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แนวคิด GAN โมดูลตวัสร้างท่ีน าเสนอ ใช้ส่วนขอ้มูลท่ีเหลือในสถาปัตยกรรมบล็อกหนาแน่นตกคา้ง (RRDB) [28] 

ภายใตก้รอบการสุ่มตวัอย่างแบบกา้วหน้า [30] ในขณะท่ีแนวคิดการประมาณการคอขวดเชิงลึก [38] ใชเ้พื่อถ่ายโอนขอ้มูล
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ไดรั้บการฝึกฝนดว้ยการสูญเสีย GAN [28] และโมดูลแยกแยะไดรั้บการฝึกฝนดว้ยการสูญเสียการรับรู้ [8] การสูญเสียการ
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ABST RACT (ENGLISH) # # 6171461021 : MAJOR ELECTRICAL ENGINEERING 

KEYWOR

D: 

Image super-resolution, Generative Adversarial Network, Capsule 

Network, Fusion Objective Function 

 Amir Hajian : Single Image Super-Resolution Using Capsule Generative 

Adversarial Network. Advisor: Assoc. Prof. SUPAVADEE ARAMVITH, 

Ph.D. 

  

The current research aims to investigate and propose a Generative 

Adversarial Network (GAN) architecture [53] using capsule network architecture 

[76] in the discriminator module of the proposed model (Caps-GAN) for Single 

Image Super-Resolution. Besides, the study aims to develop the proposed SR 

framework in three scale factors. Finally, the performance of Caps-GAN is 

compared with other state-of-the-art models. Our Caps-GAN model consists of 

three fundamental components: the generator module, capsule discriminator 

module, and combinations of loss functions based on the GAN concept. The 

proposed generator utilizes the residual in residual dense blocks (RRDB) 

architecture [28] under a progressively up-sampling framework [30]. At the same 

time, the depth-wise bottleneck projections concept [38] is employed to transfer the 

high-frequency details of the early layer to each up-sampling stage to prevent 

gradient vanishing. Additionally, a novel fusion objective function that combines 

Multi-level SSIM loss and L2 loss (MS-SSIM + L2) is introduced to improve the 

quantitative and qualitative results and reconstruct the sophisticated details. In our 

Caps-GAN model, the CNN-based discriminator has been replaced with the capsule 

network architecture. Duo to the capability of the capsule network to extract the 

hierarchical feature relationships, our capsule discriminator demonstrates superior 

performance in extracting difficult-to-learn patterns in training our model. This 

capability leads to training our GAN model much better and faster than the CNN-

based discriminator. The capsule discriminator is trained with GAN loss [28], and 

the generator is trained with a perceptual loss [8]. Our perceptual loss consists of 

two types of losses including a content loss (pre-trained model) for producing the 

overall appearance of the image, and an adversarial loss for producing high-

frequency details of texture.  The quantitative and visual evaluations are based on 

five benchmark datasets including, Set5, Set14, BSDS100, Urban100, Manag109, 

and DIV2K. For quantitative comparison, the quality metrics including PSNR and 

SSIM, and the MOS test for visual comparison at two scales. 
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1. CHAPTER ONE 

Introduction 

 

1.1 Motivation and Problem Statement  

Recent years have seen a growing interest in the use of images in many applications 

such as medical imaging [1, 2] traffic control [3], video applications [4], and satellite 

imaging [5]. One of the most essential attributes of an image that affects the visual 

quality is the resolution of an image. The presented image with higher resolution 

contains more detailed information. The detailed information is beneficial for further 

image processing tasks such as image segmentation, image recognition, and image 

analysis by either human eyes or machines. Figure 1.1 demonstrates an image of the 

same scene presented at different resolutions. 

 

Figure  1.1: The original image (a) and its down-sampled LR versions (c)-(d) with 
same height and width 
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As shown in Figure 1.1, the highest resolution belongs to Figure 1.1 (a), and the 

image's resolution is gradually decreased by a factor of two, respectively. The higher-

resolution image (200 ×150) provides more details, such as the texture of the wall's 

texture, flowers' texture, and even the curtain behind the windows. These important 

details gradually disappear with the reduction of image resolution, and even the 

identification of image contents with a resolution of 25×18 becomes too difficult as 

shown in Figure 1.1 (d). 

In our society, low-resolution (LR) images are more often than not collected. It is 

because of deficiencies in imaging equipment or limitation of storage. Thus, methods 

for enhancing the resolution of images are in great demand. The process of retrieving 

or reconstructing the high-resolution (HR) image from one or more low-resolution 

(LR) images is known as super-resolution (SR).  

There are two common approaches including hardware-based and software-based 

methods for obtaining HR images. The hardware-based approach is based on 

hardware improvement. Increasing the pixels in the complementary metal-oxide-

semiconductor (CMOS) camera will result in, a higher resolution image. Thus, one 

technique to increase the spatial resolution is to enlarge the chip size so that more 

CMOS sensors can be included on the chip [6]. An alternative method for enlarging 

the chip size is to reduce the pixel size per unit area. That is to say; more pixels are 

implemented on a fixed-size chip [7]. Nevertheless, smaller pixel sizes might not 

result in a higher resolution due to the diffraction limit of the optics and the selection 

of maximum sampling frequency. It implies that both hardware-based solutions suffer 

the deficiency of cost and sophisticated engineering technology. 
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The other method, called the software-based approach, requires designing more 

accurate and faster algorithms to improve the resolution of LR images. Due to the 

highly developed computing units such as image signal processors (ISP) and graphic 

processing units (GPU), the software-based approach is a feasible solution. The 

computationally intensive tasks of the Deep Learning (DL) technique attempt to 

improve the visual quality of LR images.  Deep Learning (DL) is a branch of machine 

learning methods based on artificial neural networks. The prominent superiority of 

DL over other machine learning algorithms leads to utilizing it in various fields such 

as computer vision, translation machines, natural language processing, and audio 

recognition. Because of DL capacity in extracting effective high-level abstractions 

between LR and HR images, it is used widely for SR purposes. The recent SR 

algorithms based on DL have achieved considerable improvements over the 

conventional image processing-based methods [8], [9], and [10].   

Recently proposed SR algorithms based on DL attempt to improve SR models’ 

accuracy and operation speed by using faster and deeper CNNs. Despite their 

breakthroughs in designing faster and more accurate models, one important aspect of 

recovering the acceptable texture details in the reconstructed images in the SR 

algorithm remains challenging. This problem seems to be more crucial in larger-scale 

factors. Recent studies have widely focused on minimizing mean square error (MSE) 

value in the SR image reconstruction. It means that the SR results of these models 

show high peak signal-to-noise rates (PSNR) while the results lack high-frequency 

details. Hence, despite the high PSNR value, the resulting image is perceptually 

unsatisfying, especially in producing higher resolution. To solve this important 

obstacle, Mathieu et al. [11] and Denton et al. [12] suggested Generative Adversarial 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 4 

Networks (GAN) [53] for reconstructing the SR images containing more detailed 

information similar to the original image known as the realistic SR image. Li and 

Wand [13] proposed an idea of learning procedure from one manifold to another in 

their GAN algorithm of style transfer. This approach attempts to minimize the 

squared error in the pre-trained feature space of VGG [59] or any scattering networks.  

Although these GAN-based SR models show acceptable SR results on a scale of ×4, 

these models require more improvement in the perceptual quality as well as PSNR 

and SSIM. Since the CNNs are incapable of recognizing hierarchical feature 

information. Therefore, the CNN-based discriminator cannot train the generator 

module efficiently.   

To solve this problem, utilizing Capsule network architecture (CapsNet) [83] in the 

discriminator module of the GAN model is a good solution for optimizing the training 

process of the GAN-based SR model. The current research aims to utilize the CapsNet 

in the discriminator module of the GAN network to improve the perceptual quality of 

the previous GAN-based models while improving the PSNR and SSIM.     

 

1.2 Objectives 

1. Investigate and propose fusing CNN architecture for single image super-

resolution. 

2. Develop a super-resolution framework in 3 different scale factors. 

3. Evaluate the performance of the proposed algorithm compared with state-of-

the-art super-resolution convolutional neural networks.   
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1.3 Scope of Research 

a. Propose an algorithm for image super-resolution technique based on a 

reconstruction model. 

b. The upscale factor is at least two times. 

c. Evaluate the performance of the proposed algorithm with state-of-the-art 

models in terms of the objective and subjective scores.   

d. The performance is measured by PSNR, SSIM, and MOS criteria. 

 

1.4 Expected Output 

a. Produce better quality images compared to previous SR models. 

b. The algorithm can be operated in real-time scenarios. 

 

1.5 Research Procedure 

1. Review the literature on image super-resolution based on deep convolutional 

neural networks. 

2. Review python programming language, Tensorflow, and Keras libraries. 

3. Review and collect the image datasets for training purposes. 

4. Python coding of my Caps-GAN model and training on the Graphics 

Processing Unit (GPU) at different scale factors. 

5. Modify my Caps-GAN model's combination of various objective functions 

(pre-train model, adversarial loss, content loss, discriminator loss) and adjust 

them.   

6. Final train our model on the Graphics Processing Units (GPU). 

7. Calculate the complexity and validate the effectiveness of our Caps-GAN 

model. 
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8. Evaluate the performance of our Caps-GAN model with existing state-of-the-

art methods, and take the MOS test of my Caps-GAN results. 

9. Submit the ISI/Scopus indexed journal paper. 

10. Final thesis defense. 

 

1.6 Thesis Layout 

The rest of the thesis is organized into four chapters. 

Chapter Two: This chapter describes the fundamental components of the image super-

resolution algorithm and reviews the literature on improvement techniques for each 

fundamental component. 

Chapter Three: In this chapter, we will explain the proposed Caps-GAN framework 

methodology, including the generator module, discriminator module, and total loss of 

the proposed model. 

Chapter Four: In this chapter, the training datasets, testing datasets, experimental 

results, and finally evaluation of the performance in terms of subjective and objective 

evaluations will be explained. 

Chapter Five: In the final chapter, the conclusion part, contribution, and suggestions 

for future work will be discussed. 
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2. CHAPTER TWO 

Background and Literature Review 

 

2.1 Introduction 

The image super-resolution (SR) has received noticeable attention from scholars and 

artificial intelligence (AI) companies in recent decades. The SR algorithm is utilized 

in numerous computer vision applications including object classification [14], object 

detection [15], image segmentation [16], medical imaging [1], satellite and aerial 

imaging [4], and surveillance [2]. 

The SR model aims to reconstruct a high-resolution (HR) image from a given low-

resolution image while refining small details and maintaining the image's visual 

quality. Other names such as enlargement, scaling, zooming, and up-sampling refer to 

the image SR.  

The single image super-resolution (SISR) is considered an ill-posed inverse problem 

in which multiple solutions exist for reconstructing the HR image from the LR.  The 

SR models can be categorized into two main groups including traditional SR methods 

and deep learning SR models [17].  

The Interpolation-based [18], Reconstruction-based [19], Self-example based [20], 

and multi-image SR based [5] are considered as the traditional SR model. Since these 

classical SR models suffer over-smoothing results, pixelization degradation, jagged 

contour artifacts, and time-consuming problems, the traditional methods are not 

considered effective.   
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Deep learning is a branch of machine learning, and the SR models based on this 

concept in recent years have proven impressive performance compared to the 

conventional SR algorithms. The deep learning-based model reconstructs the image 

by learning the LR-to-HR mapping in a supervised manner. Specifically, any 

learning-based SR algorithm's convolution neural network (CNN) is trained to learn 

the feature mapping from the LR patch to the corresponding HR patch. Dong et al. 

[21] represented the first deep learning-based SR model based on the deep learning 

concept, as shown in Figure 2.1.  

 

Figure  2.1: The basic architecture of the SRCNN network. 

 

 

The Super-resolution Convolutional Neural Network (SRCNN) [20] architecture is a 

shallow three-layer network that learns the mapping from the interpolated LR patch to 

the HR patch based on an end-to-end nonlinear algorithm.  

In this SR model, the LR patch is upsampled (pre-up-sampling framework) by the 

bicubic interpolation and extracting the features of the interpolated patch. The second 

layer is utilized for operating the nonlinear mapping and the final layer reconstructs 

the HR image. The Mean Square Error loss function (MSE-loss) is employed as the 
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training objective function of SRCNN [20]. The reconstructed image at the output is 

an image at high-resolution (HR) known as a super-resolution (SR) image.   

Although this shallow single path SR algorithm with the pre-up-sampling framework 

and without any skip connections shows superior visual quality and peak signal-to-

noise ratio (PSNR) compared to the conventional SR model, the SRCNN [20] result 

suffers lacking details and over smoothing degradation. 

Followed by the SRCNN [20] model, several deep learning-based SR algorithms have 

been proposed to improve the SR model capability to represent better results. A 

variety of SR models is made by combining and improving a set of components. 

Figure 2.2 demonstrates the fundamental components of the deep learning SR model. 

 

 

Figure  2.2: The fundamental components of the super-resolution models. 
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As shown in Fig 2.2, the Up-sampling Framework, Network Architecture, and the 

Loss Function of the SR model are considered the fundamental components of any 

deep learning SR model. In addition to these fundamental components, some other 

improvements such as Context-wise Network Fusion, Data Augmentation, Multi-task 

Learning, Network Interpolation, and Self-ensemble methods are combined with 

some SR models to improve the efficiency.   

In this section, the literature on these fundamental components in the existing SR 

models is reviewed and the advantages and disadvantages of each one are 

summarized. Next, the literature on the Capsule Network is reviewed, and the 

advantages compared to the Convolutional neural network (CNN) concept are 

discussed.     

 

2.2 Super-resolution Frameworks 

The basic concept of image super-resolution is performing the up-sampling operation 

on an ill-posed image. The ill-posed problem creates a critical challenge in generating 

acceptable HR output from the LR input. Although the existing SR models based on 

their architectures vary widely, based on their up-sampling models, they attributed to 

four frameworks including Pre-upsampling, Post-upsampling, Progressive up-

sampling, and Iterative up-and-down sampling Framework. 

2.2.1 Pre-upsampling Super-resolution 

Direct learning of mapping from the low to high-dimensional space is considered a 

difficult task. Therefore, the best and most straightforward solution is to apply 

conventional up-sampling algorithms to the low-dimensional image in the first stage, 
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and later enhance it with a deep neural networks model. Figure 2.3 demonstrates the 

architecture of the pre-upsampling method. 

 

Figure  2.3: The Pre-upsampling framework 

 

Based on this idea, Dong et al. [16], [20] propose the SRCNN algorithm by 

implementing the pre-upsampling framework to learn an end-to-end mapping from 

interpolated LR image to the HR. The coarse HR image is particularly obtained from 

the LR image with traditional methods such as bicubic interpolation. Then the deep 

convolutional neural network (CNN) is used to reconstruct the high-quality details of 

the HR image. Although the pre-upsampling approach has become one of the most 

common frameworks [22], [23], [24], [25] in the SR field, it has high computational 

cost due to convolution operations on the high dimensional features. Moreover, this 

up-sampling framework leads to degradation effects such as blurring and noise 

amplification in the resulting image. 

2.2.2 Post-upsampling Super-resolution 

To improve the computational cost and create an efficient deep learning algorithm for 

increasing the image resolution, scholars attempted to perform most of the 

computation in low-dimensional space as shown in Figure 2.4. Specifically, they 

replaced the predefined up-sampling module with end-to-end learnable CNN layers in 

a low-dimensional space. Then the up-sampling operation is applied at the last stage 
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of the model structure. This idea is known as the post-upsampling strategy in the SR 

field. 

 

Figure  2.4: The post-upsampling framework architecture. 

 

As shown in Figure.2.4, the LR image is fed into deep CNNs without increasing size, 

and the end-to-end learnable up-sampling layers are utilized at the end of the network 

structure. This approach aims to reduce the model's computation cost and spatial 

complexity by performing the feature extraction process in a low-dimensional space 

and increasing the resolution only at the end of the structure. Thus, the post-

upsampling framework is considered the most mainstream framework in the SR [8], 

[26], [27], [28], [29]. The new SR models based on the post-upsampling framework 

vary by applying different deep learning network architectures, and the learning 

objective functions. 

 

2.2.3 Progressive Up-sampling Framework 

Even though the post-upsampling SR framework has reduced the computational cost, 

this up-sampling framework has some limitations. Since the up-sampling is applied in 

only one step, it increases the learning difficulty, especially in large scaling factors. 

That is to say, the quality of the SR images at large scale factors is not desirable. 
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Moreover, this framework is not desirable if we require training an individual SR 

model for multiscale purposes. To tackle these two essential drawbacks, a progressive 

up-sampling framework was introduced by the Laplacian pyramid SR network 

(LapSRN) [30], as shown in Figure 2.5. 

 

Figure  2.5: The progressive up-sampling framework architecture. 

 

The architecture under this framework is based on a cascade of CNNs and 

progressively produces higher-resolution images. In contrast to the post-up-sampling 

framework with very deep architecture that applies numerous convolution layers in a 

low-dimensional space and then suddenly upsamples at the end of the model, the post-

upsampling framework applies fewer convolution layers in a low-dimensional space. 

It progressively applies the predefined up-sampling modules in several stages as 

demonstrated in Figure 2.5. Other studies such as MS-LapSRN [31] and ProSR [32] 

also utilized a progressive framework model and achieved high performances.  

This framework has more significant benefits, such as reducing the learning 

difficulties and achieving better results on larger scales. However, this model has 

some drawbacks, such as the training stability and multiple-stage design complexity, 

which force us to design more advanced training strategies. It is noticeable that 
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integrating some specific learning strategies such as residual connections [33] or 

residual projection [34] to the different stages of the progressive up-sampling 

framework can improve the training performance of the SR model. Since the 

progressive up-sampling approach can reconstruct the minor details of the image, it 

has considerable potential for further research. 

 

2.2.4 Iterative Up-and-down Sampling Super-resolution 

The idea behind the iterative up-and-down sampling is to improve the capture of the 

mutual dependencies of LR and HR images. The most successful iterative procedure, 

back-projection [32], was incorporated into the SR algorithm [33]. This SR 

framework as shown in Figure 2.6, attempts to iteratively perform back-projection 

modification such as computing the reconstruction error and then fusing it back to 

tune the intensity of the HR image. 

 

Figure  2.6: The iterative up-and-down sampling framework. 

 

Following this idea, Haris et al. [33] demonstrated some iterative up-and-down 

sampling layers and proposed a Deep Back Propagation Network (DBPN) algorithm. 

DBPN [33] connects up-and-down sampling layers alternately and reconstructs the 

final HR image by employing intermediate reconstructions. Correspondingly, the 
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Image Super-resolution Feedback Network (SRFBN) [34]  utilized dense skip 

connections in the iterative up-and-down sampling structure and yielded better 

representations; since this approach applies up-sampling and down-sampling 

iteratively, the computational cost and the network complexity increase dramatically. 

2.3 Network Architecture 

One of the most significant parts of any deep learning model is the network 

architecture of CNN. Researchers attempt to apply a variety of architectures such as 

Residual, Recursive, Multi-path, Dense Connection, and Group convolution in their 

SR networks. In this section, the different architectures of SR networks are reviewed, 

and their advantages and disadvantages are discussed.  

2.3.1 Residual Learning  

In 2016, He et al. [35] introduced the ResNet in image convolution recognition 

algorithm but before them, the residual learning strategy had been applied in the SR 

models [36], [37], and [28]. Figure 2.7 demonstrates the basic architecture of the 

residual connection. The residual strategy in the SR field can be categorized into two 

branches namely, global and local residual. 

 

Figure  2.7: The residual learning architecture. 
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Global Residual Learning: Due to the image-to-image translation concept in the SR 

model, the input image and the target image are highly correlated. Hence, the global 

residual only needs a residual map to restore the missed high-frequency details. This 

idea leads to reducing the complexity and learning difficulty in the SR model [22], 

[24], [30], [31].   

Local Residual Learning: This approach is inspired by the residual concept of 

ResNet [35]. And it is used to solve the degradation problem caused by increasing the 

depth of the CNN network. Therefore, this type of network architecture improves the 

learning ability and reduces the training difficulties [28], [36], [37], [29], [38].  

The implementation of both local and global residual strategies by shortcut 

connections and element-wise addition in network structure is shown in Figure 2.7. In 

Global Residual, the shortcut connections are directly from input to output image, 

while Local Residual, uses multiple shortcut connections between network layers in 

different depths. In addition, there are some variants of the residual block, including 

residual projection [35], bottleneck residual projection [33], and depth-wise 

bottleneck projection [39], that are used in different CNN architectures.     

2.3.2 Recursive Learning  

The idea of recursive learning was proposed for getting the higher-level features in 

the training stage of the SR algorithm. As shown in Figure 2.8, the same module is 

recursively applied several times.   
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Figure  2.8: The recursive learning architecture. 

 

For example, the 16-recursive in Deeply Recursive Convolution Network [24] 

(DRCN) algorithm used a single convolutional layer as its recursive unit, and it 

successfully gained a receptive field of 41 × 41 without over parameters. This 

receptive field of 41 × 41 is considerably larger than the 13×13 field of another SR 

algorithm known as SRCNN [21]. The Deeply Recursive Residual Network [23] 

(DRRN) algorithm applied the ResBlock [35] as the recursive unit for 25 recursions. 

It is noticeable that the DRRN architecture performed better than the 17-ResBlock 

baseline.  

Lately, Li et al. [34] utilized an iterative up-and-down sampling framework and 

suggested a feedback network based on recursive learning. It means the feedback 

network shares the weights of the whole network across all recursions. Some 

recursive structures utilize recursive modules in different parts of the SR network. For 

instance, Han et al. [28] used Dual-state Recurrent Network (DSRN) to signal 

exchange between the LR and HR samples. The idea of exchanging signals at each 

recursion leads to a better exploration relationship between LR and HR images. 
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Correspondingly, Lai et al. [30] used the combination of both embedding and up-

sampling modules as a recursive unit. This approach can reduce the model size and 

improve the loss performance. Although the recursive approach learns more advanced 

features of the image at the same range of network parameters, its computational cost 

is still high. Hence the high computation cost leads to a vanishing gradient. To resist 

gradient problems, scholars often integrate recursive learning with multi-supervision 

or residual learning approaches [22], [23], [24], [24]. 

2.3.3 Multi-path Learning  

The aim of proposing multi-path learning is to provide a better modeling capability 

bypassing the features through multiple paths with different operations and later 

fusion these features. In general, this multi-path approach can be categorized into 

three branches that are: global, local, and scale-specific multi-path learning. 

Global Multi-path Learning: In this model, multiple paths are responsible for 

extracting features of different aspects of input. Figure 2.9 demonstrates the basic 

architecture of global multi-pass. Since these paths cross each other in the 

propagation, it significantly enhances the SR algorithm's learning ability. LapSRN 

[30] proposed two paths, which are feature extraction and reconstruction path. The 

former path predicts the sub-band residuals in a coarse-to-fine fashion and the latter 

path reconstructs the SR image based on the signals from both paths.  Inspired by 

LapSRN [30] idea, the Enhanced Deep Residual Network [26] (EDSR) uses two paths 

to extract features in high-dimensional and low-dimensional space, and it exchanges 

information to improve the learning ability of the SR network respectively and 

continuously.  Following this idea, Ren et al. [40] applied multiple unbalanced paths’ 
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structures for the up-sampling of images, and concatenated them at the end of this 

model. 

 

Figure  2.9: The global multi-path learning architecture. 

 

Local Multi-path Learning: Inspired by the inception model [41], the Multiscale 

Residual Network [36] (MSRN) designed a new block for multiscale feature 

extraction (see Figure 2.9). In this structure, two convolution layers with kernel size 3 

× 3 and 5 × 5 are to extract features simultaneously, and later concatenate both 

features and send them through the same operations again. This local multi-path 

model shows a better feature extraction performance and finally improves the quality 

of the reconstructed HR image. 

Scale-specific Multi-path Learning: Lim et al. [26] introduced a scale-specific 

multi-path network structure to reconstruct multiscale SR results with a single 

network. The model first shares the principal components of intermediate layers and 

upsamples them by different scale factors at the end of the structure as shown in 

Figure 2.10. 
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Figure  2.10: The scale-specific multi-path learning architecture. 

 

In this model, only the desired selected scale of the network is trained. The weights 

for other scales’ updates are disabled. According to this idea, MDSR [26] decreases 

the model size by sharing the network parameters for different scales and shows a 

better performance than the single-scale model. The equivalent multi-path specific 

scale learning is also adopted by CARN [42] and ProSR [31]. 

2.3.4 Dense Connections 

Utilizing the Dense connection concept in the SR field inspired by Huang et al.  

DenseNet [43]. According to this approach, for each layer of the dense blocks, the 

feature maps of all previous layers are utilized as the input of the current layer as 

illustrated in Figure 2.11. The Dense connection architecture dramatically increases 

the performance of our deep learning network by squeezing channels after 

concatenating all feature maps. This architecture aims to reduce the model size and 

preserve our network against gradient vanishing. Because of the successful fusing of 

low-level and high-level features, dense connections are more popular in the SR tasks. 
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Figure  2.11: The dense connection learning architecture 

 

Following this approach, Tong et al. [27] designed a 69-layers SRDenseNet and 

inserted dense connections between different dense blocks (block-level dense 

connections). That is to say, for every dense block, the feature maps of all previous 

blocks are utilized as inputs, and also the output feature maps of each layer are used 

as inputs into all subsequent blocks. The idea of block-level dense connections 

structure was also used by MemNet [22], CARN [42], RDN [44] and ESRGAN [29].  

 

2.3.5 Attention Mechanism  

 

The attention mechanism approach can be categorized into two models Channel 

Attention and Non-local Attention.  

Channel Attention: To enhance learning ability by explicitly modeling channel 

interdependence, Hu et al. [45] introduced a “squeeze-and-excitation” block as shown 

in Figure 2.12. This idea was inspired by paying attention to the interdependence and 

interaction of the feature representations between different channels. In this 

architecture, every input channel was squeezed into a channel descriptor with the help 
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of global average pooling (GAP). Then these descriptors are fed into two dense layers 

to generate channel-wise scaling factors for input channels. 

 

Figure  2.12: The channel attention learning architecture. 
 

Zhang et al. [38] integrated the channel attention technique with the SR based on this 

concept. They introduced Residual Channel Attention Networks [38] (RCAN) which 

significantly increases the representation ability of the model and the SR performance. 

Dai et al. [46] further designed a second-order channel attention (SOCA) structure to 

improve the learning of feature correlations. The channel-wise features are rescaled 

by applying second-order feature statistics rather than global average pooling. 

Non-local Attention: Most existing SR architectures do not use local receptive fields. 

Nevertheless, some distant textures or objects may be crucial for local patch 

generation. Zhang et al. [38] combined  local and non-local attention blocks to extract 

features that capture the long-range dependencies between pixels.  The non-local 

branch assists the embedded Gaussian function in estimateing pairwise relationships 

between every two positions in the feature maps to anticipate the scaling weights. The 

local branch utilizes an encoder-decoder module to learn the local attention. 

Therefore, this structure can capture spatial attention properly and enhance 
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representation simultaneously. Based on this idea, Dai et al. [46] combined the local 

and non-local attention mechanisms to capture long-distance spatial contextual 

information. 

2.3.6 Region-recursive Learning 

In the field of SR, most learning procedures are considered pixel-independent tasks 

and consequently cannot accurately maintain the interdependence between generated 

pixels. Motivated by PixelCNN [47], Dahl et al. [48] utilized two convolutional 

networks. In this structure, the first network is used to capture global contextual 

information, and another network is used for serial generation dependence. This 

recursive pixel concept executes pixel-by-pixel generation using these two networks. 

Inspired by the human attention shifting algorithm [49], the Attention-FH [50] 

implements this strategy by resorting to a recurrent policy network for sequentially 

discovering attended patches and performing local enhancement in the reconstructed 

SR images. In this manner, the network can adaptively personalize an optimal 

searching path for each image according to its characteristics, and completely exploits 

the global intra-pixel dependence of images. Although these approaches demonstrate 

better performance to some extent, the recursive process needs a propagation path that 

increases the computational cost and challenges the training. 

2.3.7 Pyramid Pooling  

Zhao et al. [51] utilized the pyramid pooling architecture in their SR model which was 

inspired by the spatial pyramid pooling layer [52]. The pyramid pooling model 

employs global and local contextual information about an image. Figure 2.13 shows 

the architecture of the pyramid polling approach. 
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Figure  2.13: The pyramid polling learning architecture. 

 

In this model, firstly each feature map is divided into 𝑀 × 𝑀 bins, then it goes 

through global average pooling and yield resulting in M × M × C outputs. After that, 

a 1×1 convolution is applied on M × M × C to compress the outputs into a single 

channel. Consequently, the bilinear interpolation up-sampling is applied on the single-

channel LR feature map. In other words, utilizing different M helps integrate global 

and local contextual information effectively [53].  

2.3.8 Generative Adversarial Network (GAN) 

Generative Adversarial Network (GAN) is a branch of the machine learning 

framework. The GAN was inspired by the generative model presented by Goodfellow 

et al. 2014 [54]. Conceptually, the GAN structure operates as a supervised learning 

approach to do unsupervised learning by generating fake or synthetic data.  

Due to the successful performance of the GAN structure, it has been presented in 

many applications in computer vision and graphics communities, such as image-to-

image translation, image blending, face aging, object detection, 3D image synthesis, 
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image super-resolution, human pose synthesis, image manipulation applications, 

language and speech synthesis, and video applications. 

The GAN structure can be considered the training of two independent neural networks 

known as generator and discriminator simultaneously. Figure 2.14 demonstrates the 

structure of the GAN. G indicates the generator network, and the discriminator 

network is demonstrated by D. The generator is trained to generate more realistic and 

accurate data, In contrast, the discriminator is trained to distinguish between real or 

fake sample data generated by the generator network. In simple words, these networks 

play an adversarial game. The generator network aims to trick the discriminator while 

the discriminator attempts to prevent it. Both networks are skilled in this adversarial 

game by trainning the generator and discriminator networks. The generator produces 

more accurate data, and the discriminator improves distinguishing between fake and 

real generated samples.  

 

Figure  2.14: The GAN architecture. 

From a mathematics perspective, the generator takes the input 𝑧 from the probability 

distribution 𝑝(𝑧), then generates the fake data and feeds it into a discriminator 

network 𝐷(𝑥). The discriminator network takes two inputs from 𝐺(𝑧) and the real 

distribution data 𝑝𝑑𝑎𝑡𝑎(𝑥). This discriminator tries to solve a binary classification 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

problem using the sigmoid function giving output in the range 0 to 1. In other words, 

these two networks  𝐷 and 𝐺, play the following two-player min-max game with the 

value function 𝑉(𝐺, 𝐷) as formalized in Eq 2.1 and Eq 2.2. 

𝑚𝑖𝑛
𝐺

  
𝑚𝑎𝑥

𝐷
 𝑉(𝐷, 𝐺) , (2.1) 

𝑉(𝐷, 𝐺) = 𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)] + 𝐸𝑧~𝑝𝑧(𝑧) [log (1 − 𝐷(𝐺(𝑧)))] , 

 

(2.2) 

Where the first term is the entropy of real distribution data which passes through 𝐷 

and tries to maximize the first term to 1, the second term is the entropy of random 

noise data that passes through the generator to generate the fake sample. This fake 

sample then passes through the discriminator to maximize the second term to 0. There 

are two main procedures to train GAN. The first one is to freeze the generator by only 

training the discriminator with the following Eq 2.3 to update the discriminator. 

∇𝜃1=
1

𝑚
 ∑ log 𝐷(𝑥𝑖) + log(1 − 𝐷 (𝐺(𝑧(𝑖))))]

𝑚

𝑖=1

 (2.3) 

 

The second procedure is to freeze the discriminator and train only the generator with 

the following Eq 2.4 to update the generator. 

∇𝜃2=
1

𝑚
 ∑ log(1 − 𝐷 (𝐺(𝑧(𝑖))))

𝑚

𝑖=1

 (2.4) 

 

Both the gradient-based updates use the standard gradient-based learning rule with the 

momentum parameters. The target of GAN is to generate fake data similar to real 

data. 
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Ledig et al. [9] proposed a single super-resolution model of SRGAN to reconstruct the 

SR image close to the manifold of natural images by utilizing a GAN model. SRGAN 

[9] model involves a three-loss formulation including L2 loss to encode pixel-wise 

similarity (MSE pre-trained), a perceptual loss to define high-level texture 

representation, and an adversarial loss (standard objective of GAN [54]) to maintain 

the min-max balances between generator and discriminator of this model. Based on 

the image reconstruction concept in GAN architecture, SRGAN [9] proposed favor 

results that are perceptually similar to the HR image.  The limitation of the PSNR 

evaluation problem in this SR model leads to introducing a Mean Opinion Score 

(MOS) test to quantify the results. In the MOS test, people visually compare 

(bad/excellent quality) the reconstructed image quality. 

An effective generator module with an appropriate loss is one of the most important 

factors in producing perceptually sharp and pleasing image textures. The SRGAN [9] 

model utilized EnhanceNet [55] concept in its architecture to have such an effective 

generator architecture. Sajjadi et al. [55] introduced the EnhanceNet model to focus 

on producing sharp textures. The non-compliance, with the perceptual quality of the 

reconstructed image due to utilizing a pixel-wise model, leads to producing the overly 

smoothed image that cannot reconstruct the sharp textures. This architecture is aimed 

to solve the overly smoothing problem by producing faithful texture details in the 

reconstructed SR images [55]. 

Besides the regular pixel-level L2 (MSE) loss, the EnhanceNet [55] utilized two loss 

terms (combination of perceptual loss and texture matching loss). (a) The perceptual 

loss is defined by the intermediate features of a pre-trained network [56]. (b) The 
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texture matching loss is defined to match the texture of the LR and HR images. 

Finally, the whole architecture is adversarially trained [54]. The generator architecture 

of the EnhanceNet is based on the Fully Convolutional Network [57] while utilizing 

the residual learning concept [58]. Although the EnhanceNet successfully increases 

PSNR and produces more realistic results and perceptually better SR images, it shows 

unpleasant artifacts in the highly textured regions of the image. 

To solve the problem of unpleasant artifacts in the highly textured regions of the 

EnhanceNet, two GAN models of Single Image Super-resolution with Feature 

Discrimination [59] (SRFeat) and Cycle-in-cycle GAN (CinCGAN) [8] were 

proposed. The models mentioned above, utilize additional discriminator and generator 

networks and do not improve the objective functions of their models. The SRFeat [59] 

improves the realistic perception by utilizing an additional discriminator that forces 

the generator to produce high-frequency details.  

CinCGAN [8] uses three generators and two discriminators. The SR image is 

generated in three steps. First, the LR image is denoised by a generator and a 

discriminator. Then the denoised LR image is used as the input for the next cycle of 

the model. Moreover, the intermediate image is upsampled by a pre-trained generator. 

Finally, the generator and discriminator are fine-tuned end-to-end and produce the SR 

image.  

Although the SRFeat [59] and CinCGAN [8] were able to enhance the realistic SR 

image and somehow solved the problem of unpleasant artifacts in the highly textured 

regions, the complexity of these GAN models led to unstable training, increasing the 

network parameters, and are not considered efficient SR models. 
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Based on the SRGAN [9] architecture, Wang et al. [29] proposed Enhanced Super-

resolution Generative Adversarial Networks (ESRGAN) to produce more realistic SR 

results compared to the SRGAN [9]. This model's discriminator architecture remains 

unchanged while the dense block architecture and long (global) residual connections 

are incorporated into the generator architecture. The ESRGAN [29]  model also 

includes a three-loss formulation that is the a) L1 loss to encode pixel-wise similarity 

(MAE pre-trained) to utilize the VGG [60] model for content loss, b) a perceptual loss 

to define high-level texture representation, and c) an adversarial loss (standard 

objective of GAN [54]) to preserve the min-max balances between generator and 

discriminator of ESRGAN model. The visual result of this model (MOS test) not only 

is better than the previous GAN-based models but also shows improvement compared 

to non-GAN models such as the RCAN [38]. In terms of the quantitative measures 

(PSNR), the results of ESRGAN lag in comparison to the non-GAN models. 

2.4 Loss Function 

The loss function is used to evaluate reconstruction error and steer the model 

optimization during the training procedure of the SR field and has played a vital role 

in the learning phase of the deep learning model. The loss functions in the deep 

learning SR can be categorized into pixel-wise loss, content loss, and adversarial loss 

(GAN architecture).  

The pixel-wise loss function measures the pixel-wise difference between the ground 

truth (GT) image and the reconstructed (SR) image. The L2 loss and L1 loss, known 

as the mean square error (MSE) and mean absolute error (MAE) belong to the pixel-

wise loss function model. This section reviewed the literature on various loss 

functions in the deep learning SR models.    
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2.4.1 L2 Loss (MSE) 

As pioneer research in the deep learning SR model, Dong et al. [17] utilized the L2 

loss function in the SRCNN model. Attributable to the high correlation between pixel-

wise loss and PSNR definition, the L2 loss functions (MSE) become the most 

common loss functions in SR models such as SRCNN [21], DRCN [24], FSRCNN 

[17], DRRN [23] SRResNet [9], MemNet [22], SRDenseNet [27], DBPN [33] and 

DSRN [28], given by: 

𝐿𝑝𝑖𝑥𝑒𝑙−𝐿2 (𝐼
^

, 𝐼 ) =
1

ℎ𝑤𝑐
∑ (𝐼

^

𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘)
2

𝑖,𝑗,𝑘

 
(2.5) 

Where w, h and c are the width, height, and the number of channels of the assessed 

images, respectively. 𝐼
^

 and 𝐼 denote the reconstructed image and GT image, 

respectively. The pixel loss constrains  𝐼
^

 to be close enough to 𝐼 in terms of the pixel 

value. 

According to the L2 loss equation, it penalizes a large error value that improves the 

model's capability to preserve the image's sharp edges while demonstrating more 

tolerance to its minor errors. Although the L2 loss shows robustness in reconstructing 

the edges details of the image, it suffers the independent Gaussian noise in the smooth 

regions. To solve this serious limitation, the L1 loss was introduced in the SR model.   

2.4.2 L1 Loss (MAE) 

The L1 loss is considered a pixel-wise loss type. The SR models such as EDSR [26], 

RDN [44]  , CARN [42], MSRN [36], RCAN [38], RNAN [61], SAN [46], and 

SRFBN [34], utilized the L1 loss (MAE) as objective function in the deep learning SR 

models.  The L1 loss (MAE) is given by: 
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𝐿𝑝𝑖𝑥𝑒𝑙−𝐿1 (𝐼
^

, 𝐼 ) =
1

ℎ𝑤𝑐
∑ |𝐼

^

𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘|

𝑖,𝑗,𝑘

 
(2.6) 

Where w, h and c are the width, height, and the number of channels of the assessed 

images, respectively. 𝐼
^

 and 𝐼 represent the reconstructed image and GT image, 

respectively. The pixel loss constrains  𝐼
^

 to be close enough to 𝐼 in terms of the pixel 

value.  

 In contrast to the MSE loss function, the MAE does not over-penalize the error. 

Therefore, it provides less independent noise and produces smoother results compared 

to MSE loss. Although the L1 objective function makes smoother results, it has a 

slower convergence speed in the training mode of the SR model. Ahn et al. [42] 

suggested utilizing the residual connection in the SR architecture to solve the slower 

convergence speed problem. 

2.4.3 Charbonnier loss 

Although the L1 loss objective function in the deep learning SR models outperforms 

visually pleasing results compared to the L2 loss, its output result is not optimum. To 

improve the L1 loss function, Lai et al. [30] utilized a variant of the L1 loss function 

known as the Charbonnier loss function, given by: 

𝐿𝑝𝑖𝑥𝑒𝑙−𝐶ℎ𝑎 (𝐼
^

, 𝐼 ) =
1

ℎ𝑤𝑐
∑ √(𝐼

^

𝑖,𝑗,𝑘 − 𝐼𝑖,𝑗,𝑘)2 + 𝜖2

𝑖,𝑗,𝑘

 
 
(2.7) 

 

Where 𝜖 is a constant and set to 10−3 for numerical stability. 𝐼
^

 and 𝐼 represent the 

reconstructed image and GT image, respectively. The pixel loss constrains  𝐼
^

 to be 

close enough to 𝐼 in terms of the pixel value. 
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Because the definition of the pixel-wise loss function is highly correlated with PSNR 

calculation, thus minimizing pixel-wise loss directly maximizes the PSNR of the 

result.   This capability leads to using the pixel-wise loss as the widest loss function in 

the SR area for getting a higher PSNR value while producing a natural and pleasing 

SR image that contains high-frequency details remains a challenge. 

 

2.4.4 Content Loss 

To solve the limitation of the pixel-loss function to evaluate the perceptual quality of 

images, the content loss model was introduced [56], [62]. 

The content loss measures the semantic differences between images using a pre-

trained image network. This network demonstrates as φ and the extracted high-level 

representations on the l-th layer as 𝜑(𝑙). The content loss is calculated as the 

Euclidean distance between high-level representations of both the GT image and the 

reconstructed image, as follows: 

𝑙𝑐𝑜𝑛𝑡𝑒𝑛𝑡 (𝐼
^

, 𝐼; 𝜑, 𝑙) =
1

ℎ1  𝑤1 𝑐1
√∑ (𝜑

𝑖,𝑗,𝑘

(𝑙)
(𝐼

^

) − 𝜑𝑖,𝑗,𝑘
𝑙 (𝐼))

2

𝑗,𝑗,𝑘

  

 
(2.8) 

 

Where ℎ1, 𝑤1 and 𝑐1 are the height, width, and the number of channels of the 

representations on layer l, respectively. Fundamentally the content loss transfers the 

learned knowledge of hierarchical image features from the classification network φ to 

the SR network. The content loss encourages the 𝐼
^

 to be perceptually similar to the 

target image 𝐼 , rather than match images pixel-wise. Therefore, the content loss 
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produces visually more perceptible results and is also widely utilized in the SR field 

[32], [34], [29], [55], [56], [63], [64], [65], where the VGG [60] and ResNet [35] are 

the most frequently used pre-trained CNNs. 

2.4.5 Adversarial Loss 

Due to attempts to improve the learning ability of the neural networks in recent years, 

the GAN [54] model attracted more attention. The GAN structure consists of two 

main parts, a generator and a discriminator, as discussed in Figure 2.14 in the GAN 

Network Architecture section. The generator is responsible for generating the image. 

The discriminator takes the generated result and the GT image to distinguish them as 

real sample or fake samples. During the training process of the GAN model, two 

strategies for operating the generator and the discriminator are alternately performed. 

The first is to fix the generator part and train the discriminator to discriminate better. 

The second is to fix the discriminator and train the generator to fool the discriminator. 

It means these two strategies play an adversarial game together. Through adequate 

iterative training, the generator can produce a result consistent with real data 

distribution. At the same time, the discriminator can distinguish between the real and 

generated data.  

In the SR field, the GAN model implements adversarial learning with a generator as 

the SR model and the discriminator to judge whether the quality of the generated 

image is similar to the input image. Inspired by the GANs concept, Ledig et al. [8] 

proposed the first SRGAN model by using adversarial loss based on cross-entropy, as 

follows: 

𝐿𝑔𝑎𝑛−𝑐𝑒−𝑔 (𝐼
^

; 𝐷) = −log 𝐷 (𝐼
^

) 
(2.9) 
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𝐿𝑔𝑎𝑛−𝑐𝑒−𝑑 (𝐼
^

, 𝐼𝑠; 𝐷) = −log 𝐷(𝐼𝑠) − log (1 − 𝐷 (𝐼
^

)) 
(2.10) 

 

Where 𝐿𝑔𝑎𝑛−𝑐𝑒−𝑑 and 𝐿𝑔𝑎𝑛−𝑐𝑒−𝑔 represent the adversarial loss of the discriminator 

and the generator respectively. 𝐼
^

 and 𝐼𝑠 denote the generated image and the GT image 

form dataset respectively. 

Following this concept, Wang et al. [32] and Yuan et al. [8] utilized adversarial loss 

based on least square error for higher quality results and more stable training [66], 

given by: 

𝐿𝑔𝑎𝑛−𝑙𝑠−𝑑 (𝐼
^

; 𝐷) = (𝐷 (𝐼
^

) − 1)
2

 
(2.11) 

𝐿𝑔𝑎𝑛−𝑙𝑠−𝑑 (𝐼
^

, 𝐼𝑠; 𝐷) = (𝐷 (𝐼
^

))

2

 +  (𝐷(𝐼𝑠) − 1)2 
(2.12) 

 

Xu et al. [66] integrate a multi-class GAN consisting of a generator and multiple 

class-specific discriminators.  

The ESRGAN [29] used relativistic GAN [67] to recover more detailed textures. In 

this algorithm rather than the probability to predict the real or fake images, it uses the 

probability that determines the real image is relatively more realistic than others. 

Although the GANs are considered difficult and unstable in the training process [68], 

[69], [70], the discriminator plays a vital role in extracting difficult-to-learn patterns 

of the real HR image. This important capability of the discriminator leads to forcing 

the generator to generate more realistic images [69], [70].  
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According to the adversarial loss and content loss concepts for reconstructing the SR 

image, the PSNR and SSIM evaluations show lower amounts compared to the pixel-

loss-based models while the adversarial loss and content loss yield significant 

perceptual quality and realistic results compared to the pixel-loss-based results. To 

solve the PSNR and SSIM limitations and have a fair comparison, [9], [29] introduced 

the MOS tests.  

 

2.5 Other Improvement 

In addition to the previous strategies for improving the SR models, there are some 

other techniques such as Context-wise Network Fusion, Data Augmentation, Multi-

task Learning, and Self-ensemble to improve the SR models.  

 

2.5.1 Context-wise Network Fusion 

The technique of context-wise network fusion (CNF) [40] refers to a stacking concept 

for fusing predictions from multiple SR networks. It means that the individual SR 

models with different architectures are trained separately, feed the prediction of each 

architecture into the individual convolutional layers, and conclusively the final 

prediction result is produced by summing up the outputs. The final structure of the 

CNF framework is constructed by three lightweight SRCNNs [21], and FSRCNN [17] 

and achieved comparable efficient performance with state-of-the-art models [40]. 

2.5.2 Data Augmentation 

One of the common techniques for increasing the deep learning performance is data 

augmentation. It refers to increasing the data by adding slight modifications to the 

existing data. Some useful data augmentation items in the SR field include rotation, 
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cropping, scaling, flipping, color jittering [23], [26], [28], [30], [31], [71]. Moreover, 

Bei et al. [72] used the concept of augmentation by randomly shuffling the RGB 

channels, which augments data and mitigates color bias. 

2.5.3 Multitask Learning 

The multitask learning (MTL) [73] approach is used to improve the generalization 

capability of the deep learning network. It refers to solving multiple learning tasks by 

leveraging domain-specific information at the same time. Semantic segmentation and 

object detection [74], head pose estimation, and facial attribute inference [75] are the 

samples of multitask learning. 

In the SR model, Wang et al. [65] integrate a semantic segmentation network to 

provide semantic knowledge and generate semantic-specific details. The spatial 

feature transformation is particularly employed to take semantic feature maps as 

input. Then the spatial-wise parameters of affine transformation are performed on the 

intermediate feature maps. The proposed algorithm [65] can generate more realistic 

and visually pleasing textures of reconstructed images. 

To solve the noise problem with this concept, DNSR [72] proposes his SR model with 

a denoising network and SR network which operate separately. The results of both 

networks are concatenated together and fine-tuned. Based on this idea, the cycle-in-

cycle GAN (CinCGAN) [8] incorporates a cycle-in-cycle denoising framework with a 

cycle-in-cycle SR model to perform noise reduction and super-resolution tasks at the 

same time. Since different tasks produce different aspects of the data, thus a 

combination of the SR models with these tasks leads to improving the SR 

performance. 
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2.5.4 Network Interpolation  

Network interpolation refers to the interpolation of two network results together. In 

the SR field, Wang et al., [76] propose a network by interpolating a PSNR-based and 

a GAN-based models to better balance the distortion and perception content. On the 

one hand, the PSNR-based algorithm produces images similar to the GT but has a 

blurring problem. On the other hand, the GAN-based model reconstructs better 

perceptual quality but has unpleasant artifacts. The PSNR-based and GAN-based 

models are trained separately. Then all the corresponding parameters of both networks 

are interpolated and produce meaningful results with fewer artifacts. 

 

2.5.5 Self-ensemble 

The self-ensemble method, enhanced prediction [71], is an inference technique 

usually utilized in the SR models. This method attempts to enhance the prediction by 

rotations with different angles and horizontal flipping of the LR images to produce a 

set of 8 images. Then the set of images is fed into the SR architecture and the 

corresponding inverse transformation is performed to the reconstructed HR images. 

The final prediction result is computed by the mean [26], [32], [37], [38], [44], or the 

median [25] of these outputs.   

 

2.6 Capsule Neural Network 

 

Despite the success of Convolutional Neural Networks (CNN) in deep learning 

algorithms such as image classification, object detection, face recognition, and 

language translation, CNNs have some limitations. The CNN model is a translation 
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invariance and cannot recognize the pose of objects (features). Furthermore, CNN has 

the polling operation layer that ignores many valuable data in the pooling layer. This 

problem leads to the requirement of numerous training data in our CNN model. To 

solve these two critical limitations of CNNs, Sabour et al. proposed the capsule 

network [77]. 

The Capsule Neural Network known as CapsNet is categorized as a field of machine 

learning and Artificial Neural Networks (ANN). The CapsNet can model the 

hierarchical relationships of data better than the CNN model. This approach operates 

based on a group of neurons that make the structure of a capsule. These capsules are 

added to a CNN and attempt to reuse the outputs of these capsules for more stable 

representations.  

 

Figure  2.15: The CapsNet architecture. 

 

The CapsNet architecture has a shallow structure. It contains two convolutional layers 

(the Primary Caps layer and the Digit Caps layer) and is followed by a fully 

connected layer, as shown in Figure 2.15. This Capsule architecture was first used for 

classificating handwritten digits of the MINIST datasets [78] and showed superior 

performance compared to the CNN architecture.  
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The first convolution layer has 256, 9 × 9 convolution kernels with a stride of 1, then 

continues with the ReLU activation function. The task of the first layer is to convert 

the pixel intensities to the activities of local feature detectors and the output has only 

one dimension (no orientation in its space).  These local feature detectors are applied 

as the inputs to the Primary Capsules (first layer of the capsule structure).  

Activation of the Primary Capsules corresponds to inverting the rendering procedure 

from an inverse graphics perspective. This Primary Capsule layer is a capsule 

convolutional layer with 32 channels of convolutional 8D capsules. That is to say; 

each, primary capsule consists of 8 units of convolutional task with a 9 × 9 kernel and 

a stride of 2. The Primary Capsules contain [32 × 6 × 6] capsule outputs. Each capsule 

output is a vector with 8 dimensions and each capsule in the [6 × 6] grid size 

distributes its weights to other capsules.  

The DigitCaps is the final Layer of Capsule structure and has one 16 dimensions 

capsule per digit class (10-digit class).  Each of these capsules in the Digit Layer 

receives input from all the capsules in the Primary Capsules layer. The dynamic 

routing algorithm is applied between the Primary Capsules and DigitCaps (the layers 

which contain the orientation). The whole routing logits are initialized to zero. Hence, 

a capsule output is initially sent to all parent capsules of 𝑣0 until 𝑣9 with equal 

probability. This implementation of handwritten digit classification was processed in 

TensorFlow [2] and the Adam optimizer [79] with its default parameters applied to it, 

to minimize the sum of the margin losses. 
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3. CHAPTER THREE 

Proposed Network Architecture 

 

3.1 Introduction      

This section discusses the design methodology of our Caps-GAN method for single 

image SR. According to the GAN concept [54], two independent neural networks, 

generator and discriminator, are trained independently. The generator module is 

trained to generate a more accurate SR image, and the discriminator module is trained 

to distinguish precisely between real and fake images. In other words, the trained 

generator is skilled in fooling the discriminator while the trained discriminator  

attempts to prevent it, in an adversarial cycle [54]. The proposed Caps-GAN model 

consists of three main items: the generator module, the discriminator module, and the 

total losses. Figure 3.1 demonstrates the architecture of the proposed Caps-GAN 

model. 

 

Figure  3.1: The proposed architecture of our Caps-GAN model. 

 

To improve the GAN-based SR model, we are required to design all of these three 

items efficiently. 
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The generator is responsible for taking the LR image as the input and producing the 

SR (fake) image. An effective generator module should be able to generate the SR 

image as similar as possible to the GT image. Therefore, it should be capable of 

reconstructing the sophisticated tiny details and preserving the sharpness of the image 

without any degradation artifacts while considering the efficiency of the network 

complexity.   

The discriminator module plays a crucial role in extracting difficult-to-learn patterns 

of the HR (real) image for comparing it with the SR (fake) image. Due to the ability 

of the capsule network to extract the hierarchical pattern relationships of data, our 

proposed capsule discriminator improves this binary classification (real or fake 

classification) procedure and force generator to produce a more realistic image. 

Various types of losses are used in the proposed Caps-GAN model. The GAN loss is 

utilized for training the capsule discriminator while the perceptual loss (𝑙𝑆𝑅)  is used 

for training our generator network. The proposed perceptual loss in our Caps-GAN 

consists of an adversarial loss (𝑙𝐺𝑒𝑛
𝑆𝑅 ) to produce high-frequency details of the texture, 

and a content loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ) known as pre-trained to produce the overall appearance of 

the resulting image. 

The rest of this section is categorized into the explanation of methodology, 

mathematical expression and hyperparameters of the generator network, the 

discriminator network, and the total loss of the proposed model. 

3.2 Generator Architecture 

In our Caps-GAN model, the generator module is responsible for taking the LR image 

and reconstructing the output SR image. The ultimate goal of a premier generator is to 
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have a robust module that can reconstruct the sophisticated image as similar to the HR 

image while preserving the tiny details such as lines, holes, quadrangular shapes, and 

lattice shapes in the SR image. Previous studies on the SR models were focused on 

the depth of the CNN network, which eventually led to improving the performance of 

the SR models. However, the deep SR architecture still faces some limitations as 

follows:  

1) Increasing the depth of the SR network leads to an increase in the network 

parameters and consequently, it increases the complexity and computation cost of the 

network. The complexity and computation cost problems are important obstacles to 

utilizing the SR model in real-time applications. 

2) Most existing deep learning SR models utilize the post-upsampling framework. 

Although this framework executes most of the computations in a low-dimensional 

space and helps reduce the complexity of computation, the post-upsampling raises the 

learning difficulties on the larger scale factors.   

To design a robust generator for our Caps-GAN network which can reconstruct the  

tiny details while solving these two mentioned limitations, it is necessary to design a 

lightweight progressively up-sampling architecture and utilize an effective pixel-wise 

objective function to produce the efficient model and increase the computational 

efficiency of our Caps-GAN architecture.  

The feasible way to design a lightweight architecture for our generator is by 

employing a progressive up-sampling framework that performs fewer convolution 

layers in a low-dimensional space and progressively applies the predefined up-

sampling operations in our network. Figure 3.2 illustrates our Progressive Multi 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 43 

Residual Dense generator architecture consisting of the residual dense block (RDB) 

under a two-stage progressively up-sampling framework on a scale target of ×4. 

 

Figure  3.2: The proposed architecture of our generator using a Progressive Multi 

Residual Dense block structure 

 

As shown in Figure 3.2, our proposed generator architecture includes the multi-level 

residual dense topology, called residual in residual dense blocks (RRDB), which will 

be used in the first stage of the progressively up-sampling framework and the second 

stage uses the RDB architecture. 

Moreover, the depth-wise bottleneck projections are utilized to transfer the high-

frequency details of the early layer to the up-sampling modules at the end of each up-

sampling stage.  

The fusion objective function for training our SR model is made by combining of the 

L2 loss and Multiscale SSIM loss (MS-SSIM + L2). 

The rest of this section is devoted to describing the in-depth implementation of the 

architecture of the generator network, the residual bottleneck projection, and the 

objective function to train the proposed generator of our GAN model. 

3.2.1 The Architecture of Generator Network 
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To produce high-level features from low-level input, the residual network architecture 

shows excellent performance, especially in the SR models [22], [23], [29]. Due to the 

residual network's increased efficiency and computation costs, a combination of 

residual concept [26] and dense connections architecture [27] under the two-stage 

progressively up-sampling framework is employed as shown in Figure 3.2. The 

association of the multi-level residual network and the dense connections architecture 

(RRDB) [29], [80] is employed in the first stage of our progressive generator model. 

The residual dense block architecture (RDB) [44] is utilized at the second stage while 

the batch normalization (BN) layers are removed [29]. 

The BN layer has to normalize feature maps during the training and testing of the 

CNN model by using the mean and variance. In the training mode of any deep 

learning model, the BN layer performs based on the mean and variance of every 

batch. In the testing mode of any deep learning model the BN layer operates based on 

the mean and variance of the whole training dataset [26]. The differences between the 

mean and variance in the training and testing SR models lead to unpleasant visual 

artifacts, blurring effects, and inconsistent performance of the SR model [81]. 

To solve this unpleasant artifact using the BN layer in the SR model, the simplified 

architecture of the residual block is introduced as shown in Figure.3.3. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 45 

 

Figure  3.3: Simplified residual block by removing batch normalization layer. 

 

The simplified structure of the residual block proved to increase the performance of 

computer vision tasks while dramatically decreasing the computational efficiency and 

memory usage [29], [26], [82]. 

The Dense Convolutional architecture (DenseNet) [43] aims to increase the 

information flow between layers in a feed-forward manner by connecting each layer 

of a network to every other layer. Due to the superior performance of this architecture 

(DenseNet) [43] in computer vision tasks, the successful SR models such as MemNet 

[22], CARN [42], RDN [44], RCAN [38], and ESRGAN [29] utilize this concept.  

According to the Dense Convolutional architecture, the feature maps of all previous 

layers are utilized as the inputs in every single layer. Subsequently, the yielded feature 

maps of each layer are used as inputs into all further layers. Based on the research 

evidence [33], [22], [82], employing more network layers and connections led to 

raising information flow between layers and consequently, it increases the SR model 

performance. 

In our proposed generator model, we used the combination of the Dense block [43] 

and the simplified residual block [26] to create the Residual Dence Block (RDB) 
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architecture. Figure 3.4 demonstrates the topology of RDB and the multi-level 

residual dense block network called Residual in Residual Dense Block (RRDB). 

 

Figure  3.4: The dense block and the simplified residual in residual dense 

 

β is the scaling parameter of the residual architecture from the range 0 to 1.  The 

residual scaling parameter is multiplied by the output of the residual before adding to 

the main block as demonstrated in Figure 3.2 and Figure 3.4. According to the 

previous studies [29], [80], the optimum value for the residual scaling parameter is β 

= 0.2. 

At the end of each stage of our progressive framework, the pixel shuffle [83] up-

sampling model is used to enlarge the reconstructed features by a factor of 2. Among 

different up-sampling methods, the pixel shuffle [83] shows superior and efficient 

performances due to rearranging the feature map without losing information, without 

padding effect, and better PSNR result [84]. Sub-pixel convolution combines a single 

pixel on a multi-channel feature into an independent pixel on an image. Figure 3.5 

illustrates the pixel shuffle operation concept for up-sampling on a scale of ×2. 
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Figure  3.5: The pixel-shuffle module and transformation feature maps from the LR 

domain to the HR image on a scale of ×2. 

 

Let’s assume that the feature map with dimensions 𝐻 and 𝑊 is up-sampling on a scale 

of  𝑡 = 2. This model, groups the feature map into sets of 𝑡2 = 4  channels 𝐶. Then 

rearrange each group into a 2 × 2 block of pixels. Finally, the output size is  (𝐻 × 𝑟 ,

𝑊 × 𝑟). In other words, the tensor shape of (𝐶 × 𝑡2, 𝐻 , 𝑊 ) is rearranged to the 

tensor shape of (𝐶, 𝐻 × 𝑟 , 𝑊 × 𝑟) without losing information.  

In summary, our generator structure is designed under a progressive up-sampling 

framework with two stages (scale ×4) of up-sampling to reduce the learning 

difficulties of our generator. The RDB contains five convolution layers followed by 

the ReLU activation function [92]. The mechanism of the proposed generator is that 

three RDB are residually connected to produce the RRDB architecture in the first 

stage. In contrast, in the second stage, it utilizes one RDB. At the end of each stage of 

our progressive model, the pixel shuffle [83] module is responsible for an upsample 

SR image on a factor of ×2.  
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3.2.2 Residual Bottleneck Projection 

The global residual connection was presented in many deep learning-based SR 

models [83], [85], [42], [36], [61]. The residual connection helps prevent gradient 

vanishing in the training of the CNN model and makes it feasible to design deeper 

network architecture. The residual projection is a variant of the residual connection 

that changes the dimension of the feature maps. In our proposed generator 

architecture, the features of the early layer at low dimension are upsampled by the 

bicubic interpolation technique and then fed into the higher-dimensional stages.   

Multiple settings of the residual projection blocks were explored and represented in 

Figure 3.6 including the Residual Projection, Bottleneck Projection, and Depth-wise 

Bottleneck Projection. 

 

Figure  3.6: (a) The Residual Projection, (b) Bottleneck Projection, (c) Depth-wise 

(DW) Bottleneck Projection. 

 

The residual projection architecture [35] shown in Figure 3.6.a consists of two 

convolutions with size 3 × 3, followed by a non-linear activation function.  

The bottleneck projection stacks the 1 × 1, 3 × 3, and 1 × 1 convolution layers known 

as “bottleneck” building block [35], [39] is demonstrated in Figure 3.6.b. In this 

projection architecture, the first 1 × 1 convolution layer reduces the dimension of the 

feature map from 256-dimensional to 64-dimensional. The second convolution layer 
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of 3 × 3 is used for computation, and via the final convolution layer, the feature 

dimension is changed to 256 by the last 1 × 1 convolution. 

The proposed generator network utilizes an efficient bottleneck structure via depth-

wise (DW) convolution known as a depth-wise bottleneck projection block. As shown 

in Figure 3.6.c, the first layer contains a 1 × 1 convolution to reduce the dimension of 

the feature map. The second layer includes a 3 × 3 depth-wise (DW) convolution 

operation. The DW convolution is a special form that aims to implement lightweight 

filtering via employing a single convolutional operation per every channel and then 

stacking them back [39]. The third layer of 1×1 convolution known as a point-wise 

convolution intends to construct new features by computing linear combinations of 

the input channels [33], [86], [87]. 

 

3.2.3 Objective Function 

The objective function task is to measure the pixel-wise difference (error) between the 

reconstructed patch of the SR and the corresponding ground truth (GT) patch. To 

calculate an error function, the loss for a patch 𝑃 can be mentioned as: 

𝐿ɛ(𝑃) =
1

𝑁
∑ ɛ(𝑝)

𝑝∈𝑃

 
(3.1) 

Where 𝑃 denotes the index of pixels and ɛ(𝑝) shows the values of the pixels in the 

error measurement. 

Concerning a smoother SR result, the L1 loss function performs better than the L2 

loss. However, both L1 and L2 losses correlate inadequately with image quality 

proved by human observation perception [88]. That is to say, using the loss function 
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that correlates independently with Human Vision System (HVS) is considered a 

feasible solution.  

The sensitivity of HVS depends on the reconstructed image's local contrast, 

luminance, and structure [34], [88]. To enhance the network learning strategy based 

on the HVS that can reconstruct the SR image by attending to contrast, luminance, 

and structure qualities, the SSIM loss function is suggested [89]. 

Let's suppose 𝑥(𝑝)and y(𝑝) are two patches of the GT image and reconstructed image 

respectively. And let’s assume µ𝑥 and σ𝑥
2 are the mean and variance of 𝑥. The 

covariance of 𝑥 and y is assumed to be σ𝑥𝑦. Therefore, µ𝑥 and σ𝑥
2 can be shown as the 

estimation of the luminance and contrast of 𝑥. Similarly, σ𝑥𝑦 measures the tendency 

of 𝑥 and 𝑦 to vary together and defines the structural similarity among 𝑥 and 𝑦. The 

luminance, contrast, and structure evaluations are defined as follows: 

𝑙(𝑥, 𝑦) =
2µ𝑥 µ𝑦  + 𝐶1

µ𝑥
2 + µ𝑦

2  + 𝐶1
 

 

(3.2) 

𝑐(𝑥, 𝑦)
2σ𝑥σ𝑦 + 𝐶2

 σ𝑥
2  + σ𝑥

2 +  𝐶2
 

 

(3.3) 

𝑠(𝑥, 𝑦) =
σ𝑥𝑦 + 𝐶3

σ𝑥 + σ𝑦 + 𝐶3
 

(3.4) 

 

 𝐶1,  𝐶2 and  𝐶3 are small constants defined by: 

 𝐶1 = ( 𝐾1 𝐿)2 ,   𝐶2 = ( 𝐾2 𝐿)2 ,    𝐶3 =
 𝐶2

2⁄  (3.5) 

 

Where 𝐿 defines the dynamic range of pixel values (𝐿 = 255 for 8 bits/pixel images), 

and  𝐾1  and  𝐾2  define two scalar constants. The general form of the SSIM between 

GT patch and SR patch is explained as: 
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𝑆𝑆𝐼𝑀(𝑥, 𝑦) = [𝑙(𝑥, 𝑦)]𝛼. [𝑐(𝑥, 𝑦)]𝛽 . [𝑠(𝑥, 𝑦)]𝛾 (3.6) 

 

Where 𝛼, 𝛽, and 𝛾 are parameters to define the relative importance of these 

components that are considered as 𝛼 = 𝛽 = 𝛾 = 1. The SSIM index can be written as: 

𝑆𝑆𝐼𝑀(𝑝) =
(2µ𝑥 µ𝑦 + 𝐶1)

(µ𝑥
2 + µ𝑦

2  + 𝐶1)
  

(2σ𝑥σ𝑦 + 𝐶2)

( σ𝑥
2  + σ𝑥

2 +  𝐶2)
 

 

(3.7) 

𝑆𝑆𝐼𝑀(𝑝) = 𝑙(𝑝). 𝑐𝑠(𝑝) (3.8) 

 

Where the dependencies of means and standard deviations on pixel 𝑝 are obtained. 

The Means and standard deviations are computed via a Gaussian filter with standard 

deviation σ𝐺 , Gσ𝐺 . The SSIM loss function is presented as: 

𝐿𝑆𝑆𝐼𝑀(𝑃) =
1

𝑁
∑ 1 − 𝑆𝑆𝐼𝑀(𝑝)

𝑝∈𝑃

 
(3.9) 

 

In Eq 3.7, the calculation of 𝑆𝑆𝐼𝑀(𝑝) requires exploring the neighborhood of pixel 

(𝑝) as large as Gσ𝐺  supports. The means computation of 𝐿𝑆𝑆𝐼𝑀(𝑃) and its derivatives 

in some regions of the patch are not possible. The derivative computation at (𝑝) for 

any other pixel (𝑞) in the patch (𝑃) can be defined as: 

𝜕𝐿𝑆𝑆𝐼𝑀

𝜕𝑥(𝑞)
= −

𝜕

𝜕𝑥(𝑞)
𝑆𝑆𝐼𝑀(𝑝) = − (

𝜕𝑙(𝑝)

𝜕𝑥(𝑞)
. 𝑐𝑠(𝑝) + 𝑙(𝑝).

𝜕𝑐𝑠(𝑝)

𝜕𝑥(𝑞)
) 

(3.10) 

 

Where 𝑐𝑠(𝑝) and 𝑙(𝑝) are the first and second terms of Eq 3.8 and their derivatives 

are: 

𝜕𝑙(𝑝)

𝜕𝑥(𝑞)
= 2. Gσ𝐺(𝑞 − 𝑝) . (

µ𝑦 − µ𝑥 . 𝑙(𝑝)

µ𝑥
2 + µ𝑦

2 + 𝐶1
) 

(3.11) 
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and 

𝜕𝑙(𝑝)

𝜕𝑥(𝑞)
=

2

 σ𝑥
2  + σ𝑥

2 +  𝐶2
 . Gσ𝐺(𝑞 − 𝑝) . [(𝑦(𝑞) − µ𝑦) − 𝑐𝑠(𝑞). (𝑥(𝑞) − µ𝑥)] 

(3.12) 

 

Where Gσ𝐺(𝑞 − 𝑝)  is the Gaussian coefficient correlated with pixel 𝑞. 

As mentioned earlier, the quality of the reconstructed image depends on σ𝐺 . For 

example, the large value of σ𝐺  tends to preserve noise in the edge while the small 

value of σ𝐺  leads to unpleasant artifacts since it reduces our generator's ability to 

reconstruct the image's local structure. Using the multiscale structure of SSIM (MS-

SSIM) designed according to a dyadic pyramid of 𝑀 levels resolution, is a feasible 

solution for the SSIM limitation. Figure 3.6 demonstrates the MS-SSIM diagram, and 

it is defined as: 

 

Figure  3.7: Block diagram of Multiscale SSIM (MS-SSIM). 

 

 

𝑀𝑆 − 𝑆𝑆𝐼𝑀 =  𝑙𝑀
𝛼 (𝑝). ∏ 𝑐𝑠𝑗

𝛽𝛾

𝑀

𝑗=1

(𝑝) 

(3.13) 

 

Where 𝑙𝑀(𝑥, 𝑦), 𝑐𝑗(𝑥, 𝑦), and 𝑠𝑗(𝑥, 𝑦), demonstrate luminance, contrast, and 

similarity respectively. As shown in the structure of MS-SSIM in Fig 3.7, the GT 

patch and SR patch are taken as inputs. The low-pass filter and down-sample 
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operation on a factor of 2 are applied iteratively on the inputs. The input patches are 

indexed as the first scale while the highest order scale is considered scale 𝑀 which is 

obtained after 𝑀 − 1 iterations. 

As demonstrated in the diagram and equation, the luminance comparison is calculated 

only on a scale of 𝑀 and it is defined as 𝑙𝑀(𝑥, 𝑦). In contrast, the structure and 

contrast comparisons are computed at the 𝑗𝑡ℎ scale and are defined as 𝑐𝑗(𝑥, 𝑦),  and 

𝑠𝑗(𝑥, 𝑦) respectively. We set    𝛼 =  𝛽𝛾 = 1. The final loss for the patch (𝑃) with its 

center pixel (𝑝) is defined as: 

 

𝐿𝑀𝑆−𝑆𝑆𝐼𝑀(𝑃) = 1 −  𝑀𝑆_𝑆𝑆𝐼𝑀(𝑝) (3.14) 

 

The derivative of the MS-SSIM loss function can be described as: 

 

(
𝜕𝐿𝑀𝑆−𝑆𝑆𝐼𝑀(𝑃)

𝜕𝑥(𝑞)
) = (

𝜕𝑙𝑀(𝑝)

𝜕𝑥(𝑞)
+ 𝑙𝑀(𝑝). ∑

1

𝑐𝑠𝑗(𝑝)

𝑀

𝑖=0

𝜕𝑐𝑠𝑗(𝑝)

𝜕𝑥(𝑞)
) . ∏ 𝑐𝑠𝑗(𝑝)

𝑀

𝑗=1

 (3.15) 

 

However, The MS-SSIM loss makes a smoother SR result compared to the L2 loss 

and it preserves the image's contrast in high-frequency regions better than the L2 loss. 

On the other hand, L2 loss preserves the edges, and it is very sensitive to indicate the 

sharp intensity changes. To reconstruct the best result of our SR model, the 

combination of MS-SSIM loss and L2 loss function is proposed: 

 

𝐿𝑀𝑖𝑥 = (1 − α)𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 +  α(𝐺𝜎𝐺
𝑀 . 𝐿𝐿2)  (3.16) 
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We empirically set α = 0.8. We must note that we add a point-wise multiplication 

between 𝐺𝜎𝐺
𝑀 and L2. 

 

3.3 Capsule Discriminator Architecture 

Inspired by Goodfellow et al. [54] idea, the discriminator network 𝐷𝜃𝐷 is designed to 

optimize the capsule network structure [77] and it operates in an alternating manner 

along with the generator to solve the adversarial min-max problem of our GAN 

structure as shown in Eq 3.17: 

𝑚𝑖𝑛
𝜃𝐺

  
𝑚𝑎𝑥
𝜃𝐷

 𝐸
𝐼𝐻𝑅

~𝑃𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅
)

[log 𝐷𝜃𝐷 (𝐼𝐻𝑅
)]

+ 𝐸
𝐼𝐿𝑅

~𝑝𝐺(𝐼𝐿𝑅
)

[log (1 − 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝐼𝐻𝑅
)))] 

(3.17) 

 

This adversarial training of generator and discriminator simultaneously produces 

realistic perceptual (small details and texture) images in contrast to non-GAN models 

which only aim to minimize the pixel-wise error measurements. To make an efficient 

adversarial cycle (min-max problem) in our GAN, the robustness of the discriminator 

plays a critical role. Due to the capability of the capsule network to extract the 

hierarchical pattern relationships, and to learn the difficult-to-learn patterns compared 

to the CNN model, our proposed discriminator utilizes this approach. Figure 3.8 

shows the proposed discriminator's architecture based on the capsule network. 
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Figure  3.8: The architecture of Discriminator with Capsule layers in the Caps-GAN 

model. 

 

As demonstrated in Figure 3.8, our discriminator prepares data by convolution layers 

and then feeds data to the primary layer of our capsule network. The capsule structure 

consists of two layers, including the primary layer and the digit layer, which dynamic 

routing operation is applied between these layers. The sigmoid function dose the final 

classification. In the following section, we will explain the details and pressures of the 

discrimination capsule network.     

Our capsule discriminator architecture starts with a layer of convolution with 3×3 

kernel size and 64 feature maps followed by the Leaku ReLU activation function. 

Then another layer of convolution with 3×3 kernel size and 64 feature maps and stride 

of two, followed by the batch-normalization layers [90] and ParametricReLU [91] as 

the activation function, prepares the input of the capsule layer.  

The capsule architecture layer consists of two sides. The primary side with blue color 

and the digit layer side is shown with green color in Figure 3.8. In the primary layer 

first, a convolution layer changes the input dimension to 128 feature maps. Then it is 

reshaped into 8 capsules with a dimension of 1×14480. After that, a layer of squash 
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function is applied to vectorize data to limit their magnitude between 0 and 1, and 

then flatten them.  

Dynamic Routing (Routing by agreement) is considered the first stage of the digit 

layer. It is a procedure of CapsNet that routs output vectors from layer l to layer l + 1. 

This procedure is utilized as a replacement for the Max Pooling layer of CNNs.  The 

CapsNet learns the transformation matrices, or simply weights as the associations 

between capsule layers. In addition to these transformation matrices for routing 

information from layer to layer, each connection of CapsNet is also multiplied by a 

coupling coefficient demonstrated by 𝐶𝑖𝑗. With the aim of decision making, the 

capsules adjust the coupling coefficient to multiply it by the output before sending it 

to the higher layer. The coefficient 𝐶 is defined as a Softmax over 𝑏.  

𝐶𝑖𝑗 =
exp 𝑏𝑖𝑗

∑ 𝑒𝑥𝑝𝑘 𝑏𝑖𝑘
 

(3.18) 

 

Where 𝑏𝑖𝑗 is the similarity score that conders both probability and the feature 

properties in neurons. In addition, 𝑏𝑖𝑗 has remained low if the activation 𝑢𝑖  of capsule 

𝑖 is low. Since the length of �̂�𝑗|𝑖  is proportional to 𝑢𝑖 therefore: 

𝑏𝑖𝑗 ← 𝑏𝑖𝑗 + �̂�𝑗|𝑖  . 𝑣𝑗 (3.19) 

 

The  𝐶𝑖𝑗 are coupling coefficients calculated by the iterative dynamic routing process.  

Since ∑ 𝐶𝑖𝑗  are designed to sum up them to one, it measures how likely capsule 𝑖𝑖 may 

activate capsule 𝑗𝑗. 

𝑠𝑗 = ∑ 𝐶𝑖𝑗
𝑖

 �̂�𝑗|𝑖  (3.20) 
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Where 𝑠𝑗  demonstrates by the output of the higher capsule after the routing procedure. 

However, the routing is not yet finished. The squashing function is applied to the 

output to keep the value between 0 and 1: 

𝑣𝑗 =
|𝑠𝑗|2

1 + |𝑠𝑗|2  .
𝑠𝑗

|𝑠𝑗|
 (3.21) 

 

Where 𝑣𝑗  is represented the output of a squashing function. This type of routing-by-

agreement shows a more effective result than the Max Pooling layer of CNNs which 

ignores more image details [77]. 

After the dynamic routing process, the vectors flatten and the Leaku ReLU activation 

function is applied to them to create the dense layer. The Leaku ReLU and dense layer 

continued four times and finished by applying a sigmoid function to it. The sigmoid 

activation function [92] is responsible for binary classification that classifies the data 

as real or fake.     

 

 

3.4 Total Loss of Caps-GAN   

According to the GAN concept, our proposed Caps-GAN model has to train both 

capsule discriminator and the generator. The generator is trained to generate a more 

realistic SR image (fake image). In contrast, the discriminator is trained to distinguish 

between the real (HR) and fake (SR) image generated by the proposed generator 

network [54]. In our Caps-GAN model, the capsule discriminator is trained with GAN 

loss [54], [29], and the generator is trained with a perceptual loss (𝑙𝑆𝑅) [9], [29]. Our 
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designed perceptual loss (𝑙𝑆𝑅
) consists of two types of losses including a content loss 

(𝑙𝑀𝑖𝑥
𝑆𝑅 ), and an adversarial loss (𝑙𝐺𝑒𝑛

𝑆𝑅 ). Figure 3.9 demonstrates the total loss functions 

utilized in our model. 

 

Figure  3.9: The GAN loss and perceptual loss of the Caps-GAN model. 

 

In this section, we will explain the total loss functions including GAN loss, perceptual 

loss (Content loss and Adversarial loss), and their detailed combinations for our Caps-

GAN model. 

 

3.4.1 GAN Loss 

Inspired by the GAN structure [54], our capsule discriminator operates alternately 

along with the proposed generator to solve the adversarial min-max problem as 

demonstrated in Figure 3.9.  

The capsule discriminator takes both generated image and the original HR image. A 

binary classification problem using the sigmoid function [92] gives the output from 0 

to 1. This idea is known as the GAN loss which is formalized in Eq 3.22. 

𝐸
𝐼𝐻𝑅

~𝑃𝑡𝑟𝑎𝑖𝑛(𝐼𝐻𝑅
)

[log 𝐷𝜃𝐷 (𝐼𝐻𝑅
)] + 𝐸

𝐼𝐿𝑅
~𝑝𝐺(𝐼𝐿𝑅

)
[log (1 − 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝐼𝐻𝑅

)))] 
(3.22) 
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There are two phases for training our Caps-GAN model. The first phase is to freeze 

the proposed progressive generator and only train the capsule discriminator which 

tries to maximize the first term of formulation to 1. 

The second phase freezes the capsule discriminator while our progressive generator 

produces the SR (fake) sample and passes through the capsule discriminator to 

minimize the second term of formulation to zero. 

To be more precise, the capsule discriminator side of Eq 3.22 is used to train the 

capsule discriminator. In contrast, the generator side of Eq 3.22 is considered an 

adversarial loss utilized for training our generator. 

 

3.4.2 Perceptual Loss 

The perceptual loss function (𝑙𝑆𝑅
) has a vital role in the performance of producing SR 

images with better perceptual quality. Since our model is a GAN-based model, the 

perceptual loss function only affects the generator network's training, as demonstrated 

in Figure 3.9.  

Usually, the 𝑙𝑆𝑅
 is modeled based on Pixel-wise type of loss function in most SR 

algorithms (non-GAN based models). However, in our Caps-GAN algorithm, another 

loss function approach (Adversarial loss) for the production of the SR image more 

naturally and realistically due to reconstructing high-frequency detail of the image 

texture. Eq 3.23 demonstrates the weighted sum of a content loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ) and an 

adversarial loss (𝑙𝐺𝑒𝑛
𝑆𝑅 ) that applied as a perceptual loss (𝑙𝑆𝑅

) function of our Caps-GAN 

model. 

𝑙𝑆𝑅 = 𝑙𝑀𝑖𝑥
𝑆𝑅  +  𝑙𝐺𝑒𝑛

𝑆𝑅  (3.23) 
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Content Loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ): The content loss is responsible for producing the overall 

appearance of the SR image while it shows weakness in recovering the high-

frequency detail. The concept of the content loss is similar to the objective function 

utilized in the non-GAN SR model and usually, the pixel-wise loss models such as L2 

(MSE) or L1(MAE) are used. It is noticeable that this loss function in the GAN and 

non-GAN models have a direct effect on having higher PSNR and SSIM in the 

resulting image.  

The content loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ) in the GAN models is used as a pre-trained model inspired by 

Bruna et al. [93], Gatys et al. [94], and Huang et al. [95].  

In our Caps-GAN model, we introduced a novel objective function by combining MS-

SSIM and L2 that was explained in section 3.2.3 and later defined in Eq 3.16. In our 

Caps-GAN model, we called the proposed MS-SSIM + L2 as Mix loss and defined it 

as Eq 3.24. 

𝐿𝑀𝑖𝑥 = (1 − α)𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 +  α(𝐿𝐿2)  (3.24) 

 

To employ our proposed content loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ) in our Caps-GAN model, we initially train 

our proposed progressive generator with 𝐿𝑀𝑖𝑥 loss. Since the overall appearance of the 

SR results depends on the content loss, it plays an important role in improving PSNR 

and SSIM evaluation in our Caps-GAN model. Eq 3.25 demonstrates our designed 

content loss (𝑙𝑀𝑖𝑥
𝑆𝑅 ). 

𝑙𝑀𝑖𝑥
𝑆𝑅 =

1

𝑟2𝑊𝐻  
∑ ∑(𝐼𝑥,𝑦

𝐻𝑅 − 𝐺𝜃𝐺 (𝐼𝐿𝑅
) 𝑥, 𝑦)

𝑟𝐻

𝑦−1

𝑟𝑊

𝑥=1

 
(3.25) 
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Where 𝑊 and 𝐻 denote the dimension of the patch, 𝐺𝜃𝐺(𝐼𝐿𝑅
) shows the generated 

image and 𝐼𝑥,𝑦
𝐻𝑅 demonstrates the GT image. 

Despite the benefit of getting higher PSNR and SSIM in the proposed content loss, 

the result often lacks of high-frequency detail which leads to perceptually unsatisfying 

results in representing textures details. The adversarial loss in our Caps-GAN model 

is responsible for recovering the high-frequency texture detail to produce a natural SR 

result. 

Adversarial Loss (𝒍𝑮𝒆𝒏
𝑺𝑹 ): The generative component loss function (adversarial loss) 

aims to compensate for the lack of high-frequency detail, especially in the texture 

regions of the SR image. Producing a realistic SR image containing high-frequency 

details requires adding adversarial loss to the content loss. Consequently, the 

weighted sum of these losses produces our perceptual loss as demonstrated in Eq 

3.23. In our adversarial loss, the coefficient  is set to 10−3. It means that the 

adversarial loss encourages the generator to fool the capsule discriminator with the 

manifold of natural images. 

𝑙𝐺𝑒𝑛
𝑆𝑅 is determined based on the probabilities of the capsule discriminator network 

𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅)) overall training samples and demonstrate as Eq 3.26. 

𝑙𝐺𝑒𝑛
𝑆𝑅 = ∑ − log 𝐷𝜃𝐷(𝐺𝜃𝐺 (𝐼𝐿𝑅

))

𝑁

𝑛=1

 
(3.26) 

 

Where 𝐷𝜃𝐷(𝐺𝜃𝐺(𝐼𝐿𝑅)) denotes the probability which the reconstructed SR image 

𝐺𝜃𝐺(𝐼𝐿𝑅) is a natural HR images, and for better gradient behavior the probability of 

reconstruction is minimized as follows:  
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𝑙𝐺𝑒𝑛
𝑆𝑅 = log [1 − 𝐷𝜃𝐷 (𝐺𝜃𝐺 (𝐼𝐿𝑅

))] (3.27) 

  

Figure 3.10 visualizes the effect of content loss (overall appearance), adversarial loss 

(high-frequency texture detail) and our perceptual loss utilized in the proposed Caps-

GAN model.  

 

Figure  3.10: The effect of content loss and adversarial loss to train our Caps-GAN 

model. 
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4. CHAPTER FOUR 

Experimental Result and Discussion 

 

4.1 Introduction 

This chapter presents, the quantitative and qualitative experimental results of our 

Caps-GAN network. All experiments are conducted on a single image super-

resolution and evaluated on scale factors of ×2, ×4, and ×8 

The training and testing details of our Caps-GAN model are presented in sections 4.2 

and 4.3 respectively.  

In section 4.4, we will present the effectiveness of the proposed generator module in 

reconstructing the sophisticated structural images, and the effect of the proposed loss 

function (MS-SSIM + L2) in terms of quantitative and qualitative examinations which 

utilize pre-trained content loss (lMIx
SR ) for the final Caps-GAN model. 

In section 4.5, the effect of the capsule discriminator on training our GAN model and, 

the visual comparisons for investigating the capsule architecture effects of the SR 

results are discussed. 

Finally, the ultimate quantitative and qualitative experimental of our Caps-GAN 

model, as well as the complexity and execution time of the Caps-GAN model, is 

represented in section 4.6.     

4.2 Training Details 

The DIV2K dataset [96] is the most commonly used among various datasets for 

image super-resolution. The DIV2K dataset contains 800 high-quality (2K resolution) 

RGB images with a wide range of scene diversity used to train our model. 
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For each training batch of our model, the random LR patches in RGB mode with a 

size of 96×96 have been utilized as the inputs. 

Adam optimizer [92] with a configuration of β1= 0.9, β2 = 0.999, and 𝜀 = 10−8 is 

utilized for training the proposed model.  

The Python 3.5.6 programming language under Keras 2.2.4 framework [97] with 

TensorFlow 1.5 as the back-end is used to implement our SR model.  

Our model was trained on NVIDIA GeForce GTX 1080 Ti GPU with 24GB of 

Memory. The learning rate of our proposed model is set to 10−4. 

 

4.3 Testing Details 

To test our model, we examined its performance on six benchmark datasets including 

Set5 [98], Set14 [99], BSD100 [100], Urban100 [95], Manga109 [101], and 100 

images that belong to the testing purpose of the DIV2K [96]. The image 

representatives as mentioned above are demonstrated in Figure 4.1. 

 

Figure  4.1: Testing Datasets used to evaluate the performance of the model. 
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For the quantitative evaluation of data, we used PSNR and SSIM [102], and MOS [9], 

[103] as image quality assessment metrics in which the higher values for the PSNR / 

SSIM / MOS indicate better performance of the resulting images. In the calculation of 

the PSNR and SSIM, we implemented the evaluation on the luminance (Y) channel of 

transformed YCbCr space. MATLAB 2018a is used to calculate the PSNR and SSIM 

of our proposed model. 

The most straightforward method for obtaining the perceptual quality of an image is 

to acquire the MOS (Mean opinion score) [103] which is obtained from the perception 

of human observers [104]. The score of the MOS test is from 1 (bad quality) to 5 

(excellent quality) as shown in Figure 4.2. 

 

Figure  4.2: The assessment criteria of the Mean Option Score (MOS) 
 

In our MOS evaluation, 20 raters assigned their perception of our Caps-GAN results 

in the visual comparison section of this chapter on scales of ×4 and ×8 in 5 datasets 

including Set14 [99], BSD100 [100], Manga109 [101], Urban100 [95], and DIV2K 

[96]. 

4.4. Generator Module 

As discussed earlier, our generator module is designed with the RDB architecture 

containing five convolution layers for each block. They are residually connected to 
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make the RRDB architecture under the progressive up-sampling framework to reduce 

the learning difficulties of our generator. In addition, the depth-wise bottleneck 

projection approach is employed to convey the low-level information from the early 

convolution layer into each up-sampling module. The proposed content loss (𝐿𝑀𝑖𝑥) 

that combining 𝐿𝑀𝑆−𝑆𝑆𝐼𝑀 and 𝐿𝐿2 is responsible for the reconstruction of the overall 

appearance of the SR image. Our generator with this content loss (𝐿𝑀𝑖𝑥) is trained 

independently from our GAN model, then this pre-trained model is used as the pre-

trained content loss of our Caps-GAN model. 

The rest of this section demonstrates the effect of different projection approaches on 

our generator, compares different content losses in our model, and compares our pre-

trained model with other non-GAN models. 

4.4.1 Effect of Different Projections on Training 

The effect of different projection approaches such as the Residual Projection, 

Bottleneck Projection, and Depth-wise Bottleneck Projection in the training stage of 

the proposed generator are compared in this section. Figure 4.3 and Figure 4.4 

indicate the graphs for average training loss and average training PSNR (dB) on 800 

training epochs of the DIV2K dataset. 
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Figure  4.3: Average training loss per epoch for training our model with different 

projection approaches on the DIV2K dataset. 

 

 

Figure  4.4: Average PSNR (dB) per epoch for training our model with different 

projection approach on the DIV2K dataset. 

 

 

As shown in these graphs, the Bottleneck Projection (blue) and Depth-wise 

Bottleneck Projection (red) represent superior performance over the residual 

projection approach (yellow). Although the performance of Bottleneck Projection and 

Depth-wise Bottleneck Projection are almost the same, the Depth-wise Bottleneck 

approach shows smoother and better performances in both average loss and average 

PSNR (dB) in the training phase of the proposed generator. 
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4.4.2 Comparison of Different Content Losses 

The effect of different objective functions (content losses) including L1 loss, L2 loss, 

MS-SSIM loss, L1+MS-SSIM loss, and L2+MS-SSIM loss are compared in this 

section. 

The visual compression of our pre-trained generator model with different content 

losses is shown in Figures 4.5 and 4.6. For a better visually distinguishing benchmark 

of the results of these content losses, we utilized the samples with different textural 

structures on different scale factors (scale ×4 and scale ×8).  

 

Figure  4.5: Visual comparison of different content losses on the Monarch image of 

Set14 dataset on a scale of ×8 

 

Figure 4.5 demonstrates the results of our generator model with the different content 

losses on the “Monarch” image of Set14 [99] dataset on a scale of ×8.  Since the L1 

loss function penalizes the smaller error compared to the L2 loss function, the result 

of L1 is much smoother and sharper than L2. At the same time, the high-frequency 

details and minor features in the regions connecting edges vanish. It means despite the 
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smoothness of the L1 result, it shows weakness in reconstructing the minor details of 

the image similar to the original image. Although the result of MS-SSIM loss 

reconstructs a sharper image compared to L2 and represents more details than L1, it 

shows weakness in reconstructing the edges similar to the original image. The mix of 

L2 and MS-SSIM displays a more realistic result compared to the other content loss 

functions. It reconstructs a sharp result while more minor details are preserved around 

the edges. The PSNR (dB) and SSIM evaluations also show a superior performance of 

the proposed loss function. 

 

Figure  4.6: Visual comparison of different content loss on Img-092 image of the 

Urban100 dataset on a scale of ×4. 

 

Figure 4.6 demonstrates the results of the proposed generator model with different 

content losses on “Image-92” of the Urban100 [95] dataset on a scale of ×4. These 

results compare the effect of each content loss for reconstructing the vertical and 

horizontal lines over a constant surface. As observed in Figure 4.5, the L2 loss 

represents better performance for reconstructing the vertical and horizontal lines 

compared to other non-mixed content losses. However, lack of smoothness due to 
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over noise amplification (greater penalizes error in L2) makes it a non-pleasing 

image. The mixed L2 and MS-SSIM loss function show the best performance to 

produce a sharp image while detecting all the lines similar to the original image. The 

PSNR (dB) and SSIM evaluations also indicate the best performances compared to 

the other content losses. 

The quantitative performance comparison includes PSNR (dB) and SSIM on the 

benchmark datasets of Set5 [98], Set14 [99], BSD100 [100], Urban100 [95] and 

Manga109 [101] between these content losses on scales of ×2, ×4, and ×8 that are 

demonstrated in Table 4.1, Table 4.2, and Table 4.3. The red numbers indicate the 

best performance, and the blue numbers show the second-best performance. 

Table  4.1: Quantitative comparison among different content losses on scale ×2 
Content  

Loss 

S
c
a

le
 Set 5 [98] Set 14 [99] BSD100 [100] Urban100 [95] Manga [101] 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

L1 × 2 37.68 0.9598 33.30 0.9157 32.11 0.8964 31.30 0.9204 38.16 0.9758 

L2 × 2 37.80 0.9613 33.39 0.9166 31.93 0.8971 31.15 0.9202 38.16 0.9767 

MS-SSIM × 2 37.61 0.9622 33.30 0.9159 32.12 0.8964 31.29 0.9210 38.18 0.9771 

L1+MS-SSIM × 2 37.79 0.9611 33.37 0.9162 32.17 0.8981 31.33 0.9213 38.19 0.9770 

L2+MS-SSIM × 2 37.81 0.9622 33.38 0.9168 32.16 0.8980 31.35 0.9214 38.18 0.9771 

 

Table  4.2: Quantitative comparison among different content losses on scale ×4 
Content  

Loss 

S
c
a

le
 Set 5 [98] Set 14 [99] BSD100 [100] Urban100 [95] Manga [101] 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

L1 × 4 32.65 0.9015 29.03 0.7890 28.10 0.7191 27.10 0.8112 31.94 0.9181 

L2 × 4 32.70 0.9020 29.19 0.7911 28.18 0.7510 27.14 0.8131 32.09 0.9198 

MS-SSIM × 4 32.67 0.9015 29.11 0.7902 28.15 0.7501 27.13 0.8121 32.01 0.9190 

L1+MS-SSIM × 4 32.72 0.9025 29.23 0.7921 28.21 0.7512 27.18 0.8139 32.11 0.9201 

L2+MS-SSIM × 4 32.80 0.9032 29.30 0.7928 28.25 0.7532 27.22 0.8146 32.15 0.9210 
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Table  4.3: Quantitative comparison among different content losses on scale ×8 
Content  

Loss 
S

c
a

le
 Set 5 [98] Set 14 [99] BSD100 [100] Urban100 [95] Manga [101] 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

L1 × 8 27.36 0.7980 25.27 0.6572 24.98 0.6067 23.14 0.6835 25.62 0.8131 

L2 × 8 27.41 0.7987 25.31 0.6581 25.04 0.6072 23.25 0.6842 25.69 0.8141 

MS-SSIM × 8 27.38 0.7983 25.30 0.6579 25.00 0.6070 23.22 0.6839 25.66 0.8137 

L1+MS-SSIM × 8 27.51 0.7992 25.42 0.6590 25.09 0.6080 23.31 0.6849 25.80 0.8148 

L2+MS-SSIM × 8 27.54 0.7998 25.45 0.6598 25.17 0.6086 23.39 0.6865 25.86 0.8154 

 

As the table shows, among all scales, the best performances belong to the mix of L2 

and MS-SSIM objective functions utilized to pre-train our generator. 

 

4.4.3 Comparison Results with Other Non-GAN models 

 

In this section, we compare the effectiveness of our generator model with some state-

of-the-art non-GAN SR models, including the visual comparisons and the quantitative 

comparisons on scales of ×2, ×4, and ×8. Since the generator performance directly 

effects on our final Caps-GAN result in terms of the PSNR, SSIM, and the overall 

perceptual quality, the robustness examination of our generator is very important.   

In a visual comparison, we compare the results of SRCNN [21], VDSR [58], LapSRN 

[30], MemNet [22], MSLapSRN [31], EDSR [26] and RCAN [38] models with our 

generator results on scales of ×4 and ×8 on the BSD100 [100], Manga109 [101] and 

Urban100 [95] datasets. 

Figure 4.7 demonstrates the visual comparisons on a scale of ×4 for image “3096” of 

the BSD100 [100] dataset. As observed in Figure 4.7, other SR models show 
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weakness in reconstructing the sharp image with small details and suffer blurring 

artifacts. In contrast, our generator model reduces the blurring effect and recovers 

minor geometric shapes better than other models. 

 

Figure  4.7: Visual comparison of the image "3096" on a scale of ×4 on the BSD100 

dataset. 

 

Figure 4.8, demonstrates visual comparisons on a scale of ×4 for the image 

“GakuenNoise” belonging to the Manga109 [101] dataset. The other models show 

weakness in representing the lattices' circular shapes. Some models suffer the blurring 

artifacts while in the RCAN [38] and EDSR [26], the reconstructed lattice shapes are 

not similar to the original HR image. In contrast, the proposed generator performs 

better to recover the lattice circular details. 

 

Figure  4.8: Visual comparison of the image "Gakuen Noise" on a scale of ×4 on the 

Manga109 dataset. 
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Figure 4.9 represents visual comparisons on a scale of ×4 for image “Img-012” 

belonging to the Urban100 [95] dataset.  In contrast to the other SR models, our 

generator performs the parallel lines better while recovering the small details between 

these lines. 

 

Figure  4.9: Visual comparison of the image "Img-012" on a scale of ×4 on the 

Urban100 dataset. 

 

 

To further visual comparisons, we display the results on a scale of ×8. Figure 4.10 

compares the results of other models of image “302008” belonging to the BSD100 

[100] dataset. Due to the large-scale factor, the result of the Bicubic method’s result 

lost the tthe HR image's correct structure. Recovering the wrong structure because of 

a very large-scale factor also occurs in some other models such as SRCNN [21], 

VDSR [58], and LapSRN [30]. Our generator model demonstrates acceptable 

performance to recover the original structure of black lines compared to the other 

state-of-the-art models that suffer blurring artifacts, a lack of smoothness, and a weak 

capability to recover the tiny line connections. 
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Figure  4.10: Visual comparison of the image "302008" on a scale of ×8 on the 

BSD100 dataset. 

 

Figure 4.11 represents the image “KarappoHighschool” belonging to the Manga109 

[101] dataset and the corresponding results of other SR models on a scale of ×8. Due 

to the large scale factor, the Bicubic, SRCNN [21], and VDSR [58] produce heavy 

blurring and wrong structure results. Although other SR models such as MemNet 

[22], EDSR [26], and RCAN [38] demonstrate better results compared to the Bicubic, 

SRCNN [20], and VDSR [58], they lose most high-frequency details that lead to the 

incorrect parallel line reconstruction.  

As demonstrated in Figure 4.11, both MSLapSRN [31] and our proposed generator 

model show robust performances to recover the most high-frequency details due to 

employing the progressively up-sampling framework with the projection approach.  It 

indicates that the progressive up-sampling framework is more successful in 

recovering the most high-frequency information than the other SR technique such as 

the post-upsampling framework or the channel attention approach. 

Besides the high-frequency recovering capability, the mixed L2 and MS-SSIM 

content loss help produce a sharper image, reducing the blurring artifacts and 

producing a better SR image compared to the other state-of-the-art models. 
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Figure  4.11: Visual comparison of the image "Karappo Highschool" on a scale of ×8 

on the Manga109 dataset. 

 

Figure 4.12 illustrates visual comparisons on a scale of ×8 for the image “Img-004” 

belonging to the Urban100 [95] dataset.  Due to the sophisticated structure of this 

sample at a large-scale, most SR models have failed to recover the lattice structure of 

circular shapes. Although the RCAN [38] model successfully recovered the lattices 

texture, the original shape of the holes in the GT image is represented as a 

quadrangular shape. However, our generator module reconstructs circular lattice 

structure more faithfully than the other state-of-the-art methods. 

 

Figure  4.12: Visual comparison of the image "Img-004" on a scale of ×8 on the 

Urban100 dataset. 

 

The quantitative comparison of the results by the PSNR (dB) and SSIM evaluations 

on scales of ×2, ×4, and ×8 on Set5 [98], Set14 [99], BSD100 [100], Urban100 [95] 
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and Manga109 [101] datasets are presented in Table 4.4, Table 4.5, and Table 4.6. For 

the quantitative comparisons, we used eleven state-of-the-art models including 

Bicubic, SRCNN [21], FSRCNN [17], VDSR [58], LapSRN [30], MemNet [22], 

EDSR [26], SRMDNF [105], D-DBPN [33], RDN [44], DRLN [106] , RCAN [38] 

and LTE [107]. The results of other models are cited from their papers. The red 

numbers indicate the best performance, and the blue numbers demonstrate the second-

best performance. 

 

 

Table  4.4: Quantitative benchmark test results on a scale ×2. 

 

Model 

S
c
a

le
 Set 5 Set 14 BSD100 Urban100 Manga109 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic × 2 33.66 0.9299 30.24 0.8688 29.56 0.8431 26.88 0.8403 30.80 0.9339 

SRCNN [21] × 2 36.66 0.9542 32.45 0.9067 31.36 0.8879 29.50 0.8946 35.60 0.9963 

FSRCNN [17] × 2 37.05 0.9560 32.66 0.9090 31.53 0.8920 29.88 0.9020 36.67 0.9710 

VDSR [58] × 2 37.53 0.9590 33.05 0.9130 31.90 0.8960 30.77 0.9140 37.22 0.9750 

LapSRN [30] × 2 37.52 0.9591 33.08 0.9130 31.08 0.8950 30.41 0.9101 37.27 0.9740 

MemNet [22] × 2 37.78 0.9697 33.28 0.9142 32.08 0.8978 31.31 0.9195 37.72 0.9740 

EDSR [26] × 2 38.11 0.9602 33.92 0.9195 32.32 0.9013 32.93 0.9351 39.10 0.9773 

SRMDNF 

[105] 
× 2 37.79 0.9601 33.32 0.9159 32.05 0.8985 31.33 0.9204 38.07 0.9761 

D-DBPN [33] × 2 38.09 0.9600 33.85 0.9190 32.27 0.9000 32.55 0.9324 38.89 0.9775 

RDN [44] × 2 38.24 0.9614 34.01 0.9212 32.34 0.9017 32.89 0.9353 39.18 0.9780 

DRLN [106] × 2 38.34 0.9619 34.43 0.9247 32.46 0.9032 33.54 0.9402 39.75 0.9792 

RCAN [38] × 2 38.33 0.9617 34.23 0.9225 32.46 0.9031 33.54 0.9399 39.61 0.9788 

LTE [107] × 2 38.33 -- 34.25 -- 32.44 -- 33.50 -- -- -- 

Ours × 2 37.81 0.9614 33.38 0.9168 32.16 0.8981 31.35 0.9214 38.18 0.9771 
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Table  4.5: Quantitative benchmark test results on a scale ×4. 

 

Model 

S
c
a

le
 Set 5 Set 14 BSD100 Urban100 Manga109 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic × 4 28.42 0.8104 26.00 0.7027 25.96 0.6675 23.14 0.6577 24.89 0.7866 

SRCNN [21] × 4 30.48 0.8628 27.50 0.7513 26.90 0.7101 24.52 0.7221 27.58 0.8555 

FSRCNN [17] × 4 30.72 0.8660 27.61 0.7550 26.98 0.7150 24.62 0.7280 27.90 0.8610 

VDSR [58] × 4 31.35 0.8830 28.02 0.7680 27.29 0.7260 25.18 0.7540 28.83 0.8870 

LapSRN [30] × 4 31.54 0.8850 28.19 0.7720 27.32 0.7270 25.21 0.7560 29.09 0.8900 

MemNet [22] × 4 31.74 0.8893 28.26 0.7723 27.40 0.7281 25.50 0.7630 29.42 0.8942 

EDSR [26] × 4 32.46 0.8968 28.80 0.7876 27.71 0.7420 26.64 0.8033 31.02 0.9148 

SRMDNF 

[105] 
× 4 31.96 0.8925 28.35 0.7787 27.49 0.7337 25.68 0.7731 30.09 0.9024 

D-DBPN [33] × 4 32.47 0.8980 28.82 0.7860 27.72 0.7400 26.38 0.7946 30.91 0.9137 

RDN [44] × 4 32.47 0.8990 28.81 0.7871 27.72 0.7419 26.61 0.8028 31.00 0.9151 

DRLN [106] × 4 32.74 0.9013 29.02 0.7914 27.86 0.7453 27.14 0.8149 31.78 0.9210 

RCAN [38] × 4 32.74 0.9013 28.98 0.7910 27.86 0.7455 27.10 0.8142 31.65 0.9208 

LTE [107] × 4 32.80 -- 29.06 -- 27.86 -- 27.24 -- -- -- 

Ours × 4 32.80 0.9032 29.30 0.7928 28.25 0.7532 27.22 0.8146 32.15 0.9210 

 

Table  4.6: Quantitative benchmark test results on a scale of ×8. 

 

Model 

S
c
a

le
 Set 5 Set 14 BSD100 Urban100 Manga109 

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM 

Bicubic × 8 24.40 0.6580 23.10 0.5660 23.67 0.5480 20.74 0.5160 21.47 0.6500 

SRCNN [21] × 8 25.33 0.6900 23.76 0.5910 24.13 0.5660 21.29 0.5440 22.46 0.6950 

FSRCNN [17] × 8 25.60 0.6970 24.00 0.5990 24.31 0.5720 21.45 0.5500 22.72 0.6920 

VDSR [58] × 8 25.93 0.7241 24.26 0.6148 24.49 0.5838 21.70 0.5710 23.16 0.7253 

LapSRN [30] × 8 26.15 0.7380 24.35 0.6200 24.54 0.5861 21.81 0.5810 23.39 0.7350 

MemNet [22] × 8 26.16 0.7410 24.38 0.6199 24.58 0.5840 21.89 0.5819 23.56 0.7380 

EDSR [26] × 8 26.97 0.7750 24.94 0.6399 24.80 0.5962 22.47 0.6220 24.56 0.7787 

SRMDNF 

[105] 
× 8 26.34 0.7558 24.57 0.6273 24.65 0.5895 22.06 0.5963 23.90 0.7564 

D-DBPN [33] × 8 26.96 0.7762 24.91 0.6420 24.81 0.5985 22.51 0.6221 24.69 0.7841 

RDN [44] × 8 27.21 0.7840 25.13 0.6480 24.88 0.6010 22.73 0.6312 25.14 0.7987 

DRLN [106] × 8 27.46 0.7916 25.40 0.6547 25.06 0.6070 23.24 0.6523 25.55 0.8087 

RCAN [38] × 8 27.47 0.7913 25.40 0.6553 25.06 0.6077 23.22 0.6524 25.58 0.8092 

LTE [107] × 8 27.35 -- 25.42 -- 25.03 -- 23.17 -- -- -- 

Ours × 8 27.54 0.7998 25.45 0.6598 25.17 0.6086 23.39 0.6865 25.86 0.8154 
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In contrast to scales ×4 and ×8, the results of our generator on a scale of ×2 are 

slightly less than RCAN [38] and RDN [44]. Since our generator has the progressive 

up-sampling framework, the generator on a scale of factor ×2 acts similar to a post-

upsampling framework while it has less network depth compared to the other post-

upsampling SR models at this scale. 

Compared with other SR models on scales of ×4 and ×8, our generator indicates the 

best PSNR (dB) and SSIM results in all examined datasets. For example, on a scale of 

×8 in the Urban100 [95] and Manga109 [101] datasets, our generator’s PSNR gains 

0.17 dB and 0.28 dB more than the second-best model (RCAN).  In terms of SSIM 

evaluation in this example, our model also demonstrates improvement while the 

number of parameters in our SR model is less than the RCAN [38] model. These 

results show our progressive up-sampling framework with the proposed mixed 

perceptual loss (L2 + MS-SSIM) represents superior performance over the other SR 

models at larger scale factors (×4 and ×8).  

 

4.4.4 Generator Network Size Analysis 

 

The comparisons of our generator module size and the execution time are 

demonstrated in this section. For these comparisons, nine state-of-the-art models 

including SRCNN [21], FSRCNN [17], VDSR [58], LapSRN [30], MemNet [22], 

EDSR [26], D-DBPN [33], MDSR [26] and RCAN [38] are used. The 

implementations of these models have been done on GeForce GTX 1080 Ti GPU with 

24GB of memory. 
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Figure  4.13: Performance and number of parameters evaluated on the Set5 dataset 

on a scale of ×4. 

 

Figure 4.13 compares the performance and number of parameters on the Set5 [98] 

dataset on a scale of ×4. As observed in this graph, our generator model gains the 

highest PSNR (32.8 dB) while the number of parameters in our model (5 million) is 

less than RCAN [38] model as the second-best PSNR on this scale. 

 

Figure  4.14: Performance and execution time evaluated on the Set5 dataset on a 

scale of ×4. 

 

Figure 4.14 compares the performance and the execution time on the Set5 [98] 

dataset. According to this graph, our generator model gains the highest PSNR (32.8 

dB) while its execution time is faster than EDSR [26], RCAN [38], MDSR [26], and 

MemNet [22]. 
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4.5 Discriminator Module Performance  

As discussed, our discriminator network is optimized with capsule structure [77] and 

operates alternately along with the generator to solve the adversarial min-max 

problem of our Caps-GAN model. Figure 4.15 demonstrates the discriminator loss of 

our model with capsule network and the discriminator with CNN-based models 

(CNN-based utilized in the SRGAN [9] and ESRGAN [29]) during training. 

 

Figure  4.15: Discriminator loss during training model. 

 

 

The x-axis indicates the number of iterations (epochs), and the y-axis shows the loss. 

The orange graph is for the CNN-based discriminator while the blue color is for the 

proposed Caps-GAN. Due to the capability of capsule network architecture to extract 

the hierarchical feature relationships compared to the CNN concept, the capsule 

discriminator shows superior performance in extracting difficult-to-learn patterns in 

the training of the Caps-GAN model.   

As demonstrated in Figure 4.15, the superior capability of our proposed capsule 

discriminator leads to training the discriminator module much faster in very less 

training iteration compared to the CNN-based discriminator. The blue graph of the 
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proposed Caps-GAN indicates an anomaly at around 3,000 iterations and shows the 

sudden loss shoots up. This drastic fluctuation happened since the generator learned 

some trick in this range of iteration to fool the capsule discriminator. The capsule 

discriminator then starts to learn this trick and consequently the loss decreases. This 

sudden fluctuation indicates that our proposed GAN model plays the adversarial 

procedure very effectively in the training phase due to the applying  a robust generator 

and robust discrimination in our Caps-GAN model.  

Figure 4.16 and Figure 4.17 compare the results of our proposed model (same 

generator, objective functions, learning rate, training dataset, and training iterations) 

with the baseline CNN architecture of discriminator utilized in the SRGAN [9] and 

ESRGAN [29] on scales of ×8 and ×4. 

HR CNN Discriminator Capsule Discriminator 

   

PSNR / SSIM 16.51 / 0.5294 23.93 / 0.6992 

Figure  4.16: Visual comparison of our GAN model with capsule and CNN 

discriminator on a scale of ×8. 
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HR CNN Discriminator Capsule Discriminator 

   
PSNR / SSIM 29.53 / 0.7906 29.79 / 0.8091 

Figure  4.17: Visual comparison of our GAN model with capsule and CNN 

discriminator on a scale of ×4. 

 

As Figure 4.16, the CNN discriminator cannot force our generator to produce 

acceptable SR results on a scale of ×8. In contrast, our proposed model with a 

Capsule discriminator network shows superior performance in training our GAN 

model and produces visually pleasing SR image at this scale. 

Figure 4.17 also demonstrates the robustness of the capsule network discriminator 

over the CNN bades discriminator on a scale of ×4. As observed in Figure 4.17, the 

result of our proposed model with a capsule discriminator network demonstrates 

better performance in reconstructing sophisticated textures.        

4.6 Discussion of Caps-GAN Experimental Results 

In this section, we compare the effectiveness of our Caps-GAN model with other 

state-of-the-art GAN models including the SRGAN [9] and ESRGAN [29]. 

First, the comparisons of the network complexity, execution time and the training 

iterations (training epochs) are demonstrated. Secondly, the quantitative comparisons 

on scales of ×2, ×4, and ×8 on the benchmark image datasets including Set5 [98], 

Set14 [99], BSD100 [100], Manga109 [101], Urban100 [95] and DIV2K [96] are 

displayed. Finally, the visual comparisons of our Caps-GAN model on scales of ×4, 
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and ×8 on Set14 [99], BSD100 [100], Manga109 [101], Urban100 [95] and DIV2K 

[96] are shown.    

4.6.1 Network Parameters, Execution Time, and Training Iterations 

Table 4.7 demonstrates the network complexity, models' testing time, the training 

iterations of the SRGAN[9], ESRGAN [29] and our Caps-GAN model. The 

implementations of these models have been done on GeForce GTX 1080 Ti GPU with 

24GB of memory. 

Table  4.7: Comparison of execution time on the Set5 on a scale of ×4, network 

parameters, and training iterations of GAN-based super-resolution models. 

Method Testing time (s) Parameters Training Epoch 

 

SRGAN [9] 2.63 1.790 × 107 50 × 103 

ESRAGAN [29] 2.51 1.670 × 107 40 × 103 

Caps-GAN (Ours) 2.23 4.983 × 106 10 × 103 

 

According to Table 4.7, our Caps-GAN model demonstrates the best performance in 

all items. As discussed earlier, the progressive up-sampling framework helps to 

increase the deep learning network capability and to design our network with fewer 

parameters than the SRGAN [9] and ESRGAN [29] post up-sampling framework. 

Consequently, the execution time of our network with fewer parameters is decreased 

compared to the SRGAN [9] and ESRGAN [29] models. As discussed in the previous 

section, the capability of the Capsule network in our discriminator architecture has led 

to converging our Caps-GAN model very fast compared to the SRGAN [9] and 

ESRGAN [29] which utilized CNN-based discriminator. Therefore, the training 

iteration of our Caps-GAN model is decreased dramatically compared to the other 

GAN models.      
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 Figure 4.18 and Figure 4.19 demonstrate the comparison graphs that compare the 

number of parameters and the execution time of our Caps-GAN model via the 

performance (PSNR dB) on the Set5 dataset on a scale of ×4. 

 

Figure  4.18: The GAN-based models’ performances and parameters evaluated on the 

Set5 dataset on a scale of ×4. 

 

 

Figure  4.19: The GAN-based models’ performances and execution time evaluated on 

the Set5 dataset on a scale of ×4. 

 

Figure 4.18 and Figure 4.19 demonstrate our Caps-GAN model outperformance in 

terms of the PSNR and network complexity, as well as the PSNR and execution time 

compared to the other GAN models.  
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4.6.2 Quantitative Comparison of Caps-GAN model 

The quantitative comparison of the proposed Caps-GAN by PSNR (dB) and SSIM 

evaluations on scales of ×2, ×4, and ×8 is demonstrated in Table 4.8, Table 4.9, and 

Table 4.10. For the quantitative comparisons, we used state-of-the-art GAN-based 

models, including the SRGAN [9] and ESRGAN [29]. The benchmark datasets 

including Set5 [98], Set14 [99], BSD100 [100], Manga109 [101], Urban100 [95] and 

DIV2K [96] are also utilized for comparison.  

 

 

Table  4.8: Quantitative benchmark GAN results on a scale ×2. 

Datasets Scale 
SRGAN [9] ESRGAN [29] Caps-

GAN(Ours) 

PSNR SSIM PSNR SSIM PSNR SSIM 

Set5 [98] ×2 33.27 0.8937 33.94 0.9145 34.02 0.9152 

Set14 [99] ×2 32.14 0.8860 33.62 0.9150 33.64 0.9155 

BSD100 [100] ×2 31.89 0.8760 31.98 0.8870 31.99 0.8879 

Urban100 [95] ×2 27.66 0.8432 27.70 0.8441 27.76 0.8450 

Manga109 [101] ×2 30.92 0.8956 30.98 0.8961 30.98 0.8973 

DIV2K [96] ×2 25.08 0.7007 25.97 0.7801 26.00 0.7809 
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Table  4.9: Quantitative benchmark GAN results on a scale of ×4. 

Datasets Scale 
SRGAN [9] ESRGAN [29]  Caps-

GAN(Ours) 

PSNR SSIM PSNR SSIM PSNR SSIM 

Set5 [98] ×4 29.40 0.8472 27.59 0.7978 30.41 0.8492 

Set14 [99] ×4 26.02 0.7379 30.50 0.7620 31.18 0.7689 

BSD100 [100] ×4 25.16 0.6688 27.69 0.7120 28.72 0.7197 

Urban100[95] ×4 27.16 0.8763 28.49 0.8851 29.08 0.8890 

Manga109[101] ×4 27.39 0.8666 27.77 0.8709 28.11 0.8754 

DIV2K [96] ×4 28.09 0.8210 28.68 0.8530 28.98 0.8609 

 

 

Table  4.10:Quantitative benchmark GAN results on a scale of ×8. 

Datasets Scale SRGAN [9] ESRGAN [29] Caps-GAN(Ours) 

PSNR SSIM PSNR SSIM PSNR SSIM 

Set5 [98] ×8 --- --- --- --- 26.56 0.7696 

Set14 [99] ×8 --- --- --- --- 24.61 0.6388 

BSD100 [100] ×8 --- --- --- --- 24.75 0.5856 

Urban100[95] ×8 --- --- --- --- 22.36 0.6115 

Manga109[101] ×8 --- --- --- --- 24.78 0.7802 

DIV2K [96] ×8 --- --- --- --- 25.09 0.7839 

 

As observed in these tables, the PSNR and SSIM results of our Caps-GAN model are 

improved on scales of ×2 and ×4 compared to the other GAN-based models. This 

improvement in the PSNR and SSIM is related to our designed content loss (𝐿𝑀𝑖𝑥) 

which combined MS-SSIM loss and L2 loss.  The effectiveness of this combined loss 

function in terms of quantitative and qualitative performances was demonstrated and 
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proven in the previous section. The results of the SRGAN and ESRGAN on a scale of 

×2 are cited from research papers. 

As shown in Table 4.9, the SRGAN [9] and ESRGAN [29] models cannot operates on 

a scale of ×8. It may happen because of the weakness of CNN-based discriminators in 

their GAN models to maintain effective training to reconstruct the SR images on a 

scale of ×8. 

4.6.3 Visual Comparison of Caps-GAN model 

In visual comparison, we compare the results of our Caps-GAN model on scales of 

×4 and   ×8 with other state-of-the-art models. The benchmark image datasets 

including Set14 [99], BSD100 [100], Manga109 [101], Urban100 [95] and DIV2K 

[96] are used.    

Figure 4.20, Figure 4.21, Figure 4.22, Figure 4.23, and Figure 4.24 demonstrate the 

visual comparison of our Caps-GAN model with GAN-based models of the SRGAN 

[9] and ESRGAN [29] on a scale of ×4. Additionally, to visualize the differences 

between non-GAN and GAN models, the result of RCAN [38], as the best non-GAN 

model, is also displayed. Moreover, each sample image's PSNR, SSIM, and MOS 

evaluations are mentioned.  
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Original 

Image 

HR Bicubic 

 

  

 PSNR/SSIM/MOS 21.59 / 0.6423 / 1.9 

 

 SRGAN [9] RCAN [38] 

 

 
 

 21.15 / 0.6867 / 2.65 23.98 / 0.7570 / 2.75 

 

 ESRGAN [29] Caps-GAN (Ours) 

 

 
 

 21.24 / 0.6871 / 2.95 23.42 / 0.7064 / 4.75 

Figure  4.20: Visual comparison of the image " Comic " on a scale of ×4 on the Set14 

dataset. 
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Original Image HR Bicubic 

 

  

 PSNR / SSIM / MOS 28.29 / 0.6591/ 1.55 

 

 SRGAN [9] RCAN [38] 

 

  

 28.76/ 0.8214 / 2.1 31.18 / 0.8805 / 3.05 

 

 ESRGAN [29] Caps-GAN (Ours) 

 

  

 28.92/ 0.8365 / 3.65 28.99/ 0.8371 / 4.65 

Figure  4.21: Visual comparison of the image "8023 " on a scale of ×4 on the 

BSD100 dataset. 
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Original Image 

 

 

HR 

 

Bicubic 

 

  

 PSNR / SSIM / MOS 18.86 / 0.5885 / 1.25 

 SRGAN [9] RCAN [38] 

 

  
 19.09/ 0.6002 / 2.30 22.91 / 0.6924/ 3.65 

 ESRGAN [29] Caps-GAN (Ours) 

 

  
 19.47 / 0.6390 / 3.25 19.90 / 0.6430 / 4.55 

Figure  4.22: Visual comparison of the image "img_077" on a scale of ×4 on the 

Urban100 dataset. 
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Original Image HR Bicubic 

 

  
 PSNR / SSIM / MOS 23.93 / 0.6951 / 1.05 

 SRGAN [8] RCAN [37] 

 

  
 27.09 / 0.7206 / 2.9 32.28/ 0.8212 / 2.55 

 ESRGAN [28] Caps-GAN (Ours) 

 

  
 27.12 / 0.7215 / 3.7 29.60 / 0.7512 / 4.8 

Figure  4.23: Visual comparison of the image "Aisazu NihaIrarenai " on a scale of ×4 

on the Manga109 dataset. 
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Original Image HR Bicubic 

   

 PSNR/SSIM/MOS 23.22/ 0.5427/ 1.35 

 SRGAN [8] RCAN [37] 

 

  
 24.06 /0.5831/ 2.2 30.73/0.89 /  2.8 

 ESRGAN [28] Caps-GAN (Ours) 

 

  
 25.23 / 0.5995/ 4.0 29.74 / 0.81 / 4.65 

Figure  4.24: Visual comparison of the image "0801 " on a scale of ×4 on the DIV2K 

dataset. 
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Figure 4.20 represents visual comparisons on a scale of ×4 for the image “Comic” 

belonging to the Set14 [99] dataset.  In contrast to the other models, our Caps-GAN 

shows superior performance in reconstructing the sophisticated details of the image. 

Although the PSNR and SSIM results of the GAN-based models are less than the non-

GAN (RCAN), our Caps-GAN model improved the PSNR and SSIM and got the best 

MOS results among other models.  

Figure 4.21 visually compared the image "8023" belonging to the BSD100 [100] 

dataset. As observed in Figure, our Caps-GAN successfully reconstructed the parallel 

line details of the bird compared to the SRGAN [9] and ESRGAN [29], while the 

background details were reconstructed naturally and very close to the HR image 

without any over-smoothing effects.  

Figure 4.22 visually compares the image "img_077" belonging to the Urban100 [95] 

datasets. The results of other models show weakness in reconstructing the building 

details. Our Caps-GAN model successfully recovered the building details while 

preventing the blurring and over-smoothing effects in the entire parts of the image. 

Therefore, the highest MOS result belongs to our model. 

Figure 4.23 indicates visual comparisons of the image "Aisazu NihaIrarenai" 

belonging to the Manga109 [101] dataset. Since this image is considered a simple 

structure to reconstruct on a scale of ×4, all produced results are acceptable in terms 

of the overall SR image structure. However, the most challenging part of this image is 

reconstructing the texture of the image. The effect of drawing on paper with a pencil 

made a special texture to this image. The RCAN model produces an over-smooth 

image that blurs the texture of the image. The adversarial loss of all GAN models aids 
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in producing natural texture of the image. In contrast, the SRGAN and ESRGAN 

model are not successful in recover the correct texture, especially around the face 

region of the image. Our Caps-GAN got the best MOS result and produced the best 

texture compared to the other models. 

Figure 4.24 represents visual comparisons of the image "0801" belonging to the 

DIV2K [96] dataset.  As observed, the result of Caps-GAN outperforms in 

reconstructing the SR image very naturally and is similar to the GT image. It got 4.65 

in the MOS test which is the highest among all models. The PSNR and SSIM also 

improved compared to other GAN-based models. 

 Figure 4.25, Figure 4.26, Figure 4.27, Figure 4.28, and Figure 4.29 show the visual 

comparison of our Caps-GAN model with other state-of-the-art models on a scale of 

×8. Since the SRGAN [9] and ESRGAN do not have scale ×8 models, for visual 

comparison at this scale we demonstrate the EDSR [26], LapSRN [30], and RCAN 

[38] results on a scale of ×8. Due to outperforming the RCAN [38] model in terms of 

the PSNR and SSIM, the robustness of the SR image reconstruction capability of the 

EDSR [26] model, and the progressive up-sampling framework of the LapSRN [30] 

model, these models were selected for comparison.  Moreover, each sample image’s 

PSNR, SSIM, and MOS evaluations are mentioned. 
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Original Image HR Bicubic 

 

  
 PSNR / SSIM / MOS 

 

22.84 / 0.4736 / 1.0 

 LapSRN [30] RCAN [38] 

 

  
 25.16 / 0.6835 / 2.25 28.82 / 0.7823 / 3.65 

  

EDSR [26] 

 

Caps-GAN (Ours) 

 

 

  
 26.64 / 0.7006 / 3.25 28.74 / 0.7902 / 4.85 

Figure  4.25: Visual comparison of the image "Lenna" on a scale of ×8 on the Set14 

dataset. 
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Original Image HR Bicubic 

 

  
 PSNR /SSIM / MOS 26.91 / 0.6901 / 1.4 

 LapSRN [30] RCAN [38] 

 

  
 28.76 / 0.7837 / 3.25 31.91 / 0.8379 / 3.95 

 EDSR [26] Caps-GAN (Ours) 

 

  
 27.92 / 0.7180 / 1.6 30.99 / 0.8276 / 4.8 

Figure  4.26: Visual comparison of the image "189080 " on a scale of ×8 on the 

BSD100 dataset. 
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Original Image HR Bicubic 

 

  
 PSNR / SSIM / MOS 19.83 / 0.5482 / 1 

 LapSRN [30] RCAN [38] 

 

 

 

 20.01 / 0.5809 / 2.30 22.59 / 0.6168 / 3.55 

 EDSR [26] Caps-GAN (Ours) 

 

 

 

 20.51 / 0.5996 / 3.40 22.50 / 0.6289 / 4.75 

Figure  4.27: Visual comparison of the image "img_037 " on a scale of ×8 on the 

Urban100 dataset.  
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Original Image HR Bicubic 

 

  
 PSNR / SSIM / MOS 19.29 / 0.5238 / 1.1 

 LapSRN [30] RCAN [38] 

 

  
 20.95 / 0.5909 / 2.25 23.00 / 0.6899 / 3.75 

 EDSR [26] Caps-GAN (Ours) 

 

  

 
21.24 / 0.6043 / 3.0 22.85 / 0.6826 / 4.9 

Figure  4.28: Visual comparison of the image "BurariTessen" on a scale of ×8 on the 

Manga109 dataset.  
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Original Image HR Bicubic 

 

  
 PSNR/SSIM/MOS 20.43/ 0.6059 / 1.1 

 LapSRN [30] RCAN [38] 

 

 
 

 22.02/0.6322 / 1.9 22.59/0.6431/ 3.9 

 EDSR [26] Caps-GAN (Ours) 

 

  
 21.47/ 0.6302 / 3.4 22.41/ 0.6425 / 4.7 

Figure  4.29: Visual comparison of the image "0869" on a scale of ×8 on the DIV2K 

dataset.  
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Figure 4.25 represents visual comparisons on a scale of ×8 for the image “Lenna” 

belonging to the Set14 [99] dataset. The results of both RCAN [38] and EDSR [26] 

models suffer over-smoothing problems and show weakness in recovering the texture. 

The LapSRN [30] attempts to highlight the details due to the progressive up-sampling 

framework but the lack of high-frequency recovering capability leads to an unpleasant 

result. While our Caps-GAN model shows better results because of utilizing 

adversarial loss to recover the textural information without any blurring effects of face 

and background on this large scale.   

Figure 4.26 visually compares the image "189080" belonging to the BSD100 [100] 

dataset. According to this Figure, our Caps-GAN model produced a smoother image 

while recovering the textual information of the face. Other models show weaknesses 

in their results due to over smoothing or noise amplification artifacts. The highest 

MOS rate also belongs to our results. 

Figure 4.27 shows the visual comparisons of the image "img_037" belonging to the 

Urban100 [95] datasets. Reconstructing the SR images at this scale is considered 

challenging due to the difficulty of recovering various textual information such as 

face and the background. Our Caps-GAN model demonstrates the high capability to 

reconstruct the SR image because of utilizing adversarial loss and an effective content 

loss in a progressive up-sampling framework. The highest MOS result belongs to our 

model. 

Figure 4.28 visually compares the image "BurariTessen" belonging to the Manga109 

[101] dataset. According to the SR results of these models, the Caps-GAN model 
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generates a better SR image that preserves more small details without any noise and 

blurring artifacts.    

Figure 4.29 represents visual comparisons of the image "0869" belonging to the 

DIV2K [96] dataset. The EDSR [26] model shows noise amplification artifacts in 

recovering the texture. The RCAN [38] and LapSRN [30] demonstrate blur results. 

Our Caps-GAN model produced a sharper image compared to the LapSRN [30] and 

RCAN models while preserving the perceptual quality of the SR image against noise 

amplification. This capability is yielded with a successful combination of adversarial 

and our mixed perceptual loss. The MOS test also indicates the outperformance of our 

model. 
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5. CHAPTER FIVE 
Conclusions and Future Works 

 

5.1 Introduction 

Recent decades have seen an increasing interest in utilizing videos and images in 

numerous applications. The image's resolution in any image-based application is 

considered the most important factor which directly affects the visual quality of an 

image. Due to the limitations of the increasing number of sensors in the image 

acquisition modules, the importance of increasing the spatial resolution of images via 

software algorithms in real-world applications is undeniable. Various super-resolution 

algorithms have been proposed to produce a visually pleasing upscale image. 

However, producing a high-resolution image that contains tiny details while executing 

in a short time has remained a challenge. 

We proposed our Caps-GAN algorithm to improve the super-resolution algorithm and 

the reconstructed high-resolution image.  The idea behind the Caps-GAN model is to 

upscale the LR image using the generative adversarial approach which consists of two 

main modules: generator and discriminator. These two independent modules are 

trained individually but in an adversarial cycle. Particularly, the generator module is 

trained to generate more realistic and accurate upsampled images. In contrast, the 

discriminator is trained for better distinguishment between real and fake sample data 

generated by the generator module.  

To improvement of both discriminator and generator modules is inevitable to enhance 

the GAN-based super-resolution model while having an efficient and fast algorithm. 

Based on these modification concepts, the capsule network approach is utilized in the 
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discriminator module. Due to the ability of the capsule network to understand the 

hierarchical pattern relationships and learn the difficult-to-learn patterns compared to 

the CNN model, our proposed discriminator utilized this approach.  

Since the generator module is responsible for generating the reconstructed HR 

images, it should be modified to produce a sophisticated image similar to the GT 

image while having less network complexity. Our generator module utilizes a 

lightweight architecture that applies a progressive up-sampling framework that 

performs fewer convolution layers in a low-dimensional space and progressively 

applies the predefined up-sampling operations. The residual in residual dense blocks 

(RRDB) is utilized for the first stage while the second stage utilizes the RDB 

architecture. To transfer the high-frequency details of the early network layer to the 

up-sampling modules and prevent gradient vanishing problems in the training of the 

proposed model, at the end of each up-sampling stage the depth-wise bottleneck 

projections approach is used.     

In addition to the generator and discriminator modifications in our Caps-GAN model, 

perceptual loss plays a critical role in generating a better perceptual quality. The 

perceptual loss consists of content loss and adversarial loss. Due to the importance of 

the content loss in producing the overall appearance of the SR image and its 

contribution to improving quantitative results, the combination of the multiscale 

SSIM loss and L2 loss was utilized in our model. Additionally, the adversarial loss of 

the GAN model helps reconstruct the tiny high-frequency details of the texture and 

produce a realistic result similar to the GT image.         
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5.2 Contributions 

The fundamental objective of our study is to investigate and propose a Caps-GAN 

(fusing) Single Image Super-Resolution Algorithm designed based on the GAN 

network while utilizing the Capsule Network Algorithm in the discriminator part of 

the GAN, to optimize the training procedure. 

Besides, the study seeks to enhance the perceptual quality of the Caps-GAN results by 

introducing a combination of the MS-SSIM and L2 loss functions (content loss) and 

producing more perceptual satisfaction and realistic SR images, as well as improving 

the PSNR and SSIM of the previous GAN-based models.  

The extensive experimental evaluations of our Caps-GAN model on six benchmark 

image datasets on 3 different scales proved that our SR model obtained a state-of-the-

art accuracy in terms of the PSNR and SSIM as well as the perceptual satisfaction, 

and MOS. 

5.3 Future Work 

In future work, we will validate our Caps-GAN model on a single video frame and a 

video sequence due to the requirements of streaming services to provide high-quality 

videos from the low-resolution stored videos.    

Furthermore, we will explore the capability of our Caps-GAN model in image 

deblurring, denoising, and inpainting.   

In conjunction with our approach, we will finally examine our model's potential in the 

super-resolution phase of a face detection algorithm.  
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