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FOR SINGULAR SEMILINEAR PARABOLIC PARTIAL DIFFERENTIAL EQUATIONS

WITH MIXED BOUNDARY CONDITIONS) อ.ทีป่รกึษาวทิยานพินธห์ลัก : รศ.ดร. รติ
นันท์ บญุเคลอืบ, 54 หน้า.

กำหนดให้ 0 < r < 1, L > 0, T ≤ ∞, D = (0, L), Ω = D × (0, T ] และ χS เปน็ฟงักชั์นลักษณะ
เฉพาะของเซต S วทิยานพินธ์ฉบับนี้ ศกึษาลักษณะหลังการเควนช์ของผลเฉลยของปญัหาคา่เร ิม่ต้น และคา่ขอบ
ของปญัหาสองปญัหาตอ่ไปนี้

ut − uxx − r

x
ux = f(u)χ{u<c}(u) ใน Ω,

u(x, 0) = 0 บน D̄

ภายใต้เง ือ่นไขคา่ขอบแบบผสม

u(0, t) = 0 = ux(L, t) สำหรับ 0 < t < T

หรอื ux(0, t) = 0 = u(L, t) สำหรับ 0 < t < T

โดยที่ f เปน็ฟงักชั์นทีห่าอนพัุนธ์อยา่งตอ่เน ือ่งได้ถงึอันดับทีส่องบนชว่ง [0, c) สำหรับคา่คงตัว c บางคา่ และ
f(0) > 0, f ′ > 0, f ′′ ≥ 0 และ limu→c− f(u) = ∞ เราสามารถแสดงได้วา่ในแตล่ะปญัหา เมือ่ t เข้าส ู่
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ปญัหาแรกบน (0, ℓ∗s) และปญัหาทีเ่หลอืบน (ℓ∗s, L) ซึง่ ℓ∗s เปน็คา่คงตัวทีเ่ปน็บวกทีค่ำนวณได้โดยวธิเีชงิตัวเลข
ซึง่ข้ันตอนวธิเีชงิตัวเลข สำหรับการคำนวณคา่ของ ℓ∗s มกีารสร้างไว้ให้สำหรับปญัหาแตล่ะปญัหาด้วย
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Let 0 < r < 1, L > 0, T ≤ ∞, D = (0, L), Ω = D × (0, T ] and χS be the characteristic

function of the set S. This thesis studies beyond quenching solution profiles of the two initial-

boundary value problems:

ut − uxx − r

x
ux = f(u)χ{u<c}(u) in Ω,

u(x, 0) = 0 on D̄

subject to the mixed boundary conditions:

u(0, t) = 0 = ux(L, t) for 0 < t < T

or ux(0, t) = 0 = u(L, t) for 0 < t < T

where f is a twice continuously differentiable function on [0, c), for some constant c, with f(0) >

0, f ′ > 0, f ′′ ≥ 0 and limu→c− f(u) = ∞. It is shown in each problem that, as t tends to ∞, all

weak solutions tend to a unique steady-state solution determined by solving two boundary value

problems: one on (0, ℓ∗s) and the other on (ℓ∗s, L), where ℓ∗s is a positive constant to be obtained

numerically. A numerical method for computing the value of ℓ∗s is provided for each problem
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CHAPTER I

INTRODUCTION

In the mid-twentieth century, studies on certain classes of differential equations

that exhibit nonlinearity in their boundary conditions or equations revealed that their

solutions can become unbounded and cease to exist after finite time intervals [13]. This

occurrence is known as blow-up. Another related phenomenon is quenching, where a

solution becomes discontinuous and loses its regularity.

Quenching was introduced by Kawarada [15] in 1975 when he studied the following

reaction-diffusion equation with a nonlinear reaction term:

ut − uxx = (1− u)−1, x ∈ (0, L), t > 0,

u(x, 0) = 0, x ∈ [0, L],

u(0, t) = 0 = u(L, t), t > 0.


(1.1)

The solution u is increasing with respect to t on (0, L). If at some t = tq, u(L/2, tq)

reaches 1, then ut(L/2, tq) becomes infinite due to the nonlinear term and (1.1) is not

everywhere defined. As a consequence, u cannot be continued beyond tq. Based on the

previous observation, a solution u quenches if there exists tq ∈ (0,∞] such that

sup
0≤x≤L

{ut(x, t)} → ∞ as t → tq.

Chan and Kong [11] studied a similar problem and gave an equivalent definition as

sup
0≤x≤L

{u(x, t)} → c− as t → tq.

If tq is finite, then u quenches in a finite time. Otherwise, u quenches in infinite time.

Quenching can be interpreted in various physical contexts, such as in gas combustion

processes where the gas is compressed, causing its temperature to increase. At a certain



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2

point, known as the autoignition point, the gas spontaneously ignites, further increasing

its temperature significantly. In this case, the autoignition temperature can be considered

the quenching point in the solution, where the solution undergoes an abrupt change in

value due to the ignition. This phenomenon can result in a loss of regularity in the

solution, as the sudden increase in temperature can cause a singularity in the equation

being modeled.

1.1 Literature review

In 1976, Acker and Walter [2] studied the reaction-diffusion equation with a gener-

alized reaction term as follows:

ut − uxx = f(u), x ∈ (−L,L), t > 0,

u(x, 0) = 0, x ∈ [−L,L],

u(−L, t) = 0 = u(L, t), t > 0,


(1.2)

where f is locally Lipchitz continuous in the range of u, f(0) > 0, and limu→c− f(u) = ∞

for some c > 0. Let L∗ be the supremum of all L such that a steady-state solution to (1.2)

exists. They found that if L > L∗, the solution u quenches in a finite time; otherwise, u

exists globally.

In 1994, Chan and Ke [10] expanded the previous works by studying what happens

after a solution quenches in a finite time. To let the quenched solution continue past the

first quenching time, they multiply the reaction term by the characteristic function χS

which acts as a switch to nullify f at the region where the solution has quenched. The

resulting problem is as follows:

ut − uxx = f(u)χ{u<c}(u), x ∈ (0, L), t ∈ (0, T ],

u(x, 0) = 0, x ∈ [0, L],

u(0, t) = 0 = u(L, t), t ∈ (0, T ],


(1.3)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

where L > 0, T ≤ ∞, χS(x) =


1 if x ∈ S,

0 if x /∈ S
is the characteristic function of the set

S, f is twice continuously differentiable on [0, c) with f(0) > 0, f ′ > 0, f ′′ ≥ 0 and

limu→c− f(u) = ∞. It was shown that, for L sufficiently large, weak solutions exist and

tend to the unique solution of the following boundary value problems:

W (x) = c, x ∈ (b∗s, B
∗
s ),

−W ′′(x) = f(W (x)), x ∈ (0, b∗s), W (0) = 0, W (b∗s) = c,

−W ′′(x) = f(W (x)), x ∈ (B∗
s , L), W (B∗

s ) = c, W (L) = 0,


(1.4)

where b(t) = inf {x : u(x, t) = c}, B(t) = sup {x : u(x, t) = c}, b∗s = limt→∞ b(t) and

B∗
s = limt→∞B(t).

In 2018, Boonklurb et al. [6] studied the following singular convection-diffusion

problem:

Lu :=ut − uxx −
r

x
ux = f(u)χ{u<c}(u), x ∈ (0, L), t ∈ (0, T ],

u(x, 0) = 0, x ∈ [0, L],

u(0, t) = 0 = u(L, t), t ∈ (0, T ],


(1.5)

where 0 < r < 1, and all other variables defined in the same manner as in (1.3). For L

sufficiently large, they arrived at conclusions similar to (1.4); however, the added singular

term rux/x destroys the symmetry of the beyond quenching profile of (1.5) [9].

A number of physical phenomena involve the linear operator L. For instance, when

0 ≤ r ≤ 2, the operator represents heat conduction in geometric bodies with r being their

shape parameters [9]. When r is a positive integer, it corresponds to radially symmetric

diffusion in r + 1 dimensions [4]. In probability theory, the same operator describes a

singular diffusion as a part of the Fokker-Planck equation and a radial component of a

Brownian motion as a part of the Kolmogorov equation [3].
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1.2 Research problem

In this thesis, we extend the previous works by studying the following singular

convection-diffusion initial-boundary value problems (IBVP):

Lu = f(u)χ{u<c}(u) in Ω, (1.6)

with the initial condition

u(x, 0) = 0 on D̄, (1.7)

where D = (0, L), Ω = D× (0, T ] and all other variables and functions are defined in the

same manner as in (1.3).

We extend the previous work by Boonklurb et al. [6] to accommodate a wider

range of radially symmetric systems by considering two other combinations of boundary

conditions:

u(0, t) = 0 = ux(L, t), t ∈ (0, T ] (1.8)

and ux(0, t) = 0 = u(L, t), t ∈ (0, T ]. (1.9)

We denote (1.6) – (1.8) as the Left IBVP and (1.6), (1.7), (1.9) as the Right IBVP. We

multiply (1.6) by xr to transform the singular term. The following formulation of (1.6)

will be used for analysis throughout the thesis:

Hu := xrut − (xrux)x = xrf(u)χ{u<c}(u) in Ω.

Since this thesis focuses mainly on the beyond quenching profiles, we assume the

existence of the weak solution to both IBVPs. One can use techniques demonstrated in

[8, 12] along with the following assumptions:

f ′(u)

(
c− u

f(u)

)2

≤ K1 and
∫ c

u
f(s)ds ≤ min {K2(c− u)f(u),K3(c− u)γ}



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5

for 0 ≤ u < c, some positive constants K1,K2,K3, and γ ∈ (0, 2) to prove the existence

of their weak solutions, which are defined as follows:

Definition 1.1. A function u is said to be a weak solution of either the Left IBVP or

the Right IBVP if

(i) u ∈ C([0, t0];L1(D)) ∩ L∞(D × (0, t0)) for each t0 > 0;

(ii) for any v ∈ C2,1(Ω̄) such that v has a compact support with respect to t and

v(0, t) = 0 = vx(L, t) for the Left IBVP or vx(0, t) = 0 = v(L, t) for the Right

IBVP, ∫ ∞

0

∫ L

0
uH†vdxdt+

∫ ∞

0

∫ L

0
xrf(u)χ{u<c}(u)vdxdt = 0

where H† := xr∂/∂t+ ∂/∂x (xr∂/∂x) is the adjoint operator of H.

Remark 1.1. C([0, t0];L1(D)) is the space of functions g : [0, t0] → L1(D) such that g

is continuous on [0, t0].

In addition, one can manipulate the results of [14] to deduce the following properties of

the weak solutions:

Theorem 1.1. Weak solutions u of the Left IBVP and the Right IBVP exist and possess

the following properties:

(i) u(x, t) ∈ C2,1({(x, t)|u(x, t) < c}) ∩ C1,0(Ω) ∩ C(Ω̄);

(ii) u ≤ c in Ω;

(iii) if u(x, t0) = c for some x ∈ D and t0 ∈ [τ,∞), then u(x, t) = c for t ∈ [t0,∞),

where τ is the first finite quenching time;

(iv) u is nondecreasing with respect to t in {(x, t)|u(x, t) < c};

(v) ux = 0 at the point (x, t) where u(x, t) = c.
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1.3 Thesis organization

This thesis is organized as follows. Chapter II and Chapter III derive the beyond

quenching profiles for the Left and Right IBVPs, respectively. In Chapter IV, a numerical

method is developed to calculate the parameters that characterize the solution profiles

from the preceding sections. Finally, Chapter V presents a discussion of the results and

the thesis concludes with a summary of the findings.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER II

QUENCHING PROFILE OF LEFT IBVP

Let Lu = ut − uxx − (r/x)ux and Hu = xrut − (xrux)x where 0 < r < 1. We

restate the Left IBVP as

Lu = f(u)χ{u<c}(u) in Ω,

u(x, 0) = 0, x ∈ D̄,

u(0, t) = 0 = ux(L, t), t ∈ (0, T ]

or
Hu = xrf(u)χ{u<c}(u) in Ω,

u(x, 0) = 0, x ∈ D̄,

u(0, t) = 0 = ux(L, t), t ∈ (0, T ],


(2.1)

where L > 0, T ≤ ∞, D = (0, L), Ω = D × (0, T ], and f is twice continuously differen-

tiable on [0, c) for some constant c with f(0) > 0, f ′ > 0, f ′′ ≥ 0 and limu→c− f(u) = ∞.

In this chapter, we show that under the properties in Theorem 1.1, weak solutions

of (2.1) converge uniformly to the unique solution of the following steady-state problem

as t tends to infinity:

W (x) = c, x ∈ [ℓ∗s, L], (2.2)

−(xrW ′(x))′ = xrf(W (x)), x ∈ (0, ℓ∗s), W (0) = 0,W (ℓ∗s) = c, (2.3)

where ℓ∗s is a positive constant to be determined. Let u denote any weak solution of (2.1).

We would like to study the behavior of u beyond the first quenching time.
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2.1 Beyond quenching profile

Let τ be the first finite time when quenching occurs. For t ≥ τ , we define ℓ(t) =

inf{x : u(x, t) = c} and ℓ∗ = limt→∞ ℓ(t).

By manipulating the ideas of Lemma 2 and Lemma 6 of Chan and Ke [10], we

arrive at Lemma 2.1.

Lemma 2.1. The function ℓ(t) is nonincreasing and ℓ∗ ≥ ℓ∗s > 0.

One physical interpretation of Lemma 2.1 is that, as time approaches infinity, the

region within D where the temperature u approaches c from below should expand. This

is because the Neumann boundary condition at x = L requires zero heat flux at that end,

causing a buildup of heat that would eventually raise the temperature to the critical value

c at that point. Meanwhile, the Dirichlet boundary condition at x = 0 constrains the

temperature u to remain below c in a certain part of D, preventing the critical temperature

from being reached in that region. Therefore, the solution profile after the first quenching

has occurred should separate into two segments demarcated by ℓ∗s as in Lemma 2.2 and

Lemma 2.3.

From (ii) and (iv) in Theorem 1.1, we can use the Dini’s Theorem ([19], p.143) to

deduce that u(x, t) converges uniformly to its continuous limit as t → ∞ on D̄ denoted

by

U(x) = lim
t→∞

u(x, t).

Lemma 2.2. For x ∈ (0, ℓ∗), u(x, t) converges uniformly to a solution of (2.3) as t → ∞

with ℓ∗ = ℓ∗s.

Proof. We use the same idea presented in [6]. Consider u in the region [0, ℓ̃] × (0,∞)

where ℓ̃ ∈ [0, ℓ∗]. We define

F (x, t) =

∫ ℓ̃

0
ξrG(x; ξ)u(ξ, t) dξ (2.4)
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where G(x; ξ) is the Green’s function corresponding to (2.3) (see Appendix A1) with ℓ∗s

replaced by ℓ̃:

G(x; ξ) =


x1−r

1− r

(
1−

(
ξ

ℓ̃

)1−r
)

for 0 ≤ x < ξ,

ξ1−r

1− r

(
1−

(
x

ℓ̃

)1−r
)

for ξ < x ≤ ℓ̃.

We consider the time derivative of (2.4),

Ft(x, t) =
∂

∂t

∫ ℓ̃

0
ξrG(x; ξ)u(ξ, t) dξ.

From (i) in Theorem 1.1 and the continuity of G(x, ξ), we have, by the Leibniz integral

rule ([16], p.422), that

Ft(x, t) =

∫ ℓ̃

0
ξrG(x; ξ)ut(ξ, t) dξ (2.5)

=

∫ ℓ̃

0
G(x; ξ)(ξruξ(ξ, t))ξ dξ +

∫ ℓ̃

0
G(x; ξ)ξrf (u(ξ, t)) dξ.

Using Green’s formula ([18], p.167) and the properties of the Green’s function on the first

term, we arrive at

Ft(x, t) = ℓ̃ru(ℓ̃, t)Gξ(x; ℓ̃)− u(x, t) +

∫ ℓ̃

0
G(x; ξ)ξrf (u(ξ, t)) dξ.

Since f is increasing, it follows from the Monotone Convergence Theorem ([17], p.87) and

the continuity of f that

lim
t→∞

Ft(x, t) = ℓ̃rU(ℓ̃)Gξ(x; ℓ̃)− U(x) +

∫ ℓ̃

0
G(x; ξ)ξrf (U(ξ)) dξ.

According to (iv) in Theorem 1.1, we have from (2.5) that F is nondecreasing with respect

to t. Furthermore, we have that

lim
t→∞

Ft(x, t) ≥ 0.
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Suppose that this limit were positive at some point x0. F (x0, t) would be nondecreasing,

and limt→∞ F (x0, t) = ∞, which would contradict (ii) in Theorem 1.1. Therefore, the

limit must be zero, and

U(x) = ℓ̃rU(ℓ̃)Gξ(x; ℓ̃) +

∫ ℓ̃

0
G(x; ξ)ξrf (U(ξ)) dξ

= c

(
x

ℓ̃

)1−r

+

∫ ℓ̃

0
G(x; ξ)ξrf (U(ξ)) dξ.

Differentiating with respect to x, we have that

U ′(x) =

(
1− r

ℓ̃1−r

)
cx−r +

∫ ℓ̃

0
Gx(x; ξ)ξ

rf (U(ξ)) dξ. (2.6)

By multiplying xr and differentiating both sides of (2.6), we have

−
(
xrU ′(x)

)′
=

∫ ℓ̃

0
− (xrGx(x; ξ))x ξ

rf (U(ξ)) dξ

=

∫ ℓ̃

0
δ(x− ξ)ξrf (U(ξ)) dξ

= xrf (U(x)) .

Since ℓ̃ is arbitrary, and U is continuous on D̄, Lemma 2.2 is proven.

Lemma 2.3. For x ∈ [ℓ∗, L], U(x) = c.

Proof. Suppose that there exists x0 ∈ [ℓ∗, L] such that U(x0) < c. By the continuity of U ,

there exists an interval (x1, x2) with ℓ∗ < x1 < x0 < x2 < L such that U(x1) = c = U(x2)

and U(x) < c for all x ∈ (x1, x2). Since ut ≥ 0 for u < c, we have u(x, t) < c in

{(x, t) : x ∈ (x1, x2) and t > 0}. This implies that

Hu = xrf(u), x ∈ (x1, x2), t > 0.

Let

F (x, t) =

∫ x2

x1

ξrG(x; ξ)u(ξ, t) dξ,
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where

G(x; ξ) =


(
x1−r − x1−r

1

1− r

)(
x1−r
2 − ξ1−r

x1−r
2 − x1−r

1

)
for x1 ≤ x < ξ,(

x1−r
2 − x1−r

1− r

)(
ξ1−r − x1−r

1

x1−r
2 − x1−r

1

)
for ξ < x ≤ x2

is the Green’s function corresponding to the operator H with vanishing boundary condi-

tions (see Appendix A2).

We use the same idea as Lemma 2.2 to compute Ft(x, t). Since u(x, t) is nonde-

creasing with respect to t, it follows that Ft(x, t) ≥ 0. By direct calculation, we get

Ft(x, t) =

(
x1−r
2 − x1−r

x1−r
2 − x1−r

1

)
u(x1, t)−

(
x1−r
1 − x1−r

x1−r
2 − x1−r

1

)
u(x2, t)− u(x, t)

+

∫ x2

x1

G(x; ξ)ξrf(u(ξ, t)) dξ.

Because f is nondecreasing, it follows from the Monotone Convergence Theorem ([17],

p.87), the continuity of f , and U(x1) = c = U(x2) that

lim
t→∞

Ft(x, t) =

(
x1−r
2 − x1−r

x1−r
2 − x1−r

1

)
U(x1)−

(
x1−r
1 − x1−r

x1−r
2 − x1−r

1

)
U(x2)− U(x)

+

∫ x2

x1

G(x; ξ)ξrf(U(ξ)) dξ.

Suppose that the limit were strictly positive at some x0 ∈ (x1, x2), since F is nonde-

creasing, as t tends to ∞, F (x0, t) would increase without bound, which would contra-

dict the fact that F is bounded due to the boundedness of u as t → ∞. Therefore,

limt→∞ Ft(x, t) = 0, and

U(x) = c+

∫ x2

x1

G(x; ξ)ξrf(U(ξ)) dξ > c

for all x ∈ (x1, x2). This contradicts Theorem 1.1 (ii). Therefore, Lemma 2.3 is proven.

Lemma 2.4. U ′(ℓ∗s) = 0
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Proof. Because u(x, t) converge uniformly to U(x) on D̄, by applying Theorem 1.1 (i)

and (v), we obtain

lim
(x,t)→(ℓ∗s ,∞)

ux(x, t) = 0.

Therefore, U ′(ℓ∗s) = 0, and we prove Lemma 2.4.

We modify the proof of Lemma 3.4 of Chan and Boonklurb [8], to prove the unique-

ness of (2.3) resulting in Lemma 2.5.

Lemma 2.5. (2.3) has a unique solution.

Proof. Let W1(x) and W2(x) be two distinct solutions of (2.3) and Z(x) = W1(x)−W2(x).

Consider

−
(
xrZ ′(x)

)′
= xr (f (W1(x))− f (W2(x))) .

By the Mean Value Theorem ([1], p.155),

−
(
xrZ ′(x)

)′
= xrf ′(θ)Z(x)

for some θ between W1(x) and W2(x). Multiplying by xrZ ′(x) and integrating both sides

from x to ℓ∗s, we have

(xrZ ′(x))2

2
− ((ℓ∗s)

r Z ′(ℓ∗s))
2

2
=

∫ ℓ∗s

x
ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ.

Since W ′
1(ℓ

∗
s) = 0 = W ′

2(ℓ
∗
s), Z ′(ℓ∗s) = 0 and we have that

(xrZ ′(x))2

2
=

∫ ℓ∗s

x
ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ. (2.7)

Since Z(0) = 0 = Z(ℓ∗s), it follows from Rolle’s Theorem ([5], p.196) that there exists

x0 = max{x ∈ (0, ℓ∗s)|Z ′(x) = 0}. Without loss of generality, we assume W1(x) > W2(x)
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for all x ∈ (x0, ℓ
∗
s). Then, Z(x) > 0 and Z ′(x) < 0 for all x ∈ (x0, ℓ

∗
s). Thus, from (2.7),

(xr0Z
′(x0))

2

2
=

∫ ℓ∗s

x0

ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ. (2.8)

Since the left-hand side evaluates to zero, while the integrand is strictly negative, both

sides of (2.8) are not equal. This contradiction proves Lemma 2.5.

From Lemma 2.2 to Lemma 2.4, we conclude the following

Theorem 2.1. As t → ∞, all weak solutions of (2.1) with the properties (i) and (iv) of

Theorem 1.1 tend to the unique steady-state solution given by (2.2) and (2.3).

2.2 Bound for ℓ∗s

We want to find an integral representation of ℓ∗s. First, we multiply (2.3) by xrW ′(x)

and integrate from x to ℓ∗s. Since W ′(ℓ∗s) = 0, we have

1

2

(
xrW ′(x)

)2
=

∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ.

From W ′(x) ≥ 0 for all x ∈ [0, ℓ∗s], we have

1

xr
=

1√
2

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x).

Hence,

∫ ℓ∗s

0

1

xr
dx =

1√
2

∫ ℓ∗s

0

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx,

which gives

(ℓ∗s)
1−r =

1− r√
2

∫ ℓ∗s

0

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx.
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Therefore,

ℓ∗s =

(
1− r√

2

∫ ℓ∗s

0

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx

) 1

1−r

. (2.9)

We want to find a lower bound of ℓ∗s. Since ρ2r ≤ (ℓ∗s)
2r, where ρ ∈ [x, ℓ∗s] and

f (W (ρ))W ′(ρ) > 0, we have

∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ ≤ (ℓ∗s)

2r

∫ ℓ∗s

x
f (W (ρ))W ′(ρ) dρ

= (ℓ∗s)
2r

∫ c

W (x)
f(η) dη

which gives

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

≥ (ℓ∗s)
−r

(∫ c

W (x)
f(η) dη

)− 1

2

.

Since W ′(x) > 0, we obtain

1− r√
2

∫ ℓ∗s

0

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx

≥ 1− r√
2(ℓ∗s)

r

∫ ℓ∗s

0

(∫ c

W (x)
f(η) dη

)− 1

2

W ′(x) dx.

From (2.9),

ℓ∗s ≥

 1− r√
2(ℓ∗s)

r

∫ ℓ∗s

0

(∫ c

W (x)
f(η) dη

)− 1

2

W ′(x) dx

 1

1−r

≥

(
1− r√
2(ℓ∗s)

r

∫ c

0

(∫ c

ζ
f(η) dη

)− 1

2

dζ

) 1

1−r

. (2.10)

The value of ℓ∗s is critical in determining the beyond quenching steady-state solution

profile, and is obtained by solving the nonlinear inequality (2.10). However, an exact value

of ℓ∗s is often difficult to obtain analytically, and thus we provide a numerical method in
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Chapter IV for computing its value for any given problem. This numerical method allows

for a more accurate and efficient determination of ℓ∗s than analytical methods alone, and is

a crucial step in analyzing the long-term behavior of solutions to the semilinear parabolic

partial differential equation under consideration.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER III

QUENCHING PROFILE OF RIGHT IBVP

Similar to Chapter II, we let Lu = ut − uxx − (r/x)ux and Hu = xrut − (xrux)x

where 0 < r < 1. We restate the Right IBVP as

Lu = f(u)χ{u<c}(u) in Ω,

u(x, 0) = 0, x ∈ D̄,

ux(0, t) = 0 = u(L, t), t ∈ (0, T ],

or
Hu = xrf(u)χ{u<c}(u) in Ω,

u(x, 0) = 0, x ∈ D̄,

ux(0, t) = 0 = u(L, t), t ∈ (0, T ],


(3.1)

where L > 0, T ≤ ∞, D = (0, L), Ω = D × (0, T ], and f is twice continuously differen-

tiable on [0, c) for some constant c with f(0) > 0, f ′ > 0, f ′′ ≥ 0 and limu→c− f(u) = ∞.

With similar techniques used in Chapter II, we show that under the properties in

Theorem 1.1, weak solutions of (3.1) converge uniformly to the unique solution of the

following steady-state problem as t tends to infinity:

W (x) = c, x ∈ [0, ℓ∗s], (3.2)

−(xrW ′(x))′ = xrf(W (x)), x ∈ (ℓ∗s, L), W (ℓ∗s) = c,W (L) = 0, (3.3)

where ℓ∗s is a positive constant to be determined. Let u denote any weak solution of (3.1).

We would like to study the behavior of u beyond the first quenching time.
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3.1 Beyond quenching profile

Let τ be the first finite time when quenching occurs. For t ≥ τ , we change the

definition of ℓ(t) to be sup{x : u(x, t) = c} and ℓ∗ = limt→∞ ℓ(t).

By manipulating the ideas of Lemma 2 and Lemma 6 of Chan and Ke [10], we

arrive at Lemma 3.1.

Lemma 3.1. The function ℓ(t) is nondecreasing and ℓ∗ ≤ ℓ∗s < L.

Lemma 3.1 has a physical interpretation similar to that of Lemma 2.1; however,

the switch in the boundary conditions at x = 0 and x = L causes the solution to behave

differently. In this case, the temperature u would reach the critical value c at x = 0,

while the boundary condition at x = L would prevent the temperature from reaching c

over the entire length of D. This results in a quenching profile that is distinct from that

of (2.1), as the critical point now occurs at the opposite end of the domain. Hence, the

solution profile after the first quenching has occurred should separate into two segments

demarcated by ℓ∗s as in Lemma 3.2 and Lemma 3.3.

From (ii) and (iv) in Theorem 1.1, we can use the Dini’s Theorem ([19], p.143) to

deduce that u(x, t) converges uniformly to its continuous limit as t → ∞ on D̄ denoted

by

U(x) = lim
t→∞

u(x, t).

Lemma 3.2. For x ∈ (ℓ∗, L), u(x, t) converges uniformly to a solution of (3.3) as t → ∞

with ℓ∗ = ℓ∗s.

Proof. We modify the idea used in Lemma 2.2 to accommodate the changes in the bound-

ary conditions. Consider u in the region [ℓ̃, L]× (0,∞) where ℓ̃ ∈ [ℓ∗, L]. We define

F (x, t) =

∫ L

ℓ̃
ξrG(x; ξ)u(ξ, t) dξ (3.4)

where G(x; ξ) is the Green’s function corresponding to (3.3) (see Appendix A3) with ℓ∗s
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replaced by ℓ̃:

G(x; ξ) =



(
x1−r − ℓ̃1−r

1− r

)(
L1−r − ξ1−r

L1−r − ℓ̃1−r

)
for ℓ̃ ≤ x < ξ,

(
L1−r − x1−r

1− r

)(
ξ1−r − ℓ̃1−r

L1−r − ℓ̃1−r

)
for ξ < x ≤ L.

We consider the time derivative of (3.4),

Ft(x, t) =
∂

∂t

∫ L

ℓ̃
ξrG(x; ξ)u(ξ, t) dξ.

From (i) in Theorem 1.1 and the continuity of G(x, ξ), we have, by the Leibniz integral

rule ([16], p.422), that

Ft(x, t) =

∫ L

ℓ̃
ξrG(x; ξ)ut(ξ, t) dξ (3.5)

=

∫ L

ℓ̃
G(x; ξ)(ξruξ(ξ, t))ξ dξ +

∫ L

ℓ̃
G(x; ξ)ξrf (u(ξ, t)) dξ.

Using Green’s formula ([18], p.167) and the properties of the Green’s function on the first

term, we arrive at

Ft(x, t) = ℓ̃ru(ℓ̃, t)Gξ(x; ℓ̃)− u(x, t) +

∫ L

ℓ̃
G(x; ξ)ξrf (u(ξ, t)) dξ.

Since f is increasing, it follows from the Monotone Convergence Theorem ([17], p.87) and

the continuity of f that

lim
t→∞

Ft(x, t) = ℓ̃rU(ℓ̃)Gξ(x; ℓ̃)− U(x) +

∫ L

ℓ̃
G(x; ξ)ξrf (U(ξ)) dξ.

According to (iv) in Theorem 1.1, we have from (3.5) that F is nondecreasing with respect

to t. Furthermore, we have that

lim
t→∞

Ft(x, t) ≥ 0.
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Suppose that this limit were positive at some point x0. F (x0, t) would be nondecreasing,

and limt→∞ F (x0, t) = ∞, which would contradict (ii) in Theorem 1.1. Therefore, the

limit must be zero, and we have

U(x) = ℓ̃rU(ℓ̃)Gξ(x; ℓ̃) +

∫ L

ℓ̃
G(x; ξ)ξrf (U(ξ)) dξ

= c

(
L1−r − x1−r

L1−r − ℓ̃1−r

)
+

∫ L

ℓ̃
G(x; ξ)ξrf (U(ξ)) dξ.

Differentiating with respect to x, we have that

U ′(x) =

(
r − 1

L1−r − ℓ̃1−r

)
cx−r +

∫ L

ℓ̃
Gx(x; ξ)ξ

rf (U(ξ)) dξ. (3.6)

By multiplying xr and differentiating both sides of (3.6), we have

−
(
xrU ′(x)

)′
=

∫ L

ℓ̃
− (xrGx(x; ξ))x ξ

rf (U(ξ)) dξ

=

∫ L

ℓ̃
δ(x− ξ)ξrf (U(ξ)) dξ

= xrf (U(x)) .

Since ℓ̃ is arbitrary, and U is continuous on D̄, Lemma 3.2 is proven.

Lemma 3.3. For x ∈ [ℓ∗, L], U(x) = c.

Proof. Suppose that there exists x0 ∈ [0, ℓ∗] such that U(x0) < c. By the continuity of U ,

there exists an interval (x1, x2) with 0 < x1 < x0 < x2 < ℓ∗ such that U(x1) = c = U(x2)

and U(x) < c for all x ∈ (x1, x2).

The remaining part of the proof of Lemma 3.3 is identical to that of Lemma 2.3.

Lemma 3.4. U ′(ℓ∗s) = 0.

Proof. The proof of Lemma 3.4 is identical to that of Lemma 2.4.
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We modify the proof of Lemma 3.4 of Chan and Boonklurb [8], to prove the unique-

ness of (3.3) resulting in Lemma 3.5.

Lemma 3.5. (3.3) has a unique solution.

Proof. We use the same idea presented in the proof of Lemma 2.5 with some changes in

the limits of integrations. Let W1(x) and W2(x) be two distinct solutions of (3.3) and

Z(x) = W1(x)−W2(x). Consider

−
(
xrZ ′(x)

)′
= xr (f (W1(x))− f (W2(x))) .

By the Mean Value Theorem ([1], p.155),

−
(
xrZ ′(x)

)′
= xrf ′(θ)Z(x)

for some θ between W1(x) and W2(x). Multiplying by xrZ ′(x) and integrating both sides

from ℓ∗s to x, we have

((ℓ∗s)
r Z ′(ℓ∗s))

2

2
− (xrZ ′(x))2

2
=

∫ x

ℓ∗s

ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ.

Since W ′
1(ℓ

∗
s) = 0 = W ′

2(ℓ
∗
s), Z ′(ℓ∗s) = 0 and we have that

(xrZ ′(x))2

2
= −

∫ x

ℓ∗s

ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ. (3.7)

Since Z(ℓ∗s) = 0 = Z(L), it follows from Rolle’s Theorem ([5], p.196) that there exists

x0 = min{x ∈ (ℓ∗s, L)|Z ′(x) = 0}. Without loss of generality, we assume W1(x) > W2(x)

for all x ∈ (ℓ∗s, x0). Then, Z(x) > 0 and Z ′(x) > 0 for all x ∈ (ℓ∗s, x0). Thus, from (3.7),

(xr2Z
′(x2))

2

2
= −

∫ x2

ℓ∗s

ρ2rf ′(θ)Z(ρ)Z ′(ρ) dρ. (3.8)

Since the left-hand side evaluates to zero, while the integrand is strictly positive, both

sides of (3.8) are not equal. This contradiction proves Lemma 3.5.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

21

From Lemma 3.2 to Lemma 3.4, we conclude the following

Theorem 3.1. As t → ∞, all weak solutions of (3.1) with the properties (i) and (iv) of

Theorem 1.1 tend to the unique steady-state solution given by (3.2) and (3.3).

3.2 Bound for ℓ∗s

We use a similar technique in Section 2.2 to find an integral representation of ℓ∗s.

First, we multiply (3.3) by xrW ′(x) and integrate from ℓ∗s to x. Since W ′(ℓ∗s) = 0, we

have

1

2

(
xrW ′(x)

)2
= −

∫ x

ℓ∗s

ρ2rf (W (ρ))W ′(ρ) dρ

=

∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ.

From W ′(x) ≤ 0 for all x ∈ [ℓ∗s, L], we have

1

xr
= − 1√

2

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x).

Hence,

∫ ℓ∗s

L

1

xr
dx = − 1√

2

∫ ℓ∗s

L

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx,

which gives

(ℓ∗s)
1−r = L1−r +

r − 1√
2

∫ ℓ∗s

L

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx.

Therefore,

ℓ∗s =

(
L1−r +

r − 1√
2

∫ ℓ∗s

L

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx

) 1

1−r

. (3.9)
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We want to find an upper bound of ℓ∗s. Since ρ2r ≤ x2r, where ρ ∈ [ℓ∗s, x] and −f (W (ρ))W ′(ρ) >

0, we have

∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ ≤ x2r

∫ ℓ∗s

x
f (W (ρ))W ′(ρ) dρ

= x2r
∫ c

W (x)
f(η) dη

which gives

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

≥ x−r

(∫ c

W (x)
f(η) dη

)− 1

2

.

For x ∈ [ℓ∗s, L], we have that x−r ≥ L−r, and

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

≥ L−r

(∫ c

W (x)
f(η) dη

)− 1

2

.

Since W ′(x) < 0, we obtain

L1−r +
r − 1√
2Lr

∫ ℓ∗s

L

(∫ ℓ∗s

x
ρ2rf (W (ρ))W ′(ρ) dρ

)− 1

2

W ′(x) dx

≤ L1−r +
r − 1√
2Lr

∫ ℓ∗s

L

(∫ c

W (x)
f (η) dη

)− 1

2

W ′(x) dx.

From (3.9),

ℓ∗s ≤

L1−r +
r − 1√
2Lr

∫ ℓ∗s

L

(∫ c

W (x)
f(η) dη

)− 1

2

W ′(x) dx

 1

1−r

≤ L

(
1 +

r − 1√
2L

∫ c

0

(∫ c

ζ
f(η) dη

)− 1

2

dζ

) 1

1−r

. (3.10)

While the bound of ℓ∗s can be obtained readily by evaluating (3.10), an exact value

is needed to determine the beyond quenching steady-state solution profile. Therefore, we

provide a numerical method for computing the exact value of ℓ∗s for any given problem
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in Chapter IV. This numerical method is a crucial tool for accurately analyzing the long-

term behavior of solutions to the semilinear parabolic partial differential equation under

consideration.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER IV

NUMERICAL METHOD FOR QUENCHING

PROFILES

In Chapter II, we derived the steady-state problem of the Left IBVP. The results

are restated as follows:

W (x) = c, x ∈ [ℓ∗s, L],

−(xrW ′(x))′ = xrf(W (x)), x ∈ (0, ℓ∗s), (4.1)

W (0) = 0,W (ℓ∗s) = c. (4.2)

Similarly, in Chapter III, we derived the steady-state problem of the Right IBVP restated

as follows:

W (x) = c, x ∈ [0, ℓ∗s],

−(xrW ′(x))′ = xrf(W (x)), x ∈ (ℓ∗s, L), (4.3)

W (ℓ∗s) = c,W (L) = 0. (4.4)

In both problems, one must determine the value of the positive constant ℓ∗s before

beyond quenching profiles can be obtained. Therefore, in this chapter, we provide a

method to numerically compute the value of ℓ∗s for both problems.

To find an approximate value of ℓ∗s for each problem, we use an iterative method to

generate a sequence of ℓ’s in the interval [0, L] that converges to the true value. For each

ℓ in the sequence, we solve the corresponding boundary-value problem using either (4.1)

and (4.2) or (4.3) and (4.4). Depending on which problem, we observe that values of ℓ

closer to one end of the domain can yield divergent results. Using this observation, we

initialize ℓ to the value at the divergent end and use the bisection method to update its
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value so that the final ℓ is as close to the divergent end as possible while still producing

a convergent solution.

4.1 Boundary value problem discretization

Consider (4.1) and (4.3) with their domains replaced by (xL, xR) where 0 ≤ xL <

xR ≤ L,

−(xrW ′(x))′ = xrf(W (x)), x ∈ (xL, xR). (4.5)

We first expand the derivative terms and express (4.5) in a more compact form:

W ′′ +
r

x
W ′ + f(W ) = 0. (4.6)

Because the geometry of the domain is regular and by the continuity of u in Theorem 1.1

(i), we choose the finite-difference method (FDM) to discretize (4.6).

First, we partition [xL, xR] uniformly into N subintervals of width ∆. Then, we

have

xi = xL + i∆ = xL + i

(
xR − xL

N

)
for i ∈ {0, 1, 2, ..., N}. (4.7)

For i ∈ {1, 2, 3, ..., N − 1}, we have from the Taylor’s theorem [7] that

W ′(xi) =
1

2∆
(W (xi+1)−W (xi−1))−

∆2

6
W ′′′(ηi) (4.8)

and

W ′′(xi) =
1

∆2
(W (xi+1)− 2W (xi) +W (xi−1))−

∆2

12
W (4)(ξi) (4.9)

for some ηi and ξi in (xi−1, xi+1). Substituting (4.8) and (4.9) into (4.6), we have

(
1

∆2
+

r

2xi∆

)
W (xi+1)−

2

∆2
W (xi) +

(
1

∆2
− r

2xi∆

)
W (xi−1) + f(W (xi)) +O(∆2) = 0
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Let wi be an approximation to W (xi) and define

γi =
1

∆2
+

r

2xi∆
and γ̄i =

1

∆2
− r

2xi∆
.

We arrive at the finite-difference approximation of (4.6) as follows

γiwi+1 − (γi + γ̄i)wi + γ̄iwi−1 + f(wi) = 0 (4.10)

which we will use for numerically solving (4.1) and (4.2) or (4.3) and (4.4) in subsequent

sections.

4.2 Numerical method for the Left IBVP

For a given value of ℓ, we create grid points by (4.7) with xL replaced by 0 and xR

replaced by ℓ:

xi = i

(
ℓ

N

)
for i ∈ {0, 1, 2, ..., N}.

We define w to be the vector of values of the solution at the internal grid points:

w =
[
w1 w2 w3 ... wN−1

]T
(4.11)

with w0 = 0 and wN = c from the boundary conditions (4.2).

From the left-hand side of (4.10), let

F1(w) = γ1w2 − (γ1 + γ̄1)w1 + f(w1), (4.12)

FN−1(w) = cγN−1 − (γN−1 + γ̄i)wN−1 + γ̄N−1wN−2 + f(wN−1) (4.13)

and

Fi(w) = γiwi+1 − (γi + γ̄i)wi + γ̄iwi−1 + f(wi) (4.14)
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for i ∈ {2, 3, 4, ..., N − 2}. Furthermore, we let

F(w) =
[
F1(w) F2(w) F3(w) ... FN−1(w)

]T
.

Then, we must solve the system of algebraic equations

F(w) = 0 (4.15)

to obtain the solutions on the grid points. Since f contributes to non-linearity in (4.15),

we use Newton’s method to solve the root-finding problem.

Let J be the Jacobian matrix of F. We have

J(w) =
[
∂F(w)
∂w1

∂F(w)
∂w2

∂F(w)
∂w3

... ∂F(w)
∂wN−1

]
. (4.16)

By computing the derivatives of (4.12) – (4.14), we have each element of J as

Jij =



∂Fi

∂wi−1
= γ̄i if j = i− 1,

∂Fi

∂wi
= − (γi + γ̄i) + f ′(wi) if j = i,

∂Fi

∂wi+1
= γi if j = i+ 1,

0 otherwise

for i, j ∈ {1, 2, 3, ..., N − 1}. We want to generate a sequence of w’s which converges to

a root of (4.15).

Let w(k) denote the k-th element in the sequence. Then, we construct the consec-

utive elements by

w(k+1) = w(k) − J−1(w(k))F(w(k)) for k ∈ {0, 1, 2, 3, ...}, (4.17)

where we choose w(0) to be a linear function satisfying (4.2). Each component of w(0) is
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given by

w
(0)
i = c

(xi
ℓ

)
for i ∈ {1, 2, 3, ..., N − 1}.

For a specified tolerance ϵ, if ∥w(K+1) − w(K)∥ < ϵ for some K, then we terminate and

check whether w(K+1) ∈ RN−1. If the condition is true, we have that the current value

of ℓ yields a convergent solution.

Let ℓ(m) denote the value of ℓ at the m-th iteration. Then, we update the value of

ℓ by using the bisection method where

ℓ(m+1) =


ℓ(m) + L

2
if ℓ(m) gives a convergent solution,

ℓ(m)

2
otherwise

for m ∈ {0, 1, 2, 3, ...}. From Lemma 2.1, we know that the value of ℓ∗s is closer to 0 on D;

therefore, we initialize ℓ to be L. Suppose that ℓ(M) gives a convergent solution for some

M . For a specified tolerance ω, if |ℓ(M+1)− ℓ(M)| < ω, then we terminate. If ℓ(M+1) gives

a convergent result, we use ℓ(M+1) as an approximation of ℓ∗s; otherwise, use ℓ(M) as the

approximation. The algorithm for the Left IBVP is summarized as follows
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4.3 Numerical method for the Right IBVP

The numerical method for the Right IBVP is largely the same as the previous

section. We discuss the differences in their calculations.

For a given value of ℓ, we create grid points by (4.7) with xL replaced by ℓ and xR

replaced by L:

xi = ℓ+ i

(
L− ℓ

N

)
for i ∈ {0, 1, 2, ..., N}.

The vector w is defined in the same manner as (4.11), but the values at the boundary

points are switched: w0 = c and wN = 0, according to the boundary conditions (4.4).

Due to this fact, (4.12) and (4.13) need to be redefined as follows:

F1(w) = γ1w2 − (γ1 + γ̄1)w1 + cγ̄1 + f(w1)

and

FN−1(w) = −(γN−1 + γ̄i)wN−1 + γ̄N−1wN−2 + f(wN−1).

Then, we employ Newton’s method to solve (4.15) by computing J as (4.16) and generate

a sequence of vectors w’s according to (4.17). However, we choose w(0) to be a linear

function satisfying (4.4). Each component of w(0) is given by

w
(0)
i = c

(
1− xi − ℓ

L− ℓ

)
for i ∈ {1, 2, 3, ..., N − 1}.

For a specified tolerance ϵ, if ∥w(K+1) − w(K)∥ < ϵ for some K, then we terminate and

check whether w(K+1) ∈ RN−1. If the condition is true, we have that the current value

of ℓ yields a convergent solution.

Let ℓ(m) denote the value of ℓ at the m-th iteration. Then, we update the value of
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ℓ by using the bisection method where

ℓ(m+1) =


ℓ(m)

2
if ℓ(m) gives a convergent solution,

ℓ(m) + L

2
otherwise

for m ∈ {0, 1, 2, 3, ...}. From Lemma 3.1, we know that the value of ℓ∗s is closer to L on

D; therefore, we initialize ℓ to be 0. Suppose that ℓ(M) gives a convergent solution for

some M . For a specified tolerance ω, if |ℓ(M+1)− ℓ(M)| < ω, then we terminate. If ℓ(M+1)

gives a convergent result, we use ℓ(M+1) as an approximation of ℓ∗s; otherwise, use ℓ(M)

as the approximation. The algorithm for the Right IBVP is summarized as follows

4.4 Demonstrations

In this section, we illustrate the practical application of the numerical methods

developed in the preceding sections through two examples. First, we consider the source

function f(u) = (1−u)−β and simulate its behavior for various values of r, L, and β in Ex-

ample 4.1. Then, in Example 4.2, we investigate the source function f(u) = α− β ln (1− u)

using a similar approach as in the previous example.
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We have developed a Python program (see Appendix B1 – B3) to compute ℓ∗s for

both examples. If necessary, one can modify some parts of the program to simulate other

nonlinear functions in the future.

Example 4.1. We consider the source function f(u) = (1− u)−β where 0 < β < 1. We

have that f(0) = 1, f ′(u) = β(1 − u)−β−1 > 0, f ′′(u) = β(β + 1)(1 − u)−β−2 > 0, and

limu→1− f(u) = ∞.

To compute a lower bound of ℓ∗s in case of the Left IBVP, we refer to (2.10). The

integral term can be computed as follows:

∫ 1

0

(∫ 1

ζ
f(η) dη

)− 1

2

dζ =
√

1− β

∫ 1

0
(1− ζ)

β−1

2 dζ =
2
√
1− β

1 + β
. (4.18)

Then, we have

ℓ∗s ≥

(
(1− r)

√
2(1− β)

(ℓ∗s)
r(1 + β)

) 1

1−r

. (4.19)

Similarly, we refer to (3.10) for the Right IBVP. With the integral term in (4.18), we have

that

ℓ∗s ≤ L

(
1 +

(r − 1)
√

2(1− β)

L(1 + β)

) 1

1−r

. (4.20)

The following table summarizes the numerical approximations of ℓ∗s for different

values of r, β, and L for the Left and the Right IBVPs with N = 100 and ϵ = ω =

1× 10−6.
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r β L
ℓ∗s

Left Right

1/7 1/4 5 0.8983 4.0076

7 0.8983 6.0098

10 0.8983 9.0114

1/3 5 0.7916 4.1207

7 0.7916 6.1226

10 0.7916 9.1239

1/2 5 0.6107 4.3138

7 0.6107 6.3152

10 0.6107 9.3161

1/5 1/4 5 0.8622 4.0047

7 0.8622 6.0078

10 0.8622 9.0100

1/3 5 0.7578 4.1182

7 0.7578 6.1209

10 0.7578 9.1227

1/2 5 0.5816 4.3121

7 0.5816 6.3140

10 0.5816 9.3153

Table 4.1: Numerical approximations of ℓ∗s for f(u) = (1− u)−β

One can easily verify that all the values of ℓ∗s in Table 4.1, with their correspond-

ing values of r, β and L, satisfy (4.19) and (4.20) for the Left and the Right IBVPs,

respectively.
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(a) (b)

Figure 4.1: Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where
r = 1/5, L = 5 and f(u) = (1− u)−1/3.

Example 4.2. We consider the source function f(u) = α − β ln (1− u) where α, β >

0. We have that f(0) = α, f ′(u) = β/(1 − u) > 0, f ′′(u) = β/(1 − u)2 > 0, and

limu→1− f(u) = ∞.

Similar to the previous example, we compute a lower bound of ℓ∗s in case of the Left

IBVP by refering to (2.10). The integral term can be computed as follows:

∫ 1

0

(∫ 1

ζ
f(η) dη

)− 1

2

dζ =

∫ 1

0

(√
(1− ζ)(α+ β − β ln(1− ζ))

)−1
dζ. (4.21)

Then, we have

ℓ∗s ≥
(
1− r

(ℓ∗s)
r

∫ 1

0

(√
(1− ζ)(α+ β − β ln(1− ζ))

)−1
dζ

) 1

1−r

.

Similarly, we refer to (3.10) for the Right IBVP. With the integral term in (4.21), we

have that

ℓ∗s ≤ L

(
1 +

r − 1

L

∫ 1

0

(√
(1− ζ)(α+ β − β ln(1− ζ))

)−1
dζ

) 1

1−r

.

The following table summarizes the numerical approximations of ℓ∗s for different

values of r, α, β, and L for Left and the Right IBVPs with N = 100 and ϵ = ω = 1×10−6.
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r α β L
ℓ∗s

Left Right

1/7 1 1/4 5 1.0088 3.8932

7 1.0088 5.8957

10 1.0088 8.8974

1/2 5 0.8578 4.0549

7 0.8578 6.0568

10 0.8578 9.0581

1 5 0.6915 4.2351

7 0.6915 6.2364

10 0.6915 9.2373

2 1/4 5 0.7971 4.1305

7 0.7971 6.1319

10 0.7971 9.1329

1/2 5 0.7133 4.2192

7 0.7133 6.2203

10 0.7133 9.2211

1 5 0.6066 4.3331

7 0.6066 6.3340

10 0.6066 9.3347

1/5 1 1/4 5 0.9713 3.8901

7 0.9713 5.8935

10 0.9713 8.8960

1/2 5 0.8242 4.0525

7 0.8242 6.0552

10 0.8242 9.0570

1 5 0.6630 4.2334

7 0.6630 6.2352

10 0.6630 9.2365

2 1/4 5 0.7688 4.1288

7 0.7688 6.1307

10 0.7688 9.1321

1/2 5 0.6868 4.2177

7 0.6868 6.2193

10 0.6868 9.2204

1 5 0.5828 4.3320

7 0.5828 6.3332

10 0.5828 9.3341

Table 4.2: Numerical approximations of ℓ∗s for f(u) = α− β ln (1− u)
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(a) (b)

Figure 4.2: Steady-state solution profiles for (a) Left IBVP and (b) Right IBVP where
r = 1/5, L = 5 and f(u) = 1− ln (1− u).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHAPTER V

CONCLUSION

This thesis investigated the singular convection-diffusion problems with mixed

boundary conditions. Specifically, we focused on studying the beyond quenching steady-

state solution profiles for the following problems:

ut − uxx −
r

x
ux = f(u)χ{u<c}(u) in Ω,

u(x, 0) = 0 on D̄

subject to the mixed boundary conditions:

u(0, t) = 0 = ux(L, t) for 0 < t < T (Left IBVP)

or ux(0, t) = 0 = u(L, t) for 0 < t < T (Right IBVP)

where 0 < r < 1, L > 0, T ≤ ∞, D = (0, L), Ω = D × (0, T ], χS is the characteristic

function of the set S and f is a twice continuously differentiable function on [0, c), for

some constant c, with f(0) > 0, f ′ > 0, f ′′ ≥ 0 and limu→c− f(u) = ∞.

With some conditions on f , we assumed that classical solutions to both problems

exist before quenching, and weak solutions exist after quenching.

We proved that all weak solutions of the Left IBVP tend to the unique of solution

of the steady-state problem:

W (x) = c, x ∈ [ℓ∗s, L],

−(xrW ′(x))′ = xrf(W (x)), x ∈ (0, ℓ∗s), W (0) = 0,W (ℓ∗s) = c.

Using a similar approach, we found that all weak solutions of the the Right IBVP tend
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to the unique of solution of the steady-state problem:

W (x) = c, x ∈ [0, ℓ∗s],

−(xrW ′(x))′ = xrf(W (x)), x ∈ (ℓ∗s, L), W (ℓ∗s) = c,W (L) = 0.

The key factor in determining the beyond quenching profiles is the parameter ℓ∗s. We

established integral representations of ℓ∗s and provided a lower and an upper bounds for

the Left and the Right IBVPs, respectively.

Although explicit calculations of ℓ∗s are not feasible due to the dependence on the

function f , we developed a numerical method to approximate its value for any f that

satisfies the aforementioned conditions. Two examples were used to illustrate the use of

these numerical methods, and we demonstrated how the elongation of L affects the value

of ℓ∗s in the Left and the Right IBVPs.

In the Left IBVP, we observed that if L is less than ℓ∗s, the solution does not quench.

On the other hand, elongation of L beyond ℓ∗s only elongates the quenching region but

does not affect the value of ℓ∗s itself. In contrast, for the Right IBVP, we found that the

elongation of L increases the value of ℓ∗s by approximately the same amount.

Overall, our findings contribute to the understanding of the solution behavior of

singular convection-diffusion problems beyond quenching. For future research, there are

several avenues for future research in this area.

One possible direction for future research is to develop a more efficient numerical

method for solving for ℓ∗s based on (2.9) and (3.9). The method presented in Chapter

IV works well; however, there may be other approaches that can further improve the

computational efficiency and accuracy of the solution.

Another suggestion for future research is to investigate the behavior of the parabolic

equation with nonhomogeneous boundary conditions. While this study focused on ho-

mogeneous boundary conditions, many practical applications involve nonhomogeneous
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boundary conditions, and it would be interesting to explore how the steady-state solution

profile changes in these cases.

Last but not least, it would be valuable to investigate quenching phenomena in

other types of problems, such as those that arise in hyperbolic equations. For example,

quenching waves have been observed in some hyperbolic systems, and it would be inter-

esting to explore how these phenomena are affected by different parameter regimes and

boundary conditions.

Overall, the results presented in this thesis provide a solid foundation for further

research in the area of parabolic partial differential equations beyond quenching, and we

hope that the suggestions outlined here will inspire and guide future investigations in this

field.
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APPENDIX A1 : Green’s function derivation (Lemma 2.2)

We would like to find a Green’s function G of (2.3). The Green’s function is the

solution to the following boundary-value problem [18]:

−(xrGx(x; ξ))x = δ(x− ξ), 0 < x, ξ < ℓ̃, (A1.1)

G(0; ξ) = 0, (A1.2)

G(ℓ̃; ξ) = 0. (A1.3)

We divide the interval (0, ℓ̃) into two parts at ξ. Consider the region to the left of

ξ where 0 < x < ξ. Let G− denote the Green’s function on this region. From (A1.1), G−

must satisfy

−(xrG−
x (x; ξ))x = 0, 0 < x < ξ. (A1.4)

On the other hand, we let G+ be the Green’s function on the region to the right of ξ

where ξ < x < ℓ̃. From (A1.1), G+ must satisfy

−(xrG+
x (x; ξ))x = 0, ξ < x < ℓ̃. (A1.5)

We propose that the Green’s functions be

G−(x; ξ) =

(
A−

1− r

)
x1−r +B−

and

G+(x; ξ) =

(
A+

1− r

)
x1−r +B+

so that G− and G+ satisfy (A1.4) and (A1.5), respectively.

We need four equations to solve for A+, A−, B+ and B−. First, we use the boundary
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conditions (A1.2) and (A1.3) to create two equations:

G−(0; ξ) = B− = 0 (A1.6)

and

G+(ℓ̃; ξ) =

(
ℓ̃1−r

1− r

)
A+ +B+ = 0. (A1.7)

Consider

G+(ξ + ϵ; ξ)−G−(ξ − ϵ; ξ) =

(
(ξ + ϵ)1−r

1− r

)
A+ +B+ −

(
(ξ − ϵ)1−r

1− r

)
A− −B−

for some ϵ > 0. We have, by the continuity of the Green’s function G, that limϵ→0(G
+(ξ+

ϵ; ξ)−G−(ξ − ϵ; ξ)) = 0. Therefore, we have the third equation

(
ξ1−r

1− r

)
(A+ −A−) +B+ −B− = 0. (A1.8)

To obtain the last equation, we integrate (A1.1) with respect to x from ξ − ϵ to ξ + ϵ

∫ ξ+ϵ

ξ−ϵ
−(xrGx(x; ξ))x dx =

∫ ξ+ϵ

ξ−ϵ
δ(x− ξ) dx

− (xrGx(x; ξ))
∣∣ξ+ϵ

ξ−ϵ
= 1

(ξ − ϵ)1−rG−
x (ξ − ϵ; ξ)− (ξ + ϵ)1−rG+

x (ξ + ϵ; ξ) = 1.

Let ϵ → 0, we have that

ξ1−r
(
G−

x (ξ; ξ)−G+
x (ξ; ξ)

)
= 1

A− −A+ = 1. (A1.9)
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Solving (A1.6) – (A1.9) simultaneously, we get the Green’s function G as follows:

G(x; ξ) =


x1−r

1− r

(
1−

(
ξ

ℓ̃

)1−r
)

for 0 ≤ x < ξ,

ξ1−r

1− r

(
1−

(
x

ℓ̃

)1−r
)

for ξ < x ≤ ℓ̃.

Furthermore, the solution to (2.3) can be expressed using the Green’s formula ([18], p.167)

as follows:

W (x) =

∫ ℓ̃

0
ξrG(x; ξ)f(W (ξ)) dξ + c

(
x

ℓ̃

)1−r

, x ∈ [0, ℓ̃].
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APPENDIX A2 : Green’s function derivation (Lemma 2.3)

We would like to find a Green’s function G of the following boundary-value problem:

−(xrW ′(x))′ = xrf(W (x)), x1 < x < x2,

W (x1) = c = W (x2).

 (A2.1)

The Green’s function is the solution to the following boundary-value problem [18]:

−(xrGx(x; ξ))x = δ(x− ξ), x1 < x, ξ < x2, (A2.2)

G(x1; ξ) = 0, (A2.3)

G(x2; ξ) = 0. (A2.4)

We divide the interval (x1, x2) into two parts at ξ. Consider the region to the left

of ξ where x1 < x < ξ. Let G− denote the Green’s function on this region. From (A2.2),

G− must satisfy

−(xrG−
x (x; ξ))x = 0, x1 < x < ξ. (A2.5)

On the other hand, we let G+ be the Green’s function on the region to the right of ξ

where ξ < x < x2. From (A2.2), G+ must satisfy

−(xrG+
x (x; ξ))x = 0, ξ < x < x2. (A2.6)

We propose that the Green’s functions be

G−(x; ξ) =

(
A−

1− r

)
x1−r +B−

and

G+(x; ξ) =

(
A+

1− r

)
x1−r +B+
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so that G− and G+ satisfy (A2.5) and (A2.6), respectively.

We need four equations to solve for A+, A−, B+ and B−. First, we use the boundary

conditions (A2.3) and (A2.4) to create two equations:

G−(x1; ξ) =

(
x1−r
1

1− r

)
A− +B− = 0 (A2.7)

and

G+(x2; ξ) =

(
x1−r
2

1− r

)
A+ +B+ = 0. (A2.8)

Consider

G+(ξ + ϵ; ξ)−G−(ξ − ϵ; ξ) =

(
(ξ + ϵ)1−r

1− r

)
A+ +B+ −

(
(ξ − ϵ)1−r

1− r

)
A− −B−

for some ϵ > 0. We have, by the continuity of the Green’s function G, that limϵ→0(G
+(ξ+

ϵ; ξ)−G−(ξ − ϵ; ξ)) = 0. Therefore, we have the third equation

(
ξ1−r

1− r

)
(A+ −A−) +B+ −B− = 0. (A2.9)

To obtain the last equation, we integrate (A2.2) with respect to x from ξ − ϵ to ξ + ϵ

∫ ξ+ϵ

ξ−ϵ
−(xrGx(x; ξ))x dx =

∫ ξ+ϵ

ξ−ϵ
δ(x− ξ) dx

− (xrGx(x; ξ))
∣∣ξ+ϵ

ξ−ϵ
= 1

(ξ − ϵ)1−rG−
x (ξ − ϵ; ξ)− (ξ + ϵ)1−rG+

x (ξ + ϵ; ξ) = 1.

Let ϵ → 0, we have that

ξ1−r
(
G−

x (ξ; ξ)−G+
x (ξ; ξ)

)
= 1

A− −A+ = 1. (A2.10)
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Solving (A2.7) – (A2.10) simultaneously, we get the Green’s function G as follows:

G(x; ξ) =


(
x1−r − x1−r

1

1− r

)(
x1−r
2 − ξ1−r

x1−r
2 − x1−r

1

)
for x1 ≤ x < ξ,(

x1−r
2 − x1−r

1− r

)(
ξ1−r − x1−r

1

x1−r
2 − x1−r

1

)
for ξ < x ≤ x2

Furthermore, the solution to (A2.1) can be expressed using the Green’s formula ([18],

p.167) as follows:

W (x) =

∫ ℓ̃

0
ξrG(x; ξ)f(W (ξ)) dξ + c, x ∈ [x1, x2].
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APPENDIX A3 : Green’s function derivation (Lemma 3.2)

We would like to find a Green’s function G of (3.3). The Green’s function is the

solution to the following boundary-value problem [18]:

−(xrGx(x; ξ))x = δ(x− ξ), ℓ̃ < x, ξ < L, (A3.1)

G(ℓ̃; ξ) = 0, (A3.2)

G(L; ξ) = 0. (A3.3)

We divide the interval (ℓ̃, L) into two parts at ξ. Consider the region to the left of

ξ where ℓ̃ < x < ξ. Let G− denote the Green’s function on this region. From (A3.1), G−

must satisfy

−(xrG−
x (x; ξ))x = 0, ℓ̃ < x < ξ. (A3.4)

On the other hand, we let G+ be the Green’s function on the region to the right of ξ

where ξ < x < L. From (A3.1), G+ must satisfy

−(xrG+
x (x; ξ))x = 0, ξ < x < L. (A3.5)

We propose that the Green’s functions be

G−(x; ξ) =

(
A−

1− r

)
x1−r +B−

and

G+(x; ξ) =

(
A+

1− r

)
x1−r +B+

so that G− and G+ satisfy (A3.4) and (A3.5), respectively.

We need four equations to solve for A+, A−, B+ and B−. First, we use the boundary
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conditions (A3.2) and (A3.3) to create two equations:

G−(ℓ̃; ξ) =

(
ℓ̃1−r

1− r

)
A− +B− = 0 (A3.6)

and

G+(L; ξ) =

(
L1−r

1− r

)
A+ +B+ = 0. (A3.7)

Consider

G+(ξ + ϵ; ξ)−G−(ξ − ϵ; ξ) =

(
(ξ + ϵ)1−r

1− r

)
A+ +B+ −

(
(ξ − ϵ)1−r

1− r

)
A− −B−

for some ϵ > 0. We have, by the continuity of the Green’s function G, that limϵ→0(G
+(ξ+

ϵ; ξ)−G−(ξ − ϵ; ξ)) = 0. Therefore, we have the third equation

(
ξ1−r

1− r

)
(A+ −A−) +B+ −B− = 0. (A3.8)

To obtain the last equation, we integrate (A3.1) with respect to x from ξ − ϵ to ξ + ϵ

∫ ξ+ϵ

ξ−ϵ
−(xrGx(x; ξ))x dx =

∫ ξ+ϵ

ξ−ϵ
δ(x− ξ) dx

− (xrGx(x; ξ))
∣∣ξ+ϵ

ξ−ϵ
= 1

(ξ − ϵ)1−rG−
x (ξ − ϵ; ξ)− (ξ + ϵ)1−rG+

x (ξ + ϵ; ξ) = 1.

Let ϵ → 0, we have that

ξ1−r
(
G−

x (ξ; ξ)−G+
x (ξ; ξ)

)
= 1

A− −A+ = 1. (A3.9)
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Solving (A3.6) – (A3.9) simultaneously, we get the Green’s function G as follows:

G(x; ξ) =



(
x1−r − ℓ̃1−r

1− r

)(
L1−r − ξ1−r

L1−r − ℓ̃1−r

)
for ℓ̃ ≤ x < ξ,

(
L1−r − x1−r

1− r

)(
ξ1−r − ℓ̃1−r

L1−r − ℓ̃1−r

)
for ξ < x ≤ L.

Furthermore, the solution to (3.3) can be expressed using the Green’s formula ([18], p.167)

as follows:

W (x) =

∫ ℓ̃

0
ξrG(x; ξ)f(W (ξ)) dξ + c

(
L1−r − x1−r

L1−r − ℓ̃1−r

)1−r

, x ∈ [ℓ̃, L].
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APPENDIX B1 : Numerical method implementation in Python

## Numerical Method 

 

import autograd.numpy as np 

from autograd import grad 

 

def computeL(f,c,r,L,tol_bisect,tol_newton,N,type_bvp): 

  if type_bvp == 1: 

    l = L 

  elif type_bvp == 2: 

    l = 0 

  else: 

    print("Invalid Problem Type") 

    l_conv,x,w_conv = np.inf,np.inf,np.inf 

    return l_conv,x,w_conv 

 

  def gradf(f,w): 

    g = grad(f) 

    n = len(w) 

    f_prime = np.zeros(n) 

    for i in range(n): 

      f_prime[i] = g(w[i]) 

    return f_prime 

 

  left,right = 0,L 

 

  del_bisect = tol+1 

  while del_bisect > tol_bisect: 

    if type_bvp == 1: 

      h = l/(N+1) 

      x = np.linspace(0,l,N+2) 

      w = c*(x/l) 

    else: 

      h = (L-l)/(N+1) 

      x = np.linspace(l,L,N+2) 

      w = c-(x-l)/(L-l) 

 

    gamma = 1/h**2+r/(2*h*x[1:N+1]) 

    gamma_bar = 1/h**2-r/(2*h*x[1:N+1]) 

    Jh = np.diag(-(gamma+gamma_bar))+np.diag(gamma_bar[1:N],-1)+np.diag(gamma[0:N-1],1) 

    F = np.zeros(N) 

    j,flag_div = 0,0 

 

    del_newton = tol_newton+1 

    while flag_div == 0 and del_newton > tol_newton: 

      l_prev = l 

      j = j+1 

      for i in range(N): 

        F[i] = gamma[i]*w[i+2]+Jh[i,i]*w[i+1]+gamma_bar[i]*w[i]+f(w[i+1]) 

      J = Jh+np.diag(gradf(f,w[1:N+1])) 

      w_prev = w.copy() 

      w[1:N+1] = w[1:N+1]-np.linalg.solve(J,F) 

      if sum(w[1:N+1] >= c) > 0: 

        flag_div = 1 

      del_newton = np.linalg.norm(w-w_prev,np.inf) 

 

    if flag_div == 1: 

      if type_bvp == 1: 

        right = l 

      else: 

        left = l 

    else: 

      if type_bvp == 1: 

        left = l 

      else: 

        right = l 

      l_conv = l 

      w_conv = w.copy() 

 

    l = (left+right)/2 

    del_bisect = abs(l-l_prev) 

 

  return l_conv,x,w_conv 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52

APPENDIX B2 : Example 4.1 and Example 4.2

## Example 4.1. 

 

import pandas as pd 

 

table = pd.DataFrame(columns=['r','b','L','l1','l2']) 

eps,tol = 1e-6,1e-6 

N = 100 

c = 1 

rr = [1/7,1/5] 

bb = [1/4,1/3,1/2] 

LL = [5,7,10] 

 

for i in rr: 

  for j in bb: 

    for k in LL: 

      l1 = computeL(lambda u:1/(c-u)**j,c,i,k,tol,eps,N,1)[0] 

      l2 = computeL(lambda u:1/(c-u)**j,c,i,k,tol,eps,N,2)[0] 

      table.loc[len(table)] = [i,j,k,l1,l2] 

       

print(table) 

 

 

## Example 4.2. 

 

import pandas as pd 

 

table = pd.DataFrame(columns=['r','a','b','L','l1','l2']) 

eps,tol = 1e-6,1e-6 

N = 100 

c = 1 

rr = [1/7,1/5] 

aa = [1,2] 

bb = [1/4,1/2,1] 

LL = [5,7,10] 

 

for i in rr: 

  for a in aa: 

    for j in bb: 

      for k in LL: 

        l1 = computeL(lambda u:a-j*np.log(c-u),c,i,k,tol,eps,N,1)[0] 

        l2 = computeL(lambda u:a-j*np.log(c-u),c,i,k,tol,eps,N,2)[0] 

        table.loc[len(table)] = [i,a,j,k,l1,l2] 

       

print(table) 
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APPENDIX B3 : Solution profiles plotting

## Plotting 

 

import matplotlib.pyplot as plt 

 

def plotSol1(l_conv,x,w_conv,c,L): 

  plt.plot([l_conv,l_conv], [0,c],'r--') 

  plt.plot([l_conv,L], [c,c],'k') 

  plt.plot(x, w_conv, 'k') 

  plt.xlabel("x") 

  plt.ylabel("W") 

  plt.text(l_conv-0.2,-0.15,"$\ell^*_s$",fontsize=14,color='r') 

  plt.show() 

 

def plotSol2(l_conv,x,w_conv,c,L): 

  plt.plot([l_conv,l_conv], [0,c],'r--') 

  plt.plot([0,l_conv], [c,c],'k') 

  plt.plot(x, w_conv, 'k') 

  plt.xlabel("x") 

  plt.ylabel("W") 

  plt.text(l_conv-0.2,-0.15,"$\ell^*_s$",fontsize=14,color='r') 

  plt.show() 

 

 

 

# Example 4.1. 

eps,tol = 1e-6,1e-6 

N = 100 

c,r,b,L = 1,1/5,1/3,5 

 

l1,x1,w1 = computeL(lambda u:1/(c-u)**b,c,r,L,tol,eps,N,1) 

l2,x2,w2 = computeL(lambda u:1/(c-u)**b,c,r,L,tol,eps,N,2) 

 

plotSol1(l1,x1,w1,c,L) 

plotSol2(l2,x2,w2,c,L) 

 

 

# Example 4.2. 

eps,tol = 1e-6,1e-6 

N = 100 

c,r,L = 1,1/5,5 

 

l1,x1,w1 = computeL(lambda u:-np.log(c-u)+1,c,r,L,tol,eps,N,1) 

l2,x2,w2 = computeL(lambda u:-np.log(c-u)+1,c,r,L,tol,eps,N,2) 

 

plotSol1(l1,x1,w1,c,L) 

plotSol2(l2,x2,w2,c,L) 
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