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CHAPTER I

INTRODUCTION

1.1 Motivation and literature surveys

The finite integration method (FIM) represents a recently developed computational

approach for estimating solutions to boundary value problems that stem from ordinary

differential equations (ODEs) and partial differential equations (PDEs). The core princi-

ple of FIM involves substituting the comprehensive solution domain, i.e., the entire area

where the solution is sought, with a finite set of distinct points referred to as grid points.

The objective subsequently becomes to find an approximate solution at these grid points,

mirroring the process employed in the finite difference method (FDM). It is customary

for these grid points to be uniformly distributed along the independent coordinates.

The integration matrix is a key component of the FIM. Traditionally, this matrix is

obtained via direct numerical integrations. In 2013, Wen et al. [26] introduced a variation

to the FIM, incorporating the standard trapezoidal integral and radial basis functions, a

substantial development in the field for solving one-dimensional linear PDEs. In 2015, Li

and his colleagues [19] extended the use of FIM, applying it to multi-dimensional prob-

lems. This expanded the potential applications of FIM significantly. A year later, Li

et al. [20] introduced further improvements to the FIM, incorporating Simpson’s rule,

Newton-Cotes formulas and Lagrange polynomial methods for solving multi-dimensional

linear PDEs. As a result of these advancements, the traditional FIM, where the integra-

tion matrix was derived based on quadrature formulas, exhibited superior accuracy when

approximating solutions for differential equations, particularly when compared with other

techniques like the FDM under identical conditions. In 2018, a notable modification to

traditional FIMs was proposed by Duangpan and Boonklurb et al. [7,10]. They integrated

Chebyshev polynomials as substitutes for trapezoidal, Simpson, Newton-Cotes and La-



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

grange functions to approximate solutions for steady-state linear PDEs. This method,

later known as the FIM using the Chebyshev polynomial expansion (FIM-CPE), published

in 2020 [3], significantly outperformed all preceding versions of FIM, marking a major leap

forward in the field. There are applied to solve many problems, see [3–7,11–16] for more

details. Nevertheless, it is important to note that extensive applications of this FIM-CPE

have not yet been explored to solve problems involving non-local boundary conditions.

Consequently, this constitutes the principal focus of our research.

In this thesis, our objective is to devise numerical algorithms for finding approximate

solutions to three types of boundary conditions: one-dimensional heat equations with non-

local and Robin boundary conditions together with two-dimensional heat equations with

non-local boundary conditions. These proposed algorithms leverage the FIM-CPE and the

Crank-Nicolson method to manipulate the spatial and temporal variables, respectively,

as a means to address these mathematical challenges. Moreover, we utilize a selection

of pertinent examples to validate our proposed methodologies, comparing our findings to

those of other established methods as well as their respective analytical solutions. For

implementation, we utilize MatLab 2021b software on a system powered by an Intel(R)

Core(TM) i7-6700 CPU operating at 3.40 GHz. The resulting data provides compelling

evidence of the efficacy of our proposed algorithms, demonstrating their capacity to yield

a marked improvement in accuracy, while maintaining low computational costs. This

offers the potential for substantial advancements in the processing and understanding of

heat equations with varying boundary conditions.

1.2 Research objectives

This research aims to develop numerical algorithms that are based on the FIM-

CPE. The primary objective of these algorithms is to find approximate solutions for one-

and two-dimensional heat equations that are governed by non-local boundary conditions

and also Robin boundary conditions for one-dimensional problem. The ambition is to

create a robust numerical model capable of dealing with these types of heat equations

and providing reliable and approximate solutions.
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1.3 Thesis overview

This thesis is organized into five distinct chapters, each fulfilling a specific purpose.

Chapter I provides an introduction and the motivation behind this thesis, outlining the

research objectives and offering an overview of the thesis structure. Chapter II delves

into the preliminary knowledge essential for understanding this work, including an in-

troduction to Chebyshev polynomials, a presentation on the FIM-CPE in both one- and

two-dimensional spaces, and an exploration of one- and two-dimensional heat equations

with non-local boundary conditions. Chapter III applies the FIM-CPE and also the

Crank-Nicolson method as a solution strategy to construct numerical algorithms for one-

dimensional heat equations with non-local and Robin boundary conditions. This chapter

includes several numerical examples to illustrate the application of the method. Chap-

ter IV expands on the concept introduced in Chapter III and applies it to two-dimensional

heat equations with non-local boundary conditions, offering further numerical examples

for clarity and comprehension. Finally, Chapter V concludes the thesis with a compre-

hensive summary of the findings, a discussion of the research implications and suggestions

for possible future avenues of investigation.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

PRELIMINARIES

In this chapter, we provide background information on the meaning and proper-

ties of the Chebyshev polynomials, which are crucial to the FIM-CPE. The form of heat

equations with non-local boundary conditions in one- and two-dimensions is given. Heat

equations with Robin boundary conditions in one-dimension. Let us first provide the

definition and some essential properties of Chebyshev polynomials and some helpful in-

formation about them.

2.1 Chebyshev polynomials

Let us start by outlining the fundamental definition of Chebyshev polynomials

and some of their beneficial properties. Chebyshev polynomials are set of orthogonal

polynomials that are crucial to the theory of approximation; for further information,

see [23]. There are several varieties of Chebyshev polynomials as well. However, in this

work, we only pay attention to the degree n ≥ 0 Chebyshev polynomial of the first kind,

defined by Tn(x) in Definition 2.1. Figure 2.1 shows the first five Chebyshev polynomials

Tn(x) at degree n ∈ {0, 1, 2, 3, 4} for x ∈ [−1, 1].

Figure 2.1: Chebyshev polynomials Tn(x) for n ∈ {0, 1, 2, 3, 4}.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

Usually, the Chebyshev polynomial is defined over [−1, 1]. However, in the case of

using over the general one-dimensional domain [a, b]. The following definition gives the

Chebyshev polynomial defined over [a, b] instead.

Definition 2.1 ([3]). The Chebyshev polynomial of degree n ≥ 0 is defined as

Tn(x) = cos(n arccosx), for x ∈ [−1, 1]. (2.1)

However, the formula for the degree n ≥ 0 Chebyshev polynomial Tn(x) can be defined

on the general domain [a, b] by

Rn(x) = cos
(
n arccos

(
2x− a− b

b− a

))
, for x ∈ [a, b]. (2.2)

Lemma 2.1 ([3]). The Chebyshev polynomial properties include the followings:

(i) The zeros of the Chebyshev polynomial Rn(x) for x ∈ [a, b] are

xk =
1

2

(
(b− a) cos

(
2k − 1

2n
π

)
+ a+ b

)
, k ∈ {1, 2, 3, . . . , n}. (2.3)

(ii) The first-order derivatives of Rn(x) at the end point x ∈ {a, b} are

R′
n(x) :=

d

dx
Rn(x) =

2n2

b− a

(
2x− a− b

b− a

)n+1

for x ∈ {a, b}. (2.4)

(iii) The single-layer integrals of Chebyshev polynomial Rn(x) for n ≥ 2 is

R̄n(x) :=

∫ x

a
Rn(ξ)dξ =

b− a

4

(
Rn+1(x)

n+ 1
− Rn−1(x)

n− 1
− 2(−1)n

n2 − 1

)
, (2.5)

where the two initial values are R̄0(x) = x− a and R̄1(x) =
(x−a)(x−b)

b−a . Moreover,

the explicit formula of R̄n(x) at the upper limit x = b is

R̄n(b) :=

∫ b

a
Rn(ξ) dξ =

b− a

2

(
1 + (−1)n

1− n2

)
, for n ≥ 2. (2.6)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6

(iv) The discrete orthogonality relationship of Chebyshev polynomials Ri and Rj is

n∑
k=1

Ri(xk)Rj(xk) =


0 if i ̸= j,

n if i = j = 0,

n
2 if i = j ̸= 0,

where xk are the zeroes of Rn(x) defined in (2.2) and i, j ∈ {0, 1, 2, . . . , n}.

(v) The Chebyshev matrix R at each zero xk as defined in (2.3) is

R =



R0(x1) R1(x1) · · · Rn−1(x1)

R0(x2) R1(x2) · · · Rn−1(x2)

...
... . . . ...

R0(xn) R1(xn) · · · Rn−1(xn)


.

Then, R has its multiplicative inverse R−1 = 1
ndiag{1, 2, 2, . . . , 2}R⊤.

2.2 Kronecker product

The Kronecker product, named after the German mathematician Leopold Kro-

necker, is a particular kind of tensor product between two matrices. It is used in various

fields of mathematics, engineering, physics, and computer science due to its unique prop-

erties and the structure it creates [27].

Definition 2.2 ([27]). Let A = [aij ] ∈ Rm×n and B ∈ Rp×q. Then, A ⊗ B ∈ Rmp×nq is

the Kronecker product defined by a block matrix as follows:

A⊗ B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

 .

The Kronecker product has a number of important properties, such as compatibility

with matrix addition and multiplication, as well as with the transpose and the inverse



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7

operations, given certain conditions. This makes it a valuable tool in many areas. The

following theorem is some properties used in this thesis.

Theorem 2.1 ([27]). The Kronecker product properties include the followings:

(i) Let A ∈ Rm×n and B ∈ Rp×q. Then,

A⊗ B = (A⊗ Ip)(In ⊗ B) = (Im ⊗ B)(A⊗ Iq).

(ii) Let A ∈ Rm×n, B ∈ Rq×r, C ∈ Rn×p and D ∈ Rr×s. Then,

(A⊗ B)(C⊗D) = (AC)⊗ (BD).

(iii) Let A ∈ Rm×m, B ∈ Rn×n and P := [In ⊗ e1, In ⊗ e2, . . . , In ⊗ em] be an mn×mn

permutation matrix, where ei := [0, . . . , 0, 1, 0, . . . , 0]⊤ is an m-dimensional column

vector which has 1 in the ith positions and 0’s elsewhere and In is an n×n identity

matrix. Then, P(A⊗ B)P⊤ = B⊗A.

Note that the Kronecker product and its properties will be used in section 2.3.2 to

change the local numbering system to the global numbering system.

2.3 Chebyshev integration matrices

In this section, our aim is to succinctly outline the application of the FIM-CPE.

The primary focus here is the extraction of Chebyshev integration matrices for both one-

and two-dimensional contexts. This approach is the fundamental in our quest for solving

heat equations with non-local boundary conditions.

2.3.1 FIM-CPE in one-dimension

The Chebyshev integration matrix described in [3], a major tool for handling the

integral term, is then built. We assume that M ∈ N and we would like to approximate the
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solution of heat equations in terms of a function u(x) by using the Chebyshev expansion

which can be written as

u(x) =

M−1∑
n=0

cnRn(x) for x ∈ [a, b], (2.7)

where cn is unknown coefficients. Let xk for k ∈ {1, 2, 3, . . . ,M} be nodal points that are

discretized by the zeros of Chebyshev polynomial RM (x) defined in (2.3). Substituting

each xk into (2.7), the result can be expressed in matrix form



u(x1)

u(x2)

...

u(xM )


=



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
... . . . ...

R0(xM ) R1(xM ) · · · RM−1(xM )





c0

c1
...

cM−1


which is denoted by u = Rc. Therefore, c = R−1u, where R−1 is defined in Lemma

2.1(v). The single-layer integral of u from a to xk which is indicated as U (1)(xk) is the

next thing that we should look at. That is,

U (1)(xk) =

∫ xk

a
u(ξ) dξ =

M−1∑
n=0

cn

∫ xk

a
Rn(ξ) dξ =

M−1∑
n=0

cnR̄n(xk)

for k ∈ {1, 2, 3, . . . ,M}, where R̄n(xk) is defined by (2.5) in Lemma 2.1 or as a matrix



U (1)(x1)

U (1)(x2)

...

U (1)(xM )


=



R̄0(x1) R̄1(x1) · · · R̄M−1(x1)

R̄0(x2) R̄1(x2) · · · R̄M−1(x2)

...
... . . . ...

R̄0(xM ) R̄1(xM ) · · · R̄M−1(xM )





c0

c1
...

cM−1


which is denoted by U(1) = Rc = RR−1u := Au, where A = RR−1 := [aki]M×M is called

the “Chebyshev integration matrix”. For k ∈ {1, 2, 3, . . . ,M}, it takes another form

U (1)(xk) =

∫ xk

a
u(ξ) dξ =

M∑
i=1

akiu(xi), (2.8)
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where the matrix form can be written as the following



U (1)(x1)

U (1)(x2)

...

U (1)(xM )


=



a11 a12 · · · a1M

a21 a22 · · · a2M
...

... . . . ...

aM1 aM2 · · · aMM





u(x1)

u(x2)

...

u(xM )


.

The method for constructing the Chebyshev integration matrix of the single-layer

integral can be applied to the higher-layer integral. Now, we consider the double-layer

integral of u(x) from a to the zero xk, which is denoted by U (2)(xk). Therefore, we obtain

U (2)(xk) =

∫ xk

a

∫ η

a
u(ξ) dξdη

=

∫ xk

a
U (1)(η) dη

=

M∑
i=1

akiU
(1)(xi)

=

M∑
ℓ=1

M∑
i=1

akiaiℓu(xℓ)

=

M∑
ℓ=1

[
A2

]
kl
u(xl).

The above equation can be combined and written in the matrix form U(2) = A2u which is

the matrix representation for the double-layer integral of u(x) in our developed FIM-CPE

by varying the zeros xk for k ∈ {1, 2, 3, . . . ,M}.

Remark 2.1. Similarly, by using the principle of mathematical induction, we can express

the m multiple-layer integral of u(x) from a to the zero xk as follows:

U (m)(xk) =

∫ xk

a

∫ ξm

a
· · ·

∫ ξ3

a

∫ ξ2

a
u(ξ1) dξ1dξ2 · · · dξm−1dξm =

M∑
l=1

[Am]klu(xl). (2.9)

When the zeros of xk for k ∈ {1, 2, 3, . . . ,M} are distributed in (2.9), which can be

expressed in the matrix form U(m) = Amu.
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2.3.2 FIM-CPE in two-dimension

Next, we present the process for constructing two-dimensional Chebyshev integra-

tion matrices with respect to the variables x and y. Let M,N ∈ N and a, b, c, d ∈ R such

that a > b and c > d. Let xk for k ∈ {1, 2, 3, . . . ,M} and yh for h ∈ {1, 2, 3, . . . , N} be

the computational grid points over the domain Ω = [a, b] × [c, d]. These grid points are

defined using the zeros of the Chebyshev polynomials RM (x) and RN (x), to discretize

the nodes horizontally and vertically, respectively. Consequently, we presume that the

total number of grid points equates to MN nodes. To facilitate computation, grid points

along the x and y-directions are indexed using both global and local numbering systems,

as depicted in Figures 2.2a and 2.2b, respectively.

1 2 3 M· · ·

M + 1

2M + 1

(N -1)M + 1

M + 3M + 2 2M

2M + 2 2M + 3 3M

...

(N -1)M + 2 (N -1)M + 3 MN· · ·

· · ·

· · ·

(a) Global numbering system

1 N + 1 2N + 1 (M -1)N + 1· · ·

2

3

N

2N + 2N + 2 (M -1)N + 2

N + 3 2N + 3 (M -1)N + 3

...

2N 3N MN· · ·

· · ·

· · ·

(b) Local numbering system

Figure 2.2: The indices of the grid points globally and locally.

Let U
(1)
x (x, y) and U

(1)
y (x, y) represent the single layer integrations with respect to

the variables x and y, respectively. Consider U
(1)
x (xk, y) when y is fixed. To construct

the Chebyshev integration matrix with respect to x in two dimensions, we utilize the

methodology used for one dimension as follows:

U (1)
x (xk, y) :=

∫ xk

a
u(ξ, y)dξ =

M∑
i=1

akiu(xi, y)
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for k ∈ {1, 2, 3, ...,M}. This can be formulated as a matrix, represented as U(1)
x (·, y) =

AMu(·, y), where AM = RR−1 is an M×M matrix. Then, for each y ∈ {y1, y2, y3, ..., yN},



U(1)
x (·, y1)

U(1)
x (·, y2)

...

U(1)
x (·, yN )


=



AM 0 . . . 0

0 AM
. . . ...

... . . . . . . 0

0 . . . 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN )


. (2.10)

We denote (2.10) as U(1)
x = Axu, where Ax = IN ⊗AM has termed the “two-dimensional

Chebyshev integration matrix with respect to x” in the global numbering system and ⊗

is the Kronecker product described in Section 2.2. Next, consider U
(1)
y (x, yh) when x is

fixed. Then, we can be expressed in the local numbering system as follows

U (1)
y (x, yh) :=

∫ yh

c
u(x, η)dη =

N∑
j=1

ahju(x, yj)

for h ∈ {1, 2, 3, ..., N}. It can be expressed as U(1)
y (x, ·) = ANu(x, ·). Then, for varying

each x ∈ {x1, x2, x3, ..., xM}, we have



U(1)
y (x1, ·)

U(1)
y (x2, ·)

...

U(1)
y (xM , ·)


=



AN 0 . . . 0

0 AN
. . . ...

... . . . . . . 0

0 . . . 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


, (2.11)

in which AN = RR−1 represents an N × N matrix. We denote (2.11) as Ũ(1)
y = Ãyũ,

where Ãy = IM ⊗ AN . It is noteworthy that the elements of u and ũ are identical,

although their positions vary between the numbering systems. Hence, we can transition

Ũ(1)
y and ũ from the local to the global numbering system using the permutation matrix

P, namely,

U(1)
y = PŨ(1)

y and u = Pũ, (2.12)
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where the permutation matrix P is an MN ×MN matrix defined by

Pij =

 1 ; i = (h− 1)M + k and j = (k − 1)N + h,

0 ; otherwise,

for all k ∈ {1, 2, 3, ...,M} and j ∈ {1, 2, 3, ..., N}. It is important to note that the

permutation matrix P transforms the ith point in the local numbering system to the jth

point in the global numbering system. Furthermore, P is not only a nonsingular matrix,

but it also possesses the multiplicative inverse P−1 = P⊤. Therefore, from (2.12), we

obtain that U(1)
y = Ayu, where Ay = PÃyP−1 = P(IM ⊗ AN )P⊤ = AN ⊗ IM is called

the “two-dimensional Chebyshev integration matrix with respect to y”.

Next, let us consider the double-layer integration of variables along the x and y

axes. This thesis uses the global numbering system to communicate the following

U (2)
x (xk, y) :=

∫ xk

a

∫ ξ2

a
u(ξ1, y)dξ1dξ2 =

M∑
l=1

M∑
i=1

akiailu(xl, y) =

M∑
l=1

[A2
M ]klu(xl, y)

for k ∈ {1, 2, 3, ...,M}. It can be written into the matrix form U(2)
x (·, y) = A2

Mu(·, y).

Hence, after substituting each the zero y ∈ {y1, y2, y3, ..., yN}, we get



U(2)
x (·, y1)

U(2)
x (·, y2)

...

U(2)
x (·, yN )


=



A2
M 0 · · · 0

0 A2
M

. . . ...
... . . . . . . 0

0 · · · 0 A2
M


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN )


,

which can be represented in matrix notation U(2)
x = A2

xu, where A2
x = IN⊗A2

M . Similarly,

for the double-layer integration with respect to the variables y, we can operate it with

the local numbering system as

U (2)
y (x, yh) :=

∫ yh

c

∫ η2

c
u(x, η1)dη1dη2 =

N∑
l=1

N∑
j=1

ahjajlu(x, yl) =

N∑
l=1

[A2
N ]hlu(x, yl)
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for h ∈ {1, 2, 3, ..., N}. It can be written into the matrix form U(2)
y (x, ·) = A2

Nu(x, ·).

Hence, after substituting each the zero x ∈ {x1, x2, x3, ..., xN}, we get



U(2)
y (x1, ·)

U(2)
y (x2, ·)

...

U(2)
y (xM , ·)


=



A2
N 0 · · · 0

0 A2
N

. . . ...
... . . . . . . 0

0 · · · 0 A2
N


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

which can be represented in matrix notation Ũ(2)
y = Ã2

yũ, where Ã2
y = IM⊗A2

N . However,

it should be noted that the node indexing in the local numbering system. Therefore, we

can apply the permutation matrix P mentioned above to transition these nodes to a

global system. Consequently, we can represent the double-layer integration in relation to

the variable y only, in global numbering, as U(2)
y = A2

yu. Here, A2
y = PÃ2

yP⊤ = A2
N ⊗ IM .

Remark 2.2. In a similar manner, we can formulate the matrix representation for m

multiple-layer integration. This is achieved by following the same concept employed in

the construction of U(2)
x and U(2)

y . Hence, for the higher-order Chebyshev integration

matrices with respect to only the variables x and y in the global numbering system, we

can represent these matrices as follows for any m ∈ N:

• U(m)
x = Am

x u, where Am
x = IN ⊗Am

M ;

• U(m)
y = Am

y u, where Am
y = Am

N ⊗ IM .

For the double-layer integration with respect to the variable x and follow with the

variable y, which is denoted by U
(1,1)
xy (xk, yh), we get

U (1,1)
xy (xk, yh) :=

∫ yh

c

∫ xk

a
u(ξ, η)dξdη =

N∑
j=1

M∑
i=1

ahjakiu(xi, yj) (2.13)

for k ∈ {1, 2, 3, ...,M} and h ∈ {1, 2, 3, ..., N}. Moreover, we can consider (2.13) into two

types as follows:
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Type I : If yh is fixed, but xk is varied, then (2.13) can be written in matrix form as

U(1,1)
xy (·, yh) =

N∑
j=1

ahjAMu(·, yj),

where ahj is an element at hth row and jth column of Chebyshev integration matrix AN .

By varying all fixed variables yh ∈ {y1, y2, y3, · · · , yN}, we have



U(1,1)
xy (·, y1)

U(1,1)
xy (·, y2)

...

U(1,1)
xy (·, yN )


=



a11IM a12IM . . . a1N IM

a21IM a22IM . . . a2N IM
...

...
... . . . ...

aN1IM aN2IM . . . aNN IM





AM 0 . . . 0

0 AM
. . . ...

... . . . . . . 0

0 . . . 0 AM


︸ ︷︷ ︸

N blocks



u(·, y1)

u(·, y2)
...

u(·, yN )


,

which is denoted by U(1,1)
xy = (AN ⊗ IM )(IN ⊗AM )u = AyAxu from Remark 2.2.

Type II : If xk is fixed, but yh is varied, then (2.13) can be written in matrix form as

U(1,1)
xy (xk, ·) =

M∑
i=1

akiANu(xi, ·),

where aki is an element at kth row and ith column of Chebyshev integration matrix AM .

By varying all fixed variables xk ∈ {x1, x2, x3, · · · , xM}, we have



U(1,1)
xy (x1, ·)

U(1,1)
xy (x2, ·)

...

U(1,1)
xy (xM , ·)


=



a11IN a12IN . . . a1M IN

a21IN a22IN . . . a2M IN
...

... . . . ...

aM1IN aM2IN . . . aMM IN





AN 0 . . . 0

0 AN
. . . ...

... . . . . . . 0

0 . . . 0 AN


︸ ︷︷ ︸

M blocks



u(x1, ·)

u(x2, ·)
...

u(xM , ·)


,

which is denoted by Ũ(1,1)
xy = (AM ⊗ IN )(IM ⊗AN )ũ = ÃxÃyũ, where we currently utilize

the local numbering system. However, we can convert it to the global numbering system by

employing the previously mentioned permutation matrix P. Consequently, we obtain that

U(1,1)
xy = PŨ(1,1)

xy = P
(
ÃxÃyũ

)
= P

(
P−1AxP

) (
P−1AyP

) (
P−1u

)
= AxAyu. Notably, the
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matrices Ax and Ay are also commutative. Indeed, AyAx = (AN ⊗ IM )(IN ⊗ AM ) =

AN ⊗ AM = (IN ⊗ AM )(AN ⊗ IM ) = AxAy according to Theorem 2.1. Thus, we arrive

at the matrix representation U(1,1)
xy = AyAxu = AxAyu.

Similarly, by using the mathematical induction, the idea can be applied for the

double layer integration with respect to y and followed with x, which is U
(1,1)
yx (x, y).

Thus, we have U(1,1)
yx = U(1,1)

xy = AxAyu = AyAxu.

Remark 2.3. The concept of double-layer integration can be conveniently expanded to

accommodate multiple-layer integrations. This leads to the formation of the mth-order

and nth-order Chebyshev integration matrices with respect to x and y. Respectively, in

the global numbering system. These can be represented in the matrix forms as:

• U(m,n)
xy = Am

x An
yu, where Am

x An
y = An

N ⊗Am
M ;

• U(n,m)
yx = An

yAm
x u, where An

yAm
x = An

N ⊗Am
M .

In this context, Ax and Ay denote the first-order Chebyshev integration matrices in

relation to the variables x and y, as defined in Remark 2.2.

2.4 Statements of heat equations

Heat equations are PDEs that describe the variation of temperature in a particular

region over time. There are some fundamental concept in conductive heat transfer, which

is derived from the law of conservation of energy. Moreover, these equations are an

essential subject in many fields of science and engineering, especially involving non-local

boundary conditions. They are used in a wide range of real-world scenarios for example:

• In materials science [1], they can be used to understand and predict how heat

treatment will affect the properties of a material.

• In environmental science [2], they can model how heat spreads in various media,

such as the ground, the ocean or the atmosphere. This can help predict the tem-

perature changes in soil or bodies of water over time.
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• In electronic engineering [18], heat equations can be used to manage and predict

the heat distribution in electronic systems and components, helping to improve the

design of heat sinks and cooling systems.

• In electronic engineering [22], the heat equation can be used to model heat transfer

within tissues, which is critical in applications such as hyperthermia treatment or

the design of prosthetics.

This kind of problem is often encountered in complex physical systems, where the

state at a particular location is affected by the states of other locations, or where the heat

flux at a boundary is not only related to the local temperature gradient, but also depends

on the distribution of temperature throughout the domain. Therefore, these problems

culminate in our primary challenge in this study.

2.4.1 One-dimensional heat equation

In this study, our attention is drawn towards the one-dimensional heat equation

with non-local and Robin boundary conditions coupled with forcing terms. This equation

serves as a mathematical model to depict the spread of heat across a one-dimensional

medium under the effect of external factors. Note that, the heat equation that we consider

in this thesis is the one with constant coefficients. Thus, we assume that all coefficients

are scaled to 1. Therefore, the considered heat equation can be expressed in the following

form:

∂u

∂t
=

∂2u

∂x2
+ q(x, t), (x, t) ∈ (a, b)× (0, T ], (2.14)

where a, b, T ∈ R such that a < b and T > 0. The function u(x, t) is the temperature

at position x and time t. This is the unknown function that we would like to find. The

function q(x, t) represents a heat source within the material and we generally assume it

is a known, smooth function of x and t. The considered problem (2.14) is subject to the
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initial condition:

u(x, 0) = f(x), x ∈ [a, b], (2.15)

where f(x) is a given continuous function at the initial time.

We consider two non-classical boundary conditions that are introduced in [25, 28].

The first one is in the integration forms which are the non-local boundary conditions:

u(a, t) =

∫ b

a
k1(x, t)u(x, t) dx+ g1(t), t ∈ (0, T ], (2.16)

u(b, t) =

∫ b

a
k2(x, t)u(x, t) dx+ g2(t), t ∈ (0, T ], (2.17)

where k1, k2, g1 and g2 and are known functions, while u is an unknown solution to be

determined. The functions k1(x, t) and k2(x, t) are the weight functions for the boundary

condition, which we typically assume to be integrable over the interval (a, b) and possibly

time-dependent. The functions g1(t) and g2(t) represent heat sources at the boundary

which is a smooth function of t. These non-local boundary conditions (2.16) and (2.17)

usually emerge in the investigation of a thermoelastic bar’s quasi-static flexure where they

represent the weighted average of the entropy u(x, t) given in [28].

The second one is in the differential forms together with the function value itself at

the boundary point known as Robin boundary conditions:

α1(t)
∂u(x, t)

∂x

∣∣∣∣
x=a

+ β1(t)u(a, t) = h1(t), t ∈ (0, T ], (2.18)

α2(t)
∂u(x, t)

∂x

∣∣∣∣
x=b

+ β2(t)u(b, t) = h2(t), t ∈ (0, T ], (2.19)

where α1, α2, β1, β2, h1 and h2 are known continuous functions, while u is an unknown

solution to be determined. The functions α1(t) and α2(t) be related to the area or a

characteristic length. The functions β1(t) and β2(t) represent convection heat trans-

fer coefficient. The functions h1(t) and h2(t) represent the heat flux at the boundary

and are generally assumed to be a known, continuous function of time t. Note that if
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β1(t),h1(t),β2(t) and h2(t) are all zero, then (2.18) and (2.19) correspond to the heat

conduction problem with insulated at both ends. Moreover, these Robin boundary condi-

tions (2.18) and (2.19) are actually the local boundaries, however, it is in terms of Robin

boundary conditions that can be seen as a heat transfer process where the temperature

distribution is represented by u(x, t).

2.4.2 Two-dimensional heat equation

The two-dimensional heat equation is a PDE that describes the distribution of

heat in a given region (in two directions) over time and over a rectangle domain Ω =

[a, b] × [c, d]. Note that, the heat equation that we consider in this thesis is the one

with constant coefficients. Thus, we assume that all coefficients are scaled to 1. In

mathematical form, it is usually represented as follows:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ q(x, y, t), (x, y, t) ∈ (a, b)× (c, d)× (0, T ], (2.20)

where a, b, c, d, T ∈ R such that a < b, c < d and T > 0. The considered problem (2.20)

is an extension of (2.14), augmented by the inclusion of the variable y, representing the

distance along the secondary axis of heat conduction. The other parameters in (2.20)

can be understood in the same way as in (2.14), namely, u(x, y, t) is the temperature at

position (x, y) and time t that we wish to find. q(x, y, t) is a given smooth function of x,

y and t representing a heat source within the material. The problem in focus is subject

to a specific initial condition given by

u(x, y, 0) = f(x, y), (x, y) ∈ [a, b]× [c, d] (2.21)
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with the non-local boundary specifications described in [24] given by

u(a, y, t) =

∫ d

c

∫ b

a
k1(a, y, ξ, η)u(ξ, η, t) dξdη, y ∈ [c, d], (2.22)

u(b, y, t) =

∫ d

c

∫ b

a
k2(b, y, ξ, η)u(ξ, η, t) dξdη, y ∈ [c, d], (2.23)

u(x, c, t) =

∫ d

c

∫ b

a
k3(x, c, ξ, η)u(ξ, η, t) dξdη, x ∈ [a, b], (2.24)

u(x, d, t) =

∫ d

c

∫ b

a
k4(x, d, ξ, η)u(ξ, η, t) dξdη, x ∈ [a, b], (2.25)

for t ∈ (0, T ]. The function f(x, y) is a given continuous function and k(x, y) is the

weight function for the boundary conditions, which we typically assume to be integrable

over the domain (a, b) × (c, d). Comprehensive studies on the existence, uniqueness and

data-dependent continuity of solutions to this problem, along with related issues, have

been conducted and are documented in [8, 9, 21] and the references included therein.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

ONE-DIMENSIONAL HEAT EQUATION

The focus of this chapter is the formulation of numerical algorithms designed to

solve the one-dimensional heat equation (2.14). This equation includes an initial condition

(2.15) and takes into account two types of unconventional boundaries - specifically, non-

local boundary conditions (2.16)–(2.17) and Robin boundary conditions (2.18)–(2.19).

Our algorithms utilize the FIM-CPE for handling the spatial domain, while implementing

the Crank-Nicolson method for the temporal variable. Furthermore, we supply numerical

examples to evaluate the effectiveness and precision of the algorithms we propose.

3.1 Formulation of one-dimension heat equation

Within this section, we will recast the one-dimensional heat equation (2.14) into

matrix form, utilizing both the FIM-CPE and the Crank-Nicolson method. To initiate

this process, let us revisit the problems we are addressing, which are outlined below:

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ q(x, t), (x, t) ∈ (a, b)× (0, T ]. (3.1)

The proposed numerical algorithms are based on the FIM-CPE in Section 2.3.1 to deal

with the spatial variable x and use the Crank-Nicolson method to handle the temporal

variable t. First, let us consider the heat equation (3.1), we start by uniformly discretizing

the temporal domain (0, T ] by specifying each time point tm = m∆t for m ∈ N into (3.1),

where ∆t is a given time step. Then, we have

∂u(x, t)

∂t

∣∣∣∣
t=tm

=
∂2u(x, tm)

∂x2
+ q(x, tm) := G(x, tm, u(x, tm)), (3.2)

where G(x, t, u) represents the right-hand-side term of (3.1).
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Next, we can see that (3.2) has a derivative with respect to time t. We then approx-

imate it by employing the Crank-Nicolson method which provides the time complexity of

O(∆t2). We can also use the difference quotients to approximate the time derivative, but

it results in less accuracy and cannot guarantee stability compared to the Crank-Nicolson

method. The idea of the Crank-Nicolson method is to approximate a solution by its

average between backward and forward times Then, (3.2) can be estimated in the form

u(x, tm)− u(x, tm−1)

∆t
=

G
(
x, tm−1, u(x, tm−1)

)
+G

(
x, tm, u(x, tm)

)
2

, (3.3)

where the functions G at times tm and tm−1 are respectively defined by

G
(
x, tm, u(x, tm)

)
=

∂2u(x, tm)

∂x2
+ q(x, tm) and

G
(
x, tm−1, u(x, tm−1)

)
=

∂2u(x, tm−1)

∂x2
+ q(x, tm−1).

Let a function u with superscript ⟨m⟩ be that function u indicated at time tm. When the

functions G at times tm and tm−1 are plugged in (3.3), we have

u⟨m⟩(x)− u⟨m−1⟩(x) =
∆t

2

(
∂2u⟨m−1⟩(x)

∂x2
+ q⟨m−1⟩(x) +

∂2u⟨m⟩(x)

∂x2
+ q⟨m⟩(x)

)
. (3.4)

Now, the considered problem (3.4) is depending on the spatial variable x only.

Hence, the FIM-CPE can be applied to solve the problem which approximates the solu-

tion u(x, t) by the Chebyshev expansion (2.7). By the idea of FIM-CPE, we eliminate

derivatives with respect to x from (3.4) by taking the double-layer integrals from a to xk

defined in (2.3) on both sides of (3.4) Thus, we obtain the equivalent integral equation

∫ xk

a

∫ η

a
u⟨m⟩(ξ) dξdη −

∫ xk

a

∫ η

a
u⟨m−1⟩(ξ) dξdη

=
∆t

2

(
u⟨m−1⟩(xk) +

∫ xk

a

∫ η

a
q⟨m−1⟩(ξ) dξdη

)
+

∆t

2

(
u⟨m⟩(xk) +

∫ xk

a

∫ η

a
q⟨m⟩(ξ) dξdη

)
+ h1xk + h2, (3.5)

where h1 and h2 are arbitrary constants that emerged from the process of integration.
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Next, by substituting each zero xk ∈ {x1, x2, x3, . . . , xM} into the integral equation

(3.5), we can express them into the matrix form as follows

A2u⟨m⟩ −A2u⟨m−1⟩ =
∆t

2

(
u⟨m⟩ + u⟨m−1⟩ + A2q⟨m⟩ + A2q⟨m−1⟩

)
+ h1x + h2e

which can be simplified to

(
A2 − ∆t

2
I
)

u⟨m⟩ − h1x− h2e =

(
A2 +

∆t

2
I
)

u⟨m−1⟩ +
∆t

2
A2

(
q⟨m⟩ + q⟨m−1⟩

)
, (3.6)

where I is an M ×M identity matrix, A = RR−1 is the Chebyshev integration matrix as

described in Section 2.3.1, e = [1, 1, 1, . . . , 1]⊤ is the all-ones vector with size M × 1,

x = [x1, x2, x3, . . . , xM ]⊤ ,

u⟨m⟩ = [u(x1, tm), u(x2, tm), u(x3, tm), . . . , u(xM , tm)]⊤ ,

q⟨m⟩ = [q(x1, tm), q(x2, tm), q(x3, tm), . . . , q(xM , tm)]⊤ .

Observing (3.6), it is evident that there are two variables, h1 and h2, that remain

unknown. As such, we require two additional equations to form a complete system.

These can be created based on the given boundary conditions. In our study, we focus on

two types: non-local and Robin boundary conditions. These will be elaborated upon in

Sections 3.2 and 3.3, respectively, facilitating the construction of the numerical algorithms.

3.2 Algorithm for non-local boundary conditions

In this section, we formulate and illustrate the numerical procedure for solving the

heat equation (3.1), conforming to the non-local boundary conditions (2.16) and (2.17),

which are introduced in [25, 28]. They are in the following integration forms as

u(a, t) =

∫ b

a
k1(x, t)u(x, t) dx+ g1(t), t ∈ (0, T ], (3.7)

u(b, t) =

∫ b

a
k2(x, t)u(x, t) dx+ g2(t), t ∈ (0, T ]. (3.8)
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3.2.1 Numerical algorithm

Consider the non-local boundary conditions (3.7) and (3.8). They are in the inte-

gration forms. We can rewrite them at time tm into general form for both the left and

right boundary conditions as follows

u(γj , tm) =

∫ b

a
kj(x, tm)u(x, tm) dx+ gj(tm), j ∈ {1, 2}, (3.9)

where γ1 = a and γ2 = b. Note that for j = 1 in (3.9), it becomes the left boundary

condition, conversely, the right boundary condition when j = 2. Next, we transform

(3.9) at time tm into the vector form by using the Chebyshev polynomial expansion (2.7).

Consider the left-hand-side term of (3.9), we have

u(γj , tm) = u⟨m⟩(γj) =

M−1∑
n=0

c⟨m⟩
n Rn(γj) := Rjc⟨m⟩ = RjR−1u⟨m⟩, (3.10)

where Rj = [R0(γj), R1(γj), R2(γj), . . . , RM−1(γj)] and R−1 is defined in Lemma 2.1(v).

We next turn our attention to the integral term of (3.9). To treat this, we adopt

the Chebyshev polynomial expansion (2.7). Hence, we obtain

kj(x, tm)u(x, tm) =

M−1∑
n=0

p⟨m⟩
n Rn(x), (3.11)

where p
⟨m⟩
n is unknown coefficients. Let xk, where k ∈ {1, 2, 3, . . . ,M}, signify nodal

points which are discretized via the zeros of the Chebyshev polynomial RM (x) as defined

in (2.3). Inserting each xk into (3.11) permits the outcome to be cast in matrix form.



kj(x1, tm)u(x1, tm)

kj(x2, tm)u(x2, tm)

...

kj(xM , tm)u(xM , tm)


=



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
... . . . ...

R0(xM ) R1(xM ) · · · RM−1(xM )





p
⟨m⟩
0

p
⟨m⟩
1

...

p
⟨m⟩
M−1


:= Rp⟨m⟩.

(3.12)
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Indeed, the left-hand side of equation (3.12) can be expressed in an alternate form



kj(x1, tm)u(x1, tm)

kj(x2, tm)u(x2, tm)

...

kj(xM , tm)u(xM , tm)


=



k
⟨m⟩
j (x1) 0 . . . 0

0 k
⟨m⟩
j (x2)

. . . ...
... . . . . . . 0

0 . . . 0 k
⟨m⟩
j (xM )





u⟨m⟩(x1)

u⟨m⟩(x2)

...

u⟨m⟩(xM )


:= K⟨m⟩

j u⟨m⟩.

(3.13)

Thus, we have that (3.12) is equal to (3.13), namely,

K⟨m⟩
j u⟨m⟩ = Rp⟨m⟩ or p⟨m⟩ = R−1K⟨m⟩

j u⟨m⟩, (3.14)

where K⟨m⟩
j = diag {kj(x1, tm), kj(x2, tm), kj(x3, tm), . . . , kj(xM , tm)} and R−1 is defined

in Lemma 2.1(v). Then, for the single-layer integral term appearing in (3.9), we use the

relationship outlined in (3.14) to convert it into the matrix form, which can be as the

following

∫ b

a
kj(x, tm)u(x, tm) dx =

M−1∑
n=0

p⟨m⟩
n

∫ b

a
Rn(ξ) dξ

=

M−1∑
n=0

p⟨m⟩
n R̄n(b)

= R(b)p⟨m⟩

= R(b)R−1K⟨m⟩
j u⟨m⟩, (3.15)

where R(b) =
[
R̄0(b), R̄1(b), R̄2(b), . . . , R̄M−1(b)

]
, in which R̄n(b) is defined in (2.6).

Thus, by substituting (3.10) and (3.15) into (3.9), we have

RjR−1u⟨m⟩ = R(b)R−1K⟨m⟩
j u⟨m⟩ + gj(tm).
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Thus, for j ∈ {1, 2}, we obtain the following left and right boundary conditions as

(
R1R−1 −R(b)R−1K⟨m⟩

1

)
u⟨m⟩ = g1(tm), (3.16)(

R2R−1 −R(b)R−1K⟨m⟩
2

)
u⟨m⟩ = g2(tm), (3.17)

where

R1 = [R0(a), R1(a), R2(a), . . . , RM−1(a)] =
[
1,−1, 1, . . . , (−1)M−1

]
,

R2 = [R0(b), R1(b), R2(b), . . . , RM−1(b)] = [1, 1, 1, . . . , 1] has M terms,

K⟨m⟩
1 = diag {k1(x1, tm), k1(x2, tm), k1(x3, tm), . . . , k1(xM , tm)} and

K⟨m⟩
2 = diag {k2(x1, tm), k2(x2, tm), k2(x3, tm), . . . , k2(xM , tm)} .

Now, we completely obtain all of the equations for solving u⟨m⟩. Consequently, we

can combine (3.6) with the boundary conditions (3.16) and (3.17) to construct the system

of linear equations. Therefore, we have a linear system of M +2 unknowns, namely u⟨m⟩,

h1 and h2, depending on the type of non-local boundary conditions as follows:


A2 − ∆t

2 I −x −e

R1R−1 −R(b)R−1K⟨m⟩
1 0 0

R2R−1 −R(b)R−1K⟨m⟩
2 0 0




u⟨m⟩

h1

h2

 =


z⟨m⟩

g1(tm)

g2(tm)

, (3.18)

where [z⟨m⟩]M×1 :=
(
A2 + ∆t

2 I
)
u⟨m−1⟩+ ∆t

2 A2
(
q⟨m⟩ + q⟨m−1⟩). Accordingly, the solution

u⟨m⟩ can be approximated by solving (3.18) together with (2.15) that starts from the given

initial condition u⟨0⟩ = [f(x1), f(x2), f(x3), . . . , f(xM )]⊤. Note that, performing the final

iteration, the obtained solution u⟨m⟩ = [u(x1, T ), u(x2, T ), u(x3, T ), . . . , u(xM , T )]⊤ can

be actually expressed corresponding to the function u(x, T ), x ∈ [a, b], by using (2.7), i.e.,

u(x, T ) =

M−1∑
n=0

c⟨m⟩
n Rn(x) = R(x)c⟨m⟩ = R(x)R−1u⟨m⟩, (3.19)

where R(x) = [R0(x), R1(x), R2(x), . . . , RM−1(x)].
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For computational convenience, we summarize all the procedures mentioned above

into the pseudocode algorithms for finding approximate solutions of the heat equation

with non-local boundary by using FIM-CPE combined with the Crank-Nicolson method.

Algorithm 1 One-dimensional heat equation with non-local boundary conditions

Input: a, b, M , T , ∆t, q(x, t), f(x), g1(t), g2(t), k1(x, t) and k2(x, t);

Output: The approximate solution u⟨m⟩;

1: Set xk ← 1
2

(
(b− a) cos

(
2k−1
2n π

)
+ a+ b

)
for k ∈ {1, 2, 3, . . . ,M} in ascending order;

2: Compute x, e, I, A, R, R1, R2, R, R−1 and R(b);

3: Construct u⟨0⟩ ← [f(x1), f(x2), f(x3), . . . , f(xM )]⊤;

4: Set m← 1 and t1 ← ∆t;

5: while tm ≤ T do

6: Compute K⟨m⟩
1 ← diag {k1(x1, tm), k1(x2, tm), k1(x3, tm), . . . , k1(xM , tm)};

7: Compute K⟨m⟩
2 ← diag {k2(x1, tm), k2(x2, tm), k2(x3, tm), . . . , k2(xM , tm)};

8: Compute q⟨m−1⟩ ← [q(x1, tm −∆t), q(x2, tm −∆t), . . . , q(xM , tm −∆t)]⊤;

9: Compute q⟨m⟩ ← [q(x1, tm), q(x2, tm), q(x3, tm), . . . , q(xM , tm)]⊤;

10: Compute z⟨m⟩ ←
(
A2 + ∆t

2 I
)
u⟨m−1⟩ + ∆t

2 A2
(
q⟨m⟩ + q⟨m−1⟩);

11: Find u⟨m⟩ by solving the iterative linear system (3.18);

12: Update m← m+ 1 and tm ← m∆t;

13: end while

14: return The final iteration of u⟨m⟩ is the approximate solution;

3.2.2 Numerical examples

In this section, we demonstrate the accuracy and efficiency of the proposed numer-

ical Algorithms 1 in order to find the approximate solutions of the heat equations with

non-local boundary conditions via Examples 3.1 and 3.2. For measuring the accuracy of

the obtained solution, we use the average relative error (ARE) and the maximal absolute

error (MAE) which are respectively defined by

ARE =
1

M

M∑
k=1

∣∣∣∣u∗(xk, T )− u(xk, T )

u∗(xk, T )

∣∣∣∣ and MAE = max
1≤k≤M

∣∣u∗(xk, T )− u(xk, T )
∣∣,
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where u∗ and u are exact and numerical solutions, respectively, and xk, k ∈ {1, 2, 3, . . . ,M}

are the grid point defined by each zero of Chebyshev polynomial RM (x). where u∗ and u

are exact and numerical solutions, respectively, and xk, k ∈ {1, 2, 3, . . . ,M} are the grid

point defined by each zero of Chebyshev polynomial RM (x).

Example 3.1 ([28]). We consider the heat equation without heat source

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
, (x, t) ∈ (0, 1)× (0, 1],

subject to the initial condition

u(x, 0) = 1 + cos(x), x ∈ [0, 1],

with non-local boundary conditions

u(0, t) =

∫ 1

0
(x+ t)u(x, t) dx+

1

2
+ e−t − t− e−t (cos(1) + sin(1) + t sin(1)− 1) and

u(1, t) =

∫ 1

0
(te−t)u(x, t) dx+ 1 + e−t cos(1)− t

2e

(
2e− 2 + e−t(sin(1)− cos(1) + e)

)
,

for t ∈ (0, 1]. The analytical solution is u∗(x, t) = 1 + e−t cos(x).

This problem is considered under the non-local boundary conditions. Thus, we can

find its approximate solutions using our numerical Algorithm 1. When Algorithm 1 is

performed, we have the numerical solutions u⟨m⟩. Then, their accuracy of the obtained

solutions at time t = 1 measured by ARE are shown in Table 3.1 for M ∈ {5, 10, 15, 20, 25}

and ∆t ∈ {0.1, 0.05, 0.01, 0.005}. This table shows that the errors slightly decrease as the

nodal number M increases, but they get significantly smaller as ∆t decreases. Finally,

Figure 3.1 displays the graphical solutions solved by Algorithm 1 at various t ∈ (0, 1) and

the obtained solutions compared to the exact solution with M = 15 and t = 1.
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Table 3.1: The ARE of the numerical solutions u(x, 1) for Example 3.1.

M ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

5 1.3437× 10−4 3.3601× 10−5 1.6162× 10−6 1.2665× 10−6

10 1.3406× 10−4 3.3323× 10−5 1.3303× 10−6 1.3303× 10−8

15 1.3406× 10−4 3.3321× 10−5 1.3303× 10−6 1.3303× 10−8

20 1.3406× 10−4 3.3321× 10−5 1.3303× 10−6 1.3301× 10−8

25 1.3406× 10−4 3.3321× 10−5 1.3303× 10−6 1.3302× 10−8

(a) Numerical solutions at various t ∈ (0, 1) (b) Compared solutions with M = 15 and t = 1

Figure 3.1: Graphical numerical solutions u(x, t) from Algorithm 1 for Example 3.1.

Example 3.2 ([17]). We consider the heat equation with heat source

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ e−t

(
x(x− 1) +

δ2

6(1 + δ2)
+ 2

)
, (x, t) ∈ (0, 1)× (0, 1],

subject to the initial condition

u(x, 0) = x(x− 1) +
δ2

6(1 + δ2)
, x ∈ [0, 1],
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with non-local boundary conditions

u(0, t) = −δ2
∫ 1

0
u(x, t) dx, t ∈ (0, 1],

u(1, t) = −δ2
∫ 1

0
u(x, t) dx, t ∈ (0, 1],

where δ = 0.12 and the boundary kernels, k0 = k1 = −δ2, are taken from an example in

Day [9]. The analytical solution is u∗(x, t) = −e−t
(
x(x− 1) + δ2

6(1+δ2)

)
.

The problem in consideration here is associated with non-local boundary conditions,

thus permitting the derivation of approximate solutions through our numerical Algorithm

1. Upon execution of Algorithm 1, we procure the numerical solutions denoted by u⟨m⟩.

The accuracy of the solutions achieved at time t = 1 is subsequently quantified using

MAE, with results showcased in Table 3.2 for various values of M ∈ {10, 15, 20, 25, 30} and

∆t ∈ {0.1, 0.05, 0.01, 0.005}. An observation from the table reveals that errors marginally

reduce with an increase in the nodal number M , whereas they decrease considerably as

∆t diminishes. Lastly, Figure 3.2 presents the graphical illustrations of solutions com-

puted by Algorithm 1 at various instances t ∈ (0, 1) and a comparative visualization of

the obtained solutions versus the exact solution when M = 20 and t = 1.

Table 3.2: The MAE of the numerical solutions u(x, 1) for Example 3.2.

M ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

10 0.0021 1.8958× 10−4 2.5056× 10−5 2.5055× 10−5

15 0.0020 5.2492× 10−4 2.3437× 10−5 2.5263× 10−5

20 0.0021 4.4978× 10−4 2.4389× 10−5 2.5335× 10−5

25 0.0022 5.2424× 10−4 3.1606× 10−5 2.5605× 10−5

30 0.0021 4.9161× 10−4 2.6435× 10−5 2.4979× 10−5
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(a) Numerical solutions in (3.19) at various t ∈

(0, 1)

(b) Compared solutions with M = 20 and t = 1

Figure 3.2: Graphical numerical solutions u(x, t) in (3.19) from Algorithm 1 for Ex-
ample 3.2.

3.3 Algorithm for Robin boundary conditions

In this section, we present the formulation and illustration of a numerical proce-

dure designed to solve the one-dimensional heat equation (3.1), in accordance with the

Robin boundary conditions (2.18) and (2.19). These conditions can be expressed in the

subsequent integral forms:

α1(t)
∂u(x, t)

∂x

∣∣∣∣
x=a

+ β1(t)u(a, t) = g1(t), t ∈ (0, T ], (3.20)

α2(t)
∂u(x, t)

∂x

∣∣∣∣
x=b

+ β2(t)u(b, t) = g2(t), t ∈ (0, T ]. (3.21)

3.3.1 Numerical algorithm

Consider the Robin boundary conditions (3.20) and (3.21). They are in differential

forms with respect to the spatial variable. We can rewrite them at time tm into general
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form for both the left and right boundary conditions as follows

αj(tm)
∂u(x, tm)

∂x

∣∣∣∣
x=γj

+ βj(tm)u(γj , tm) = gj(tm), j ∈ {1, 2}, (3.22)

where γ1 = a and γ2 = b. Note that (3.22) is the left boundary condition if j = 1 and the

right boundary condition if j = 2. Next, we transform (3.22) at time tm into the vector

form by using the Chebyshev polynomial expansion (2.7). Consider the derivative term

with respect to x contained in (3.22). Then, we obtain

∂u(x, tm)

∂x

∣∣∣∣
x=γj

= u⟨m⟩
x (γj) =

M−1∑
n=0

c⟨m⟩
n R′

n(γj) := R′
jc⟨m⟩ = R′

jR−1u⟨m⟩, (3.23)

where R′
j =

[
R′

0(γj), R
′
1(γj), R

′
2(γj), . . . , R

′
M−1(γj)

]
in which the first-order derivative

R′
n(·) is defined in (2.4) and R−1 is defined in Lemma 2.1(iv). Finally, by substituting

(3.10) and (3.23) into (3.22), we have

αj(tm)R′
jR−1u⟨m⟩ + βj(tm)RjR−1u⟨m⟩ = gj(tm).

Thus, for j ∈ {1, 2}, we obtain the following left and right boundary conditions as

(
α1(tm)R′

1 + β1(tm)R1

)
R−1u⟨m⟩ = g1(tm), (3.24)(

α2(tm)R′
2 + β2(tm)R2

)
R−1u⟨m⟩ = g2(tm), (3.25)

where
R1 = [R0(a), R1(a), R2(a), . . . , RM−1(a)] ,

R′
1 =

[
R′

0(a), R
′
1(a), R

′
2(a), . . . , R

′
M−1(a)

]
,

R2 = [R0(b), R1(b), R2(b), . . . , RM−1(b)] ,

R′
2 =

[
R′

0(b), R
′
1(b), R

′
2(b), . . . , R

′
M−1(b)

]
.

Having fully derived all equations necessary for determining u⟨m⟩, we can now in-

corporate (3.6) with the boundary conditions, or with (3.24) and (3.25), to establish a
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system of linear equations. As a result, we end up with two different linear systems of

M + 2 unknowns, namely u⟨m⟩, h1 and h2, contingent on the kind of Robin boundary

conditions, which are defined as follows:


A2 − ∆t

2 I −x −e(
α1(tm)R′

1 + β1(tm)R1

)
R−1 0 0(

α2(tm)R′
2 + β2(tm)R2

)
R−1 0 0




u⟨m⟩

h1

h2

 =


z⟨m⟩

g1(tm)

g2(tm)

, (3.26)

where [z⟨m⟩]M×1 :=
(
A2 + ∆t

2 I
)
u⟨m−1⟩ + ∆t

2 A2
(
q⟨m⟩ + q⟨m−1⟩). Therefore, we can ap-

proximate the solution u⟨m⟩ by solving the system (3.26) and (2.15), beginning from

the provided initial condition u⟨0⟩ = [f(x1), f(x2), f(x3), . . . , f(xM )]⊤. It is notewor-

thy that when executing the final iteration, the obtained numerical solution u⟨m⟩ =

[u(x1, T ), u(x2, T ), u(x3, T ), . . . , u(xM , T )]⊤ can be actually expressed corresponding to

the function u(x, T ), x ∈ [a, b], by using (3.19).

To facilitate computation, we encapsulate the aforementioned processes into pseu-

docode algorithms, which aim to find approximate solutions of the heat equation with

the Robin boundary using a combination of FIM-CPE and the Crank-Nicolson method.
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Algorithm 2 One-dimensional heat equation with Robin boundary conditions

Input: a, b, M , T , ∆t, q(x, t), f(x), g1(t), g2(t), α1(t), α2(t), β1(t) and β2(t);

Output: The approximate solution u⟨m⟩;

1: Set xk ← 1
2

(
(b− a) cos

(
2k−1
2n π

)
+ a+ b

)
for k ∈ {1, 2, 3, . . . ,M} in ascending order;

2: Compute x, e, I, A, R, R1, R2, R′
1, R′

2, R and R−1;

3: Construct u⟨0⟩ ← [f(x1), f(x2), f(x3), . . . , f(xM )]⊤;

4: Set m← 1 and t1 ← ∆t;

5: while tm ≤ T do

6: Compute q⟨m−1⟩ ← [q(x1, tm −∆t), q(x2, tm −∆t), . . . , q(xM , tm −∆t)]⊤;

7: Compute q⟨m⟩ ← [q(x1, tm), q(x2, tm), q(x3, tm), . . . , q(xM , tm)]⊤;

8: Compute z⟨m⟩ ←
(
A2 + ∆t

2 I
)
u⟨m−1⟩ + ∆t

2 A2
(
q⟨m⟩ + q⟨m−1⟩);

9: Find u⟨m⟩ by solving the iterative linear system (3.26);

10: Update m← m+ 1 and tm ← m∆t;

11: end while

12: return The final iteration of u⟨m⟩ is the approximate solution;

3.3.2 Numerical example

Within this section, we validate the accuracy and efficiency of the proposed numer-

ical Algorithms 2 through their application to approximate solutions of the heat equation

with Robin boundary conditions. This validation is conducted via Example 3.3. In order

to quantify the accuracy of the solutions derived, we employ two metrics, namely the

ARE and the MAE, as defined by

ARE =
1

M

M∑
k=1

∣∣∣∣u∗(xk, T )− u(xk, T )

u∗(xk, T )

∣∣∣∣ and MAE = max
1≤k≤M

∣∣u∗(xk, T )− u(xk, T )
∣∣,

where u∗ and u are exact and numerical solutions, respectively, and xk, k ∈ {1, 2, 3, . . . ,M}

are the grid point defined by each zero of Chebyshev polynomial RM (x).
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Example 3.3 ([24]). We consider the heat equation

∂u(x, t)

∂t
=

∂2u(x, t)

∂x2
+ (π2 − 1)e−t(sin(πx) + cos(πx)), (x, t) ∈ (0, 1)× (0, 1],

subject to the initial condition

u(x, 0) = sin(πx) + cos(πx), x ∈ [0, 1],

with the Robin boundary conditions

ux(0, t) + t2u(0, t) = e−t(t2 + π), t ∈ (0, 1],

ux(1, t) + tu(1, t) = −e−t(t+ π), t ∈ (0, 1].

The analytical solution is u(x, t) = e−t(sin(πx) + cos(πx)).

The presented example takes into account Robin boundary conditions. There-

fore, numerical solutions can be computed utilizing Algorithm 2. As a result, we ac-

quire the approximate solutions denoted by u⟨m⟩. The precision of these achieved so-

lutions at time t = 1, quantified by the ARE, is displayed in Table 3.3 for the range

of M ∈ {10, 15, 20, 25, 30} and time increments ∆t ∈ {0.1, 0.05, 0.01, 0.005}. This ta-

ble reveals that the ARE diminishes modestly as the number of nodes M amplifies.

Nonetheless, the significant reduction is noted as the time increment ∆t contracts. Sub-

sequently, the graphical solutions derived from Algorithm 2 at different time instances

t ∈ {0.1, 0.3, 0.5, 0.7, 0.9}, along with comparisons with the analytical solution at M = 15

and t = 1, are portrayed in Figure 3.3.
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Table 3.3: The ARE of the numerical solutions u(x, 1) for Example 3.3.

M ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

10 0.0019 5.2250× 10−4 7.8118× 10−5 6.4422× 10−6

15 0.0015 3.8031× 10−4 1.5193× 10−5 3.7982× 10−6

20 0.0020 5.0906× 10−4 2.0337× 10−5 5.0840× 10−6

25 0.0021 5.2526× 10−4 2.0984× 10−5 5.2459× 10−6

30 0.0017 4.2664× 10−4 1.7044× 10−5 4.2591× 10−6

(a) Numerical solutions in (3.19) at various t ∈

(0, 1)

(b) Compared solutions with M = 15 and t = 1

Figure 3.3: Graphical numerical solutions u(x, t) in (3.19) from Algorithm 2 for Ex-
ample 3.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

TWO-DIMENSIONAL HEAT EQUATION

In the present chapter, we develop a numerical algorithm designed to solve the two-

dimensional heat equation over a rectangular domain (2.20), which includes the initial

condition (2.21) and takes into consideration the non-local boundary conditions (2.22)–

(2.25). Our proposed algorithm hinges on a two-dimensional application of the FIM-

CPE and incorporates the Crank-Nicolson method. Additionally, we provide numerical

examples to verify the accuracy of the algorithms that we propose.

4.1 Formulation of two-dimension heat equation

Initially, we aim to transform the two-dimensional heat equation (2.20) into a ma-

trix formulation by applying the two-dimensional FIM-CPE for the spatial domain and

employing the Crank-Nicolson method for the temporal variable. To commence this pro-

cedure, we recall the problems under examination, as detailed in the following:

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
+ q(x, y, t), (x, y, t) ∈ (a, b)× (c, d)× (0, T ]. (4.1)

Subsequently, we focus on the heat equation (4.1). We initiate by discretizing the time

domain (0, T ] uniformly, designating each time point as tm = m∆t for m ∈ N in (4.1),

where ∆t represents the designated time step. This results in

∂u(x, y, t)

∂t

∣∣∣∣
t=tm

=
∂2u(x, y, tm)

∂x2
+

∂2u(x, y, tm)

∂y2
+ q(x, y, tm)

:= G(x, y, tm, u(x, y, tm)), (4.2)

where G(x, y, t, u) represents the right-hand-side term of (4.1).
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Following, we observe that (4.2) contains a derivative with respect to time t. We can

also use the difference quotients to approximate time derivative but it will result the less

accuracy and cannot guarantee the stability comparing to the Crank-Nicolson method.

So, we approximate this derivative using the Crank-Nicolson method, which delivers a

time complexity of O(∆t2). Consequently, we can approximate (4.2) as follows

u⟨m⟩(x, y)− u⟨m−1⟩(x, y)

∆t
=

G
(
x, y, tm−1, u

⟨m−1⟩(x, y)
)
+G

(
x, y, tm, u⟨m⟩(x, y)

)
2

, (4.3)

where u⟨m⟩(x, y) := u(x, y, tm) and G at the times tm and tm−1 are defined by

G
(
x, y, tm, u⟨m⟩(x, y)

)
=

∂2u⟨m⟩(x, y)

∂x2
+

∂2u⟨m⟩(x, y)

∂y2
+ q⟨m⟩(x, y) and

G
(
x, y, tm−1, u

⟨m−1⟩(x, y)
)
=

∂2u⟨m−1⟩(x, y)

∂x2
+

∂2u⟨m−1⟩(x, y)

∂y2
+ q⟨m−1⟩(x, y).

When the functions G at times tm and tm−1 are substituted in (4.3), we have

u⟨m⟩(x, y)− u⟨m−1⟩(x, y) =
∆t

2

(
∂2u⟨m−1⟩(x, y)

∂x2
+

∂2u⟨m−1⟩(x, y)

∂y2
+ q⟨m−1⟩(x, y)

)

+
∆t

2

(
∂2u⟨m⟩(x, y)

∂x2
+

∂2u⟨m⟩(x, y)

∂y2
+ q⟨m⟩(x, y)

)
. (4.4)

Next, the FIM-CPE is utilized to remove all spatial derivatives from (4.4) by per-

forming double integrals with respect to variables x and y, respectively. This operation

transforms the differential equation (4.4) into its equivalent integral equation.

∫ y

c

∫ η2

c

∫ x

a

∫ ξ2

a

(
u⟨m⟩(ξ1, η1)− u⟨m−1⟩(ξ1, η1)

)
dξ1dξ2dη1dη2

=
∆t

2

∫ y

c

∫ η2

c

(
u⟨m−1⟩(x, η1) + u⟨m⟩(x, η1)

)
dη1dη2

+
∆t

2

∫ x

a

∫ ξ2

a

(
u⟨m−1⟩(ξ1, y) + u⟨m⟩(ξ1, y)

)
dξ1dξ2

+
∆t

2

∫ y

c

∫ η2

c

∫ x

a

∫ ξ2

a

(
q⟨m−1⟩(ξ1, η1) + q⟨m⟩(ξ1, η1)

)
dξ1dξ2dη1dη2

+ xb1(y) + b2(y) + yd1(x) + d2(x), (4.5)
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where b1(y), b2(y), d1(x) and d2(x) are arbitrary functions that arise during the inte-

gration process. To address these undetermined functions, Chebyshev interpolation is

employed for their approximation as follows:

br(y) =

N−1∑
n=0

br,nRn(y) and dr(x) =

M−1∑
n=0

dr,nRn(x) (4.6)

for r ∈ {1, 2}, with {br,n}N−1
n=0 and {dr,n}M−1

n=0 being the unknown values at these in-

terpolated points, determined in accordance with the specified non-local boundary con-

ditions (2.22)–(2.25). Subsequently, we discretize both the horizontal and vertical di-

mensions of the rectangular domain [a, b] × [c, d] into M and N points, respectively,

using the zeros of Chebyshev polynomials RM (x) and RN (y). These are defined by sets

X = {x1, x2, x3, . . . , xM} and Y = {y1, y2, y3, . . . , yN}, respectively. Thus, the total

count of grid points in the global numbering system amounts to H = MN nodes. Note

that each node in the system originates from an element in the Cartesian product set

X×Y , ordered as per the global-type system, i.e., (xi, yi) ∈ X×Y for i ∈ {1, 2, 3, . . . , H}.

Upon substituting each node (xi, yi) into (4.5) and transforming it into the matrix form

using the approach of the FIM-CPE in two-dimensional spaces as described in Section

2.3.2, then we obtain

(
A2

xA2
y −

∆t

2

(
A2

x + A2
y

))
u⟨m⟩ −XΦyb1 −Φyb2 −YΦxd1 −Φxd2

=

(
A2

xA2
y +

∆t

2

(
A2

x + A2
y

))
u⟨m−1⟩ +

∆t

2
A2

xA2
y

(
q⟨m−1⟩ + q⟨m⟩

)
, (4.7)

where the Chebyshev integration matrices Ax and Ay are defined in Remark 2.2. Other
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parameters contained in (4.7) are defined by

X = diag{x1, x2, x3, . . . , xH},

Y = diag{y1, y2, y3, . . . , yH},

br =
[
br,0, br,1, br,2, . . . , br,N−1

]⊤ for r ∈ {1, 2},

dr =
[
dr,0, dr,1, dr,2, . . . , dr,M−1

]⊤ for r ∈ {1, 2},

u⟨m⟩ =
[
u(x1, y1, tm), u(x2, y2, tm), u(x3, y3, tm), . . . , u(xH , yH , tm)

]⊤
,

q⟨m⟩ =
[
q(x1, y1, tm), q(x2, y2, tm), q(x3, y3, tm), . . . , q(xH , yH , tm)

]⊤
,

where each (xi, yi) be an element in a set of the Cartesian product X × Y as mentioned

above. From (4.6), we can obtain Φx and Φy, where

Φx =



R0(x1) R1(x1) · · · RM−1(x1)

R0(x2) R1(x2) · · · RM−1(x2)

...
... . . . ...

R0(xH) R1(xH) · · · RM−1(xH)


and

Φy =



R0(y1) R1(y1) · · · RN−1(y1)

R0(y2) R1(y2) · · · RN−1(y2)

...
... . . . ...

R0(yH) R1(yH) · · · RN−1(yH)


.

4.2 Algorithm for non-local boundary conditions

In this part of our study, we transform the two-dimensional non-local boundary

conditions (2.22)–(2.25) into their respective matrix forms. By amalgamating these with

the matrix from the prior section, we assemble the numerical algorithm. Moreover, we

explore the efficacy and precision of the algorithm through various numerical examples.

The non-local boundary conditions (2.22)–(2.25) in two dimensions can be expressed in
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the following manner:

u(a, y, t) =

∫ d

c

∫ b

a
k1(a, y, ξ, η)u(ξ, η, t) dξdη, y ∈ [c, d], (4.8)

u(b, y, t) =

∫ d

c

∫ b

a
k2(b, y, ξ, η)u(ξ, η, t) dξdη, y ∈ [c, d], (4.9)

u(x, c, t) =

∫ d

c

∫ b

a
k3(x, c, ξ, η)u(ξ, η, t) dξdη, x ∈ [a, b], (4.10)

u(x, d, t) =

∫ d

c

∫ b

a
k4(x, d, ξ, η)u(ξ, η, t) dξdη, x ∈ [a, b], (4.11)

for t ∈ (0, T ]. The function ki(x, y) for i ∈ {1, 2, 3, 4} symbolize given functions.

4.2.1 Numerical algorithm

When dealing with the two-dimensional non-local boundary conditions (4.8)–(4.11),

they adopt the form of double-layer integrals in relation to the spatial variables. We can

recast these conditions at time tm into a general format as follows:

u⟨m⟩(x, y) =

∫ d

c

∫ b

a
k(x, y, ξ, η)u⟨m⟩(ξ, η) dξdη, (4.12)

where the elements (x, y) in the equation pertain to the points (a, y), (b, y), (x, c), and

(x, d), denoting the left, right, bottom, and top boundaries, respectively, on the left-hand

side of (4.12). As for the right-hand side of (4.12), at time instance tm, it is viable to

transform it into a matrix form. The transformation can be facilitated by invoking the

associations detailed in (3.11) and (3.14), following a similar rationale to (3.15). Hence,
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the right-hand side of (4.12) can be articulated as

RHS =

∫ d

c

∫ b

a
k(x, y, ξ, η)u⟨m⟩(ξ, η) dξdη

=

∫ d

c

M−1∑
i=0

piR̄i(b) dη, where pi is unknown coefficients to approximate k(·)u⟨m⟩(·)

=

∫ d

c
R(b) p dη, where p = [p0, p1, p2, . . . , pM−1]

⊤

=

∫ d

c
R(b)R−1

M diag
{
k(x1, η), k(x2, η), . . . , k(xM , η)

}︸ ︷︷ ︸
k(·,η)

u⟨m⟩(·, η) dη

=

N−1∑
j=0

pjR̄j(d), where pj is unknown coefficients for R(b)R−1
M k(·)u⟨m⟩(·)

= R(d) p, where p = [p0, p1, p2, . . . , pN−1]
⊤

= R(d)R−1
N

[
R(b)R−1

M k(·, y1)u⟨m⟩(·, y1), . . . ,R(b)R−1
M k(·, yN )u⟨m⟩(·, yN )

]⊤

= R(d)R−1
N


R(b)R−1

M

. . .

R(b)R−1
M




k(·, y1)
. . .

k(·, yN )




u⟨m⟩(·, y1)
...

u⟨m⟩(·, yN )


:= R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
Ku⟨m⟩, (4.13)

where R−1
M and R−1

N represent the inverses of the M×M and N×N Chebyshev matrices,

respectively, as outlined in Lemma 2.1(v). The additional parameters included in (4.13)

are defined as follows:

R(b) =
[
R̄0(b), R̄1(b), R̄2(b), . . . , R̄M−1(b)

]
,

R(d) =
[
R̄0(d), R̄1(d), R̄2(d), . . . , R̄M−1(d)

]
,

Ki = diag
{
ki(x1, y1), ki(x2, y2), ki(x3, y3), . . . , ki(xH , yH)

}
where i ∈ {1, 2, 3, 4},

where in each coordinate pair (xi, yi) belongs to the Cartesian product set X × Y and is

ordered in accordance with the global numbering system. Here, X = {x1, x2, x3, . . . , xM}

and Y = {y1, y2, y3, . . . , yN} denote the set of zeros of the Chebyshev polynomials RM

and RN , correspondingly.
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We then employ the Chebyshev polynomial expansion (2.7) to modify the left-hand

side of (4.12). This process can be segregated into two parts. Specifically, for the left

and right boundary conditions, we hold the value of x ∈ {a, b} constant while varying the

value of y. Conversely, for the bottom and top boundary conditions, we keep the value of

y ∈ {c, d} constant and change the value of x. This results in the following expressions:

u⟨m⟩(a, y) =

M−1∑
n=0

c⟨m⟩
n (y)Rn(a) =

M−1∑
n=0

c⟨m⟩
n (y)(−1)n := sMR−1

M u⟨m⟩(·, y), (4.14)

u⟨m⟩(b, y) =

M−1∑
n=0

c⟨m⟩
n (y)Rn(b) =

M−1∑
n=0

c⟨m⟩
n (y)(+1)n := eMR−1

M u⟨m⟩(·, y), (4.15)

u⟨m⟩(x, c) =

N−1∑
n=0

c⟨m⟩
n (x)Rn(c) =

N−1∑
n=0

c⟨m⟩
n (x)(−1)n := sNR−1

N u⟨m⟩(x, ·), (4.16)

u⟨m⟩(x, d) =

N−1∑
n=0

c⟨m⟩
n (x)Rn(d) =

N−1∑
n=0

c⟨m⟩
n (x)(+1)n := eNR−1

N u⟨m⟩(x, ·), (4.17)

where sn =
[
1,−1, 1, . . . , (−1)n−1

]
and en = [1, 1, 1, . . . , 1] represent the n-element row

vectors, and R−1
n is an inverse Chebyshev matrix as defined in Lemma 2.1(v). Then,

we apply the zeros of the Chebyshev y ∈ {y1, y2, y3, . . . , yN} to (4.14) and (4.15), and

likewise apply x ∈ {x1, x2, x3, . . . , xM} to (4.16) and (4.17) as illustrated below:

• Left boundary conditions:



u⟨m⟩(a, y1)

u⟨m⟩(a, y2)

...

u⟨m⟩(a, yN )


=



sMR−1
M 0 · · · 0

0 sMR−1
M

. . . ...
... . . . . . . 0

0 · · · 0 sMR−1
M





u⟨m⟩(·, y1)

u⟨m⟩(·, y2)
...

u⟨m⟩(·, yN )


.

It can be simplified to u⟨m⟩(a, ·) =
(
IN ⊗ sMR−1

M

)
u⟨m⟩ that is equivalent to RHS

in (4.13). Thus, we have

B⟨m⟩
ℓ u⟨m⟩ :=

[(
IN ⊗ sMR−1

M

)
−R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K1

]
u⟨m⟩ = 0. (4.18)
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• Right boundary conditions:



u⟨m⟩(b, y1)

u⟨m⟩(b, y2)

...

u⟨m⟩(b, yN )


=



eMR−1
M 0 · · · 0

0 eMR−1
M

. . . ...
... . . . . . . 0

0 · · · 0 eMR−1
M ,





u⟨m⟩(·, y1)

u⟨m⟩(·, y2)
...

u⟨m⟩(·, yN )


.

It can be simplified to u⟨m⟩(b, ·) =
(
IN ⊗ eMR−1

M

)
u⟨m⟩. That is equivalent to RHS

in (4.13). Thus, we have

B⟨m⟩
r u⟨m⟩ :=

[(
IN ⊗ eMR−1

M

)
−R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K2

]
u⟨m⟩ = 0. (4.19)

• Bottom boundary conditions:



u⟨m⟩(x1, c)

u⟨m⟩(x2, c)

...

u⟨m⟩(xM , c)


=



sNR−1
N 0 · · · 0

0 sNR−1
N

. . . ...
... . . . . . . 0

0 · · · 0 sNR−1
N





u⟨m⟩(x1, ·)

u⟨m⟩(x2, ·)
...

u⟨m⟩(xN , ·)


.

It can be simplified to u⟨m⟩(·, c) =
(
IM ⊗ sNR−1

N

)
ũ⟨m⟩ =

(
IM ⊗ sNR−1

N

)
P−1u⟨m⟩

that is equivalent to RHS in (4.13). Thus, we have

B⟨m⟩
b u⟨m⟩ :=

[(
IM ⊗ sNR−1

N

)
P−1 −R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K3

]
u⟨m⟩ = 0.

(4.20)

• Top boundary conditions:



u⟨m⟩(x1, d)

u⟨m⟩(x2, d)

...

u⟨m⟩(xM , d)


=



eNR−1
N 0 · · · 0

0 eNR−1
N

. . . ...
... . . . . . . 0

0 · · · 0 eNR−1
N





u⟨m⟩(x1, ·)

u⟨m⟩(x2, ·)
...

u⟨m⟩(xN , ·)


.
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It can be simplified to u⟨m⟩(·, d) =
(
IM ⊗ eNR−1

N

)
ũ⟨m⟩ =

(
IM ⊗ eNR−1

N

)
P−1u⟨m⟩

that is equivalent to RHS in (4.13). Thus, we have

B⟨m⟩
t u⟨m⟩ :=

[(
IM ⊗ eNR−1

N

)
P−1 −R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K4

]
u⟨m⟩ = 0.

(4.21)

We have now gathered all the necessary components to construct the system of

iterative linear equations, which will help us to compute the numerical solutions of the

two-dimensional heat equation from (4.7), given the four non-local boundary conditions

(4.18)–(4.21). This linear system comprises a total of MN +2(M +N) unknowns, which

includes u⟨m⟩, b1, b2, d1, and d2. Here is how it looks:



A2
xA2

y − ∆t
2

(
A2

x + A2
y

)
−XΦy −Φy −YΦx −Φx

B⟨m⟩
ℓ 0 0 · · · 0

B⟨m⟩
r 0 0 · · · 0

B⟨m⟩
b

...
... . . . ...

B⟨m⟩
t 0 0 · · · 0





u⟨m⟩

b1

b2

d1

d2


=



z⟨m⟩

0

0

0

0


,

(4.22)

where z⟨m⟩ :=
(
A2

xA2
y +

∆t
2

(
A2

x + A2
y

))
u⟨m−1⟩ + ∆t

2 A2
xA2

y

(
q⟨m−1⟩ + q⟨m⟩). Consequently,

the solution u⟨m⟩ can be deduced by solving (4.22) in conjunction with (2.21), beginning

from the specified initial condition u⟨0⟩ = [f(x1, y1), f(x2, y2), f(x3, y3), . . . , f(xH , yH)]⊤.

It is important to highlight that, upon completion of the final iteration, the derived

numerical solution u⟨m⟩ = [u(x1, y1, T ), u(x2, y2, T ), u(x3, y3, T ), . . . , u(xH , yH , T )]⊤ can

be accurately equated to the function u(x, y, T ) by using the transformation processes in

the same way as above the boundary conditions. Then, we have

u(x, y, T ) = RN (y)R−1
N u⟨m⟩(x, ·)

= RN (y)R−1
N

(
IN ⊗RM (x)R−1

M

)
u⟨m⟩

=
(
RN (y)R−1

N ⊗RM (x)R−1
M

)
u⟨m⟩,

where RN (y) = [R0(y), R1(y), . . . , RN−1(y)] and RM (x) = [R0(x), R1(x), . . . , RM−1(x)].
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To facilitate computation, we consolidate all previously discussed steps into pseu-

docode algorithms. These algorithms are devised to calculate approximate solutions for

the two-dimensional heat equation with non-local boundaries. We utilize a combined

approach of FIM-CPE and the Crank-Nicolson method in this process.

Algorithm 3 Two-dimensional heat equation with non-local boundary conditions

Input: a, b, c, d, M , N , T , ∆t, q(x, y, t), f(x, y) and k(x, y);

Output: The approximate solution u⟨m⟩;

1: Set xk = 1
2

(
(b− a) cos

(
2k−1
2M π

)
+ a+ b

)
for k ∈ {1, 2, 3, . . . ,M} in descending order;

2: Set yh = 1
2

(
(d− c) cos

(
2h−1
2N π

)
+ c+ d

)
for h ∈ {1, 2, 3, . . . , N} in descending order;

3: Calculate the total number of grid points H = MN ;

4: Construct xi and yi in the global numbering system for i ∈ {1, 2, 3, . . . , H};

5: Compute P, K, X, Y, Φx, Φy, Ax, Ay, eM , eN , sM , sN , IM , IN , RM , RN ,R(b), R(d)

6: Construct u⟨0⟩ ← [f(x1, y1), f(x2, y2), f(x3, y3), . . . , f(xH , yH)]⊤;

7: Set m← 1 and t1 ← ∆t;

8: while tm ≤ T do

9: Compute B⟨m⟩
ℓ ←

(
IN ⊗ sMR−1

M

)
−R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K;

10: Compute B⟨m⟩
r ←

(
IN ⊗ eMR−1

M

)
−R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K;

11: Compute B⟨m⟩
b ←

(
IM ⊗ sNR−1

N

)
P−1 −R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K;

12: Compute B⟨m⟩
t ←

(
IM ⊗ eNR−1

N

)
P−1 −R(d)R−1

N

(
IN ⊗R(b)R−1

M

)
K;

13: Compute q⟨m−1⟩ ← [q(x1, y1, tm −∆t), q(x2, y2, tm −∆t), . . . , q(xH , yH , tm −∆t)]⊤;

14: Compute q⟨m⟩ ← [q(x1, y1, tm), q(x2, y2, tm), q(x3, y3, tm), . . . , q(xH , yH , tm)]⊤;

15: Compute z⟨m⟩ ←
(
A2

xA2
y +

∆t
2

(
A2

x + A2
y

))
u⟨m−1⟩ + ∆t

2 A2
xA2

y

(
q⟨m−1⟩ + q⟨m⟩);

16: Find u⟨m⟩ by solving the iterative linear system (4.22);

17: Update m← m+ 1 and tm ← m∆t;

18: end while

19: return The final iteration of u⟨m⟩ is the approximate solution;
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4.2.2 Numerical examples

In this part of the thesis, we present the results of employing the proposed numerical

Algorithm 3 to derive approximate solutions to the heat equation with non-local boundary

conditions in a two-dimensional context, as illustrated in Examples 4.1 and 4.2 for the

heat equation without linear forcing term. However, our algorithm can also be applied for

the heat equation with linear forcing term too. The ARE is used as a metric to determine

the accuracy of the obtained solutions and it is given by

ARE =
1

H

H∑
k=1

∣∣∣∣u∗(xk, yk, T )− u(xk, yk, T )

u∗(xk, yk, T )

∣∣∣∣ ,
where u∗ denotes the exact solution, and u is the numerical solution. Also, xk and yk for

k ∈ {1, 2, 3, . . . , H} are the grid points defined by each zero of the Chebyshev polynomial.

Example 4.1 ([24]). We consider the heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, (x, y, t) ∈ (0, 2π)× (0, 2π)× (0, T ],

subject to the initial condition

u(x, y, 0) = sin(x) sin(y), (x, y) ∈ [0, 2π]× [0, 2π],

with non-local boundary conditions

u(0, y, t) =
1

4π

∫ 2π

0

∫ 2π

0
u(ξ, η, t) dξdη, y ∈ [0, 2π],

u(2π, y, t) =
1

4π

∫ 2π

0

∫ 2π

0
u(ξ, η, t) dξdη, y ∈ [0, 2π],

u(x, 0, t) =
1

4π

∫ 2π

0

∫ 2π

0
u(ξ, η, t) dξdη, x ∈ [0, 2π],

u(x, 2π, t) =
1

4π

∫ 2π

0

∫ 2π

0
u(ξ, η, t) dξdη, x ∈ [0, 2π],
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for k(x, y, ξ, η) = 1
4π where k is a positive constant. The analytical solution to this

problem is given by u∗(x, y, t) = e−2t sin(x) sin(y).

This problem is investigated under non-local boundary conditions and approximate

solutions can be computed by employing the numerical Algorithm 3. Upon the execution

of Algorithm 3, we obtain numerical solutions denoted as u⟨m⟩. The precision of these

solutions at time T = 1, measured by the ARE, is tabulated in Table 4.1 for H := M×N ∈

10 × 10, 15 × 15, 20 × 20, 25 × 25, 30 × 30}, time step ∆t ∈ {0.1, 0.05, 0.01, 0.005}, and

k = 0.1. The table indicates that the errors minimally reduce as the nodal number M×N

increases, while a significant reduction is observed as ∆t decreases.

Lastly, Figure 4.1 presents the graphical solutions obtained from Algorithm 3 at

time T = 1 for all domain [0, 2π] × [0, 2π] by using nodal point H = 15 × 15 and time

step ∆t = 0.01, as well as the comparison of these solutions with the analytical solution.

Table 4.1: The ARE of numerical solutions u at time T = 1 for Example 4.1.

M ×N ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

10× 10 2.5065× 10−4 6.5722× 10−5 2.6023× 10−6 9.4076× 10−7

15× 15 2.3572× 10−4 6.1750× 10−5 2.3746× 10−6 5.9078× 10−7

20× 20 2.4452× 10−4 6.4056× 10−5 2.4631× 10−6 6.1273× 10−7

25× 25 2.4011× 10−4 6.2900× 10−5 2.4187× 10−6 6.0166× 10−7

30× 30 2.4344× 10−4 6.3711× 10−5 2.4522× 10−6 6.1003× 10−7
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(a) Our numerical solution from Algorithm 3 (b) Compared to analytical solution

Figure 4.1: Graphical numerical solutions u(x, y, t) from Algorithm 3 for Example 4.1.

Example 4.2. We consider the heat equation

∂u

∂t
=

∂2u

∂x2
+

∂2u

∂y2
, (x, y, t) ∈

(
0,

π√
10

)
×
(
0,

π√
10

)
× (0, T ], (4.23)

subject to the initial condition

u(x, y, 0) = cos(x) cos(y), (x, y) ∈
[
0,

π√
10

]
×
[
0,

π√
10

]
, (4.24)

with non-local boundary conditions

u(0, y, t) =

∫ π√
10

0

∫ π√
10

0
k(0, y, ξ, η)u(ξ, η, t) dξdη, y ∈

[
0,

π√
10

]
,

u( π√
10
, y, t) =

∫ π√
10

0

∫ π√
10

0
k( π√

10
, y, ξ, η)u(ξ, η, t) dξdη, y ∈

[
0,

π√
10

]
,

u(x, 0, t) =

∫ π√
10

0

∫ π√
10

0
k(x, 0, ξ, η)u(ξ, η, t) dξdη, x ∈

[
0,

π√
10

]
,

u(x, π√
10
, t) =

∫ π√
10

0

∫ π√
10

0
k(x, π√

10
, ξ, η)u(ξ, η, t) dξdη, x ∈

[
0,

π√
10

]
,

for the boundary kernels defined as k(x, y, ξ, η) = 5
2 cos

(√
5
2x

)
cos

(√
5
2y

)
, the analytical

solution takes the form u∗(x, y, t) = e−5t cos
(√

5
2x

)
cos

(√
5
2y

)
.

The problem is posed within the framework of non-local boundary conditions. Thus,

Algorithm 3 can be utilized to derive approximate solutions. The application of Algorithm
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3 provides numerical solutions denoted by u⟨m⟩. The precision of these solutions at time

t = 1 evaluated via the ARE is reported in Table 4.2 for H := M ×N ∈ {10× 10, 15×

15, 20×20, 25×25, 30×30} and ∆t ∈ {0.1, 0.05, 0.01, 0.005}. It can be observed from the

table that the errors tend to slightly diminish with an increase in nodal number M ×N ,

but exhibit a more pronounced reduction as ∆t becomes smaller.

Ultimately, the visualizations of solutions derived from Algorithm 3 are portrayed

in Figure 4.2. These solutions are achieved at time T = 1 across the entire domain[
0, π√

10

]
×
[
0, π√

10

]
, employing a grid of H = 15×15 nodes and a time increment ∆t = 0.01.

Furthermore, this figure incorporates the comparison between these computed solutions

and the corresponding analytical solutions.

Table 4.2: The ARE of numerical solutions u at time T = 1 for Example 4.2.

M ×N ∆t = 0.1 ∆t = 0.05 ∆t = 0.01 ∆t = 0.005

10× 10 2.5508× 10−4 6.7992× 10−5 7.2715× 10−6 5.3764× 10−6

15× 15 2.5157× 10−4 7.8482× 10−5 3.6233× 10−6 1.6074× 10−6

20× 20 2.5098× 10−4 7.7732× 10−5 2.9573× 10−6 9.5263× 10−7

25× 25 2.5082× 10−4 7.7527× 10−5 2.7750× 10−6 7.7343× 10−7

30× 30 2.5076× 10−4 7.7453× 10−5 2.7096× 10−6 7.0970× 10−7
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(a) Our numerical solution from Algorithm 3 (b) Compared to analytical solution

Figure 4.2: Graphical numerical solutions u(x, y, t) from Algorithm 3 for Example 4.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION

5.1 Conclusion and discussion

Throughout this research, we have leveraged the FIM-CPE in conjunction with

the Crank-Nicolson method to establish numerical algorithms capable of resolving one-

dimensional heat equations (2.14) constrained by the initial condition (2.15), as well as

non-local boundary conditions (2.16)–(2.17), and the Robin boundary conditions (3.20)–

(3.21). These methodologies are presented as Algorithms 1 and 2, respectively. Addition-

ally, Algorithm 3 has been developed to address the two-dimensional heat equation (2.20),

subjected to the initial condition (2.21) and non-local boundary conditions (2.22)–(2.25).

In the context of these algorithms, the derivative associated with the temporal vari-

able has been managed via the Crank-Nicolson method, which results in a time complexity

of O(∆t2). For the spatial variable, we adopt the solution via Chebyshev expansion and

discard all derivatives in relation to the spatial variable by performing integrals within

the heat equations, encompassing both one and two dimensions, and taking into account

both non-local and Robin boundary conditions. Subsequently, we approximate the re-

maining integration terms using the Chebyshev integration matrix, based on FIM-CPE.

The specifics of this process are outlined in the sections of Chapters III and IV pertaining

to numerical algorithms.

Furthermore, the efficacy and precision of the proposed Algorithms 1–3 are high-

lighted through numerous experimental examples within the numerical examples sections

of Chapters III and IV. The resulting data clearly affirms that these algorithms exhibit

increased accuracy in terms of ARE and MAE as the number of nodes increases and the

time step ∆t decreases, especially with regards to ∆t.
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5.2 Future research directions

As part of our ongoing commitment to scholarly advancement in this field, we have

identified several potential avenues for future research. Our investigations have unveiled

exciting possibilities that could be explored to enhance our understanding and augment

our existing body of knowledge. Below, we delineate these prospective research directions:

• Our current research invites the application of FIM-CPE to multi-dimensional non-

linear heat equations. This extension will enable us to probe deeper into the intri-

cate dynamics of these systems, thus further validating and enriching the robustness

of the FIM-CPE methodology.

• We anticipate that our FIM-CPE approach can be further optimized for the res-

olution of heat equations under various non-classical boundary conditions. This

broadened exploration has the potential to foster a more nuanced comprehension

of heat equations across a wider array of complex boundary conditions.

• Our work consider the heat equations with non-classical boundary conditions on the

rectangular domain. Then, we can extend on the heat equations with non-classical

boundary conditions on the non-rectangular domain.

Pursuing these promising directions will enable us to perpetuate our contribution to this

field and perpetuate the development of increasingly effective and versatile numerical

solutions to heat equations.
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