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and trans-n-coumaroyltyramine. All the isolated compounds were evaluated for their anti-
neuroinflammatory activity, except for trans-n-coumaroyltyramine, which was excluded due to
its insufficient amount. In vitro testing was conducted on LPS-induced BV2 microglia cells to
evaluate their potential anti-neuroinflammatory activity using NO inhibition model.
Minocycline, a neuroinflammatory modulator, was used as a positive control. Four compounds
demonstrated significant deference to inhibit NO production compared to positive control
minocycline (ICsyvalue of 3.41 + 0.30 uM): aerifalcatin (ICs, value of 0.87 + 0.45 pM), 2,7-
dihydroxy-3,4,6-trimethoxyphenanthrene (ICs, value of 2.47 + 0.73 puM), agrostonin (ICs, value of
2.55 + 0.32 pM), and syringaresinol (ICs, value of 1.40 £ 0.17 puM). An ELISA experiment was
performed to determine the levels of cytokines (TNF-OU and IL-6) for the most potent
compounds. The results demonstrated a significant reduction in their expression in activated

microglia in a dose-dependent manner, indicating their potential as anti-neuroinflammatory

agents.
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CHAPTER |

INTRODUCTION

Neuroinflammation is a key factor in several diseases of the central nervous
system (CNS). These diseases include stroke, Parkinson’s disease, multiple sclerosis,
and Alzheimer’s disease (1). In recent years, neuroinflammation-related diseases
have become a significant concern, affecting over 50 million people worldwide. It is
predicted that this number will triple by 2050 (2). However, the pathological
understanding of these underlying neuroinflammatory diseases is not clear, although
several factors are believed to be involved, such as genetic, endogenous, and

environmental influences (3).

Brain injuries are the main factor that contributes to the development of CNS
inflammation, thereby modulating neuroinflammation (4). Some of these injuries
result from the interference of damage-associated molecular patterns (DAMPs) and
pathogen-associated molecular patterns (PAMPs). PAMPs are a class of molecules
released during microbial invasion of the CNS, such as peptidoglycans (PGN) and
lipopolysaccharide (LPS). On the other hand, DAMPs are produced by damaged or

dying cells and include molecules such as ATP, biglycan, and uric acid (5, 6).

There are three types of immune cells that respond to injuries in the CNS: CNS-
resident glial cells (i.e., microglia, astrocytes, and oligodendrocytes), CNS-resident
non-glial cells (i.e., dendritic cells and macrophages), and peripheral immune cells
(7). Among the resident glial cells, microglia account for approximately 10% to 15%
of the CNS (8). Consequently, they play a central role in phagocytosis and
neurodegenerative diseases. Microglia interact with other neuroglial cells, such as

astrocytes and oligodendrocytes, both directly and indirectly in neuroinflammation



(9). Additionally, the presence of macrophages and peripheral immune cells in the

CNS adds to the complexity of pathological CNS damage (3).

As previously mentioned, neuroinflammation is caused by various factors that
activate the immune response in the CNS. Both PAMPs and DAMPs stimuli interact
with pattern-recognition receptors (PRRs) on the membranes of glial cells, leading to
the activation of the innate immune response (10). Upon the invasion of harmful
stimuli, resting microglia arrest their normal signaling from neurons and other glial
cells, triggering a transition to the active form. Active microglia can be divided into
two phenotypes: M1 and M2 microglia (11). M1 microglia, also known as classical
microglia, are considered detrimental as they secrete proinflammatory factors.
Conversely, M2 microglia secrete anti-inflammatory factors (12). Activated microglia
migrate, carry out phagocytosis and proliferation, and contribute to increased
permeability of the blood-brain barrier (BBB). The increased permeability of the BBB
disrupts its integrity, allowing peripheral immune cells to infiltrate the CNS (13, 14). In
chronic conditions, proinflammatory factors such as interleukin 1[3 (IL—1B), reactive
oxygen species (ROS), IL-6, INOS, tumor necrosis factor QU (TNF-QU), cyclooxygenase
(COX)-1, and COX-2 are secreted by M1 microglia or other immune cells (such as
astrocytes and peripheral immune cells). These factors contribute to damage and
neuronal cell death (15). Neuronal cell disorders associated with these conditions

include demyelination, aberrant synaptic pruning, and axonal degeneration (16).

In contrast to immune cells that produce proinflammatory factors, M2 microglia
are involved in resolving inflammation and maintaining surrounding homeostasis. M2
microglia secrete anti-inflammatory factors such as IL-4, IL-13, and transforming
growth factor B (TGF—B). These anti-inflammatory factors play a role in protecting the
extracellular matrix, facilitating phagocytosis of debris, and promoting wound healing.

The proinflammatory cytokine IL-4 can induce ARG1, which inhibits the secretion of



iNOS by modulating the amino acid arginine and indirectly converting it into proline
and polyamines, which function in wound healing. The presence of M2 microglia is
considered crucial for inflammation resolution by maintaining a balance between

proinflammatory and anti-inflammatory cytokines. (11).

Currently, neuroinflammatory drugs are classified into several categories,
including non-steroidal anti-inflammatory drugs (NSAIDs), antidepressants, muscle
relaxants, opioids, antiepileptics, local anesthetics, and NMDA receptor antagonists
(such as ketamine) (17). These drugs have various mechanisms for controlling chronic
inflammation. For instance, NSAIDs function by inhibiting COX-1, COX-2, and
prostaglandin (18). Additionally, ketamine and morphine are known to reduce
swelling and inhibit the infiltration of inflammatory cells (19). Despite their
effectiveness in treating inflammation, these drugs can have side effects on patients,
including cognitive dysfunction, depression, neuropsychiatric disorders, sleep

disturbances, and addiction (20, 21).

Recently, several studies have highlighted the potential use of plant derivatives
as new drugs for improved inflammatory therapy. One such plant family is
Orchidaceae. Orchidaceous plants are known for their colorful flowers and a wide
habitat range, allowing them to grow virtually anywhere (22, 23). Plants in this family
have long been recognized for the therapeutic potentials of their secondary
metabolites in pharmacological medicine (24). These secondary metabolites
encompass various chemical classes, including phenanthrenes, bibenzyls, flavonoids,
phenylpropanoids, and alkaloids (25, 26). Some of these compounds have been
reported to possess anti-inflammatory properties and can be categorized into five
major groups: (i) Phenanthrene derivatives, for example 4-methoxy-2,7-
phenanthrenediol [1], 1-(4-hydroxybenzyl)-4,8-dimethoxy-2,7-phenanthrenediol [5],

1,5-dimethoxy-2,7-phenanthrenediol (2], 4-methoxy-9,10-dihydro-2,7-



phenanthrenediol [9], 1,5,7-trimethoxy-2,6-phenanthrenediol [3] from the root of
Eulophia ~ macrobulbon,  5,7-  dimethoxyphenanthrene-2,6-diol  [4],  1-(4-
hydroxybenzyl)-5,7-dimethoxyphenanthrene-2,6-diol ~ [6],  7-(4-hydroxybenzyl)-8-
methoxy-9,10-dihydrophenanthrene-2,5-diol  [7], shancidin [8], 2-methoxy-9,10-
dihydrophenanthrene-4,5-diol  [11] from the root of Cymbidium faberi, and
methoxycoelonin  [10] from the stem of Vanda coerulea (27, 28, 29), (i)
phenanthropyrans, for example, imbricatin [12] and flavidin [13] from the stem of
Vanda coerulea (29); (i) bibenzyl derivatives, for example, batastasin Ill [14] from
the whole plant of Dendrobium scabrilingue and Liparis odorata and gigantol [15]
from stem of Vanda coerulea (29, 30, 31); (iv) flavones, for example luteolin [16]
from the whole plant of Ljparis odorata; and (v) phenolic glycosides, for example,
liparisglycoside A [17], liparisglycoside B [18], liparisglycoside C [19] and anodendrosin

A [20] from the whole plant of Liparis odorata (31) (Table 1 and Figure 1).

Table 1 Previous reports anti-inflammatory agents from Orchidaceae

compounds source part of References

plant

(i) Phenenthrane

4-Methoxy-2,7- Eulophia root (28)
Phenanthrenediol [1] macrobulbon
1,5-Dimethoxy-2,7- Eulophia root (28)
phenanthrenediol [2] macrobulbon
1,5,7-Trimethoxy-2,6- Eulophia root (28)
phenanthrenediol [3] macrobulbon
5,7-Dimethoxyphe Cymbidium root (27)

nanthrene-2,6-diol [4] faberi




compounds source part of References
plant

1-(4-Hydroxybenzyl)- Eulophia root (28)

4,8-dimethoxy-2,7- macrobulbon

phenanthrenediol [5]

1-(4-Hydroxybenzyl)-5,7- Cymbidium root (27)

dimethoxy- phenanthrene- | faberi

2,6-diol [6]

7-(4-Hydroxybenzyl)-8- Cymbidium root (27)

methoxy-9,10- faberi

dihydrophenanthrene-2,5-

diol [7]

Shancidin [8] Cymbidium root (27)
faberi

4-Methoxy-9,10-dihydro- Eulophia root (27, 28, 29)

2,7-phenanthrenediol [9] macrobulbon

Methoxycoelonin [10] Vanda coerulea | stem (27, 29)

2-Methoxy-9,10-dihydro- Cymbidium root (27)

phenanthrene-4,5-diol [11] | faberi

(i) Phenenthropyrans

Imbricatin [12] Vanda coerulea | stem (29)

Flavidin [13] Vanda coerulea | stem (29)

(iii) Bibenzyl

Batatasin Il [14] Dendrobium whole (30)

scabrilingue




compounds source part of References
plant
Gigantol [15] Vanda coerulea | stem (29)
(iv) Flavone
Luteolin [16] Liparis odorata | whole (31)
(v) Phenolic glycoside
Liparisglycoside A [17] Liparis odorata | whole (31)
Liparisglycoside B [18] Liparis odorata | whole (31)
Liparisglycoside C [19] Liparis odorata | whole (31)
Anodendrosin A [20] Liparis odorata | whole (31)
R3
OH
R1 OCH;
R2
R1 R2 R3
4-Methoxy-2,7-phenanthrenediol [1] OH H H
1,5-Dimethoxy-2,7-phenanthrenediol [2] OH H OCH,
1,5,7-Trimethoxy-2,6-phenanthrenediol [3] OCH; OH OCH,
5,7- Dimethoxyphenanthrene-2,6-diol [4] OCH; OH H

Figure 1 Anti-inflammatory agents from Orchidaceae family




R5

R4

R3

R2
HO HO R1

R1 R2 R3 R4 R5
1-(4-Hydroxybenzyl)-
4,8-dimethoxy-2,7-phenanthrenediol [5] OCH4 H H OH OCH,
1-(4-Hydroxybenzyl)-5,7-dimethoxy-
phenanthrene-2,6-diol [6] H OCH; OH OCH; H

OH
HO
OCH;
HO

4-Methoxy-9,10-dihydro-2,7 phenanthrenediol [9]

HsCO I OH

Methoxycoelonin [10]

HO

Figure 1 continue
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Figure 1 (continued)
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Liparisglycoside B [18]

Liparisglycoside C [19]

Figure 1 (continued)
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—unllOH

Anodendrosin A 1201

Figure 1 (continued)

The preliminary study evaluated the anti-neuroinflammatory activity of the
methanolic and ethyl acetate extracts of Aerides falcata using LPS-induced BV-2
cells. The study found no significant difference in the NO production between the
extracts and the positive control (minocycline). However, both extracts significantly
reduced the levels of the proinflammatory cytokines TNF-QU and IL-6 compared to
the LPS-induced group that was not treated with the extracts, as determined by
ELISA assay. Interestingly, the ethyl acetate extract showed higher activity than the
methanolic extract (experimental details can be found in the study). BV-2 cells are
mouse microglia cell lines that express macrophage markers and do not express
markers for astrocytes and oligodendrocytes (32). BV-2 cells have been widely used
in in vitro studies of neuroinflammation and neurodegenerative diseases for many

years (33).

Based one the above-mentioned preliminary results, the ethyl acetate extract of
Aerides falcata was subjected to further studies to identify the active principles. In

this study the following objectives have been put forwards:
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To isolate and determine the structures of the chemical constituents of

Aerides falcata

To evaluate the anti-neuroinflammatory activity of isolated compounds from

Aerides falcata
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CHAPTER Il

LITERATURE REVIEW

1. Traditional uses of Orchids

Some orchid plants have been recognized as sources of herbal remedies in China
and India (24), such as Dendrobium nobile, Pholidota articulata, Bulbophyllum
odoratissimum, Flickingeria fugax, and Aerides odoratum (34). Additionally, Aerides
falcata has traditionally been used as a tonic for infants and for wound healing in
the treatment of various skin diseases (35). The efficacies of these orchids are
attributed to their bioactive constituents, which have shown benefits for several
diseases. However, there are limited reports on the bioactive components of these
plants (36). This study will discuss the chemical constituents and their bioactivities of

Aerides falcata.

1.1.  Aerides

Aerides spp. are monopodial epiphytic plants, forming a small genus within the
Orchidaceae family. This genus Aerides comprises 21 species (37) that are found in
various regions of Asia, including South Asia (Sri Lanka, India, Nepal, Bangladesh, and
Bhutan), Southeast Asia (Malaysia, Laos, Indonesia, Vietnam, Myanmar, Thailand,
Philippines, and Cambodia), China, and Papua New Guinea (38). Previous studies have
demonstrated the biological activities of certain Aerides species. For instance, Aerides
odorata is known for its anticancer activity (39), while Aerides multiflora exhibits O-
glucosidase inhibitory activity (39). Aerides multiflora has Ol-glucosidase inhibitory
activity (26) and Aerides falcata has been studied for its cellulolytic activity through

the production of endophytic fungi (40).
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1.1.1. Aerides falcata

Aerides falcata Lindl. & Paxton (Figure 2), also known as "Ueng Kulaab Krapao
Perd" in Thai, is found in Vietnam, Thailand, Laos, Myanmar, and South-Central China.
The specific epithet "falcata" is derived from "falcate," which means “sickle-shaped”
(41). Aerides falcata has several heterotypic synonyms, including A. larpentae, A.
mendelii, A. retrofracta, and A. siamensis (38). It typically flowers from April to June.
The flower exhibits a broadly falcate shape at the lip lobe and a broadly ovate
shape at the middle lobe. The spur is angled at 45 degrees and upright, while the
petals measure approximately 12.5 mm in length and 9 mm in width. The leaves of
Aerides falcata are distichous, sessile, oblong, glabrous, flattened, and thick, reaching

up to 48 cm in length and 4.8 cm in width (42, 43).

Figure 2 Aerides falcata Lindl. & Paxton

2. Chemical constituents of Aerides species

According to previous reports, the chemical constituents of Aerides species can
be categorized into 4 major classes, including phenanthropyrans, phenanthrenes,
phenylpropanoid esters, and bibenzyls. The phenanthrene derivatives are the largest
group in this genus. The distribution of these chemical constituents is shown in Table

2 and Figure 3.



Table 2 Distribution of secondary matabolites in the genus Aerides

Category/Compound Source Part of Plant Reference

Phenanthropyrans

Aeridin [21] A. crispum tubers (44)

Imbricatin [12] A. rosea Stem (26, 45)
A. multiflora | Whole plant

Phenanthrenes

5-Metoxyphenenthrene- A. rosea Stem (45)

2,3, 7-triol (Aerosanthrene)

[22]

3-Methoxy-9,10-dihydro- A. rosea Stem (26, 45)

2,5,7- phenenthrenetriol A. multiflora | Whole plant

(aerosin) [23]

5-Methoxy-9,10-dihydro- A. rosea Stem (45)

2,3,7 phenenthrenetriol

[24]

3,5-Dimethoxy A. rosea Stem (45)

phenanthrene-2,7-diol [25]

Coelonin [26] A. rosea Stem (45)

Metoxhycoelonin [10] A. rosea Stem (26, 45)
A. multiflora | Whole plant

6-Methoxycoelonin [27] A. multiflora | Whole plant (26)

Aerimultin A [29] A. multiflora | Whole plant (26)

Aerimultin B [30] A. multiflora | Whole plant (26)

Aerimultin C [31] A. multiflora | Whole plant (26)

Agrostonin [32] A. multiflora | Whole plant (26)
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Phenylpropanoid esters

Dihydrosinapyl A. multiflora | Whole plant (26)

dihydroferulate [33]

Dihydroconiferyl dihydro- | A. multiflora | Whole plant (26)

p-coumarate [34]

Bibenzyls

Gigantol [15] Stem (26, 45)
A. multiflora | Whole plant

OMe
OH
OMe
o
HO
[21] Aeridin
OH
OMe
HO

OH

[22] Aerosanthrene

OH

OMe

[12] Imbricatin

OH

OH

HO

OMe

[23] Aerosin

Figure 3 Chemical constituents of Aerides

15



16

OH OH

OMe .
HO

OH OMe

HO

[24] 5-Methoxy-9,10-dihydro-2,3,7  [25] 3,5-Dimethoxy phenanthrene-2,7-diol

OMe
[26] Coelonin [10] Metoxhycoelonin
* (1
‘ SoPe
‘ OMe HO OMe
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HO I OMe
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Figure 3 (continued)
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OMe

OH

MeO

OH

[15] Gigantol

Figure 3 (continued)

3. Biological activities of Aerides species

As previously described, Aerides species have already been used in traditional
medicine. For example, Aerides falcata has been used for wound healing in several
skin diseases (35), while Aerides odorata has been recognized for its antibacterial
properties (34). Recently, the methanolic and ethyl acetate extracts of Aerides
odorata were reported to exhibit cytotoxicity against MCF-7 cancer cells (39).

Furthermore, several compounds isolated from Aerides multiflora were investigated

for their ability to inhibit Ol-glucosidase activity (26).
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CHAPTER Il

EXPERIMENTAL

1. Materials

1.1. Plant material

The whole plants of Aerides falcata were procured from the Chatuchak market
in June 2021. Mr. Yanyong Punpreuk, a senior botanist at the Department of
Agriculture, Bangkok, Thailand, identified the plant materials, and a voucher
specimen (BS-AF-022564) was deposited at the Department of Pharmacognosy and

Pharmaceutical Botany, Chulalongkorn University.

1.2. Chemical materials
Organic solvents such as methanol (MeOH), acetone (CH,COCHj;), ethyl acetate
(EtOAQ), dichloromethane (CH,Cl,), hexane, water, and n-butanol in this study are of

commercial grade and were redistilled before use.

1.3. Cell culture materials

BV-2 microglial cells were procured from Accigen. Fetal Bovine Serum (FBS) and
Dulbecco's Modified Eagle Medium (DMEM), two components used in cell culture,
were purchased from (PAN Biotech, Aidenbach, Germany). Lipopolysaccharide (LPS),
an inducer of inflammatory responses, and minocycline, a reference compound for
anti-neuroinflammatory activity, were obtained from Sigma-Aldrich, St. Louis, MO,

USA.

2. General Techniques
2.1. Thin-layer chromatography (TLC)

2.1.1. Normal phase, thin-layer chromatography

Technique : One-dimension ascending



Stationary phase
Mobile phase
Temperature

Detection

20

- Silica gel 60 Fys4 precoated plates (E. Merck)

: Organic Solvents
: Room temperature (30-35°C)
: 1. Visualized under UV light at 254nm and 365nm.
2. Sprayed with anisaldehyde reagent in a fume hood

and followed by heating at 105°C for 10 minutes.

2.1.2. Preparative thin-layer chromatography (Prep. TLC)

Technique

Stationary phase

Mobile phase

Temperature

Sample loading

Detection

: One-dimension ascending

: Silica gel 60 F,s4 precoated plates (E. Merck), size
20x20 cm

: Organic solvents

: Room temperature (30-35°C)

:The sample was applied onto a TLC plate using
capillary tube. The spots are dried, and the plate is
then  placed in a developing chamber with organic
solvent as mobile phase

: Visualized under UV light at wavelengths of 254nm

and 365nm

2.2. Column chromatography (CC)

2.2.1. Vacuum liquid chromatography (VLC)

Stationary phase

Mobile Phase
Packing method

Sample loading

- Silica gel 60 (No. 1.07734.2500), size 0.063-0.200

mm (E. Merck)

: Organic solvents
: Dry packing

:The sample was dissolved in a small volume of organic

solvent, adsorbed by a small quantity of the
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adsorbent, dried and then gradually placed on top of

the column
Detection : Each fraction was visualized under UV light at
wavelengths 254nm and 365nm on a TLC plate.
2.2.2. Normal phase, flash column chromatography (FCC)

Stationary phase

Mobile phase
Packing method

Sample loading

- Silica gel 60 (No. 1.07734.2500), size 0.063-0.200
mm (E. Merck)

: Organic solvents

: Dry packing

: The sample was dissolved in small volume of organic
solvent, adsorbed by small quantities of the

absorbent, dried, and then gradually placed on the

column
Detection . Fractions were visualized under UV light at
wavelengths 254nm and 365nm on a TLC plate
2.2.3. Gel filtration chromatography (GFC)

Stationary phase

Mobile phase

Packing method

Sample loading

Detection

: Sephadex LH-20 particle size 25-100 pm (GE
Healthcare)

: Organic solvent

: Wet packing

: The sample was dissolved in a small volume of an
organic solvent, and this mixture was then applied

onto the top of the column.

. Fractions were visualized under UV light at

wavelengths 254nm and 365nm on a TLC plate



22

2.3. Semi-preparative, high-pressure liquid chromatography (HPLC)

Column : COSMOSIL 5Cyg - AR-II (101D x 250 mm)
Mobile phase : Organic solvent and water
Sample preparation : The sample was dissolved with a small eluent and

filtered through Millipore filter paper before injection

Injection volume :2mL

Temperature : Room temperature

Pump : LC-8A (Shimadzu)

Detector : SPD-10A UV-Vis Detector (Shimadzu)
Recorder : C-R6A Chromatopac (Shimadzu)

2.4. Spectroscopy

2.4.1. Mass Spectra (MS)
Mass spectra were recorded on a Bruker micro TOF mass spectrometer (ESI-

MS) at the Department of Chemistry, Faculty of Science, Naresuan University.

2.4.2. Ultraviolet (UV) spectra
UV spectra were measured with a Milton Roy Spectronic 3000 Array
spectrophotometer (Pharmaceutical Research Instrument Center, Faculty of

Pharmaceutical Sciences, Chulalongkorn University).

2.4.3. Infrared (IR) spectra
IR Spectra were recorded on a Perkin-Elmer FT-IR 1760X spectrophotometer

(Scientific and Technology Research Equipment Center, Chulalongkorn University).
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244, Proton and carbon-13 nuclear magnetic resonance (*H and °C
NMR)

'H NMR (400 MHz) and >C NMR (100 MHz) spectra were recorded on a Bruker
Advance Neo 400 MHz spectrometer (Faculty of Pharmaceutical Sciences,
Chulalongkorn University).

The solvent for NMR spectra was deuterated acetone (acetone-dy). Chemical

shifts were reported in the ppm scale using the chemical shift of the solvent as

the reference signal.

2.4.5, Optical rotation

Optical rotation was measured on a Jasco P-2000 polarimeter (Pharmaceutical

Research Instrument Center, Faculty of Pharmaceutical Sciences, Chulalongkorn

University).

Extraction and isolation

3.1. Extraction of A. falcata

The dried whole plant of A. falcata (2 kg) was ground to produce a dried
powder. The powder (2 kg) was macerated with MeOH (3 x 15 L), soaked for 72
hours for each maceration, and a dried MeOH extract was obtained after removal
of the organic solvent.. This extract was treated with EtOAc, n-butanol, and
aqueous to produce an EtOAc extract, n-butanol extract, and aqueous extract,

respectively, after evaporation of the solvent.
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Plant powder of A. falcata (2 kg)

Maceration with MeOH (15L x 3)

MeOH extract (105.1 g)

Partition with EtOAc, n-butanol, and water

I |
EtOAc extract n-butanol extract aqueous extract

(204 ¢) (49 g) (28.1 ¢)

Scheme 1 Extraction steps of Aerides falcata

3.2. Separation and isolation

The EtOAc extract (20.4 g) was separated by vacuum liquid chromatography
(silica gel, hexane — EtOAc, gradient) to give 7 fractions (A —G). Fraction C (7.2 g),
fraction D (3.9 ¢), fraction E (2.2 g), fraction F (6.7 ¢), and fraction G (10.8 ¢) were

isolated using several chromatographic techniques as described in section 2.2.

3.2.1. Isolation of compound AF2
Fracton C (7.2 ¢ was separated by Sephadex LH-20 (acetone)
chromatography to give 5 fractions (CA — CE). Fraction CB (612 mg) was re-separated
by column chromatography (CC) (silica gel, hexane — CH,Cl,, gradient elution) to give
CBA - CBH. CBE (108 mg) was subjected to CC (silica gel, hexane — EtOAc 10%,
isocratic elution) to yield AF2 (36.3 mg) which was identified as n-eicosyl-trans-

ferulate.
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3.2.2. Isolation of compound AF3
Fraction D (3.9 ¢) was fractionated on Sephadex LH-20 (acetone) to give 6
fractions (DA - DF). Fraction DB (1.2 g) was separated by CC (silica gel, hexane -

CH,Cl,, gradient elution) to AF3 (7 mg), identified as denthyrsinin.

3.2.3. Isolation of compounds AF4 and AF5
Fraction DB (1.2 g) was re-separated by CC (silica gel, hexane - CH,CLl,
gradient elution) by give 9 fractions (DBA — DBI). DBH (23.5 mg) and DBI (21 mg) were
purified with CC (silica gel, hexane - EtOAc, gradient elution) to yield AF4 and AF5,
respectively.  AF4 (10  mg) was identified as  2,4-dimethoxy-3,7-
dihydroxyphenanthrene, and AF5 (7 mg) was identified as 2,7-dihydroxy-3,4,6-

trimethoxyphenanthrene.

3.2.4. Isolation of compound AF6
Fraction E (2.2 ¢) was fractionated on Sephadex LH-20 (MeOH) to give 6
fractions (EA — EF). Fraction EC (60.2 mg) was separated by CC (silica gel, hexane -
FtOAc, gradient elution) to give fractions ECA — ECH. Fraction ECA (15.2 mg) was re-
separated by CC (silica gel, hexane — EtOAc, gradient elution) to yield 4 fractions
(ECAA, ECAB, ECAC, and ECAD). Fraction ECAD (5.1 mg) was purified with CC (silica gel,
CH,Cl,, isocratic elution) to furnish AF6 (2.2 mg) which was identified as 3,7-

dihydroxy-2,4,6-trimethoxyphenanthrene.

3.2.5. Isolation of compound AF7
Fraction F (6.7 ¢) was fractionated on Sephadex LH-20 (MeOH) to give 7
fractions (FA — FQG). Fraction FD (87.3 mg) was purified by CC (silica gel, hexane-
acetone 50%, gradient elution) to furnish AF7 (58 mg) which was identified as

agrostonin.
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3.2.6. Isolation of compound AF1 and AF10
Fraction FE (98.2 mg) was re-separated by CC (silica gel, CH,Cl, — MeOH 5%,
gradient) to give 10 fractions (FEA - FEJ). Fraction FEC (15.1 mg) was purified by
preparative TLC (hexane: EtOAc 20%, thrice developments) to yield AF1 (11.8 mg)
which was identified as aerifalcatin. Fraction FED (20.3 mg) was purified with HPLC
(semi-prep, CH,Cl, — MeOH 5%, flow rate 0.8 ml/min) to yield AF10 (1.5 mg) which

was identified as trans-n-coumaroyltyramine.

3.2.7. Isolation of compound AF8 and AF9
Fraction G (10.8 ¢) was fractionated by CC (silica gel, CH,Cl, — EtOAc 30%,
gradient) to give 5 fractions (GA — GE). Fraction GA (93 mg) was separated by CC (silica
gel, CH,Cl,, isocratic elution) to yield 12 fractions (GAA — GAL). GAL (40 mg) was re-
separated by CC (CH,Cl, — MeOH 3%, gradient elution) to yield 9 fractions (GALA -
GALI). Fraction GALC (18.3 mg) was purified by CC (silica gel, CH,Cl, — EtOAc 20%,
gradient elution) to furnish 2 pure compounds, AF8 (7.4 mg) and AF9 (2.6 mg) that

were identified as syringaresinol and trans-n-feruloytyramine, respectively.



EtOAc extract (20.4 ¢)

27

VLC (Silica gel; hexane - EtOAc, gradient)

C D
A-B EG
(7.2 9) (3.9 9)
Sephadex LH-20
Sephadex LH-20 (Acetone)
(Acetone)
CA B CC-E DA e DC-F
(612 mg) (129
FCC (Silica gel; hexane - FCC (Silica gel; hexane -
CH,Cl,, gradient) CH,Cl,, gradient)
I CBE I AF3 DBH DBI
CBA-C CBD-H| [DBA-D DBF-G
(108 mg) (7 mg) (23.5mg) | | (21 mg)

AF2

(36.3 mg)

EtOAc 10%, isocratic)

FCC (Silica gel; hexane -

| |
FCC (Silica gel; hexane

— EtOAc, gradient)

1
AFd AF5

(10 mg) (7 mg)

Scheme 2 Separation and isolation of compounds from Aerides
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VLC (silica gel; hexane — EtOAc, gradient)
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4. Physical and spectral data of isolated compounds

4.1. Compound AF1 (Aerifalcatin)
Compound AF1 was obtained as a brown amorphous solid (11.9 mg,
0.00059% of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS  : [M-H] ion at m/z 523.1387 (C5;H,30s) (calcd. 523.1392)

31

uv : N NM (log €), in methanol: 265 (4.33), 313 (3.50), 353 (3.30),
371 (3.44)
FT-IR 1 V: 3384, 2935, 2850, 1589, 1475, 1371, 1266 cm’?

Optical rotation  : [C(]%O: -20.0 (c 0.5, MeOH)
'H NMR -0 ppm, 400 MHz, in acetone-dg; Table 4

BC NMR : & ppm, 100 MHz, in acetone-ds; Table 4

4.2.Compound AF2 (n-eicosyl-trans-ferulate)
Compound AF2 was obtained as a yellow powder (36.1 mg, 0.0018% of the
dry weight of the plant). It was soluble in acetone.
HR-ESIMS  : [M-H] fon at m/z 473.3562 (CsoHasOs) (caled. 473.3630)
'H NMR : & ppm, 400 MHz, in acetone-dj; Table 5

BCNMR  : O ppm, 100 MHz, in acetone-d; Table 5

4.3.Compound AF3 (Denthyrsinin)
Compound AF3 was obtained as a brown amorphous solid (7 mg, 0.00035%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS [M—H]- ion at m/z 299.0929 (C;7H;505) (calcd. 299.0919)
'H NMR : & ppm, 400 MHz, in acetone-dj; Table 6

BCNMR  : & ppm, 100 MHz, in acetone-d; Table 6
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4.4.Compound AF4 (2,4-Dimethoxy-3,7-dihydroxyphenanthrene)
Compound AF4 was obtained as a brown amorphous solid (10 mg, 0.0005%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS [M—H]- ion at m/z 269.0816 (C;4H;504) (calcd. 269.0813)
'HNMR  : & ppm, 400 MHz, in acetone-dg; Table 7

BCNMR  : O ppm, 100 MHz, in acetone-d; Table 7

4.5.Compound AF5 (2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene)
Compound AF5 was obtained as a brown amorphous solid (7 mg, 0.00035%

of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS [M—H]- ion at m/z 299.0922 (C;7H;505) (calcd. 299.0919)

'H NMR : & ppm, 400 MHz, in acetone-dj; Table 8

BCNMR ;& ppm, 100 MHz, in acetone-dg; Table 8

4.6.Compound AF6 (3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene)
Compound AF6 was obtained as a brown amorphous solid (2.2 mg, 0.00011%

of the dry weight of the plant). It was soluble in acetone.

HR-ESIMS [I\/\—H]_ ion at m/z 299.0926 (C;7H;505) (calcd. 299.0919)

'H NMR - & ppm, 400 MHz, in acetone-dj; Table 9

>C NMR -0 ppm, 100 MHz, in acetone-dg; Table 9

4.7.Compound AF7 (Agrostonin)
Compound AF7 was obtained as a brown amorphous solid (58 mg, 0.0029%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS - [M-H] ion at m/z 537.1543 (Cs,Hy:Os) (calcd. 537.1549)
'HNMR  : & ppm, 400 MHz, in acetone-dg; Table 10

>C NMR -0 ppm, 100 MHz, in acetone-dg; Table 10
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4.8.Compound AF8 (Syringaresinol)
Compound AF8 was obtained as a white amorphous solid (7.4 mg, 0.00037%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS [M—H]- ion at m/z 417.1558 (C,H,50s) (calcd. 417.1549)
'HNMR  : & ppm, 400 MHz, in acetone-d; Table 11

BCNMR  : & ppm, 100 MHz, in acetone-d; Table 11

4.9.Compound AF9 (trans-n-feruloytyramine)
Compound AF9 was obtained as a brown amorphous solid (2.6 mg, 0.00012%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS - [M-H] ion at m/z 312.1232 (C15H;sNO,) (calcd. 312.1235)
'H NMR : & ppm, 400 MHz, in acetone-dj; Table 12

BCNMR ;& ppm, 100 MHz, in acetone-dg; Table 12

4.10. Compound AF10 (trans-n-coumaroyltyramine)
Compound AF10 was obtained as a white amorphous solid (1.5 mg, 0.00012%
of the dry weight of the plant). It was soluble in acetone.
HR-ESIMS - [M-H] ion at m/z 282.1124 (Cy7H;;NOy) (calcd. 282.1130)
'H NMR : & ppm, 400 MHz, in acetone-dj; Table 13

>C NMR -0 ppm, 100 MHz, in acetone-dg; Table 13

Evaluation for anti-neuroinflasnmatory activity in vitro
5.1. Cell treatment

LPS-induced BV-2 microglial cells were used as a model of
neuroinflammation. Firstly, the cells were seeded at 96-well plates at a density of
2 x 104 cells/well for 24 hours, followed by various compound concentrations to

perform cell viability. Cell viability was determined using the MTT test (Sigma-
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Aldrich, St. Louis, MO, USA) to obtain a safe (non-toxic) concentration. First, the
media in multi-well plates were removed and cleaned after the cell treatment.
Next, MTT solution (0.5 mg/mL) was added. The formazan crystals were dissolved
in DMSO after three hours (Sigma-Aldrich, St. Louis, MO, USA). At a maximum
wavelength of 570 nm, the absorbance was measured using a microplate reader
(BMG Labtech, Ortenberg, Germany).

After that, the safe concentrations were used to perform NO and ELISA assays.
Briefly, 48-well plates with 7.5x104 cells per well were used to seed the cells for
24 hours. Following a 2-hour test chemical treatment, the cells were co-incubated
with LPS for a further 22 hours. The media were gathered for use in cytokine and

NO tests in the future.

5.2. Proinflammatory mediator assay

The manufacturer's instructions were followed in preparing the NO assay
reagents (Sigma-Aldrich, St. Louis, MO, USA). After cell treatment, 100 uL of culture
media was collected and placed into 96-well plates. Griess reagent was added to
the collected media in 100 pL, and the mixture was then incubated for 20
minutes in the dark. The absorbance was measured in the microplate reader at
520 nm. The cytokine levels (IL-6 and TNF-Ql) were measured using the ELISA
assay (BioLegend, San Diego, CA, USA) for the most potent compounds obtained

in the NO assay.
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CHAPTER IV

RESULT AND DISCUSSION

1. Preliminary investigation of anti-neuroinflammatory activity from extracts of
Aerides falcata

In this research, the dried powder of Aerides falcata (2 kg) was extracted with
methanol, yielding the methanolic extract (105.08 g). The methanolic extract was
then partitioned with water, ethyl acetate, and n-butanol, resulting in the aqueous
extract (28.13 g), ethyl acetate extract (20.4 g), and n-butanol extract (48.98 g). During
the preliminary study, the methanolic and ethyl acetate extracts were investigated
for their anti-neuroinflammatory activity in LPS-induced BV-2 microglial cells. The
ethyl acetate extract exhibited a higher NO inhibitory activity than the methanolic
extract and the positive control (minocycline) (Table 3). Furthermore, both extracts
showed a reduction in cytokine levels in a dose-dependent manner (Figure 4). Based
on this evidence, the ethyl acetate extract was selected for further investigation to

identify the active principles.

Table 3 NO inhibition of extracts from Aerides falcata

Extracts ICs0 (ug/mL)
Methanol 14.01 £ 20
Ethyl acetate 506 * 35

Minocycline 8.63 £ 24
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Methanolic extract Ethyl acetate extract
250 250
200 200
E 150 E 150-
1= [=2]
= 2
© i © i
i/ 100 2 100
50 50
0- 0-
LPS(1pgmL) - + + + o+ - LPS (1 pg/mL) - + + + o+ -
MeOH ex (pg/ml) - - 25 10 40 40 EtOAc ex (pg/mL) - - 25 10 40 40
400 500—
_300- 400
= =
= £ 3004
~ 200 =
3 3
% E 200
"~ 100
100
0- 0
ps(lpgmt) - + + o+ 4 - LPS(lpg/ml) - + + + + -
MeOH ex (pg/ml)- - 25 10 40 40 EtOAcex (ng/ml)- - 25 10 40 40

Figure 4 Effects of MeOH and EtOAc extract on cytokine release in LPS-

stimulated BV-2 microglial cells.

Data was presented as mean + SD, n = 3. n = 3. **p < 0.01, **p < 0.001, LPS
vs extract-treated groups. Statistical difference between extracts was analyzed

using one-way ANOVA followed by Tukey’s multiple comparisons test.
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2. Chemical investigation

From the ethyl acetate extract, a new compound named aerifalcatin [35]
was isolated, along with nine known compounds, namely n-eicosyl-trans-ferulate
[38], dentyrsinin [3], 2,4-dimethoxy-3,7-dihydroxyphenanthrene [4], 2,7-dihydroxy-
3,4, 6-trimethoxyphenanthrene [36], 3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37],
agrostonin  [32], syringaresinol [39], trans-n-feruloytyramine [40], and trans-n-

coumaroyltyramine [41] (Figure 5).

Aerifalcatin [35] R=0OH
Agrostonin [32] R = OMe
Ry
oy
Rz MeO Rs

Denthyrsinin [3]; Ry = R4 = OMe, R, = H, Ry = OH
2,4-Dimethoxy-3,7-dihydroxyphenanthrene [4]; R; = R, = H, R; = OH, R; = OMe
2,7-Dihydroxy-3,4,6-trimethoxyphenanthrene [36]; R; = H, R, = R = OMe, Ry = OH

3,7-Dihydroxy-2,4,6-trimethoxyphenanthrene [37]; R; = H, R, = R4 = OMe, R; = OH

Figure 5 Structures of compounds isolated from Aerides falcata
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2.1. Structure elucidation of compound AF1
AF1 was isolated as a brown amorphous solid. It was given the molecular
formula Cs;H,,0g according to the negative HRESIMS spectrum which displayed a

pseudo molecular ion peak [M-H] at m/z 523.1387 (calcd. 523.1392) (Figure 8). the
UV absorption at 265, 313, 353, and 371 nm (Figure 9) suggested a phenanthrene
skeleton (46). The IR spectrum exhibited absorption bands for the hydroxyl groups

(3384), and aromatic rings (2935, 1589) (Figure 10).

The 'H NMR spectrum presented signals in the aromatic area (6 6.87-9.25)
(Figure 11 and Table 4). It showed two pairs of coupled doublets at H-9 (& 7.36, d, J
= 8.8 Hz), H-10 (8 6.94, d, J = 9.2 Hz), H-9' (] 7.32, d, J = 8.8 Hz), and H-10" (0 6.87,
d, J = 9.2 Hz). Six one-proton singlets representing H-3 (8 6.99), H-5 (& 9.25), H-8 (O
7.20), H-3" (6 6.96), H-5" (0 9.19) and H-8' (O 7.19) indicated that this structure was a
dimeric phenanthrene derivative. Furthermore, the presence of twenty-nine °C NMR
signals signified an asymmetrical structure (Figure 12 and Table 4). The first unit
phenanthrene of AF1 (rings A, B, and C) displayed HMBC correlation between C-8 (S
112.1) and H-9, and between C-9 (O 127.9) and H-8. This unit showed two methoxy
groups at © 4.23 (MeO-4) and & 4.07 (MeO-6). Their NOESY their correlations with H-3
and H-5 confirmed the positions of these methoxy groups at C-4 (6 160.2) and C-6
(O 148.4). From the NMR data of the first unit, three quaternary carbons at C-2 €S

155.0) and C-7 (& 146.0) should be occupied by two hydroxy groups, and C-1 (O
109.9) provided a bridge linking to another monomer of phenanthrene. The position

of C-1 was supported by its HMBC correlation with H-3 and H-10 (Figures 16, 17, and
18). The second unit of AF1 was almost identical to the first unit. C-8" (& 112.4)
showed correlation with H—9', and C-9" (8 128.1) also showed correlation with H-8" in

the HMBC spectrum. However, there was only one methoxy group at MeO-4" (6 4.17,
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s). The position of this methoxy group at C-4" (& 160.3) was supported by its cross-
peak with H-3" in the NOESY spectrum (Figures 19, 20, and 21). The hydroxyl groups
were attached to three quaternary carbons, c-2" (6 155.0), C-6' (O 146.2), and C-7'
(6 145.0) while C-1" (6 109.6) was assigned as the bridging point based on its HMBC
correlation to H-3" and H-10". The bridge C-1(6 109.9) and C-1" (8 109.6) was also
supported by their chemical shift values, typical for non-oxygenated quaternary
carbons (47). From all of the above spectral evidence, it was concluded that 1 had
the structure 4,4',6—trimethoxy(1,1'biphenenthrene)—2,2'6',7,7'—pentol and was given

the trivial name aerifalcatin.

Aerifalcatin [35]

Table 4 NMR spectral data of compound AF1

Position AF1 (acetone-d)
'H B¢ HMBC (correlation with H)
1 - 109.9 3,10
2 - 155.0 3%
3 6.99 (s) 100.0 -
4 - 160.2 3%, MeO-14
4a - 116.3 3,5,10
4b - 125.8 8,9
5 9.25 (s) 109.7 -




6 . 148.4 5%, 8, MeO-6
7 . 146.0 5, 8*
8 7.20 (s) 112.1 9
8a - 128.0 5,10
9 736 (d,J=88Hz) | 127.9 8
10 | 694(d,J=88Hz) | 1233 .
10a . 135.4 9
1! - 109.6 3' 10’
2! - 155.0 3/%
3! 6.96 (s) 99.7 ;
' - 160.3 I q'
4 : 3'% MeO-4
g4a’ - 116.0 3’ 5" 10
ap’ - 126.2 g’ o
5/ 9.19 (s) 113.5 ;
6 X 146.2 5'x g
7! - 145.0 5" g'x
8! 7.19 (s) 1124 9
8a’ - 127.6 5", 10
o' 732(d,J=92Hz) | 128.1 g/
10’ 6.87(d,J=92Hz) | 1226 -
108’ - 135.5 9f
MeO-4 4.23 (s) 56.1
MeO-6 4.07 (s) 56.0
MeO-a' 4.17 (s) 55.8

*Two-bond coupling
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2.2. lIdentification of compound AF2

Compound AF2 was isolated as a yellow powder. It presented the molecular
formula CsoHsgO4 based on the negative HRESIMS spectrum which displayed a pseudo
molecular ion peak [M—H]- at m/z 473.3562 (calcd. 473.3630). The 'H NMR signals
(Figure 24 and Table 5) in the aromatic region showed meta-coupling proton at O
7.34 (1H, d, J = 2.0 Hz, H-6), a double doublet proton signals at 0, 7.14 (1H, dd, J =
2.0, 8.0 Hz, H-2), an ortho-coupling at 5H 6.87 (1H, d, J = 8.4 Hz, H-3), and uncoupled
of a methoxy group at 0y 3.92 (3H, s, MeO-5). Two olefinic protons showed at [
7.59 (1H, d, J = 16.0 Hz, H-7) and GH 6.39 (1H, d, J = 16.0 Hz, H-8), a methylene
proton at 5H 4.15 (2H, t, J = 6.8 Hz, H-1), a methyl proton at GH 0.87 BH, t,J = 4.0
Hz, H-Me). The 'H NMR signals (Figure 25 and Table 5) showed a strong signal at the
methylene region at 6H 1.28 (m, H-methylene, H-n-2, H-n-1), the methylene aliphatic
chain was suggested as -(CH,);4- based on calculating between HRESIMS and known

NMR structure. The *C NMR and HSQC spectra (Figures 25, 26, and 27) of AF2
revealed seventeen signals, including one carbonyl of ester form at Oc 167.57 (C-9),

one methoxy group at Oc 56.42 (OMe-5), one methyl group, five methine carbons,
three quaternary carbons, and six methylene carbons. The above NMR data of AF2

suggested a ferulic acid ester skeleton (48).

The HMBC spectrum of AF2 (Figures 29, 30, and 31) confirmed H-7 was
correlated with C-6 (O¢ 111.3), C-9 (O 167.5), and C-2 (O¢ 124.0). the ester group was
supported with HMBC correlation C-9 (8¢ 167.5) with H-1" and the long chain of
aliphatic was continued with connection H-1" to H-2" and H-3' supported by HMBC,
NOESY (Figure 32), COSY (Figures 33 and 34) data, where there were presented their
connection. the primary carbon of methyl (Oc 14.9) at the end of this chain was

correlated with the proton methylene group 6H 1.28 (4H, m, H,-n-1, H,-n-2), based on
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the HMBC correlation. The position of the methoxy group of MeO-5 was determined

by HMBC correlation with C-5 (8¢ 149.0) and supported by NOESY correlation

between OMe-5 and H-6.

Based on the above spectroscopy data evidence, AF2 was identified as n-
eicosyl trans-ferulate. This known compound was previously reported in Synadenium
glaucescens (49) and several Dendrobiums such as Dendrobium christyanum and

Dendrobium clavatum (50, 51).

n-eicosyl-trans-ferulate [38]

Table 5 NMR spectral data of compound AF2 and n-eicosyl-trans ferulate

Position AF2 (acetone-d) n-eicosyl-trans ferulate (CDCl;) (48)
6 4 (mult., J in Hz) 5 c S 4 (mult., J in Hz) 6 c

1 - 127.9 s- 127.1

2 7.14 (dd, J = 2.0, 8.0 Hz) 124.0 7.07 (dd, J = 2.0, 8.0 Hz) 122.9

3 6.87 (d, J = 8.4 Hz) 116.1 6.91 (d, J = 8.0 Hz) 114.6

4 - 150.3 - 146.7

5 - 149.0 - 147.8

6 7.34 (d, J = 2.0 Hz) 111.3 7.03 (d, J = 2.0 H2) 109.3
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7 7.59 (d, J = 16.0 Hz) 145.6 7.61(d, J = 16.0 Hz) 144.6

8 6.39 (d, J = 16.0 Hz) 116.0 6.29 (d, J = 16.0 Hz) 115.6

9 - 167.5 - 167.3

1 4.15 (t, J = 6.8 Hz) 64.7 4.18 (t) 64.6
o 1.58 (m) 29.6 1.64 (m) 31.8
3! 1.42 (m) 26.8 1.64 (m) 25.9
{(CH1a 1.28 (m) 23.4 - 1.25 (m) 25.9-
29.6 29.6

n-2 1.28 (m) 32.7 1.25 (m) 31.9
n-1 1.28 (m) 23.4 1.25 (m) 22.7
Me 0.87 (t, J = 4.0 Hz) 14.4 0.86 (1) 14.1
MeO-5 3.92(s) 56.42 3.92(s) 55.9

2.3. Identification of compound AF3

Compound AF3 was isolated as a brown amorphous solid. The pseudo
molecular ion showed a negative HRESIMS spectrum (Figure 35) [M—H]_ at m/z
299.0929 (calcd. 299.0919) suggesting molecular formula Ci7H;s0s. The 'H-NMR
spectra of AF3 (Figure 36 and Table 6) presented aromatic region in four ortho-
coupling proton signals at 6,,9.10 (1H, d, J = 9.2 Hz, H-5), 6,,7.24 (1H, d, J = 9.2 Hz,
H-6), 5H 7.85 (1H, d, J = 9.2 Hz, H-9), 5H 7.67 (1H, d, J = 8.8 Hz, H-10) and one singlet
signal at 6H 7.25 (1H, s, H-1). Three singlet signals were provided at 5H 3.99 (3H, MeO-
2), 6,,3.91 (3H, Me0-4), and &,,3.92 (3H, MeO-8), suggested as three methoxy groups.
Additional remaining two singlet signals at 6, 7.96 and &, 8.31 represent HO-3 and

HO-7 respectively. The C-NMR and HSQC correlation of AF3 (Figure 37, 38 and Table
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6), showed seventeen signals including nine quaternary carbon, five methine carbon,
and three methoxy groups. These data confirmed a monomeric phenanthrene

skeleton.

This monomeric phenanthrene was equipped with a correlation between H-9
and H-10 at COSY of AF3 (Figure 42). It was supported by HMBC correlation (Figure
39), H-9 has a correlation with C-4b (O 124.8), C-10a (&¢ 126.4), and C-8 (O 142.2),
whereas H-10 was correlated with C-1 (8¢ 105.9) and C-da (&¢ 120.4). Positions of
methoxy groups were supported by NOESY correlation (Figure 41), MeO-2, MeO-4,

and MeO-8, showed correlations with H-1, H-5 and H-9, respectively.

Based on the above NMR spectral data, AF3 was identified as denthyrsinin.
This compound was confirmed by comparison with NMR spectral data that was
previously reported as 3,7-dihydroxy-2,4,8-trimethoxyphenanthrene, which was

earlier isolated from Bletilla striata (52).

MeO OH

Denthyrsinin [3]



Table 6 NMR spectral data of compound AF3 and Denthyrsinin

Position AF3 (acetone-d) Denthyrsinin (CDCls) (53)
& y(mult., J in Hz) & c & y(mult., J in Hz) & c
1 7.25(s) 105.9 7.09 (s) 104.9
2 - 148.7 - 146.8
3 - 141.2 - 139.4
4 - 145.4 - 144.0
4a - 120.4 - 119.2
4b - 124.8 - 124.2
5 9.15(d, J = 9.2 Hz) 124.2 9.16 (d, J = 9.2 Hz) 124.0
6 7.24(d,J=9.2 Hz) 117.9 7.30 (d, J = 9.2 H2) 116.1
7 - 147.3 - 145.6
8 - 142.2 - 140.8
8a - 128.5 - 125.7
9 7.85(d, J = 9.2 Hz) 118.6 7.82(d,J =9.2 Hz) 117.9
10 7.67(d,J=8.8Hz) 128.7 | 7.63(d,J=9.2 Hz) 127.5
10a - 126.4 : 126.6
MeO-2 3.99 (s) 56.3 4.05 (s) 56.1
MeO-4 3.91(s) 59.6 3.94 (s) 59.8
MeO-8 3.92(s) 61.3 3.98 (s) 61.9
HO-3 7.96 (s) - 5.79 (s) -
HO-7 8.31 (s) - 6.01 (s) -

46
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2.4. Identification of compound AF4

Compound AF4 was determined as a brown amorphous solid. The HRESIMS
spectrum (Figure 43) showed a negative molecular ion [I\/\—H]_ at m/z 269.0816
(calcd. 269.0813) suggesting the molecular formula as CigH14Oq The 'H-NMR spectra
of AF4d (Figures 44, 45 and Table 7) served doublet protons of ortho-coupling at O
9.34 (1H, d, J = 9.2 Hz, H-5), Oy, 7.45 (1H, d, J = 8.8 Hz, H-9), and & 7.59 (1H, d, J =
8.8 Hz, H-10). The H NMR also exhibited a double doublet proton at GH 7.18 (1H, dd,
J = 9.2, 2.8 Hz H-6), one uncoupled proton at 5H 7.22 (1H, s, H-1), and two singlet
signals of methoxy groups at 8, 3.98 (3H, MeO-2) and &, 3.92 (3H, MeO-4). The *C-
NMR spectra and HSQC correlation (Figures 46, 47, and Table 7), presented sixteen
signals, including eight quaternary carbons, six methine carbons, and two methoxy

groups. These 'H and C-NMR offered data that was similar to AF3, presenting a

monomeric phenanthrene skeleton.

The assignment of H-9 and H-10 positions supported by its correlation with C-
8 (Oc 112.2) and C-1 (& 105.9), respectively, in HMBC spectrum (Figure 48). The
methoxy group positions of AF4 were determined by the HMBC correlation (Figure
49) where the proton of MeO-2 connected to C-2 (6¢ 148.4) and the proton of MeO-

4 connected to C-4 (O 145.3). These positions strengthened with NOESY correlation

of AF4 (Figure 51), MeO-2 and MeO-4 linked to H-1 and H-5, respectively.

From the above data spectroscopy evidence, AF4 was identified as 2,4-
dimethoxy-3,7-dihydroxyphenanthrene. It was reported previously as Epheranthol B
isolated from the stems of Flickingria fimbriata (54) and Dendrobium chrysotoxum

(55).



2,4-dimethoxy-3,7-dihydroxyphenanthrene [4]

Table 7 NMR spectral data of compound AF4 and 2,4-dimethoxy-3,7-
dihydroxyphenanthrene
Position AF4 (acetone-dy) 2,4-dimethoxy-3,7-
dihydroxyphenanthrene (CDCls)
(52)
0 w (mult,, J in Hz) 6 c 6 4 (mult., J in Hz) 6 c
1 7.22 (s) 105.9 7.12(s) 105.0
2 . 148.4 - 147.7
3 - 141.1 - 139.9
a4 - 145.3 - 144.5
4a - 120.0 - 119.1
ab - 123.9 - 123.0
5 9.34 (d, J = 9.2 Hz) 129.1 9.27 (d, J = 9.0 Hz) 128.0
6 7.18 (dd, J=9.2,2.8Hz) | 117.4 | 7.09 (dd,J=9.0, 2.5Hz) | 116.1
7 - 155.9 - 154.8
8 7.24 (d, J = 2.8 Hz) 112.2 7.14 (d, J = 2.5 Hz) 1111
8a - 135.0 - 134.2

48
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9 7.45(d, J = 8.8 Hz) 1253 7.52(d, J =9.0 Hz) 1243
10 7.59 (d, J = 8.8 Hz) 128.1 7.39 (d, J = 9.0 Hz) 127.0
10a - 126.4 - 125.8
MeO-2 3.98 (s) 56.3 3.87 (s) 55.2
MeO-4 3.92 (s) 59.6 3.97 (s) 58.6

2.5. Identification of compound AF5

Compound AF5 was obtained as a brown amorphous solid. It was suggested
the molecular formula for Cy7H;40O5 based on its HRESIMS spectrum (Figure 53) in a
negative molecular ion [M-H] at m/z 299.0922 (calcd. 299.0919). 'H-NMR spectra of
AF5 (Figure 54 and Table 8) showed seven signals at the aromatic region including
two pairs ortho-coupling at 6H 7.48 (1H, d, J = 8.8 Hz, H-9) and 5H 743 (1H,d,J = 8.8
Hz, H-10). Three uncoupled protons at 6H 7.14 (1H, s, H-1), 5H 9.04 (1H, s, H-5), 5H
7.25 (1H, s, H-8), and two phenolic hydroxyl group at 5H 7.29 (1H, s, HO-2), and 5H
8.28 (1H, s, HO-7). The presence of a monomeric phenanthrene skeleton was
indicated by C-NMR spectra and HSQC correlation of AF5 (Figures 55, 56 and Table
8) which showed seventeen signals including the presence of nine quaternary

carbons, five methine carbon, and three methoxy groups.

The position of three methoxy groups was confirmed by HMBC correlation of
AF5 (Figures 59), which was MeO-3 was correlated with C-3 (5(; 142.6), MeO-4 was
correlated with C-4 (O¢ 152.1), and MeO-6 was correlated with C-6 (O 148.7). HMBC
correlations also presented the relation of C-6 to HO-7 proton and C-1 to HO-2

proton, suggesting the position of hydroxyl groups.
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Based on the above evidence, the structure of AF5 was suggested as 2,7-
dihydroxy-3,4,6-trimethoxyphenanthrene. This compound was earlier reported from
Appendicula reflexa with the synonym 3,4,6-trimethoxyphenanthrane-2,7-diol (56)

and isolated from the heartwood of Combretum psidioides (57)

MeO MeO OMe

2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36]

Table 8 NMR spectral data of compound AF5 and 2,7-dihydroxy-3,4,6

trimethoxyphenanthrene

Position AF5 (acetone-dy)
) y(mult., J in Hz) 5 c HMBC Correlation with *H
1 7.14 (s) 109.7 10, OH-2
2 - 150.0 1%, OH-2*
3 - 142.6 1, MeO-3
4 - 152.1 MeO-4
4a - 118.8 1,5, 10
ab - 124.7 8,9
5 9.04 (s) 108.2 -
6 - 148.7 8, MeO-6, OH-7




51

7 - 146.5 5, 8%, OH-7*
8 7.25(s) 112.7 9, OH-7
8a - 128.4 5,10
9 748 (d,J=88Hz) | 126.7 8
10 7.43(d,J=88Hz) | 1254 1
10a - 130.7 9, 10*
MeO-3 4.01 (s) 61.3 -
MeO-4 4.02 (s) 60.4 -
MeO-6 4.04 (s) 56.1 -
HO-2 7.29 (s) f -
HO-7 8.28 (s) 1 -

*Two-bond coupling

2.6. lIdentification of compound AFé6

Compound AF6 was obtained as a brown amorphous solid. The molecular
formula was identified as Ci7H40s based on HRESIMS spectrum (Figure 59) in a
negative molecular ion [M—H]_ at m/z 299.0926 (calcd. 299.0919). The 'H-NMR
spectrum of AF6 (Figure 60 and Table 9) showed three uncoupled protons of
methoxy group at 5H 4.04 (3H, s, MeO-2), 6H 3.99 (3H, s, MeO-4), and 6H 3.98 (3H, s,
MeO-6). Three singlet proton signals at O, 7.22 (1H, s, H-1), &, 9.06 (1H, s, H-5), and
6H 7.25 (1H, s, H-8). Two pairs of ortho-coupling at 6H 7.45 (1H, d, J = 8.8 Hz, H-9),
and Oy 7.51 (1H, d, J = 8.8 Hz, H-10). Two singlet signals of hydroxyl groups at O,
7.85 (1H, s, HO-3) and &, 7.91 (1H, s, HO-7). The “C-NMR spectrum and HSQC
correlation of AF6 (Figures 61, 62, and Table 9) showed seventeen signals including,

nine quaternary carbons, five methine carbon, and three methoxy groups. Based on
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the presence of spectrum 'H-NMR and “C-NMR, it showed similar data with AF3 and

AF5, which suggested a monomeric phenanthrene skeleton.

The HMBC correlation of AF6 (Figure 63) suggested the position of hydroxyl
groups with the presence of their correlation of C-2 (8¢ 144.9) and C-4 (& 148.3) with
HO-3 and C-6 (O 148.4) and C-8 (8¢ 105.9) with HO-7. The HMBC correlation also
obtained the position of methoxy groups that were correlated between carbon
aromatic rings and proton methoxy groups including proton MeO-2 to C-2 (&c 144.9),
MeO-4 to C-4 (O 148.3), and MeO-6 to C-6 (Oc 148.4). These positions were
completed with the other evidence from the NOESY and COSY correlations of AF6
(Figures 64 and 65), where the proton of MeO-2 was correlated with H-1, and the

proton of MeO-6 was correlated with H-5.

The above data NMR spectroscopy suggested AF6 was 3,7-dihydroxy-2,4,6-
trimethoxyphenanthrene. This compound was the first isolated from the whole plant

of Bulbophyllum odoratissimum (49).

MeO MeO OH

3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37]



Table

9 NMR spectral data of compound AF6 and 3,7-dihydroxy-2,4,6-

trimethoxyphenanthrene
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Position AF6 (acetone-dy) 3,7-dihydroxy-2,4,6-

trimethoxyphenanthrene (CDCLs) (49)

o b (mult,, Jin Hz) o c & y(mult., J in Hz) o c

1 7.22 (s) 105.6 6.97 (s) 103.6

2 . 144.9 - 146.5

3 - 140.6 - 138.3

a4 - 148.3 - 143.0
43 - 126.7 - 117.4
ab - 124.2 - 122.2

5 9.06 (s) 108.1 8.95 (s) 106.1

6 - 148.4 - 146.6

7 - 146.5 - 144.3

8 7.25(s) 105.9 7.19 (s) 110.4
8a - 128.8 - 126.9

9 7.45 (d, J = 8.8 Hz) 124.9 7.31(s) 122.8
10 7.51(d, J = 8.8 Hz) 125.7 7.31(s) 123.7
10a - 119.5 - 124.9
MeO-2 4.04 (s) 59.8 3.88 (s) 54.0
MeO-4 3.99 (s) 56.2 3.85(s) 57.8
MeO-6 3.98 (s) 56.0 3.97 (s) 53.8
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2.7. ldentification of compound AF7

AF7 was identified as a brown amorphous solid. HRESIMS mass spectrum of

AFT7 (Figure 66) showed a negative molecular ion [M-H] at m/z 537.1543 (calcd.
537.1549), suggesting the molecular formula CsHy60s. The *H-NMR spectra of AF7

(Figure 67 and Table 10) showed the presence of the presence of a pair of two-
proton doublets with ortho-coupling at Oy 7.37 (2H, d, J = 9.2 Hz, H-9/H-9") and 6.92
(2H, d, J = 9.2 Hz, H-10/H-10"). Three sharp singlets at &, 7.02 (2H, s, H-3/H-3"), &,
9.27 (2H, s, H-5/H-5"), and 6H 7.21 (2H, s, H-8/H-8"). Two methoxy groups with singlet

signals at O, 4.25 (6H, s, MeO-4/MeO-4") and &,,4.09 (6H, s, MeO-6/MeO-6").  The
B3C-NMR and HSQC spectra (Figures 68, 69, 70, and Table 10) revealed sixteen carbon

signals, suggesting that AF8 was a symmetrical dimeric phenanthrene. Moreover, the
two phenanthrene units were symmetrically linked to each other through a c-c'
bond between C-1-C1’" as supported by the HMBC correlation of AF7 (Figure 71),

where C-1/1" at 6¢ (109.1) connected to H-3/3" and H-10/10" (47).

The positioning of methoxy groups was suggested by the HMBC correlation of
AF7 (Figure 72), proved by correlation C-4/4" (8¢ 159.3) to the proton of MeO-4/4
and C-6/6" (&¢ 147.7) to the proton of Me0O-6/6". This condition was supported by
the NOESY correlation of AF7 (Figure 73), which showed the proton of MeO-4/4’

correlated to H-3 and Me0-6/6" correlated to H-5.

Through the comparison of the above evidence NMR spectra data with
previously reported compound (47), which identified that AF7 is agrostonin. AF7 is a
known compound that was first found in Agrostophyllum khasiyanum (58) and was

isolated from Aerides multiflora (26).
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MeO
OMe

HO

Agrostonin [32]

Table 10 NMR spectral data of compound AF7 and Agrostonin

Position AFT (acetone-dy) Agrostonin (acetone-dy) (49)
S L (mult, JinHz) | O & . (mult,, Jin Hz) S .

1 - 109.1 - 109.8
2 - 154.1 - 155.1
3 7.02 (s) 99.1 7.00 (s) 100.0
4 - 159.3 - 160.2
da - 1154 - 116.3
ab » 125.0 - 125.8
5 9.27 (s) 159.0 9.25 (s) 109.7
6 - 147.7 - 148.5
7 - 145.2 - 146.0
8 7.21(s) 111.3 7.19 (s) 112.2
8a - 127.1 - 128.1
9 7.37(d,J=9.2 Hz) 127.0 7.36 (d, J = 9.2 Hz) 127.9
10 6.92 (d, J = 9.2 Hz) 122.5 6.93 (d, J = 9.2 Hz) 123.3
10a - 134.6 - 135.4
1! - 109.1 - 109.8
of - 154.1 - 155.1
3/ 7.02 (s) 99.1 7.00 (s) 100.0




q' - 159.3 - 160.2
a3’ - 1154 - 116.3
ap’ - 125.0 - 125.8
5’ 9.27 (s) 159.0 9.25 (s) 109.7
¢ - 147.7 - 148.5
7' - 145.2 - 146.0
g’ 7.21 (s) 111.3 7.19 (s) 112.2
8a - 127.1 - 128.1
9 7.37(d, J = 9.2 Hz) 127.0 7.36 (d, J = 9.2 Hz) 127.9
10’ 6.92 (d, J = 9.2 Hz) 122.5 6.93(d, J =9.2 Hz) 123.3
108’ - 134.6 ; 1354
MeO-4 4.25 (s) 55.3 4.23 (s) 55.6
MeO-6 4.09 (s) 55 4.07 (s) 56.0
MeO-4' 4.25 (s) 55.3 4.23 (s) 56.1
MeO-6" 4.09 (s) 552 4.07 (s) 56.0
2.8. Identification of compound AF8

56

Compound AF8 was obtained as a white amorphous solid. The molecular

formula was determined as Cy,H,s0g suggested by negative molecular ion [M—H]_ at

m/z 417.1558 (calcd. 417.1549) in the HRESIMS (Figure 74). The 'H-NMR spectrum of

AF8 (Figure 75 and Table 11) showed 1 sharp single proton in aromatic region at O,

6.68 (4H, s, H-2, H—2', H-6, H-6"). two pairs of methine proton at 6H 6.68 (2H, m, H-8,

H-8") and &, 4.67 (2H, d, J = 4.0 Hz, H-7, H-7"). two pairs of methylene proton at O
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4.22 (2H, dd, J = 9.2, 6.8 Hz, Ha-9, Ha-9") and &, 3.84 (2H, Hb-9, Hb-9"). Four methoxy
groups were suggested by a sharp single proton at O, 3.83 (12H, d, MeO-3, MeO-3',

MeO-5, and MeO-5"). The ®*C-NMR spectra and HSQC correlation of AF8 (Figures 76,
77 and Table 11) showed eight resonances including one signal methoxy groups, two

methine carbon, three quaternary carbon and two signals oxygenated carbon at C-

7/7" (Oc 86.8) and C-9/9" (O 72.3) that indicated the presence of a diepoxylignan

skeleton (59) with two pairs of methoxy groups symmetrically in each ring.

The HMBC correlation of AF8 (Figure 78) revealed a correlation of c-7/7" (Oc
86.8) to Ha-9/9, Hb-9/9', H-2/2" and H-6/6". The positioning of the methoxy group
was identified with correlation proton MeO-3/3" and MeO-5/5" to C-3/3" (O 148.6)

and C-5/5" (O¢ 146.8), respectively. This positioning was supported by the NOESY
correlation of AF8 (Figure 79) which showed a correlation between H-2 to proton

MeO-3 and H-6 to proton MeO-5.

From the above data NMR spectra identified that AF8 was syringaresinol. This
compound was previously isolated from Magnolia thailandica (60) and in several

Dendrobium such as D. nobile, D. scundum, and D. heterocarpum (53, 61, 62)

OMe

Syringaresinol [39]



Table 11 NMR spectral data of compound AF8 and Syringaresinol
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Position AF8 (acetone-dg) Syringaresinol (CDCls) (53)
5H(mult., Jin Hz) 6c 6H (mult., J in Hz) 6C
1 - 113.2 - 1321
2 6.68 (s) 104.4 6.59 (s) 102.8
3 - 148.6 - 147.2
a4 - 136.2 - 134.4
5 - 148.6 - 147.2
6 6.68 (s) 104.4 6.59 (s) 102.8
7 4.67 (d, J = 4.0 Hz) 86.8 4.73(d, J = 4.3 Hz) 86.0
8 3.09 (m) 55.3 3.10 (m) 54.3
9a 4.22 (dd, J = 9.2, 6.8 Hz) 72.3 4.28 (dd, J = 8.8, 6.4 Hz) 71.8
9b 3.84 72.3 3.92 71.8
1! . 113.2 - 1321
o' 6.68 (s) 104.4 6.59 (s) 102.8
3! “ 148.6 - 147.2
q’ . 136.2 - 134.4
5! - 148.6 - 147.2
¢ 6.68 (s) 104.4 6.59 (s) 102.8
7' 4.67 (d, J = 4.0 Hz) 86.8 473 (d, J = 4.3 Hz) 86.0
g’ 3.09 (m) 55.3 3.10 (m) 54.3
9'a 4.22 (dd, J =9.2, 6.8 Hz) 72.3 4.28 (dd, J = 8.8, 6.4 Hz) 71.8
J'b 3.84 723 3.92 718
MeO-3 3.83 (s) 56.6 3.89 (s) 56.4
MeO-5 3.82 (s) 56.6 3.89 (s) 56.4
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MeO-3' 3.83 (s) 56.6 3.89 (s) 56.4

MeO-5' 3.82 (s) 56.6 3.89 (s) 56.4

2.9. Identification of compound AF9

Compound AF9 was obtained as a brown amorphous solid. Molecular
formula CigHgNO4 was suggested by HRESIMS of AF9 (Figure 81) in negative molecular
ion [!\/\—H]- at m/z 312.1232 (calcd. 312.1235). The 'H-NMR spectra of AF9 (Figure 82
and Table 12) showed five aromatic proton signals at 6H 7.15(d, J = 2.0 Hz, H-2), 6.83
(d, J = 8.0 Hz, H-5), 7.03 (dd, J = 8.0 Hz, 2.0 Hz, H-6), 7.06 (d, J = 8.4 Hz, H—Z', H—6’),
6.75 (d, J = 8.4 Hz, H-3", H-5"), Proton vicinal coupling trans position at 5H 7.44 (d, J =
15.6 Hz, H-7) and 6.50 (d, J = 15.6 Hz, H-8), one proton methoxy group 5H 3.88 (s),
two proton methylene at &, 2.74 (t, J = 7.6 Hz, H-7') and 3.48 (t, J = 7.6 Hz, H-8").
The C-NMR spectra and HSQC correlation of AF9 (Figures 83, 84, 85, and Table 12)
indicated sixteen signals including one signal methoxy group, two signals aliphatic
methylene groups, five aromatic signals methine group, five signals aromatic

quaternary carbon, two signals double carbon (trans), and a secondary amide.

The HMBC correlation (Figures 86, 87, and 88) showed the correlation of
carbon from secondary amide C-9 (GC 166.3) with H-7, H-8 and H-8" that indicated
the presence of phenylpropanoid amide skeleton. The positioning of the methoxy
group was obtained from the correlation of C-3 (Oc 149) with proton MeO-3. It was

supported by the NOESY correlation (Figure 90) between H-2 and OMe-3.

Through the comparison from the above data spectroscopy, AF9 was known

as trans-n-feruloytyramine (63). This compound was first isolated from Cannabis
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sativa (64). Trans-n-feruloytyramine has a synonym as moupinamide and was

reported as an anti-inflammatory in vitro study (65).

trans-n-feruloytyramine [40]

Table 12 NMR spectral data of compound AF9 and trans-n-feruloytyramine

Position AF9 (acetone-dj) trans-n-feruloytyramine (CDzOD)
(63)

& | (mult,, J in Hz) 50, & . (mult,, J in Hz) S .

1 - 128.3 - 128.2
2 7.15(d, J = 2.0 Hz) 111.2 7.13(d, J=1.2Hz) 111.5
3 - 149.0 - 149.3
a4 - 148.6 - 149.8
5 6.83 (d, J = 8.0 Hz) 116.0 6.81 (d, J = 8.5 Hz) 116.4
6 7.03(dd,/=8.0,20Hz) | 1225 | 7.04(dd,J=85,1.2Hz) | 123.2
7 7.44 (d, J = 15.6 Hz) 140.2 7.44 (d, J = 15.6 Hz) 142.0
8 6.50 (d, J = 15.6 Hz) 120.0 6.41 (d, J = 15.5 Hz) 118.7
9 - 166.3 - 169.2
1! - 131.2 - 131.3
2! 7.06 (d, J = 8.4 Hz) 130.5 7.07 (d, J = 8.4 Hz) 130.7
3/ 6.75 (d, J = 8.4 Hz) 116.0 6.73 (d, J = 8.4 Hz) 116.2
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q - 156.7 - 156.9
5/ 6.75 (d, J = 8.4 Hz) 116.0 6.73 (d, J = 8.4 Hz) 116.2
6 7.06 (d, J = 8.4 Hz) 130.5 7.07(d, J = 8.4 Hz) 130.7
7! 274 (,J = 7.6 Hz) 35.0 276 (t,J = 7.5 Hz) 35.8
g/ 348 (t, ) = 7.6 Hz) 41.9 347 (t,J = 7.5 Hz) 425
MeO-3 3.88 (s) 56.2 3.85 (s) 56.4

2.10. Identification of compound AF10

Compound AF10 was obtained as a white amorphous solid. Molecular
formula C;7H;7;NO5 was suggested by HRESIMS of AF9 (Figure 91) in negative molecular
ion [M—H]_ at m/z 282.1124 (calcd. 282.1130). The H-NMR spectra of AF10 (Figure 92,
93 and Table 13) showed the presence of four signals aromatic proton at Oy 7.41 (d,
J = 8.0 Hz, H-2, H-6), 6.84 (d, J = 8.4 Hz, H-3, H-5), 7.05 (d, J = 8.4 Hz, H-2', H-6"), 6.75
(d, J = 8.4 Hz, H-3", H-5"), Proton vicinal coupling trans position at 5H 7.45(d, ) =156
Hz, H-7) and 6.47 (d, J = 15.6 Hz, H-8), and two proton methylene at 6H 274 (t, J =
7.2 Hz, H-7") and 3.45 (t, J = 7.2 Hz H-8'). The *C-NMR spectra and HSQC correlation
of AF9 (Figures 94, 95, 96, and Table 13) indicated thirteen signals including, two
signals for aliphatic methylene groups, four aromatic signals for methine group, four
signals for aromatic quaternary carbon, two signals for double carbon (trans), and a
secondary amide. The data 'H and "*C-NMR indicated that AF10 is the same skeleton

as AF9 without the methoxy group.

The HMBC correlation (Figures 98 and 100) revealed the correlation between

carbon secondary amides C-9 (6H 166.4) with proton H-7, H-8, and H-8". The
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correlation of C-7' (35.7) to proton aromatic H-6' and H-2' (Figure 99) and the
correlation C-7 (140.0) to another proton aromatic H-2 and H-6 was supported the

phenylpropanoid amides skeleton.

Based on the above data NMR suggested that AF10 is trans-n-coumaroyl
tyramine (63). It is a known compound and was isolated from Capsicum annum,
Dendrobium devonianum and Dendrobium moliniforme (66, 67, 68). Trans-n-
coumaroyl tyramine has the trivial name as paprazine and this constituent was
reported as Ol-glucosidase inhibitory activity and acetylcholinesterase (AChE)

inhibitory activity (69, 70).

trans-n-coumaroyltyramine [41]

Table 13 NMR spectral data of compound AF10 and trans-n-coumaroyltyramine

Position AF10 (acetone-d) trans-n-coumaroyltyramine

(CD50OD) (63)

6 4w (mult., J in Hz) 5 c 6 w(mult., J in Hz) 6 c
1 - 127.8 - 127.7
2 7.41 (d, J = 8.0 Hz) 130.1 7.41(d, J = 8.4 Hz) 130.5
3 6.84 (d, J = 8.4 Hz) 116.5 6.80 (d, J = 8.4 Hz) 116.2
4 - 160.0 - 160.5
5 6.84 (d, J = 8.4 Hz) 116.5 6.80 (d, J = 8.4 Hz) 116.2
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6 7.41(d,J=80Hz) | 130.1 | 7.41(d,J=8.4Hz) 130.5
7 7.45(d, /=156 Hz) | 1400 | 638(d,J=155Hz) | 14138
8 6.47(d, /=156 Hz) | 1197 | 7.44(d,J=155Hz) | 1184
9 - 166.4 - 169.2
1 - 131.1 - 131.3
o 7.05(d,J=84Hz) | 1305 | 7.06(d, )= 8.6 Hz) 130.7
3! 6.75(d,J=84Hz) | 1160 | 6.73(d,J=8.6 H2) 116.7
a’ - 156.7 - 156.9
5! 6.75(d,J=84Hz) | 1160 | 6.73(d,J=8.6 H2) 116.7
6 7.05(d,J=84Hz) | 1305 | 7.06(d, )= 8.6 Hz) 130.7
7' 2.74 (t, J =7.2 Hz) 35.7 2.75 (t, J = 7.5 Hz) 3538
g’ 3.45 (t, J =7.2 Hz) 41.9 3.46 (t, J = 7.5 Hz) 42.5

2. Anti-neuroinflammatory activity of compounds from Aerides falcata

The isolated compounds that have sufficient weight (more than 1 mg) were
evaluated for anti-neuroinflammatory activity following LPS-induced BV-2 microglia
cells. the inhibition of NO from aerifalcatin [35] (ICs5, value of 0.87 = 0.45 uM), 2,7-
dihydroxy-3,4,6-trimethoxyphenanthrene [36] (ICs, value of 247 + 0.73 pM),
agrostonin [32] (IC5, value of 2.55 + 0.32 pM), and syringaresinol [39] (ICs, value of
1.40 + 0.17 pM) showed strong activity when compared with positive control
minocycline (ICsy value of 3.41+ 0.30 puM). the ICsy values were higher than the
positive control shown from phenanthrene denthyrsinin [3] (ICs, value of 8.99 + 0.91
uM); 2,4-dimethoxy-3,7-dihydroxyphenanthrene [4] (ICsy value of 12.56 + 1.30 uM)

3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37] (ICs5, value of 21.92 + 3.70 uM)], n-
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eicosyl-trans-ferulate [38] (ICsy value of 19.76 + 1.36 pM), and n-trans-

feruloytyramine [40] (ICs, value of 18.62 + 9.56 uM). (Table 14).

Denthyrsinin

3,7-dihydroxy-2 4,6-trimethoxyphenanthrene

s
5 trans-r-coumaroyltyramine

Figure 6 Isolated compounds from Aerides falcate
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Table 14 Effects of Aerides falcata constituents on LPS-stimulated NO

release in BV-2 microslial cells.

Compound ICso (mean = SD) (M)
Aerifalcatin [35] 0.87 045
n-eicosyl-trans-ferulate [38] 19.76 1 1.36
Denthyrsinin [3] 8.99 + 091
2,4-dimethoxy-3,7-dihydroxyphenanthrene [4] 1256 + 1.30
2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36] 247 + 073
3,7-dihydroxy-2,4,6-trimethoxyphenanthrene [37] 21.92 + 370
Agrostonin [32] 2.55  0.32
Syringaresinol [39] 1.40 & 0.17
trans-n-feruloytyramine [40] 18.62 1+ 9.56
Minocycline 3.41 £ 0.30

The cytokine levels were obtained for the active compounds that showed
lower inhibition of NO compared to positive control minocycline. Aerifalcatin [35],
2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36], agrostonin [32], and syringaresinol
[39] significantly reduce the expression of proinflammatory cytokines, TNF-Q, and IL-
6 in activated microglia, suggesting their potential as anti-neurocinflammatory agents
(Figure 6). These active compounds can reduce cytokine levels along with increasing
the concentration. Aerifalcatin [35] was performed as the most potent compound
because it reduced significantly (p > 0.001, LPS vs low concentration) at both TNF-QL,
and IL-6. Whereas 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene  [36] reduces
significantly both cytokine levels (p > 0.001, at LPS vs middle concentration),

agrostonin [32] reduces significantly TNF-QL levels (p > 0.05, at LPS vs middle
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concentration) and IL-6 levels (p > 0.001, at LPS vs low concentration), and

syringaresinol [39] reduces significantly TNF-QL levels (p > 0.01, at LPS vs middle

concentration) and IL-6 levels (p > 0.01, at LPS vs low concentration)

2,

b
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Figure 7. Effects of active compounds on cytokine release in LPS-stimulated

BV-2 microglial cells.

Data are presented as mean + SD, n = 3.7 p < 0.01, control (0.5% DMSO) vs.
LPS groups. *p < 0.05, **p < 0.01, **p < 0.01, LPS vs compound-treated groups.
Statistical difference between groups was analyzed using one-way ANOVA

followed by Bonferroni post hoc test.
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CHAPTER V

CONCLUSION

In this study, ten compounds were isolated from Aerides falcata, including a new
compound called aerifalcatin [35] and nine known compounds, namely n-eicosyl-
trans-ferulate [39], denthyrsinin [3], 2,4-dimethoxy-3,7-dihydroxyphenanthrene [4],
2,7-dihydroxy-3,4,6-trimethoxyphenanthrene [36], 3,7-dihydroxy-2,4,6-
trimethoxyphenanthrene  [37], agrostonin  [32], syringaresinol [38], trans-n-
feruloytyramine [40], and trans-n-coumaroyltyramine [41]. All these isolated
compounds were evaluated for anti-neuroinflammatory activity except trans-n-
coumaroyltyramine due to lack of weight. The neuroinflammatory modulator,
Minocycline, was performed for comparison as a positive control. /n vitro testing on
LPS-induced BV2 microglia cells was performed to evaluate their potential as anti-
neuroinflammatory agents. Four compounds, including aerifalcatin [35], 2,7-
dihydroxy-3,4,6-trimethoxyphenanthrene [36], agrostonin [32], and syringaresinol [39],
showed strong activity in inhibiting the production of NO, although their potency was
lower than that of minocycline, the positive control. These active compounds were
further tested for their ability to inhibit proinflammatory cytokines TNF-Ql and IL-6
and were found to significantly reduce their expression in activated microglia,
indicating their potential as anti-neuroinflammatory agents. Additionally, these active
compounds were found to reduce cytokine levels while increasing their

concentration.

In summary, this study investigated the chemical and biological properties of
secondary metabolites found in Aerides falcata. The findings on the compounds'
effects on neuroinflammatory activity can be beneficial in developing new anti-

neuroinflammatory drugs from natural sources in the future
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Figure 61 "C-NMR spectrum (100 MHz) of compound AF6
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Figure 63 HMBC spectrum of compound AF6
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AF26 1H-NMR (400 MHz) in acetone-dé
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Figure 85 HSQC spectrum of compound AF9 (6.3-7.7 ppm and 100-142 ppm)
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Figure 94 C-NMR spectrum (100 MHz) of compound AF10
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Figure 96 HSQC spectrum of compound AF10 (6.3-7.6 ppm and 108-143 ppm)
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Table 15 Effects of compounds of Aerides falcata on the viability of BV-2 microglial cells.

Comp. Percentage cell viability (mean + SD) (%)

Vehicle 5 uM 10 pM 20 uM 40 uM 80 uM

1 100.0 £ 0.0 1022+4.1 441 + 19.9 + 2.7%* 153 £ 1.0"** 134 + 0.6***
11.7%%*

2 100.0 £ 0.0 100.7+19 973 +55 99.5+39 1013+ 26 103.1 £ 0.6
3 100.0 £ 0.0 979 +3.1 101.9 £ 5.0 109.2 + 35 122.7 £ 4.7 77.6 + 7.2
q 100.0 £ 0.0 1023+ 7. 104.9 + 2.8 98.4 + 6.4 96.1 £ 6.9 70.0 + 1.8%**
5 100.0 £ 0.0 1022 +3.0 100.2+5.5 1023 + 4.1 85.4 + 1.4%* 838 + 0.2%**
6 100.0 £ 0.0 100.7 + 3.6 103.0 + 3.6 99.2 +3.1 98.6 + 5.7 84.9 + 2. 7%%*
7 100.0 £ 0.0 100.7+46 945+23 72.8 £ 9.1%% 369 + 7.3%* 329 + 8.6%*
9 100.0 £ 0.0 98.1+0.5 86.1 + 4.4** 79.7 £ 4.3 737 +28%* 581 + 8.3%*
10 100.0 £ 0.0 99.0+ 2.7 100.4 + 6.6 985+ 73 100.0 + 2.1 82.3 + 5.6

Table 16 Effects of extracts of Aerides falcata on the viability of BV-2 microglial

cells
Percentage cell viability
Comp.
0 pg/mL 5 pg/mL 10 pg¢/mL 20 pg/mL 40 pg/mL 80 pg/mL
Ext. EtOAc 100.0 + 0.0 106.7 +9.0 1176 +59 1237+21 1327+21 1252+85
Ext. MeOH 100.0 £ 0.0 103.1 +3.1 1024+40 1063+26 1156+17 117.0+3.6




1686 1CFLG6 G9F09. €CFO9S TSFLIUE UN UN WN OUIW
78FT6S €CLFT0S GSIFLES  6CTFeCC  LLFOL WN WN WN 6
WN WN WN 60 F216 0¢F80L TSFLLE 0p F¢9C 0p F .91 8
WN WN PCFC96 CTFLE8 CHFSIP 9GFI0C 0GF9. WN L
CGFO9C9  PGFPEY GG F9GE TLF99Z2  0¢F1p WN WN WN 9
VN OCFLPE  99FPYE  CVFQIL  H9FQUY GOIFIIE UN WN S
LYF216  €CTFp8S  T6FCSh  69F961 GGFHYI WN WN WN b
CTFECY6 9CIFO9GL  CTF68Y  9PIFQLZ YOI F6l WN WN WN ¢
80FC09 ¢vFpIS  LSFIOM  COLFH0Z 8E¢F6G UN UN WN 4
WN WN UN IGFT06 G8Fv8L LITF909  9GIF06b 6'GT 691 I

Wrl oy Wr oz Wr 01 Wl g W gz°0 W 621°0 Wrl €900 Wrl 1€0°0 dwos

(aS F uesw) ON 4O uoIIgIyul 95e3UdD43d

UoRIgIyul ON Y3 UO DI02)Df sapuay Jo spunodulod Jo s10ay3 /T 9)9el



Table 18 Effects of extracts of Aerides falcata on the NO inhibition

Percentage inhibition of NO (mean * SD)

Extracts
2.5 pg/mL 5 pg/mL 10 pg/mL 20 pg/mL 40 pg/mL
EtOAC 229 +21.8 a8.7 + 7.7 78.0+ 121 857+6.3 98.2+ 1.2
MeOH 254 + 10.7 26.7 + 4.5 569+ 65 734+16 79.0 £ 9.9

Table 19 The IC5, values of compounds on the NO inhibition.

NO. Treatment s WO AVG SD
N1 N2 N3
1 COMP. 1 0.7506 0.4948 1.368 0.87 0.45
2 COMP. 2 18.44 21.16 19.69 19.76 1.36
3 COMP. 3 8.932 8.114 9.933 8.99 0.91
aq COMP. 4 14.05 11.96 11.67 12.56 1.30
5 COMP. 5 1.856 2.266 3.275 2.47 0.73
6 COMP. 6 23.07 22 17.78 21.92 3.70
7 COMP. 7 2.199 2.645 2.818 2.55 0.32
8 COMP. 8 1.298 1.596 1.311 1.40 0.17
9 COMP. 9 14.49 11.83 29.55 18.62 9.56
10 MINO 3.15 3.332 3.734 3.41 0.30
11 EtOAC 4.417 5.484 3.898 4.60 0.81

12 MeOH 9.592 7.539 9.902 9.01 1.28




® ELISA Assay (determine IL6 levels)

Compound AF1

oD Conc. (pg/mL)
Treatment AVG SD
N1 N2 N3 N1 N2 N3
C 0.096 | 0.102 | 0.100 | 7.67 17.67 14.33 13.222 | 5.0917508
LPS 0.210 | 0.200 | 0.235 | 197.67 | 181.00 | 239.33 | 206.000 | 30.046261

LW (+) 0.142 | 0.149 | 0.138 | 84.33 96.00 77.67 | 86.000 | 9.2796073

M (+) 0.140 | 0.121 | 0.128 | 81.00 49.33 61.00 | 63.778 | 16.015039
H(+) 0.129 | 0.128 | 0.123 | 62.67 61.00 52.67 | 58.778 | 5.3575838
H() 0.101 | 0.105 | 0.104 | 16.00 22.67 21.00 | 19.889 | 3.4694433

Compound AF5

oD Conc. (pg/mL)
Treatment AVG SD
N1 N2 N3 N1 N2 N3
C 0.093 | 0.094 | 0.107 | 2.667 4.333 | 26.000 | 11.000 | 13.017083
LPS 0.222 | 0.215 | 0.245 | 217.667 | 206.000 | 256.000 | 226.556 | 26.15835

LW (+) 0.209 | 0.209 | 0.204 | 196.000 | 196.000 | 187.667 | 193.222 | 4.8112522

M (+) 0.173 ] 0.171 | 0.168 | 136.000 | 132.667 | 127.667 | 132.111 | 4.1943525

H(+) 0.109 | 0.112 | 0.121 | 29.333 | 34.333 | 49.333 | 37.667 | 10.40833

H() 0.101 | 0.098 | 0.099 | 16.000 | 11.000 | 12.667 | 13.222 | 2.5458754




Compound AF7

OD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.106 0.107 0.109 6.500 9.000 14.000 9.833 3.8188131
LPS 0.178 0.18 0.185 186.500 191.500 204.000 194.000 9.0138782
LW (+) 0.133 0.15 0.157 74.000 116.500 134.000 108.167 30.855848
M (+) 0.124 0.13 0.133 51.500 66.500 74.000 64.000 11.456439
H(+) 0.122 0.121 0.128 46.500 44.000 61.500 50.667 9.4648472
H ) 0.109 0.11 0.114 14.000 16.500 26.500 19.000 6.6143783
Compound AF8
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.114 0.116 0.106 26.500 31.500 6.500 21.500 13.228757
LPS 0.187 0.202 0.186 209.000 246.500 206.500 220.667 22.407216
LW (+) 0.161 0.172 0.166 144.000 171.500 156.500 157.333 13.768926
M (+) 0.164 0.15 0.156 151.500 116.500 131.500 133.167 17.559423
H(+) 0.158 0.149 0.151 136.500 114.000 119.000 123.167 11.814539
H ) 0.116 0.108 0.115 31.500 11.500 29.000 24.000 10.897247
EtOAc extract
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.106 0.097 0.096 24.333 9.333 7.667 13.778 9.1792842
LPS 0.211 0.209 0.219 199.333 196.000 212.667 202.667 8.819171
LW (+) 0.145 0.127 0.129 89.333 59.333 62.667 70.444 16.442943
M (+) 0.12 0.115 0.144 47.667 39.333 87.667 58.222 25.837813
H(+) 0.115 0.132 0.117 39.333 67.667 42.667 49.889 15.485955
H ) 0.097 0.096 0.098 9.333 7.667 11.000 9.333 1.6666667
MeOH extract
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.117 0.106 0.116 34.000 6.500 31.500 24.000 15.206906
LPS 0.185 0.188 0.199 204.000 211.500 239.000 218.167 18.427787
LW (+) 0.182 0.202 0.192 196.500 246.500 221.500 221.500 25
M (+) 0.177 0.16 0.178 184.000 141.500 186.500 170.667 25.289985
H(+) 0.157 0.161 0.167 134.000 144.000 159.000 145.667 12.583057
H @) 0.113 0.107 0.109 24.000 9.000 14.000 15.667 7.6376262




® ELISA Assay (determine TNF-OL levels)
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Compound AF1
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.267 | 0.269 | 0.298 63.947 65 80.263 69.737 | 9.1312377
LPS 0.834 | 0.854 | 0.808 | 362.368 372.894 348.684 | 361.316 | 12.13954
LW (+) 0.584 | 0.567 | 0.578 | 230.789 221.842 227.631 | 226.754 | 4.5377253
M (+) 0.426 | 0.425 | 0.421 | 147.631 147.105 145 146.579 | 1.3925007
H (+) 0.385 | 0.365 | 0.359 | 126.052 115.526 112.368 | 117.982 | 7.165115
H () 0.268 | 0.247 | 0.242 64.473 53.421 50.789 56.228 | 7.2611235
Compound AF5
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.204 | 0.242 | 0.216 30.79 50.79 37.11 39.561 | 10.223721
LPS 0.848 | 0.85 | 0.87 369.74 370.79 381.32 373.947 | 6.4029079
LW (+) 0.719 | 0.824 | 0.819 301.84 357.11 354.47 337.807 | 31.174308
M (+) 0.65 | 0.687 | 0.667 265.53 285.00 274.47 275.000 | 9.7475048
H (+) 0.589 | 0.516 | 0.508 233.42 195.00 190.79 206.404 | 23.492401
H () 0.224 | 0.259 | 0.161 132 59.74 8.16 36.404 | 26.137996
Compound AF7
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.255 | 0.276 | 0.269 57.632 68.684 65.000 63.772 | 5.6277245
LPS 0.773 | 0.822 | 0.794 | 330.263 356.053 341.316 | 342.544 | 12.938522
LW (+) 0.767 | 0.826 | 0.798 | 327.105 358.158 343.421 | 342.895 | 15.533005
M (+) 0.725 | 0.636 | 0.635 | 305.000 258.158 257.632 | 273.596 | 27.19751
H (+) 0.475 | 0.489 | 0.404 | 173.421 180.789 136.053 | 163.421 | 23.986377
H () 0.214 | 0.29 | 0.223 36.053 76.053 40.789 50.965 | 21.855312




Compound AF8
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oD Conc. (pg/mL) AVG )
Treatment
N1 N2 N3 N1 N2 N3
C 0.294 | 0.293 | 0.406 | 78.157895 | 77.631579 | 137.10526 | 97.632 | 34.186226
LPS 0.841 | 0.836 | 0.815 | 366.05263 | 363.42105 | 352.36842 | 360.614 | 7.2611235
LW (+) 0.750 | 0.755 | 0.756 | 318.15789 | 320.78947 | 321.31579 | 320.088 | 1.6918686
M (+) 0.697 | 0.718 | 0.630 | 290.26316 | 301.31579 255 282.193 | 24.189541
H(+) 0.575 | 0.561 | 0.507 | 226.05263 | 218.68421 | 190.26316 | 211.667 | 18.898573
H () 0.295 | 0.295 | 0.339 | 78.684211 | 78.684211 | 101.84211 | 86.404 | 13.370217
EtOAcC extract
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.249 | 0.222 | 0.227 | 54.473684 | 40.263158 | 42.894737 | 45.877 | 7.5601619
LPS 0.891 0.8 0.97 | 392.36842 | 344.47368 | 433.94737 | 390.263 | 44.773978
LW (+) 0.892 | 0.88 | 0.912 | 392.89474 | 386.57895 | 403.42105 | 394.298 | 8.5083198
M (+) 0.683 | 0.778 | 0.646 | 282.89474 | 332.89474 | 263.42105 | 293.070 | 35.837172
H(+) 0.576 | 0.527 | 0.544 | 226.57895 | 200.78947 | 209.73684 | 212.368 | 13.094585
H () 0.23 | 0.238 | 0.292 | 44.473684 | 48.684211 | 77.105263 | 56.754 | 17.74967
MeOH extract
oD Conc. (pg/mL) AVG SD
Treatment
N1 N2 N3 N1 N2 N3
C 0.196 | 0.233 | 0.265 | 26.578947 | 46.052632 | 62.894737 | 45.175 | 18.173779
LPS 0.746 | 0.793 | 0.742 | 316.05263 | 340.78947 | 313.94737 | 323.596 | 14.926722
LW (+) 0.74 | 0.744 | 0.722 | 312.89474 315 303.42105 | 310.439 | 6.1678582
M (+) 0.737 | 0.639 | 0.658 | 311.31579 | 259.73684 | 269.73684 | 280.263 | 27.353235
H (+) 0.58 | 0.612 | 0.582 | 228.68421 | 24552632 | 229.73684 | 234.649 | 9.4346173
H () 0.219 | 0.248 | 0.294 | 38.684211 | 53.947368 | 78.157895 | 56.930 | 19.90513




® Statistical data of IL-6 AF1

Ordinary one-way ANOVA

F (DFn, DFd)
P value
P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

Bonferroni's multiple

comparisons test Mean Diff.
Cvs. LPS -192.8
Cvs. LW -72.78
Cvs. MD -50.55
Cvs. H -45.56
Cvs. HK) -6.667
LPS vs. LW 120.0
LPS vs. MD 142.2
LPSvs. H 147.2

1.274 (5, 12)
0.3368
ns

No

SS
73571
2624
76195

18

95.00% ClI of diff.
-236.8 to -148.7
-116.8 to -28.72
-94.61 to -6.499
-89.61 to -1.502
-50.72 to 37.39

75.95 to 164.1
98.17 to 186.3
103.2 to 191.3

DF

12
17

Sig?
Yes
Yes
Yes
Yes

No
Yes
Yes

Yes

MS
14714
218.7

F (DFn, DFd)

F (5, 12) = 67.29

Summ Adjusted P Value

XRHK

XXH

*

*

ns

XRHK

XRH%

XXKX

<0.0001
0.0009
0.0189
0.0398
>0.9999
<0.0001
<0.0001
<0.0001

A-B
A-C

A-E

AF

B-C

B-E

140

P value

P<0.0001



LPS vs. H(-)
LW vs. MD
LWwvs. H
LW vs. H(-)
MD vs. H
MD vs. H(-)
H vs. H(-)

Test details

Cvs. LPS
Cvs. LW
Cvs. MD

186.1
22.22
27.22
66.11
4.997
43.89
38.89

Mean 1

13.22
13.22
13.22
13.22
13.22
206.0
206.0
206.0
206.0
86.00
86.00
86.00
63.78
63.78
58.78

142.1 to 230.2
-21.83 to 66.28
-16.83 to 71.27

22.06 to 110.2
-39.06 to 49.05

-0.1681 to 87.94
-5.165 to 82.94

Yes
No
No

Yes
No
No
No

Mean 2 Mean Diff.

206.0
86.00
63.78
58.78
19.89
86.00
63.78
58.78
19.89
63.78
58.78
19.89
58.78
19.89
19.89

-192.8
-72.78
-50.55
-45.56
-6.667
120.0
142.2
147.2
186.1
22.22
271.22
66.11
4.997
43.89
38.89

XXHK

ns

ns

ns
ns

ns

SE of diff.
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07
12.07

<0.0001
>0.9999
0.6546
0.0021
>0.9999
0.0513
0.1101

5
—

W W W LW LW LW W WL L L LWL W W W

B-F
cD
C-E
CF
D-E
D-F
EF
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15.97
6.028
4.187
3.773
0.5522
9.939
11.78
12.19
15.41
1.841
2.255
5476
0.4139
3.635
3.221

DF
12
12
12
12

12
12
12
12
12
12
12

12
12



® Statistical data of IL-6 AF5

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P < 0.05)?

R square

Brown-Forsythe test
F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

IL-6-COMP-5
AF

160.7
<0.0001
Yes

0.9853

0.9027 (5, 12)
0.5103
ns

No

SS
135129
2019
137148

18

DF

17

MS
27026
168.2

F (DFn, DFd)
F (5, 12) = 160.7

P value

P<0.0001



Bonferroni's multiple
comparisons test
Cvs. LPS

Cvs. LW

Cvs. MD

Cvs. H

Cvs. H(-)

LPS vs. LW

LPS vs. MD

LPS vs. H

LPS vs. H(-)

LW vs. MD

LW vs. H

LW vs. H(-)

MD vs. H

MD vs. H(-)

H vs. H()

Test details
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs. H
Cvs. H()
LPS vs. LW
LPS vs. MD
LPS vs. H
LPS vs. H(-)
LW vs. MD
LW vs. H
LW vs. H(-)
MD vs. H
MD vs. H(-)
H vs. H()

Mean
Diff.
-215.6
-182.2
-121.1
-26.67
-2.222
33.33
94.44
188.9
2133
61.11
155.6
180.0
94.45
118.9
24.44

Mean 1
11.00
11.00
11.00
11.00
11.00
226.6
226.6
226.6
226.6
193.2
193.2
193.2
132.1
132.1
37.67

95.00% ClI of diff.
-254.2 to -176.9
-220.9 to -143.6
-159.8 to -82.47
-65.31 to 11.97

-40.86 to 36.42
-5.307 to 71.97
55.80 to 133.1
150.2 to 227.5
174.7 to 252.0
22.47 t0 99.75
116.9 to 194.2
141.4 to 218.6
55.80 to 133.1
80.25 to 157.5
-14.20 to 63.08

Mean 2
226.6
193.2
132.1
37.67
13.22
193.2
132.1
37.67
13.22
132.1
37.67
13.22
37.67
13.22
13.22

Sig?
Yes
Yes
Yes

No

No

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No

Mean Diff.
-215.6
-182.2
-121.1
-26.67
-2.222
33.33
94.44

188.9
213.3
61.11
155.6
180.0
94.45
118.9
24.44

Summ

AXKX
AXKK

HXKH

ns
ns

ns

AXKK
AXKK
HXKH

X%
HXKH
HXHH
AXKK

HXKH

ns

SE of diff.
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59
10.59

Adjusted P
Value
<0.0001
<0.0001
<0.0001
0.4050
>0.9999
0.1262
<0.0001
<0.0001
<0.0001
0.0013
<0.0001
<0.0001
<0.0001
<0.0001
0.5940

>
—

W LW W W W W LWL LWL L VL VLW W W

A-B
A-C
A-D
A-E
A-F
B-C
B-D
B-E
B-F
CD
CE
C-F
D-E
D-F
E-F

>
N

W W LW W W LW W WL VLW VL W W vu w
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20.36
17.21
11.44
2518
0.2099
3.148
8.919
17.84
20.15
5771
14.69
17.00
8.919
11.23
2.308



® Statistical data of IL-6 AF7

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P < 0.05)?

R square

Brown-Forsythe test
F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

IL-6-COMP-7
AF

64.06
<0.0001
Yes

0.9639

1.096 (5, 12)
0.4117
ns

No

SS
70061
2625
72686

18

DF

17

MS
14012
218.8

F (DFn, DFd)
F (5, 12) = 64.06

P value

P<0.0001



Bonferroni's multiple
comparisons test
Cvs. LPS

Cvs. LW

Cvs. MD

Cvs.H

Cvs. H(-)

LPS vs. LW

LPS vs. MD

LPS vs. H

LPS vs. H(-)

LW vs. MD

LW vs. H

LW vs. H(-)

MD vs. H

MD vs. H(-)

H vs. H(-)

Test details
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs. H
Cvs. H(-)

Mean
Diff.
-184.2
-98.33
-54.17
-40.83
-9.167
85.83
130.0
143.3
175.0
aa.17
57.50
89.17
13.33
45.00
31.67

Mean 1
9.833
9.833
9.833
9.833
9.833
194.0
194.0
194.0
194.0
108.2
108.2
108.2
64.00
64.00
50.67

95.00% ClI of diff.
-228.2 to -140.1
-142.4 to -54.27
-98.23 to -10.10
-84.90 to 3.231
-53.23 to 34.90

41.77 to 129.9
85.94 to 174.1
99.27 to 187.4
130.9 to 219.1
0.1021 to 88.23
13.44 to 101.6
45.10 to 133.2
-30.73 to 57.40
0.9355 to 89.06
-12.40 to 75.73

Mean 2
194.0
108.2
64.00
50.67
19.00
108.2
64.00
50.67
19.00
64.00
50.67
19.00
50.67
19.00
19.00

Sig?
Yes
Yes
Yes

No

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes

No
Yes

No

Mean Diff.
-184.2
-98.33
-54.17
-40.83
-9.167
85.83

130.0
1433
175.0
44.17
57.50
89.17
13.33
45.00
31.67

Summ

XXHK

XXHK

ns

ns

XXHK
XXHK

XXKX

SE of diff.
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08
12.08

Adjusted P
Value
<0.0001
<0.0001
0.0112
0.0818
>0.9999
0.0002
<0.0001
<0.0001
<0.0001
0.0492
0.0069
0.0001
>0.9999
0.0434
0.3344

5
—

W W W W LW VW LW LW VLWV W VW W w

A-B
A-C
A-D
A-E
A-F
B-C
B-D
B-E
B-F
CD
C-E
C-F
D-E
D-F

35
N

w W [N w w (SN} W W [N w w W [N [N [N
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15.25
8.143
4.485
3.381
0.7591
7.108
10.77
11.87
14.49
3.657
4761
7.384
1.104
3.726
2,622

DF
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12



® Statistical data of IL-6 AF8

Ordinary one-way ANOVA

Table Analyzed IL-6-COMP-8
Data sets analyzed A-F
ANOVA summary

F 76.25
P value <0.0001
P value summary HHER
Significant diff. among means (P < 0.05)? Yes
R square 0.9695

Brown-Forsythe test

F (DFn, DFd) 0.1327 (5, 12)
P value 0.9817
P value summary ns
Are SDs significantly different (P < 0.05)? No
Bartlett's test

Bartlett's statistic (corrected)

P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table S5
Treatment (between columns) 91081
Residual (within columns) 2867
Total 93948
Data summary

Number of treatments (columns) 6
Number of values (total) 18

Multiple comparison test.

Number of families

Number of comparisons per
family

Alpha

15
0.05

DF

5
12
17

MS
18216
238.9

F (DFn, DFd)
F (5 12) = 76.25

P value

P<0.0001



Bonferroni's multiple
comparisons test
Cvs. LPS

Cvs. LW

Cvs. MD

Cvs. H

Cvs. H()

LPS vs. LW

LPS vs. MD

LPS vs. H

LPS vs. H(-)

LW vs. MD

LW vs. H

LW vs. H(-)

MD vs. H

MD vs. H(-)

H vs. H(-)

Test details
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs.H
Cvs. H(-)

Mean
Diff.
-199.2
-135.8
-111.7
-101.7
-2.500
63.33
87.50
97.50
196.7
24.17
34.17
133.3
10.00
109.2
99.17

Mean 1

21.50
21.50
21.50
21.50
21.50
220.7
220.7
220.7
220.7
157.3
157.3
157.3
133.2
133.2
123.2

95.00% ClI of diff.
-245.2 to -153.1
-181.9 to -89.79
-157.7 to -65.62
-147.7 to -55.62
-48.55 to 43.55

17.29 to 109.4
41.45to 1335
51.45 to 1435
150.6 to 242.7
-21.88 to 70.21
-11.88 to 80.21
87.29 to 179.4
-36.05 to 56.05
63.12 to 155.2
53.12 to 145.2

Sig?
Yes
Yes
Yes
Yes

No
Yes
Yes
Yes
Yes

No

No
Yes

No
Yes

Yes

Mean 2 Mean Diff.

220.7
157.3
133.2
123.2
24.00
157.3
133.2
123.2
24.00
133.2
123.2
24.00
123.2
24.00
24.00

-199.2
-135.8
-111.7
-101.7
-2.500
63.33
87.50
97.50
196.7
24.17
34.17
133.3
10.00
109.2
99.17

Summ

AXKK
HXKH
HXKH
HXKH

ns

*%

HXKH

HXKH

ns
ns
XK
ns
KKK

AXKX

SE of diff.
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62
12.62

Adjusted P
Value
<0.0001
<0.0001
<0.0001
<0.0001
>0.9999
0.0045
0.0002
<0.0001
<0.0001
>0.9999
0.2857
<0.0001
>0.9999
<0.0001
<0.0001

>
—

LW W W LW W W LWL LWL LWL VLW VLW W

A-C
A-D
A-E

B-C
B-D
B-E
B-F
CD
CE
C-F
D-E
D-F
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15.78
10.76
8.849
8.056
0.1981
5.019
6.934
7.726
15.58
1.915
2.707
10.57
0.7924
8.650
7.858

DF
12
12
12
12
12
12
12
12
12
12
12
12

12
12



® Statistical data of TNF-OL AF1

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P < 0.05)?

R square

Brown-Forsythe test
F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

Bonferroni's multiple Mean Diff.

TNF-COMP-1
A-F

662.8
<0.0001
Yes

0.9964

0.5327 (5, 12)
0.7480
ns

No

SS
197365
714.7
198079

18

95.00% ClI of diff.

DF

17

MS
39473
59.56

Summ

F (DFn, DFd)
F (5, 12) = 662.8

Adjusted P

P value

P<0.0001



comparisons test
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs. H
Cvs. H()
LPS vs. LW
LPS vs. MD
LPS vs. H
LPS vs. H(-)
LW vs. MD
LW vs. H
LW vs. H(-)
MD vs. H
MD vs. H(-)
H vs. H(-)

Test details
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs.H
Cvs. H()
LPS vs. LW
LPS vs. MD
LPS vs. H
LPS vs. H(-)
LW vs. MD
LW vs. H
LW vs. H(-)
MD vs. H
MD vs. H(-)
H vs. H(-)

-291.6
-157.0
-76.84
-48.25
13.51
134.6
214.7
2433
305.1
80.18
108.8
170.5
28.60
90.35
61.75

Mean 1

69.74
69.74
69.74
69.74
69.74
361.3
361.3
361.3
361.3
226.8
226.8
226.8
146.6
146.6
118.0

-314.6 to -268.6
-180.0 to -134.0
-99.83 to -53.85
-71.24 to -25.25
-9.483 to 36.50
111.6 to 157.6
191.7 to 237.7
220.3 to 266.3
282.1 to 328.1
57.18 to 103.2
85.78 to 131.8
147.5 to 193.5
5.604 to 51.59
67.36 to 113.3
38.76 to 84.75

Mean 2
361.3
226.8
146.6
118.0
56.23
226.8
146.6
118.0
56.23
146.6
118.0
56.23
118.0
56.23
56.23

Yes
Yes
Yes
Yes

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Mean

=

Di
-291.6
-157.0
-76.84
-48.25
13.51
134.6
2147
243.3
305.1
80.18
108.8
170.5
28.60
90.35
61.75

KXKK
KXKK
RXKK
RRKK

ns
KXKK
RXKK
RXKK
RRKK
KAKK
KXKK

XXHK

XRHK

XXHK

SE of diff.
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301
6.301

Value
<0.0001
<0.0001
<0.0001
<0.0001

0.7984
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001
<0.0001

0.0102
<0.0001
<0.0001

5
—

[N w w (SN} W W [N w w W W [N [N w (SN}

A-B
A-C
A-D
A-E
A-F
B-C
B-D
B-E
B-F

CE
CF

D-F
E-F

>
N

W LW W W W LW LWL LWL L L VLW W W
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46.27
24.92
12.19
7.657
2.144
21.36
34.08
38.62
48.42
12.72
17.26
27.06
4.538
14.34
9.800



® Statistical data of TNF-OL AF5

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P < 0.05)?

R square

Brown-Forsythe test
F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

TNF-COMP--5
A-F

156.8
<0.0001
Yes

0.9849

0.4074 (5, 12)
0.8347
ns

No

SS
319864
4895
324760

18

DF
5

17

MS
63973
407.9

F (DFn, DFd)
F (5 12) = 156.8

P value

P<0.0001



Bonferroni's multiple

comparisons test Mean Diff.
Cvs. LPS -334.4
Cvs. LW -298.2
Cvs. MD -235.4
Cvs.H -166.8
Cvs. He) 3.157
LPS vs. LW 36.14
LPS vs. MD 98.95
LPS vs. H 167.5
LPS vs. H(-) 337.5
LW vs. MD 62.81
LW vs. H 131.4
LW vs. H(-) 301.4
MD vs. H 68.60
MD vs. H(-) 238.6
H vs. H() 170.0
Test details Mean 1
Cvs. LPS 39.56
Cvs. LW 39.56
Cvs. MD 39.56
Cvs. H 39.56
Cvs. HE) 39.56
LPS vs. LW 374.0
LPS vs. MD 374.0
LPS vs. H 374.0
LPS vs. H(-) 374.0
LW vs. MD 337.8
LW vs. H 337.8
LW vs. H(-) 337.8
MD vs. H 275.0
MD vs. H(-) 275.0

H vs. H(-) 206.4

95.00% ClI of diff.
-394.6 to -274.2
-358.4 to -238.1
-295.6 to -175.3
-227.0 to -106.7
-57.02 to 63.33
-24.03 to 96.32

38.78 to 159.1
107.4 to 227.7
277.4 to 397.7
2.633 to 123.0
71.23 to 191.6
241.2 to 361.6
8.423 to 128.8
178.4 to 298.8
109.8 to 230.2

Mean 2
374.0
337.8
275.0
206.4
36.41
337.8
275.0
206.4
36.41
275.0
206.4
36.41
206.4
36.41
36.41

Sig?
Yes
Yes
Yes
Yes

No

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Mean Diff.
-334.4
-298.2
-235.4
-166.8
3.157
36.14
98.95

167.5
337.5
62.81
131.4
301.4
68.60
238.6
170.0

Summ

XXKX
XXKX
XXHK

XXHK

ns

ns

XXHK

XXHK

XXKX

XXKK

XXHK

XRHK

SE of diff.
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49
16.49

Adjusted P
Value
<0.0001
<0.0001
<0.0001
<0.0001
>0.9999
0.7329
0.0009
<0.0001
<0.0001
0.0374
<0.0001
<0.0001
0.0199
<0.0001
<0.0001

3
—

W W LW VW LW VW W LWV W VW VW vwWwu vu w

A-B

AD
AE
AF
B-C
B-D
BE
BF
cD
CE
CF
D-E
D-F
E-F

>
N

W LW W W W LW LWL LWL L L VLW W W
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20.28
18.09
14.28
10.12
0.1914
2.192
6.000
10.16
20.47
3.809
7.968
18.28
4.160
14.47
10.31

DF
12
12
12
12

12
12
12
12
12
12
12
12
12
12



® Statistical data of TNF-OL AF7

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P <
0.05)?

R square

Brown-Forsythe test

F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P <
0.05)?

Bartlett's test

Bartlett's statistic (corrected)

P value

P value summary

Are SDs significantly different (P <
0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families

TNF-COMP-7
AF

141.9
<0.0001

XXHK

Yes

0.9834

0.2276 (5, 12)
0.9433

ns

No

ss
264093

4466
268559

18

DF

5
12
17

MS
52819
372.2

F (DFn, DFd)
F (5 12) = 1419

P value

P<0.0001



Number of comparisons per

family 15
Alpha 0.05
Bonferroni's multiple Mean
comparisons test Diff.
Cvs. LPS -278.8
Cvs. LW -279.1
Cvs. MD -209.8
Cvs. H -99.65
Cvs. HC) 12.81
LPS vs. LW -0.3507
LPS vs. MD 68.95
LPS vs. H 179.1
LPS vs. H(-) 291.6
LW vs. MD 69.30
LW vs. H 179.5
LW vs. H(-) 291.9
MD vs. H 110.2
MD vs. H(-) 222.6
H vs. H(-) 112.5
Test details Mean 1
Cvs. LPS 63.77
Cvs. LW 63.77
Cvs. MD 63.77
Cvs. H 63.77
Cvs. HE) 63.77
LPS vs. LW 342.5
LPS vs. MD 342.5
LPS vs. H 342.5
LPS vs. H(-) 342.5
LW vs. MD 342.9
LW vs. H 342.9
LW vs. H(-) 342.9
MD vs. H 273.6
MD vs. H(-) 273.6

H vs. H(-) 163.4

95.00% ClI of diff.
-336.2 to -221.3
-336.6 to -221.6
-267.3 to -152.3
-157.1 to -42.17
-44.67 to 70.28
-57.83 to 57.13

11.47 to 126.4
121.6 to 236.6
234.1 to 349.1
11.82 to 126.8
122.0 to 236.9
234.5 to 349.4
52.70 to 167.7
165.2 to 280.1
54.98 to 169.9

Mean 2
342.5
342.9
273.6
163.4
50.97
342.9
273.6
163.4
50.97
273.6
163.4
50.97
163.4
50.97
50.97

Sig?
Yes
Yes
Yes
Yes

No

No
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Yes

Mean
Diff.
-278.8
-279.1
-209.8
-99.65
12.81
-0.3507
68.95
179.1
291.6
69.30
179.5
291.9
110.2
222.6
112.5

Summ

XXHK
XXHK

XXHK

ns

ns

XXHK

XXHK

XXKX

XXHK

XRHK

XXH

SE of diff.
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75
15.75

Adjusted P
Value
<0.0001
<0.0001
<0.0001
0.0006
>0.9999
>0.9999
0.0135
<0.0001
<0.0001
0.0130
<0.0001
<0.0001
0.0002
<0.0001
0.0002

3
—

[N [N w w W W [N w w W W [N w w (SN}

A-B
A-C
A-D
A-E

B-C
B-D
BE
BF
cD
CE
CF
D-E
D-F

>
N

W W W W W LW LW WL WL VL LWL VvV W
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17.70
17.72
13.32
6.326
0.8131
0.02226
4.377
11.37
18.51
4.399
11.39
18.53
6.995
14.13
7.139



® Statistical data of TNF-OL AF8

Ordinary one-way ANOVA

Table Analyzed

Data sets analyzed

ANOVA summary

=

P value

P value summary

Significant diff. among means (P < 0.05)?

R square

Brown-Forsythe test
F (DFn, DFd)

P value

P value summary

Are SDs significantly different (P < 0.05)?

Bartlett's test

Bartlett's statistic (corrected)
P value

P value summary

Are SDs significantly different (P < 0.05)?

ANOVA table
Treatment (between columns)
Residual (within columns)

Total

Data summary
Number of treatments (columns)

Number of values (total)

Multiple comparison test.

Number of families 1
Number of comparisons per

family 15
Alpha 0.05

TNF-COMP-8
AF

101.8
<0.0001
Yes

0.9770

0.4623 (5, 12)
0.7970
ns

No

SS
198903
4691
203594

18

DF
5

17

MS
39781
390.9

F (DFn, DFd)
F (5, 12) = 101.8

P value

P<0.0001



Bonferroni's multiple
comparisons test
Cvs. LPS

Cvs. LW

Cvs. MD

Cvs.H

Cvs. H(-)

LPS vs. LW

LPS vs. MD

LPS vs. H

LPS vs. H(-)

LW vs. MD

LW vs. H

LW vs. H(-)

MD vs. H

MD vs. H(-)

H vs. H(-)

Test details
Cvs. LPS
Cvs. LW
Cvs. MD
Cvs.H
Cvs. H()

Mean
Diff.
-263.0
-222.5
-184.6
-114.0
11.23
40.53
78.42
148.9
274.2
37.89
108.4
233.7
70.53
195.8
125.3

Mean 1
97.63
97.63
97.63
97.63
97.63
360.6
360.6
360.6
360.6
320.1
320.1
320.1
282.2
282.2
211.7

95.00% ClI of diff.
-321.9 to -204.1
-281.4 to -163.6
-243.5 to -125.7
-172.9 to -55.13
-47.68 to 70.13
-18.38 to 99.43

19.52 to 137.3
90.04 to 207.9
215.3 to 333.1
-21.01 to 96.80
49.52 to 167.3
174.8 to 292.6
11.62 to 129.4
136.9 to 254.7
66.36 to 184.2

Mean 2
360.6
320.1
282.2
2117
86.40
320.1
282.2
211.7
86.40
282.2
211.7
86.40
211.7
86.40
86.40

Sig?
Yes
Yes
Yes
Yes

No

No
Yes
Yes
Yes

No
Yes
Yes
Yes
Yes

Yes

Mean
Diff.
-263.0
-222.5
-184.6
-114.0
11.23
40.53
78.42
148.9
274.2
37.89
108.4
233.7
70.53
195.8
125.3

Summ

XXHK
KXHK

XXHK

ns

ns

X%
KXHK

AXKK

ns

AXKX

AXKK

SE of diff.
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14
16.14

Adjusted P
Value
<0.0001
<0.0001
<0.0001
0.0002
>0.9999
0.4108
0.0059
<0.0001
<0.0001
0.5532
0.0003
<0.0001
0.0137
<0.0001
<0.0001

3
—

W LW W W LW LW LWL VLWL L L LW W W

A-B
A-C
A-D

AF
B-C

B-E
B-F
cD
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3
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16.29
13.78
11.43
7.064
0.6955
2510
4.858
9.227
16.99
2.347
6.716
14.48
4.369
12.13
7.760

DF
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
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