₀ 0.87 ± 0.45 ไมโครโม ลาร์) 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene (ค่า IC₅₀ 2.47 ± 0.73 ไมโครโมลาร์) agrostonin (ค่า IC₅₀ 2.55 ± 0.32 ไมโครโมลาร์) และ syringaresinol (ค่า IC₅₀ 1.40 ± 0.17 ไมโครโมลาร์) นอกจากนี้ ELISA ถูกนำมาใช้ในการวัดระดับไซโตไคน์ (TNF-**α** and IL-6) สำหรับสารที่มีฤทธิ์ดี โดยผลการทดสอบแสดงการลดลง ้อย่างมีนัยสำคัญทางสถิติในการแสดงออกของเซลล์ไมโครเกลียที่ถูกกระตุ้นเมื่อเพิ่มความเข้มข้นของสารออกฤทธิ์ ซึ่งบ่งชี้ถึงศักยภาพของสารเหล่านี้ในการยับยั้งการอักเสบในเซลล์ประสาท

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

สาขาวิชา เภสัชศาสตร์และเทคโนโลยี ปีการศึกษา 2565 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก ลายมือชื่อ อ.ที่ปรึกษาร่วม # # 6470030033 : MAJOR PHARMACEUTICAL SCIENCES AND TECHNOLOGY

KEYWORD: Neuroinflammation, BV-2 cell lines, Aerides falcata, aerifalcatin

Bachtiar Rivai : COMPOUNDS WITH ANTI-NEUROINFLAMMATORY ACTIVITY FROM AERIDES FALCATA. Advisor: Assoc. Prof. BOONCHOO SRITULARAK, Ph.D. Co-advisor: Prof. KITTISAK LIKHITWITAYAWUID, Ph.D.

In this study, a plant from the Orchidaceae family, Aerides falcata, was investigated for its chemical constituents and anti-neuroinflammatory activity. A total of ten compounds were isolated and characterized. The isolated compounds included a new compound which was named aerifalcatin and nine known compounds: n-eicosyl-trans-ferulate, denthyrsinin, 2,4dimethoxy-3,7-dihydroxyphenanthrene, 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene, 3.7dihydroxy-2,4,6-trimethoxyphenanthrene, agrostonin, syringaresinol, trans-n-feruloyltyramine, and trans-n-coumaroyltyramine. All the isolated compounds were evaluated for their antineuroinflammatory activity, except for trans-n-coumaroyltyramine, which was excluded due to its insufficient amount. In vitro testing was conducted on LPS-induced BV2 microglia cells to evaluate their potential anti-neuroinflammatory activity using NO inhibition model. Minocycline, a neuroinflammatory modulator, was used as a positive control. Four compounds demonstrated significant deference to inhibit NO production compared to positive control minocycline (IC₅₀ value of 3.41 \pm 0.30 μ M): aerifalcatin (IC₅₀ value of 0.87 \pm 0.45 μ M), 2,7dihydroxy-3,4,6-trimethoxyphenanthrene (IC₅₀ value of 2.47 \pm 0.73 μ M), agrostonin (IC₅₀ value of $2.55 \pm 0.32 \mu$ M), and syringaresinol (IC₅₀ value of 1.40 \pm 0.17 μ M). An ELISA experiment was performed to determine the levels of cytokines (TNF- α and IL-6) for the most potent compounds. The results demonstrated a significant reduction in their expression in activated microglia in a dose-dependent manner, indicating their potential as anti-neuroinflammatory agents.

 Field of Study:
 Pharmaceutical Sciences and
 Student's Signature

 Technology
 Academic Year:
 2022
 Advisor's Signature

 Co-advisor's Signature
 Co-advisor's Signature

ACKNOWLEDGEMENTS

First of all, I want to show my great appreciation and respect for my thesis supervisor, Assoc. Prof. Boonchoo Sritularak, Ph.D. and my co-supervisor, Professor Dr. Kitissak Likhitwitaywuid, for their outstanding guidance, helpful advice, motivation, constructive feedback, and unwavering assistance during my research project.

I want to express my deep appreciation to the committee members who evaluated my thesis for their invaluable guidance. I am extremely thankful to the Department of Pharmacognosy and Pharmaceutical Botany staff at the Faculty of Pharmaceutical Sciences at Chulalongkorn University for their generous assistance and support.

My gratitude is also expressed to the senior members and colleagues in Assoc. Prof. Boonchoo's laboratory for their warm and supportive attitude, kind gestures, and valuable assistance. Additionally, I am grateful to my friends and the Pharmaceutical Sciences and Technology program for motivating me and providing me with a fresh perspective on the pharmaceutical field.

I would like to express my sincere gratitude to the Graduate School at Chulalongkorn University for the CU-ASEAN scholarship, which provided me with financial support throughout my academic journey.

Finally, my warmest gratitude toward my parents, my wife, and my son for their love, support, and encouragement whenever I feel weary.

Bachtiar Rivai

TABLE OF CONTENTS

Page	ł
ABSTRACT (THAI)iii	
ABSTRACT (ENGLISH)iv	
ACKNOWLEDGEMENTSv	
TABLE OF CONTENTSvi	
LIST OF TABLES	
LIST OF FIGURES	
ABBREVIATION AND SYMBOLS	
CHAPTER I	
INTRODUCTION 1	
CHAPTER II	
LITERATURE REVIEW	
1. Traditional uses of Orchids	
1.1. Aerides	
1.1.1. Aerides falcata	
2. Chemical constituents of <i>Aerides</i> species	
3. Biological activities of <i>Aerides</i> species	
CHAPTER III	
EXPERIMENTAL	
1. Materials	
1.1. Plant material	
1.2. Chemical materials	

	1.3. Cell culture materials	19
2.	. General Techniques	19
	2.1. Thin-layer chromatography (TLC)	19
	2.1.1. Normal phase, thin-layer chromatography	19
	2.1.2. Preparative thin-layer chromatography (Prep. TLC)	20
	2.2. Column chromatography (CC)	20
	2.2.1. Vacuum liquid chromatography (VLC)	20
	2.2.2. Normal phase, flash column chromatography (FCC)	21
	2.2.3. Gel filtration chromatography (GFC)	21
	2.3. Semi-preparative, high-pressure liquid chromatography (HPLC)	22
	2.4. Spectroscopy	22
	2.4.1. Mass Spectra (MS)	22
	2.4.2. Ultraviolet (UV) spectra	22
	2.4.3. Infrared (IR) spectra	22
	2.4.4. Proton and carbon-13 nuclear magnetic resonance (1 H and 13 C NMR) .	23
	2.4.5. Optical rotation	23
3.	Extraction and isolation	23
	3.1. Extraction of <i>A. falcata</i>	23
	3.2. Separation and isolation	24
	3.2.1. Isolation of compound AF2	24
	3.2.2. Isolation of compound AF3	25
	3.2.3. Isolation of compounds AF4 and AF5	25
	3.2.4. Isolation of compound AF6	25
	3.2.5. Isolation of compound AF7	25

	3.2.6. Isolation of compound AF1 and AF10	26
	3.2.7. Isolation of compound AF8 and AF9	26
4.	Physical and spectral data of isolated compounds	31
	4.1. Compound AF1 (Aerifalcatin)	31
	4.2. Compound AF2 (<i>n-</i> eicosyl- <i>trans-</i> ferulate)	31
	4.3. Compound AF3 (Denthyrsinin)	31
	4.4. Compound AF4 (2,4-Dimethoxy-3,7-dihydroxyphenanthrene)	32
	4.5. Compound AF5 (2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene)	32
	4.6. Compound AF6 (3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene)	32
	4.7. Compound AF7 (Agrostonin)	32
	4.8. Compound AF8 (Syringaresinol)	33
	4.9. Compound AF9 (<i>trans-n</i> -feruloytyramine)	33
	4.10. Compound AF10 (<i>trans-n-</i> coumaroyltyramine)	33
5.	Evaluation for anti-neuroinflammatory activity in vitro	33
	5.1. Cell treatment	33
	5.2. Proinflammatory mediator assay	34
Cł	HAPTER IV	35
RE	ESULT AND DISCUSSION	35
1.	Preliminary investigation of anti-neuroinflammatory activity from extracts of	
Ae	erides falcata	35
2.	Chemical investigation	37
	2.1. Structure elucidation of compound AF1	39
	2.2. Identification of compound AF2	42
	2.3. Identification of compound AF3	44

2.4. Identification of compound AF4	47
2.5. Identification of compound AF5	49
2.6. Identification of compound AF6	51
2.7. Identification of compound AF7	54
2.8. Identification of compound AF8	56
2.9. Identification of compound AF9	59
2.10. Identification of compound AF10	61
2. Anti-neuroinflammatory activity of compounds from <i>Aerides falcata</i>	63
CHAPTER V	68
CONCLUSION	68
REFERENCES	69
APPENDIX	81
VITA	.56
จุฬาลงกรณมหาวทยาลย	

LIST OF TABLES

F	Page
Table 1 Previous reports anti-inflammatory agents from Orchidaceae	. 4
Table 2 Distribution of secondary matabolites in the genus <i>Aerides</i>	14
Table 3 NO inhibition of extracts from <i>Aerides falcata</i>	35
Table 4 NMR spectral data of compound AF1	40
Table 5 NMR spectral data of compound AF2 and <i>n</i> -eicosyl- <i>trans</i> ferulate	43
Table 6 NMR spectral data of compound AF3 and Denthyrsinin	46
Table 7 NMR spectral data of compound AF4 and 2,4-dimethoxy-3,7-	
dihydroxyphenanthrene	48
Table 8 NMR spectral data of compound AF5 and 2,7-dihydroxy-3,4,6	
trimethoxyphenanthrene	50
Table 9 NMR spectral data of compound AF6 and 3,7-dihydroxy-2,4,6-	
trimethoxyphenanthrene	53
Table 10 NMR spectral data of compound AF7 and Agrostonin	55
Table 11 NMR spectral data of compound AF8 and Syringaresinol	58
Table 12 NMR spectral data of compound AF9 and <i>trans-n</i> -feruloytyramine	60
Table 13 NMR spectral data of compound AF10 and <i>trans-n</i> -coumaroyltyramine	62
Table 14 Effects of Aerides falcata constituents on LPS-stimulated NO release in B	V-
2 microglial cells	65
Table 15 Effects of compounds of Aerides falcata on the viability of BV-2 microglia	ıl
cells	33
Table 16 Effects of extracts of Aerides falcata on the viability of BV-2 microglial	
cells	33
Table 17 Effects of compounds of <i>Aerides falcata</i> on the NO inhibition1	34

Table	18	Effects of extracts of <i>Aerides falcata</i> on the NO inhibition	35
Table	19	The IC ₅₀ values of compounds on the NO inhibition1	35

LIST OF FIGURES

		Page
Figure	1 Anti-inflammatory agents from Orchidaceae family	6
Figure	2 Aerides falcata Lindl. & Paxton	.13
Figure	3 Chemical constituents of <i>Aerides</i>	. 15
Figure	4 Effects of MeOH and EtOAc extract on cytokine release in LPS-stimulated	
BV-2 m	nicroglial cells	.36
Figure	5 Structures of compounds isolated from Aerides falcata	.37
Figure	6 Isolated compounds from Aerides falcate	.64
Figure	7. Effects of active compounds on cytokine release in LPS-stimulated BV-2	
microg	lial cells	66
Figure	8 Mass spectrum of compound AF1	.82
Figure	9 UV spectrum of compound AF1	. 82
Figure	10 FT-IR spectrum of compound AF1	.83
Figure	11 ¹ H-NMR (400 MHz) spectrum of compound AF1	.83
Figure	12 ¹³ C-NMR (100 MHz) spectrum of compound AF1	.84
Figure	13 ¹³ C-NMR (100 MHz) spectrum of compound AF1 (55-165 ppm)	.84
Figure	14 HSQC spectrum of compound AF1 (3.99-4.30 ppm and 53-58 ppm)	. 85
Figure	15 HSQC spectrum of compound AF1 (6.8-9.3 ppm and 99-129 ppm)	. 85
Figure	16 HMBC spectrum of compound AF1 (6.8-9.3 ppm and 108-136 ppm)	.86
Figure	17 HMBC spectrum of compound AF1 (7.24-7.42 ppm and 133-139 ppm)	.86
Figure	18 HMBC spectrum of compound AF1 (4.0-9.1 ppm and 143-162 ppm)	. 87
Figure	19 NOESY spectrum of compound AF1 (1-9.5 ppm and 1-9.5 ppm)	.87
Figure	20 NOESY spectrum of compound AF1 (6.7-9.4 ppm and 3.8-4.6 ppm)	. 88

Figure	21 NOESY spectrum of compound AF1 (7.28-7.38 ppm and 7.10-7.28 ppm)	. 88
Figure	22 COSY spectrum of compound AF1	. 89
Figure	23 Mass spectrum of compound AF2	. 89
Figure	24 ¹ H-NMR spectrum (400 MHz) of compound AF2 (0 - 10 ppm)	. 90
Figure	25 ¹ H-NMR spectrum (400 MHz) of compound AF2 (0 - 2 ppm)	. 90
Figure	26 ¹³ C-NMR spectrum (100 MHz) of compound AF2	.91
Figure	27 HSQC spectrum of compound AF2 (0-8 ppm and 0-145 ppm)	.91
Figure	28 HSQC spectrum of compound AF2 (0-2.3 ppm and 13-40 ppm)	.92
Figure	29 HMBC spectrum of compound AF2 (3.8-8.2 ppm and 20-170 ppm)	.92
Figure	30 HMBC spectrum of compound AF2 (0.6-4.4 ppm and 10-39 ppm)	. 93
Figure	31 HMBC spectrum of compound AF2 (4.07-4.28 ppm and 22-37 ppm)	.93
Figure	32 NOESY spectrum of compound AF2	.94
Figure	33 COSY spectrum of compound AF2 (1-10 ppm and 1-10 ppm)	.94
Figure	34 COSY spectrum of compound AF2 (0.7-4.2 ppm and 0.7-4.2 ppm)	. 95
Figure	35 Mass spectrum of compound AF3	. 95
Figure	36 ¹ H-NMR spectrum (400 MHz) of compound AF3	. 96
Figure	37 ¹³ C-NMR spectrum (100 MHz) of compound AF3	.96
Figure	38 HSQC spectrum of compound AF3	.97
Figure	39 HMBC spectrum of compound AF3 (7-10 ppm and 104-152 ppm)	. 97
Figure	40 HMBC spectrum of compound AF3 (4.4-9.6 ppm and 55-155 ppm)	. 98
Figure	41 NOESY spectrum of compound AF3	. 98
Figure	42 COSY spectrum of compound AF3	. 99
Figure	43 Mass spectrum of compound AF4	. 99
Figure	44 ¹ H-NMR spectrum (400 MHz) of compound AF4 (0.5-10.5 ppm)1	100

Figure	45 ¹ H-NMR spectrum (400 MHz) of compound AF4 (2.0-9.5 ppm)	100
Figure	46 ¹³ C-NMR spectrum (100 MHz) of compound AF4	101
Figure	47 HSQC spectrum of compound AF4	101
Figure	48 HMBC spectrum of compound AF4 (7.0-10 ppm and 104-158 ppm)	102
Figure	49 HMBC spectrum of compound AF4 (2.4-10 ppm and 70-160 ppm)	102
Figure	50 NOESY spectrum of compound AF4 (6.8-9.6 ppm and 6.9-9.6 ppm)	103
Figure	51 NOESY spectrum of compound AF4 (2.6-10 ppm and 2.9-10 ppm)	103
Figure	52 COSY spectrum of compound AF4	104
Figure	53 Mass spectrum of compound AF5	104
Figure	54 ¹ H-NMR spectrum (400 MHz) of compound AF5	105
Figure	55 ¹³ C-NMR spectrum (100 MHz) of compound AF5	105
Figure	56 HSQC spectrum of compound AF5	106
Figure	57 HMBC spectrum of compound AF5	106
Figure	58 COSY spectrum of compound AF5	107
Figure	59 Mass spectrum of compound AF6	107
Figure	60 ¹ H-NMR spectrum (400 MHz) of compound AF6	108
Figure	61 ¹³ C-NMR spectrum (100 MHz) of compound AF6	108
Figure	62 HSQC spectrum of compound AF6	109
Figure	63 HMBC spectrum of compound AF6	109
Figure	64 COSY spectrum of compound AF6	110
Figure	65 NOESY spectrum of compound AF6	110
Figure	66 Mass spectrum of compound AF7	111
Figure	67 ¹ H-NMR spectrum (400 MHz) of compound AF7	111
Figure	68 ¹³ C-NMR spectrum (100 MHz) of compound AF7	112

Figure	69 HSQC spectrum of compound AF7 (6.8-9.5 ppm and 95-130 ppm)112
Figure	70 HSQC spectrum of compound AF7 (4.04-4.29 ppm and 54.1-56.5 ppm)113
Figure	71 HMBC spectrum of compound AF7 (6.8-9.4 ppm and 107-129 ppm)113
Figure	72 HMBC spectrum of compound AF7 (4.0-9.6 ppm and 104-162 ppm)114
Figure	73 NOESY spectrum of compound AF7114
Figure	74 Mass spectrum of compound AF8115
Figure	75 ¹ H-NMR spectrum (400 MHz) of compound AF8115
Figure	76 ¹³ C-NMR spectrum (100 MHz) of compound AF8116
Figure	77 HSQC spectrum of compound AF8116
Figure	78 HMBC spectrum of compound AF8117
Figure	79 NOESY spectrum of compound AF8117
Figure	80 COSY spectrum of compound AF8118
Figure	81 Mass spectrum of compound AF9118
Figure	82 ¹ H-NMR spectrum (400 MHz) of compound AF9119
Figure	83 ¹³ C-NMR spectrum (100 MHz) of compound AF9
Figure	84 HSQC spectrum of compound AF9 (1-8 ppm and 30-145 ppm)120
Figure	85 HSQC spectrum of compound AF9 (6.3-7.7 ppm and 100-142 ppm) 120
Figure	86 HMBC spectrum of compound AF9 (1.8-7.8 ppm and 70-150 ppm)121
Figure	87 HMBC spectrum of compound AF9 (6.3-7.6 ppm and 114-170 ppm)121
Figure	88 HMBC spectrum of compound AF9 (1.9-4.3 ppm and 114-174 ppm)122
Figure	89 NOESY spectrum of compound AF9122
Figure	90 COSY spectrum of compound AF9123
Figure	91 Mass spectrum of compound AF10123
Figure	92 ¹ H-NMR spectrum (400 MHz) of compound AF10 (0.5-10 ppm)124

Figure	93 1H-NMR spectrum (400 MHz) of compound AF10 (1-10 ppm)	124
Figure	94 ¹³ C-NMR spectrum (100 MHz) of compound AF10	125
Figure	95 HSQC spectrum of compound AF10 (1.2-7.8 ppm and 20-140 ppm)	125
Figure	96 HSQC spectrum of compound AF10 (6.3-7.6 ppm and 108-143 ppm)	126
Figure	97 HMBC spectrum of compound AF10 (0.6-8 ppm and 5-85 ppm)	126
Figure	98 HMBC spectrum of compound AF10 (1.1-4.5 ppm and 114-180 ppm)	127
Figure	99 HMBC spectrum of compound AF10 (2.4-8.4 ppm and 112-122 ppm)	127
Figure	100 HMBC spectrum of compound AF10 (5.8-8.2 ppm and 95-170 ppm)	128
Figure	101 NOESY spectrum of compound AF10	128
Figure	102 COSY spectrum of compound AF10	129

ABBREVIATION AND SYMBOLS

Acetone-d ₆	= Deuterated acetone
BBB	= Blood-brain barrier
°C	= Degree Celsius
СС	= Column chromatography
CDCl ₃	= Deuterated chloroform
CH ₂ Cl ₂	= Dichloromethane
cm	= Centimeter
CNS	= Central nervous system
1-D NMR	= One-dimensional nuclear magnetic resonance
2-D NMR	= Two-dimensional nuclear magnetic resonance
d	= Doublet
DAMPs	= Damage-associated molecular patterns
DMEM	= Dulbecco's modified eagle medium
DMSO	= Dimethylsulfoxide
dd	= Double doublet
δ	= Chemical shift
3	= Molar absorptivity
ELISA	= Enzyme-linked immunosorbent assay
EtOAc	= Ethyl acetate
FBS	= Fetal bovine serum

FCC	= Flash column chromatography
g	= Gram
GFC	= Gel filtration chromatography
НМВС	= Heteronuclear multiple bond correlation
¹ H-NMR	= Proton nuclear magnetic resonance
НО	= Hydroxyl group
HPLC	= High-pressure liquid chromatography
HRESIMS	= High-resolution electrospray ionization mass spectroscopy
HSQC	= Heteronuclear single quantum coherence
Hz	= Hertz
IC ₅₀	= Concentration exhibiting 50% inhibition
IL	= Interleukin
IR	= Infrared
J	= Coupling constant
Kg	= Kilogram
L	= Liter
LPS	= lipopolysaccharide
λ_{max}	= Wavelength at maximal absorption
[M-H] ⁻	= Deprotonated molecular ion
m	= multi-plate (for NMR spectra)
МеОН	= Methanol
mg	= Milligram

MHz	= Megahertz
MTT	= Microtetrazolium
μg	= Microgram
min	= Minutes
mL	= Mililiter
μL	= Microliter
mm	= Mililiter
MS	= Mass spectrum
MW	= Molecule wight
m/z	= Mass to charge ratio
NA	= Non-applicable
nm	= Nanometer
NMR	= Nuclear magnetic resonance
NO	= Nitric oxide
NSAIDs	= non-steroidal anti-inflammatory drugs
NOESY	= Nuclear Overhauser effect spectroscopy
COSY	= Correlated spectroscopy
V _{max}	= Wave number at maximal absorption
OMe	= Methoxy group
PAMPs	= pathogen-associated molecular patterns
%	= Percentage
PGN	= peptidoglycans

ppm	= Part per million
S	= Singlet
SD	= Standard deviation
t	= Triplet
TLC	= Thin layer chromatography
TNF- α	= tumor necrosis factor-alpha
UV	= Ultraviolet
VLC	= Vacuum liquid colom chromatography
	จุหาลงกรณ์มหาวิทยาลัย Chulalongkorn University

CHAPTER I

INTRODUCTION

Neuroinflammation is a key factor in several diseases of the central nervous system (CNS). These diseases include stroke, Parkinson's disease, multiple sclerosis, and Alzheimer's disease (1). In recent years, neuroinflammation-related diseases have become a significant concern, affecting over 50 million people worldwide. It is predicted that this number will triple by 2050 (2). However, the pathological understanding of these underlying neuroinflammatory diseases is not clear, although several factors are believed to be involved, such as genetic, endogenous, and environmental influences (3).

Brain injuries are the main factor that contributes to the development of CNS inflammation, thereby modulating neuroinflammation (4). Some of these injuries result from the interference of damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs). PAMPs are a class of molecules released during microbial invasion of the CNS, such as peptidoglycans (PGN) and lipopolysaccharide (LPS). On the other hand, DAMPs are produced by damaged or dying cells and include molecules such as ATP, biglycan, and uric acid (5, 6).

There are three types of immune cells that respond to injuries in the CNS: CNSresident glial cells (i.e., microglia, astrocytes, and oligodendrocytes), CNS-resident non-glial cells (i.e., dendritic cells and macrophages), and peripheral immune cells (7). Among the resident glial cells, microglia account for approximately 10% to 15% of the CNS (8). Consequently, they play a central role in phagocytosis and neurodegenerative diseases. Microglia interact with other neuroglial cells, such as astrocytes and oligodendrocytes, both directly and indirectly in neuroinflammation (9). Additionally, the presence of macrophages and peripheral immune cells in the CNS adds to the complexity of pathological CNS damage (3).

As previously mentioned, neuroinflammation is caused by various factors that activate the immune response in the CNS. Both PAMPs and DAMPs stimuli interact with pattern-recognition receptors (PRRs) on the membranes of glial cells, leading to the activation of the innate immune response (10). Upon the invasion of harmful stimuli, resting microglia arrest their normal signaling from neurons and other glial cells, triggering a transition to the active form. Active microglia can be divided into two phenotypes: M1 and M2 microglia (11). M1 microglia, also known as classical microglia, are considered detrimental as they secrete proinflammatory factors. Conversely, M2 microglia secrete anti-inflammatory factors (12). Activated microglia migrate, carry out phagocytosis and proliferation, and contribute to increased permeability of the blood-brain barrier (BBB). The increased permeability of the BBB disrupts its integrity, allowing peripheral immune cells to infiltrate the CNS (13, 14). In chronic conditions, proinflammatory factors such as interleukin 1β (IL- 1β), reactive oxygen species (ROS), IL-6, iNOS, tumor necrosis factor α (TNF- α), cyclooxygenase (COX)-1, and COX-2 are secreted by M1 microglia or other immune cells (such as astrocytes and peripheral immune cells). These factors contribute to damage and neuronal cell death (15). Neuronal cell disorders associated with these conditions include demyelination, aberrant synaptic pruning, and axonal degeneration (16).

In contrast to immune cells that produce proinflammatory factors, M2 microglia are involved in resolving inflammation and maintaining surrounding homeostasis. M2 microglia secrete anti-inflammatory factors such as IL-4, IL-13, and transforming growth factor β (TGF- β). These anti-inflammatory factors play a role in protecting the extracellular matrix, facilitating phagocytosis of debris, and promoting wound healing. The proinflammatory cytokine IL-4 can induce ARG1, which inhibits the secretion of

iNOS by modulating the amino acid arginine and indirectly converting it into proline and polyamines, which function in wound healing. The presence of M2 microglia is considered crucial for inflammation resolution by maintaining a balance between proinflammatory and anti-inflammatory cytokines. (11).

Currently, neuroinflammatory drugs are classified into several categories, including non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, muscle relaxants, opioids, antiepileptics, local anesthetics, and NMDA receptor antagonists (such as ketamine) (17). These drugs have various mechanisms for controlling chronic inflammation. For instance, NSAIDs function by inhibiting COX-1, COX-2, and prostaglandin (18). Additionally, ketamine and morphine are known to reduce swelling and inhibit the infiltration of inflammatory cells (19). Despite their effectiveness in treating inflammation, these drugs can have side effects on patients, including cognitive dysfunction, depression, neuropsychiatric disorders, sleep disturbances, and addiction (20, 21).

Recently, several studies have highlighted the potential use of plant derivatives as new drugs for improved inflammatory therapy. One such plant family is Orchidaceae. Orchidaceous plants are known for their colorful flowers and a wide habitat range, allowing them to grow virtually anywhere (22, 23). Plants in this family have long been recognized for the therapeutic potentials of their secondary metabolites in pharmacological medicine (24). These secondary metabolites encompass various chemical classes, including phenanthrenes, bibenzyls, flavonoids, phenylpropanoids, and alkaloids (25, 26). Some of these compounds have been reported to possess anti-inflammatory properties and can be categorized into five major groups: (i) Phenanthrene derivatives, for example 4-methoxy-2,7phenanthrenediol [1], 1-(4-hydroxybenzyl)-4,8-dimethoxy-2,7-phenanthrenediol [5], 1,5-dimethoxy-2,7-phenanthrenediol [2], 4-methoxy-9,10-dihydro-2,7phenanthrenediol [9], 1,5,7-trimethoxy-2,6-phenanthrenediol [3] from the root of Eulophia macrobulbon, 5,7dimethoxyphenanthrene-2,6-diol [4], 1-(4hydroxybenzyl)-5,7-dimethoxyphenanthrene-2,6-diol [**6**], 7-(4-hydroxybenzyl)-8methoxy-9,10-dihydrophenanthrene-2,5-diol [7], shancidin [8], 2-methoxy-9,10dihydrophenanthrene-4,5-diol [11] from the root of Cymbidium faberi, and methoxycoelonin [10] from the stem of Vanda coerulea (27, 28, 29); (ii) phenanthropyrans, for example, imbricatin [12] and flavidin [13] from the stem of Vanda coerulea (29); (iii) bibenzyl derivatives, for example, batastasin III [14] from the whole plant of *Dendrobium scabrilingue* and *Liparis odorata* and gigantol [15] from stem of Vanda coerulea (29, 30, 31); (iv) flavones, for example luteolin [16] from the whole plant of *Liparis odorata*; and (v) phenolic glycosides, for example, liparisglycoside A [17], liparisglycoside B [18], liparisglycoside C [19] and anodendrosin A [20] from the whole plant of *Liparis odorata* (31) (Table 1 and Figure 1).

compounds	source	part of	References
จหา	ลงกรณ์มหาวิเ		
		plane	
(i) Phenenthrane GHULA	LONGKORN UN	IIVERSITY	
4-Methoxy-2,7-	Eulophia	root	(28)
Phenanthrenediol [1]	macrobulbon		
1,5-Dimethoxy-2,7-	Eulophia	root	(28)
phenanthrenediol [2]	macrobulbon		
1,5,7-Trimethoxy-2,6-	Eulophia	root	(28)
phenanthrenediol [3]	macrobulbon		
5,7-Dimethoxyphe	Cymbidium	root	(27)
nanthrene-2,6-diol [4]	faberi		

Table 1 Previous reports anti-inflammatory agents from Orchidaceae

compounds	source	part of	References	
		plant		
1-(4-Hydroxybenzyl)-	Eulophia	root	(28)	
4,8-dimethoxy-2,7-	macrobulbon			
phenanthrenediol [5]				
1-(4-Hydroxybenzyl)-5,7-	Cymbidium	root	(27)	
dimethoxy- phenanthrene-	faberi			
2,6-diol [6]	- 41/1 Million			
7-(4-Hydroxybenzyl)-8-	Cymbidium	root	(27)	
methoxy-9,10-	faberi			
dihydrophenanthrene-2,5-	116			
diol [7]	AGA			
Shancidin [8]	Cymbidium	root	(27)	
	faberi	J.		
4-Methoxy-9,10-dihydro-	Eulophia	root	(27, 28, 29)	
2,7-phenanthrenediol [9]	macrobulbon			
Methoxycoelonin [10]	Vanda coerulea	stem	(27, 29)	
2-Methoxy-9,10-dihydro-	Cymbidium	root	(27)	
phenanthrene-4,5-diol [11]	faberi			
(ii) Phenenthropyrans				
Imbricatin [12]	Vanda coerulea	stem	(29)	
Flavidin [13]	Vanda coerulea	stem	(29)	
(iii) Bibenzyl				
Batatasin III [14]	Dendrobium	whole	(30)	
	scabrilingue			

compounds	source	part of	References
		plant	
Gigantol [15]	Vanda coerulea	stem	(29)
(iv) Flavone			
Luteolin [16]	Liparis odorata	whole	(31)
(v) Phenolic glycoside			
Liparisglycoside A [17]	Liparis odorata	whole	(31)
Liparisglycoside B [18]	Liparis odorata	whole	(31)
Liparisglycoside C [19]	Liparis odorata	whole	(31)
Anodendrosin A [20]	Liparis odorata	whole	(31)

Chulalongkorn Universi	R1	R2	R3
4-Methoxy-2,7-phenanthrenediol [1]	OH	Н	Н
1,5-Dimethoxy-2,7-phenanthrenediol [2]	OH	Н	OCH ₃
1,5,7-Trimethoxy-2,6-phenanthrenediol [3]	OCH ₃	OH	OCH ₃
5,7- Dimethoxyphenanthrene-2,6-diol [4]	OCH ₃	OH	Н

Figure 1 continue

2-Methoxy-9,10-dihydro- phenanthrene-4,5-diol [11]

Figure 1 (continued)

Figure 1 (continued)

Anodendrosin A [20]

Figure 1 (continued)

The preliminary study evaluated the anti-neuroinflammatory activity of the methanolic and ethyl acetate extracts of *Aerides falcata* using LPS-induced BV-2 cells. The study found no significant difference in the NO production between the extracts and the positive control (minocycline). However, both extracts significantly reduced the levels of the proinflammatory cytokines TNF- α and IL-6 compared to the LPS-induced group that was not treated with the extracts, as determined by ELISA assay. Interestingly, the ethyl acetate extract showed higher activity than the methanolic extract (experimental details can be found in the study). BV-2 cells are mouse microglia cell lines that express macrophage markers and do not express markers for astrocytes and oligodendrocytes (32). BV-2 cells have been widely used in in vitro studies of neuroinflammation and neurodegenerative diseases for many years (33).

Based one the above-mentioned preliminary results, the ethyl acetate extract of *Aerides falcata* was subjected to further studies to identify the active principles. In this study the following objectives have been put forwards:

- 1. To isolate and determine the structures of the chemical constituents of *Aerides falcata*
- 2. To evaluate the anti-neuroinflammatory activity of isolated compounds from *Aerides falcata*

CHAPTER II

LITERATURE REVIEW

1. Traditional uses of Orchids

Some orchid plants have been recognized as sources of herbal remedies in China and India (24), such as *Dendrobium nobile, Pholidota articulata, Bulbophyllum odoratissimum, Flickingeria fugax,* and *Aerides odoratum* (34). Additionally, *Aerides falcata* has traditionally been used as a tonic for infants and for wound healing in the treatment of various skin diseases (35). The efficacies of these orchids are attributed to their bioactive constituents, which have shown benefits for several diseases. However, there are limited reports on the bioactive components of these plants (36). This study will discuss the chemical constituents and their bioactivities of *Aerides falcata*.

1.1. Aerides

Aerides spp. are monopodial epiphytic plants, forming a small genus within the Orchidaceae family. This genus *Aerides* comprises 21 species (37) that are found in various regions of Asia, including South Asia (Sri Lanka, India, Nepal, Bangladesh, and Bhutan), Southeast Asia (Malaysia, Laos, Indonesia, Vietnam, Myanmar, Thailand, Philippines, and Cambodia), China, and Papua New Guinea (38). Previous studies have demonstrated the biological activities of certain *Aerides* species. For instance, *Aerides odorata* is known for its anticancer activity (39), while *Aerides multiflora* exhibits α -glucosidase inhibitory activity (39). *Aerides multiflora* has α -glucosidase inhibitory activity (26) and *Aerides falcata* has been studied for its cellulolytic activity through the production of endophytic fungi (40).

1.1.1. Aerides falcata

Aerides falcata Lindl. & Paxton (Figure 2), also known as "Ueng Kulaab Krapao Perd" in Thai, is found in Vietnam, Thailand, Laos, Myanmar, and South-Central China. The specific epithet "*falcata*" is derived from "falcate," which means "sickle-shaped" (41). *Aerides falcata* has several heterotypic synonyms, including *A. larpentae, A. mendelii, A. retrofracta, and A. siamensis* (38). It typically flowers from April to June. The flower exhibits a broadly falcate shape at the lip lobe and a broadly ovate shape at the middle lobe. The spur is angled at 45 degrees and upright, while the petals measure approximately 12.5 mm in length and 9 mm in width. The leaves of *Aerides falcata* are distichous, sessile, oblong, glabrous, flattened, and thick, reaching up to 48 cm in length and 4.8 cm in width (42, 43).

Figure 2 Aerides falcata Lindl. & Paxton

2. Chemical constituents of Aerides species

According to previous reports, the chemical constituents of *Aerides* species can be categorized into 4 major classes, including phenanthropyrans, phenanthrenes, phenylpropanoid esters, and bibenzyls. The phenanthrene derivatives are the largest group in this genus. The distribution of these chemical constituents is shown in Table 2 and Figure 3.

Category/Compound	Source	Part of Plant	Reference		
Phenanthropyrans					
Aeridin [21]	A. crispum	tubers	(44)		
Imbricatin [12]	A. rosea	Stem	(26, 45)		
	A. multiflora	Whole plant			
Phenanthrenes					
5-Metoxyphenenthrene-	A. rosea	Stem	(45)		
2,3,7-triol (Aerosanthrene)					
[22]					
3-Methoxy-9,10-dihydro- 🥔	A. rosea	Stem	(26, 45)		
2,5,7- phenenthrenetriol	A. multiflora	Whole plant			
(aerosin) [23]					
5-Methoxy-9,10-dihydro-	A. rosea	Stem	(45)		
2,3,7 phenenthrenetriol		E C			
[24]					
3,5-Dimethoxy	A. rosea	Stem	(45)		
phenanthrene-2,7-diol [25]	LONGKORN	University			
Coelonin [26]	A. rosea	Stem	(45)		
Metoxhycoelonin [10]	A. rosea	Stem	(26, 45)		
	A. multiflora	Whole plant			
6-Methoxycoelonin [27]	A. multiflora	Whole plant	(26)		
Aerimultin A [29]	A. multiflora	Whole plant	(26)		
Aerimultin B [30]	A. multiflora	Whole plant	(26)		
Aerimultin C [31]	A. multiflora	Whole plant	(26)		
Agrostonin [32]	A. multiflora	Whole plant	(26)		

 Table 2 Distribution of secondary matabolites in the genus Aerides

Figure 3 Chemical constituents of Aerides

[24] 5-Methoxy-9,10-dihydro-2,3,7

[25] 3,5-Dimethoxy phenanthrene-2,7-diol

[**30**] Aerimultin B

Figure 3 (continued)

Figure 3 (continued)

Figure 3 (continued)

3. Biological activities of Aerides species

As previously described, *Aerides* species have already been used in traditional medicine. For example, *Aerides falcata* has been used for wound healing in several skin diseases (35), while *Aerides odorata* has been recognized for its antibacterial properties (34). Recently, the methanolic and ethyl acetate extracts of *Aerides odorata* were reported to exhibit cytotoxicity against MCF-7 cancer cells (39). Furthermore, several compounds isolated from *Aerides multiflora* were investigated for their ability to inhibit $\mathbf{\alpha}$ -glucosidase activity (26).

UHULALONGKORN UNIVERSITY

CHAPTER III

EXPERIMENTAL

1. Materials

1.1. Plant material

The whole plants of *Aerides falcata* were procured from the Chatuchak market in June 2021. Mr. Yanyong Punpreuk, a senior botanist at the Department of Agriculture, Bangkok, Thailand, identified the plant materials, and a voucher specimen (BS-AF-022564) was deposited at the Department of Pharmacognosy and Pharmaceutical Botany, Chulalongkorn University.

1.2. Chemical materials

Organic solvents such as methanol (MeOH), acetone (CH_3COCH_3), ethyl acetate (EtOAc), dichloromethane (CH_2Cl_2), hexane, water, and *n*-butanol in this study are of commercial grade and were redistilled before use.

1.3. Cell culture materials

BV-2 microglial cells were procured from Accigen. Fetal Bovine Serum (FBS) and Dulbecco's Modified Eagle Medium (DMEM), two components used in cell culture, were purchased from (PAN Biotech, Aidenbach, Germany). Lipopolysaccharide (LPS), an inducer of inflammatory responses, and minocycline, a reference compound for anti-neuroinflammatory activity, were obtained from Sigma-Aldrich, St. Louis, MO, USA.

2. General Techniques

2.1. Thin-layer chromatography (TLC)

2.1.1. Normal phase, thin-layer chromatography

Technique : One-dimension ascending

Stationary phase	: Silica gel 60 F ₂₅₄ precoated plates (E. Merck)		
Mobile phase	: Organic Solvents		
Temperature	: Room temperature (30-35°C)		
Detection	: 1. Visualized under UV light at 254nm and 365nm.		
	2. Sprayed with anisaldehyde reagent in a fume hood		
	and followed by heating at 105 $^{\circ}$ C for 10 minutes.		

2.1.2. Preparative thin-layer chromatography (Prep. TLC)

Technique	: One-dimension ascending			
Stationary phase	: Silica gel 60 F_{254} precoated plates (E. Merck), size			
	20×20 cm			
Mobile phase	: Organic solvents			
Temperature	: Room temperature (30-35°C)			
Sample loading	:The sample was applied onto a TLC plate using			
	capillary tube. The spots are dried, and the plate is			
	then placed in a developing chamber with organic			
	solvent as mobile phase			
Detection	• Visualized under UV light at wavelengths of 254nm			

GHULAL and 365nm

2.2. Column chromatography (CC)

2.2.1. Vacuum liquid chromatography (VLC)

Stationary phase	: Silica gel 60 (No. 1.07734.2500), size 0.063-0.200				
	mm (E. Merck)				
Mobile Phase	: Organic solvents				
Packing method	: Dry packing				
Sample loading	:The sample was dissolved in a small volume of organic				
	solvent, adsorbed by a small quantity of the				

	adsorbent, dried and then gradually placed on top of
	the column
Detection	: Each fraction was visualized under UV light at
	wavelengths 254nm and 365nm on a TLC plate.

2.2.2. Normal phase, flash column chromatography (FCC)

Stationary phase	: Silica gel 60 (No. 1.07734.2500), size 0.063-0.200			
	mm (E. Merck)			
Mobile phase	: Organic solvents			
Packing method	: Dry packing			
Sample loading	: The sample was dissolved in small volume of organic			
	solvent, adsorbed by small quantities of the			
	absorbent, dried, and then gradually placed on the			
	column			
Detection	: Fractions were visualized under UV light at			
	wavelengths 254nm and 365nm on a TLC plate			

2.2.3. Gel filtration chromatography (GFC)

Stationary phase : Sephadex LH-20 particle size 25-100 µm (GE

Healthcare)

Mobile phase	: Organic solvent			
Packing method	: Wet packing			
Sample loading	: The sample was dissolved in a small volume of a			
	organic solvent, and this mixture was then applied			
	onto the top of the column.			
Detection	: Fractions were visualized under UV light at			
	wavelengths 254nm and 365nm on a TLC plate			

2.3. Semi-preparative, high-pressure liquid chromatography (HPLC)

Column	: COSMOSIL 5C ₁₈ – AR-II (10ID × 250 mm)		
Mobile phase	: Organic solvent and water		
Sample preparation	: The sample was dissolved with a small eluent and		
	filtered through Millipore filter paper before injection		
Injection volume	: 2 mL		
Temperature	: Room temperature		
Pump	: LC-8A (Shimadzu)		
Detector	: SPD-10A UV-Vis Detector (Shimadzu)		
Recorder	: C-R6A Chromatopac (Shimadzu)		

2.4. Spectroscopy

2.4.1. Mass Spectra (MS)

Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-MS) at the Department of Chemistry, Faculty of Science, Naresuan University.

2.4.2. Ultraviolet (UV) spectra

UV spectra were measured with a Milton Roy Spectronic 3000 Array spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

2.4.3. Infrared (IR) spectra

IR Spectra were recorded on a Perkin-Elmer FT-IR 1760X spectrophotometer (Scientific and Technology Research Equipment Center, Chulalongkorn University).

2.4.4. Proton and carbon-13 nuclear magnetic resonance (¹H and ¹³C NMR)

¹H NMR (400 MHz) and ¹³C NMR (100 MHz) spectra were recorded on a Bruker Advance Neo 400 MHz spectrometer (Faculty of Pharmaceutical Sciences, Chulalongkorn University).

The solvent for NMR spectra was deuterated acetone (acetone- d_6). Chemical shifts were reported in the ppm scale using the chemical shift of the solvent as the reference signal.

2.4.5. Optical rotation

Optical rotation was measured on a Jasco P-2000 polarimeter (Pharmaceutical Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn University).

3. Extraction and isolation

3.1. Extraction of A. falcata

The dried whole plant of *A. falcata* (2 kg) was ground to produce a dried powder. The powder (2 kg) was macerated with MeOH (3 x 15 L), soaked for 72 hours for each maceration, and a dried MeOH extract was obtained after removal of the organic solvent. This extract was treated with EtOAc, *n*-butanol, and aqueous to produce an EtOAc extract, *n*-butanol extract, and aqueous extract, respectively, after evaporation of the solvent.

Scheme 1 Extraction steps of Aerides falcata

3.2. Separation and isolation

The EtOAc extract (20.4 g) was separated by vacuum liquid chromatography (silica gel, hexane – EtOAc, gradient) to give 7 fractions (A –G). Fraction C (7.2 g), fraction D (3.9 g), fraction E (2.2 g), fraction F (6.7 g), and fraction G (10.8 g) were isolated using several chromatographic techniques as described in section 2.2.

3.2.1. Isolation of compound AF2

Fraction C (7.2 g) was separated by Sephadex LH-20 (acetone) chromatography to give 5 fractions (CA – CE). Fraction CB (612 mg) was re-separated by column chromatography (CC) (silica gel, hexane – CH_2Cl_2 , gradient elution) to give CBA – CBH. CBE (108 mg) was subjected to CC (silica gel, hexane – EtOAc 10%, isocratic elution) to yield AF2 (36.3 mg) which was identified as *n*-eicosyl-*trans*-ferulate.

3.2.2. Isolation of compound AF3

Fraction D (3.9 g) was fractionated on Sephadex LH-20 (acetone) to give 6 fractions (DA – DF). Fraction DB (1.2 g) was separated by CC (silica gel, hexane – CH_2Cl_2 , gradient elution) to AF3 (7 mg), identified as denthyrsinin.

3.2.3. Isolation of compounds AF4 and AF5

Fraction DB (1.2 g) was re-separated by CC (silica gel, hexane – CH_2Cl_2 , gradient elution) by give 9 fractions (DBA – DBI). DBH (23.5 mg) and DBI (21 mg) were purified with CC (silica gel, hexane – EtOAc, gradient elution) to yield AF4 and AF5, respectively. AF4 (10 mg) was identified as 2,4-dimethoxy-3,7-dihydroxyphenanthrene, and AF5 (7 mg) was identified as 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene.

3.2.4. Isolation of compound AF6

Fraction E (2.2 g) was fractionated on Sephadex LH-20 (MeOH) to give 6 fractions (EA – EF). Fraction EC (60.2 mg) was separated by CC (silica gel, hexane – EtOAc, gradient elution) to give fractions ECA – ECH. Fraction ECA (15.2 mg) was reseparated by CC (silica gel, hexane – EtOAc, gradient elution) to yield 4 fractions (ECAA, ECAB, ECAC, and ECAD). Fraction ECAD (5.1 mg) was purified with CC (silica gel, CH_2Cl_2 , isocratic elution) to furnish AF6 (2.2 mg) which was identified as 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene.

3.2.5. Isolation of compound AF7

Fraction F (6.7 g) was fractionated on Sephadex LH-20 (MeOH) to give 7 fractions (FA – FG). Fraction FD (87.3 mg) was purified by CC (silica gel, hexane-acetone 50%, gradient elution) to furnish AF7 (58 mg) which was identified as agrostonin.

3.2.6. Isolation of compound AF1 and AF10

Fraction FE (98.2 mg) was re-separated by CC (silica gel, CH_2Cl_2 – MeOH 5%, gradient) to give 10 fractions (FEA – FEJ). Fraction FEC (15.1 mg) was purified by preparative TLC (hexane: EtOAc 20%, thrice developments) to yield AF1 (11.8 mg) which was identified as aerifalcatin. Fraction FED (20.3 mg) was purified with HPLC (semi-prep, CH_2Cl_2 – MeOH 5%, flow rate 0.8 ml/min) to yield AF10 (1.5 mg) which was identified as *trans-n*-coumaroyltyramine.

3.2.7. Isolation of compound AF8 and AF9

Fraction G (10.8 g) was fractionated by CC (silica gel, CH_2Cl_2 – EtOAc 30%, gradient) to give 5 fractions (GA – GE). Fraction GA (93 mg) was separated by CC (silica gel, CH_2Cl_2 , isocratic elution) to yield 12 fractions (GAA – GAL). GAL (40 mg) was reseparated by CC (CH_2Cl_2 – MeOH 3%, gradient elution) to yield 9 fractions (GALA – GAL). Fraction GALC (18.3 mg) was purified by CC (silica gel, CH_2Cl_2 – EtOAc 20%, gradient elution) to furnish 2 pure compounds, AF8 (7.4 mg) and AF9 (2.6 mg) that were identified as syringaresinol and *trans-n*-feruloytyramine, respectively.

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Scheme 2 Separation and isolation of compounds from Aerides

Scheme 2 (Continued)

Scheme 2 (Continued)

Scheme 2 (Continued)

4. Physical and spectral data of isolated compounds

4.1. Compound AF1 (Aerifalcatin)

Compound AF1 was obtained as a brown amorphous solid (11.9 mg,

0.00059% of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS : [M-H] ion at m/z 523.1387 (C₃₁H₂₃O₈) (calcd. 523.1392)

- UV : λ_{max} nm (log **ε**), in methanol: 265 (4.33), 313 (3.50), 353 (3.30), 371 (3.44)
- FT-IR: V: 3384, 2935, 2850, 1589, 1475, 1371, 1266 cm^{-1}Optical rotation: $[\alpha]_D^{20}$: -20.0 (c 0.5, MeOH)¹H NMR: δ ppm, 400 MHz, in acetone- d_6 ; Table 4¹³C NMR: δ ppm, 100 MHz, in acetone- d_6 ; Table 4

4.2.Compound AF2 (*n*-eicosyl-*trans*-ferulate)

Compound AF2 was obtained as a yellow powder (36.1 mg, 0.0018% of the

dry weight	of the plant). It was soluble in acetone.
HR-ESIMS	: [M-H] ion at <i>m/z</i> 473.3562 (C ₃₀ H ₄₉ O ₄) (calcd. 473.3630)
¹ H NMR	: ${f \delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 5
¹³ C NMR	: $oldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 5

4.3.Compound AF3 (Denthyrsinin)

Compound AF3 was obtained as a brown amorphous solid (7 mg, 0.00035%

of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS : [M-H] ion at m/z 299.0929 ($C_{17}H_{15}O_5$) (calcd. 299.0919)

- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 6
- ¹³C NMR : δ ppm, 100 MHz, in acetone- d_6 ; Table 6

4.4.Compound AF4 (2,4-Dimethoxy-3,7-dihydroxyphenanthrene)

Compound AF4 was obtained as a brown amorphous solid (10 mg, 0.0005% of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS : [M-H] ion at m/z 269.0816 ($C_{16}H_{13}O_4$) (calcd. 269.0813)

- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 7
- ¹³C NMR : $\boldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 7

4.5.Compound AF5 (2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene)

Compound AF5 was obtained as a brown amorphous solid (7 mg, 0.00035% of the dry weight of the plant). It was soluble in acetone.

- HR-ESIMS : [M-H] ion at m/z 299.0922 (C₁₇H₁₅O₅) (calcd. 299.0919)
- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 8
- ¹³C NMR : $\boldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 8

4.6.Compound AF6 (3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene)

Compound AF6 was obtained as a brown amorphous solid (2.2 mg, 0.00011% of the dry weight of the plant). It was soluble in acetone.

- HR-ESIMS : [M-H] ion at m/z 299.0926 (C₁₇H₁₅O₅) (calcd. 299.0919)
- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 9
- ¹³C NMR : $\boldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 9

4.7.Compound AF7 (Agrostonin)

Compound AF7 was obtained as a brown amorphous solid (58 mg, 0.0029%

of the dry weight of the plant). It was soluble in acetone.

- HR-ESIMS : [M-H] ion at m/z 537.1543 (C₃₂H₂₅O₈) (calcd. 537.1549)
- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 10
- ¹³C NMR : δ ppm, 100 MHz, in acetone- d_6 ; Table 10

4.8.Compound AF8 (Syringaresinol)

Compound AF8 was obtained as a white amorphous solid (7.4 mg, 0.00037% of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS : [M-H] ion at m/z 417.1558 (C₂₂H₂₅O₈) (calcd. 417.1549)

- ¹H NMR : δ ppm, 400 MHz, in acetone- d_6 ; Table 11
- ¹³C NMR : δ ppm, 100 MHz, in acetone- d_6 ; Table 11

4.9.Compound AF9 (trans-n-feruloytyramine)

Compound AF9 was obtained as a brown amorphous solid (2.6 mg, 0.00012% of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS : [M-H] ion at *m/z* 312.1232 (C₁₈H₁₈NO₄) (calcd. 312.1235)

- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 12
- ¹³C NMR : $\boldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 12

4.10. Compound AF10 (*trans-n-coumaroyltyramine*)

Compound AF10 was obtained as a white amorphous solid (1.5 mg, 0.00012% of the dry weight of the plant). It was soluble in acetone.

- HR-ESIMS : [M-H] ion at *m/z* 282.1124 (C₁₇H₁₇NO₄) (calcd. 282.1130)
- ¹H NMR : $\boldsymbol{\delta}$ ppm, 400 MHz, in acetone- d_6 ; Table 13
- ¹³C NMR : $\boldsymbol{\delta}$ ppm, 100 MHz, in acetone- d_6 ; Table 13

5. Evaluation for anti-neuroinflammatory activity in vitro

5.1. Cell treatment

LPS-induced BV-2 microglial cells were used as a model of neuroinflammation. Firstly, the cells were seeded at 96-well plates at a density of 2×104 cells/well for 24 hours, followed by various compound concentrations to perform cell viability. Cell viability was determined using the MTT test (Sigma-

Aldrich, St. Louis, MO, USA) to obtain a safe (non-toxic) concentration. First, the media in multi-well plates were removed and cleaned after the cell treatment. Next, MTT solution (0.5 mg/mL) was added. The formazan crystals were dissolved in DMSO after three hours (Sigma-Aldrich, St. Louis, MO, USA). At a maximum wavelength of 570 nm, the absorbance was measured using a microplate reader (BMG Labtech, Ortenberg, Germany).

After that, the safe concentrations were used to perform NO and ELISA assays. Briefly, 48-well plates with 7.5×104 cells per well were used to seed the cells for 24 hours. Following a 2-hour test chemical treatment, the cells were co-incubated with LPS for a further 22 hours. The media were gathered for use in cytokine and NO tests in the future.

5.2. Proinflammatory mediator assay

The manufacturer's instructions were followed in preparing the NO assay reagents (Sigma-Aldrich, St. Louis, MO, USA). After cell treatment, 100 μ L of culture media was collected and placed into 96-well plates. Griess reagent was added to the collected media in 100 μ L, and the mixture was then incubated for 20 minutes in the dark. The absorbance was measured in the microplate reader at 520 nm. The cytokine levels (IL-6 and TNF- α) were measured using the ELISA assay (BioLegend, San Diego, CA, USA) for the most potent compounds obtained in the NO assay.

CHAPTER IV

RESULT AND DISCUSSION

1. Preliminary investigation of anti-neuroinflammatory activity from extracts of Aerides falcata

In this research, the dried powder of *Aerides falcata* (2 kg) was extracted with methanol, yielding the methanolic extract (105.08 g). The methanolic extract was then partitioned with water, ethyl acetate, and *n*-butanol, resulting in the aqueous extract (28.13 g), ethyl acetate extract (20.4 g), and *n*-butanol extract (48.98 g). During the preliminary study, the methanolic and ethyl acetate extracts were investigated for their anti-neuroinflammatory activity in LPS-induced BV-2 microglial cells. The ethyl acetate extract exhibited a higher NO inhibitory activity than the methanolic extracts showed a reduction in cytokine levels in a dose-dependent manner (Figure 4). Based on this evidence, the ethyl acetate extract was selected for further investigation to identify the active principles.

Extracts	KORN UNIVEIC50 (µg/mL)
Methanol	14.01 ± 2.0
Ethyl acetate	5.06 ± 3.5
Minocycline	8.63 ± 2.4

 Table 3 NO inhibition of extracts from Aerides falcata

36

250 250 200 200 IL-6 (pg/ml) IL-6 (pg/ml) 150 150 100 100 50 50 0 0 LPS (1 µg/mL) LPS (1 μ g/mL) + ++_ EtOAc ex (µg/mL) -2.5 10 40 40 MeOH ex (µg/mL) -10 40 2.5 40 . 400 500 400 300 ** TNF-a (pg/ml) TNF-a (pg/ml) *** 300 200 * * 200 100 100 0 0 LPS (1 µg/mL) + $^+$ + + LPS (1 µg/mL) + +-+ MeOH ex (µg/mL) -2.5 1040 40 _ EtOAc ex (µg/mL) -2.5 10 40 40 -

GHULALONGKORN UNIVERSITY

Figure 4 Effects of MeOH and EtOAc extract on cytokine release in LPSstimulated BV-2 microglial cells.

Data was presented as mean \pm SD, n = 3. n = 3. **p < 0.01, ***p < 0.001, LPS vs extract-treated groups. Statistical difference between extracts was analyzed using one-way ANOVA followed by Tukey's multiple comparisons test.

Methanolic extract

Ethyl acetate extract

2. Chemical investigation

From the ethyl acetate extract, a new compound named aerifalcatin [**35**] was isolated, along with nine known compounds, namely *n*-eicosyl-*trans*-ferulate [**38**], dentyrsinin [**3**], 2,4-dimethoxy-3,7-dihydroxyphenanthrene [**4**], 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [**36**], 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [**37**], agrostonin [**32**], syringaresinol [**39**], *trans-n*-feruloytyramine [40], and *trans-n*-coumaroyltyramine [**41**] (Figure 5).

Denthyrsinin [3]; $R_1 = R_4 = OMe$, $R_2 = H$, $R_3 = OH$

2,4-Dimethoxy-3,7-dihydroxyphenanthrene [**4**]; $R_1 = R_2 = H$, $R_3 = OH$, $R_4 = OMe$ 2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene [**36**]; $R_1 = H$, $R_2 = R_3 = OMe$, $R_4 = OH$ 3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene [**37**]; $R_1 = H$, $R_2 = R_4 = OMe$, $R_3 = OH$

Figure 5 Structures of compounds isolated from Aerides falcata

Figure 5. (Continued)

2.1. Structure elucidation of compound AF1

AF1 was isolated as a brown amorphous solid. It was given the molecular formula $C_{31}H_{24}O_8$ according to the negative HRESIMS spectrum which displayed a pseudo molecular ion peak [M-H] at m/z 523.1387 (calcd. 523.1392) (Figure 8). the UV absorption at 265, 313, 353, and 371 nm (Figure 9) suggested a phenanthrene skeleton (46). The IR spectrum exhibited absorption bands for the hydroxyl groups (3384), and aromatic rings (2935, 1589) (Figure 10).

The ¹H NMR spectrum presented signals in the aromatic area (δ 6.87-9.25) (Figure 11 and Table 4). It showed two pairs of coupled doublets at H-9 (δ 7.36, d, J = 8.8 Hz), H-10 (δ 6.94, d, J = 9.2 Hz), H-9' (δ 7.32, d, J = 8.8 Hz), and H-10' (δ 6.87, d, J = 9.2 Hz). Six one-proton singlets representing H-3 (δ 6.99), H-5 (δ 9.25), H-8 (δ 7.20), H-3' (δ 6.96), H-5' (δ 9.19) and H-8' (δ 7.19) indicated that this structure was a dimeric phenanthrene derivative. Furthermore, the presence of twenty-nine ¹³C NMR signals signified an asymmetrical structure (Figure 12 and Table 4). The first unit phenanthrene of AF1 (rings A, B, and C) displayed HMBC correlation between C-8 (δ 112.1) and H-9, and between C-9 (δ 127.9) and H-8. This unit showed two methoxy groups at δ 4.23 (MeO-4) and δ 4.07 (MeO-6). Their NOESY their correlations with H-3 and H-5 confirmed the positions of these methoxy groups at C-4 (δ 160.2) and C-6 (δ 148.4). From the NMR data of the first unit, three quaternary carbons at C-2 (δ 155.0) and C-7 (δ 146.0) should be occupied by two hydroxy groups, and C-1 (δ 109.9) provided a bridge linking to another monomer of phenanthrene. The position of C-1 was supported by its HMBC correlation with H-3 and H-10 (Figures 16, 17, and 18). The second unit of AF1 was almost identical to the first unit. C-8' (δ 112.4) showed correlation with H-9', and C-9' (δ 128.1) also showed correlation with H-8' in the HMBC spectrum. However, there was only one methoxy group at MeO-4' (δ 4.17, s). The position of this methoxy group at C-4' (δ 160.3) was supported by its crosspeak with H-3' in the NOESY spectrum (Figures 19, 20, and 21). The hydroxyl groups were attached to three quaternary carbons, C-2' (δ 155.0), C-6' (δ 146.2), and C-7' (δ 145.0) while C-1' (δ 109.6) was assigned as the bridging point based on its HMBC correlation to H-3' and H-10'. The bridge C-1(δ 109.9) and C-1' (δ 109.6) was also supported by their chemical shift values, typical for non-oxygenated quaternary carbons (47). From all of the above spectral evidence, it was concluded that 1 had the structure 4,4',6-trimethoxy(1,1'biphenenthrene)-2,2'6',7,7'-pentol and was given the trivial name aerifalcatin.

Table 4 NMR spectral data of compound AF1

Position	$AF1$ (acetone- d_6)		
	¹ H	¹³ C	HMBC (correlation with 1 H)
1	-	109.9	3, 10
2	-	155.0	3*
3	6.99 (s)	100.0	-
4	-	160.2	3*, MeO-4
4a	-	116.3	3, 5, 10
4b	-	125.8	8, 9
5	9.25 (s)	109.7	-

6	-	148.4	5*, 8, MeO-6
7	-	146.0	5, 8*
8	7.20 (s)	112.1	9
8a	-	128.0	5, 10
9	7.36 (d, J = 8.8 Hz)	127.9	8
10	6.94 (d, J = 8.8 Hz)	123.3	-
10a	-	135.4	9
1'		109.6	3', 10'
2′	_	155.0	3'*
3'	6.96 (s)	99.7	<u> </u>
4'	-	160.3	3'*, MeO-4'
4a'	-	116.0	3', 5', 10'
4b '	-	126.2	8', 9'
5 ′	9.19 (s)	113.5	
6'		146.2	5′*, 8′
7'	จุฬาลงกร	145.0	วิทยาลัย ^{5', 8'*}
8'	C ^{7.19 (s)} LONG	112.4	JNIVERSITY 9'
8a '	_	127.6	5 ' , 10 '
9'	7.32 (d, J = 9.2 Hz)	128.1	8'
10'	6.87 (d, J = 9.2 Hz)	122.6	-
10a '	-	135.5	9'
MeO-4	4.23 (s)	56.1	
MeO-6	4.07 (s)	56.0	
MeO-4	4.17 (s)	55.8	

*Two-bond coupling

2.2. Identification of compound AF2

Compound AF2 was isolated as a yellow powder. It presented the molecular formula C₃₀H₅₀O₄ based on the negative HRESIMS spectrum which displayed a pseudo molecular ion peak [M-H] at m/z 473.3562 (calcd. 473.3630). The ¹H NMR signals (Figure 24 and Table 5) in the aromatic region showed meta-coupling proton at $\delta_{ ext{ ext{H}}}$ 7.34 (1H, d, J = 2.0 Hz, H-6), a double doublet proton signals at $\delta_{\rm H}$ 7.14 (1H, dd, J = 2.0, 8.0 Hz, H-2), an ortho-coupling at $\delta_{\rm H}$ 6.87 (1H, d, J = 8.4 Hz, H-3), and uncoupled of a methoxy group at $\delta_{\rm H}$ 3.92 (3H, s, MeO-5). Two olefinic protons showed at $\delta_{\rm H}$ 7.59 (1H, d, J = 16.0 Hz, H-7) and $\delta_{\rm H}$ 6.39 (1H, d, J = 16.0 Hz, H-8), a methylene proton at $\delta_{\rm H}$ 4.15 (2H, t, J = 6.8 Hz, H-1'), a methyl proton at $\delta_{\rm H}$ 0.87 (3H, t, J = 4.0Hz, H-Me). The ¹H NMR signals (Figure 25 and Table 5) showed a strong signal at the methylene region at $\delta_{\rm H}$ 1.28 (m, H-methylene, H-n-2, H-n-1), the methylene aliphatic chain was suggested as -(CH₂)₁₄- based on calculating between HRESIMS and known NMR structure. The ¹³C NMR and HSQC spectra (Figures 25, 26, and 27) of AF2 revealed seventeen signals, including one carbonyl of ester form at $\delta_{
m C}$ 167.57 (C-9), one methoxy group at δ_{c} 56.42 (OMe-5), one methyl group, five methine carbons, three quaternary carbons, and six methylene carbons. The above NMR data of AF2 suggested a ferulic acid ester skeleton (48).

The HMBC spectrum of AF2 (Figures 29, 30, and 31) confirmed H-7 was correlated with C-6 (δ_{c} 111.3), C-9 (δ_{c} 167.5), and C-2 (δ_{c} 124.0). the ester group was supported with HMBC correlation C-9 (δ_{c} 167.5) with H-1' and the long chain of aliphatic was continued with connection H-1' to H-2' and H-3' supported by HMBC, NOESY (Figure 32), COSY (Figures 33 and 34) data, where there were presented their connection. the primary carbon of methyl (δ_{c} 14.4) at the end of this chain was correlated with the proton methylene group δ_{H} 1.28 (4H, m, H₂-n-1, H₂-n-2), based on

the HMBC correlation. The position of the methoxy group of MeO-5 was determined by HMBC correlation with C-5 ($\delta_{\rm C}$ 149.0) and supported by NOESY correlation between OMe-5 and H-6.

Based on the above spectroscopy data evidence, AF2 was identified as neicosyl trans-ferulate. This known compound was previously reported in *Synadenium* glaucescens (49) and several *Dendrobiums* such as *Dendrobium christyanum* and *Dendrobium clavatum* (50, 51).

Table 5 NMR spectral data of compound AF2 and *n*-eicosyl-trans ferulate

Position	AF2 (acetone- d_6)		<i>n</i> -eicosyl- <i>trans</i> ferulate (CDCl ₃) (48)	
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c	$\delta_{_{\sf H}}$ (mult., J in Hz)	δ _c
1	-	127.9	S-	127.1
2	7.14 (dd, J = 2.0, 8.0 Hz)	124.0	7.07 (dd, J = 2.0, 8.0 Hz)	122.9
3	6.87 (d, J = 8.4 Hz)	116.1	6.91 (d, J = 8.0 Hz)	114.6
4	-	150.3	-	146.7
5	-	149.0	-	147.8
6	7.34 (d, J = 2.0 Hz)	111.3	7.03 (d, J = 2.0 Hz)	109.3

7	7.59 (d, J = 16.0 Hz)	145.6	7.61 (d, J = 16.0 Hz)	144.6
8	6.39 (d, J = 16.0 Hz)	116.0	6.29 (d, J = 16.0 Hz)	115.6
9	-	167.5	-	167.3
1'	4.15 (t, <i>J</i> = 6.8 Hz)	64.7	4.18 (t)	64.6
2′	1.58 (m)	29.6	1.64 (m)	31.8
3'	1.42 (m)	26.8	1.64 (m)	25.9
-(CH ₂) ₁₄	1.28 (m)	23.4 -	1.25 (m)	25.9-
		29.6		29.6
n-2	1.28 (m)	32.7	1.25 (m)	31.9
n-1	1.28 (m)	23.4	1.25 (m)	22.7
Me	0.87 (t, J = 4.0 Hz)	14.4	0.86 (t)	14.1
MeO-5	3.92 (s)	56.42	3.92 (s)	55.9

2.3. Identification of compound AF3

Compound AF3 was isolated as a brown amorphous solid. The pseudo molecular ion showed a negative HRESIMS spectrum (Figure 35) [M-H]⁻ at m/z 299.0929 (calcd. 299.0919) suggesting molecular formula $C_{17}H_{16}O_{5.}$ The ¹H-NMR spectra of AF3 (Figure 36 and Table 6) presented aromatic region in four orthocoupling proton signals at δ_{H} 9.10 (1H, d, J = 9.2 Hz, H-5), δ_{H} 7.24 (1H, d, J = 9.2 Hz, H-6), δ_{H} 7.85 (1H, d, J = 9.2 Hz, H-9), δ_{H} 7.67 (1H, d, J = 8.8 Hz, H-10) and one singlet signal at δ_{H} 7.25 (1H, s, H-1). Three singlet signals were provided at δ_{H} 3.99 (3H, MeO-2), δ_{H} 3.91 (3H, MeO-4), and δ_{H} 3.92 (3H, MeO-8), suggested as three methoxy groups. Additional remaining two singlet signals at δ_{H} 7.96 and δ_{H} 8.31 represent HO-3 and HO-7 respectively. The ¹³C-NMR and HSQC correlation of AF3 (Figure 37, 38 and Table

6), showed seventeen signals including nine quaternary carbon, five methine carbon, and three methoxy groups. These data confirmed a monomeric phenanthrene skeleton.

This monomeric phenanthrene was equipped with a correlation between H-9 and H-10 at COSY of AF3 (Figure 42). It was supported by HMBC correlation (Figure 39), H-9 has a correlation with C-4b (δ_{c} 124.8), C-10a (δ_{c} 126.4), and C-8 (δ_{c} 142.2), whereas H-10 was correlated with C-1 (δ_{c} 105.9) and C-4a (δ_{c} 120.4). Positions of methoxy groups were supported by NOESY correlation (Figure 41), MeO-2, MeO-4, and MeO-8, showed correlations with H-1, H-5 and H-9, respectively.

Based on the above NMR spectral data, AF3 was identified as denthyrsinin. This compound was confirmed by comparison with NMR spectral data that was previously reported as 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene, which was earlier isolated from *Bletilla striata* (52).

Denthyrsinin [3]

Position	AF3 (acetone-c	1 ₆)	Denthyrsinin (CDCl	₃) (53)
	$\delta_{_{\rm H}}$ (mult., J in Hz)	δ _c	$\delta_{_{\rm H}}$ (mult., J in Hz)	δ _c
1	7.25 (s)	105.9	7.09 (s)	104.9
2	-	148.7	-	146.8
3	-	141.2	-	139.4
4	-	145.4	-	144.0
4a	-	120.4	112-	119.2
4b		124.8		124.2
5	9.15 (d, J = 9.2 Hz)	124.2	9.16 (d, J = 9.2 Hz)	124.0
6	7.24 (d, J = 9.2 Hz)	117.9	7.30 (d, J = 9.2 Hz)	116.1
7	-	147.3		145.6
8	-	142.2	- 1	140.8
8a	-	128.5	-	125.7
9	7.85 (d, J = 9.2 Hz)	118.6	7.82 (d, J = 9.2 Hz)	117.9
10	7.67 (d, J = 8.8 Hz)	128.7	7.63 (d, J = 9.2 Hz)	127.5
10a	_จุฬาลงเ	126.4	เาวิทยาลัย	126.6
MeO-2	3.99 (s) LALO	56.3	4.05 (s)	56.1
MeO-4	3.91 (s)	59.6	3.94 (s)	59.8
MeO-8	3.92 (s)	61.3	3.98 (s)	61.9
HO-3	7.96 (s)	-	5.79 (s)	-
HO-7	8.31 (s)	-	6.01 (s)	-

 Table 6 NMR spectral data of compound AF3 and Denthyrsinin

2.4. Identification of compound AF4

Compound AF4 was determined as a brown amorphous solid. The HRESIMS spectrum (Figure 43) showed a negative molecular ion [M-H] at m/z 269.0816 (calcd. 269.0813) suggesting the molecular formula as $C_{16}H_{14}O_4$. The ¹H-NMR spectra of AF4 (Figures 44, 45 and Table 7) served doublet protons of ortho-coupling at δ_H 9.34 (1H, d, J = 9.2 Hz, H-5), δ_H 7.45 (1H, d, J = 8.8 Hz, H-9), and δ_H 7.59 (1H, d, J = 8.8 Hz, H-10). The ¹H NMR also exhibited a double doublet proton at δ_H 7.18 (1H, dd, J = 9.2, 2.8 Hz H-6), one uncoupled proton at δ_H 7.22 (1H, s, H-1), and two singlet signals of methoxy groups at δ_H 3.98 (3H, MeO-2) and δ_H 3.92 (3H, MeO-4). The ¹³C-NMR spectra and HSQC correlation (Figures 46, 47, and Table 7), presented sixteen signals, including eight quaternary carbons, six methine carbons, and two methoxy groups. These ¹H and ¹³C-NMR offered data that was similar to AF3, presenting a monomeric phenanthrene skeleton.

The assignment of H-9 and H-10 positions supported by its correlation with C-8 (δ_{c} 112.2) and C-1 (δ_{c} 105.9), respectively, in HMBC spectrum (Figure 48). The methoxy group positions of AF4 were determined by the HMBC correlation (Figure 49) where the proton of MeO-2 connected to C-2 (δ_{c} 148.4) and the proton of MeO-4 connected to C-4 (δ_{c} 145.3). These positions strengthened with NOESY correlation of AF4 (Figure 51), MeO-2 and MeO-4 linked to H-1 and H-5, respectively.

From the above data spectroscopy evidence, AF4 was identified as 2,4dimethoxy-3,7-dihydroxyphenanthrene. It was reported previously as Epheranthol B isolated from the stems of *Flickingria fimbriata* (54) and *Dendrobium chrysotoxum* (55).

2,4-dimethoxy-3,7-dihydroxyphenanthrene [4]

 Table
 7
 NMR spectral data of compound AF4 and 2,4-dimethoxy-3,7

 dihydroxyphenanthrene
 Image: Compound AF4 and 2,4-dimethoxy-3,7

Position	AF4 (acetone- d_6)		2,4-dimethoxy-3,7-	
			dihydroxyphenanthrene (CDCl ₃)	
			(52)	
	$\delta_{_{\rm H}}$ (mult., J in Hz)	δ _c	$\delta_{_{\rm H}}$ (mult., J in Hz)	δ _c
1	7.22 (s)	105.9	7.12 (s)	105.0
2	จุฬาลงกรถ	148.4	ทยาลย	147.7
3	GHULALONGK	141.1	NIVERSITY_	139.9
4	-	145.3	-	144.5
4a	-	120.0	-	119.1
4b	-	123.9	-	123.0
5	9.34 (d, J = 9.2 Hz)	129.1	9.27 (d, J = 9.0 Hz)	128.0
6	7.18 (dd, J = 9.2, 2.8Hz)	117.4	7.09 (dd, J = 9.0, 2.5Hz)	116.1
7	-	155.9	-	154.8
8	7.24 (d, J = 2.8 Hz)	112.2	7.14 (d, J = 2.5 Hz)	111.1
8a	-	135.0	-	134.2

9	7.45 (d, J = 8.8 Hz)	125.3	7.52 (d, J = 9.0 Hz)	124.3
10	7.59 (d, J = 8.8 Hz)	128.1	7.39 (d, J = 9.0 Hz)	127.0
10a	-	126.4	-	125.8
MeO-2	3.98 (s)	56.3	3.87 (s)	55.2
MeO-4	3.92 (s)	59.6	3.97 (s)	58.6

2.5. Identification of compound AF5

Compound AF5 was obtained as a brown amorphous solid. It was suggested the molecular formula for $C_{17}H_{16}O_5$ based on its HRESIMS spectrum (Figure 53) in a negative molecular ion [M-H]⁷ at *m/z* 299.0922 (calcd. 299.0919). ¹H-NMR spectra of AF5 (Figure 54 and Table 8) showed seven signals at the aromatic region including two pairs ortho-coupling at δ_H 7.48 (1H, d, J = 8.8 Hz, H-9) and δ_H 7.43 (1H, d, J = 8.8Hz, H-10). Three uncoupled protons at δ_H 7.14 (1H, s, H-1), δ_H 9.04 (1H, s, H-5), δ_H 7.25 (1H, s, H-8), and two phenolic hydroxyl group at δ_H 7.29 (1H, s, HO-2), and δ_H 8.28 (1H, s, HO-7). The presence of a monomeric phenanthrene skeleton was indicated by ¹³C-NMR spectra and HSQC correlation of AF5 (Figures 55, 56 and Table 8) which showed seventeen signals including the presence of nine quaternary carbons, five methine carbon, and three methoxy groups.

The position of three methoxy groups was confirmed by HMBC correlation of AF5 (Figures 59), which was MeO-3 was correlated with C-3 (δ_{c} 142.6), MeO-4 was correlated with C-4 (δ_{c} 152.1), and MeO-6 was correlated with C-6 (δ_{c} 148.7). HMBC correlations also presented the relation of C-6 to HO-7 proton and C-1 to HO-2 proton, suggesting the position of hydroxyl groups.

Based on the above evidence, the structure of AF5 was suggested as 2,7dihydroxy-3,4,6-trimethoxyphenanthrene. This compound was earlier reported from *Appendicula reflexa* with the synonym 3,4,6-trimethoxyphenanthrane-2,7-diol (56) and isolated from the heartwood of *Combretum psidioides* (57)

2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36]

Table8NMRspectraldataofcompoundAF5and2,7-dihydroxy-3,4,6trimethoxyphenanthrene

Position	AF5 (acetone- d_6)		
	$\delta_{_{ m H}}$ (mult., J in Hz)	GLδC	HMBC Correlation with ¹ H
1	7.14 (s)	109.7	10, OH-2
2	-	150.0	1*, OH-2*
3	-	142.6	1, MeO-3
4	-	152.1	MeO-4
4a	-	118.8	1, 5, 10
4b	-	124.7	8, 9
5	9.04 (s)	108.2	-
6	-	148.7	8, MeO-6, OH-7

7	-	146.5	5, 8*, OH-7*
8	7.25 (s)	112.7	9, OH-7
8a	-	128.4	5, 10
9	7.48 (d, J = 8.8 Hz)	126.7	8
10	7.43 (d, J = 8.8 Hz)	125.4	1
10a	-	130.7	9, 10*
MeO-3	4.01 (s)	61.3	-
MeO-4	4.02 (s)	60.4	1112
MeO-6	4.04 (s)	56.1	
HO-2	7.29 (s)	7/17	<u> </u>
HO-7	8.28 (s)	//2	

*Two-bond coupling

2.6. Identification of compound AF6

Compound AF6 was obtained as a brown amorphous solid. The molecular formula was identified as $C_{17}H_{16}O_5$ based on HRESIMS spectrum (Figure 59) in a negative molecular ion [M-H] at m/z 299.0926 (calcd. 299.0919). The ¹H-NMR spectrum of AF6 (Figure 60 and Table 9) showed three uncoupled protons of methoxy group at $\delta_{\rm H}$ 4.04 (3H, s, MeO-2), $\delta_{\rm H}$ 3.99 (3H, s, MeO-4), and $\delta_{\rm H}$ 3.98 (3H, s, MeO-6). Three singlet proton signals at $\delta_{\rm H}$ 7.22 (1H, s, H-1), $\delta_{\rm H}$ 9.06 (1H, s, H-5), and $\delta_{\rm H}$ 7.25 (1H, s, H-8). Two pairs of ortho-coupling at $\delta_{\rm H}$ 7.45 (1H, d, J = 8.8 Hz, H-9), and $\delta_{\rm H}$ 7.51 (1H, d, J = 8.8 Hz, H-10). Two singlet signals of hydroxyl groups at $\delta_{\rm H}$ 7.85 (1H, s, HO-3) and $\delta_{\rm H}$ 7.91 (1H, s, HO-7). The ¹³C-NMR spectrum and HSQC correlation of AF6 (Figures 61, 62, and Table 9) showed seventeen signals including, nine quaternary carbons, five methine carbon, and three methoxy groups. Based on
the presence of spectrum ¹H-NMR and ¹³C-NMR, it showed similar data with AF3 and AF5, which suggested a monomeric phenanthrene skeleton.

The HMBC correlation of AF6 (Figure 63) suggested the position of hydroxyl groups with the presence of their correlation of C-2 (δ_c 144.9) and C-4 (δ_c 148.3) with HO-3 and C-6 (δ_c 148.4) and C-8 (δ_c 105.9) with HO-7. The HMBC correlation also obtained the position of methoxy groups that were correlated between carbon aromatic rings and proton methoxy groups including proton MeO-2 to C-2 (δ_c 144.9), MeO-4 to C-4 (δ_c 148.3), and MeO-6 to C-6 (δ_c 148.4). These positions were completed with the other evidence from the NOESY and COSY correlations of AF6 (Figures 64 and 65), where the proton of MeO-2 was correlated with H-1, and the proton of MeO-6 was correlated with H-5.

The above data NMR spectroscopy suggested AF6 was 3,7-dihydroxy-2,4,6trimethoxyphenanthrene. This compound was the first isolated from the whole plant of *Bulbophyllum odoratissimum* (49).

3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37]

Position	AF6 (acetone- d_6)		3,7-dihydroxy-2,4,6-	
			trimethoxyphenanthrene (CD)Cl ₃) (49)
	$\delta_{_{\rm H}}$ (mult., J in Hz)	δ_{c}	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c
1	7.22 (s)	105.6	6.97 (s)	103.6
2	-	144.9	1.0	146.5
3	-	140.6	<u></u>	138.3
4	-	148.3		143.0
4a		126.7	<u> </u>	117.4
4b	-	124.2		122.2
5	9.06 (s)	108.1	8.95 (s)	106.1
6	-	148.4		146.6
7	-	146.5		144.3
8	7.25 (s)	105.9	7.19 (s)	110.4
8a	จุฬาลงก	128.8	าวิทยาลัย	126.9
9	7.45 (d, <i>J</i> = 8.8 Hz)	124.9	7.31(s)	122.8
10	7.51 (d, J = 8.8 Hz)	125.7	7.31(s)	123.7
10a	-	119.5	-	124.9
MeO-2	4.04 (s)	59.8	3.88 (s)	54.0
MeO-4	3.99 (s)	56.2	3.85 (s)	57.8
MeO-6	3.98 (s)	56.0	3.97 (s)	53.8

Table9NMRspectraldataofcompoundAF6and3,7-dihydroxy-2,4,6-trimethoxyphenanthrene

2.7. Identification of compound AF7

AF7 was identified as a brown amorphous solid. HRESIMS mass spectrum of AF7 (Figure 66) showed a negative molecular ion [M-H] at m/z 537.1543 (calcd. 537.1549), suggesting the molecular formula $C_{32}H_{26}O_8$. The ¹H-NMR spectra of AF7 (Figure 67 and Table 10) showed the presence of the presence of a pair of twoproton doublets with ortho-coupling at δ_H 7.37 (2H, d, J = 9.2 Hz, H-9/H-9') and 6.92 (2H, d, J = 9.2 Hz, H-10/H-10'). Three sharp singlets at δ_H 7.02 (2H, s, H-3/H-3'), δ_H 9.27 (2H, s, H-5/H-5'), and δ_H 7.21 (2H, s, H-8/H-8'). Two methoxy groups with singlet signals at δ_H 4.25 (6H, s, MeO-4/MeO-4') and δ_H 4.09 (6H, s, MeO-6/MeO-6'). The ¹³C-NMR and HSQC spectra (Figures 68, 69, 70, and Table 10) revealed sixteen carbon signals, suggesting that AF8 was a symmetrical dimeric phenanthrene. Moreover, the two phenanthrene units were symmetrically linked to each other through a C-C' bond between C-1-C1' as supported by the HMBC correlation of AF7 (Figure 71), where C-1/1' at δ_C (109.1) connected to H-3/3' and H-10/10' (47).

The positioning of methoxy groups was suggested by the HMBC correlation of AF7 (Figure 72), proved by correlation C-4/4' (δ_c 159.3) to the proton of MeO-4/4' and C-6/6' (δ_c 147.7) to the proton of MeO-6/6'. This condition was supported by the NOESY correlation of AF7 (Figure 73), which showed the proton of MeO-4/4' correlated to H-3 and MeO-6/6' correlated to H-5.

Through the comparison of the above evidence NMR spectra data with previously reported compound (47), which identified that AF7 is agrostonin. AF7 is a known compound that was first found in *Agrostophyllum khasiyanum* (58) and was isolated from *Aerides multiflora* (26).

Agrostonin [**32**]

Position	AF7 (acetone-o	d ₆)	Agrostonin (acetone-	-d ₆) (49)
	$\delta_{_{\rm H}}$ (mult., J in Hz)	δς	$\delta_{_{ m H}}$ (mult., J in Hz)	δ_{c}
1	-	109.1	-	109.8
2		154.1	<u> </u>	155.1
3	7.02 (s)	99.1	7.00 (s)	100.0
4	-	159.3	-	160.2
4a	- 1	115.4	-	116.3
4b		125.0		125.8
5	9.27 (s)	159.0	9.25 (s)	109.7
6	จุฬาลงกร	147.7	ทยาลัย	148.5
7	CHULALONG	145.2	NIVERSIT Y	146.0
8	7.21 (s)	111.3	7.19 (s)	112.2
8a	-	127.1	-	128.1
9	7.37 (d, <i>J</i> = 9.2 Hz)	127.0	7.36 (d, J = 9.2 Hz)	127.9
10	6.92 (d, J = 9.2 Hz)	122.5	6.93 (d, J = 9.2 Hz)	123.3
10a	-	134.6	-	135.4
1′	-	109.1	-	109.8
2′	-	154.1	-	155.1
3'	7.02 (s)	99.1	7.00 (s)	100.0

4'	-	159.3	_	160.2
4a '	-	115.4	-	116.3
4b '	-	125.0	-	125.8
5 ′	9.27 (s)	159.0	9.25 (s)	109.7
6'	-	147.7	-	148.5
7'	-	145.2	-	146.0
8'	7.21 (s)	111.3	7.19 (s)	112.2
8a '	-	127.1	-	128.1
9'	7.37 (d, <i>J</i> = 9.2 Hz)	127.0	7.36 (d, J = 9.2 Hz)	127.9
10'	6.92 (d, J = 9.2 Hz)	122.5	6.93 (d, J = 9.2 Hz)	123.3
10a ′	-	134.6	<u> </u>	135.4
MeO-4	4.25 (s)	55.3	4.23 (s)	55.6
MeO-6	4.09 (s)	55.2	4.07 (s)	56.0
MeO-4'	4.25 (s)	55.3	4.23 (s)	56.1
MeO-6'	4.09 (s)	55.2	4.07 (s)	56.0

จุฬาลงกรณมหาวิทยาลัย

Chulalongkorn University

2.8. Identification of compound AF8

Compound AF8 was obtained as a white amorphous solid. The molecular formula was determined as $C_{22}H_{26}O_8$ suggested by negative molecular ion [M-H]⁻ at m/z 417.1558 (calcd. 417.1549) in the HRESIMS (Figure 74). The ¹H-NMR spectrum of AF8 (Figure 75 and Table 11) showed 1 sharp single proton in aromatic region at $\delta_{\rm H}$ 6.68 (4H, s, H-2, H-2', H-6, H-6'). two pairs of methine proton at $\delta_{\rm H}$ 6.68 (2H, m, H-8, H-8') and $\delta_{\rm H}$ 4.67 (2H, d, J = 4.0 Hz, H-7, H-7'). two pairs of methylene proton at $\delta_{\rm H}$

4.22 (2H, dd, J = 9.2, 6.8 Hz, Ha-9, Ha-9') and $\delta_{\rm H}$ 3.84 (2H, Hb-9, Hb-9'). Four methoxy groups were suggested by a sharp single proton at $\delta_{\rm H}$ 3.83 (12H, d, MeO-3, MeO-3', MeO-5, and MeO-5'). The ¹³C-NMR spectra and HSQC correlation of AF8 (Figures 76, 77 and Table 11) showed eight resonances including one signal methoxy groups, two methine carbon, three quaternary carbon and two signals oxygenated carbon at C-7/7' ($\delta_{\rm C}$ 86.8) and C-9/9' ($\delta_{\rm C}$ 72.3) that indicated the presence of a diepoxylignan skeleton (59) with two pairs of methoxy groups symmetrically in each ring.

The HMBC correlation of AF8 (Figure 78) revealed a correlation of C-7/7' (δ_c 86.8) to Ha-9/9', Hb-9/9', H-2/2' and H-6/6'. The positioning of the methoxy group was identified with correlation proton MeO-3/3' and MeO-5/5' to C-3/3' (δ_c 148.6) and C-5/5' (δ_c 146.8), respectively. This positioning was supported by the NOESY correlation of AF8 (Figure 79) which showed a correlation between H-2 to proton MeO-3 and H-6 to proton MeO-5.

From the above data NMR spectra identified that AF8 was syringaresinol. This compound was previously isolated from *Magnolia thailandica* (60) and in several *Dendrobium* such as *D. nobile*, *D. scundum*, and *D. heterocarpum* (53, 61, 62)

Syringaresinol [39]

Position	AF8 (acetone- d_6)		Syringaresinol (CDCl ₃) (53)	
	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ	$oldsymbol{\delta}_{ extsf{H}}$ (mult., J in Hz)	δ
1	-	113.2	-	132.1
2	6.68 (s)	104.4	6.59 (s)	102.8
3	-	148.6	-	147.2
4	-	136.2	-	134.4
5		148.6	-	147.2
6	6.68 (s)	104.4	6.59 (s)	102.8
7	4.67 (d, <i>J</i> = 4.0 Hz)	86.8	4.73 (d, J = 4.3 Hz)	86.0
8	3.09 (m)	55.3	3.10 (m)	54.3
9a	4.22 (dd, J = 9.2, 6.8 Hz)	72.3	4.28 (dd, J = 8.8, 6.4 Hz)	71.8
9b	3.84	72.3	3.92	71.8
1′		113.2	-	132.1
2′	6.68 (s)	104.4	6.59 (s)	102.8
3'		148.6	-	147.2
4'	จุห <u>า</u> สงกรณ์มห	136.2	าสัย	134.4
5 ′	GHULALONGKORN	148.6	<u></u>	147.2
6'	6.68 (s)	104.4	6.59 (s)	102.8
7'	4.67 (d, J = 4.0 Hz)	86.8	4.73 (d, J = 4.3 Hz)	86.0
8'	3.09 (m)	55.3	3.10 (m)	54.3
9'a	4.22 (dd, J = 9.2, 6.8 Hz)	72.3	4.28 (dd, J = 8.8, 6.4 Hz)	71.8
9'b	3.84	72.3	3.92	71.8
MeO-3	3.83 (s)	56.6	3.89 (s)	56.4
MeO-5	3.82 (s)	56.6	3.89 (s)	56.4

 Table 11 NMR spectral data of compound AF8 and Syringaresinol

MeO-3'	3.83 (s)	56.6	3.89 (s)	56.4
MeO-5'	3.82 (s)	56.6	3.89 (s)	56.4

2.9. Identification of compound AF9

Compound AF9 was obtained as a brown amorphous solid. Molecular formula C₁₈H₁₉NO₄ was suggested by HRESIMS of AF9 (Figure 81) in negative molecular ion [M-H]⁻ at *m/z* 312.1232 (calcd. 312.1235). The ¹H-NMR spectra of AF9 (Figure 82 and Table 12) showed five aromatic proton signals at $\delta_{\rm H}$ 7.15 (d, *J* = 2.0 Hz, H-2), 6.83 (d, *J* = 8.0 Hz, H-5), 7.03 (dd, *J* = 8.0 Hz, 2.0 Hz, H-6), 7.06 (d, *J* = 8.4 Hz, H-2', H-6'), 6.75 (d, *J* = 8.4 Hz, H-3', H-5'), Proton vicinal coupling trans position at $\delta_{\rm H}$ 7.44 (d, *J* = 15.6 Hz, H-7) and 6.50 (d, *J* = 15.6 Hz, H-8), one proton methoxy group $\delta_{\rm H}$ 3.88 (s), two proton methylene at $\delta_{\rm H}$ 2.74 (t, *J* = 7.6 Hz, H-7') and 3.48 (t, *J* = 7.6 Hz, H-8'). The ¹³C-NMR spectra and HSQC correlation of AF9 (Figures 83, 84, 85, and Table 12) indicated sixteen signals including one signal methoxy group, two signals aliphatic methylene groups, five aromatic signals methine group, five signals aromatic quaternary carbon, two signals double carbon (trans), and a secondary amide.

The HMBC correlation (Figures 86, 87, and 88) showed the correlation of carbon from secondary amide C-9 (δ_{c} 166.3) with H-7, H-8 and H-8' that indicated the presence of phenylpropanoid amide skeleton. The positioning of the methoxy group was obtained from the correlation of C-3 (δ_{c} 149) with proton MeO-3. It was supported by the NOESY correlation (Figure 90) between H-2 and OMe-3.

Through the comparison from the above data spectroscopy, AF9 was known as *trans-n*-feruloytyramine (63). This compound was first isolated from *Cannabis* *sativa* (64). *Trans-n-*feruloytyramine has a synonym as moupinamide and was reported as an anti-inflammatory in vitro study (65).

*trans-n-*feruloytyramine [40]

Table 12 NMR spectral data of compound AF9 and trans-n-feruloytyramine

Position	AF9 (acetone- d_6)		trans-n-feruloytyramine (CD ₃ OD)
			(63)	
	$\delta_{_{ m H}}$ (mult., J in Hz)	δ _c	$\delta_{\rm H}$ (mult., J in Hz)	δ _c
1	0	128.3	-	128.2
2	7.15 (d, J = 2.0 Hz)	111.2	7.13 (d, J = 1.2 Hz)	111.5
3	าหาลงกรณ์	149.0		149.3
4	CHULALONGKO	148.6		149.8
5	6.83 (d, J = 8.0 Hz)	116.0	6.81 (d, J = 8.5 Hz)	116.4
6	7.03 (dd, J = 8.0, 2.0 Hz)	122.5	7.04 (dd, J = 8.5, 1.2 Hz)	123.2
7	7.44 (d, J = 15.6 Hz)	140.2	7.44 (d, <i>J</i> = 15.6 Hz)	142.0
8	6.50 (d, J = 15.6 Hz)	120.0	6.41 (d, J = 15.5 Hz)	118.7
9	-	166.3	-	169.2
1'	-	131.2	-	131.3
2'	7.06 (d, <i>J</i> = 8.4 Hz)	130.5	7.07 (d, J = 8.4 Hz)	130.7
3'	6.75 (d, J = 8.4 Hz)	116.0	6.73 (d, J = 8.4 Hz)	116.2

4'	-	156.7	-	156.9
5'	6.75 (d, <i>J</i> = 8.4 Hz)	116.0	6.73 (d, <i>J</i> = 8.4 Hz)	116.2
6'	7.06 (d, <i>J</i> = 8.4 Hz)	130.5	7.07 (d, <i>J</i> = 8.4 Hz)	130.7
7'	2.74 (t, J = 7.6 Hz)	35.0	2.76 (t, J = 7.5 Hz)	35.8
8'	3.48 (t, J = 7.6 Hz)	41.9	3.47 (t, <i>J</i> = 7.5 Hz)	42.5
MeO-3	3.88 (s)	56.2	3.85 (s)	56.4

2.10. Identification of compound AF10

Compound AF10 was obtained as a white amorphous solid. Molecular formula $C_{17}H_{17}NO_3$ was suggested by HRESIMS of AF9 (Figure 91) in negative molecular ion [M-H] at *m/z* 282.1124 (calcd. 282.1130). The ¹H-NMR spectra of AF10 (Figure 92, 93 and Table 13) showed the presence of four signals aromatic proton at δ_H 7.41 (d, J = 8.0 Hz, H-2, H-6), 6.84 (d, J = 8.4 Hz, H-3, H-5), 7.05 (d, J = 8.4 Hz, H-2', H-6'), 6.75 (d, J = 8.4 Hz, H-3', H-5'), Proton vicinal coupling trans position at δ_H 7.45 (d, J = 15.6Hz, H-7) and 6.47 (d, J = 15.6 Hz, H-8), and two proton methylene at δ_H 2.74 (t, J =7.2 Hz, H-7') and 3.45 (t, J = 7.2 Hz H-8'). The ¹³C-NMR spectra and HSQC correlation of AF9 (Figures 94, 95, 96, and Table 13) indicated thirteen signals including, two signals for aliphatic methylene groups, four aromatic signals for methine group, four signals for aromatic quaternary carbon, two signals for double carbon (trans), and a secondary amide. The data ¹H and ¹³C-NMR indicated that AF10 is the same skeleton as AF9 without the methoxy group.

The HMBC correlation (Figures 98 and 100) revealed the correlation between carbon secondary amides C-9 ($\delta_{\rm H}$ 166.4) with proton H-7, H-8, and H-8[']. The

correlation of C-7' (35.7) to proton aromatic H-6' and H-2' (Figure 99) and the correlation C-7 (140.0) to another proton aromatic H-2 and H-6 was supported the phenylpropanoid amides skeleton.

Based on the above data NMR suggested that AF10 is *trans-n-*coumaroyl tyramine (63). It is a known compound and was isolated from *Capsicum annum*, *Dendrobium devonianum* and *Dendrobium moliniforme* (66, 67, 68). *Trans-n-*coumaroyl tyramine has the trivial name as paprazine and this constituent was reported as $\mathbf{\alpha}$ -glucosidase inhibitory activity and acetylcholinesterase (AChE) inhibitory activity (69, 70).

จุหาลงกรณ์มหาวิทยาลัย

	1			
Position	AF10 (acetone- d_6)		trans-n-coumaroyltyramine	
			(CD ₃ OD) (63)	
	$\delta_{_{\sf H}}$ (mult., J in Hz)	δ _c	$\delta_{_{\sf H}}$ (mult., J in Hz)	δ _c
1	-	127.8	-	127.7
2	7.41 (d, J = 8.0 Hz)	130.1	7.41 (d, J = 8.4 Hz)	130.5
3	6.84 (d, J = 8.4 Hz)	116.5	6.80 (d, J = 8.4 Hz)	116.2
4	-	160.0	-	160.5
5	6.84 (d, J = 8.4 Hz)	116.5	6.80 (d, J = 8.4 Hz)	116.2

Table 13 NMR spectral data of compound AF10 and trans-n-coumaroyltyramine

6	7.41 (d, J = 8.0 Hz)	130.1	7.41 (d, J = 8.4 Hz)	130.5
7	7.45 (d, J = 15.6 Hz)	140.0	6.38 (d, J = 15.5 Hz)	141.8
8	6.47 (d, J = 15.6 Hz)	119.7	7.44 (d, J = 15.5 Hz)	118.4
9	-	166.4	-	169.2
1'	-	131.1	-	131.3
2′	7.05 (d, J = 8.4 Hz)	130.5	7.06 (d, J = 8.6 Hz)	130.7
3'	6.75 (d, J = 8.4 Hz)	116.0	6.73 (d, <i>J</i> = 8.6 Hz)	116.7
4'		156.7	-	156.9
5'	6.75 (d, <i>J</i> = 8.4 Hz)	116.0	6.73 (d, <i>J</i> = 8.6 Hz)	116.7
6'	7.05 (d, J = 8.4 Hz)	130.5	7.06 (d, J = 8.6 Hz)	130.7
7'	2.74 (t, J =7.2 Hz)	35.7	2.75 (t, J = 7.5 Hz)	35.8
8'	3.45 (t, <i>J</i> =7.2 Hz)	41.9	3.46 (t, J = 7.5 Hz)	42.5

2. Anti-neuroinflammatory activity of compounds from Aerides falcata

V (I accession) V

The isolated compounds that have sufficient weight (more than 1 mg) were evaluated for anti-neuroinflammatory activity following LPS-induced BV-2 microglia cells. the inhibition of NO from aerifalcatin [**35**] (IC₅₀ value of 0.87 ± 0.45 μ M), 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [**36**] (IC₅₀ value of 2.47 ± 0.73 μ M), agrostonin [**32**] (IC₅₀ value of 2.55 ± 0.32 μ M), and syringaresinol [**39**] (IC₅₀ value of 1.40 ± 0.17 μ M) showed strong activity when compared with positive control minocycline (IC₅₀ value of 3.41± 0.30 μ M). the IC₅₀ values were higher than the positive control shown from phenanthrene denthyrsinin [**3**] (IC₅₀ value of 8.99 ± 0.91 μ M); 2,4-dimethoxy-3,7-dihydroxyphenanthrene [**37**] (IC₅₀ value of 21.92 ± 3.70 μ M)], *n*-

eicosyl-*trans*-ferulate [**38**] (IC₅₀ value of 19.76 \pm 1.36 μ M), and *n*-*trans*-feruloytyramine [**40**] (IC₅₀ value of 18.62 \pm 9.56 μ M). (Table 14).

Table14 Effects of Aerides falcata constituents on LPS-stimulated NOrelease in BV-2 microglial cells.

Compound	IC $_{50}$ (mean \pm SD) (µM)
Aerifalcatin [35]	0.87 ± 0.45
n-eicosyl-trans-ferulate [38]	19.76 \pm 1.36
Denthyrsinin [3]	8.99 ± 0.91
2,4-dimethoxy-3,7-dihydroxyphenanthrene [4]	12.56 ± 1.30
2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36]	2.47 ± 0.73
3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37]	21.92 ± 3.70
Agrostonin [32]	2.55 ± 0.32
Syringaresinol [39]	1.40 ± 0.17
trans-n-feruloytyramine [40]	18.62 ± 9.56
Minocycline	3.41 ± 0.30

The cytokine levels were obtained for the active compounds that showed lower inhibition of NO compared to positive control minocycline. Aerifalcatin [35], 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36], agrostonin [32], and syringaresinol [39] significantly reduce the expression of proinflammatory cytokines, TNF- α , and IL-6 in activated microglia, suggesting their potential as anti-neuroinflammatory agents (Figure 6). These active compounds can reduce cytokine levels along with increasing the concentration. Aerifalcatin [35] was performed as the most potent compound because it reduced significantly (p > 0.001, LPS vs low concentration) at both TNF- α , and IL-6. Whereas 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36] reduces significantly both cytokine levels (p > 0.001, at LPS vs middle concentration), agrostonin [32] reduces significantly TNF- α levels (p > 0.05, at LPS vs middle

concentration) and IL-6 levels (p > 0.001, at LPS vs low concentration), and syringaresinol [**39**] reduces significantly TNF- α levels (p > 0.01, at LPS vs middle concentration) and IL-6 levels (p > 0.01, at LPS vs low concentration)

Aerifalcatin [35]

Data are presented as mean \pm SD, n = 3. ^{###} p < 0.01, control (0.5% DMSO) vs. LPS groups. *p < 0.05, **p < 0.01, ***p < 0.01, LPS vs compound-treated groups. Statistical difference between groups was analyzed using one-way ANOVA followed by Bonferroni post hoc test.

CHAPTER V

CONCLUSION

In this study, ten compounds were isolated from *Aerides falcata*, including a new compound called aerifalcatin [35] and nine known compounds, namely n-eicosyltrans-ferulate [39], denthyrsinin [3], 2,4-dimethoxy-3,7-dihydroxyphenanthrene [4], 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36], 3,7-dihydroxy-2,4,6trimethoxyphenanthrene [37], agrostonin [32], syringaresinol [38], trans-nferuloytyramine [40], and trans-n-coumaroyltyramine [41]. All these isolated compounds were evaluated for anti-neuroinflammatory activity except trans-ncoumaroyltyramine due to lack of weight. The neuroinflammatory modulator, Minocycline, was performed for comparison as a positive control. In vitro testing on LPS-induced BV2 microglia cells was performed to evaluate their potential as antineuroinflammatory agents. Four compounds, including aerifalcatin [35], 2,7dihydroxy-3,4,6-trimethoxyphenanthrene [36], agrostonin [32], and syringaresinol [39], showed strong activity in inhibiting the production of NO, although their potency was lower than that of minocycline, the positive control. These active compounds were further tested for their ability to inhibit proinflammatory cytokines TNF- α and IL-6 and were found to significantly reduce their expression in activated microglia, indicating their potential as anti-neuroinflammatory agents. Additionally, these active compounds were found to reduce cytokine levels while increasing their concentration.

In summary, this study investigated the chemical and biological properties of secondary metabolites found in *Aerides falcata*. The findings on the compounds' effects on neuroinflammatory activity can be beneficial in developing new anti-neuroinflammatory drugs from natural sources in the future

REFERENCES

Chulalongkorn University

- 1. Barcelos IP, and Troxell RM, Graves JS. Mitochondrial dysfunction and multiple sclerosis. Biology (Basel). 2019;8(2):37
- 2. Li T, Lu L, Pember E, Li, X, Zhang B, and Zhu Z. New insights into neuroinflammation involved in pathogenic mechanism of Alzheimer's disease and its potential for therapeutic intervention. Cells. 2022; 11(12):1925
- 3. Kwon HS, and Koh SH. Neuroinflammation in neurodegenerative disorders: the roles of microglia and astrocytes. Translational Neurodegeneration. 2020;9(1):42.
- 4. Gao P, Tang S, Chen H, Zhou X, Ou Y, Shen R, and He Y. Preconditioning increases brain resistance against acute brain injury via neuroinflammation modulation. Experimental Neurology. 2021;341:113712
- 5. Serna-Rodriguez MF, Bernal-Vega S, de la Barquera JAO, Camacho-Morales A, and Perez-Maya AA. The role of damage associated molecular pattern molecules (DAMPs) and permeability of the blood-brain barrier in depression and neuroinflammation. Journal of Neuroimmunology. 2022;371:577951.
- 6. Zhu X, Huang HH, and Zhao L. PAMPs and DAMPs as the bridge between periodontitis and atherosclerosis: the potential therapeutic targets. Frontiers in Cell Development Biology. 2022;10:856118.

- 7. Jäkel S, and Dimou, L. Glial cells and their function in the adult brain: a journey through the history of their ablation. Frontiers in Cellular Neuroscience 2017;11:24.
- 8. Cho IKH. Microglia and macrophages in central nervous systems. Recent Advancements in Microbial Diversity Academic press; 2022. p. 185-208.
- 9. Szepesi Z, Manouchehrian O, Bachiller S, and Deierborg T. Bidirectional Microglia-Neuron communication in health and disease. Frontier in Cellular Neuroscience. 2018;12:323.
- Donnelly C, Chen O, and Ji R. How do sensory neurons sense danger signals?
 Trends in Neurosciences. 2020;43(10):822-838.
- 11. Jurga AM, Paleczna M, and Kuter KZ. Overview of general and discriminating markers of differential microglia phenotypes. Frontiers in Cellular Neuroscience. 2020;14:198.
- 12. Cai Z, Hussain MD, and Yan LJ. Microglia, neuroinflammation, and betaamyloid protein in Alzheimer's disease. International Journal of Neuroscience. 2014;124(5):307-321.
- Harukawa K, Ikegami A, Tachibana Y, Ohno N, Konishi H, Hashimoto A, Matsumoto M, Kato D, Ono R, Kiyama H, Moorhouse AJ, Nabekura J, and Wake H. Dual microglia effects on blood-brain barrier permeability induced by systemic inflammation. Nature Communications. 2019;10:5816.

- 14. Kaur N, Chugh H, Sakharkar MK, Dhawan U, Chidambaram SB, and Chandra R. Neuroinflammation mechanisms and phytotherapeutic intervention: a systematic review. ACS Chemical Neuroscience. 2020;11(22):3707-31.
- Kolliker-Frers R, Udovin L, Otero-Losada M, Kobiec T, Herrera MI, Palacios J, et al. Neuroinflammation: an integrating overview of reactive-neuroimmune cell interactions in health and disease. Mediators of Inflammation. 2021;2021:9999146.
- Werneburg S, Jung J, Kunjamma RB, Ha S, Luciano NJ, Willis CM, Gao G,
 Biscola NP, Havton LA, Crocker SJ, Popko B, Reich DS, and Schafer DP.
 targeted complement inhibition at synapses prevents microglial synaptic
 engulfment and synapse loss in demyelinating disease. Immunity. 2019;52
 (1):167-182.
- 17. Mathew E, Kim E, and Zempsky W. Pharmacologic treatment of pain. Seminars in Pediatric Neurology. 2016;23(3):209-219.
- Ajmone-Cat MA, Bernardo A, Greco A, and Minghetti L. Non-steroidal antiinflammatory drugs and brain inflammation: effects on microglial functions.
 Pharmaceuticals (Basel). 2010;3(6):1949-1965.
- 19. Boettger MK, Weber K, Gajda M, Bräuer R, and Schaible H. Spinally applied ketamine or morphine attenuates peripheral inflammation and hyperalgesia in acute and chronic phases of experimental arthritis. Brain, Behavior, immunity. 2010;24(3):474-485.

- 20. Auriel E, Regev K, and Korczyn AD. Nonsteroidal anti-inflammatory drugs exposure and the central nervous system. Handbook of Clinical Neurology. 2014;119:577-584.
- 21. Mohamed HM, and Mahmoud AM. Chronic exposure to the opioid tramadol induces oxidative damage, inflammation and apoptosis, and alters cerebral monoamine neurotransmitters in rats. Biomedicine & Pharmacotheraphy. 2019;110:239-247.
- 22. Djordjević V, and Tsiftsis, S The Role of ecological factors in distribution and abundance of terrestrial orchids. In: Merillon J, Kodja, H, editor. Orchids Phytochemistry, Biology and Horticulture: Springer; 2019. p. 1-71.
- 23. Kirillova IA, Dubrovskiy YA, and Novakovskiy AB. Ecological and habitat ranges of orchids in the northernmost regions of their distribution areas: A case study from Ural Mountains, Russia. Plant Diverersity. 2022;4(2):211-218.
- 24. Hossain MM. Therapeutic orchids: traditional uses and recent advances--an overview. Fitoterapia. 2011;82(2):102-140.
- 25. Gantait S, Das A, Mitra M, and Chen J. Secondary metabolites in orchid: Biosynthesis, medicinal uses, and biotechnology. South African Journal of Botany. 2021;139:338-351.
- 26. Thant MT, Sritularak B, Chatsumpun N, Mekboonsonglarp W, Punpreuk Y, and Likhitwitayawuid K. Three novel biphenanthrene derivates and a new

phenylpropanoid ester from *Aerides multiflora* and their α -glucosidase inhibitory activity. Plants. 2021;10:385-399.

- 27. Lv S, Fu Y, Chen J, and Chen S. Six phenanthrenes from the roots of *Cymbidium faberi* Rolfe. and their biological activities. Natural Product Research. 2020;5(36):1170-1181.
- 28. Schuster R, Zeindl L, Holzer W, Khumpirapang N, Okonogi S, Viernstein H, and Mueller M. *Eulophia macrobulbon* is an orchid with significant antiinflammatory and antioxidant effects and anticancerogenic potential exerted by its root extract. Phytomedicine. 2016; 24(2017):157-165.
- 29. Simmler C, Antheaume C, and Lobstein A. Antioxidant biomarkers from Vanda coerulea stems reduce irradiated HaCaT PGE-2 production as a result of COX-2 inhibition. PLoS One. 2010;5(10):1-9.
- 30. Hasriadi, Wasana PWD, Sritularak B, Vajragupta O, Rojsitthisak P, and Towiwat P. Batatasin III, a Constituent of *Dendrobium scabrilingue*, Improves Murine Pain-like Behaviors with a Favorable CNS Safety Profile. Journal of Natural Product. 2022;85(7):1816-1825.
- 31. Li B, Liu H, Zhang D, Lai X, Liu B, Xu X, et al. Three new bioactive phenolic glycosides from *Liparis odorata*. Natural Product Research. 2014;28(8):522-529.
- 32. Timmerman R, Burm SM, and Bajramovic JJ An overview of in vitro method to study microglia. Frontiers in Cellular Neuroscience. 2018;12:242.

- 33. Stansley B, Post J, and Hensley K. A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. Journal of Neuroinflammation. 2012;9:115.
- 34. Pant B. Medicinal orchids and their uses: Tissue culture a potential alternative for conservation. African Journal of Plant Science 2013;7(10):448-467.
- 35. Lawler LJ. Ethnobotany of the Orchidaceae. Arditti J, editor. Ithaca: Cornell University Press; 1984.
- Gutiérrez RMP. Orchids: A review of uses in traditional medicine, its phytochemistry and pharmacology. Journal of Medicinal Plants Research. 2010;4(8):592-638.
- 37. Kocyan A, Vogel EF, Conti E, and Gravendeel B. Molecular phylogeny of *Aerides* (Orchidaceae) based on one nuclear and two plastid markers: a step forward in understanding the evolution of the Aeridinae. Molecular Phylogenetics and Evolution. 2008;48(2):422-443.
- 38. Smith MJ, Brodie C, Kowalczyk J, Michnowicz S, McGough HL, and Roberts JA. Cites orchid checklist, for the genera: *Aerides, Coelogyne, Comparettia* and *Masdevallia*. Kew: Royal Botanica Gardens; 2006.
- 39. Katta J, Rampilla V, and Khasim SM. A study on phytochemical and anticancer activities of epiphytic orchid *Aerides odorata* Lour. European Journal of Medicinal Plant. 2019; 28(23):1-21.

- 40. Sopalun K, and Lamtham S. Isolation and screening of extracellular enzymatic activity endophytic fungi isolated from thai orchids. South African Journal of Botany. 2020;134:273-279.
- 41. Teoh ES. Medicinal orchid in Asia: Springer; 2016.
- 42. Averyanov LV, Truong BV, Nguyen VC, Nguyen KS, and Maisak TV. New orchids (Orchidaceae) in the flora of Vietnam II. Vandeae. Taiwania. 2019;64(3):285-98.
- 43. Motes M, Leon MDL, Cootes J, and Cabactulan D. A spectacular new species of *Aerides* (Orchidaceae) from the Philippines. Orchideen Journal. 2020;8(1):16.
- 44. Anuradha V, and Rao NP. Aeridin: A phenanthopyran from *Aerides crispum*. Phytochemistry. 1998;48(1):602-606.
- 45. Cakova V, Urbain A, Antheaume C, Rimlinger N, Wehrung P, Bonté F, and Lobstein A. Identification of phenanthrene derivatives in *Aerides rosea* (Orchidaceae) using the combined system HPLC-ESI-RMS/MS and HPLC-DAD-MS-SPE-UV-NMR. Phytochemical Analysis. 2015;26(1):34-39.
- 46. Thant MT, Chatsumpun N, Mekboonsonglarp W, Sritularak B, and Likhitwitayawuid K. New fluorene derivatives from *Dendrobium gibsonii* and their **α**-glucosidase inhibitory activity. Molecules. 2020;25(21):4931.

- 47. Liu L, Yin QM, Zhang XW, Wang W, Dong XY, Yan X, and Hu R. Bioactivityguided isolation of biphenanthrenes from *Liparis nervosa*. Fitoterapia. 2016;115:15-18.
- 48. Baldé AM, Claeys M, Pieters LA, Wray V, and Vlietinck AJ. Ferulic acid esters from stem bark of *Pavetta owariensis*. Phytochemistry. 1991;30(3):1024–1026.
- 49. Rwegoshora F, Mabiki F, Machumi F, Chacha M, Styrishave B, and Cornett C. Isolation and toxicity evaluation of feruloyl ester and other triterpenoids from *Synadenium glaucescens* Pax. The Journal of Phytopharmacology. 2022;11(5):347–352.
- 50. San HT, Boonsnongcheep P, Putalun W, Mekboonsonglarp W, Sritularak B, and Likhitwitayawuid K. **α**-Glucosidase inhibitory and glucose uptake stimulatory effects of phenolic compounds from *Dendrobium christyanum*. Natural Product Communications. 2020;15(3).
- 51. Chang SJ, Lin TH, and Chen CC. Constituents from the stems of *Dendrobium clavatum* var. *aurantiacum*. Journal Chinese Medicine. 2001;12(3):211–218.
- 52. Woo KW, Park JE, Choi SU, Kim KH, and Lee KR. Phytochemical constituents of *Bletilla striata* and their cytotoxic activity. Natural Product Sciences. 2014;20(2):91–94.
- 53. Ono M, Ito Y, Masuoka C, Koga H, and Nohara T. Antioxidative constituents from *Dendrobii Herba* (Stems of *Dendrobium* spp.). Food Science and Technology. 1995;1(2):15-20.

- 54. Wu YP, Liu WJ, Zhong WJ, Chen YJ, Chen DN, He F, and Jiang L. Phenolic compounds from the stems of *Flickingeria fimbriata*. Natural Product Research. 2017 31(13):1518–1522.
- 55. Jiangmiao Hu WF, Fawu Dong, Zehong Miao, Jun Zhou. Chemical components of *Dendrobium chrysotoxum*. Chinese Journal of Chemistry. 2012;30(6):1327– 1330.
- 56. Apel C, Dumontet V, Lozach O, Meijer L, Guéritte F, and Litaudon M Phenanthrene derivatives from *Appendicula reflexa* as new CDK1/cyclin B inhibitors. Phytochemistry Letters. 2012;5(4):814–818.
- 57. Letcher RM, and Nhamo LRM. Chemical constituents of the combretaceae. Part III. Substituted phenanthrenes, 9,10-dihydrophenanthrenes, and bibenzyls from the heartwood of *Combretum psidioides*. Journal of the Chemical Society, Perkin Transactions 1. 1972: 2941-2946
- 58. Majumder PL, Banerjee S, Lahiri S, Mukhoti N, and Sen S. Dimeric phenathrenes from two *Agrostophyllum species*. Phytochemistry. 1998;47(5):855–860.
- 59. Susilawati S, Matsjeh S, Pranowo HD, and Anwar C. Macronone, a novel diepoxylignan from bark of mahkota dewa (*Phaleria macrocarpa* (Scheff.) Boerl.) and its antioxidant activity. Indonesian Journal of Chemistry. 2012;12(1):62-69.

- 60. Monthong W, Pitchuanchom S, Nuntasaen N and Pompimon W. (+)-Syringaresinol lignan from new species *Magnolia Thailandica*. American Journal of Applied Sciences. 2011;8(12):1268–1271.
- 61. Sritularak B, Duangrak N, and Likhitwitayawuid K. A New Bibenzyl from *Dendrobium secundum*. Zeitschrift fur Naturforschung. 2011;66(5-6):205-208.
- 62. Warinhomhoun S, Khine HEE, Sritularak B, Likhitwitayawuid K, Miyamoto T, Tanaka C, Punsawad C, Punpreuk Y, Sungthong R, and Chaotham C. Secondary metabolites in the *Dendrobium heterocarpum* methanolic extract and their impacts on viability and lipid storage of 3t3-l1 pre-adipocytes. Nutrients. 2022;14(14):2886.
- Al-Taweel AM, Perveen S, El-Shafae AM, Fawzy GA, Malik A, Afza N, and Iqbal
 L, Latif M. Bioactive phenolic amides from *Celtis africana*. Molecules.
 2012;17(3):2675–2682.

หาลงกรณ์มหาวิทยาลัย

- 64. Yamamoto I, Matsunaga T, Kobayashi H, Watanabe K, and Yoshimura H. Analysis and pharmacotoxicity of feruloyltyramine as a new constituent and p-coumaroyltyramine in *Cannabis sativa* L. Pharmacology Biochemistry and Behavior. 1991;40(3):465–469.
- 65. Aswad M, Rayan M, Abu-Lafi S, Falah M, Raiyn J, Abdallah Z, and Rayan A. Nature is the best source of anti-inflammatory drugs: indexing natural products for their anti-inflammatory bioactivity. Inflammation Research. 2018;67(1):67–75.

- 66. Chen CY, Yeh YT, and Yang WL. Amides from the Stem of *Capsicum annuum*. Natural Product Communications 2011;6(2):227-226.
- 67. Sun J, Zhang F, Yang M, Zhang J, Chen L, Zhan R, Li L, and Chen Y. Isolation of **α**-glucosidase inhibitors including a new flavonol glycoside from *Dendrobium devonianum*. Natural Product Research. 2014;28(21):1900–1905.
- 68. Zhao N, Yang G, Zhang Y, Chen L, and Chen Y. A new 9,10dihydrophenanthrene from *Dendrobium moniliforme*. Natural Product Research. 2016;30(2):174–179.
- 69. Kim DK, and Lee K. Inhibitory effect of *trans-n-p*-coumaroyl tryamine from the twigs of *Celtis chinensis* on the acetylcholinesterase. Archives of Pharmacal Research 2003;26(9):735–738.
- Nishioka T, Watanabe J, Kawabata J, and Niki R. Isolation and Activity of *n-p*coumaroyltyramine, an **α**-glucosidase inhibitor in welsh onion (*Allium fistulosum*). Bioscience, Biotechnology, and Biochemistry. 1997;61(7):1138– 1141

Data compound AF1

Figure 9 UV spectrum of compound AF1

Figure 11 ¹H-NMR (400 MHz) spectrum of compound AF1

Figure 14 HSQC spectrum of compound AF1 (3.99-4.30 ppm and 53-58 ppm)

AF36

Figure 15 HSQC spectrum of compound AF1 (6.8-9.3 ppm and 99-129 ppm)

Figure 17 HMBC spectrum of compound AF1 (7.24-7.42 ppm and 133-139 ppm)

Figure 19 NOESY spectrum of compound AF1 (1-9.5 ppm and 1-9.5 ppm)

Figure 20 NOESY spectrum of compound AF1 (6.7-9.4 ppm and 3.8-4.6 ppm)

Figure 21 NOESY spectrum of compound AF1 (7.28-7.38 ppm and 7.10-7.28 ppm)

Figure 25 ¹H-NMR spectrum (400 MHz) of compound AF2 (0 - 2 ppm)

Figure 27 HSQC spectrum of compound AF2 (0-8 ppm and 0-145 ppm)

Figure 29 HMBC spectrum of compound AF2 (3.8-8.2 ppm and 20-170 ppm)

AF3 4 1 D:\Boonchoo\data\root\nmr

Figure 31 HMBC spectrum of compound AF2 (4.07-4.28 ppm and 22-37 ppm)

Figure 33 COSY spectrum of compound AF2 (1-10 ppm and 1-10 ppm)

Figure 34 COSY spectrum of compound AF2 (0.7-4.2 ppm and 0.7-4.2 ppm)

Data Compound AF3

Figure 35 Mass spectrum of compound AF3

Figure 37 ¹³C-NMR spectrum (100 MHz) of compound AF3

Figure 39 HMBC spectrum of compound AF3 (7-10 ppm and 104-152 ppm)

Figure 40 HMBC spectrum of compound AF3 (4.4-9.6 ppm and 55-155 ppm)

Figure 43 Mass spectrum of compound AF4

Figure 45 1 H-NMR spectrum (400 MHz) of compound AF4 (2.0-9.5 ppm)

Figure 48 HMBC spectrum of compound AF4 (7.0-10 ppm and 104-158 ppm)

AF-6 7 1

Figure 50 NOESY spectrum of compound AF4 (6.8-9.6 ppm and 6.9-9.6 ppm)

Figure 51 NOESY spectrum of compound AF4 (2.6-10 ppm and 2.9-10 ppm)

AF-6 6 1 D:\Boonchoo\data\root\nmr

Figure 53 Mass spectrum of compound AF5

Figure 57 HMBC spectrum of compound AF5

Figure 59 Mass spectrum of compound AF6

Figure 63 HMBC spectrum of compound AF6

Figure 65 NOESY spectrum of compound AF6

Figure 67¹H-NMR spectrum (400 MHz) of compound AF7

Figure 69 HSQC spectrum of compound AF7 (6.8-9.5 ppm and 95-130 ppm)

Figure 71 HMBC spectrum of compound AF7 (6.8-9.4 ppm and 107-129 ppm)

Figure 72 HMBC spectrum of compound AF7 (4.0-9.6 ppm and 104-162 ppm)

• Data compound AF8

Figure 81 Mass spectrum of compound AF9

Figure 83 ¹³C-NMR spectrum (100 MHz) of compound AF9

Figure 86 HMBC spectrum of compound AF9 (1.8-7.8 ppm and 70-150 ppm)

Figure 87 HMBC spectrum of compound AF9 (6.3-7.6 ppm and 114-170 ppm)

Figure 93 1H-NMR spectrum (400 MHz) of compound AF10 (1-10 ppm)

Figure 95 HSQC spectrum of compound AF10 (1.2-7.8 ppm and 20-140 ppm)

Figure 99 HMBC spectrum of compound AF10 (2.4-8.4 ppm and 112-122 ppm)

Figure 100 HMBC spectrum of compound AF10 (5.8-8.2 ppm and 95-170 ppm)

Figure 101 NOESY spectrum of compound AF10

assay)
TTM)
viability
, cell
Summary
•

				9	- /	/ //8	
0	л С	0.6	1.0	2.7	11.7	4.1	0.0
2/10		13.4	15.3	19.9	44.1	102.2	100.0
lity	N3	13.118475	15.161144	18.157058	31.139355	102.40581	100
centage cell viabil	N2	12.881367	14.364419	18.432219	53.813605	98.008558	100
Perc	N1	14.069038	16.265691	23.012554	47.489542	106.27616	100
Conc.	COMP.1	80	40	20	10	5	0

	US	Ъ,	7.2	4.7	3.5	2.0	3.1	0.0
2	JAV	D \ X	77.6	122.7	109.2	101.9	6.79	100.0
	lity	N3	84.469503	119.22091	108.50846	103.84418	98.974885	100
	centage cell viabi	N2	78.271729	120.77922	106.14386	96.303697	94.405595	100
	Per	N1	70.189432	128.0658	113.06082	105.68295	100.1994	100
	Conc.	COMP.3	80	40	20	10	5	0

US	л г	0.6	2.6	3.9	5.5	1.9	0.0
AVG		103.1	101.3	99.5	97.3	100.7	100.0
lity	N3	103.61057	101.93424	101.41844	91.166989	98.774984	100
centage cell viabi	N2	102.46741	98.417132	95.018622	98.836127	102.51397	100
Per	N1	103.19423	103.50335	101.95775	101.85471	100.82432	100
Conc.	COMP.2	80	40	20	10	5	0

	Ì				
Conc.	Pei	rcentage cell viabil	ity	5/10	G
COMP.4	N1	N2	N3		л Л
80	69.684843	71.974522	68.421053	70.0	1.8
40	97.69885	88.535032	102.08442	96.1	6.9
20	92.696349	97.361238	105.26316	98.4	6.4
10	107.55378	102.00182	105.00261	104.9	2.8
5	109.2046	102.72975	95.049505	102.3	7.1
0	100	100	100	100.0	0.0

SD		2.7	5.7	3.1	3.6	3.6	0.0		G	2	8.3	2.8	4.3	4.4	0.5
AVG		84.9	98.6	99.2	103.0	100.7	100.0		2/14		58.1	73.7	7.9.7	86.1	98.1
lity	N3	82.04698	95.637584	97.818792	104.19463	101.67785	100		ity	N3	62.900774	71.054578	74.782031	81.654523	97.612683
centage cell viabil	N2	87.389356	105.10694	102.81407	105.78437	103.80417	100		centage cell viabil	NZ	62.885111	76.58465	81.473032	90.525592	98.552194
Per	N1	85.253849	94.931313	97.051138	98.940548	96.728556	100	Q	Perc	N1	48.4411	73.393678	82.750894	86.124585	98.155292
Conc.	COMP.6	80	40	20	10	5	0		Conc.	COMP.8	80	40	20	10	5
				J	1			1016			6				
SD		0.2	1.4	4.1	5.5	3.0	0.0		US	Dr.	8.6	7.3	9.1	2.3	4.6
AVG		83.8	85.4	102.3	100.2	102.2	100.0	~~~~~	2/14		32.9	36.9	72.8	94.5	100.7
llity	N3	83.801083	84.93353	102.26489	93.894633	99.162974	100	เ้มหา ORN	È	N3	23.778707	28.958228	70.865257	95.232546	95.526837
rrcentage cell viab	N2	83.562293	86.972999	106.39507	103.22122	105.2108	100		entage cell viabili	N2	41.000026	43.250027	82.750052	96.31256	104.43757
Ре	N1	83.977663	84.321306	98.152921	103.52234	102.27663	100		Perc	N1	33.77193	38.471178	64.912281	91.97995	102.25564

0.0

100.0

0.0

100.0

US	с Г	3.6	1.7	2.6	4.0	3.1	0.0
5/10		117.0	115.6	106.3	102.4	103.1	100.0
lity	N3	114.87696	113.67214	105.867	101.15249	99.528601	100
centage cell viabi	N2	114.87983	116.74585	104.01864	99.138282	104.11433	100
Per	N1	121.16858	116.4751	109.09962	106.84866	105.50766	100
Conc.	EXT. B	80	40	20	10	5	0

						1 2				1.52	
G	20	5.6	2.1	7.3	6.6	2.7	0.0		CD	JC D	8.5
5/10		82.3	100.0	98.5	100.4	0.66	100.0		2/11		125.2
lity	N3	75.903654	98.480932	106.75752	106.8099	101.10011	100	มหา ^ร RN U	lity	N3	117.30769
centage cell viabil	N2	84.880088	102.39834	93.065698	93.534937	95.985406	100		centage cell viabi	N2	124.1677
Pen	N1	86.245445	99.203504	95.698455	100.79671	100.05321	100		Per	N1	134.2361
Conc.	COMP.9	80	40	20	10	5	0		Conc.	EXT. A	80

	G	л Д	3.5	2.1	2.1	5.9	0.6	0.0
			125.2	132.7	123.7	117.6	106.7	100.0
หา ² ง เ	lity	N3	117.30769	134.88248	122.91667	112.12607	97.596154	100
	centage cell viabil	NZ	124.1677	132.70691	122.12688	116.7563	106.98185	100
	Per	N1	134.2361	130.64154	126.10415	123.92384	115.55618	100
	Conc.	EXT. A	80	40	20	10	5	0

Comp.		Р	ercentage cell v	iability (mean ±	SD) (%)	
	Vehicle	5 µM	10 µM	20 µM	40 µM	80 µM
1	100.0 ± 0.0	102.2 ± 4.1	44.1 ±	19.9 ± 2.7***	15.3 ± 1.0***	13.4 ± 0.6***
			11.7***			
2	100.0 ± 0.0	100.7 ± 1.9	97.3 ± 5.5	99.5 ± 3.9	101.3 ± 2.6	103.1 ± 0.6
3	100.0 ± 0.0	97.9 ± 3.1	101.9 ± 5.0	109.2 ± 3.5	122.7 ± 4.7	77.6 ± 7.2***
4	100.0 ± 0.0	102.3 ± 7.	104.9 ± 2.8	98.4 ± 6.4	96.1 ± 6.9	70.0 ± 1.8***
5	100.0 ± 0.0	102.2 ± 3.0	100.2 ± 5.5	102.3 ± 4.1	85.4 ± 1.4***	83.8 ± 0.2***
6	100.0 ± 0.0	100.7 ± 3.6	103.0 ± 3.6	99.2 ± 3.1	98.6 ± 5.7	84.9 ± 2.7***
7	100.0 ± 0.0	100.7 ± 4.6	94.5 ± 2.3	72.8 ± 9.1***	36.9 ± 7.3***	32.9 ± 8.6***
9	100.0 ± 0.0	98.1 ± 0.5 🚄	86.1 ± 4.4**	79.7 ± 4.3***	73.7 ± 2.8***	58.1 ± 8.3***
10	100.0 ± 0.0	99.0 ± 2.7 🖉	100.4 ± 6.6	98.5 ± 7.3	100.0 ± 2.1	82.3 ± 5.6**

 Table 15 Effects of compounds of Aerides falcata on the viability of BV-2 microglial cells.

 Table 16 Effects of extracts of Aerides falcata on the viability of BV-2 microglial

cells

Comp	Percentage cell viability								
comp.	0 μg/mL	5 µg/mL	10 µg/mL	20 µg/mL	40 µg/mL	80 µg/mL			
Ext. EtOAc	100.0 ± 0.0	106.7 ± 9.0	117.6 ± 5.9	123.7 ± 2.1	132.7 ± 2.1	125.2 ± 8.5			
Ext. MeOH	100.0 ± 0.0	103.1 ± 3.1	102.4 ± 4.0	106.3 ± 2.6	115.6 ± 1.7	117.0 ± 3.6			

			Percentae	ge inhibition o	of NO (mean	± SD)		
Comp	0.031 µM	0.063 µM	0.125 µM	0.25 µM	5 µM	10 µM	20 µM	40 µM
	16.9 ± 15.9	49.0 ± 15.6	60.6 ± 11.7	78.4 ± 8.5	90.1 ± 5.1	NA	NA	NA
2	NA	AN	NA	5.9 ± 3.8	20.4 ± 10.2	40.1 ± 5.7	52.4 ± 4.3	60.3 ± 0.8
ŝ	NA	AN	AN	19.4 ± 10.4	27.8 ± 14.6	48.9 ± 2.3	75.6 ± 13.6	94.3 ± 2.3
4	NA	AN	A	14.4 ± 5.5	19.6 ± 6.9	45.2 ± 9.1	58.4 ± 2.3	91.2 ± 4.7
5	NA	NA	31.6 ± 10.5	44.8 ± 6.4	71.8 ± 4.3	84.4 ± 6.6	94.7 ± 3.6	NA
9	NA	NA	AN	4.1 ± 3.0	26.4 ± 7.1	35.6 ± 5.5	43.4 ± 5.4	63.6 ± 5.3
7	NA	7.6 ± 5.0	20.6 ± 5.6	41.8 ± 4.3	83.7 ± 2.3	96.3 ± 2.4	NA	ΝA
Ø	16.7 ± 4.0	26.3 ± 4.0	37.7 ± 5.1	70.8 ± 3.0	91.2 ± 4.9	NA	NA	Ч
6	NA	NA	NA	7.0 ± 7.7	23.3 ± 2.9	53.7 ± 15.5	50.2 ± 12.3	59.2 ± 8.2
Mino	NA	NA	NA	37.7 ± 5.1	56.0 ± 3.3	76.0 ± 6.5	95.7 + 2.1	98.9 ± 1.1

Table 17 Effects of compounds of Aerides falcata on the NO inhibition

Extracts	Percenta	ge inhibition of	NO (mean ± SI))	
LXII dCIS	2.5 µg/mL	5 µg/mL	10 µg/mL	20 µg/mL	40 µg/mL
EtOAc	22.9 ± 21.8	48.7 ± 7.7	78.0 ± 12.1	85.7 ± 6.3	98.2 ± 1.2
MeOH	25.4 ± 10.7	26.7 ± 4.5	56.9 ± 6.5	73.4 ± 1.6	79.0 ± 9.9

Table 18 Effects of extracts of Aerides falcata on the NO inhibition

Table 19 The IC_{50} values of compounds on the NO inhibition.

		. laman	M See	2000		
NO	Treatment	-//	IC ₅₀ (µM)			SD
NO.	rreatment	N1	N2	N3	AVG	30
1	COMP. 1	0.7506	0.4948	1.368	0.87	0.45
2	COMP. 2	18.44	21.16	19.69	19.76	1.36
3	COMP. 3	8.932	8.114	9.933	8.99	0.91
4	COMP. 4	14.05	11.96	11.67	12.56	1.30
5	COMP. 5	1.856	2.266	3.275	2.47	0.73
6	COMP. 6	23.07	24.9	17.78	21.92	3.70
7	COMP. 7 🧃	2.199 50	2.645	2.818	2.55	0.32
8	COMP. 8	1.298	1.596	1.311	1.40	0.17
9	COMP. 9	14.49	11.83	29.55	18.62	9.56
10	MINO	3.15	3.332	3.734	3.41	0.30
11	EtOAc	4.417	5.484	3.898	4.60	0.81
12	MeOH	9.592	7.539	9.902	9.01	1.28

ELISA Assay (determine IL6 levels) •

Compound AF1

Trootmont		OD		Co	onc. (pg/m	L)		SD
neatment	N1	N2	N3	N1	N2	N3	AVG	JU
С	0.096	0.102	0.100	7.67	17.67	14.33	13.222	5.0917508
LPS	0.210	0.200	0.235	197.67	181.00	239.33	206.000	30.046261
LW (+)	0.142	0.149	0.138	84.33	96.00	77.67	86.000	9.2796073
M (+)	0.140	0.121	0.128	81.00	49.33	61.00	63.778	16.015039
H (+)	0.129	0.128	0.123	62.67	61.00	52.67	58.778	5.3575838
Н (-)	0.101	0.105	0.104	16.00	22.67	21.00	19.889	3.4694433
Compound	AF5				5			

Compound AF5

Trastmont		OD		Co	onc. (pg/m	IL)		SD
freatment	N1	N2	N3	N1	N2	N3	AVG	30
С	0.093	0.094	0.107	2.667	4.333	26.000	11.000	13.017083
LPS	0.222	0.215	0.245	217.667	206.000	256.000	226.556	26.15835
LW (+)	0.209	0.209	0.204	196.000	196.000	187.667	193.222	4.8112522
M (+)	0.173	0.171	0.168	136.000	132.667	127.667	132.111	4.1943525
H (+)	0.109	0.112	0.121	29.333	34.333	49.333	37.667	10.40833
Н (-)	0.101	0.098	0.099	16.000	11.000	12.667	13.222	2.5458754

Compound AF7

Trastmont		OD			Conc. (pg/mL)		AVG	SD
neatment	N1	N2	N3	N1	N2	N3		
С	0.106	0.107	0.109	6.500	9.000	14.000	9.833	3.8188131
LPS	0.178	0.18	0.185	186.500	191.500	204.000	194.000	9.0138782
LW (+)	0.133	0.15	0.157	74.000	116.500	134.000	108.167	30.855848
M (+)	0.124	0.13	0.133	51.500	66.500	74.000	64.000	11.456439
H (+)	0.122	0.121	0.128	46.500	44.000	61.500	50.667	9.4648472
Н (-)	0.109	0.11	0.114	14.000	16.500	26.500	19.000	6.6143783

Compound AF8

and Milling

Troatmont		OD			Conc. (pg/mL)		AVG	SD
neathent	N1	N2	N3	N1	N2	N3		
С	0.114	0.116	0.106	26.500	31.500	6.500	21.500	13.228757
LPS	0.187	0.202	0.186	209.000	246.500	206.500	220.667	22.407216
LW (+)	0.161	0.172	0.166	144.000	171.500	156.500	157.333	13.768926
M (+)	0.164	0.15	0.156	151.500	116.500	131.500	133.167	17.559423
H (+)	0.158	0.149	0.151	136.500	114.000	119.000	123.167	11.814539
Н (-)	0.116	0.108	0.115	31.500	11.500	29.000	24.000	10.897247

Marco Samuel

EtOAc extract

Conc. (pg/mL) OD AVG SD Treatment N1 N2 N2 N3 N1 N3 С 0.106 9.1792842 0.097 0.096 24.333 9.333 7.667 13.778 LPS 0.211 0.209 0.219 199.333 196.000 212.667 202.667 8.819171 LW (+) 0.145 0.127 0.129 89.333 59.333 62.667 70.444 16.442943 M (+) 0.12 0.115 0.144 47.667 39.333 87.667 25.837813 58.222 H (+) 0.115 0.132 0.117 39.333 67.667 42.667 49.889 15.485955 Н (-) 0.097 0.096 9.333 1.6666667 0.098 7.667 11.000 9.333

MeOH extract

Trootmont		OD			Conc. (pg/mL)		AVG	SD
heathent	N1	N2	N3	N1	N2	N3		
С	0.117	0.106	0.116	34.000	6.500	31.500	24.000	15.206906
LPS	0.185	0.188	0.199	204.000	211.500	239.000	218.167	18.427787
LW (+)	0.182	0.202	0.192	196.500	246.500	221.500	221.500	25
M (+)	0.177	0.16	0.178	184.000	141.500	186.500	170.667	25.289985
H (+)	0.157	0.161	0.167	134.000	144.000	159.000	145.667	12.583057
Н (-)	0.113	0.107	0.109	24.000	9.000	14.000	15.667	7.6376262

• ELISA Assay (determine TNF-**α** levels)

Compound AF1

Treatment		OD			Conc. (pg/mL)	AVG	SD
rreatment	N1	N2	N3	N1	N2	N3		
С	0.267	0.269	0.298	63.947	65	80.263	69.737	9.1312377
LPS	0.834	0.854	0.808	362.368	372.894	348.684	361.316	12.13954
LW (+)	0.584	0.567	0.578	230.789	221.842	227.631	226.754	4.5377253
M (+)	0.426	0.425	0.421	147.631	147.105	145	146.579	1.3925007
H (+)	0.385	0.365	0.359	126.052	115.526	112.368	117.982	7.165115
Н (-)	0.268	0.247	0.242	64.473	53.421	50.789	56.228	7.2611235
Compound	AF5		1	///				
Trootmont		OD			Conc. (pg/mL)	AVG	SD
Heatment	N1	N2	N3	N1	N2	N3		
С	0.204	0.242	0.216	30.79	50.79	37.11	39.561	10.223721
LPS	0.848	0.85	0.87	369.74	370.79	381.32	373.947	6.4029079
LW (+)	0.719	0.824	0.819	301.84	357.11	354.47	337.807	31.174308
M (+)	0.65	0.687	0.667	265.53	285.00	274.47	275.000	9.7475048
H (+)	0.589	0.516	0.508	233.42	195.00	190.79	206.404	23.492401
Н (-)	0.224	0.259	0.161	41.32	59.74	8.16	36.404	26.137996
Compound	AF7	C	IULALO	DNGKORN	UNIVERSIT	Y		
Trootmont		OD			Conc. (pg/mL)	AVG	SD
Heatment	N1	N2	N3	N1	N2	N3		
С	0.255	0.276	0.269	57.632	68.684	65.000	63.772	5.6277245
LPS	0.773	0.822	0.794	330.263	356.053	341.316	342.544	12.938522
LW (+)	0.767	0.826	0.798	327.105	358.158	343.421	342.895	15.533005
M (+)	0.725	0.636	0.635	305.000	258.158	257.632	273.596	27.19751
H (+)	0.475	0.489	0.404	173.421	180.789	136.053	163.421	23.986377
Н (-)	0.214	0.29	0.223	36.053	76.053	40.789	50.965	21.855312

Compound AF8

Trastmont		OD			Conc. (pg/mL)	AVG	SD
Heatment	N1	N2	N3	N1	N2	N3		
С	0.294	0.293	0.406	78.157895	77.631579	137.10526	97.632	34.186226
LPS	0.841	0.836	0.815	366.05263	363.42105	352.36842	360.614	7.2611235
LW (+)	0.750	0.755	0.756	318.15789	320.78947	321.31579	320.088	1.6918686
M (+)	0.697	0.718	0.630	290.26316	301.31579	255	282.193	24.189541
H (+)	0.575	0.561	0.507	226.05263	218.68421	190.26316	211.667	18.898573
Н (-)	0.295	0.295	0.339	78.684211	78.684211	101.84211	86.404	13.370217

Trootmont		OD		(Conc. (pg/mL)	AVG	SD
freatment	N1	N2	N3	N1	N2	N3		
С	0.249	0.222	0.227	54.473684	40.263158	42.894737	45.877	7.5601619
LPS	0.891	0.8	0.97	392.36842	344.47368	433.94737	390.263	44.773978
LW (+)	0.892	0.88	0.912	392.89474	386.57895	403.42105	394.298	8.5083198
M (+)	0.683	0.778	0.646	282.89474	332.89474	263.42105	293.070	35.837172
H (+)	0.576	0.527	0.544	226.57895	200.78947	209.73684	212.368	13.094585
Н (-)	0.23	0.238	0.292	44.473684	48.684211	77.105263	56.754	17.74967

MeOH extract

Traatmont		OD		(Conc. (pg/mL)	AVG	SD
neatment	N1	N2	N3	N1	N2	N3		
С	0.196	0.233	0.265	26.578947	46.052632	62.894737	45.175	18.173779
LPS	0.746	0.793	0.742	316.05263	340.78947	313.94737	323.596	14.926722
LW (+)	0.74	0.744	0.722	312.89474	315	303.42105	310.439	6.1678582
M (+)	0.737	0.639	0.658	311.31579	259.73684	269.73684	280.263	27.353235
H (+)	0.58	0.612	0.582	228.68421	245.52632	229.73684	234.649	9.4346173
Н (-)	0.219	0.248	0.294	38.684211	53.947368	78.157895	56.930	19.90513

• Statistical data of IL-6 AF1

Ordinary one-way ANOVA

F (DFn, DFd)	1.274 (5, 12)
P value	0.3368
P value summary	ns
Are SDs significantly different (P < 0.05)?	No

Bartlett's test

Bartlett's statistic (corrected)

P value

P value summary Are SDs significantly different (P < 0.05)

ANOVA table

Treatment (between columns) Residual (within columns) Total

Data summary Number of treatments (columns) Number of values (total)

and the second		and a
	SS	DF
////6	73571	5
///////////////////////////////////////	2624	12
	76195	17
	6 18	

MS F (DFn, DFd) P value 14714 F (5, 12) = 67.29 P<0.0001 218.7

Multiple comparison test.

Chulalongkorn University

Number of families Number of comparisons per family Alpha

15 0.05

30

Bonferroni's multiple

comparisons test	Mean Diff.	95.00% CI of diff.	Sig?	Summ Adju	usted P Value	
C vs. LPS	-192.8	-236.8 to -148.7	Yes	****	< 0.0001	A-B
C vs. LW	-72.78	-116.8 to -28.72	Yes	***	0.0009	A-C
C vs. MD	-50.55	-94.61 to -6.499	Yes	*	0.0189	A-D
C vs. H	-45.56	-89.61 to -1.502	Yes	*	0.0398	A-E
C vs. H(-)	-6.667	-50.72 to 37.39	No	ns	>0.9999	A-F
LPS vs. LW	120.0	75.95 to 164.1	Yes	****	< 0.0001	B-C
LPS vs. MD	142.2	98.17 to 186.3	Yes	****	< 0.0001	B-D
LPS vs. H	147.2	103.2 to 191.3	Yes	****	< 0.0001	B-E

LPS vs. H(-)	186.1	142.1 to 230.2	Yes	****	< 0.0001	B-F		
LW vs. MD	22.22	-21.83 to 66.28	No	ns	>0.9999	C-D		
LW vs. H	27.22	-16.83 to 71.27	No	ns	0.6546	C-E		
LW ∨s. H(-)	66.11	22.06 to 110.2	Yes	**	0.0021	C-F		
MD vs. H	4.997	-39.06 to 49.05	No	ns	>0.9999	D-E		
MD vs. H(-)	43.89	-0.1681 to 87.94	No	ns	0.0513	D-F		
H vs. H(-)	38.89	-5.165 to 82.94	No	ns	0.1101	E-F		
Test details	Mean 1	Mean 2 M	1ean Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	13.22	206.0	-192.8	12.07	3	3	15.97	12
C vs. LW	13.22	86.00	-72.78	12.07	3	3	6.028	12
C vs. MD	13.22	63.78	-50.55	12.07	3	3	4.187	12
C vs. H	13.22	58.78	-45.56	12.07	3	3	3.773	12
C vs. H(-)	13.22	19.89	-6.667	12.07	3	3	0.5522	12
LPS vs. LW	206.0	86.00	120.0	12.07	3	3	9.939	12
LPS vs. MD	206.0	63.78	142.2	12.07	3	3	11.78	12
LPS vs. H	206.0	58.78	147.2	12.07	3	3	12.19	12
LPS vs. H(-)	206.0	19.89	186.1	12.07	3	3	15.41	12
LW vs. MD	86.00	63.78	22.22	12.07	3	3	1.841	12
LW vs. H	86.00	58.78	27.22	12.07	3	3	2.255	12
LW ∨s. H(-)	86.00	19.89	66.11	12.07	3	3	5.476	12
MD vs. H	63.78	58.78	4.997	12.07	3	3	0.4139	12
MD vs. H(-)	63.78	19.89	43.89	12.07	3	3	3.635	12
H vs. H(-)	58.78	19.89	38.89	12.07	3	3	3.221	12
	43		12	/				

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

• Statistical data of IL-6 AF5

Ordinary one-way ANOVA

Table Analyzed	IL-6	-COMP-5			
Data sets analyzed		A-F			
ANOVA summary					
F		160.7			
P value		<0.0001			
P value summary		****			
Significant diff. among means (P < 0.0)5)?	Yes			
R square		0.9853			
		<u></u>			
Brown-Forsythe test					
F (DFn, DFd)	0.902	27 (5, 12)			
P value		0.5103			
P value summary		ns			
Are SDs significantly different (P < 0.0	95)?	No			
Bartlett's test		4			
Bartlett's statistic (corrected)	ALL COLOR				
P value	ETHOMATON				
P value summary	A CARRY AND	B			
Are SDs significantly different (P < 0.0	5)?	10			
		(10)			
ANOVA table		SS DF	MS	F (DFn, DFd)	P value
Treatment (between columns)		135129 5	27026	F (5, 12) = 160.7	P<0.0001
Residual (within columns)		2019 2019 2019	168.2		
Total		137148 17			
Data summary					
Number of treatments (columns)		6			
Number of values (total)		18			
Multiple comparison test.					
Number of families	1				
Number of comparisons per					
family	15				

Alpha

0.05

Bonferroni's multiple	Mean				Adjusted P			
comparisons test	Diff.	95.00% CI of diff.	Sig?	Summ	Value			
C vs. LPS	-215.6	-254.2 to -176.9	Yes	****	< 0.0001	A-B		
C vs. LW	-182.2	-220.9 to -143.6	Yes	****	< 0.0001	A-C		
C vs. MD	-121.1	-159.8 to -82.47	Yes	****	< 0.0001	A-D		
C vs. H	-26.67	-65.31 to 11.97	No	ns	0.4050	A-E		
C vs. H(-)	-2.222	-40.86 to 36.42	No	ns	>0.9999	A-F		
LPS vs. LW	33.33	-5.307 to 71.97	No	ns	0.1262	B-C		
LPS vs. MD	94.44	55.80 to 133.1	Yes	****	< 0.0001	B-D		
LPS vs. H	188.9	150.2 to 227.5	Yes	****	< 0.0001	B-E		
LPS vs. H(-)	213.3	174.7 to 252.0	Yes	****	< 0.0001	B-F		
LW vs. MD	61.11	22.47 to 99.75	Yes	**	0.0013	C-D		
LW vs. H	155.6	116.9 to 194.2	Yes	****	< 0.0001	C-E		
LW vs. H(-)	180.0	141.4 to 218.6	Yes	****	< 0.0001	C-F		
MD vs. H	94.45	55.80 to 133.1	Yes	****	< 0.0001	D-E		
MD vs. H(-)	118.9	80.25 to 157.5	Yes	****	< 0.0001	D-F		
H vs. H(-)	24.44	-14.20 to 63.08	No	ns	0.5940	E-F		
			8 B					
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	11.00	226.6	-215.6	10.59	3	3	20.36	12
C vs. LW	11.00	193.2	-182.2	10.59	3	3	17.21	12
C vs. MD	11.00	132.1	-121.1	10.59	3	3	11.44	12
C vs. H	11.00	37.67	-26.67	10.59	3	3	2.518	12
C vs. H(-)	11.00	13.22	-2.222	10.59	3	3	0.2099	12
LPS vs. LW	226.6	193.2	33.33	10.59	3	3	3.148	12
LPS vs. MD	226.6	LONE (0 132.1	94.44	STY 10.59	3	3	8.919	12
LPS vs. H	226.6	37.67	188.9	10.59	3	3	17.84	12
LPS vs. H(-)	226.6	13.22	213.3	10.59	3	3	20.15	12
LW vs. MD	193.2	132.1	61.11	10.59	3	3	5.771	12
LW ∨s. H	193.2	37.67	155.6	10.59	3	3	14.69	12
LW vs. H(-)	193.2	13.22	180.0	10.59	3	3	17.00	12
MD vs. H	132.1	37.67	94.45	10.59	3	3	8.919	12
MD vs. H(-)	132.1	13.22	118.9	10.59	3	3	11.23	12
H vs. H(-)	37.67	13.22	24.44	10.59	3	3	2.308	12

Statistical data of IL-6 AF7

Ordinary one-way ANOVA

IL-6-COMP-7 Table Analyzed Data sets analyzed A-F ANOVA summary F 64.06 P value < 0.0001 **** P value summary Significant diff. among means (P < 0.05)? Yes 0.9639 R square Brown-Forsythe test F (DFn, DFd) 1.096 (5, 12) P value 0.4117 P value summary ns Are SDs significantly different (P < 0.05)? No Bartlett's test Bartlett's statistic (corrected) P value P value summary Are SDs significantly different (P < 0.05)? ANOVA table DF MS F (DFn, DFd) P value SS 70061 5 14012 Treatment (between columns) F (5, 12) = 64.06 P<0.0001 2625 12 218.8 Residual (within columns) 72686 17 Total Data summary Number of treatments (columns) 6 Number of values (total) 18 Multiple comparison test. Number of families 1 Number of comparisons per family 15

Alpha 0.05

Bonferroni's multiple	Mean				Adjusted P			
comparisons test	Diff.	95.00% CI of diff.	Sig?	Summ	Value			
C vs. LPS	-184.2	-228.2 to -140.1	Yes	****	<0.0001	A-B		
C vs. LW	-98.33	-142.4 to -54.27	Yes	****	<0.0001	A-C		
C vs. MD	-54.17	-98.23 to -10.10	Yes	*	0.0112	A-D		
C vs. H	-40.83	-84.90 to 3.231	No	ns	0.0818	A-E		
C vs. H(-)	-9.167	-53.23 to 34.90	No	ns	>0.9999	A-F		
LPS vs. LW	85.83	41.77 to 129.9	Yes	***	0.0002	B-C		
LPS vs. MD	130.0	85.94 to 174.1	Yes	****	<0.0001	B-D		
LPS vs. H	143.3	99.27 to 187.4	Yes	****	< 0.0001	B-E		
LPS vs. H(-)	175.0	130.9 to 219.1	Yes	****	< 0.0001	B-F		
LW vs. MD	44.17	0.1021 to 88.23	Yes	*	0.0492	C-D		
LW vs. H	57.50	13.44 to 101.6	Yes	**	0.0069	C-E		
LW vs. H(-)	89.17	45.10 to 133.2	Yes	***	0.0001	C-F		
MD vs. H	13.33	-30.73 to 57.40	No	ns	>0.9999	D-E		
MD vs. H(-)	45.00	0.9355 to 89.06	Yes	*	0.0434	D-F		
H vs. H(-)	31.67	-12.40 to 75.73	No	ns	0.3344	E-F		
			\$ X	1				
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	9.833	194.0	-184.2	12.08	3	3	15.25	12
C vs. LW	9.833	108.2	-98.33	12.08	3	3	8.143	12
C vs. MD	9.833	64.00	-54.17	12.08	3	3	4.485	12
C vs. H	9.833	50.67	-40.83	12.08	3	3	3.381	12
C vs. H(-)	9.833	19.00	-9.167	12.08	3	3	0.7591	12
LPS vs. LW	194.0	108.2	85.83	12.08	3	3	7.108	12
LPS vs. MD	194.0	64.00	130.0	12.08	3	3	10.77	12
LPS vs. H	194.0	ONGKO 50.67	143.3	12.08	3	3	11.87	12
LPS vs. H(-)	194.0	19.00	175.0	12.08	3	3	14.49	12
LW vs. MD	108.2	64.00	44.17	12.08	3	3	3.657	12
LW vs. H	108.2	50.67	57.50	12.08	3	3	4.761	12
LW vs. H(-)	108.2	19.00	89.17	12.08	3	3	7.384	12
MD vs. H	64.00	50.67	13.33	12.08	3	3	1.104	12
MD vs. H(-)	64.00	19.00	45.00	12.08	3	3	3.726	12
H vs. H(-)	50.67	19.00	31.67	12.08	3	3	2.622	12

• Statistical data of IL-6 AF8

Ordinary one-way ANOVA

Table Analyzed	IL-6-COMP-8		
Data sets analyzed	A-F		
ANOVA summary			
F	76.25		
P value	<0.0001		
P value summary	****		
Significant diff. among means (P < 0.05)?	Yes		
R square	0.9695		
	00000		
Brown-Forsythe test			
F (DFn, DFd)	0.1327 (5, 12)		
P value	0.9817		
P value summary	ns		
Are SDs significantly different (P < 0.05)?	No.		
ل ا			
Bartlett's test			
Bartlett's statistic (corrected)			
P value	Annone and a		
P value summary	Construction (D)		
Are SDs significantly different (P < 0.05)?			
-0			
ANOVA table	SS	DF MS	F (DFn, DFd)
Treatment (between columns)	ALONGKOPN UN 91081 S	5 18216	F (5, 12) = 76.25
Residual (within columns)	2867	12 238.9	
Total	93948	17	
Data summary			
Number of treatments (columns)	6		
Number of values (total)	18		
Multiple comparison test.			
Number of families	1		
number of comparisons per	15		
iannity	IJ		

P value

P<0.0001

family 15 Alpha 0.05

Bonferroni's multiple	Mean				Adjusted P			
comparisons test	Diff.	95.00% CI of diff.	Sig?	Summ	Value			
C vs. LPS	-199.2	-245.2 to -153.1	Yes	****	< 0.0001	A-B		
C vs. LW	-135.8	-181.9 to -89.79	Yes	****	< 0.0001	A-C		
C vs. MD	-111.7	-157.7 to -65.62	Yes	****	< 0.0001	A-D		
C vs. H	-101.7	-147.7 to -55.62	Yes	****	< 0.0001	A-E		
C vs. H(-)	-2.500	-48.55 to 43.55	No	ns	>0.9999	A-F		
LPS vs. LW	63.33	17.29 to 109.4	Yes	**	0.0045	B-C		
LPS vs. MD	87.50	41.45 to 133.5	Yes	***	0.0002	B-D		
LPS vs. H	97.50	51.45 to 143.5	Yes	****	< 0.0001	B-E		
LPS vs. H(-)	196.7	150.6 to 242.7	Yes	****	< 0.0001	B-F		
LW vs. MD	24.17	-21.88 to 70.21	No	ns	>0.9999	C-D		
LW vs. H	34.17	-11.88 to 80.21	No	ns	0.2857	C-E		
LW vs. H(-)	133.3	87.29 to 179.4	Yes	****	< 0.0001	C-F		
MD vs. H	10.00	-36.05 to 56.05	No	ns	>0.9999	D-E		
MD vs. H(-)	109.2	63.12 to 155.2	Yes	****	< 0.0001	D-F		
H vs. H(-)	99.17	53.12 to 145.2	Yes	****	< 0.0001	E-F		
		ADA						
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	21.50	220.7	-199.2	12.62	3	3	15.78	12
C vs. LW	21.50	157.3	-135.8	12.62	3	3	10.76	12
C vs. MD	21.50	133.2	-111.7	12.62	3	3	8.849	12
C vs. H	21.50	123.2	-101.7	12.62	3	3	8.056	12
C vs. H(-)	21.50	24.00	-2.500	12.62	3	3	0.1981	12
LPS vs. LW	220.7	157.3	63.33	12.62	3	3	5.019	12
LPS vs. MD	220.7	133.2	87.50	12.62	3	3	6.934	12
LPS vs. H	220.7	123.2	97.50	12.62	3	3	7.726	12
LPS vs. H(-)	G HU 220.7 O	24.00 24.00	196.7	12.62	3	3	15.58	12
LW vs. MD	157.3	133.2	24.17	12.62	3	3	1.915	12
LW vs. H	157.3	123.2	34.17	12.62	3	3	2.707	12
LW vs. H(-)	157.3	24.00	133.3	12.62	3	3	10.57	12
MD vs. H	133.2	123.2	10.00	12.62	3	3	0.7924	12
MD vs. H(-)	133.2	24.00	109.2	12.62	3	3	8.650	12
H ∨s. H(-)	123.2	24.00	99.17	12.62	3	3	7.858	12

Statistical data of TNF-**α** AF1

Ordinary one-way ANOVA

Table Analyzed TNF-COMP-1 Data sets analyzed A-F ANOVA summary F 662.8 P value < 0.0001 **** P value summary Significant diff. among means (P < 0.05)? Yes R square 0.9964 Brown-Forsythe test F (DFn, DFd) 0.5327 (5, 12) P value 0.7480 P value summary ns Are SDs significantly different (P < 0.05)? No Bartlett's test Bartlett's statistic (corrected) P value P value summary Are SDs significantly different (P < 0.05)? ANOVA table DF MS F (DFn, DFd) P value SS 197365 5 39473 Treatment (between columns) F (5, 12) = 662.8 P<0.0001 714.7 12 Residual (within columns) 59.56 198079 Total 17 Data summary Number of treatments (columns) 6 Number of values (total) 18 Multiple comparison test. Number of families 1 Number of comparisons per family 15 0.05 Alpha Bonferroni's multiple Mean Diff. 95.00% CI of diff. Sig? Summ Adjusted P

comparisons test					Value			
C vs. LPS	-291.6	-314.6 to -268.6	Yes	****	< 0.0001	A-B		
C vs. LW	-157.0	-180.0 to -134.0	Yes	****	< 0.0001	A-C		
C vs. MD	-76.84	-99.83 to -53.85	Yes	****	< 0.0001	A-D		
C vs. H	-48.25	-71.24 to -25.25	Yes	****	< 0.0001	A-E		
C vs. H(-)	13.51	-9.483 to 36.50	No	ns	0.7984	A-F		
LPS vs. LW	134.6	111.6 to 157.6	Yes	****	< 0.0001	B-C		
LPS vs. MD	214.7	191.7 to 237.7	Yes	****	< 0.0001	B-D		
LPS vs. H	243.3	220.3 to 266.3	Yes	****	< 0.0001	B-E		
LPS vs. H(-)	305.1	282.1 to 328.1	Yes	****	< 0.0001	B-F		
LW vs. MD	80.18	57.18 to 103.2	Yes	****	< 0.0001	C-D		
LW vs. H	108.8	85.78 to 131.8	Yes	****	< 0.0001	C-E		
LW ∨s. H(-)	170.5	147.5 to 193.5	Yes	****	< 0.0001	C-F		
MD vs. H	28.60	5.604 to 51.59	Yes	*	0.0102	D-E		
MD vs. H(-)	90.35	67.36 to 113.3	Yes	****	< 0.0001	D-F		
H vs. H(-)	61.75	38.76 to 84.75	Yes	****	< 0.0001	E-F		
			Mean					
Test details	Mean 1	Mean 2	Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	69.74	361.3	-291.6	6.301	3	3	46.27	12
C vs. LW	69.74	226.8	-157.0	6.301	3	3	24.92	12
C vs. MD	69.74	146.6	-76.84	6.301	3	3	12.19	12
C vs. H	69.74	118.0	-48.25	6.301	3	3	7.657	12
C vs. H(-)	69.74	56.23	13.51	6.301	3	3	2.144	12
LPS vs. LW	361.3	226.8	134.6	6.301	3	3	21.36	12
LPS vs. MD	361.3	146.6	214.7	6.301	3	3	34.08	12
LPS vs. H	361.3	118.0	243.3	6.301	3	3	38.62	12
LPS vs. H(-)	361.3	56.23	305.1	6.301	3	3	48.42	12
LW vs. MD	226.8	INGKOR 146.6	80.18	6.301	3	3	12.72	12
LW vs. H	226.8	118.0	108.8	6.301	3	3	17.26	12
LW ∨s. H(-)	226.8	56.23	170.5	6.301	3	3	27.06	12
MD vs. H	146.6	118.0	28.60	6.301	3	3	4.538	12
MD vs. H(-)	146.6	56.23	90.35	6.301	3	3	14.34	12
H ∨s. H(-)	118.0	56.23	61.75	6.301	3	3	9.800	12

Statistical data of TNF-**α** AF5

Ordinary one-way ANOVA

TNF-COMP--5 Table Analyzed Data sets analyzed A-F ANOVA summary F 156.8 P value < 0.0001 **** P value summary Significant diff. among means (P < 0.05)? Yes 0.9849 R square Brown-Forsythe test F (DFn, DFd) 0.4074 (5, 12) P value 0.8347 P value summary ns Are SDs significantly different (P < 0.05)? No Bartlett's test Bartlett's statistic (corrected) P value P value summary Are SDs significantly different (P < 0.05)? ANOVA table DF MS F (DFn, DFd) P value SS ຢ້ 319864 63973 Treatment (between columns) F (5, 12) = 156.8 P<0.0001 4895 Residual (within columns) 12 407.9 324760 17 Total Data summary Number of treatments (columns) 6 Number of values (total) 18 Multiple comparison test. Number of families 1 Number of comparisons per family 15

Alpha 0.05

Bonferroni's multiple					Adjusted P			
comparisons test	Mean Diff.	95.00% CI of diff.	Sig?	Summ	Value			
C vs. LPS	-334.4	-394.6 to -274.2	Yes	****	< 0.0001	A-B		
C vs. LW	-298.2	-358.4 to -238.1	Yes	****	< 0.0001	A-C		
C vs. MD	-235.4	-295.6 to -175.3	Yes	****	< 0.0001	A-D		
C vs. H	-166.8	-227.0 to -106.7	Yes	****	< 0.0001	A-E		
C vs. H(-)	3.157	-57.02 to 63.33	No	ns	>0.9999	A-F		
LPS vs. LW	36.14	-24.03 to 96.32	No	ns	0.7329	B-C		
LPS vs. MD	98.95	38.78 to 159.1	Yes	***	0.0009	B-D		
LPS vs. H	167.5	107.4 to 227.7	Yes	****	< 0.0001	B-E		
LPS vs. H(-)	337.5	277.4 to 397.7	Yes	****	< 0.0001	B-F		
LW vs. MD	62.81	2.633 to 123.0	Yes	*	0.0374	C-D		
LW vs. H	131.4	71.23 to 191.6	Yes	****	< 0.0001	C-E		
LW vs. H(-)	301.4	241.2 to 361.6	Yes	****	< 0.0001	C-F		
MD vs. H	68.60	8.423 to 128.8	Yes	*	0.0199	D-E		
MD vs. H(-)	238.6	178.4 to 298.8	Yes	****	< 0.0001	D-F		
H vs. H(-)	170.0	109.8 to 230.2	Yes	****	< 0.0001	E-F		
			II N					
Test details	Mean 1	Mean 2	Mean Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	39.56	374.0	-334.4	16.49	3	3	20.28	12
C vs. LW	39.56	337.8	-298.2	16.49	3	3	18.09	12
C vs. MD	39.56	275.0	-235.4	16.49	3	3	14.28	12
C vs. H	39.56	206.4	-166.8	16.49	3	3	10.12	12
C vs. H(-)	39.56	36.41	3.157	16.49	3	3	0.1914	12
LPS vs. LW	374.0	337.8	36.14	16.49	3	3	2.192	12
LPS vs. MD	374.0	275.0	98.95	16.49	3	3	6.000	12
LPS vs. H	374.0	206.4	167.5	16.49	3	3	10.16	12
LPS vs. H(-)	374.0	36.41	337.5	16.49	3	3	20.47	12
LW vs. MD	337.8	ONGKO P275.0	62.81	16.49	3	3	3.809	12
LW vs. H	337.8	206.4	131.4	16.49	3	3	7.968	12
LW vs. H(-)	337.8	36.41	301.4	16.49	3	3	18.28	12
MD vs. H	275.0	206.4	68.60	16.49	3	3	4.160	12
MD vs. H(-)	275.0	36.41	238.6	16.49	3	3	14.47	12
H vs. H(-)	206.4	36.41	170.0	16.49	3	3	10.31	12

• Statistical data of TNF-**α** AF7

Ordinary one-way ANOVA

Table Analyzed	TNF-COMP-7	
Data sets analyzed	A-F	
ANOVA summary		
F	141.0	
	141.9	
P value	<0.0001	
P value summary	****	
Significant diff. among means (P $<$		
0.05)?	Yes	12
R square	0.9834	12.
	9	
Brown-Forsythe test	1111	
F (DFn, DFd)	0.2276 (5, 12)	
P value	0.9433	
P value summary	ns	
Are SDs significantly different (P <		
0.05)?	No	2
	DIADRODDA	
Bartlett's test	27/11/01/02/2011	
Bartlett's statistic (corrected)	A LEADER AND	and
P value	18	25
P value summary		
Are SDs significantly different (P <		
0.05)?		าวทยาลย

Chulalongkorn University

ANOVA table	SS	DF	MS	F (DFn, DFd)	P value
Treatment (between columns)	264093	5	52819	F (5, 12) = 141.9	P<0.0001
Residual (within columns)	4466	12	372.2		
Total	268559	17			
Data summary					
Number of treatments (columns)	6				
Number of values (total)	18				

Multiple comparison test.

Number of families

1

Number of comparisons per

family

Alpha

0.05

15

Bonferroni's multiple	Mean				Adjusted P	
comparisons test	Diff.	95.00% CI of diff.	Sig?	Summ	Value	
C vs. LPS	-278.8	-336.2 to -221.3	Yes	****	<0.0001	A-B
C vs. LW	-279.1	-336.6 to -221.6	Yes	****	<0.0001	A-C
C vs. MD	-209.8	-267.3 to -152.3	Yes	****	<0.0001	A-D
C vs. H	-99.65	-157.1 to -42.17	Yes	***	0.0006	A-E
C vs. H(-)	12.81	-44.67 to 70.28	No	ns	>0.9999	A-F
LPS vs. LW	-0.3507	-57.83 to 57.13	No	ns	>0.9999	B-C
LPS vs. MD	68.95	11.47 to 126.4	Yes	*	0.0135	B-D
LPS vs. H	179.1	121.6 to 236.6	Yes	****	<0.0001	B-E
LPS vs. H(-)	291.6	234.1 to 349.1	Yes	****	<0.0001	B-F
LW vs. MD	69.30	11.82 to 126.8	Yes	*	0.0130	C-D
LW vs. H	179.5	122.0 to 236.9	Yes	****	<0.0001	C-E
LW vs. H(-)	291.9	234.5 to 349.4	Yes	****	<0.0001	C-F
MD vs. H	110.2	52.70 to 167.7	Yes	***	0.0002	D-E
MD vs. H(-)	222.6	165.2 to 280.1	Yes	****	< 0.0001	D-F
H vs. H(-)	112.5	54.98 to 169.9	Yes	***	0.0002	E-F
			Mean			

2 AVASSI	and a second
	Mean

Test details	Mean 1	Mean 2	Diff. S	SE of diff.	n1	n2	t	DF
C vs. LPS	63.77	342.5	-278.8	15.75	3	3	17.70	12
C vs. LW	63.77	342.9	-279.1	15.75	3	3	17.72	12
C vs. MD	63.77	273.6	-209.8	15.75	3	3	13.32	12
C vs. H	63.77	163.4	-99.65	15.75	3	3	6.326	12
C vs. H(-)	63.77	50.97	12.81	15.75	3	3	0.8131	12
LPS vs. LW	342.5	342.9	-0.3507	15.75	3	3	0.02226	12
LPS vs. MD	342.5	273.6	68.95	15.75	3	3	4.377	12
LPS vs. H	342.5	163.4	179.1	15.75	3	3	11.37	12
LPS vs. H(-)	342.5	50.97	291.6	15.75	3	3	18.51	12
LW vs. MD	342.9	273.6	69.30	15.75	3	3	4.399	12
LW vs. H	342.9	163.4	179.5	15.75	3	3	11.39	12
LW vs. H(-)	342.9	50.97	291.9	15.75	3	3	18.53	12
MD vs. H	273.6	163.4	110.2	15.75	3	3	6.995	12
MD vs. H(-)	273.6	50.97	222.6	15.75	3	3	14.13	12
H ∨s. H(-)	163.4	50.97	112.5	15.75	3	3	7.139	12

• Statistical data of TNF-**α** AF8

Ordinary one-way ANOVA

Table Analyzed	TNF-COMP-8		
Data sets analyzed	A-F		
ANOVA summary			
F	101.8		
P value	<0.0001		
P value summary	****		
Significant diff. among means ($P < 0$.	.05)? Yes		
R square	0.9770		
Brown-Forsythe test			
F (DFn, DFd)	0.4623 (5, 12)		
P value	0.7970		
P value summary	ns		
Are SDs significantly different (P < 0.	05)? No		
Bartlett's test			
Bartlett's statistic (corrected)			
P value			
P value summary	a month a		
Are SDs significantly different (P < 0.	05)?		
ANOVA table	หาลงกรณ์มหาวิทยาลั	MS F (DFn, DFd)	P value
Treatment (between columns)	198903 5 39	9781 F (5, 12) = 101.8	P<0.0001
Residual (within columns)	LALONGKO 4691 12 ER 3	390.9	
Total	203594 17		
Data summary			
Number of treatments (columns)	6		
Number of values (total)	18		
Multiple comparison test.			
Number of families	1		
Number of comparisons per			
family	15		

Alpha 0.05

Bonferroni's multiple	Mean				Adjusted P	
comparisons test	Diff.	95.00% CI of diff.	Sig?	Summ	Value	
C vs. LPS	-263.0	-321.9 to -204.1	Yes	****	< 0.0001	A-B
C vs. LW	-222.5	-281.4 to -163.6	Yes	****	< 0.0001	A-C
C vs. MD	-184.6	-243.5 to -125.7	Yes	****	< 0.0001	A-D
C vs. H	-114.0	-172.9 to -55.13	Yes	***	0.0002	A-E
C vs. H(-)	11.23	-47.68 to 70.13	No	ns	>0.9999	A-F
LPS vs. LW	40.53	-18.38 to 99.43	No	ns	0.4108	B-C
LPS vs. MD	78.42	19.52 to 137.3	Yes	**	0.0059	B-D
LPS vs. H	148.9	90.04 to 207.9	Yes	****	< 0.0001	B-E
LPS vs. H(-)	274.2	215.3 to 333.1	Yes	****	< 0.0001	B-F
LW vs. MD	37.89	-21.01 to 96.80	No	ns	0.5532	C-D
LW vs. H	108.4	49.52 to 167.3	Yes	***	0.0003	C-E
LW vs. H(-)	233.7	174.8 to 292.6	Yes	****	< 0.0001	C-F
MD vs. H	70.53	11.62 to 129.4	Yes	*	0.0137	D-E
MD vs. H(-)	195.8	136.9 to 254.7	Yes	****	< 0.0001	D-F
H vs. H(-)	125.3	66.36 to 184.2	Yes	****	< 0.0001	E-F
	2		s			
		1	Mean	1		

Test details	Mean 1	Mean 2	Diff.	SE of diff.	n1	n2	t	DF
C vs. LPS	97.63	360.6	-263.0	16.14	3	3	16.29	12
C vs. LW	97.63	320.1	-222.5	16.14	3	3	13.78	12
C vs. MD	97.63	282.2	-184.6	16.14	3	3	11.43	12
C vs. H	97.63	211.7	-114.0	16.14	3	3	7.064	12
C vs. H(-)	97.63	86.40	11.23	16.14	3	3	0.6955	12
LPS vs. LW	360.6	320.1	40.53	16.14	3	3	2.510	12
LPS vs. MD	360.6	282.2	78.42	16.14	3	3	4.858	12
LPS vs. H	360.6	211.7	148.9	16.14	3	3	9.227	12
LPS vs. H(-)	360.6	86.40	274.2	16.14	3	3	16.99	12
LW vs. MD	320.1	282.2	37.89	16.14	3	3	2.347	12
LW vs. H	320.1	211.7	108.4	16.14	3	3	6.716	12
LW vs. H(-)	320.1	86.40	233.7	16.14	3	3	14.48	12
MD vs. H	282.2	211.7	70.53	16.14	3	3	4.369	12
MD vs. H(-)	282.2	86.40	195.8	16.14	3	3	12.13	12
H ∨s. H(-)	211.7	86.40	125.3	16.14	3	3	7.760	12

VITA

Bachtiar Rivai
14 Jun 1995
Medan
Brawijaya University
Jalan Kayu Manis Timur, Matraman, Jakarta Timur, Indonesia
Rivai B, Hasriadi, Dasuni Wasana PW, Chansriniyom C,
Towiwat P, Punpreuk Y, Likhitwitayawuid K, Rojsitthisak P,
and Sritularak B. Potential role of a novel biphenanthrene
derivative isolated from Aerides falcata in central nervous
system diseases. RSC Adv. 2023;13(16):10757-67.
ลงกรณ์มหาวิทยาลัย
LONGKORN UNIVERSITY