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ABSTRACT (ENGLISH) 

# # 6470018830 : MAJOR MEDICINE 
KEYWORD: Dry weight, Hemodialysis, Body composition monitor, Artificial intelligence 
 Nataphut Boonvisuth : Development of an Artificial Intelligence Model for Prediction of Dry Weight in Chronic 

Hemodialysis Patients and Assessment of its Accuracy Compared to Standard Bioelectrical Impedance Analysis. Advisor: 
Prof. KHAJOHN TIRANATHANAGUL, M.D. Co-advisor: SIRA SRISWASDI, Ph.D. 

  
Proper determination of dry weight (DW) is crucial for achieving positive outcomes in hemodialysis (HD) patients. 

However, the traditional clinical assessment of DW (C-DW) is often inaccurate. Recently, bioimpedance spectroscopy (BIS) analysis 
using a Body Composition Monitor (BCM) device has emerged as a gold standard method for determining DW (BCM-DW). Despite its 
accuracy, the high cost of the BCM device limits its accessibility. To overcome this challenge, the current study proposes a machine 
learning (ML) model, which is a part of artificial intelligence (AI), to assess DW using available clinical and laboratory parameters. 

Objective: To develop an ML model for predicting DW (ML-DW) and compare it with BCM-DW. 

Methods: The study consisted of a model development phase and a performance assessment phase. Retrospective 
data from chronic HD patients between 2017 and 2022 from two dialysis centers in Bangkok were retrieved. The parameters for this 
ML model included demographic, dialysis prescription, laboratory, and intradialytic time-varying data. The data utilized during the ML 
model development phase consisted of a training group for optimizing the parameters of the models and a validation group for 
determining when to stop the optimization. The final output of the model was ML-DW. The primary outcome of the study was the 
agreement comparison between ML-DW and BCM-DW. 

Results: All 56,000 time-varying data from 1,151 HD sessions were included in the ML model. The mean BCM-DW was 
58.8±11.7 kgs, while the mean predicted ML-DW from the model was 59.5±11.3 kgs. The Bland-Altman plot showed the bias 
estimated by the mean difference was 0.78 kg, and the limit of agreement was -3.7 to 2.2 kg. 

Conclusion: This was the first study that developed a machine learning model aimed at predicting BCM-DW. Compared 
to other models, this one tried to explore the utilization of time-series data in the input variables. It also demonstrated external 
validation across different institutions. This study served as a proof-of-concept that machine learning can be a useful tool for DW 
prediction, but it is not yet a replacement tool for BCM. This warrants further model development that can be widely used in real 
practice. 
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CHAPTER 1  
INTRODUCTION 

1.1 Background and Rationale 
Chronic kidney disease (CKD) is one of the most common non-communicable 

diseases in Thailand, with an estimated prevalence of 11.6 million cases, accounting 

for 17.5% of the Thai population. Approximately 130,000 patients develop End-stage 

renal disease (ESRD) and require renal replacement therapy. The incidence of 

patients on hemodialysis has persistently increased from 74 to 233 per million 

patients from 2008 to 20161. 

The dry weight (DW) of each patient indicates the ultrafiltration volume in 

each hemodialysis session, and it is a crucial parameter linked to various adverse 

outcomes. Correct DW assessment can lead to better patient care, but targeting the 

proper DW can be troublesome. The conventional method of DW prediction is 

clinical assessment (C-DW), but this method is inaccurate. Physical examination, such 

as blood pressure measurement, jugular venous pulse, and peripheral edema, is an 

insensitive method for detecting underweight patients. This traditional clinical-based 

method not only varies between assessors but also comes with intra-rater variability, 

leading to the development of various tools to provide more objective data to assist 

physicians in setting DW. 

The Body Composition Monitor (BCM; Fresenius Medical Care, Bad Homburg, 

Germany) is one of the most reliable tools for assessing dry weight. It uses an 

electrical principle based on measuring the resistance caused by an electric current 

passing through living tissues. In many institutions in Thailand, dry weight from BCM 

(BCM-DW) has been used as the best available gold standard. However, there are 

issues with its cost and generalizability, making a new tool necessary for proper dry 

weight assessment. 

Machine learning, a subset of artificial intelligence, is a potential solution to 

this problem. However, there is a lack of studies that use BCM-DW as an output for 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

their model's learning and consider the hidden associations between time-series data 

and BCM-DW. With the increasing amount of hemodialysis in Thailand, there is a 

need for an accurate, operator-independent, emotionally-irrelevant, inexpensive, 

user-friendly, less time-consuming, and widely accessible tool for proper patient care. 

Our purpose is to develop a model for dry weight prediction using machine 

learning, which would be the first to use BCM-DW as an output, known for its 

robustness and accuracy. For generalizability, the performance of this model will be 

tested with another institute. Additionally, this study would be the first to use time-

series data as an input for the model's dry weight prediction. 

 

1.2 Research question 
Primary research question 

Can machine learning which is a part of artificial intelligence accurately 

predict dry weight (ML-DW) in patient with ESRD on HD, with a high level of 

agreement compared to BCM (BCM-DW), which is considered the gold standard for 

dry weight assessment? 

 

1.3 Objective 
To develop the machine learning model and determine its agreement of DW 

by machine learning (ML-DW) and DW measured by BCM (BCM-DW). 

 

1.4 Hypothesis 
Machine learning which is a part of artificial intelligence can accurately predict 

dry weight (ML-DW) in patient with ESRD on HD, with a high level of agreement 

compared to BCM (BCM-DW) which is considered the gold standard. 
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1.5 Conceptual framework 

 

Figure 1: Conceptual framework of the study.  
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; HR, heart 

rate; UFR, ultrafiltration rate; BCM, Body Composition Monitor. 

 

1.6 Assumption 
None 

 

1.7 Operational definitions 
A chronic hemodialysis session is defined as a dialysis session from a patient 

with end-stage kidney disease who has been on renal replacement therapy via 

hemodialysis for at least 3 months. 

A stable chronic hemodialysis session is defined as a dialysis session from 
either prevalent or incident hemodialysis patients who have been using dialysis for at 
least 6 months, without infection, heart failure, cardiac arrhythmia, or sudden cardiac 
arrest. Patients should also meet the dialysis adequacy criteria set by KDOQI, which 
includes a weekly standard Kt/V of at least 2.1 or a single pool Kt/v of at least 1.22. 
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1.8 Limitation 
 This study is retrospective and do not include physical examination or patient 

symptoms, which are factors used by physicians in both institutes to adjust the 

patient's DW. 

 

1.9 Expected benefit and application 
The accurate results with good agreement between this model and BCM will 

make DW assessment more generalizable, leading to proper care of hemodialysis 

patients in the future. 

 

1.10 Challenges 
Since this study is utilizing machine learning for the development of the 

model, it requires a large amount of data, specifically dialysis session data on the 

same day as BCM measurement, hence, the number of available data may be 

limited. Additionally, developing a machine learning model requires expertise from a 

data scientist who can properly tune the model and set up a suitable pipeline. 

 

1.11 Key words 
Dry weight, Bioelectrical Impedance Analysis, Body composition monitor, Artificial 

intelligence, Neural network, Chronic Hemodialysis 
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CHAPTER 2  
LITERATURE REVIEW 

2.1 Dry weight for hemodialysis patient 
DW in the context of hemodialysis refers to a patient's target weight that 

accounts for the residual fluid in their body after dialysis has removed excess fluid, 

but not to the extent of causing dehydration3. Knowing a patient's DW is essential for 

proper patient care because it is not just a number but also linked to many adverse 

outcomes. Overhydration status is linked to various problems, including increased 

blood pressure and a higher risk of cardiovascular issues, which are linked to 

mortality4. Conversely, being underhydrated can result in negative consequences, 

such as intradialytic hypotension, ischemic organs, increased recovery time following 

dialysis, and decreased residual renal function5, 6. 

 

2.2 Method for dry weight assessment 
The conventional method of determining DW through clinical assessment (C-

DW) combines many skills, such as history taking, symptom evaluation, physical 

examination, blood pressure monitoring, jugular venous pulse evaluation, and 

peripheral limb edema assessment. However, many of these parameters are subject 

to variability, both between different assessors and within a single assessor over time. 

Despite the development of clinical scores, vagueness still remains7. The use of 

blood pressure as a surrogate measure is unreliable due to volume-independent 

hypertension caused by age and comorbidities8. On the other hand, intradialytic 

hypotension, which may indicate underhydration, can be influenced by various 

factors that disrupt plasma volume refilling, such as serum sodium, calcium, 

hemoglobin, or albumin9, 10. Another promising parameter that reflects volume status 

is the variation of heart rate during dialysis. It has been suggested as a compensatory 

mechanism for the body's homeostatic balance in response to fluid status. A small 

study found that heart rate followed a sigmoid curve as volume status became more 
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depleted, but further research is needed to confirm these findings11. Cramping and 

fatigue are unreliable and not specific to underhydration, while clinical scores for 

determining overhydration require the accumulation of at least 2-3 liters of fluid12. As 

a result, efforts have been made to incorporate additional tools to provide more 

objective data to aid healthcare providers in setting an accurate DW. While many 

tools have been developed for DW assessments, accuracy and availability remain 

problematic13. The best accuracy method for volume assessment is Extracellular 

fluid and total body water measurement via Sodium bromide (NaBr) and deuterium 

(D2O). Nevertheless, this method has limitations due to its invasiveness and limited 

availability. 

Assessment method Accuracy Other limitations 
Clinical assessment Low Lack standardization, high 

variability 

Chest radiography Low 
(hypervolemic) 

Minute radiation exposure 

Serum NT-proBNP Low 
(hypervolemic) 

Variable cost, Not available at 
dialysis unit 

Echocardiogram Good Effect by valvular heart disease, 
Operator dependent, Not available 
at dialysis unit, High cost, Time 
burden 

Inferior vena cava 
diameter 

Low Operator dependent, Low 
repeatability, Time burden 

Lung water ultrasound Good 
(hypervolemic) 

Operator dependent, Not available 
at dialysis unit, Time burden 

Bioelectrical Impedance 
Analysis 

Good High reproducibility, Not available 
at dialysis unit, Costly 

Relative blood-volume 
monitoring 

Good High reproducibility, Not available 
at dialysis unit, Costly 
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Extracellular volume (NaBr) Good Invasive, High cost, Time burden, 
Not available at dialysis unit 

Total body water (D2O) Good Invasive, High cost, Time burden, 
Not available at dialysis unit 

Table 1: Comparison of dry weight assessment by each method. 
Abbreviations: N-terminal (NT)-pro hormone B-type natriuretic peptide, NT-proBNP; 

Sodium Bromide, NaBr; Deuterium, D2O; Adapted from Jennifer E Flythe, et al13. 

 

2.3 Body composition monitor 
In 1963, Thomassett introduced a new technique called Bioelectrical 

Impedance Analysis (BIA)14. BIA uses two electrodes attached to the human body to 

conduct electrical current through the tissue. The low frequency alternating current 

causes conduction almost exclusively through the extracellular spaces of the tissues, 

while the high frequency range allows current to pass through both the intracellular 

and extracellular spaces. Thus, it can measure the resistance and reactance of both 

intracellular and extracellular water. Combined with the body compartment model, 

which includes tissue mass normohydrated lean, normohydrated adipose tissue 

mass, and overhydration, it can determine the patient's DW. BCM is a tool that uses 

the BIA method for measurement. It retrieves the electrical response of 50 different 

types of frequencies between 5 and 1,000 kHz. BCM assumes a division of TBW into 

extracellular water (ECW) and intracellular water (ICW), which are estimated using 

specific software provided by the manufacturer from the equation by Moissl et al15. 

Excess fluid is calculated as the difference between the measured and expected 

ECW in a normal situation15, 16. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

 

Figure 2: Distribution of water in different hydration status. 
Abbreviations: BCM, Body composition monitor; ECF, extracellular fluid; ICF, 

intracellular fluid (adapted from Chamney, et al16). 

• A person who has a normally hydrated weight has water in their ECF 

distributed in two compartments: normally hydrated lean tissue (comprising 

muscle, bone, and other organs) and normally hydrated adipose tissue. These 

two compartments will be the same as a reference population at the same 

age and sex, and this is called the dry weight (DW). 

• A person who has an overhydrated weight has excessive ECF from the two 

compartments mentioned above. This excess fluid is equal to present weight 

subtracted by DW.  

• In contrast, a person who has an underhydrated weight has ECF lower than 

the two compartments mentioned above. This depleted fluid is equal to DW 

subtracted from the present weight. 

Therefore, the BCM demonstrates the DW of each patient and the excess or 

depleted fluid in that stage. The BCM uses bioelectrical impedance analysis (BIA) to 
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measure the water distribution in the body, and this can provide an objective 

measurement of a patient's hydration status. 

 

2.4 Body composition monitor: Its clinical implementation and limitation 
The performance of BCM has been validated by measuring extracellular fluid 

and total body water through Sodium bromide (NaBr) and deuterium (D2O in both 
healthy populations and dialysis patients15, 17. The tool has other strong points such 
as high repeatability and ease of use. Since then, it has been widely accepted as the 
best available gold standard, with much higher accuracy than C-DW. Several studies 
have demonstrated that BCM-DW can identify overhydrated patients, around 23-26% 
of those diagnosed as euvolemic by clinical assessment18, 19. Additionally, various 
studies have found that using BCM-DW has benefits over C-DW in several clinical 
outcomes, such as: 

• Blood pressure 
An RCT from Romania found that using BCM-predicted DW leads to better 
blood pressure control in dialysis patients. After 2.5 years of follow-up, the 
systolic blood pressure was 2.43 mmHg lower (95% CI, −7.70 to 2.84) 
(P=0.40)20. Another RCT from China, BOCOMO, found that BCM-guided DW for 
3 months can lead to a decrease in systolic blood pressure of around 6 
mmHg21. A recent systematic review and meta-analysis from the UK, which 
included five randomized controlled trials in HD patients, found that 
bioimpedance-based DW assessment was significantly associated with an 
improvement in systolic blood pressure of -2.73 mmHg (-5.00 to -0.46 
mmHg)22. 

• Mortality 
Studies found that overhydration identified by BCM-DW, defined by ECV>15% 
or approximately 2.5 kg, increased the hazard ratio of mortality by 2.1 times 
after 3.5 years of follow-up23. A cohort from Poland also found that BCM, 
which identified overhydrated status, was one of the significant factors 
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associated with higher mortality in the long-dialysis vintage (>2 years) 
subgroups24. While the use of BCM-guided DW was related to proper DW 
targets and a decrease in blood pressure, which had a positive effect on 
survival. Nevertheless, studies proving the benefit of BCM-DW on mortality 
were still lacking. One meta-analysis found that the use of BIA had no 
significant effects on mortality (HR 0.69, 95% CI 0.23 to 2.08; p = 0.51, I 2 = 
54%)25. The latest RCT from China also found that BCM-DW showed no 

difference in survival by the Kaplan-Meier curve (HR = 0.51, 95% confidence 

interval: 0.24–1.08, log-rank test p-value = 0.07). However, the follow-up 
period was only 13 months. Interestingly, this curve showed an increasing 
trend of survival improvement in the BCM group compared to the control 
group over time21.  

• Cardiac parameters 
Left ventricular mass index (LVMI) is one of the factors that strongly linked to 
mortality26. An RCT found that after 12 months of applying BCM-DW, LVMI 
decreased from a baseline of 131 (SD 36) to 116 (SD 29) (p < 0.001), while C-
DW remained the same at 120 (SD 20) (p = 0.9). However, changes in 
parameters such as left ventricular hypertrophy (LVH) were not significant27.  

• Intradialytic adverse events 
An RCT from Taiwan showed benefit of BCM-DW over C-DW in decrease 
incidence of intradialytic hypotension (6.10 vs. 6.62 %, p < 0.05). Probing 
toward BCM-DW was done at pace of 0.2–0.5 kg change per week. 
Additionally, there were no statistically significant differences in the incidence 
of other adverse events during dialysis, such as cramping, fatigue, and other 
patient-reported symptoms, between BCM-DW and C-DW28. 

 
Although BCM has been shown to accurately determine DW and provide 

several benefits, it is important to note that the tool has some limitations. For 
instance, BCM may not be suitable for patients with certain medical conditions, such 
as those with implanted electronic devices or amputated limbs, as it may provide 
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inaccurate measurements. Additionally, there are a few things that need to be 
mentioned. 

• Body mass index (BMI) 
The study indicated that BCM measurements can cause excessive variation in 
the ECW compartment in individuals with extremely high or low BMI29. 
Accordingly, guidelines recommended applying this method to study 
populations with a BMI between 16-34 kg/m230. Therefore, only patients with 
BMI within the acceptable range were included in this study. 

• Age of population 
Since dialysis patients tend to be elderly, while the accuracy of BCM for DW 
determination has only been validated in populations with a limited age 
range, typically around 86 years old. To address this limitation, we only 
included patients who were 86 years old or younger in our study. 

• Timing for measurement 
BIA measures the body's resistance and reactance to electricity, and there are 
a few things to consider regarding the timing of measurements. Firstly, water 
fluid in body compartments can shift between compartments, so BCM 
measurement after a dialysis session may be more appropriate than pre-
dialysis measurements31. However, post-dialysis BCM measurements may 
have drawbacks due to interference from changes in electrolyte composition, 
although its clinical impact is unknown32. In 2004, a study found that BIA 
variability would be stable for at least 120 minutes after a dialysis session33. 
Later, guidelines recommended post-dialysis measurements for at least 30 
minutes. If pre-dialysis measurements are to be taken, this parameter should 
be used as a trend by serial measurements, rather than a static value. Despite 
these considerations, some studies have found good agreement between 
body water composition in pre-dialysis measurements and extracellular water 
measurements by Bromide, with a mean difference of 0.8 kg15. In real clinical 
practice, it may not be feasible for dialysis centers to ask patients to stay for 
another two hours after a session. Therefore, all institutes in Thailand that 
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use BCM measure DW before dialysis, along with other clinical parameters. 
This retrospective study also retrieved BCM data from pre-dialysis 
measurements. 

• Cost and Generalizability 
The major limitation of BCM is its cost, with the machine costing around 
150,000 baht and each measurement requiring a specific electrode costing 
around 300 baht. This limits its use in Thailand mostly to university hospitals, 
and only nine provinces have BCM machines, with most having only one 
machine per province. A cost-effective analysis from the United Kingdom in 
2021 found the ICER for bioimpedance-guided fluid management versus 
standard management to be £16,536 per QALY gained, which was acceptable 
for the United Kingdom's threshold for ICER capped at £20,000 per QALY34. 
However, in Thailand, the ICER threshold for health policy is 160,000 baht per 
QALY, so the cost of £16,536 (690,000 baht) per QALY is too high to apply this 
tool to all patients. 

 

 

Figure 3: Demonstrated amount of hemodialysis centers (Left) and number of HD 
centers with BCM (Right) in Thailand.  
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Abbreviations: HD, hemodialysis; BCM, Body composition monitor. Adapted from 

“Annual Report Thailand Renal Replacement Therapy 2020” By The Nephrology 

Society of Thailand and detailed record of BCM’s sale performance between 2018-

2022. 

In conclusion, there is a significant gap between the number of good tools 
and the demands for DW assessment in Thailand. Therefore, a new tool that concern 
about these limitations while preserve the same performance as BCM is needed to 
be developed for good care of dialysis patients. 
 
2.5 Machine learning model and dry weight prediction 

Machine learning (ML) is a subset of artificial intelligence that allows 

computers to learn from data and improve without explicit programming. These 

algorithms process input and output data to develop models35. By the way, deep 

learning, a type of machine learning, uses multiple layers of non-linear modules to 

create more complex functions. This substructure is beyond human ability, leading to 

previously unimaginable solutions for complex tasks and the discovery of hidden 

associations36. These cutting-edge technologies result in an assistive tool for 

physicians to make decisions with more cost-saving and less time-consuming. 

Few studies have used machine learning for the prediction of dry weight (ML-

DW). However, most of them compare their results to clinical assessments (C-DW), 

which are subjective and prone to errors. Additionally, some studies have used 

unacceptable rationale. For instance, a study by Olivier Niel et al. used BCM-DW as 

an input variable, which is considered the gold standard for predicting DW, and then 

predicted the result of C-DW. The study showed good agreement, but it did not bring 

any benefit to clinical implementation37. Another study by Hae Ri Kim et al. used 

BCM-DW as an input variable and predicted the final result in the form of an 

absolute gap between BCM-DW and C-DW. As a result, the effect of the input 

variable of BCM was again contaminated in the prediction process. The interpretation 
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was also difficult to do, since absolute gap did not tell the direction whether it was 

overhydrated or underhydrated38. 

Furthermore, comparing the performance of different machine learning 

models that predict the same thing can be challenging. The proper way to compare 

a new model with an existing one is to see if they agree with each other. However, 

some studies used tests like accuracy38 or correlation39, which cannot determine if 

the models are truly similar due to their inability to account for bias or the range of 

possible results. Such tests are not good for comparing with a "gold standard" test40. 

Few studies have used correct statistical methods. However, it compared 

machine learning-based dry weight prediction (ML-DW) with clinical dry weight 

assessments (C-DW). Olivier Niel et al. found that their ML model was able to predict 

C-DW with good agreement, with a mean difference of 0.09% of C-DW. Although, 

there was a wide limit of agreement at -4.27 to +4.44% of C-DW (absolute kilogram 

was not reported), and the number out of agreement was 20 out of 476 samples41. 

The input parameters in this study included demographic data, and time-variable 

data as a time stamp of pre-dialysis blood pressure and heart rate was used as an 

input. 

In another study by the same author, the same input and output were used 

with a different ML model. The mean difference was nearly the same (-0.04% of C-

DW), and the number out of agreement was lower at 17 out of 476 samples. 

However, the limit of agreement was still wide (-4.41 to +4.33% of BW, absolute 

kilogram not reported)42. 

In conclusion, none of these studies used ML to predict the more objective 

and reliable method of DW assessment, such as BCM-DW. Additionally, none of them 

used time-series variables, which are the most abundant data in each dialysis session 

for prediction. As mentioned earlier, intradialytic changes of vital signs may have a 

complex relationship with the patient's volume status, so these variables may be an 
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essential factor for DW prediction. Moreover, the agreement test results sometimes 

did not provide an absolute weight number, which could be difficult to use in real 

clinical implementation. Lastly, none of these models were externally validated with 

data outside their institute. Table 2 provides the details of each study. 

Study Input output Patient model Result 

Hae Ri Kim, et al.  
2021 

Demographic  
Dialysis 
Laboratory 
Time variable (Time stamp) 
BCM-DW 
C-DW 

Absolute 
difference 
between 
BCM-DW and 
C-DW 

1672 XGBoost Accuracy 28.54 % 
Mean absolute 
error 1.29 kg 

Jainn-Shiun Chiu, et al. 
2005 

Demographic BIA-Total 
body water 
(not DW) 

54 ANN Pearson’s 
correlation 
coefficient 
(-0.911) 
RMSE 2.48 kg 

Olivier Niel, et al.  
2018 

Demographic 
Dialysis 
Time variable (Time stamp)  
BCM-DW 

C-DW 14 Multilayer 
perception 
neural network 

Mean difference 
+0.497 kg (LOA -
1.33 to +1.29 kg) 

Xiaoyi Guo, et al.  
2021 

Demographic 
Time variable (Time stamp)  
 

C-DW 476 Sparse Laplacian 
regularized 
Random Vector 
Functional Link  

Mean difference 
0.09% of C-DW, 
(LOA 
-4.27 to +4.44 %) 
Number out of 
agreement: 4.25% 
 

Xiaoyi Guo, et al. 
2021 

Demographic 
Time variable(time stamp)  
 

C-DW 476 Multiple 
Laplacian-
regularized radial 
basis function 
networks 

Mean difference:  
-0.04% of C-DW 
(LOA -4.4 to 
+4.33%) 
Number out of 
agreement 3.57% 

Table 2: Descriptive data of available trial about machine learning model and dry 
weight prediction.  
Abbreviations: BCM-DW, Body composition monitor adjusted dry weight; C-DW, 

Clinical adjustment dry weight; BCM, Body composition monitor; XGBoost, Extreme 

Gradient Boosting; ANN, artificial neural network; RMSE, Root mean squared error; 

LOA, limit of agreement 
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2.6 Machine learning model for time-series data and its structure 
Dealing with time-series data can be troublesome. Conventional statistical 

models such as ARIMA (Autoregressive Integrated Moving Average) or SARIMA 

(Seasonal Autoregressive Integrated Moving Average) are commonly used for time-

series data, but these are primarily used for forecasting or predicting. They are 

designed to model the underlying patterns in time-series data and make predictions 

of the same parameter in the future based on those patterns. Thus, they are not 

suited for classification tasks or prediction of value of different parameter. To 

approach this problem, a recurrent neural network is needed. 

Recurrent Neural Networks (RNNs) are a type of neural network designed for 

processing sequential data, such as time-series data or natural language text. The key 

characteristic of RNNs is their ability to retain information from past inputs, which 

allows them to model temporal dependencies and contextual information in 

sequential data43. The basic structure of an RNN involves a recurrent hidden layer 

that is connected to itself through time. The inputs are processed in parallel at each 

time step and are fed through the hidden layer, which generates an output and 

updates its internal state. The internal state of the RNN can be thought of as a 

memory that allows it to capture information from past inputs and use that 

information to generate the current output. The output of this could be either a 

prediction or a classification. This makes RNNs well-suited for a wide range of tasks, 

including language modeling, graph prediction, and speech recognition. There are 

several variants of RNNs, such as GRU (Gated Recurrent Unit) and LSTM (Long Short-

Term Memory). 

GRUs have been designed to be a simple and fast type of RNN, with fewer 

parameters to train, which makes them more efficient for some tasks. However, there 

are drawbacks such as poor preservation of long-term dependencies in sequential 

data, which can cause the model to forget these dependencies over time or result in 

vanishing gradients from backpropagation of errors through time43. 
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LSTM is an improved RNN architecture that can construct a long-term 

sequence relationship and has dominant memory units, which can solve the 

problem of gradient disappearance or explosion in GRU44. Thus, it will be chosen as 

one of the core models for this study. 

 

Structure of LSTM 

The memory cells in LSTM enable the transmission of gradient information 

over long distances during training. In addition, three gates (input gate, forget gate, 

and output gate) are established. The detailed structure of LSTM is shown in figure 4. 

 

Figure 4: Structure of LSTM model. Adapted from Hochreiter, et al44. 
The forget gate, presented in Equation 1, decides the retention or discard of 

information. The sigmoid function is applied to the previous hidden state and the 

current input simultaneously. The output value, ft, is between 0 and 1, with values 

close to 1 retained and values close to 0 discarded. 
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Equation 1: ft is the forget gate output. Xt and ht-1 are the previous hidden state and 

current input, respectively. Wf and bf are the coefficient and bias values for the forget 

gate, respectively. 

The input gate updates the cell state, determining how many network inputs 

are retained in the current cell state. The function of the input gate is shown 

in Equation 2. The previous hidden state and the current input are the input data 

transferred to the sigmoid function for adjusting the values. The output value zero 

means unimportant, while one means essential. In addition, the tanh function is used 

for the previous hidden state and the current input to generate a candidate vector, 

c’t, as shown in Equation 3. Finally, the cell state, ct, presented in Equation 4, is the 

output value from the sigmoid and candidate vectors. 

 

Equation 2-4: it is the input gate output. c’t and ct are candidate vector and cell state 

values, respectively. Wi and bi are coefficient and offset values for the input 

gate. Wc and bc are coefficient and offset values for the candidate vector. 

The output gate, as shown in Equation 5, determines the next hidden state 

value. The previous hidden state is passed to the sigmoid function together with the 

current input, and the new cell state is passed to the tanh function. The current 

hidden state is the product of the output of the tanh function and output gate 

value, as shown in Equation 6. The new cell state and current hidden state are 

transferred to the next step. 
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Equation 5-6 ot is the output gate output. ht is the current hidden state value. wo 

and bo are the coefficient and bias values for the output gate, respectively. 

LSTM is commonly used for regression analysis. However, it is also widely 

used for classification tasks. This is done by adding a dense layer on top of the LSTM 

layers, which takes the output of the last LSTM layer and maps it to the desired 

number of output classes. For instance, final layer of the LSTM for regression model 

uses linear activation function, which produce continuous numerical output value, 

such as a temperature or stock price. Meanwhile, LSTM for classification tasks 

commonly uses sigmoid activation function for binary classification. If it is a single 

label, multiple classes classification, the cross-entropy loss function is selected.  

LSTM has become a popular choice for sequence modeling tasks due to its 

ability to handle long-term dependencies and its ability to learn and remember 

patterns from the input data. It has been successfully applied in various fields such 

as speech recognition, natural language processing, and time-series prediction. 

Additionally, LSTM models can be adapted to handle different types of input data, 

including images and graphs. LSTM can also be combined with other types of neural 

networks, or attention-based models, to improve performance on specific tasks. 

Overall, LSTM has proven to be a powerful and versatile tool for a wide range of 

applications. 

 

2.7 Machine learning model and neural network model for prediction and its 
structure 

The conventional method for dealing with prediction model between many 

dependent variables and one independent variable can be basically done by linear 

regression. It is a good starting point for many problems and works well when the 

relationship is linear, and the model's complexity is not too high. However, for more 

complex relationships, several other ML models are employed for regression 
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analysis, such as Least Absolute Shrinkage and Selection Operator (Lasso)45, Elastic 

Net (ENet)46, Kernel Ridge Regression (KRR)47, Extreme Gradient Boosting (XG Boost)48 

and Light Gradient Boosting Machine (Light GBM)49. 

Lasso is a modification of linear regression model that can be used for feature 

selection and regularization to prevent overfitting. It has better strengths in feature 

selection and handling high-dimensional data. It can also help with overfitting by 

adding a penalty term. However, it is sensitive to outliers and can be unstable when 

there is high collinearity between features. 

ENet is another modification of linear regression model that combines the 

Lasso and ridge regression techniques. It can handle the issue of multicollinearity 

between features but requires higher computation and may not be suitable for large 

datasets. 

KRR is a kernel-based linear regression method that can capture nonlinear 

patterns in the data. It can handle both linear and nonlinear relationships. Its 

weakness depends on its sensitivity to the choice of kernel function. 

XGBoost is tree-based ensemble models that can handle nonlinear 

relationships and interactions between features and can improve performance 

through boosting techniques. It can handle missing values and reduce overfitting very 

well. However, it can be computationally expensive and may require careful tuning 

of hyperparameters. 

LightGBM is another tree-based ensemble models. Its fast and efficient 

gradient boosting method that can handle large datasets. Contrary, it may not 

perform well with small datasets and may require careful tuning of hyperparameters. 

Stacked regression, also known as stacked generalization, is an ensemble 

method that combines the predictions of several models to improve the 

performance50. It involves training several base models on the same training data and 

then using their predictions as input features for a higher-level model, which makes 
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the final predictions. Stacked regression can be used to combine different types of 

models and can be a good choice when the relationship between the variables is 

more complex or when the base models have different strengths and weaknesses. 

However, it requires more data, more computing resources, and more time to train. 

Neural network models are also commonly used for prediction tasks. These 

models are built using multiple layers of interconnected nodes, with each node 

performing a mathematical operation on its inputs and passing the result to the next 

layer. The nodes in each layer are typically connected to all nodes in the previous 

and next layers, creating a dense network of connections. The output of the final 

layer is the predicted value. Neural networks can handle complex relationships 

between variables and can capture nonlinear patterns in the data. However, they 

may require more data and more computation resources to train than other models. 

Additionally, choosing the appropriate architecture and hyperparameters for the 

network can be challenging. 

 

2.8 Rationale for choosing institute for study population 
This study needs data of dialysis session together with data of BCM 

measurement. Collection of time-series data from dialysis sessions is a laborious task. 

Since each dialysis session will contain around 50-60 numbers of interdialytic time-

series variable which usually be recorded by HD nurse manually. Retrieving these 

variables manually is both laborious and prone to human error. Therefore, to collect 

the required data, we needed an institute that records these parameters via 

electronic methods, such as the Therapy Support Suite (TSS) from Fresenius Co. We 

also required an institute that provides BCM measurement for labeling the outcome 

of interest, which few hospitals had this. Only King Chulalongkorn Memorial Hospital 

(KCMH) and Bhumirajanagarindra Kidney Institute Hospital (BKIH) met these criteria, 

but they differ in several ways that may affect the results and analysis. 
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KCMH is a tertiary-care and university hospital that typically handles 

complicated cases, and currently has around 50 active patients. As BCM 

measurements are performed more frequently than in general hospitals, the number 

of dialysis sessions with BCM measurement is high despite the relatively small 

number of patients. 

BKIH is a private hospital that specializes in hemodialysis care and has over 

500 active patients. However, BCM measurement is costly, resulting in only 2-3 

measurements being performed in each patient. Therefore, the number of dialysis 

sessions with BCM measurement is high due to the large number of patients. 

The aim of this study is to develop a new model and evaluate its 

performance through an external test. Additionally, a comparison between the 

characteristics of two institutes, with similar numbers of dialysis sessions but different 

patient populations, will be conducted. The study will test whether a model trained 

on the larger patient population can accurately predict outcomes for the smaller 

patient population, and vice versa. This analysis will serve as a robustness test of the 

model before generalization to real-world practice. 

 

 

CHAPTER 3 
METHOD 

3.1 Research design 
Diagnostic Retrospective study 

 

3.2 Research methodology 
3.2.1 Target population 
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This study focused on the number of dialysis sessions, as we use each session 

for the model’s learning separately. Thus, it requires dialysis sessions with BCM 

measurement on the same day from ESRD patients. 

Study population 

Dialysis session from ESRD patients at two institutions, King Chulalongkorn 

Memorial Hospital (KCMH) from January 1, 2017, to December 31, 2021, and 

Bhumirajanagarindra Kidney Institute Hospital (BKIH) from January 1, 2018, to 

December 31, 2022.  

3.2.2 Inclusion criteria 

(a) Dialysis sessions from patients aged 18-86 years 

(b) Dialysis sessions from patients who had done 2-3 sessions per week 

(c) Stable dialysis, defined as prevalence cases or incidence cases with a 

duration of dialysis for more than 6 months  

(d) BCM measurement was done on the same date as the dialysis session.  

 

        Exclusion criteria  

patients were excluded if they had:  

(a) Recently active and uncorrected heart disease (ischemic heart disease 

within 6 months, heart failure within 6 months, moderate to severe valvular 

disease) 

(b) Atrial fibrillation 

(c) An amputated limb  

(d) Cirrhosis 
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(e) Been pregnant or breastfeeding 

(f) A BMI <16 kg/m2 or >34 kg/m2.  

For those eligible patients, we also exclude dialysis sessions that had: 

(g) Intradialytic adjustment of dialysate concentration, including dialysate 

profiling or 

(h) Corrupted data without a complete record. 

 

3.3 Sample size calculation 

 

type I error () = 0.05 

type II error () = 0.20 

P0 = 0.9 from Moissl, et al15 

Dropout rate 10% 

N = 130 

The conventional method for predicting dry weight (DW) using logistic 

regression, as described by Hsieh et al., found that the new tool can be comparable 

to BCM in a study of 130 patients. However, in this study, a machine learning model 

was proposed for prediction and each dialysis session was utilized separately for 

model learning. The focus was on the number of dialysis sessions, as a large amount 

of data was crucial for the learning process. The expected amount of 1000 dialysis 

sessions was deemed sufficient for ML learning to answer the clinical question. 

Although a neural network model may have benefited from a higher number of 

dialysis sessions, it was acknowledged that obtaining more than 1000 BCM 
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measurements may be unrealistic and inconvenient. Nonetheless, the potential of a 

neural network was explored and its performance was assessed while keeping this 

limitation in mind. The team appreciated the understanding and did their best to 

ensure that the approach yielded meaningful results. 

 

3.4 Data collection 
The data collected for this study includes demographic data (age, sex, height, 

pre-dialysis weight, post-dialysis weight, and underlying diseases (hypertension, 

diabetes, stroke, chronic lung disease, and gout), laboratory data (hemoglobin, 

sodium, calcium, and albumin), dialysis prescription data (composition of sodium, 

potassium, calcium, bicarbonate, and temperature), time-series data during dialysis 

sessions (including timestamps for systolic and diastolic blood pressure, heart rate, 

and ultrafiltration rate), and DW data from BCM.  

Demographic data were collected based on physician reports and ICD-10 

codes, while laboratory data for each dialysis session were selected based on the 

closest sampling prior to that session, but not more than one month prior. Dialysis 

prescription and time-series data were collected from the TSS. In both institutes, 

timestamp data were monitored before the start of dialysis, for the next 30 minutes, 

and then every hour. However, if vital signs were unstable or the physician required, 

monitoring was done more frequently. BCM data in this study was pre-dialysis 

measurement, collected from the TSS record. Quality of measurement and Cole-

Cole plot of BCM were not available for this retrospective review. After measurement 

was done, physicians would prescribe the target weight for that dialysis session based 

on a combination of both BCM-guided data and clinical assessment. So Post-dialysis 

BW does not equal to BCM-DW. Probing of weight was done in order to avoid rapidly 

change in weight that may cause consequences. Adverse events during a dialysis 

session, were not reported in the record and not present in this study. Intervention 
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required for a patient during a dialysis session was also not included as a parameter. 

The diagram of data retrieval is shown in Figure 5. 

 

Figure 5: Flow for retrieving data.  
Abbreviations: BCM, Body composition monitor; TSS, Therapy support suite; BCM-DW, 

dry weight from BCM; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

MAP, mean arterial pressure; HR, heart rate; UFR, ultrafiltration rate; Hb, hemoglobin; 

Na, sodium; Ca, calcium; Alb, albumin; pre/postBW, pre-dialysis and post-dialysis 

body weight 

 

3.5 Data analysis 
Data from four domains, including demographic, laboratory, dialysis 

prescription, and BCM data, were combined into a single sheet. While data from 

time-series data was stored in another sheet. 

 

3.5.1 Data preprocessing 

The raw data of the dialysis sessions were cleaned by removing null values. 

As different magnitudes of data can cause larger variables to dominate over smaller 

ones, all ratio and interval data such as height, weight, and dialysate sodium were 

normalized by the StandardScaler command in TensorFlow. All features were 
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transformed to fall within the range of 0 (lower bound) and 1 (upper bound). 

Parameters that were not normally distributed were transformed using log N or Box-

Cox transform. Categorical data were marked and encoded as numerical labels using 

LabelEncoder from the 'sklearn.preprocessing' module, and then encoded into a set 

of binary variables (0 or 1) for each category using the 'get_dummies' function from 

the pandas module. This helped the regression model deal with categorical 

variables. Time-series data was scaled in the same way as above. Due to the unequal 

time frame between each dialysis session, zero padding was used prior to each time 

frame to create a matrix of the same size without affecting the model's performance 

51. The output was labeled for BCM-derived DW. 

 

3.5.2 Training, Validation and Testing set 

All data from dialysis sessions were randomized and split using a command in 

Tensorflow into a training set (80%) to optimize the parameters of artificial neural 

network models, a validation set (20%) to determine when to stop the optimization 

process. During the splitting process, we ensured that dialysis sessions from the same 

patient were placed in the same set to prevent the learning model from being 

exposed to input, such as demographic data, that would be the same for patients 

who had multiple dialysis sessions and BCM measurements. A testing set was used to 

evaluate the performance of the final model. As mentioned earlier, we conducted 

two external validation configurations for testing the robustness of our model.  

• Configuration A, we used the KCMH database as the training and validation 

set and applied the model on the BKIH database for testing. 

• Configuration B, we used the BKIH patient database to train our model and 

then applied our algorithms on the KCMH database. 

The flowchart of the study was shown in Figure 6, and it should be noted that the 

train, validate, and test sets were altered based on each configuration. 
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Figure 6: Flow chart of this study 
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital 

 

3.5.3 Statistics and Model development phase 

Descriptive analysis of input data was conducted. Data with a normal 

distribution was presented as mean ± standard deviation (SD). For skewed 

distributions, data was presented as median ± interquartile range (IQR). Associations 

with p values less than 0.05 were considered statistically significant. Time-series data 

was displayed in a descriptive manner and scatter plots were used to provide an 

overview of the relationship between parameters. Additionally, a histogram of BCM 

data was also included. 

Our algorithm was built by Python v3.6.9 (https://www.python.org/) with 

Tensorflow backend v1.15.4 (https://www.tensorflow.org/), an open-source machine 

learning library. We deployed our application with this deep learning library based on 
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the NVIDIA container image of TensorFlow, Release 20.11 (Nvidia Corporate, Santa 

Clara, CA, USA) as a virtual environment. 

In the model development phase, we needed to build a model that best 

suits our problem. Due to the difference in the type of data, the idea for model 

selection will be different. For example, general data (including demographic data, 

laboratory data, and dialysis data) contain both categorical and numerical data and 

can be managed by diverse models. On the other hand, time-series data requires a 

special model, which we have applied for LSTM. Initially, we will try to build a model 

by utilizing both types of data for the most efficient use. Later on, if one type of data 

was unsuitable for this task, we opted for only one type of data for our final model. 

The scheme for model selection based on the type of data is shown in Figure 7. 

 

Figure 7: Type of base model for different type of data 
Abbreviations: LSTM, Long Short-Term Memory; ENet, Elastic net; KRR, Kernel Ridge 

Regression; XGBoost, Extreme Gradient Boosting; LightGBM, Light Gradient Boosting 

Machine; LR, Linear regression 

 

3.5.3.1 Processing for time-series data 
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As mentioned above, the bidirectional Long Short-Term Memory (LSTM) 

model was designed as a recurrent neural network (RNN) to capture dynamic 

variations in time-series data. It had capability to handle a diverse range of problems. 

The aim of this model is to utilize changes in vital signs and ultrafiltration rate to 

achieve one of the following goals: 

• Directly predict or Regress BCM-DW. 

• Classification dialysis sessions into different groups based on alteration of 

time-series data toward differences in net ultrafiltration volume. 

• Reduction of high-dimensional data and transform time-series data into an 

embedding layer then combining with result from non-time-series data. 

To develop the most efficient model, we used all of the three approaches 

and select the best one, if possible. The LSTM class was defined as a subclass of 

PyTorch's nn.Module. This class defined the architecture of the LSTM-based model 

that would be trained. The number of neurons in LSTM layers was varied by 

approach between 16-128. The learning rate was set at 0.0001. To mitigate overfitting 

in small dataset, drop-out at 0.1 and L2 regularization method was used with a value 

set to 0.001. The adaptive moment estimation (ADAM) algorithm was used for 

optimization with the number of iterations set to 300. The training and validation 

datasets were loaded into PyTorch DataLoader objects, which allowed the data to 

be easily fed in batches to the model during training. At the end of training, the 

model with the highest validation accuracy was saved. 

In the first approach, called the "LSTM regression model (LSTMreg)," we 

trained the LSTM model to output as a predictive model. We evaluated the results 

in terms of mean squared error (MSE) and agreement. A smaller MSE indicates better 

model performance, while agreement would be shown by Bland-Altman plot. It was 

a graphical representation of the differences between the two methods, with 1.96 SD 

set as the upper and lower boundaries of the limit of agreement. A smaller mean 
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difference and a narrow limit of agreement indicate a good model. If the results were 

promising, we planned to combine this with any regression model for non-time-series 

data. 

In the second approach, “LSTM classification model (LSTMclass)”, the LSTM 

model was used to classify patients into three groups based on the net UF status. 

Since it was known that excess UF was important factor that led to a sudden change 

in vital signs during dialysis, the purpose of this approach was to group dialysis 

sessions by the amount of net UF before sending data from each session into the 

specific regression model that suited each group, thereby maximizing the prediction 

value. Initially, the LSTMclass was responsible for screening dialysis sessions and 

assigning them to the appropriate groups. Since the output was a classification, the 

results were evaluated in terms of accuracy, F1 score (the harmonic mean of 

sensitivity and positive predictive value), and the confusion matrix. The confusion 

matrix displayed the percentage of dialysis sessions predicted in each group, with 

color tones indicating the accuracy of the prediction. 

In the third approach, “combined time-series data and non-time-

series/general data in neural network model (gtNN)”, Time-series data could be used 

by passing the last layer of the LSTM or the embedding layer, which provided less-

dimensional data, and concatenating it with the embedding layer from non-time-

series data (demographic, laboratory, and dialysis data). All of the information would 

pass through same optimization and dense layer. Although neural networks worked 

well with large amounts of data, using this approach for this small dataset may have 

uncovered some additional insights or trends. The result of this was continuous data 

of predicted weight, which was evaluated in terms of MSE and agreement. 

The schematic representation of the pipeline for each approach was 

illustrated in Figure 8. 
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Figure 8: Different approach related to time-series data 
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Abbreviations: LSTMreg, LSTM regression model; LSTMclass, LSTM classification 

model; gtNN, combined time-series data and non-time-series/general data in neural 

network model; ML-DW, machine learning dry weight 

  

3.5.3.2 Processing for non-time-series data or general data 

The process for modeling of non-time-series data which aim for regression 

analysis was performed by three methods: conventional multiple linear regression, 

machine learning with stacked regression models, and neural network models. The 

input for these models was a combination of parameters from demographic data, 

laboratory data, and dialysate profile data. 

For multiple linear regression (LR), the LinearRegression class in the scikit-

learn library was used, and MSE was used to evaluate how far the predictions were 

from the actual values. 

Several machine learning regression models were evaluated, including Lasso, 

ENet, KRR, XGBoost, Light GBM, were evaluated. Finally, a stacked regression model 

(STACK) was created using these base models. As the dataset was small, 

hyperparameters for each model were fine-tuned using the GridSearchCV() function. 

• The Lasso model was created using the scikit-learn library, and normalization 

was performed using RobustScaler(). The strength of regularization, or alpha 

value, was determined using the GridSearchCV() function from scikit-learn, 

with values ranging from 0.001 to 0.1. 

• ENet model: RobustScaler() was also applied to the data for normalization, 

and the alpha value was fine-tuned between 0.001 and 0.1 using the 

GridSearchCV() function. The l1_ratio, which determines the balance between 

L1 and L2 regularization, was set to range from 0.1 to 1.0. 

• KRR model: This model employed a polynomial kernel function with a degree 

of 2, resulting in the input features being transformed to a space where each 
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feature is squared and multiplied by all possible pairs of features. The alpha 

value was determined using the GridSearchCV() function between 0.01 and 

100. The constant term in the polynomial function, known as coef0, was also 

set using the GridSearchCV() function between 1 and 8. 

• XGBoost model: To prevent overfitting due to the small datasets, 

hyperparameters in the XGBoost model were selected carefully. 

GridSearchCV() was used to select hyperparameters such as of, learning_rate 

(at a lower value between 0.01-0.1), max_depth (set at 3-7 to avoid 

overfitting), reg_alpha, and reg_lambda (both set at 0.1 to balance bias and 

variance). Additionally, a fraction of observations and features were randomly 

sampled for each tree, with values set at 0.3-0.8 

• Light GBM model: To further prevent overfitting in the Light GBM model, the 

following hyperparameters were tuned: The learning_rate between 0.01-0.1, 

num_leaves between 4 to 32, n_estimators between 300-1000, 

min_samples_split between 10-50, max_features between 0.3-0.5, 

feature_fraction between 0.3-0.9, min_data_in_leaf between 10-20, and 

min_sum_hessian_in_leaf between 0.01 to 1.  

The Group shuffle K-Fold technique was utilized for cross-validation, in which 

the data was partitioned into 5 parts, and the model was trained and tested on each 

partition. The data was randomized prior to partitioning, and a fixed random state 

was employed to ensure test repeatability. Each evaluation metric included MSE and 

SD, with lower values indicating a superior model. Finally, stacking was performed 

from a diverse range of base models, as their strengths and weaknesses may 

complement each other. 

The neural network model (gNN), which used TensorFlow and Keras to 

predict BCM-DW based on a set of input features of non-time-series or general data, 

was developed. The model architecture was defined using the Keras API from 

TensorFlow and consisted of three hidden layers, each with 512 nodes. These layers 
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used different activation functions, namely sigmoid, relu, and relu. The final layer 

produced a single output value. The optimizer used was Adam, and the learning rate 

was set to 0.00001. The loss function used was mean squared error (MSE), and the 

model was trained for 250 epochs with a batch size of 32. The model was evaluated 

using MSE on the validation set. 

Please note that the success of each approach in this project cannot be 

guaranteed, despite a rationale-driven process. Therefore, all models, including those 

combining time-series and non-time-series data (gtNN), those using solely non-time-

series data (LR, STACK, and gNN), and those using only time-series data (LSTMreg and 

LSTMclass), were compared. The robustness of each model was evaluated using 

both configuration A and B. Mean squared error (MSE) was calculated for each 

model, and a Bland-Altman plot was used to compare the agreement of predictions 

to BCM-DW. To visualize and compare the results of each model, a Folded Empirical 

Distribution Function Curve (Folded EDFC) was plotted. The x-axis of the graph 

represents the mean difference between the predicted DW and the BCM-DW, while 

the y-axis defines the probability of samples with those values. The center of the 

graph features a vertical line that represents the reference line of zero difference, 

and the distance from this line and the peak indicates the estimated bias of each 

tool. The shape of the graph is typically mountain-like, with the base representing 

the entire possible range of difference between the new tool’s prediction and BCM, 

which is linked to the limit of agreement. A steep rise in the graph indicates a higher 

probability of the folded variable being small, while a small hill indicates a more 

spread-out distribution52. Ultimately, the final model was chosen based on various 

factors including the smallest MSE, lowest mean difference, and smallest limit of 

agreement. 
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3.6 Model evaluation phase 
The present study evaluated the performance of ML-DW, a continuous 

variable, against the established gold standard BCM-DW. Further analysis of Bland-

Altman plot was conducted, as the number of samples that fell out of the limit of 

agreement were presented. The importance of feature was reviewed using SHapley 

Additive exPlanations (SHAP) values, which demonstrate the contribution of each 

feature to the predicted outcome. In case there were outliers beyond the limit of 

agreement, a sub-analysis of the data was conducted by: 

• Comparing SHAP values, a summary plot of the SHAP values for samples 

within the range and for outliers was created.  

• We reviewed the baseline characteristics of each dialysis session to determine 

if raw data could have led to outliers in the results. 

After excluding some variables, the model was be run again to demonstrate 

the Bland-Altman plot. The computational efficiency of the model was also 

evaluated by reporting the time taken (in minutes) to execute the algorithm. The 

figures were generated using the Matplotlib v3.1.2[15] and Seaborn v0.11.1 Python 

libraries, which are renowned for their visualization capabilities in data analysis. 

The full code is available at 

https://drive.google.com/drive/folders/1_hKIGJ9IpjtOQQii58zhV8vT_c4mZ7QV?usp=sh.  

 

3.7 Research ethics 
The protocol was approved by the institutional review board of King 

Chulalongkorn Memorial Hospital and adhered with the principles of the Declaration 

of Helsinki. It used retrospective data from medical record, hence it will not be any 

direct contact toward patients. All of the personal data will be stored in code that 

cannot be traced back. The presentation of research results will be general 

information. No individual information is presented. 

https://drive.google.com/drive/folders/1_hKIGJ9IpjtOQQii58zhV8vT_c4mZ7QV?usp=share_link
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The risk of this research is no greater than the minimal risk.  

 

3.8 Administration and time schedule 
Activities 2021 2022 2023 

9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 

1.Preparation                     

2.Data collection                     

3.Data analysis                     

4.Conclusion                     

Table 3: Time schedule of this study 
 

3.9 Budget 

List Budget 

Revenue data scientist 50,000 

Paperwork and hardware 50,000 

Table 4: Budget of this study 
 

CHAPTER 4 
RESULT 

 
4.1 Baseline characteristics 
4.1.1 Baseline characteristics of non-time-series data 

A total of 581 dialysis sessions from KCMH and 570 dialysis sessions from BKIH 

were included. Characteristics of dialysis sessions were categorized in two ways for 

baseline comparisons: by institute (KCMH and BKIH) and by model development 

process (training, validation, and test sets). Table 5 presents the relevant clinical data 

for subjects from KCMH and BKIH. While the two groups had comparable ages (64.9 

vs. 67.7 years), patients from KCMH were more likely to be female (62.7% vs. 52.6%), 
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and had higher proportions of cerebrovascular disease, gout, and chronic lung 

disease. In contrast, BKIH had higher proportions of hypertension and diabetes (93.3% 

vs. 91.2% and 41.4% vs. 34.1%, respectively). Hemodiafiltration was the dominant 

mode of dialysis in KCMH, whereas hemodialysis was more prevalent in BKIH. Average 

DW from BCM was slightly lower in KCMH (54.9 kg vs. 5881 kg), while average of net 

ultrafiltration volume and average ultrafiltration rate was comparable in both groups 

(2.1 L vs 2.2 L) and (9.1 mL/kg/hr vs 9.7 L/kg/hr) respectively. Mean values of 

dialysate and laboratory data were comparable in both groups. Baseline 

characteristics of dialysis sessions by model development process was shown in 

table 6 and table 7. Figure 9 showed snippet of data in this domain. 

 

 KCMH  
(n = 581 sessions) 

BKIH  
(n = 570 sessions) 

Number of patients 42 244 
Age, mean (±SD) years 64.9 (9.6) 67.7 (12.3) 

Female, number (%) 364 (62.7%) 300 (52.6%) 

BCM-DW, mean (±SD) kg 54.9 (10.5) 58.8 (11.7) 
Average Pre-dialysis BW, mean (±SD) kg 56.9 (10.6) 61.5 (11.7) 

Average Post-dialysis BW, mean (±SD) kg 54.7 (10.3) 59.3 (11.6) 

Average Height, mean (±SD) cm 159.0 (8.5) 160.8 (8.3) 
Average BMI, mean (±SD) kg/m2 21.7 (3.8) 22.7 (4.0) 

Net UF, mean (±SD) L 2.1 (0.9) 2.2 (0.8) 

Average UFR, mean (±SD) mL/kg/hr 9.1 (4.4) 9.7 (4.0)   
Comorbidities, number (%)   

Hypertension 530 (91.2%) 532 (93.3%) 
Diabetes 198 (34.1%) 236 (41.4%) 

Cerebrovascular disease 67 (11.5%) 29 (5.1%) 

Gout 57 (9.8%) 47 (8.2%) 
Chronic lung disease 28 (4.8%) 3 (0.5%) 
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Mode of dialysis, number (%)   

Hemodialysis 35 (6.0%) 570 (100%) 
Hemodiafiltration 546 (94.0%) 0 (0%) 

Dialysate profile data   

Dialysate Sodium, mean (±SD) mg/dL 
      Median (±IQR) 

137.4 (1.4) 
138.0 (136.0 - 
138.0) 

137.7 (1.1) 
138.0 (138.0 - 
138.0) 

Dialysate Bicarbonate, mean (±SD) mg/dL 
      Median (±IQR) 

32.0 (1.0) 
32.0 (32.0 - 32.0) 

32.1 (0.8) 
32.0 (32.0 - 32.0) 

Dialysate Potassium, mean (±SD) mg/dL 
      Median (±IQR) 

2.1 (0.3) 
2.0 (2.0 - 2.0) 

2.6 (0.5) 
3.0 (2.0 - 3.0) 

Dialysate Calcium, mean (±SD) mg/dL 
      Median (±IQR) 

3.0 (0.3) 
3.0 (2.5 - 3.0) 

2.8 (0.3) 
3.0 (2.5 - 3.0) 

Dialysate Temperature, mean (±SD) 
Celsius 
      Median (±IQR) 

36.8 (0.5) 
37.0 (37.0 - 37.0) 

36.5 (0.5) 
36.5 (36.3 - 36.8) 

Laboratory data   

Hemoglobin, mean (±SD) mg/dL 11.0 (1.4) 10.7 (1.5) 
Calcium, mean (±SD) mg/dL 8.7 (0.7) 8.8 (0.8) 

Sodium, mean (±SD) mg/dL 138.7 (2.7) 136.5 (4.2) 

Albumin, mean (±SD) mg/dL 3.8 (0.3) 3.9 (0.4) 
Table 5: Baseline characteristics of dialysis sessions from each institute.  
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital; BCM-DW, dry weight from BCM; BW, 

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range 

 

 KCMH  
(n = 581 sessions) 

BKIH  
(n = 570 sessions) 

 Training set Validation set Testing set 
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Number of sessions (%) 463 (79.7%) 118 (20.3%)  570 

Number of patients 35 7 244 
Age, mean (±SD) years 63.8 (9.9) 62.3 (6.5) 67.7 (12.3) 

Female, number (%) 255 (55.1%) 109 (92.8%) 300 (52.6%) 

BCM-DW, mean (±SD) kg 54.3 (10.9) 56.9 (10.2) 58.8 (11.7) 
Average Pre-dialysis BW, mean 
(±SD) kg 

56.4 (10.8) 58.9 (11.3) 61.5 (11.7) 

Average Post-dialysis BW, mean 
(±SD) kg 

54.1 (10.6) 56.8 (11.1) 59.3 (11.6) 

Average Height, mean (±SD) cm 160.5 (8.3) 153.5 (7.1) 160.8 (8.3) 
Average BMI, mean (±SD) kg/m2 21.0 (3.6) 24.1 (3.7) 22.7 (4.0) 

Net UF, mean (±SD) L 2.1 (1.0) 2.0 (1.0) 2.2 (0.8) 
Average UFR, mean (±SD) mL/kg/hr 9.0 (4.6) 9.3 (4.2) 9.7 (4.0)   

Comorbidities, number (%)    

Hypertension 412 (89.0%) 118 (100%) 532 (93.3%) 
Diabetes 115 (24.8%) 83 (70.3%) 236 (41.4%) 

Cerebrovascular disease 16 (3.5%) 51 (43.2%) 29 (5.1%) 

Gout 38 (8.2%) 19 (16.1%) 47 (8.2%) 
Chronic lung disease 28 (6.0%) 0 (0%) 3 (0.5%) 

Mode of dialysis, number (%)    
Hemodialysis 0 (0%) 35 (29.7%) 570 (100%) 

Hemodiafiltration 463 (100%) 83 (70.3%) 0 (0%) 

Dialysate profile data    
Dialysate Sodium, mean (±SD) 
mg/dL 

137.2 (1.4) 138.3 (0.7) 137.7 (1.1) 
 

Dialysate Bicarbonate, mean (±SD) 
mg/dL 

31.9 (1.0) 32.2 (1.2) 32.1 (0.8)  

Dialysate Potassium, mean (±SD) 
mg/dL 

2.2 (0.4) 2.0 (0) 2.6 (0.5) 
 

Dialysate Calcium, mean (±SD) 2.9 (0.3) 3.1 (0.2) 2.8 (0.3) 
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mg/dL  

Dialysate Temperature, mean (±SD) 
Celsius 

36.8 (0.4) 36.6 (0.5) 36.5 (0.5) 
 

Laboratory data    

Hemoglobin, mean (±SD) mg/dL 10.9 (1.4) 11.2 (1.2) 10.7 (1.5) 
Calcium, mean (±SD) mg/dL 8.8 (0.7) 8.5 (0.7) 8.8 (0.8) 

Sodium, mean (±SD) mg/dL 138.5 (2.7) 139.3 (2.2) 136.5 (4.2) 
Albumin, mean (±SD) mg/dL 3.9 (0.3) 3.8 (0.3) 3.9 (0.4) 

Table 6: Baseline characteristics of dialysis session by training and testing process 
(Configuration A).  
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital; BCM-DW, dry weight from BCM; BW, 

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range 

 

 BKIH  
(n = 570 sessions) 

KCMH  
(n = 581 sessions) 

 Training set Validation set Testing set 
Number of sessions (%) 455 (79.8%) 115 (20.1%) 581 

Number of patients 200 44 42 

Age, mean (±SD) years 63.8 (14.1) 70.1 (10.2) 64.9 (9.60) 
Female, number (%) 221 (48.6%) 79 (68.7%) 364 (62.7%) 

BCM-DW, mean (±SD) kg 61.3 (11.1) 59.1 (12.9) 54.9 (10.5) 

Average Pre-dialysis BW, mean 
(±SD) kg 

64.5 (10.9) 61.8 (12.9) 56.9 (10.6) 

Average Post-dialysis BW, mean 
(±SD) kg 

62.0 (10.9) 59.6 (12.7) 54.7 (10.3) 

Average Height, mean (±SD) cm 165.6 (7.8) 159.7 (7.6) 159.0 (8.5) 
Average BMI, mean (±SD) kg/m2 22.3 (3.6) 23.1 (4.5) 21.7 (3.8) 

Net UF, mean (±SD) L 2.2 (0.9) 2.1 (0.9) 2.1 (0.9) 
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Average UFR, mean (±SD) mL/kg/hr 9.8 (4.1)   9.6 (4.1) 9.1 (4.4) 

Comorbidities, number (%)    
Hypertension 420 (92.3%) 112 (97.4%) 530 (91.2%) 

Diabetes 177 (38.9%) 59 (51.3%) 198 (34.1%) 

Cerebrovascular disease 22 (4.8%) 7 (6.1%) 67 (11.5%) 
Gout 31 (6.8%) 16 (13.9%) 57 (9.8%) 

Chronic lung disease 1 (0.2%) 2 (1.7%) 28 (4.8%) 

Mode of dialysis, number (%)    
Hemodialysis 455 (100%) 115 (100%) 35 (6.0%) 

Hemodiafiltration 0 (0%) 0 (0%) 546 (94.0%) 
Dialysate profile data    

Dialysate Sodium, mean (±SD) 
mg/dL 

137.8 (1.0) 137.4 (1.6) 137.4 (1.4) 

Dialysate Bicarbonate, mean (±SD) 
mg/dL 

32.1 (1.1) 32.2 (1.4) 32.0 (1.0) 

Dialysate Potassium, mean (±SD) 
mg/dL 

2.9 (0.4) 2.2 (0.5) 2.1 (0.3) 

Dialysate Calcium, mean (±SD) 
mg/dL 

2.9 (0.2) 2.7 (0.4) 3.0 (0.3) 

Dialysate Temperature, mean 
(±SD) Celsius 

36.5 (0.4) 36.3 (0.6) 
 

36.8 (0.5) 

Laboratory data    
Hemoglobin, mean (±SD) mg/dL 10.5 (1.3) 10.8 (1.4) 11.0 (1.4) 

Calcium, mean (±SD) mg/dL 8.9 (0.7) 8.8 (0.9) 8.7 (0.7) 

Sodium, mean (±SD) mg/dL 135.7 (4.4) 137.9 (3.1) 138.7 (2.7) 
Albumin, mean (±SD) mg/dL 3.9 (0.5) 3.9 (0.3) 3.8 (0.3) 

Table 7: Baseline characteristics of dialysis session by training and testing process 
(Configuration B)  
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Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital; BCM-DW, dry weight from BCM; BW, 

body weight; BMI, body mass index; SD, standard deviation; IQR, interquartile range 

 

 

Figure 9: A snippet of the laboratory, demographic, and dialysis data.  
Abbreviations: Id, identification number of patient; PREBW, pre, systolic blood 

pressure; DBP, diastolic blood pressure; MAP, mean arterial pressure; HR, heart rate; 

UFR, ultrafiltration rate 

 

4.1.2 Baseline characteristics of time-series data 

Descriptive statistics of time-series data from overall dialysis session in each 

institute was shown in table 6. The values of each parameter were quite similar, 

although BKIH group had a little higher mean of systolic blood pressure and 

ultrafiltration rate. For easier visualization, the relationship between each feature of 

time-series data was shown in Figure 10. Specifically, change of heart rate during 

dialysis session was shown in the spaghetti plot of Figure 11. A part of data was 

shown in snippet in Figure 12. 

 

 KCMH  
(n = 581 sessions) 

BKIH  
(n = 570 sessions) 

Max Min Mean (SD) Max Min Mean (SD) 

SBP (mmHg) 238 52 145.00 (25.85) 240 61 149.75 (23.04) 
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DBP (mmHg) 154 22 68.65 (13.55) 162 33 69.75 (14.42) 

MAP (mmHg) 159 44 94.43 (15.42) 169 49 96.11 (14.88) 
HR (bpm) 180 30 71.24 (13.17) 145 37 69.50 (11.89) 

UFR (ml/min) 1650 0 450.71 (313.07) 3000 0 541.90 (270.18) 

Table 8: Descriptive statistics of time-series data.  
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital; maximum, Max; minimum, Min; 

standard deviation, SD; SBP, systolic blood pressure; DBP, diastolic blood pressure; 

MAP, mean arterial pressure; HR, heart rate; UFR, ultrafiltration rate 

 

 

KCMH 
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BKIH 

Figure 10: A scatter plot showed the relationship between each feature of the time-
series data was displayed. KCMH (upper) and BKIH (lower) 
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean 

arterial pressure; HR, heart rate; UFR, ultrafiltration rate 
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Figure 11: Spaghetti plot showed HR variation over time in each dialysis session. 
 

 

Figure 12: A snippet of the time-series data in one session was shown.  
Abbreviations: SBP, systolic blood pressure; DBP, diastolic blood pressure; MAP, mean 

arterial pressure; HR, heart rate; UFR, ultrafiltration rate 

 

4.1.3 Distribution of output (BCM-DW) 
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The target for model’s learning in this project is BCM-DW. The histogram of 

BKIH showed normal distribution, while KCMH database showed a minute right-

skewed distribution.  

Figure 13: Histogram of the BCM-DW (kg) of each dialysis session. KCMH (left) and 
BKIH (right). 
Abbreviations: KCMH, King Chulalongkorn Memorial Hospital; BKIH, 

Bhumirajanagarindra Kidney Institute Hospital; BCM, Body composition monitor; BCM-

DW, Dry weight from Body composition monitor 

 

4.2 Result from model development phase 
4.2.1 Processing of time-series data 

4.2.1.1 LSTM as regression model for DW prediction (LSTMreg) 

In this approach, the LSTMreg was not able to effectively predict DW based 

on the time-series data, as evidenced by the high MSE values of 151.3991 (SD 4.3234) 

and 125.8074 (SD 2.3913) for configurations A and B, respectively. Additionally, poor 

agreement was observed, as shown in figure 14, indicating that the model did not 

accurately capture the patterns and trends in the data. Therefore, the LSTM model is 

not a suitable regression model for DW prediction in this case. 
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Figure 14: Training and validation graph loss (upper), Bland-Altman plot of prediction 
from LSTM and BCM-DW (lower). Image showed result of LSTM regression on both 
configuration A (left) and configuration B (right). 
 

4.2.1.2 LSTM as classification model for grouping dialysis session (LSTMclass) 

In the classification task, the LSTMclass was able to categorize dialysis 

sessions into groups of 0, 1, and 2 based on different net UF values from small to 

large, respectively. However, the accuracy of the classification was poor, with only 

48.07% in configuration A and 61.45% in configuration B. The precision was 59.79% 

and 46.25%, respectively, and the F1 score showed 46.96% and 52.75%, respectively. 

Although the confusion matrix had a diagonal shape, it was not perfectly aligned. 

The overall accuracy rate of 50% was also not sufficient to use this as an initial 

model, even though a few subgroups were correctly classified. To determine the 

potential of the model in separating these groups, unsupervised learning of the last 

embedding layers was conducted. The Haversine plot in Figure 16 demonstrated that 

the model had the capability to separate samples of each subgroup into distinct 

zones, even without explicit supervision. 
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Figure 15: Training and validation graph loss (upper). Confusion matrix of grouping of 
dialysis session categorized by net UF. Image showed result of LSTM on both 
configuration A (left) and configuration B (right) 
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Figure 16: UMAP with Haversine plot showed unsupervised dimension reduction, with 
the input data being the embedding layers from LSTM classification.  
 

4.2.2 Processing of non-time-series data 

4.2.2.1 multiple linear regression (ML) 

In this approach, MSE in configuration A was 5.7497, meanwhile configuration 

B showed 3.1051. In Bland-Altman plot between this model and BCM-DW showed 

mean of different at -1.47 kg in configuration A and +0.27 kg in configuration B. While 

limit of agreement was up to 5.2 kg. 
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Figure 17: Bland-Altman plot of multiple linear regression model and BCM-DW. 
configuration A (left) and configuration B (right). 
 

4.2.2.2 Machine learning models (STACK) 

The machine learning approach showed lower MSE in every base model, as 

shown in Table 7. The Bland-Altman plot between this method and BCM-DW (figure 

17) showed that the mean difference was -0.78 kg in configuration A and +0.02 kg in 

configuration B. The stacked model was comprised of Lasso, ENet, KRR and LightGBM 

models. 

 MSE 

Configuration A Configuration B 
Lasso model 1.6187 1.7609 

ENet model 1.6187 1.7609 

KRR model 2.3424 1.5338 
XGBoost model 4.8185 3.0601 

LightGBM model 2.8381 1.8436 

Stacked model 1.6898 1.7867 
Table 9: MSE of each ML model in both configuration 
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Figure 18: Bland-Altman plot between STACK ML model and BCM-DW. Configuration 
A (left) and configuration B (right). 
 

4.2.2.3 Neural network model (gNN) 

Approach by neural network for general data, the model showed an MSE of 

5.7527 (SD 2.0695) in configuration A and 5.1071 (SD 4.0361) in configuration B. Bland-

Altman plots between this method and BCM-DW in both configurations are shown in 

Figure 18. 

 

Figure 19: Bland-Altman plot between non-time-series NN model and BCM-DW. 
Configuration A (left) and configuration B (right). 
 

4.2.3 Combined result of time-series data and non-time-series data (gtNN) 

In this approach, LSTM was used as a base model, and non-time-series data 

embedding was combined before sending data through the last dense layer. The 
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optimization was done for both types of data simultaneously. However, the model 

showed a high MSE of 15.3955 (SD 11.3553) in configuration A and 7.8782 (SD 3.9838) 

in configuration B. The results of the Bland-Altman plot in Figure 19 showed that the 

mean difference was -1.24 kg and +0.49 kg in configuration A and configuration B, 

respectively. The limit of agreement was up to 7.7 kg in configuration A and 5.6 kg in 

configuration B, indicating a wide range of error. 

 

Figure 20: Bland-Altman plot between NN model of combined embedding layer from 
both time-series data and non-time-series data and BCM-DW. Configuration A (left) 
and configuration B (right). 
 

Based on the results of all approaches, it appears that using time-series data 

alone was not a good input for predicting BCM-DW. On the other hand, the model 

for non-time-series data was able to predict BCM-DW with better accuracy. However, 

when time-series data was combined with it, the performance decreased. The 

comparison of the Bland-Altman plot between the different approaches showed 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 54 

slight differences, with the limit of agreement being wider for the time-series data 

models. 

The folded EDFC was also plotted to evaluate the results from the prediction 

of each model (figure 20). In both configurations, the graph from the LSTMreg model 

showed the lowest peak and the widest range of sway from the actual value. On the 

other hand, the graph from the STACK model gave the nearest peak to the zero line 

and was the steepest among the other graphs. Therefore, the STACK model was 

chosen as the final model for this study. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 55 

Figure 21: Folded Empirical Distribution Function Curves of each model. Configuration 
A (upper) and Configuration B (lower). 
 

4.3 Result from further analysis of final model 
Based on the presented results, the final model for predicting dry weight (DW) 

showed a mean difference of -0.78 kg and +0.02 kg when tested in configuration A 

and configuration B, respectively. The absolute mean difference was 1.25 kg and 1.32 

kg for configuration A and configuration B, respectively. The limits of agreement were 

wider for configuration A (-3.7 to +2.2 kg) compared to configuration B (-3.5 kg to +3.5 

kg). The subgroup above the limit contained 11 samples in configuration A and 16 

samples in configuration B, while the subgroup below the limit contained 20 samples 

in configuration A and 13 samples in configuration B. In summary, the number of 

samples out of agreement was 31 out of 570 samples (5.44%) and 29 out of 581 

samples (4.99%) for configurations A and B, respectively. It is worth noting that these 

sessions that caused an outlier in prediction did not come from a single specific 

patient but were spread across 15 patients in the KCMH database and 25 patients in 

the BKIH database. These results suggest that while the final model may have some 

degree of predictive accuracy, there is still room for improvement in terms of 

reducing variability and increasing agreement between predicted and actual values. 

This was done by dividing the samples into three subgroups based on the 

range of agreement, as shown in Figure 21. Two sub-analyses were then performed 

to determine the cause of poor performance in some samples. 
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Figure 22: Divided dialysis group of final model based on limit of agreement. 
Configuration A (left) and Configuration B (right). 
 

The sub-analysis using SHAP values to determine the effect of each 

parameter on the model's prediction was shown in Figure 22. This can be particularly 

useful in cases where the model has a large number of features, as it can help to 

reduce the computational resources required for training and inference by 

eliminating unnecessary features. However, in this study, we aimed whether certain 

features were driving the results into different subgroups.  

The second thing that assist this sub-analysis was reviewing the descriptive 

data of outliers to see whether interested feature with abnormal SHAP value did 

have an abnormal distribution between the subgroups (Table 10 and Table 11). This, 

combined with the study of SHAP values, can help identify at risk features that may 

be contributing to the poor performance of the model. If such features were 

identified, we would evaluate whether removing them could lead to fewer instances 

of disagreement. 
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Figure 23: SHAP value of each subgroup in each configuration. Subgroup above limit 
(upper), Subgroup within limit (middle), Subgroup below limit (lower). Configuration A 
(left) and Configuration B (right) 
 

 

above LOA Within LOA Below LOA 

Mean Max Min Mean Max Min Mean Max Min 

PREBW 75.3 100 59.5 61 106.3 35.7 65.4 93.5 40.8 

POSTBW 73.5 97.1 59.3 58.8 102.7 33.1 62.9 91.9 38.3 

NUF 1.7 2.9 0.2 2.2 4.2 0 2.5 3.9 1.4 

UFRH 5.9 11.3 0.8 9.7 24.9 0 10.7 16.7 4.1 

HB 9.9 12.3 8.4 10.7 16.7 6.5 10.8 13.3 8.9 

CA 8.8 9.5 7.7 8.8 14.2 5.4 9.1 10.9 7.8 

ALB 3.6 4.2 1.5 3.9 4.9 1.5 3.9 4.7 3.2 

NA 136.7 141 129 136.6 146 114 135 143 120 

HEIGHT 168.4 176 156 160.6 183 141 162 176 148 

AGE 67.2 86 37 67.8 89 31 62.7 77 46 
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SEX 0.1 1 0 0.5 1 0 0.5 1 0 

BMIPOST 26.4 34 22.3 22.6 34 15 21.9 32.6 15.7 

HT 1 1 1 0.9 1 0 0.7 1 0 

DM 0.3 1 0 0.4 1 0 0.5 1 0 

CVA 0 0 0 0 1 0 0 0 0 

GOUT 0 1 0 0 1 0 0.1 1 0 

Clu 0 0 0 0 1 0 0 0 0 

DNA 138 138 138 137.6 140 130 138.1 140 138 

DHCO 32 32 32 32 38 26 32 32 32 

DK 2.8 3 2 2.5 4 2 2.7 3 2 

DCA 2.8 3.5 2 2.7 3.5 2 2.8 3 2.5 

DT 36.3 37.2 35.9 36.4 37.8 34.3 36.5 37.3 35 

HDF 0 0 0 0 0 0 0 0 0 

Table 10: Review of descriptive data between subgroups (configuration A) 
Abbreviations: LOA, limit of agreement; PREBW, pre-dialytic body weight; POSTBW, 

post-dialytic body weight; NUF, net ultrafiltration volume; UFRH, ultrafiltration rate 

per hour; HB, hemoglobin; CA, calcium; ALB, albumin; NA, sodium; HT, hypertension; 

DM, diabetes; CVA, cerebrovascular accident; Clu, chronic lung disease; DNA, 

dialysate sodium; DHCO, dialysate bicarbonate; DK, dialysate potassium; DCA, 

dialysate calcium; DT, dialysate temperature; HDF, hemodiafiltration 

 

 

Above LOA Within LOA Below LOA 

mean max min mean max Min Mean Max min 

PREBW 72 96.7 42.4 56.4 91.5 38.4 57.1 75.5 46.9 

POSTBW 69.4 93.3 40.4 54.3 89.7 36.7 55.3 73.8 45.7 

NUF 2.5 3.6 0.6 2 4.5 0 1.8 3.9 -0.6 

UFRH 9.7 13.6 1.6 9.7 24.4 0 8.3 21.3 -3.1 

HB 10.9 13.9 7.8 10.9 15.6 6.2 10.7 12.7 8.7 

CA 8.7 9.4 7.8 8.7 11.8 7 8.7 10.1 7 

ALB 3.7 4.2 2.9 3.8 4.8 2.5 3.5 4.5 2.3 

NA 138.4 144 132 138.7 145 129 136 140 133 

HEIGHT 164.5 176 155 158.6 183 138 166.7 176 141 

AGE 60.3 67 50 65.1 83 39 58 76 52 

SEX 0.5 1 0 0.6 1 0 0.1 1 0 
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BMIPOST 25.7 35.1 16.5 21.5 33.7 15.2 19.9 24.3 16.7 

HT 0.8 1 0 0.9 1 0 0.9 1 0 

DM 0 1 0 0.3 1 0 0.3 1 0 

CVA 0 1 0 0.1 1 0 0 0 0 

GOUT 0 1 0 0 1 0 0 1 0 

Clu 0 1 0 0 1 0 0 0 0 

DNA 137.6 138 136 137.3 140 134 136.6 138 134 

DHCO 32 32 32 31.9 34 28 32.3 34 32 

DK 2 2 2 2.1 3 2 2.2 3 2 

DCA 3.1 3.5 3 2.9 3.5 2.5 3 3.5 2.5 

DT 36.9 37 36 36.7 37 35 36.9 37 36.5 

HDF 1 1 1 0.9 1 0 1 1 1 

Table 11: Review of descriptive data between subgroups (configuration B) 
Abbreviations: LOA, limit of agreement; PREBW, pre-dialytic body weight; POSTBW, 

post-dialytic body weight; NUF, net ultrafiltration volume; UFRH, ultrafiltration rate 

per hour; HB, hemoglobin; CA, calcium; ALB, albumin; NA, sodium; HT, hypertension; 

DM, diabetes; CVA, cerebrovascular accident; Clu, chronic lung disease; DNA, 

dialysate sodium; DHCO, dialysate bicarbonate; DK, dialysate potassium; DCA, 

dialysate calcium; DT, dialysate temperature; HDF, hemodiafiltration 

 

In configuration A, SHAP values were calculated for each subgroup. However, 

the top four SHAP values were found to be the same across all subgroups, namely 

"Pre-dialytic BW," "Post-dialytic BW," "BMI," and "Height," respectively. This suggests 

that searching for a culprit feature that drives the results to be outliers may not be 

successful since there was no striking feature between the subgroups. Although there 

was a difference in the 5th rank of SHAP value between the subgroups, the effect of 

this rank was quite small. The subgroup within the limit had "HDF status" as their 5th 

rank, while the subgroup above the limit had "serum sodium," and the subgroup 

below the limit had "serum albumin," respectively. A review of the demographic data 

showed that these outliers did not come from the same patient. Further description 

in Table 8 showed that the average values of “serum sodium” between each 
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subgroup were not much different, while “serum albumin” varied at a greater 

amount. Therefore, the removal of this feature was expected to show more effect. 

Unfortunately, the result of the sensitivity analysis (figure 23) did not show much 

difference in the number of outliers (27 out of 570 samples, number out of 

agreement 4.74%). In conclusion, the results that cause outliers in configuration A 

may not be due to any single parameter, but rather due to the variation of raw data 

itself. 

In configuration B, the top 4 SHAP values for each subgroup were the same, 

which were "Height," "BMI," "Pre-dialytic BW," and "Post-dialytic BW," but the order was 

different for each subgroup. The subgroup above the limit had "Height" as the first 

rank of SHAP value, while it was the second and third rank in the subgroup within the 

limit and subgroup below the limit, respectively. Removing this parameter was 

expected to decrease the number of outliers that come from the subgroup above 

the limit. However, the sensitivity analysis (Figure 24) showed that while the 

subgroup above the limit contained fewer outliers, decreasing from 16 to 12 

samples, the subgroup below the limit contained more outliers, increasing from 13 to 

18 samples. In summary, removing a single parameter could not simply decrease an 

outlier as it also affects other subgroups. 

We were also concerned about the parameter "Post-dialytic BW," as it may be 

dependent on the output value, so we conducted a sub-analysis to see if the model 

relied solely on this parameter or not. The sub-analysis (Figure 25) showed that the 

mean difference changed slightly from +0.02 kg to -0.03 kg. The limit of agreement 

also increased slightly from a lower limit of -3.5 kg to -3.7 kg and a lower limit of +3.5 

kg to +3.7 kg. 
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Figure 24: Bland-Altman plot of sub-analysis (exclude “serum albumin”) between 
ML-DW from STACK model and BCM-DW in Configuration A  
 

 

Figure 25: Bland-Altman plot of sub-analysis (exclude “Height”) between ML-DW 
from STACK model and BCM-DW in Configuration B 
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Figure 26: Bland-Altman plot of sub-analysis (exclude “Post-dialytic BW”) between 
ML-DW from STACK model and BCM-DW in Configuration B 
 

Time latency for running this final model was 160 milliseconds. Size of the code was 

420 KB. 
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CHATER 5  
DISCUSSION 

 
The present study aimed to predict BCM-DW using machine learning. The final 

model incorporated input variables mainly from demographic data, laboratory data, 

and dialysis data. The model of interest was a stacking of machine learning base 

models. The resulting model, ML-DW, was compared to BCM-DW using a test of 

agreement. Further sub-analysis was conducted to mitigate the effect of outliers. The 

robustness of the model was confirmed by testing it in a different database from 

another institute. 

 

5.1 Descriptive analysis 
The baseline characteristics of the dialysis sessions between the institutes 

were shown as described. Although this study focused on each individual dialysis 

session and the total number of dialysis sessions between the institutes was similar, 

the number of patients in the KCMH database was quite different from that in the 

BKIH database. This difference in number may imply that there were many dialysis 

sessions that contained demographic data from the same patients. This issue could 

have affected the model's development process. Therefore, we used the group 

shuffle split function to ensure that the sampling from the training and validation 

processes would not be contaminated by each other. 

A concern about post-dialytic body weight in the KCMH database was also 

noted, as it was found to be quite close to BCM-DW. Therefore, any model that 

weighted the post-dialytic body weight parameter too heavily would make it easier 

for the model to roughly predict BCM-DW on KCMH data. However, this issue could 

be addressed by testing a model in both configuration A and B. Furthermore we  aim 

for conducting a sub-analysis with the exclusion of the post-dialytic body weight 

parameter. Furthermore, this study aimed to test agreement, meaning that any small 
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variation between post-dialytic body weight and BCM-DW in each session would be 

taken into account during the assessment. Since post-dialytic body weight and BCM-

DW have different standard deviations, a model that simply rounds the post-dialysis 

body weight to BCM-DW would not achieve good agreement. 

Another important consideration in this study is the variation in time-series 

data. As shown in the scatter plot, there was no relationship between blood pressure 

and heart rate at all. Similarly, the trend of change in heart rate upon change in 

spaghetti plot was not observed, as shown in Figure 11. This is a concerning sign that 

these parameters may not provide much insight into the problem at hand, as there 

could be various factors that explain the lack of relationship. 

 Firstly, it should be noted that the vital sign and ultrafiltration rate trends in 

this study were adjusted preemptively. One of the institutes was a university hospital 

and the other a private hospital, and both had physicians rounding on patients in 

every dialysis session, even on holidays. They tended to make preemptive 

adjustments to prescriptions during dialysis in response to changes in intradialytic 

parameters aiming for minimize the adverse events, such as lowering the 

ultrafiltration rate when there was an alarm of blood volume monitoring to avoid 

consequences of intradialytic hypotension. Preemptive adjustments to prescriptions 

during dialysis likely mitigated changes in vital signs and reduced the influence of 

positive signals from vital signs and ultrafiltration rate on the determination of proper 

weight. 

Secondly, despite preemptive efforts to minimize adverse events, they still 

occurred during dialysis sessions, such as hoarseness, cramping, and lightheadedness, 

which led to a reduction in the ultrafiltration rate. Thus, interruptions or changes in 

the ultrafiltration rate during dialysis could be a clue toward under dry weight. It is 

important to note that changes in ultrafiltration rate can also occur due to reasons 

other than adverse events. So, it needs to be clarify whether change in ultrafiltration 

were planned or unplanned and related to fluid status or not. However, records of 
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these events were not available and were not included in this study, thus limiting 

the ability to fully understand the impact of adverse events and ultrafiltration rate 

towards proper weight. 

Thirdly, it should be noted that heart rate variability in this study might be 

compromised by beta blockers or sinus node dysfunction, which commonly found in 

senile adults. This factor would limit the potential usefulness of the designed system 

as it is based on tracking the HR change. 

Finally, it should be mentioned that most patients in the university hospital 

used the hemodiafiltration technique, which is known to reduce the incidence of 

intradialytic hypotension. This could have weakened the effect of vital sign changes 

and reduced the accuracy of classification, even in patients who had high net UF. 

Although many approaches and models were tried in this study to figure out the 

usefulness of this time-series data, these factors should be taken into consideration 

when interpreting the results. 

 

5.2 Model’s development phase 
Despite various attempts using different approaches, such as LSTMreg and 

LSTMclass, the LSTM modelling consistently produced high mean squared error 

(MSE) and unsatisfactory agreement test results. This study provided two important 

things more than other previous trials.  

Firstly, the study suggested that time-series data alone was not sufficient to 

predict the real value of BCM-DW. This is understandable considering that patients 

with different body weights could have similar vital sign patterns during a dialysis 

session. However, the dry weight of a patient should depend on parameters such as 

weight, height, or sex, and not just vital signs. We also felt that if the model could 

predict dry weight accurately without the need of other parameters, its reliability 

would be questionable. 
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Secondly, the study found that time-series data had some potential in 

classifying dialysis sessions based on the gap between pre and post weight. However, 

this result was limited to certain subpopulations. For example, in configuration A, 

classifying the subgroup with a high gap was the easiest task. To explore why this was 

the case, we conducted unsupervised learning of the embedding layer of the LSTM 

classification model (as shown in Figure 16). We discovered that the embedding 

layers of this model had the potential to separate these subgroups, as evidenced by 

the distinct areas of color in the UMAP plot. However, the model failed to do so, 

possibly due to the lack of some other parameters. Since adverse events were 

related to the change of vital signs and were not accounted for in the model's 

learning, further studies are needed to ensure their inclusion in order to maximize 

the potential of the LSTM model for classification. 

Even combining time-series data with non-time-series data, it failed to yield 

positive outcomes. These findings emphasize that the vital signs parameter alone 

may not be the sole contributor to body weight. As previously mentioned, they may 

be potential for predicting gap of weight. However, there were data defects, and 

many other factors were also at play. 

While the study was unable to find a relationship between time-series 

variables and DW, the findings regarding non-time-series data or general data suggest 

that it may be worthwhile to further explore this approach. The study was able to 

develop several models, including gNN, LR, and STACK. Among these models, the 

STACK model was ultimately selected as it showed the best performance with a 

small bias from BCM-DW and the narrowest limit of agreement, as also shown in the 

Folded EDFC. 

It should be noted that a more complex neural network model does not 

always result in better performance. The performance of a model depends on the 

task at hand, which may be easily captured by a straightforward linear regression or 
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machine learning model. Additionally, the number of samples required is typically 

much higher for neural network models. 

Although this machine learning model showed generalizability across 

configuration A and B, it is important to note that there were differences in 

performance between the two configurations in other models. Configuration B, a 

model that trained and validated on dialysis sessions in an institute with more 

dialysis patients, led to easier prediction of dialysis sessions with fewer patients. 

Therefore, in addition to the number of dialysis samples that affect the model, the 

number of patients also results in better prediction performance. Thus, while STACK 

was chosen as the final model for this study, the results may change if applied these 

models to other datasets with more samples and patients. 

 

5.3 Model’s evaluation phase 
5.3.1 Graphic analysis 

  In this section, we focus on assessing each parameter of the Bland-Altman 

plot of our final model. First and foremost, the mean difference or systemic bias is 

quite small. This parameter indicates the average difference between the new tool's 

prediction and the gold standard. From a statistical standpoint, some studies suggest 

that this number should not exceed 25% of the reference value, as it can result in a 

number out of limit higher than 5%53. However, in clinical practice, this number must 

be interpreted with caution, as the degree of error in each measurement differs 

between clinical problems.  

As an RCT26 found that gradual probing of DW can decrease both blood 

pressure and left ventricular mass index reduction, which are strongly linked to 

mortality, it is important to have a DW assessment tool with an average difference in 

mean lower than 1.0 kg. Furthermore, when compared to C-DW performance, the 

largest trial that compared C-DW and BCM-DW, without testing for agreement, found 
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that the average euvolemic status by C-DW can be overweighted by BCM-DW by an 

average gap of 2.0 kg19. Our study showed that the final model can accurately 

predict DW with a small bias from BCM-DW, -0.78 kg in configuration A and +0.02 kg 

in configuration B. Therefore, the use of ML-DW can provide better prediction 

performance than C-DW, potentially delivering better clinical outcomes for patients. 

The limit of agreement tells us how far the predicted result could deviate 

from the actual value, and it is usually represented by the upper and lower borders 

of 1.96 standard deviations for better clinical use. A narrower range of agreement 

indicates greater confidence in the tool. However, one must keep in mind that this 

parameter can only be appreciated if the standard tool has consistent results. If the 

reference tool is good but has volatile results, this will always show a wide range of 

agreement, even when compared to a good, highly accurate tool. 

Since our model was assessed on BCM-DW, which has less variability than C-

DW, we can use the result with confidence that it is meaningful. The model showed 

that the limits of agreement were quite wide, ranging from -3.7 to +2.2 kg in 

configuration A and -3.5 to +3.5 kg in configuration B. However, compared to studies 

that use C-DW, which had limits of agreement ranging from 3.79 kg54 to 7.20 kg42, our 

model's limits of agreement were narrower. Therefore, although this ML model 

cannot completely replace BCM, it has the potential to be a useful tool that 

provides a narrower limit of agreement than C-DW. 

Number out of agreement is another parameter that indicates a tool's 

consistency compared to the reference tool. It shows the percentage of samples that 

fall outside the limit of agreement. A lower percentage indicates a higher probability 

that the new tool can predict results near the mean difference. This is similar to the 

area under the curve in the folded EDFC, which expects the majority of samples to 

fall within the prediction zone, with a minority on each tail. Although there is no 

consensus on the cut point, below 5% is an accepted value in previous studies42 41 

on DW prediction and is also mentioned in some statistics textbooks53. In this study, 
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our final model's results showed borderline numbers of 5.4% (31/570) and 4.9% 

(29/581) for configurations A and B, respectively. In other words, the predictions from 

this model had a chance of falling within the acceptable limit as high as 94.6% and 

95.1%, which is moderate. This again showed better performance of the model on 

configuration B, which may be explained by the generalizability of the input data, as 

already mentioned. 

After performing sensitivity analysis and removing the most influential feature 

towards outliers, in configuration A, a single parameter could not directly result in an 

outlier. Instead, we suspected that the raw data itself had some variance. Physician 

decision-making was another factor that influenced the prescription of parameters for 

each dialysis session but was not included in this study. For instance, if a healthy 

patient underwent a dialysis process and the physician saw that this patient was 

doing well, they might try to adjust the net ultrafiltration volume for that session as a 

trial. Patients might also request their physician to remove more fluid, so they could 

eat more during the following interdialytic days. Therefore, the parameters that we 

collected in this study may be affected by the decisions of patients and doctors on a 

case-by-case basis, which could impact the hidden associations we were seeking to 

identify. 

In configuration B, first sub-analysis showed that parameter removal did 

decreased number out of agreement in one subgroup but increase in another 

subgroup instead. So, this model might be at its optimum state and could not be 

tuning more by this technique. Interestingly, in the other sub-analysis, the removal of 

Post-dialytic BW and Post-BMI did not result in a significant worsening of the 

prediction. This could imply that the dependency between this parameter and BCM-

DW was not as strong as initially suspected or that the model did a good job of 

capturing the association based on various parameters, not just a single one. This is a 

positive result as it suggests that the model is robust and can generalize well to new 

data.  
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In summary from graph analysis alone our model was good for low mean 

difference, which may detect the difference in weight that led to clinical benefit. It 

showed low number out of limit, but still had wide limit of agreement. Thus, it 

cannot be a replacement for BCM yet. 

 

5.3.2 Other potentials 

 To evaluate the model beyond the graph, it is important to consider factors 

such as time consumption, cost consumption, operator expertise, and 

generalizability. A new tool may have a lower mean of difference compared to the 

reference tool, but it may also be more time-consuming or expensive to use, 

requiring a highly skilled operator. In addition, a tool with a lower mean of difference 

may not be generalizable to different populations or settings, making it less useful in 

clinical practice. Therefore, the performance of a new tool must be evaluated not 

only in terms of its accuracy but also in terms of its practicality and usability in real-

world scenarios. 

Besides the time required for inputting all the necessary data for the model, 

the time latency for obtaining the results from the model is around 160 milliseconds, 

which is less than one minute. This is significantly faster compared to the BCM 

measurement, which requires the creation of a chip card and takes around 5 minutes 

from attaching the electrodes to the patient to obtaining the results. Moreover, the 

patient does not need to be physically present during the test, making it a more 

convenient option for both patients and physicians. Thus, this tool has the potential 

to save both time and resources in clinical settings. 

Cost is a major limitation of the BCM, especially in developing countries. We 

have already discussed the cost-effectiveness analysis of the BCM and its 

impracticality for use in all of our patients, as costs continue to increase. However, a 

machine learning model can provide a prediction at much lower cost, with a 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 71 

development process cost of less than five thousand baht, making it a more practical 

option for our country. 

The machine learning model is operator-independent, as it only requires the 

input of the necessary parameters. In contrast, with the BCM measurement, there are 

concerns regarding tissue reactance and resistance, which require the assessor to 

have knowledge of how to maximize electrode conduction, adjust patient position 

with large body contour to avoid short circuit, and deal with patients with limitations, 

such as amputees or patients using electrodes not included in the validation study 

for the BCM. With the ML model, other healthcare workers with less training can use 

it. Furthermore, if the ML model were trained with a wider range of population using 

the reference tool, it could be used as a DW assessment tool for a greater number of 

patients. 

Generalizability is a crucial factor when evaluating the effectiveness of a new 

tool. This cloud-based machine learning model is accessible remotely, eliminating 

the need for physical equipment or special storage requirements. It is also 

lightweight, with a size of less than 1MB, making it compatible with mobile devices. 

This level of accessibility increases its usefulness in a wider range of settings, 

potentially making it easier for the general population to use the tool.  

In addition, despite the lower number of BCM measurements with dialysis 

sessions per patient in BKIH institute compared to KCMH, the model performed 

similarly in both Configuration A and B. Therefore, it is possible that the model could 

be applied to areas with a lower number of BCM measurements per patient. With 

proper adjustment, this tool could be useful in a wide range of settings. 

Furthermore, the ML model has several benefits, including non-invasiveness 

and high repeatability. The wide limit of agreement may be corrected by repeating 

the measurement, which is not costly. At this point, we believe that the benefits of 

the ML model outweigh those of the BCM for various reasons. Although the limit of 
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agreement may be wide, the mean of agreement is acceptable. While the accuracy 

may be lower, the model has the potential to be a good replacement if studied with 

a larger database. Additionally, compared to conventional assessment without any 

tool, the ML-DW is a complement that can assist physicians in adjusting a patient's 

DW with more confidence. Its high repeatability could serve as one of the screening 

tools. 

This study has a number of strengths: it was the first machine learning model 

that aimed to predict BCM-DW. Compared to other models, this one tried to explore 

the utilization of time-series data in the input variables. It also demonstrated external 

validation across different institutions. Nevertheless, some limitations remain. 

 

5.4 Limitations and suggestion 
Firstly, the retrospective nature of the study made it challenging to 

demonstrate the effects of all clinical variables on intradialytic changes. Additionally, 

the lack of data on interventions and consequences during dialysis limited the 

accuracy of the time-series data in predicting DW. Further studies should focus on 

collecting more comprehensive data on these factors in a prospective manner. 

Another limitation is that the neural network model's performance was poor 

due to the small number of dialysis sessions in this study. A database from 

multicenter studies in other countries may be needed to improve this model. 

Lastly, it's important to note that the model used in this study may not have 

included all the relevant parameters that could affect blood pressure and heart rate 

variation. For example, cardiac function, electrocardiogram, and use of beta-blocker 

are not incorporated into the model. Therefore, it may be premature to conclude 

that time-series data is not useful for developing a model for DW prediction. 

Moreover, collaboration with experts from other subspecialties is necessary to 
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incorporate a more comprehensive set of features into the model and to determine 

the feasibility of developing an accurate DW prediction model using time-series data. 

 

5.5 Conclusion 
A model from machine learning could assist physicians in DW prediction with 

a comparable correlation to BCM-DW. However, many factors were needed for its 

fine-tuning before being implemented in real clinical practice. 

This study served as a proof-of-concept that machine learning can be a useful 

tool for DW prediction but not yet a replacement tool for BCM. With its potential, it 

may be served as a good screening tool that assist clinical adjustment for DW. This 

lays the foundation for the development of clinical tests in the future. 
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