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ABSTRACT (THAI) 

 ฮอง ตวน ตราน : 

การพัฒนารูปแบบการปลูกถ่ายสำหรับการนำส่งเซลล์สังเคราะห์อินซูลินจากเซลล์ต้นกำเนิดพลูริโพเทนต์ชนิดเหนี่ยวนำ

ของหนูเมาส์เพื่อการรักษาโรคเบาหวาน. ( ESTABLISHMENT OF TRANSPLANTATION PLATFORM FOR 

DELIVERING MOUSE INDUCED PLURIPOTENT STEM CELL-DERIVED INSULIN-PRODUCING CELLS 

(miPS-IPCs) FOR DIABETES TREATMENT) อ.ที่ปรึกษาหลัก : เจนภพ สวา่งเมฆ 

  

การปลูกถ่ายเบต้าเซลล์นั้นนับได้ว่าเป็นวิธีการที่มีความเป็นไปได้ในการรักษาโรคเบาหวานชนิดที่ 1อย่างไรก็ตามมีรายง

านถึงการต่อต้านจากภูมิ คุ้มกันที่ส่งผลกระทบต่อการทำงานและการสูญเสียของเบต้าเซลล์ที่ปลูกถ่ายในมนุษย์และสัตว์ 

ด้ วย เหตุ ดั งกล่ าว  จึ งมี การพัฒนาเบต้ า เซลล์ ที่ มี การเจริญ เติบ โตอย่ างไม่ จำกัด  และมีความ เข้ ากัน ได้ทางชี วภ าพ 

ร ว ม ถึ ง รู ป แ บ บ ก า ร ป ลู ก ถ่ า ย เ พื่ อ แ ก้ ไ ข ปั ญ ห า ดั ง ก ล่ า ว 

ใน ก า ร ศึ ก ษ า นี้ เ ซ ล ล์ ต้ น ก ำ เนิ ด พ ลู ริ โ พ เท น ต์ ช นิ ด เห นี่ ย ว น ำ ข อ ง ห นู เม า ส์ ที่ ไ ด้ จ า ก เนื้ อ เยื่ อ เห งื อ ก 

ได้ รับ การเหนี่ ย วนำให้ เปลี่ ยนแปลงเป็ น เซลล์ สั งเคราะห์ อิ น ซูลิ น  โดยการเหนี่ ยวนำด้ วยสารเคมี อย่ างมี ขั้ น ตอน 

โดยได้รับการทดสอบยืนยันด้วยวิธีการเพิ่มจำนวนสารพันธุกรรม การวิเคราะห์ระดับซี -เปปไทด์ จากการกระตุ้นด้วยกลูโคส 

ก า ร ย้ อ ม ท า ง ภู มิ คุ้ ม กั น  แ ล ะ ก า ร ต ร ว จ ค ว า ม มี ชี วิ ต ข อ ง เ ซ ล ล์  

โด ย เซ ลล์ สั ง เค ร า ะ ห์ อิ น ซู ลิ น ที่ ผ ลิ ต ได้ จ ะ ถู ก ห่ อ หุ้ ม แ ล ะ ป ลู ก ถ่ า ย ล ง ใน ถุ งชั้ น ใต้ ผิ ว ห นั งที่ ได้ รั บ ก ารส ร้ า งขึ้ น 

แ ล ะ ไ ด้ รั บ ก า ร ต ร ว จ วิ เค ร า ะ ห์ ด้ า น ค่ า เม็ ด เลื อ ด  ค่ า เ ค มี ข อ ง เลื อ ด  ร ะ ดั บ  ซี -เป ป ไ ท ด์  ดั ช นี โ ฮ ม่ า 

ค ว า ม ท น ต่ อ ก า ร ก ร ะ ตุ้ น ด้ ว ย ก ลู โ ค ส ด้ ว ย ก า ร ฉี ด เ ข้ า ช่ อ ง ท้ อ ง  ผ ล ท า ง จุ ล พ ย า ธิ วิ ท ย า 

แ ล ะ ก า ร ศึ ก ษ า ไ ซ โ ต ไ ค น์ ด้ ว ย วิ ธี ท ด ส อ บ ผ่ า น แ อ น ติ บ อ ดี  ต ล อ ด ช่ ว ง ร ะ ย ะ เ ว ล า ก า ร ศึ ก ษ า 

ผลการศึกษาพบว่าการสร้างถุ งในชั้น ใต้ผิวหนั งด้ วย  10%  พลู โรนิค -เอฟ  127  และวิอีจี เอฟ -165 ประสบผลสำเร็จ 

โ ด ย พ บ ก า ร ส ร้ า ง ห ล อ ด เ ลื อ ด ใ น บ ริ เ ว ณ ร อ บ ถุ ง ใ ต้ ผิ ว ห นั ง 

และการปลูกถ่ายเซลล์สังเคราะห์อินซูลินที่ถูกห่อหุ้มให้กับหนูที่ เป็นเบาหวานจากการเหนี่ยวน ำด้วยสเตรปโตโซโทซิน 

ช่ วย ให้ ระดับกลู โคสและการทนต่ อการกระตุ้ นด้ วยกลู โคสอยู่ ในระดับดี ขึ้ น  โดยไม่พบการต่อต้ านทางภู มิ คุ้ มกั น 

แ ล ะ ยั ง ส า ม า ร ถ ช่ ว ย ใ ห้ ห นู เ บ า ห ว า น มี สุ ข ภ า พ ดี ขึ้ น แ ล ะ มี ช่ ว ง ชี วิ ต ที่ ย า ว น า น ขึ้ น 

การศึกษานี้เป็นต้นแบบของการพัฒนาวิธีการทางคลินิกเพื่อใช้ในการรักษาโรคเบาหวานชนิดที่ 1 โดยเซลล์บำบัดต่อไป 
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ABSTRACT (ENGLISH) 

# # 6278311131 : MAJOR VETERINARY SCIENCE AND TECHNOLOGY 

KEYWORD: mouse gingival fibroblast-induced pluripotent stem cells, Insulin-producing cells, 

differentiation, transplantation, induced diabetic mice 

 Hong Thuan Tran : ESTABLISHMENT OF TRANSPLANTATION PLATFORM FOR DELIVERING MOUSE 

INDUCED PLURIPOTENT STEM CELL-DERIVED INSULIN-PRODUCING CELLS (miPS-IPCs) FOR DIABETES 

TREATMENT. Advisor: Asst. Prof. CHENPHOP SAWANGMAKE, D.V.M, Ph.D. 

  

Pancreatic beta-cell replacement is recognized for feasible type 1 diabetes (T1D) treatment. 

However, in post-transplantation, the autoimmune destruction incidentally attacks the activity and survival of 

beta-cells are reported in animal and human. To address these concerns, the generation of immortalized, 

biocompatible beta-cells, and the engraftment platform are insightfully investigated. The stepwise chemical 

process was used for in vitro Insulin-producing cells (IPCs) production from mouse gingival fibroblast-induced 

pluripotent stem cells (mGF-iPSCs). The real-time qRT-PCR, glucose stimulation C-peptide/Insulin secretion, 

immunostaining, and visible cell methods were examined during IPC differentiation. 

The encapsulated-IPC beads were loaded into subcutaneous pocket space via transplantation platform. 

Completed blood count, blood chemistry, C-peptide, HOMA indexes, intraperitoneal glucose tolerance 

test, and histopathology were analyzed at pre-, post-transplantation and at termination. The 40 cytokines were 

explored via antibody array detection. In this study, in vitro IPC differentiation protocol wasperceptively 

dissection. IPC encapsulation achieved to the transplantable capacity.In mice, the catheter insertion and 

10% Pluronic-F127 carrying-VEGF-165 (VP) created the subcutaneous pocket formation (SPF), and stimulated 

angiogenesis and neovascularization surrounding the 

SPF. Especially, IPC-bead engraftment alleviated hyperglycemia in STZ-induced-diabetic mice-VP + IPC-bead 

transplantation. In post-transplantation, IPC-bead transplantation showed noimmune response, as well as, 

IPC-bead maintained the health condition in diabetic mice. The obtained results can be applied as a clinical 

transplantation protocol for T1D treatment using cell-based therapy. 
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CHAPTER I 

INTRODUCTION 

Importance and rationale  

Current benefits of the pancreatic beta-cell generation and replacement is applied for 

the feasible diabetes treatment (Roep et al. 2021). Production of in vitro immortal 

induced pluripotent stem cells (iPSCs)-derived from animal biopsy is fashionably 

concerned (Srivastava and Kilian 2019). Remarkably, gingival tissue is easily obtained 

and extracted which serves as a promising cell source of the iPSC induction. SNL 

fibroblast feeder cells are identified to maintain derivation of iPSCs and support their 

culturation (Egusa et al. 2010; Lai et al. 2011; Zhang et al. 2011; Oh et al. 2012; Lee et 

al. 2016; Yu et al. 2016; Osathanon et al. 2017; Haridhasapavalan et al. 2019; Wang et 

al. 2020). Insulin-producing cells (IPCs) are synthesized from various stem cells. 

Especially, the iPSCs-derived IPC differentiation manifests the more efficiencies and 

functionalities (Walczak et al. 2016; Kim et al. 2020a).  

Notably, the microenvironment of transplantable space is focused on extracellular 

matrix contents, vascularization, and invaded immune cells (Assoc 2006; Mitrousis et 

al. 2018; Pomposelli et al. 2021). In post-transplantation, the host autoimmune cells 

incidentally attack the beta-cell activity and their longevity (Stabler et al. 2019; Roep 
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et al. 2021).  Thus, immunomodulation and biocompatible materials can overcome 

the bottleneck of autoinflammatory reactions (Andorko and Jewell 2017; Chen et al. 

2019). Cell encapsulation is the achievable method for reducing the impacts of 

cytokine storms and maintaining the engraftment lifelong in post-transplantion 

animals (An et al. 2018; Kuncorojakti et al. 2020).  

According to the completed type 1 diabetes (T1D) model generation, a single dose of 

streptozotocin (STZ)-high concentration directly invades and damages the pancreatic 

beta-cells, then entirely provokes the STZ-induced T1D mice with hyperglycemia 

symptoms (Lipes and Eisenbarth 1990; Ohsugi et al. 1991; Rosmalen et al. 1997; 

Billotey et al. 2005; Giarratana et al. 2007; Van Belle et al. 2009; Deeds et al. 2011; 

Graham et al. 2011; Furman 2015; Chen et al. 2020; Hahn et al. 2020; Furman 2021). In 

the progress of translation of pancreatic islet transplantation therapies, the 

subcutaneous device-less (DL) is well recommended (Shapiro et al. 2000; 

Gunawardana et al. 2009; Lee et al. 2012; Kim et al. 2020b; Yu et al. 2020). Due to the 

surgery manipulation for subcutaneous DL sites is easy, painless, and minimally touch 

to other organs unexpectedly (Bromberg 2015; Audouard et al. 2021; Cayabyab et al. 

2021). This method rapidly enhances vascularization, which permits oxygen and 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 3 

glucose cargo to transplanted place (Halberstadt et al. 2005; Pepper et al. 2014; 

Pepper et al. 2015b; Kim et al. 2020b; Vlahos et al. 2021b).  

Furthermore, the vascular endothelial growth factors (VEGF)-165 is mixed with the 

collagen matrix of encapsulated-ovarian-tissue that recruits the network of blood 

vessels in mice (Henry et al. 2015). In xenograft, VEGF-165 presented in 

encapsulated-pancreatic rat islets transplanting to diabetic mice, which triggers 

angiogenesis and decreases macrophage surrounding the membrane of cells; 

especially, revascularization of islet engraftments in post-transplantation (Sigrist et al. 

2003; Rodrigues et al. 2013). VEGF-165 can modulates the inflammation and vascular 

permeability in rat brain (Proescholdt et al. 1999). Combinedly, Pluronic-F127 is a 

potential material for cell carrier and improves the angiogenesis in animal 

(Brunet-Maheu et al. 2009; Zhou et al. 2022). Pluronic-F127 interacts with VEGF and 

TFG-beta which enhances the wound healing process (Kant et al. 2014). Taken 

together, the combination of insulin-producing cell production, cell encapsulation, 

subcutaneous device-less transplantation, angiogenesis stimulation, oxygen, and 

nutrition demands are strategies for this application.  

In this study, we have presented the high capacity of the insulin-producing cell (IPC) 

differentiation protocols from mGF-iPSCs including accurate endogenous IPC 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

biosynthesis and function. 10% Pluronic-F127-carrying-VEGF-165 significantly 

generated the subcutaneous pocket formation, which elevated the blood vessel 

network surrounding blank or IPC bead location, and subcutaneous pocket boundary. 

IPC-beads were translated for rescuing the insulin-dependent tissues, blood 

parameters and alleviating the hyperglycemia symptoms in STZ-induced-diabetic 

mice-VEGF-165+10%Pluronic + IPC-bead transplantation (DM-VP+IPC-bead Tx mice). 

The 40 inflammatory cytokines were globally explored in the blood circulation in 

DM-VP+IPC-bead Tx mice. Moreover, IPC-beads maintained the health condition in 

diabetic mice. Here, the results are used for a reference strategy of IPC differentiation 

protocol. The achievement of high-performance IPC engraftment is applied as a 

clinical protocol for diabetes treatment using cell-based therapy. 

  

Objectives 

To establish and optimize the differentiation protocol for insulin-producing cells (IPCs) 

production from mouse gingival fibroblast-derived induced pluripotent stem cells 

(mGF-iPSCs) 

To establish the transplantation platform for delivering IPCs generated from 

mGF-iPSCs 
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To explore the anti-diabetic capacity of the encapsulated mouse induced pluripotent 

stem cell-derived insulin-producing cells (miPS-IPCs) in type I diabetes (T1D) mouse 

model 

Hypothesis /research question 

Whether mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) 

can be differentiated toward IPCs in vitro  

Whether IPCs generated from mGF-iPSCs can be transplanted using the established 

transplantation platform 

Whether encapsulated mouse induced pluripotent stem cell-derived 

insulin-producing cells (miPS-IPCs) show the anti-diabetic capacity in type 1 diabetes 

mouse model 
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CHAPTER II 

LITERATURE REVIEW 

Diabetes disease   

In the type 1 diabetes (T1D) patients, the hyperglycemia is caused by a probable 

defection of beta cells in pancreas or insulitis phenomenon (Katsarou et al. 2017). The 

etiology of T1D is a multifactorial disease from crosstalk between i) genetic factors, ii) 

epigenetic factors, and iii) exogenous factors. Consequently, the destruction of 

autoimmune T-cell–mediated innocently attacks and destroys to pancreatic beta cells 

(Manov 1991; Stankov et al. 2013). In initial events, dendritic cells, T cells, 

macrophages target to insulin antigens via major histocompatibility complex (MHC) 

presentation. Continuously, the infiltration of inflammatory cytokines and leukocytes 

provokes the beta cell failure including interleukin-1b (IL-1b), interferon gamma 

(IFN-gamma), tumor necrosis factor-a (TNF-a) (Faideau et al. 2005; Roep and Peakman 

2012; Blanter et al. 2019; Roep et al. 2021). On the other hand, susceptible event to 

T1D is considered by interplay between some genetic loci (allelic variants) and 

exogenous risk factors (Roep et al. 2021). To maintain the euglycemia (normal blood 

glucose levels) in the bloodstream, which is controlled by two functionally opposite 

proteins, insulin and glucagon (Steineck et al. 2019). The glucose levels in blood 
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periodicity are supervised by the critical pancreatic islets where is produced insulin 

hormones. The interaction or relationship between insulin and diabetes is properly 

regulated via the insulin transduction pathway (Ho et al. 2016). In diabetes patient, this 

pathway which is abnormally increasing the absorbance of glucose into fat and 

muscle cells, as well as dysfunctional glycogenesis of glycogen in liver by glucagon 

(McCrimmon and Sherwin 2010; Bode et al. 2020). 

Detection of diabetes disease via insulin secretion signaling pathway 

The glucose-stimulated insulin releasing pathway initially starts with binding of glucose 

on the glucose transporter (GLUT2) which is a transmembrane receptor of beta cells. 

In the metabolism of glycolysis, the energy ATP is generated from glucose resulting in 

the high level of ATP/ADP ratio which inhibits the K+ channels. Therefore, the K+ 

currents outward is downed and impulse the membrane depolarization; thus, opening 

the voltage-dependent Ca+ channels (VDCCs) for uptake the Ca+ and, eventually 

accumulates the high level of Ca+ inward. Subsequently, the vesicles of insulin fuse in 

membrane and release the contents (Henquin 2000; Roder et al. 2016; Carrageta et al. 

2021; Henquin 2021). To mimic the insulin secretion signaling pathway, the 

glucose-stimulated insulin secretion test is developed for checking the in vitro IPC 

function.  
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Regulation of insulin production by cAMP/PKA pathway in pancreatic beta cells 

In pancreatic beta cells, the insulin production is regulated by cAMP/PKA cascade. 

Initially, Glucagon-like peptide 1 (GLP-1) binds to GLP-1 receptor which stimulates the 

alteration from ATP to cAMP.  cAMP energy supplies to the activation of protein 

kinase A (PKA). Then, activated PKA triggers to the transcription of insulin; besides, it 

helps insulin secretion by phosphorylation of vesicle-associated snapin protein. 

Otherwise, insulin is also released by binding to A-kinase anchoring proteins (AKAPs). 

Correspondingly, PKA phosphorylates the transcription factor of CREB, inhibits glucose 

transporter GLUT2, inhibits ATP-sensitive potassium channel (KATP), activates L-type 

voltage-gated calcium channels (LTCC) for secretory insulin modulation. MAFA is 

transcribed by an activated CREB regulation, then MAFA (a transcription factor) 

provokes the transcription of insulin. In hyperglycemia, insulin secretion in a long-term 

is attacked by the induction of the intrinsic PKA inhibitor B (PKIB). The effect of PKA on 

insulin release is also dependent on its subcellular localization (Hussain et al. 2006; 

Tengholm 2012; Yang and Yang 2016). 

Insulin-mediated glucose uptake cascade  

The insulin receptor (IR) is a heterotetramer including two α subunits and two β 

subunits. Insulin molecule directly binds to the insulin receptor via disulfide bridge at 
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α subunit. When α subunit of insulin receptor is triggered, it activates 

auto-phosphorylation of the β subunit. Thus, three tyrosine residues (Tyr-1158, 

Tyr-1162, and Tyr-1163) are phosphorylated and amplified the number of the kinase 

activity. The insulin receptor substrate (IRS) proteins are phosphorylated by 

insulin-mediated stimulation. The insulin receptor substrate (IRS) proteins are 

phosphorylated and the activation of the list of downstream molecules consist of 

phosphatidylinositol 3-kinase (PI3-kinase), PIP2, PIP3, protein kinase B (PKB), Akt. Thus, 

PKB induces glucose transporter 4 (GLU4) which continuously moves to cell surface 

importing the glucose into cells (Lanner et al. 2006; Lanner et al. 2008; Saini 2010; 

Satoh 2014). 

Induced pluripotent stem cells (iPSCs) from somatic cells 

The development of induced pluripotent stem cells (iPSCs) represents a milestone 

step in the stem cells studies. From 1980s, mouse embryonic stem cells (mESCs) were 

indefinitely proved the ability to maintain pluripotency which directly and 

spontaneously differentiated into all three germ layers (endoderm, mesoderm, 

ectoderm) (Takahashi and Yamanaka 2006; Yamanaka and Blau 2010). Eventually, ESCs 

was cultured in large population associating with feeder cells. The researchers began 

to develop in 1990s, the new technologies of somatic cell nuclear transfer (SCNT), cell 
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fusion, and induced pluripotent stem cells (iPSCs) were generated to serve the 

evolution of scientific researches and clinical therapy (Yamanaka 2013). However, the 

human and animal eggs were used in the SCNT technique that regarding to ethical 

issues while these decades, SCNT is being investigated extensively. Subsequently, in 

2006, the iPSCs generation was exciting reported in genetically reprogramming from 

adult somatic cells causing by the transduction of four transcription factors (OCT4, 

SOX2, c-MYC, KLF4) into mouse fibroblasts (Takahashi and Yamanaka 2006). From a 

cocktail of Yamanaka, Takahashi and Tanabe et al., 2007 successfully generated the 

human iPSCs using retroviral system. Besides, three separated groups also showed the 

somatic cells reprogramming to iPSCs by OCT4, NANOG, SOX2, LIN28 using lentiviral 

system (Thomson factor) (Takahashi et al. 2007a; Takahashi et al. 2007b; Yu et al. 

2007). 

To generate iPSCs from differentiated somatic cells, the delivering reprogramming 

factors to source cells approach are reported with the multiplicity of integrating and 

non-integrating manipulation. The robust and efficient integrative techniques such as 

retroviruses infect to any somatic cell types and achieve a stable transgene expression. 

Initially, the viral delivery of retrovirus is used to generated iPSCs which cargos four 

transcription factors into fibroblasts of mouse and human (Seki and Fukuda 2015; 
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Shahjalal et al. 2018). The activation of retroviral silencing vector is stop when 

pluripotent cells are full formation (Gram et al. 1998; Hotta and Ellis 2008). In 

full-reprograming stage, iPSCs reporters are strong detection. iPSCs makers consisted of 

Nanog, Oct3/4, Sox2, Eras, Rex1, Klf4, c-Myc are increased the mRNA levels. In 

pluripotency distinction, the activity of Nanog and Oct3/4 promotors are elevated via 

the bisulfide sequencing validation. In gold standard for pluripotent identity, iPSCs are 

injected into animals for teratoma formation (Yu et al. 2020). 

The strategy on combination of Doxycycline-inducible lentiviruses brings a new 

interesting manipulation with temporal control. Here, the researchers also proved 

iPSCs formation using inducible virus highly (Lai et al. 2011). But these methods 

permanently cause genetic material modifications due to transgene integration 

randomly which is a reason of insertional mutagenesis or tumorigenesis. Eventually, it 

causes the limitation on the generated iPSCs for clinical applicability. Besides, the 

genetic endogenous of the iPSCs are inefficient silencing, and eventually activation of 

transgenes being affected (Zhou et al. 2009; Gunaseeli et al. 2010; Xiao et al. 2016; 

Cherkashova et al. 2020; Amimoto et al. 2021). To solve this problem, a transgene 

excision method can be excised out from the iPSCs. In the challenges, this excision 

event can remove randomly some neighbor elements in the genome and cause thus 
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a mutagenesis, subsequently, this approach is limited for clinical treatment (Kusumoto 

et al. 2011).  

To make iPSCs applying in practical clinic, the techniques of non-viral, DNA-free 

reprogramming involving recombinant proteins, mRNA, miRNA and small molecules 

are promising without the possibility of transgene integration or genomic modifications 

in long-term. However, these approaches are very restricted according to the low 

efficiency and/or difficulty of the techniques. Therefore, the application of each 

technique is facing different problems and must be overcome the bottlenecks for 

obtaining efficient result (Lai et al. 2011; Zhang et al. 2011; Oh et al. 2012; 

Haridhasapavalan et al. 2019; Wang et al. 2020). 

Furthermore, in the developing of scientific researches and clinical demanding, the 

delivering techniques are definitely modified and explored the novel approaches for 

improving the activation of the induced transcriptional program in an efficient cell 

manner (Yamanaka and Blau 2010). The advantageous iPSCs are particularly obtained. 

First, the iPSCs modeling comes from biopsy of patient-derived that breakthrough the 

ethical issues and immunological rejection. Besides, in the iPSCs stage, the gene 

editing can be manipulated with different aims or the gene expression and signaling 

can be studied as well. Rapidly, iPSCs undergo differentiated duration to become the 
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interested cell types. Second, these iPSCs-based disease models can be carried out 

drug screening in vitro. Third, the technique of viral vector integration overcomes the 

tumorigenic potential which is concerned for cell therapy (Shahjalal et al. 

2018)Yamanaka and Blau 2010; Charles C. Hong et al. 2014). Here, the mGF-iPSCs were 

generated using retroviral silencing vectors which was a kindly gift from Prof. Egusa 

Hiroshi, Tohoku University, Japan. The mGF-iPSCs were well characterized and 

differentiated to osteoclasts (Egusa et al. 2010). 

Chemical strategies for induced insulin producing cells differentiation 

Embryoid bodies and definitive endoderm development from iPSCs  

During many decades for IPC synthesis trajectories, the strategies of IPC chemical 

induction are divided into two main ways: i) synchronized embryoid bodies (EBs) 

formation, ii) direct definitive endoderm development (Kim et al. 2010; Mfopou et al. 

2014). 

Embryoid bodies generation: EBs are three-dimensional (3D) cell aggregation that 

mimic a spherical organization of embryonic stem cells in embryogenesis period which 

immediately designs to differentiate precursors of three layers of germinal lineages 

consist of endoderm, mesoderm, ectoderm (Rungarunlert et al. 2009; Brickman and 

Serup 2017). The capacity of EBs initially dictates lineage-specific downstream 
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differentiation towards many target lineages including neural, cardiomyocyte, 

hepatocyte etc. (Son et al. 2011). Besides, the outcomes of target cell differentiation 

are based on the quality of EBs that is controlled by spatial and temporal culture such 

as medium condition, number of cells and EB parameter (Pettinato et al. 2014a). 

During EB development, the pluripotency of EB markers are decreased in expression. 

Correspondingly, its morphology are changed by fluid infiltration; the following days, 

the cavity structure and additional appendages are formed (Carpenedo et al. 2007; 

Zeevaert et al. 2020). The manner of EB size can dependently decide the yield of 

target cells. While the small size of EBs is not alive in the long duration as well as, too 

large EBs gradually create core necrosis (Zeevaert et al. 2020). Duration of EB 

formation, the EBs considerably undergo cell-cell interaction via cell junction and 

activated cell signaling mechanism for maturation pathway (Pettinato et al. 2015). It 

means the gene expression in EB maturation is decreasing in the network of 

pluripotency levels and increasing in germ layer specification (Zeevaert et al. 2020). 

Additively, in suspension culture, the agglomeration events are randomly occurred 

preventing partly the colony proliferation and differentiation (Carpenedo et al. 2007). 

There are several methods for generate EBs from iPSCs such as enzymatic treatment, 

micro-well arrays, hanging drop, 3D printing, spin-EB, hydrogel (Chen et al. 2008; Lin 
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and Chen 2008; Pettinato et al. 2014b). The regular approach is simply used to detach 

the iPSCs by enzyme and then, they are maintained in the suspension medium, either 

in non-bacterial grade petri plates or ultra-low attach plates (Carpenedo et al. 2007; 

Zeevaert et al. 2020). Expectedly, in vitro EB synchronization is formed in suspension 

media and low-attach plates which mainly reduces the heterogeneous of iPSCs, 

feeder cells matrix, and remove the feeder cells for 3D formation. This method helps 

the integrity of terminal IPC differentiation be more uniform and efficient. In the 

results, IPC termination indicates pro-insulin or C-peptide and insulin expression that 

performs correct the process of insulin generation (Wei et al. 2013). 

Definitive endoderm formation: skipping the EB development and directly induce to 

definitive endoderm (DE) from iPSCs-derived is obtained some achievements (Liu et al. 

2010; Wei et al. 2013; Jaafarpour et al. 2016). In this method, the cells are treated with 

the induction media including Activin A, Wnt3a or TGF-b, etc, for immediately forming 

DE and strong expresses mRNA levels of FoxA2, Cxcr4, Goosecoid, Sox17, and Bmp2 

(Kubo et al. 2004). This protocol is required a quite short time for IPC generation. In 

several researches, they proved the insulin production that is not completed synthesis 

with lacking pro-insulin protein (Kubo et al. 2004). Stepwise, the scientists 

demonstrated the successful engraftment of these IPCs in steptozotocin (STZ) treated 
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mice which corrected the hyperglycemia or recused the diabetic phenotype, however, 

some organs as kidney, spleen be coming to tumorigenesis (Raikwar and Zavazava 

2009).  

Procedure of mouse induced pluripotent stem cell-derived insulin-producing 

cells (miPS-IPCs) synthesis 

In fact, pancreatic beta cell procedure is directly differentiated from ESCs which live in 

inner cells mass (ICM) of blastocyst during embryonic development (Murry and Keller 

2008). Then, ICM can develop to three layers of endoderm, mesoderm, ectoderm 

targeting to any expected cells by suitable induction medium (Murry and Keller 2008; 

Oliver-Krasinski and Stoffers 2008). Here, we apply this workflow to make 

three-dimensional (3D) embryoid bodies from iPSCs in un-attached plates with ES 

medium. In detail, the differentiation into pancreatic beta cells is generally divided 

into 6 steps including 1) EB generation, 2) DE stage for toward to pancreatic beta cells 

formation, 3) progenitor cells stage that can be different to any target cells, 4) 

pancreatic endocrine stage, 5) early pancreatic beta cells or early IPCs, and 6) matured 

IPCs stage (Hosoya et al. 2012; Pagliuca et al. 2014; Liu et al. 2021). The stage-specific 

biomarkers are detected such as the pluripotent stem cells (Oct4, Sox2, Nanog, Rex1, 

cMyc, Ssea1); definitive endoderm (Cxcr4, Goosecoid, FoxA2, Sox17, Bmp2); pancreatic 
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progenitor cells (Pdx1, Nkx6.1, Sox9, Gp2, Hnf6); pancreatic endocrine cells (Ngn3, 

NeuroD1, Maf-B, Nkx-2.2, Pax6, Pax-4); and pancreatic beta cell or IPCs (Insulin, 

Glucagon, Nkx-6.1, Maf-A, Isl-1, Glut-2, Glp-1r) (Fig 1) (Escurat et al. 1991; 

Oliver-Krasinski and Stoffers 2008; Liu et al. 2021). Stepwise differentiation procedures 

are guided by optimized small and large chemical treatment. 

  

Figure i Scheme of miPS-IPC synthesis workflow 

On the other hand, expression of matured IPCs can be manipulated on the specific 

transcription factors. They find the combination between Pdx1 and Pax4 that is 

increased the develop of pancreatic beta cells. However, overexpression of Pdx1 or 
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Pax4 expression tend to cytotoxicity (Raikwar and Zavazava 2009).  Remarkably, the 

convenience and efficiency of doxycycline-inducible technique helps induce various 

genes of pancreatic transcription factors (Nkx2.2, Ngn3, Nkx6.1…); these factors can 

solve toxic problems. However, the present of doxycycline in cells still is not clear the 

negative side effects (Raikwar and Zavazava 2009).  

Small and large chemicals are used for IPC induction 

Pluripotent stem cells are potential model for biomedical researches, and 

translational clinical therapeutics. The differentiation of IPCs is a mile-step in diabetes 

treatment via stem cell-based therapy (Charles C. Hong et al. 2014). In the DE 

generation step, activating the transforming growth factor (TGF)-beta signaling, activin 

A is a strong factor to stimulate endoderm lineage differentiation in the low fetal 

bovine serum (FBS) concentration (Sulzbacher et al. 2009; Takeuchi et al. 2014). 

Because activin A is a homodimer complex with two beta-A subunits, not expressed 

during the embryogenesis (Kumar et al. 2014). Activin A is also a non-glycosylated 

cytokine that is involved in TGF-beta family and expresses in diversely biological 

processes (Su et al. 2018; Xie et al. 2020). Therefore, activin A plays a key role in 

various mechanism (Kumar et al. 2014). Its properties trigger the differentiated progress 

including pancreas, neural, mesoderm, etc. Some researchers showed the 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 19 

combination between activin A and sodium butyrate to induce differentiation of 

hESCs to pancreatic beta cells (Kumar et al. 2014; Pan and Liu 2019).  Besides, activin 

A and WNT3A are added in the DE induction medium to improve the 

meso-endodermal lineage from hESCs (Pan and Liu 2019). Recently, the activin A and 

wortmannin complex stimulates to DE formation with highly efficient pancreatic cells 

synchronization. At the nutshell, activin A is known as an extremely important factor 

for differentiation of hESCs toward DE with promoting the expression of DE markers 

(Pavathuparambil Abdul Manaph et al. 2019; Thakur et al. 2020).  

Retinoic Acid (RA) is a retinaldehyde dehydrogenase that is an essential enzyme for 

PDX1 gene expression in both mouse and human ES cells during pancreatic cell 

production (Kumar et al. 2014). Meaningfully, RA is implied joining in signal 

transduction but its activities are still unknown in the various mechanism during 

pancreatic cell formation (Huang et al. 2014). Obtaining from many researches, RA is 

used alone and not integrating with other chemicals, the PDX1 expression is 

decreased significantly; so the progressive combination of RA and nicotinamide gained 

the expression of PDX1 up to 80% yield (Ma and Zhu 2017). Some studies 

demonstrated that the failure of transcription factors (Ins, Ngn3, Pdx1, and glucagon) 

expression is detected in the lacking RA supplement (Ostrom et al. 2008; Brun et al. 
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2015) Ma and Zhu 2017). Hence, the optimal amount of RA and well associate with 

other ingredients are useful for producing the pancreatic progenitor cells effectively. 

Nicotinamide is belonged to vitamin B3 family that promotes Nkx6.1-positive (Nkx6.1+) 

pancreatic progenitor cell differentiation. In human pancreatic progenitor period, 

nicotinamide attends to several metabolic mechanisms because it inhibits two classes 

of enzymes in poly-ADP-ribose polymerases (PARPs) family. It also administrates the 

cellular pool of nicotinamide adenosine deoxynucleotide (NAD+); the alteration of 

NAD+/NADH ratio enhances Pdx1 expression (Amjad et al. 2021). Besides, Nicotinamide 

can prolong the survival of human pluripotent stem cells (Kumar et al. 2014; Jiang et 

al. 2017; Meng et al. 2018).  

Taurine is a 2-aminoethanesulfonic acid that belongs to cryo-protective agent 

attending in numerous physiological functions. It can interact with calcium signaling, 

then taurine alters the potential of cell membrane and effects on ion currents, which 

helps insulin secretion (Pavathuparambil Abdul Manaph et al. 2019).  

Fibroblast growth factor (FGF) has seven different receptors controlling the transition 

and differentiation. However, FGF is insufficient effect when it is alone. The 

combination of FGF and other small and/or large molecules can enhance the 

pancreatic endoderm (PE) specification as well as increasing the number of PE cells. 
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FGF and endothelial growth factor (EFG) promote the expansion of PDX1+ pancreatic 

progenitor cells from human ES cell differentiation. Moreover, the upregulation of EGF 

expression improves the proliferation of PDX1+ cells (Zhang et al. 2009; Kumar et al. 

2014). 

Notch signaling suppresses Ngn3 transcription factor. 

N-[N-(3,5-difluorophenacetyl)-L-alanyl-S-phenylglycine t-butyl ester (DAPT) is a 

chemical of Notch signaling inhibitor leading to transition of pancreatic beta cells 

differentiation. Consequently, the expression of insulin, Pdx1, Nkx6.1, NeuroD1 is 

performed significantly (Qu et al. 2013; Thakur et al. 2020).   

Glucagon like peptide-1 (GLP-1) is a peptide that is the most popular and effective 

stimulator for insulin secretion by glucose stimulation. GLP-1 is rapidly released to 

response the meal intake via metabolism by inactivated using dipeptidyl-peptidase-4. 

In mouse embryonic stem cells (mESs), GLP-1 enhances insulin production in in vitro 

IPC induction (Bai et al. 2005). The achieved integration of GLP-1, nicotinamide, or 

Notch signaling inhibitors gained the maturation of IPCs with high expression of EB 

markers consist of islet-like 1 (Isl1), insulin, C-peptide (Pavathuparambil Abdul Manaph 

et al. 2019). 
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Levodopa (L-DOPA) belongs to dopamine family that is a dopamine precursor being 

active as a neurotransmitter. With responsible dosage of L-DOPA, it affects to insulin 

releasing directly and modifies the population of pancreatic beta cells. Actively, 

L-DOPA triggers to block the K+ channels and open Ca2+ channels for insulin 

secretion. In experimental condition, L-DOPA haft-life is short around 36-72h (Garcia 

Barrado et al. 2015).  

In conclusion, the wise integration of chemicals will generate a sustainable medium at 

each step during miPS-IPC synthesis in this study.  

Strategy of subcutaneous device-less establishment for implantation and 

transplantation 

Transplant models 

In the late 1970s and early 1980s, the discovery of animal models of Type 1 Diabetes 

(T1D) was properly known (Van Belle et al. 2009). They have generated the genetics, 

aetiology, pathogenesis and particularly the non-obese diabetic (NOD) mouse (Van 

Belle et al. 2009; Driver et al. 2011). Later, the develop of transgenic and 

gene-targeting technologies were explored to reduce genetic and pathogenic 

complexity in many T1D models (Matsuoka et al. 2013). Currently, there are four main 

T1D models such as: pathogen-induced models, spontaneous models (NOD mice, 
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double-Tg, BDC2.5/B6g7 mice models), transfer models of autoimmune diabetes 

(transfer into immunodeficient mice, transfer of BDC2.5 TCR Tg CD4 T-cells in NOD 

neonates mice, transfer of P14/Smarta LCMV-specific CD8 or CD4 into RIP-GP and 

humanized mouse models), pharmacological intervention (Alloxan and 

streptozotocin) (Lipes and Eisenbarth 1990; Ohsugi et al. 1991; Rosmalen et al. 1997; 

Billotey et al. 2005; Giarratana et al. 2007; Van Belle et al. 2009; Chen et al. 2020). To 

precisely generate the T1D models with ease to practice and painless manipulation, 

pharmacological induction (PI) is fashionably selected in T1D models (Deeds et al. 

2011; Graham et al. 2011; Furman 2015; Hahn et al. 2020; Furman 2021). In PI way, the 

streptozotocin (STZ) drug is a glucose analogue which potentially transport to 

pancreatic beta cells through glucose transporter 2 (GLUT2) (Deeds et al. 2011; 

Graham et al. 2011). In beta cells, H2O2 is created and induces expression of glutamic 

acid decarboxylase (GAD) autoantigens. GAD is a strong trigger of beta cell-specific 

autoimmunity, both in experimental diabetes models, and in humans that has been 

performed to require a Th1-dependent inflammatory reaction (Van Belle et al. 2009). 

Single dose of STZ-high concentration directly invades and damages the beta cells, 

then provokes the STZ-treated T1D with hyperglycemia symptom (Deeds et al. 2011; 

Graham et al. 2011; Furman 2015; Hahn et al. 2020; Furman 2021). The mouse model 
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will be chosen in this study. Because the mouse has the genetic background as similar 

as human, ease to nursing and manipulation (Justice and Dhillon 2016; Perlman 2016). 

The eleven-week age of mice are homologous with adult human that are healthy, 

immortality, stable weigh and plague survival maintenance (Justice and Dhillon 2016). 

To apply the functionality of in vitro pancreatic IPCs in in vivo for diabetes treatment, 

we will generate a T1D mice model by STZ injection, the STZ-treated diabetes mice 

will be transplanted by the encapsulated IPCs for recovering hyperglycemia. 

Biomaterials 

Current benefits of the cell replacement for diabetes treatment focus on investigating 

the microenvironment of transplantation sites, including their extracellular matrix 

content, vascularization and invaded immune cells (Assoc 2006; Mitrousis et al. 2018; 

Pomposelli et al. 2021). Nowadays, an increasing amount of research is focusing on 

engineered biomaterials, promote angiogenesis and protect the graft from the 

immune system (Mitrousis et al. 2018). Biocompatible materials and 

immunomodulation can overcome these limitations (Ishihara et al. 2018). To date, cell 

encapsulation is the promising method for effective and long-term engraftment in 

diabetes animal (An et al. 2018). Basing on size-pore, there are two main ways for 

encapsulation including immune-protective and revascularization approaches that 
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active as vesicles or exosomes in tissues (Dufrane and Gianello 2012). In microporous 

construct, the encapsulated beads are surrounded by blood vessels where supply the 

oxygen and nutrients to the islets; moreover, the immune cells cannot get into the 

encapsulated beads. In macro-porous construct, the blood vessels invade to the 

beads and directly connect with islets; therefore, immune cells smoothly move into 

the encapsulated beads (Souza et al. 2011; Dufrane and Gianello 2012; Omami et al. 

2017; White et al. 2020a). In biomaterial selection, alginate is a biomaterial which is 

applied in various biomedical sciences with less difficult manipulation, efficient 

immune-barrier, and preserved cell viability (Lee and Mooney 2012; Sun and Tan 

2013). Besides, Pluronic-F127 is a potential non-toxicity chemical for coating the 

alginate surface with promoting the collagen generation and improving the 

angiogenesis (Diniz et al. 2015). The double layers of alginate and Pluronic-F127 brings 

the outstanding achievement for conserving the endogenous gene expression and 

functionality (Kuncorojakti et al. 2020).  

On the other hand, the biomaterial of implantation is diverse composition (Yue et al. 

2016; Ishihara et al. 2018). There are many names either tubes or catheter with 

different outer and inner diameter. In transplantation fields, the surface compatibility 

with surrounding matrix in host animal is extremely critical (Sakiyama-Elbert and 
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Johnson 2012). Since it can be decreased or increased the immune response (Tomei 

et al. 2014). The composition of biomaterials can be butyl rubber, Fluorinated 

ethylene, silicone (polydimethylsiloxane), nylon (aramid) (Pepper et al. 2015a).  In 

term of subcutaneous implantation, the researchers proved the correlation between 

nylon composition and reversal of diabetes that was high level of 91.3% (Krevelen 

and Hoftyzer 1976). In the regenerative medicine toolkit, biomaterials are an essential 

component. To improve cell survival and integration, regeneration and clinical 

translation, the communication between donor cells, biomaterial and host body 

should be further elucidated and coordinated (Mitrousis et al. 2018). 

Vascular endothelial growth factor (VEGF)-165  

The role of VEGFs in transplantation is critical to improve the angiogenesis or stimulate 

the other important pathways. In angiogenesis cascade, VEGF and VEGFR interaction is 

a major role regulating vasculogenesis and blood vessel formation from precursor 

cells, embryogenesis duration, early and late stage of angiogenesis (Shibuya 2011).  

Transplantation of mesenchymal stem cells (MSC)-VEGF to Alzheimer’s disease (AD) 

transgenic animals forms neovascularization and amyloid-beta peptides in 

hippocampus (Garcia et al. 2014). In transgenic Amyotrophic lateral sclerosis (ALS) 

mice, delivering the human neural stem cells (hNSCs) and VEGF gene overexpression 
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significantly generates the delayed disease onset. Correspondingly, it prolongs the 

survival of transgenic ALS mice (Hwang et al. 2009). Mixture of adenovirus-mediated 

vascular endothelial growth factor and fat tissue are transplanted to nude mice. Here, 

they report the VEGF gene enhances the longevity and graft’s quality of fat tissue 

because of angiogenesis induction (Yi et al. 2007). In post-transplantation, VEGF level is 

identified as monitoring the risk of severe transplant-relative mortality (Min et al. 2006). 

A recombinant adeno-associated virus carrying human VEGF-165 is transduced to 

human adipose derived stromal cells; then, the expression of VEGF-165 stimulates 

revascularization in intramuscular post-transplantation (Shevchenko et al. 2013). In 

ischemic hind limbs New Zealand rabbits, they proved that VEGF-165 transfected to 

endothelial progenitor cells (EPC) which significantly higher the level of angiogenesis 

comparing with EPC alone (Wang et al. 2015). In case of xenotransplantation in mice, 

VEGF-165 is mixed with the collagen matrix of encapsulated ovarian tissue that 

recruits the network of blood vessels (Henry et al. 2015). VEGF-165-transfected 

vascular endothelial cells and islets are grafted into the diabetic rats which elevated 

islet revascularization and increase the islet graft survival (Cheng et al. 2007). 

Pancreatic rat islets are encapsulated with the presentation of VEGF-165 for 

transplanting to diabetic mice. VEGF triggers angiogenesis and decrease macrophage 
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surrounding the membrane of cells; especially, revascularization of islet engraftments 

in post-transplantation (Sigrist et al. 2003). 

Transplantation sites 

In the progress of translation of subcutaneous islet transplantation therapies, the 

experimental approaches used to optimize the subcutaneous (sc) space for 

experimental transplantation (Shapiro et al. 2000; Gunawardana et al. 2009; Lee et al. 

2012; Kim et al. 2020b; Yu et al. 2020). In 1996, Juang JH and collogues used mouse 

transplant model for islet transplantation; however, they faced the intervention of 

previsualization by implantation of polymer (Juang et al. 1996). Subsequently, in 1999, 

the other researchers used a mouse model to apply for subcutaneous transplantation 

with macro-encapsulated islet that was challenged in instant blood mediated 

inflammatory response (IBMIR) and inflammatory response in blood circulation 

(Tatarkiewicz et al. 1999). Normally, beta cell transplantation is lost the vascularized 

and extracellular matrix in the host body which can cause the risks of animal strokes 

(Stendahl et al. 2009; Pepper et al. 2015b; Vlahos et al. 2021b). Therefore, the 

scientists built many transplant sites for consideration including intra-portal/portal 

vein, renal subcapsular, omentum/intraperitoneal, pancreas, spleen, gastric 

submucosa, bone marrow, brain, testis, thymus, anterior chamber of eye, 
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intramuscular, subcutaneous (sc) and subcutaneous device-less (Audouard et al. 2021; 

Cayabyab et al. 2021). Individually, there are advantages and disadvantages of 

transplantation.  

  

(Cayabyab et al. 2021) 

Figure ii Summary of islet transplantation areas in mouse models and 

mammalian models. 

In post-transplantation, the beta cell engraftment should be supplied the oxygen, 

nutrition, and physical supports via the new blood vessel system (Bromberg 2015). 

The blood vessel regeneration is formed from the host body and/or additional 

injection of the vascular endothelial growth factors (VEGFs) (Pepper et al. 2015b; 

Smink and de Vos 2018; Vlahos et al. 2021b). Importantly, the success of beta cell 
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transplantation mainly depends on 1) the capacity of tissue volume, amount of IPCs, 

and velocity of injection, 2) blood vessel networks, 3) the potential of crosstalk 

between the engraftment place and physiologically systemic circulation in relative 

manner, 4) facilitate the grafting invasion, 5) minimally reduce the inflammation and 

attack of immunogenicity, and 6) improve the transplantation survival in the long time 

(Janowski et al. 2013; Yu et al. 2020; Pomposelli et al. 2021). Accordingly, 

transplantation into the subcutaneous backside is recommended. Because the 

manipulation of surgery is easy, painless, and minimally touch to other organs 

unexpectedly (Bromberg 2015). Additionally, functional monitor of the engraftment is 

simply checked through imaging under in vivo microscope (Lee et al. 2012). Currently, 

the approach of scalable device-less is fashionably developed for islet transplantation 

in the subcutaneous (sc) space. This method enhances rapid vascularization, which 

permits oxygen and glucose cargo to transplanted place (Halberstadt et al. 2005; 

Pepper et al. 2014; Pepper et al. 2015b; Kim et al. 2020b; Vlahos et al. 2021b). In the 

procedure, the strategy of sc transplantation is consisted of two stepwise 1) sterile 

prepare the “pocket” in the subcutaneous area via implantation, and 2) safe 

transplantation of islets into the preformed “pocket”. In previous research using the 

mouse model, the methacrylic acid (MAA)-based biomaterials were used to coat the 
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islets which helped the immunosuppression, prolong the survival engraftment, and 

vessels generation at implantation site (Bromberg 2015; Vlahos et al. 2021a). 

Conclusively, the combination of biocompatible biomaterials, IPC encapsulation, 

subcutaneous device-less, growth factors, angiogenesis stimulation, oxygen and 

nutrition demands are strategies for implantation and transplantation approach 

(Calafiore and Basta 2014; Yang et al. 2016; Magisson et al. 2020; White et al. 2020b; Yu 

et al. 2020). Thus, in this in vivo part, we will develop the way to safe implantation. 

Besides, encapsulated IPCs will be delivered to transplantation space with rapid 

vascularization and recovering diabetes symptoms. 

 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 32 

Conceptual framework 

  

Figure iii Conceptual framework of IPCs induction from mGF-iPSCs modeling. 

To generate the IPC lineage, we use the stem cell potential of mGF-iPSCs as a good 

modeling that can make a high yield of beta cell mass in pancreas (Fig.2). To form the 

completed synthesis of IPCs, EBs are conceptualized basing on their development. To 

establish the highly efficient protocol, we will optimize the induction protocol using in 
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vitro molecule treatment. To show the IPC performance, we will check the 

phenotypic and genotypic alteration by proving the morphology and gene/protein 

expression. To confirm the IPC function, we will test the glucose stimulation C-peptide 

secretion (GSCS), and C-peptide/insulin production. To address the IPC 

biocompatibility in mice, IPCs will be encapsulated totally. To reverse the 

hyperglycemia in diabetes mice, encapsulated IPC engraftment will be applied, the 

blood glucose level is normally maintained in post-transplantation.     
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CHAPTER III 

METHODOLOGY 

Animal husbandry  

All the protocols and animals were followed the ARRIVE guidelines and were 

approved by the Institutional Animal Care and Use Committee (IACUC), Chulalongkorn 

University Laboratory Animal Center (CULAC), Faculty of Veterinary Science, 

Chulalongkorn University (Protocol No. 2173018). All male C57BL/6NJcl mice were 

purchased from the Nomura Siam International Co., Ltd, Thailand. The mice were 

housed in cages with suitable space for enabling free movement, generating social 

contact. They were fed a standard pellet mouse diet and had water ad libitum, and 

they will be monitored the clinical condition of animals and weighted every week. 

The animals will be kept in the optimally controlled environment according to CULAC 

management. Briefly, room temperature 23 ± 2°C, humidity 40-60%, 12/12 h, light/ 

dark cycle, bedding provided and changed accordingly to the guideline, clean cases 

and water bottles change weekly otherwise the facility manager mentions. 

Non-diabetic mice will be treated with the standard protocol mentioned above but 

the diabetic mice will be closely monitored and be provided extra care and 

consumables depending on their conditions such as extra bedding change. Most of 
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the animal procedures were less painful and distressed to the mice. A cardiac 

puncture was performed once under anesthesia, then the mice are sacrificed. 

Tissues/organs were harvested consequently.  

mGF-iPSC culture and embryoid bodies generation  

mGF-iPSCs were induced by the factors of Oct3/4, Klf4, Sox2 via the retroviral system 

and completely characterized as previous publication (Egusa et al. 2010). Firstly, the 

feeder cells were seeded in the medium consisting of high-glucose Dulbecco’s 

Modified Eagle Medium (DMEM) (Thermo Fisher Scientific, USA) with 1% of 

Antibiotics-Antimycotic (Thermo Fisher Scientific, USA), 1% GlutaMAXTM (Thermo 

Fisher Scientific, USA), and 7% fetal bovine serum (FBS) (Thermo Fisher Scientific, USA) 

until reach 80% confluence. The feeder cells were in-activated by 6 μg/ml Mytomicin 

C (Nacalai Tesque, Japan). Next, the mGF-iPSCs were cultured on the feeder cells layer, 

continuously. They were kept in the E1 media including high-glucose Dulbecco’s 

Modified Eagle Medium (DMEM) (Thermo Fisher Scientific Corporation, USA) with 1% of 

Antibiotics-Antimycotic (Thermo Fisher Scientific Corporation, USA), 1% GlutaMAXTM 

(Thermo Fisher Scientific, USA), and 15% fetal bovine serum (FBS) (Thermo Fisher 

Scientific, USA), 2% beta-mercaptoethanol (Sigma-Aldrich, USA), 1x non-essential 

amino acids (NEAAs) (Sigma-Aldrich, USA) as supplements. All cultured cells were in 
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37oC, 5% CO2 and humidified condition. The medium was changed every 2 days. 

mGF-iPSCs colonies maturation was trypsinized and formed to embryoid bodies (EBs) 

into low-attach plates. The EB colonies were maintained in E1 media and changed 

every 2 days for serving in the further experiments. 

Pancreatic IPC production 

The protocol was modified following the previous researchers (Jeon et al. 2012). The 

cells were re-suspended in the serum free media (SFM)_R1: GlutaMaxTM (Thermo 

Fisher Scientific, USA), 0.1% BSA (Sigma-Aldrich, USA), 50 ng/mL Activin A 

(Sigma-Aldrich, USA). They were seeded into the 60 mm low-attached dishes 

(Eppendorf TM Cell Culture Dishes, Non-Treated, USA) for protocol I, in MicroQC TM 

Petri Dish (MicroQC, Thailand) for protocol II, and in SterilinTM Petri Dish (Corning, 

France) for protocol III, IV, V, VI, VII, VIII, IX; then incubated for 72 h. After that, they 

were maintained in SFM/F12_R2: 0.5% BSA (Sigma-Aldrich), 1% ITS (Invitrogen, USA), 2 

mM retinoic acid (Sigma-Aldrich, USA) for 48 h. And complex of R3 media: DMEM-low 

glucose (Invitrogen, USA), 0.5% BSA (Sigma-Aldrich, USA), 1% ITS (Invitrogen, USA), 10 

ng/mL bFGF (R&D, USA), 20 ng/mL EGF (Sigma-Aldrich, USA) for 72 h. For next 72 h, R4 

media: DMEM/F12 (Invitrogen, USA), 1% ITS (Invitrogen, USA), 10 ng/mL bFGF (Merck, 

USA), 10 nM Nicotinamide (Sigma-Aldrich, USA). The morphology of IPCs were 
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observed under a microscope before changing the media. The miPS-IPCs maturation 

were collected for evaluating IPC-related genes, proteins and functional properties.  

Modified protocols of IV, VI, VII with Dopamine hydrochloride (Sigma-Aldrich, USA) at 

early IPCs stage. In protocol V, 100 nM glucagon-like peptide (GLP)-1 (Sigma-Aldrich, 

USA) and 1 M DAPT (Sigma-Aldrich, USA) were added at progenitor endocrine stage 

and early IPC stage.  

In the optimized protocol of VIII, SFM_R1: 2% beta-mercaptoethanol (Sigma-Aldrich, 

USA), 1x NEAAs (Sigma-Aldrich, USA), 1x GlutaMaxTM (Thermo Fisher Scientific, USA), 

0.1% BSA (Sigma-Aldrich, USA), 50 ng/mL Activin A (Sigma-Aldrich, USA) are incubated 

in 3 days; the SFM_R2: 2% beta-mercaptoethanol (Sigma-Aldrich, USA), 1x NEAAs 

(Sigma-Aldrich, USA), 0.5% BSA (Sigma-Aldrich), 1% ITS (Invitrogen, USA), 2 mM retinoic 

acid (Sigma-Aldrich, USA), 1 mM Taurin (Sigma-Aldrich, USA), 10 nM Nicotiamide 

(Sigma-Aldrich, USA) were maintained for 2 days; the DMEM/F12 media of R3: 2% 

beta-mercaptoethanol (Sigma-Aldrich, USA), 1x NEAAs (Sigma-Aldrich, USA), 0.5% BSA 

(Sigma-Aldrich, USA), 1% ITS (Invitrogen, USA), 10 ng/mL bFGF (R&D, USA), 20 ng/mL 

EGF (Sigma-Aldrich, USA) and 1 M DAPT (Sigma-Aldrich, USA) were kept for 3 days; 

the DMEM/F12 media of R4: 2% beta-mercaptoethanol (Sigma-Aldrich, USA), 1x NEAAs 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 38 

(Sigma-Aldrich, USA), 1 M DAPT (Sigma-Aldrich, USA), 100 nM (GLP)-1 (Sigma-Aldrich, 

USA) were added and changed every two days. 

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) 

The IPC samples were collected and interpreted by using RT-qPCR system. The total 

RNA was stored in the solution of TRIzol-RNA isolation reagent (Thermo Fisher 

Scientific, USA), and extracted using DirectZol-RNA extraction kit (Zymo Research, USA) 

following to the optimized protocol. Subsequently, the complementary DNA (cDNA) 

was converted by the kit of ImProm-TM Reverse Transcription System (Promega, USA). 

Next, the pancreatic IPC-related targeted genes with the specific primer sets were 

showed in Table S1. They were amplified and detected by the material of FastStart 

Essential DNA Green Master (Roche Diagnostics, Switzerland) running into the machine 

of CFX96TM real-time PCR detection system (Bio-Rad, USA). The ribosomal Protein L13 

(Rlp13A), was served as the housekeeping gene, and the fold changes in gene 

expression levels were normalized with Rlp13A and calculated following this formula: 

2-∆∆CT, where ∆∆CT = [Cttarget gene- CtRlp13A] treated - [Cttarget gene – CtRlp13A] 

control (Ct referred to cycle threshold). 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Immunocytochemistry staining 
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The IPC encapsulation samples were dissolved or the naked IPCs are collected. 

Fixation was performed by 100% cold methanol (-20oC) with 15 minutes at 4oC, the 

samples were permeabilized for 1 minute using 0.1% Triton®X-100 (VWR life science, 

USA) in PBS at room temperature. The samples were blocked in 10% donkey serum (in 

PBS) incubating for 1 hour at 4°C. For the primary antibodies, the monoclonal of 

mouse clone Pro-Insulin C-Pep-01 (Millipore, USA) and anti-mouse Insulin monoclonal 

(Merck, USA), were stained with dilution at 1:100 (in 1% BSA) incubating for 24 hours at 

4°C. After around 24 hours, the samples were washed with PBS and incubated with a 

secondary antibody of goat anti-mouse IgG conjugated to fluorescein isothiocyanate 

isomer 1 (Bio-rad, USA) at 1: 1,000dilution (in 1% BSA), in the dark condition of room 

temperature for 1 hour. Nucleus marker was stained using DAPI (0.4 μg/mL) 

(Sigma-Aldrich, USA). The samples were detected and analyzed under 10x and 20x 

magnification of a fluorescent microscope incorporated with Carl ZeissTM Apotome.2 

apparatus (Carl Zeiss, Germany).  

Live/Dead cells staining 

The IPC encapsulation, naked IPCs, and control samples were collected and 

evaluated by double staining. Calcein AM chemical (Thermo Fisher Scientific, USA), 

and propidium iodide chemical (Sigma-Aldrich, USA) were used with 1: 1,000dilution 
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for 30 minutes incubation. Then, the samples were rinsed into PBS. The results were 

indicated under 10x objective of a fluorescent microscope incorporated with Carl 

ZeissTM Apotome.2 apparatus (Carl Zeiss, Germany).   

Functional tests for IPCs 

During IPC induction, the samples were tested by the approach of glucose-stimulated 

C-peptide secretion (GSCS). The buffer was used by Krebs-Ringer bicarbonate HEPES 

(KRBH buffer) mixture of 120 mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1.1 mM MgCl2, 25 

mM NaHCO3, and 10 mM HEPES, then adjust pH 7.4 value by NaOH solution was 

served as the normal control. The glucose anhydrous (Sigma-Aldrich, USA) for 

stimulation at concentration 5.5 mM (99 mg/dL) and 22 mM (396 mg/dL) were 

prepared. The samples were challenged in series of concentration for 60 minutes into 

the solution of control, 5.5 mM Glucose, and 22 mM Glucose, respectively. The Insulin 

secretion levels were indicated via C-peptide quantitation, the C-peptide into 

supernatant was measured using Rat/mouse C-peptide enzyme-linked 

immunosorbent assay kit (Millipore, USA) according to the supplied protocol. Two 

factors consist of total DNA (ng) and stimulated time (minute) were normalized the 

levels of C-peptide secretion.  

Double layers of IPC encapsulation 
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For IPC encapsulation, matured IPC generation were collected and resuspended with 

prepared 2% (w/v) alginate solution. Double encapsulation of IPCs was created by 

completed 30% (w/v) of Pluronic-F127 as beads with two layers following to 

optimized protocol. In aseptic condition, the beads were maintained in induction 

solution at 37oC and 5% CO2 condition. The blank beads were as control for further 

experiments.  

Alginate/Pluronic-F127 bead dissolution 

The pancreatic encapsulated IPCs were dissolved by incubating in dissolving buffer 

(0.2 M C6H5Na2O7.2H2O, pH 7.4 and 0.1 M EDTA) for 5m, in 37oC. The layers of beads 

were degraded and then, they were washed in PBS buffer (three times/3 minutes 

each) and processed for further manipulation (RT-qPCR or Immunocytochemistry 

staining).  

Subcutaneous pocket formation technique 

The mice were divided into two groups: i) Tested group, and ii) Sham group. In Tested 

group, the mice were subcutaneously implanted with 18-G catheter (Nipro, Thailand) 

at the back with an aseptic technique. The space-retaining solution consisted of a 

sterile mixture of 250 ng/mL Vascular Endothelial Growth Factor-165 (VEGF-165) 

(GenScript, USA) and 10% Pluronic-F127 (Sigma-Aldrich, USA) was injected trough the 
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catheter. The subcutaneous pocket formation period was set up for 14 days. For 

mock-up transplantation, the pre-made sterile mock-up beads were made from 

alginate and Pluronic-F127. These beads were transplanted into the pocket using 

aseptic technique. Approximate twenty to twenty-five beads were assigned to this 

transplantation (~250 IPCs). After that the skin were closed by suturing. They were 

observed for 21 days (short-term study) and 42 days (long-term study). For Sham 

group, the mice were applied as Tested group, except the infiltration of 

space-retaining solution and the transplantation of the mock-up beads. The mice 

were weighted and blood withdrawal for fasting glucose levels (FGLs) and 

HOMA-IR/beta analysis before intraperitoneal (ip) 1.5 g/kg of glucose (Sigma-Aldrich, 

USA) for injection glucose tolerance testing (IPGTT). At termination, they were cardiac 

blood collected under generalized anesthesia for complete blood count (CBC), blood 

chemistry, and cytokine analysis. The sacrificed mice were harvested pancreas, 

implantation site (skin and all subcutaneous tissue at the insertion area), kidney, and 

brain for histological analysis. Cardiac puncture blood was stored in lithium heparin 

tube (BD Vacutainer®, Thailand) (suitable for blood chemistry and cytokines 

technique) for anticoagulant function. Blood for CBC is contained in lavender top 

(EDTA) tubes (BD Vacutainer®, Thailand). The blood is short stored on ice or 4oC until 
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the next processing. All animals were checked for their health and weight every week. 

All mice were 6h water and feed deprivation before blood collection. 

Diabetic induction and encapsulated IPC transplantation 

Two groups were divided for this study consisting of i) STZ-induced diabetes mice + 

encapsulated IPC transplantation, and ii) Sham group (STZ-induced diabetes mice + 

non-IPC transplantation). Then, they were separated into two study periods: 21-day 

(short-term transplantation) and 42-day (long-term transplantation).  

The normal FGLs (<11.1 mM) mice were rendered diabetic through administration of 

an intraperitoneal injection of streptozotocin (STZ) (Sigma-Aldrich, USA) at 180 mg/kg 

(in Citrate buffer, pH 4.5, Sigma-Aldrich, USA). Animals were considered diabetes when 

their non-fasting blood glucose levels exceeded a pre-established value of 20 mM for 

post STZ administration. Only animals meeting this inclusion criterion were selected 

for transplantation. Then, the implantation process was applied as Phase I. At the time 

of transplantation, 250 or 500 IPC colonies equivalents were added into a 

subcutaneous pocket under anesthesia. In post-transplantation, the mice were 

checked fasting glucose levels (FGLs) and HOMA-IR/beta analysis before 

intraperitoneal (ip) 2 g/kg of glucose for injection glucose tolerance testing (IPGTT). At 

termination, they were cardiac blood collected under generalized anesthesia for CBC, 
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blood chemistry, and cytokine analysis, and sacrificed for harvesting pancreas, 

implantation site (skin and all subcutaneous tissue at the insertion area), kidney, and 

brain for histological analysis. 

All animals were monitored their health and weight every week. All mice were 6h 

water and feed deprivation before blood collection.  

HOMA index and QUICKI index checking 

HOMA index consists of HOMA-beta, HOMA-IR and QUICKI are based on the levels of 

C-peptide in the plasma. C-peptide levels are detected using Rat/mouse C-peptide 

enzyme-linked immunosorbent assay kit (Millipore, USA) according to the supplied 

protocol. The value is calculated follow the formula: HOMA-beta: fasting C-peptide x 

20/(FGLs-3.5) or HOMA-beta (diabetes): fasting C-peptide x 20/(FGLs-3.5)+50 and 

HOMA-IR = fasting C-peptide x FGLs/22.5; QUICKI = 1/[log(HOMA-IR)]. The unit of 

C-peptide and FGLs values are IU/mL, and (mmoL/mL), respectively.  

Intraperitoneal injection glucose tolerance test (IPGTT) 

The mice are fasted for 6h to keep them in a low blood glucose status. After fasting, 

an initial blood draw was done prior to each glucose challenge. For the glucose 

challenge, mice were intraperitoneal injection with glucose (1.5 g/kg). FGLs are 
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checked at 15, 30, 60 and 120 min after glucose injection. Glucose in the blood was 

measured by glucose meter (Accu-Chek, Roche, Switzerland).  

Completed blood count (CBC) and Blood Chemistry 

The whole blood was withdrawn into the lavender top (EDTA) tubes or heparin (BD 

Vacutainer®, Thailand) for anticoagulant. The plasma was collected after centrifuge at 

2500 rpm, 15 m, 4oC. The parameter of blood chemistry was checked in the panel of 

comprehensive cards by biochemistry analyzer, Vetscan VS2 machine (Abaxis, Zoetis, 

UK). The CBC was detected in CBC panel by RIA company, Bangkok, Thailand. 

Cytokine analysis 

Cardiac puncture blood was stored in lithium heparin tube for anticoagulant function. 

Using multiplex protein detection and semi-quantitation methods of mouse 

inflammation antibody array with protein targets were assayed. The profile of proteins 

in plasma samples were progressed following the commercial manufacturer’s kit 

(ab133999, abcam, USA). Briefly, antibody array membranes were blocked in 2 mL of 

blocking buffer for 30 m, and then incubated with 1 mL of the samples overnight at 4

  °C. The sample solution were then discarded from each container, and the 

membranes were large washed with 20mL of wash buffer. Next, adding more three 

times with 2 mL of wash buffer at room temperature with shaking. The membranes 
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were then incubated in 1:1000 diluted streptavidin–horseradish peroxidase at room 

temperature for 2 h, and the membranes were washed thoroughly and exposed to a 

peroxidase substrate before imaging. Chemiluminescence was imaged using a 

Amersham imager 600 (UV), Japan with 2-minute exposure. In inflammation panel, this 

panel will allow simultaneous analysis of 40 biomarkers. In result, the list of proteins’ 

detections in the membrane array is matched with the cytokine’s map. The intensity 

of dot clots was automatically measured by ImageJ software (National Institutes of 

Health, NIH). Heatmap was generated using R software (Bell Lab, GNU project). The 

intensity was calculated by formula (X = (X(y)-negative)*P1/P(y)) following the 

manufactory supply. 

Histopathology 

The animals were euthanized by inhalation administration of CO2. Their death was 

confirmed by lack of heartbeat, cervical dislocation and removing vital organs. Tissues 

were collected and rinsed with 1X phosphate buffered saline (PBS), pH 7.4, and fixed 

in 4% Paraformaldehyde (PFA) for 24 h. Then, the tissues were dehydrated in a graded 

ethanol series, embedded in paraffin wax, and next sectioned at a thickness of 3 μm 

for histology. Three serial sections of each sample were stained with haematoxylin 

and eosin (H&E) for histological examination. Stained slides were digitally taken the 
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pictures using a Olympus microscope (Olympus Group, Japan). The evaluation was 

performed by independent examiners who were blinded to the experimental group. 

Three sections from each sample were randomly selected and evaluated. 

Data analysis 

All results were illustrated as dot plot. Statistical analysis is determined using SPSS 

statistics 22 software (IBM Corporation, USA) and GraphPad Prism 9.0 (GraphPad 

Software, Inc., San Diego, CA). Mann-Whitney U test was used for comparing two 

independent samples, while Kruskal Wallis test and pairwise comparison was used for 

three or more group comparison. Statistically significant difference (*) is recognized if 

p-value <0.05.  
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CHAPTER IV 

RESULTS AND DISCUSSION 

Establishment and optimization of the effective IPC differentiation using 

mGF-iPSCs modeling 

The mGF-iPSCs were a kind gift from Prof. Egusa Hiroshi (Tohoku University, Japan) that 

was well-established and well-characterized (Egusa et al. 2010). The mGF-iPSCs were 

validated the morphology, the mRNA levels of stemness markers, and alkaline 

phosphatase (ALP) expression before examining the experiments (Fig.S1). Embryoid 

bodies (EBs) were initially synthesized into a suspension medium. They were 

maintained in the low-attached Eppendorf TM Cell Culture Dishes (Non-Treated), 

MicroQC TM Petri Dish, and SterilinTM Petri Dish respectively. Sufficiently, 4-day EBs 

demonstrated the morphology were variant when using the different containers 

(Fig.S2). The IPC differentiation was generally divided into 6 steps including: [1] EB 

generation (4 days), [2] definitive endoderm (DE) stage (3 days), [3] pancreatic 

progenitor (PP) cell stage (2 days), [4] pancreatic endocrine stage (3 days), [5] 11-day 

(early) IPC stage (3 days), [6] 13-day (matured) IPC stage (2 days) (Fig.1A). To prove the 

plasticity of IPC development from early IPCs to mature IPCs, the glucose stimulation 

C-peptide secretion (GSCS) of IPCs was examined with basal, 5.5 mM, and 22 mM 
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glucose concentration respectively. It implied that the high glucose concentration 

(Glu) induced the high of C-peptide of IPCs to extracellular solution. The C-peptide 

level was detected by ELISA technique in extracellular solution. Three protocols (I, II, 

III) were used the same chemical of IPC induction; however, they were different 

containers for EB formation. Using SterilinTM Petri Dish, the colonies of EBs elucidated 

the round shape, less agglomeration (Fig.1B-III). Expectedly, IPCs have raised up 3.5 

folds at 13-day IPCs compared with 11-day IPC duration via the expression of 

C-peptide. The C-peptide secretion were elevated from Glu of basal to 5.5mM, 22 mM 

(Fig.1C-III). In whiles, EBs were small size into Eppendorf TM Cell Culture Dishes and 

much agglomeration and appendages into MicroQC TM Petri Dish (Fig.1B-I, II). In 

Eppendorf TM Cell Culture Dishes, from 11-day IPCs (early) to 13-day IPCs (matured) 

that presented the sensitivity of IPCs with Glu 5.5 mM and 22 mM. However, it was 

slightly increased up 1.5-fold the level of C-peptide from 11-day to 13-day (Fig.1C-I). 

Likewise, when EBs were created into MicroQC TM Petri Dish, the C-peptide levels 

were not significantly changed either series of Glu or 11-day, 13-day of IPC periods 

(Fig.1C-II). Here, the morphology and intracellular formation of EB aggregation was an 

essential role in determination of the IPC maturation and function. 
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To enhance C-peptide secretion, basing on the condition of protocol III, protocol IV 

was supplied 30 M Dopamine hydrochloride (DA) at 11-day (D11) for 48 h; the 

protocol V was added 100 M glucagon-like peptide (GLP)-1 and 1 M 

gamma-secretase inhibitor (DAPT) at D11 and 13-day (D13). The protocol VI was built 

on protocol V ingredients that was added with 30M DA at D11 (Fig.1A). In 

morphology, there were not significantly different between protocols IV, V, and VI 

(Fig.1B-IV, V, VI). Otherwise, when series of glucose concentration (Glu) triggered to 

C-peptide secretion that was clearly distinct with/without (w/wo) DA supply at Glu 22 

mM. In the 13-day IPC of protocol IV and VI, C-peptide detection was higher level at 

Glu 22 mM compared with Glu 5.5 mM. However, from 11-day IPCs to 13-day IPCs, the 

level of C-peptide expression was grown up 2-3.5 folds; and this performance was 

equivalent levels between these protocols (Fig.1C-IV, V, VI).  

To obtain more achievement of IPCs as autologous beta cells, we optimized the 

protocol VII from protocol VI, by adding in 1mM Taurin and 10mM Nicotiamide at 

pancreatic progenitor cell step, and enclosed 1M DAPT in pancreatic endocrine step. 

To gain the survival of in vitro IPC, 1% non-essential amino acids (NEAAs) and 2% 

-mercaptomethanol (b-met) were added in every step during IPC induction that was 

described as protocol VII (Fig.1A). However, the morphology and C-peptide expression 
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were not expected performance as protocol VI (Fig.1B-VII). Surprisingly, protocol VIII 

without 30 M DA, the number of IPC colonies was well maintained. The colony’s 

morphology was similarly kept in diameter from early IPC (D11) generation to 60-day 

(D60) (Fig.1B-VIII). C-peptide detection was increased 4 folds from 11-day IPCs to 

13-day IPCs, and higher at Glu 22 mM compared with Glu 5.5 mM (Fig.1C-VIII). Here, the 

cells were parallel expansion and differentiation from EBs to 11-day IPCs; then, they 

focused on differentiating toward pancreatic beta cells. In overall, the protocol VIII 

showed responsible morphology, insulin secretion and long survival.  
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Figure 1 Establishment and optimization of the effective IPC differentiation 

using mGF-iPSCs modeling 
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(A) Scheme of seven protocols; protocol I-III was same chemical supply and different 

untreated containers during EBs and IPCs induction. Protocol IV, V, VI were based on 

the condition of protocol III, protocol IV was supplied 30mM DA at 11-day (D11) for 48 

h; the protocol V was added 100mM Glp1 and 1mM DAPT at D11 and 13-day (D13). 

The protocol VI was built on protocol V ingredients that was modified with 30mM DA 

at 13-day. Protocol VII was optimized of the protocol V by putting in 1mM Taurin and 

10mM Nicotiamide solution at the step of pancreatic progenitor cells, and enclosed 

1mM DAPT in pancreatic endocrine duration. 1% non-essential amino acids (NEAAs) 

and 2% b-mercaptomethanol were added in every step during IPC development and 

maturation. (B) The variant morphology of IPCs were showed with stepwise chemical 

adding for individual protocol; protocol I-VI: 13-day induction; protocol VII: 60-day 

induction. Magnification = 4x, 20x. (C) Glucose stimulation C-peptide secretion (GSCS) 

was checked all of three protocols at 11-day or early IPCs and at 13-day or matured 

IPCs. The IPCs were challenged with basal, 5.5 mM, 22 mM glucose concentration and 

then using the ELISA technique to detect the C-peptide secretion. The level of 

C-peptide releasing was calibrated on DNA concentration and 60 minutes of secreting 

timing. DNA concentration was measured by QUBIT kit. 
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Figure S1 Characterization of mGF-iPSCs. A) The mRNA expression of Nanog, Rex1, 

Sox2, Oct4, Ssea1 were elucidated in mGF-iPSCs. B) The colonies of mGF-iPSCs were 

stained by ALP test. Red colonies displayed the high activity of ALP in cells. 

  

Figure S2 Embryoid bodies were created in different containers making be 

altered morphology. A) mGF-iPSCs were matured on day 4. B) The morphology of EBs 
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was differently generated in different un-attached containers including low-attached 

Eppendorf TM Cell Culture Dishes (Non-Treated), MicroQC TM Petri Dish, and 

SterilinTM Petri Dish. 

In vitro in-house induction protocols yield efficient and long-term survival IPCs 

To determine the correction of gene expression in IPC formation, the mRNA levels 

were checked at EBs, D8, D14, D20, D27, D34, D48 by using real-time RT-qPCR method. 

The primer sets were designed and validated as the attached table (Table.S1). In the 

stem-ness markers, EBs were shown the high expression of Nanog, Sox2, Oct4, Ssea1, 

and Rex1 that were gradually decreased the level during IPC development. Especially, 

Nanog and Sox2 were extremely high levels at the EB stage. Besides, the mouse 

pancreas (C57BL/6NJcl strain) was isolated serving as a positive control. In the mouse 

pancreas, the levels of stemness markers were low expression. Surprisingly, the mRNA 

level of Rex1 in mouse pancreas and IPC colonies were higher than EB stage. It implied 

that Rex1 might interplay with the pancreatic beta-cell developmental process (Fig.2A). 

In the definitive endoderm makers, the same pattern of Sox17 and Foxa2 expression 

were risen from EBs to D20, and then, it was steadily fallen at D27, D34, D48. The 

genes of Cxcr4 and Gsc were similar in the manner of decreasing levels from EBs to 

D48. Besides, Bmp2 gene was the different performance that was risen 15 folds at D34 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

compared with EB stage and dramatically gone down at D48 (Fig.2B). In pancreatic 

progenitor markers, Sox9 gene was slowly increased from EBs to D48 and was not 

detected in mouse pancreas. Hnf6 gene was not much active from D8 to D48 and the 

similar manner of the mouse pancreas. Pdx1 gene was exceptionally increased in IPCs 

collating with mouse pancreas. Nkx6.1 gene was a dynamic expression and higher than 

the levels in mouse pancreas. Remarkably, the mouse pancreas needed a lot of Gf2 

for functionality and activity (Fig.2C). In early IPC markers, Ngn3, Nkx2.2, NeuroD, Pax6 

genes were equivalent to the pattern of mRNA levels that were increased up to D27 

and gradually low until D48. Mafb gene was variant between the periods. Pax4 gene 

was grown at D48. In mouse pancreas, the genes of early IPC markers were shown 

comparable activity with IPC generation (Fig.2D). In matured IPC markers, Ins2, Glut2 

genes were risen at D27 and extremely top in mouse pancreas. Ins2, Mafa, Glp1r, Isl1, 

Nkx6.1, and glucagon mRNA levels were produced in IPC colonies comparable with 

mouse pancreas (Fig.2E). The target genes of Wnt/beta-catenin signaling and Notch 

signaling were oscillated presentation from EB to D48 timepoint (Fig.2F, 2G). They were 

indicated that mouse pancreas required the low levels of Wnt and Notch signaling for 

activity and function. In this study, the results revealed that the molecular 

intracellular expression was correct and sufficient transition and extremely dynamic. 
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The gene expression of IPCs were generated that can be comparable with mouse 

pancreas. 

Correspondingly, the IPCs were induced from protocol VIII which were collected at 

D14, D20, D27, D34, D48. The C-peptide detection was increased about 3.5 folds from 

D14 to D20; interestingly, decreased 1.5 folds at D27 compared with D20. 

Consequently, it was fallen down at D34 and D48 collating with C-peptide level at D20 

(Fig.2H). Additionally, IPCs were stimulated the glucose concentration (Glu) at basal, 

Glu 5.5mM, Glu 22mM for exocytosis of C-peptide proteins. It was significantly lifted 

the levels of C-peptide detection at Glu 5.5mM and Glu 22mM solution rather than a 

basal solution (Fig.2H). Besides, to reveal the total C-peptide endogenous IPCs, we 

collected the IPCs at D14, D20, D27, D34, D48 time points for the C-peptide protein 

extraction. Then, C-peptide levels were measured by ELISA technique as well. 

Connectively, the total C-peptide of IPCs were associated with the levels of C-peptide 

of GSCS test. During IPC survivals, the total C-peptide was not notably different 

between D27, D34, and D48 (Fig.2I). It implied that Glut2 gene or Insulin-releasing 

dependent genes might be reduced the expression. 

To determine Pro-Insulin/C-peptide and Insulin proteins expressed into matured IPCs, 

the IPC colonies were stained Pro-Insulin and Insulin antibodies by 
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immunocytochemistry (ICC) test. The IPC colonies strongly expressed Pro-Insulin and 

Insulin which were located in the center rather than the boundery of colonies (Fig.2J). 

In visible cell examination, the IPCs presented the dead cells that were not much 

reduced from D18 to D60 (Fig.2K). Here, IPC termination indicated Pro-Insulin and 

Insulin expression that performed the correct process of Insulin generation. Moreover, 

we obtained lots of live cells during IPC development without significantly decreasing 

the expressed levels of intracellular C-peptide and Insulin proteins. However, the 

results of GSCS test were manifested the helping genes (Glut2 or Insulin-releasing 

dependent genes) of C-peptide/Insulin secretion pathway that might be degraded the 

expression and activity. In conclusion, we supposed that IPCs produced the correct 

Pro-Insulin, Insulin and IPC markers; otherwise, exogenesis was reduced due to 

degradation of Glut2 or Insulin-releasing dependent genes. 
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Figure 2 In vitro in-house induction protocols yield efficient and long-term 

survival IPCs  
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(A), (B), (C), (D), (E), (F), (G) Oscillation mRNA levels during IPC differentiation. The 

samples were collected at EB, D8, D14, D20, D27, D34, D48. Pancreas line was the 

levels of gene expression in mice’s pancreas. The mRNA levels were demonstrated 

with stem-ness, definitive endoderm, pancreatic progenitor, early IPCs, matured IPCs, 

targeted genes of Notch signaling, targeted genes Wnt signaling, respectively. The 

mRNA expression levels were detected by real time qRT-PCR technique. (H) GSCS test 

was checked the protocols at 14-day, 20-day, 27-day, 34-day, 48-day of matured IPCs. 

The IPCs were challenged with basal, 5.5 mM, 22 mM glucose concentration and then 

using the ELISA technique to detect the C-peptide secretion. The level of C-peptide 

releasing was calibrated on DNA concentration and 60 minutes of secreting timing. (I) 

The total C-peptide in IPCs were kept in protease-free solution and used sonication for 

extracting C-peptide. C-peptide was detected by ELISA technique. The level of 

C-peptide releasing was calibrated on DNA concentration. DNA concentration was 

measured by QUBIT kit. (J) Matured IPCs were staining with pro-Insulin and Insulin 

antibodies with isotype as a control. (K) Matured IPCs were shown with the live/dead 

staining at D18, D25, D32, D46, D53, D60. Magnification = 4x, 20x. 
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Trypsin-EDTA causes EBs separating into single cells, nevertheless limits IPC 

capacity 

To produce the small scale of IPCs and remain their functionality, we modified 

protocol VIII. Then, trypsin-EDTA stimulated EB colonies (D4) to single cells before IPC 

induction (Fig.3A). The single cells were properly created, some EB colonies were still 

survived. Eventually, the single cells were formed into small colonies into the 

induction medium, survived EBs were continuously bigger diameter, and lots of single 

cells were poorly died. Thus, the number of IPCs of protocol IX were synthesized that 

were less than the IPC number of protocol VIII (Fig.3B). The potential of glucose 

stimulation C-peptide/Insulin secretion and total C-peptide expression were 

significantly less than protocol VIII as well (Fig.3C, 3D). These IPCs were expressed 

IPCs’s markers including Ins1, Glut2, Isl1, Glucagon, Glp1r, Pdx1, Maf-a, Nkx6.1, Pax6, 

Ngn3. In whiles, the levels of Glut2, Glp1r, Pdx1, Nkx6.1 were lower than the protocol 

VIII. Moreover, this protocol was not detected the level of Ins2 expression (Fig.3E). 

Here, the IPCs can be induced without sufficiently endogenous gene expression. 
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Figure 3 Trypsin-EDTA made EBs separate in single cells, reduced the capacity of 

IPCs 

(A) Scheme of protocol VII and added trypsin-EDTA solution to the matured EBs for 

protocol VIII. (B) Morphology of protocol VIII was compared with protocol VII. (C) GSCS 
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test was checked all of three protocols at 14-day and at 20-day. The IPCs were 

challenged with basal, 5.5 mM, 22 mM glucose concentration and then using the ELISA 

technique to detect the C-peptide secretion. The level of C-peptide releasing was 

calibrated on DNA concentration and 60 minutes of secreting timing. (D) Total 

C-peptide was measured, and the level of C-peptide releasing was calibrated on DNA 

concentration. DNA concentration was measured by QUBIT kit. (E) The samples were 

collected at early IPCs and matured IPCs. The mRNA levels of Ins1, Glut2, Isl-1, 

Glucagon, Glp1r, Pdx1, Maf-a, Nkx6.1, Pax6, Ngn3 were checked. 

Encapsulated IPCs preserve the Insulin secretion capacity and transplantable 

potential 

To minimize the autoimmune response in the host model, we applied the double 

biomaterial layers of alginate/Pluronic-F127 for encapsulation of IPCs. The IPCs were 

differentiated to D13 following the integrative protocol VIII. Then, 13-day IPCs were 

encapsulated by alginate/Pluronic-F127 biomaterials (Fig.4A). IPCs were stayed inside 

beads that were validated the potential of C-peptide/Insulin secretion, and gene 

expression. The mRNA levels of IPC biomarkers were remaining the endogenous gene 

expression from D13 to D20 and comparing with mouse pancreas (Fig.4B). In 

post-encapsulation, IPCs were collected the colonies at D14, D20, D27, D34, D48 that 
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were tested the capacity of C-peptide/Insulin secretion and total intracellular 

C-peptide. Remarkably, at D27, C-peptide of IPCs were excessively grown up 6 folds 

and slightly decreased 2 folds at D34 and D48. Besides, the C-peptide detection 

tended to susceptibly increase combining with increasing glucose concentration 

(Fig.4C). At D27, D34, D48, total C-peptide intracellular was significantly different with 

highest level at D48 (Fig.4D). Meanwhiles, the sensors of IPC membrane were reduced 

the sensitivity with glucose. To provoke the evidence of C-peptide/Insulin expression, 

encapsulated IPCs were randomly picked to stain with Pro-Insulin/C-peptide and 

Insulin antibodies. Those colonies symbolized the presentation of Pro-Insulin and 

Insulin proteins (Fig.4E). To prove the survival of IPCs into the beads, encapsulated 

IPCs were stained by live/dead cells technique. The dead cells were not risen until 

D47 of post-encapsulated days (Fig.4F). Here, the encapsulated IPCs were prolonged 

maturation. The IPC beads were conserved the expression of intracellular molecules 

and susceptible C-peptide/Insulin secretion that were requested of transplantable 

criteria. 
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Figure 4 Encapsulated IPCs preserve the Insulin secretion capacity and 

transplantable potential 
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(A) At 13-day of IPC induction, matured IPCs were encapsulated by double layers of 

alginate/Pluronic-F127. Morphology of beads were checked at post-encapsulation of 

1h, D1, D7, D14, D21, D31. (B) The mRNA levels of IPCs were maintained as the naked 

IPCs of protocol VII. (C) GSCS test was checked at D14, D20, D27, D34, D48. The IPCs 

were challenged with basal, 5.5 mM, 22 mM glucose concentration and then using the 

ELISA technique to detect the C-peptide secretion. The level of C-peptide releasing 

was calibrated on DNA concentration and 60 minutes of secreting timing. (D) The 

colonies were collected at D14, D20, D27, D34, D48 and dissolved them into dissolving 

buffer. The naked IPCs were sonicated into the protease-free solution; then, they were 

detected C-peptide and the levels of C-peptide releasing was calibrated on DNA 

concentration. DNA concentration was measured by QUBIT kit. (E) Matured IPCs were 

staining with pro-Insulin and Insulin antibodies with isotype as a control. (F) Matured 

IPCs were shown with the live/dead staining at D18, D25, D32, D46, D53, D60. 

Magnification = 4x, 20x. 

Establishment of transplantation platform for safe and efficient IPC installment 

To establish the subcutaneous pocket formation for delivering encapsulated cells, the 

animal experiments were conducted at CULAC following the ethics approval. This 

study with thirty-six (36) C57BL/6NJcl mice in total that was divided into two groups: i) 
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Tested group--18 mice and ii) Control (CTRL) group--18 mice. In tested groups and 

CTRL mice, the mice were also subcutaneously implanted with 18-G catheter at the 

back under generalized anesthesia using isoflurane (day -14) (with aseptic technique). 

After insertion, in tested group, the stylet was taken out; then, the sterile mixture of 

250 ng/ml VEGF-165 + 10% Pluronic-F127 (VP) was injected trough the catheter for 

space-retaining pocket. The subcutaneous pocket formation period was set up for 14 

days. When subcutaneous pocket formation was set up (at day 0), the pocket was 

ready for the blank bead transplantation. Then, the skin was closed by suturing, and 

they were observed for 21 days (short-term study) and 42 days (long-term study) 

(Fig.5A). The body weight of CTRL and VEGF-165 + 10% Pluronic group were grown up 

for 9 weeks (Fig.5B). Fasting blood glucose level were variant in animal groups (Fig.5C). 

Otherwise, the completed blood count (CB), and blood chemistry (BC) parameter 

were standardly indicated in Table 1, and Table 2. The C-peptide level or relative 

C-peptide level was increased from day-0 to day-42 (Fig.5D, 5E). The function of 

pancreatic beta-cells was showed as HOMA-beta, which elevated the expression 

(Fig.5F). HOMA-IR or insulin resistance displayed the decreasing levels (Fig.5G). Besides, 

QUIKI or 1/log(HOMA-IR) also displayed the opposite site of insulin resistance (Fig.5H). 

Intraperitoneal glucose tolerance test (IPGTT) was examined in both groups. The 
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pattern of fasting blood glucose levels was similar in CTRL and VEGF-165 + 10% 

Pluronic group (Fig.5I, 5J). Especially, in VEGF-165 + 10% Pluronic mice, number of 

blood vessels at subcutaneous pocket formation was improved after 2 weeks (Day-0) 

and significantly elevated at day-21 and day-42 (Fig.K, Fig.S5). The skin biopsy revealed 

distinguishing tubular foreign body or an 18-G catheter in deep dermal layer 

surrounding by hyperplastic fibroblastic cells. There were mild or moderate histiocytic 

cells, lymphocytes and occasionally macrophages were also displayed hyperplastic 

fibroblastic tissue, neutrophilic infiltration (Fig.L, Fig.S5). Furthermore, in CTRL group, 

the thick layer of connective tissues was around the catheter insertion; in whiles, in 

VEGF-165 + 10% Pluronic mice, adipose layer appearance and thin layer of connective 

tissues were surrounded subcutaneous pocket (Fig.L). Blood vessel network was 

generated at the boundary of subcutaneous pocket and invaded around the blank 

beads (Fig.L). Here, the blank beads were maintained in subcutaneous pocket until 

day-42. VEGF-165 + 10% Pluronic promoted angiogenesis and neovascularization, 

which may improve the health condition of mice. 
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Figure 5 Establishment of transplantation platform for safe and efficient IPC 

installment 

(A) The scheme of subcutaneous pocket formation procedure. (B) The body weight of 

all mice was measured by a digital weight machine, gram (g). (C) Fasting blood glucose 

levels were checked by a glucose meter, dL/mg. (D), (E), (F), (G), (H) The C-peptide 

levels, relative C-peptide levels, HOMA-beta, HOMA-IR, QUIKI indexes. (I), (J) The mice 
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were examined intraperitoneal glucose tolerance test (IPGTT) at day-21 and day-42. (K) 

Number of blood vessels were counted around subcutaneous pocket formation area 

in CTRL and VEGF-165 + 10% Pluronic mice. (L) The process of subcutaneous pocket 

post-transplantation from day-0 to day-42 was indicated via H&E staining. 

Table 1 Completed blood count parameters in CTRL and 

VEGF-165+10%Pluronic mice 

Table 2 Blood chemistry parameters in CTRL and VEGF-165+10%Pluronic mice 
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Figure S5 Gross apperance of mice undergone subcutaneous pocket formation 

and blank bead transplantaion. (A), (B), (C) Organ collection were compare between 

CTRL and VEGF-165+10%Pluronic mice at day-21. 
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Global exploration of cytokine network in mice receiving blank bead 

transplantation 

To dissect the inflammatory response during transplantation, normal CTRL mice and 

VEGF-165 + 10% Pluronic mice were detected 40 cytokine proteins in plasma via 

inflammation antibodies array. The clot dots were matched with manufactory array 

map; then, the array was analyzed the heat dots and intensity by ImageJ. The intensity 

was calculated by formula (X = (X(y)-negative) * P1/P(y)) following the manufactory 

provide (Fig.6A and Fig.S10). Heat map was generated basing on relative intensity using 

a R software, which demonstrated 40 cytokine detections in both groups. There was 

quite similar inflammatory reaction with foreign factors in CTRL and VEGF-165 + 10% 

Pluronic. The 40 cytokines were consisted of chemokines, interleukins and others 

functioning inflammatory modulation. However, tumor necrosis factor receptor II 

(sTNF-RII) was extremely high at day-42 in CTRL mice (Fig.6B). In the results, the 

sTNF-RII was strong active pro-inflammation and anti-inflammation during blank bead 

transplantation. VEGF-165 + 10% Pluronic (VP) might mitigate the autoimmune 

response prolonging 42-day post-transplantation. The blank bead engraftment in VP 

mice was not rejected by autoimmune aggression without supplying the anti-rejected 

drugs. 
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Figure 6 Global exploration of cytokine network in mice receiving blank bead 

transplantation 
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(A) The cytokine arrays were detected in CTRL and VEGF-165 + 10% Pluronic mice 

from day-0 to day-42. Then, the heat map of clot dots and intensity were generated 

by an ImageJ software. (B) Basing on the intensity of clot dots, 40 cytokines were 

expressed via a heat map using a R software. This cytokine array was an inflammation 

panel consisting of interleukins, chemokines, and others which contributed to 

dynamic stimulation in autoimmune response.  

Abbreviations; BLC: B lymphocyte chemoattractant, GCSF: granulocyte 

colony-stimulating factor, GM-CSF: granulocyte-macrophage colony-stimulating factor, 

IFN: interferon, IL: interleukin, I-TAC: interferon-inducible T-cell alpha chemoattractant, 

CXC: Chemokine, KC: Keratinocyte chemoattractant (chemokine ligand 1), LIX: 

lipopolysaccharide-induced chemokine, MCP: monocyte chemoattractant protein, 

MCSF: macrophage colony-stimulating factor, MIG: monokine induced by gamma 

interferon, MIP: macrophage inflammatory protein, RANTES: Regulated on activation, 

normal T-cell expressed and secreted, SDF: stromal cell-derived factor, TCA: T-cell 

activation gene, TECK: thymus expressed chemokine, TIMP: Tissue inhibitor of 

metalloproteinase, TNF(R): tumor necrosis factor (receptor), CD30L: CD30 ligand (a 

member of TNF superfamily), Pos: Positive spot, Neg: negative spot.  
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The transplantation platform shows no effect on insulin-dependent tissues 

To prove histopathological insulin-dependent tissues during subcutaneous pocket 

formation and post-transplantation, the organs including pancreas, brain, kidney, 

muscle, and fat were stained hemoxylin and eosin (H&E) at day-0, day-21, and day-42 

(Fig.7A, 7B, 7C, 7D, 7F). The pancreatic islets were well performed with big size in both 

CTRL and 250 ng/ml VEGF-165 + 10% Pluronic-F127 (VP) group (Fig.7A). Hippocampus 

is a specific area for controlling neuroendocrine; however, leaded to hippocampal 

neurogenesis degradation in diabetes patients (Ho et al. 2013). The staining of 

hippocampus was normally shown from day-0 to day -42 in all animals (Fig.7B). 

Diabetic nephropathy was significantly severe complication of chronic kidney disease 

and globally renal failure at end-stage (Gross et al. 2005; Lim 2014). Less muscle mass 

associated with provoker diabetes prevalence and insulin resistance (Hong et al. 2017; 

Haines et al. 2022). In obese people, they are commonly considered a diabetes 

disease, then leading diabetes-related and obesity-related complications (Van der 

Schueren et al. 2021). In histopathological muscle, there were well construction and 

distribution in all mice (Fig.7D). Especially, the adipose cells were surrounded by thick 

wall of hyperplastic fibroblastic tissues. They were also invaded blood vessel 

generation in VP mice at day-21, day-42 (Fig.7F). 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 79 

 

Figure 7 The mixture of 250 ng/ml VEGF-165 + 10% Pluronic-F127 normally 

reacted in histopathological insulin-dependent tissues  
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(A), (B), (C), (D), (E) Pancreas, Hippocampus, Kidney, Muscle, and Fat were stained H&E 

at day-0, day-21, day 42 in CTRL and VEGF-165 + 10% Pluronic mice. 

Subcutaneous IPC-bead transplantation alleviates hyperglycemic condition and 

sustains survival rate in STZ-induced diabetic mice 

To study anti-diabetic property of encapsulated mouse induced pluripotent stem 

cell-derived insulin-producing cells (miPSC-IPCs) in type 1 diabetes mouse model, all 

animals were induced type 1 diabetes (T1D) by single high-dose streptozotocin (STZ) 

injection. The STZ-induced diabetic mice (DM) were divided into two study groups 

consist of i) STZ-induced-diabetic VEGF-165+10%Pluronic mice + IPC-bead 

transplantation mice (DM-VP + IPC-bead Tx) and ii) STZ-induced-diabetic 

VEGF-165+10%Pluronic mice + blank bead transplantation (DM-VP + Blank bead Tx). 

IPC encapsulation or IPC-bead were generated following the protocol VIII description. 

Otherwise, IPC-beads and blank beads were produced at the same time and 

equivalent manipulation, which were transplanted to DM-VP + IPC-bead Tx mice or 

DM-VP + Blank bead Tx mice. Consequently, they were monitored for 21-day and 

42-day (Fig.8A). The C-peptide, relative C-peptide levels, and HOMA-beta in plasma 

were properly eliminated by STZ-treated, where insulin resistance oriented to increase 

(Fig.8D). However, the level of pancreatic C-peptide was maintained during IPC-bead 
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post-transplantation (Fig.8D). After STZ injection, all mice were lost the body weight. In 

DM-VP + IPC-bead Tx mice, they can gain weigh during subcutaneous pocket 

formation and IPC-bead transplantation duration (Fig.8B). In CBC, and BC parameters, 

IPC-bead have toward the DM-VP mice that gradually turning to conventional indexes 

(Table 3, Table 4). In IPGTT, DM-VP + IPC-bead Tx mice well responded with glucose 

stimulation at day-14 post-transplantation (Fig.8E). Remarkably, IPC-beads alleviated 

hyperglycemia, health condition and elongating survival in DM-VP mice (Fig.8C, 8E, 8F). 

The insulin protein was detected in day-21 and day-42 (Fig.8G, 8K). The subcutaneous 

pocket formation and IPC-bead or blank bead transplantation at transplantation sites 

were proved angiogenesis and neovascularization surrounding pocket space with 

CD31+ marker staining (Fig.8L, Fig.S7). Here, VEGF-165 + 10% Pluronic assisted 

subcutaneous pocket formation and the blood vessel generation in T1D mice. 

Insulin-producing cell secretion lengthened the survival of T1D mice. Remarkably, 

pancreatic beta-cell residue was preserved in DM-VP mice until day-42. 
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Figure 8 Subcutaneous IPC-bead transplantation alleviates hyperglycemic 

condition and sustains survival rate in STZ-induced diabetic mice 

(A) Scheme of IPC-bead transplantation procedure. (B) The body weight of all mice 

was measured by a digital weight machine, gram (g). (C) Fasting blood glucose levels 

were checked by a glucose meter, dL/mg. (D) The C-peptide levels, relative C-peptide 

levels, HOMA-beta, HOMA-IR, QUIKI indexes. (E) The mice were examined the 
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sensitivity of subcutaneous IPC-bead transplantation by intraperitoneal glucose 

tolerance test (IPGTT) at day-7, day-14, day-21, and day-42. (F) The survival mice were 

measured in DM-VP + Blank bead Tx, and DM-VP + IPC-bead Tx mice during 

subcutaneous pocket formation until post-transplantation. (G) The staining of 

transplantation sites. 

 

 
Figure S6 Blood vessel generation at the subcutaneous pocket formation site. 

After 2 weeks, VEGF-165 stimulated the angiogenesis around the implantation site 

comparing with the other areas. It was implied that VEGF-165 showed the retention 

time into 10%Pluronic-127 gel at subcutaneous pocket formation site. 

 

Table 3 Completed blood count parameters in DM-VP + Blank bead Tx and 

DM-VP + IPC-bead Tx mice 

Table 4 Blood chemistry parameters in DM-VP + Blank bead Tx and DM-VP + 

IPC-bead Tx mice 
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Subcutaneous IPC-bead engraftment shows no immune response in 

post-transplantation 

To elucidate the reaction between immune destruction and IPC-bead engraftment 

during transplanted time, 40 cytokines were expressed in plasma using antibody array 

in normal mice, diabetes mice, DM-VP + Blank bead Tx mice, and DM-VP + IPC-bead 

Tx mice (Fig.9A). In normal mice, all 40 cytokines were manifested the different levels 

in plasma, which served as a control. STZ-induced diabetic mice were indicated the 

highest inflammatory expression of granulocyte colony-stimulating factor (GCSF); then, 

B lymphocyte chemoattractant (BLC or CXCL13), macrophage inflammatory protein 

(MIP)-1gamma, Keratinocyte chemoattractant (KC or CXCL1/2), and the list of 

interleukins (IL-17, IL-12 p70, IL-12 p40/p70, IL9, IL-7, IL-2, IL-1alpha, IL-1beta, IL-13) 

were significantly expressed (Fig.9B). Continuously, at day-21, day-42, the inflammation 

reactivity was distinctly dynamic expression in both DM-VP + Blank bead Tx mice, and 

DM-VP + IPC-bead Tx mice (Fig.9B). It might show no immune response at 

subcutaneous IPC-bead engraftment during post-transplantation. 
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Figure 9 Subcutaneous IPC-bead engraftment shows no immune response in 

post-transplantation  
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(A) The cytokine arrays were detected in normal mice, diabetic mice, DM-VP + Blank 

bead Tx mice, and DM-VP + IPC-bead Tx mice at baseline, day-21, and day-42. Then, 

the heat map of clot dots and intensity were generated by an ImageJ software. (B) 

Basing on the intensity of clot dots, 40 cytokines were expressed via a heat map using 

a R software. This cytokine array was an inflammation panel consisting of interleukins, 

chemokines, and others which contributed to dynamic stimulation in autoimmune 

response.  

Abbreviations; BLC: B lymphocyte chemoattractant, GCSF: granulocyte 

colony-stimulating factor, GM-CSF: granulocyte-macrophage colony-stimulating factor, 

IFN: interferon, IL: interleukin, I-TAC: interferon-inducible T-cell alpha chemoattractant, 

CXC: Chemokine, KC: Keratinocyte chemoattractant (chemokine ligand 1), LIX: 

lipopolysaccharide-induced chemokine, MCP: monocyte chemoattractant protein, 

MCSF: macrophage colony-stimulating factor, MIG: monokine induced by gamma 

interferon, MIP: macrophage inflammatory protein, RANTES: Regulated on activation, 

normal T-cell expressed and secreted, SDF: stromal cell-derived factor, TCA: T-cell 

activation gene, TECK: thymus expressed chemokine, TIMP: Tissue inhibitor of 

metalloproteinase, TNF(R): tumor necrosis factor (receptor), CD30L: CD30 ligand (a 

member of TNF superfamily), Pos: Positive spot, Neg: negative spot. 
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Recovery pathogenesis of insulin-dependent tissues in IPC-bead mice 

In diabetes mice, the pancreatic islets were severe atrophic. The blood vessels in 

interstitial space were replaced to connective tissues, where was located in islet 

complex destruction. Moreover, the acinar cells were degeneration due to dark and 

small pyknotic nucleus (Fig.10A). Kidney tissues were mild damaged in cortex and 

medulla. The epithelial cells of tubulous were erosion in diabetic nephropathy mice 

(Fig.10B). The granule cells were severe necrosis with pyknotic nucleus at CA3 area in 

hippocampus (Fig.10C). Degeneration of muscles was found in diabetic mice, which 

created large space between muscle cells (Fig.10D). The adipose cells were smaller 

and thinner layer (Fig.10E). 

 

Figure 10 Insulin-dependent tissues were performed via H&E staining  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 90 

(A), (B), (C), (D), (E) Pancreas, Hippocampus, Kidney, Muscle, and Fat were stained H&E 

in normal mice and diabetic mice. 
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Figure S7 Gross apperance of diabetic mice undergone subcutaneous pocket 

formation and IPC-bead transplantaion 
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DISCUSSION 

Insulin is a critical metabolism regulator, which is produced in pancreatic beta-cell and 

a major self-antigen in T1D insulin-based immunotherapies (Roep and Peakman 2012). 

Pancreatic beta-cell dysfunction promotes in pathogenesis of diabetes diseases (Fu et 

al. 2013). In diabetes treatment, the strategy of Insulin-producing cells (IPCs) 

transplantation was fashionably applied (Srivastava and Kilian 2019). To generate the 

high effective IPCs, in protocol VIII, the EBs were formed in SterilinTM Petri Dish which 

were nice shape and parameter (Fig.S1). Here, they had the potential of IPC 

differentiation and survival in the long-term (Fig.1). Expectedly, IPCs showed the high 

level of endogenous Pro-insulin, Insulin expression (Fig.2J). Our data indicated a 

remarkable developing of IPCs from early IPCs (11-day), IPCs (13-day) to matured IPC 

evaluation (20-day) checking by the glucose stimulation Insulin/C-peptide secretion 

test (Fig.2H). Even though total Insulin protein expression was a low level at day-20 

and highest level at day-34. In whiles, the mRNA levels of IPC markers (Insulin 1, 

Insulin 2, Ils1, Mafa, Glp1r, Glut2, Nkx6.1, and glucagon) were decreasing from day-27 

to day-48. Especially, Insulin 1 and Insulin 2 mRNA levels were different expression in 

IPC colonies during IPC development. Remarkably, mRNA of Insulin 1 was high level at 

day-20 and day-27, which can compare with mouse pancreas (Fig.2E). However, Glut2 
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mRNA level was high at day-20, subsequently decreasing at day-27, day-34, day-48 in 

the following time points. Importantly, in rodents, Insulin gene have two non-allelic 

Insulin genes (Insulin1 and Insulin 2), which are different number of introns, and differ 

on chromosomal loci (Soares et al. 1985). In previous studies, Insulin gene encodes a 

110 amino acid precursor that is called pre-proinsulin (Weiss et al. 2000). Then, 

undergoing modification pathways, the proinsulin preserved at immature secretary 

granules and is cleaved to yield C-peptide and Insulin proteins. In granules, C-peptide 

and Insulin maintains with islet amyloid polypeptide and other less abundant 

beta-cell secretary products (Taylor 1972; Nishi et al. 1990; Weiss et al. 2000; Liu et al. 

2018). Here, the Glut2 expression or insulin-supporting secretary factors might reduce 

its activity or function in the progress of IPC secretion. IPCs can survive over 60 days 

with high glucose in maintaining medium corresponding low dead-cell detection 

(Fig.2K). It implied that the NEAAs and beta-mercaptoethanol were worked as essential 

nutrients for prolonging the live cells. Besides, high glucose remained the Insulin 

mRNA or Insulin protein stability during Insulin-producing cell production. It is well 

documented that insulin biosynthesis is regulated by multifactor, and glucose 

metabolism. In vitro studies, under low glucose concentration, Insulin mRNA stability 

is reduced; in contrast, high glucose concentration increases the stability of Insulin 
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mRNA (Welsh et al. 1985). In 3-day fated rat, proinsulin mRNA expression is lifted 

three- or four-fold within 24 hours after glucose injection (Giddings et al. 1982; Poitout 

et al. 2006). In the conclusion, the IPC biosynthesis based on several factors including 

embryo bodies (EBs) formation, balance chemical combination, and nutrients in 

maintaining medium. The results proved that the IPCs were correctly produced from 

EBs to matured IPCs as autologous cells. 

Islet equivalent from large human islets secrete Insulin concentration that is 

significantly lower than from smaller islets in high glucose solution by Insulin Single 

islet glucose-stimulated Insulin release test (Lehmann et al. 2007; Fujita et al. 2011). In 

diabetic animals, small islets are 80% successful transplantation outcomes compared 

to large islets (MacGregor et al. 2006; Su et al. 2010). To fabricate a small size of 

transplantable IPCs and remain functionalities, the 0.25% trypsin-EDTA solution was 

treated day-4 Embryoid body (EBs) stage to single cells before IPC induction following 

protocol VIII (Fig.3). However, IPC generation was reduced the quantity and quality at 

the end-stage (Fig.3). In day-20 IPC differentiation, Pdx1, Glut2, Nxk6.1 mRNA levels 

were distinctly decreased comparing with protocol VIII (Fig.3). Insulin production 

pathways are well modulated by Insulin gene transcription factors including 

homeodomain protein pancreas duodenum homeobox 1 (Pdx1), homeobox protein 
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Nxk6.1 (Macfarlane et al. 2000; Rafiq et al. 2000; Aigha and Abdelalim 2020). Glucose 

transporter 2 (Glut2) is a pancreatic beta-cell-surface expression that is essential for 

glucose stimulated Insulin releasing (Pang et al. 1994; Low et al. 2021). It means that 

0.25% trypsin-EDTA residue might cause the cytotoxins in all IPC differentiation stages. 

Otherwise, using the protocol VIII, the responsible chemical and nutrient combination 

totally supported IPC formation. Here, we can suggest that single cell of day-4 EBs still 

provokes to IPC colony induction, which IPC colonies showed the insulin activity and 

secretion. However, the capacity of these IPCs was lower than protocol VIII; then we 

used the protocol VIII for IPC differentiation that was applied for IPC transplantation. 

Cell encapsulation is an advance technique for living cell-based therapy (Steele et al. 

2014). The encapsulated capsules should provide a bio-transport of oxygens, nutrients, 

and metabolic wastes (Zhang and He 2011). Cell encapsulation prevents the 

autoimmune destruction to engraftment donors (Dang et al. 2013; Wang et al. 2021).  

To immobilization of cells into biocompatible and semipermeable membranes, IPCs 

were encapsulated by two layers of 2% alginate and 30% Pluronic-F127. In the results, 

IPC encapsulation or IPC-beads were displayed the survival inside the beads with well 

preservation of mRNA levels (Fig.4). Our studies elucidate that IPC-beads prolonged 

the time of IPC maturation. In encapsulated IPCs, the trend of GSCS test was increasing 
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when the increasing glucose concentration. It is suggested that the insulin can 

reuptake in the cells during incubated timing in GSCS experiments. In whiles, double 

layers of encapsulation lengthen the reuptake timing of insulin.  

In the VGEF family of growth factors, there are VEGF-A (121, 145, 165, 183, 189, 206), 

VEGF-B, VEGF-C, VEGF-D, VEGF-E, VEGF-F isoforms (Apte et al. 2019). They transport to 

the intracellular by the plenty of receptors as VEGFR-1, VEGFR-2, VEGFR-3, 

Neuropilin-1 (NRP-1), and NRP-2 (Simons et al. 2016; Castaneda-Cabral et al. 2019). 

Moreover, VEGF-A165 can access four receptors including VEGFR-1, VEGFR-2, NRP-1, 

and NRP-2 (Simons et al. 2016). In case, the ligands bind to VEGFR-1 which presses on 

the VEGF sequestration or decoy effects monocyte chemotaxis (Koizumi et al. 2022). 

Besides, the ligands bind to VEGFR-2 which triggers the pathways of migration, vascular 

permeability, endothelial cell proliferation, and survival (Masoumi Moghaddam et al. 

2012; de Vries et al. 2019; Murata et al. 2022). In the results, we suggested VEGF-165 

showed the retention time at the transplantation sites, which stimulated the 

angiogenesis activation until 42-day (VEGF-165 was not measured the retention time 

or release concentration of VEGF-165). However, the blood vessels were generated 

which elucidated on histopathology at D0, D21, D42. Dual-function of a glycogen 

synthase kinase 3 beta (GSK3β) inhibitor, 6-bromoindirubin-3′-oxime (BIO), was loaded 
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in Pluronic F127 (PF127) nanoparticles for initial release to mitigate the inflammatory 

response and reduce cell apoptosis, while vascular endothelial growth factor (VEGF) 

was loaded in poly (lactic-co-glycolic acid) (PLGA) porous microspheres that enabled 

sustained release for continuous angiogenesis induction (Liu et al. 2022). In this study, 

VEGF-165 was loaded in Pluronic F127 nanoparticles for initial releasing to alleviate 

the immunology reaction, reduce cell apoptosis, and constitutively induce 

angiogenesis. 

Inflammatory response is driven by pro-inflammatory cytokines and anti-inflammatory 

cytokines when immune cells are activated (Matsumoto et al. 2018). Pro-inflammatory 

cytokines are happened through activated macrophages. IL-1b, IL-6, IL-15, IL-17, IL-18 

and TNF-alpha are popular involving in the upregulation of inflammatory reactions 

(Zhang and An 2007). On the other hand, the anti-inflammatory cytokines are secreted 

proteins for controlling the inflammation including the pro-inflammatory cytokine 

response. IL-1R antagonist, IL-4, IL-10, IL-11, and IL-13 are major in anti-inflammatory 

cytokines; besides, leukemia inhibitory factor, interferon-alpha, IL-6, TGF-beta are 

involved in either anti-inflammatory or pro-inflammatory cytokines (Cavaillon 2001; 

Wojdasiewicz et al. 2014). The normal development of CTRL and VEGF-165 + 10% 

Pluronic mice were properly monitored (Fig.5). The pathogenesis or blood chemistry 
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of VEGF-165 + 10% Pluronic mice was not significantly altered during subcutaneous 

pocket formation and post-transplantation (Fig. 7, Table 2). Besides, the autoimmune 

response was still activated due to subcutaneous 18-G catheter insertion in the 

normal mice. sTNF-receptor II was high activated during blank bead 

post-transplantation (Fig.6). Correspondingly, the basophil cells were also increased 

the level in completed blood count test (Table 1). It is well cited that 

immunosuppressive TNF-TNF receptor II interactions modulates the allergic 

inflammation. TNF receptor II agonist enhances proliferation and suppresses capacity 

of Treg cells (Ahmad et al. 2018). B Lymphocyte chemokine (BLC or CXCL13), 

macrophage inflammatory protein-1 gamma (MIP-1gamma or CCL9) were dynamic 

changed until day-42 in both CTRL and VEGF-165 + 10% Pluronic groups. In this study, 

the transplantation platform was successfully and safely established. 

Single high-dose of streptozotocin injection caused completed type 1 diabetes in mice. 

The pancreatic beta-cells were eliminated the function and activity via C-peptide 

detection and HOMA-indexes (Fig.8C, 8D). In diabetic mice, the inflammatory cells 

were globally activation in blood circulation (Fig.9). Especially, granulocyte 

colony-stimulating factor (GCSF) was extremely highest level (Fig.9B). The diabetic 

mice were developed the pathogenesis tissues and severe damaged pancreas (Fig.10). 
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In previous studies, GCSF is a regulator of granulocyte synthesis, which is inflammatory 

produced by endothelial cells, fibroblasts, bone marrow stromal cells, macrophages 

(Lawlor et al. 2004). Low-dose immunotherapy of GCSF and antithymocyte globulin 

(ATG) conserves C-peptide for 2 years. Then, the patients are continuously follow-up 

of 5 years, the low dose of GCSF/ATG delay progression of T1D from phase 2 

(autoantibody positive with dysglycemia) to stage 3 of clinical T1D (Lin et al. 2021). In 

parallelly, BLC, RANTES (CCL5), MIP-1gamma, Interferon-inducible T-cell alpha 

chemoattractant (I-TAC or CXCL11), or KC (CXLC1/2) expression was strong in diabetic 

mice, and blank bead Tx mice; was reduced the level in DM-VP + IPC-bead Tx mice. B 

Lymphocyte chemokine (BLC or CXCL13) is aberrantly high expressed by myeloid 

dendritic cells which may break immune tolerance in the thymus (Ishikawa et al. 2001). 

CXCL13 and its receptor CXCR5 were increased the expression as well as 

pro-inflammatory cytokine of Tumor Necrosis factor (TNF)-alpha and IL6 in spinal cord 

of db/db type 2 diabetes mice (Liu et al. 2019). The tertiary lymphoid organs of B 

lymphocytes in islets are disrupted by CXCL13 blockade (Henry and Kendall 2010). 

Interferon-inducible T-cell alpha chemoattractant (I-TAC or CXCL11) is a non-ELR CXC 

chemokine, is regulated by interferon (IFN) and has potent chemotactic activity for 

interleukin (IL)-2-activated T cells. I-TAC selectively interacts affinity with CXCR3 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 100 

(CXCR3 is a receptor for IFN-inducible chemokines, IFN-gamma-inducible 10-kD protein 

(IP10) and IFN-gamma-induced human monokine) (Cole et al. 1998). In atherogenesis, 

CXC chemokine ligands including I-TAC is suppressed by adiponectin via RNA profiling 

of lipopolysaccharide in macrophage (Okamoto et al. 2008). Eotaxin (CCL11) and 

Eotaxin-2 (CCL24) are chemokines acting via CCR3 which induces recruitment of 

basophils, eosinophils, neutrophils, and macrophages (Menzies-Gow et al. 2002). 

Eotaxin, RANTES, MCP-4 activate CCR3 receptor on eosinophils, Th2 cells, and mast 

cells which predisposition in development of T1D (Hessner et al. 2004). The 

researches documented the chemokines such as CCL-3/MIP-1α, CCL-5/RANTES, 

CCL-7/MCP-3, CCL-8/MCP-2, CCL-11/eotaxin-1, CCL-13/MCP-4, and CCL-24/eotaxin-2 

have been found to induce the eosinophil migration and activation in inflammatory 

diseases (Carvalho et al. 2018). In the results, IPC transplantation was somehow 

response the glucose stimulation via IPGTT test; however, it was not completely 

inversed the hyperglycemia in STZ-induced diabetic mice. The CBC and blood 

chemistry in IPC-bead Tx were gradually turn to normal indexes (Table 3, Table 4). 

Furthermore, the percentage of mice survival was maintained in DM-VP + IPC 

transplantation mice; it implied that IPC transplantation supported the health 

condition in STZ-induced diabetic mice.   
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In this study, we have presented the high capacity of the insulin-producing cell (IPC) 

differentiation protocols from mGF-iPSCs including accurate endogenous IPC 

biosynthesis and function. 10% Pluronic-F127 carrying-VEGF-165 significantly elevated 

the blood vessel network surrounding blank or IPC bead location, and subcutaneous 

pocket boundary. IPC-beads were translated for rescuing the insulin-dependent 

tissues, parameters and somehow recovering the hyperglycemia symptoms in 

STZ-induced-diabetic mice-VEGF-165+10%Pluronic + IPC-bead transplantation 

(DM-VP+IPC-bead Tx mice). Moreover, IPC-bead transplantation maintained the health 

condition. The 40 inflammatory cytokines were globally explored in the blood 

circulation which reduced the expression levels. Here, the results are used for a 

reference strategy of IPC differentiation protocol. The achievement of 

high-performance IPC engraftment is applied as a clinical protocol for diabetes 

treatment using cell-based therapy without using anti-rejection drugs. 
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CHAPTER V 

CONCLUSION 

The results indicate that mGF-iPSC-derived is a promising model for an improvement 

of pancreatic IPC differentiation protocol. IPC production obtained the Insulin 

biosynthesis correction. 10% Pluronic-carrying-VEGF-165 gel generates the blood 

vessel network for supporting the engraftment. Subcutaneous IPC-bead 

transplantation achieves the essential functionalities and biocompatibilities. IPC 

transplantation enhanced the health condition in diabetic mice. The gained results 

can be used as an effective IPC induction protocol for encapsulated-cell 

transplantation. In this study, we suggest that the transplantation platform can be a 

clinical pilot protocol for T1D treatment using cell-based therapy.
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