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1. Introduction 
 

 

1.1 Motivation 
 
The number of medical imaging scans gathered over the previous decade now accounts for more 
than 90% of all medical data in hospitals worldwide [1]. As a result of the wide availability of 
imaging technology, automated methods for processing medical scans are increasingly more 
important to deal with the volume of pictures produced. Automation via machine learning, 
especially Neural Networks (NN), is critical to meeting this demand. On the other hand, deep neural 
networks have extremely limited extrapolation capabilities, and even fully trained models tend to 
act unpredictably when dealing with pictures that are outside the training data distribution. Given 
the possibility that sensory equipment, data transmission systems, and other software might fail 
unexpectedly, resulting in damaged images, these data should be flagged before sending to any 
automatic medical diagnosis model. This reduces the risk of producing erroneous, if not 
dangerously misleading, diagnoses. 
 

1.2 Object 
 

This thesis studies the out-of-distribution detection methods for validating data before 
sending it to the prediction models. The main hypothesis of this study is:  
 

The corrupted data can reduce the robustness of the prediction models. Therefore, the 
out-of-scope detection techniques can be applied to screen the corrupted data and protect the 
robustness of the prediction models. 
 

The objectives of this thesis are as follows: 
1. To develop a machine learning technique for screening corrupted images prior to 

transmitting them to prediction models. 
2. Comparing out-of-scope detection algorithms to evaluate picture data prior to prediction 

may increase the resilience of the prediction model. 
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1.3 Scope 
 

In this study, we assess the performance of various OOD detection methods on X-ray data. 
Identifying such distributional shifts are essential for securely deploying machine learning models 
in the medical industry. Several studies[2-4] have attempted to address this problem by training 
deep neural network classifiers to assign anomaly scores to inputs. Another set of techniques relies 
on reconstruction-based models for OOD detection[5]. A generative model, such as an auto-
encoder, is trained using only in-domain (ID) data. The model should be able to adequately 
reconstruct any ID data. However, the reconstruction given by the generative model will have a 
large discrepancy when used on OOD samples, allowing their detection. This method is widely 
utilized in medical imaging for diagnostic purposes [6-8] because it gives an OOD score per pixel, 
allowing for unsupervised segmentation and localization of any abnormalities in the medical image. 
The majority of this line of research for OOD detection, however, has been conducted on toy 
datasets such as CIFAR-10 and CIFAR-100[9], TinyImageNet[10], LSUN[11], and MNIST[12]. Medical 
imaging data differs from these datasets in the variety of possible anomalies, higher fidelity in terms 
of pixel count and bit depth, and the tendency to have small localized anomalies. Moreover, some 
of these OOD differences might be caused by a difference in imaging technology or imaging 
apparatus, which can be so subtle that it is imperceptible to the human eye, but it can cause a 
significant drop in diagnosis performance by the machine learning 

 
This work aims to survey and study the effect of different OOD detection methods on X-

ray images to identify the type of anomalies that can be problematic for OOD detection and the 
best methods to tackle them. We start by creating multiple anomalies that can cause an X-ray 
diagnosis model fails, then tries to detect these anomalies via various methods in a systematic 
manner. To do this, the study re-implements and compares different approaches using a common 
testing framework for a fair and comprehensive comparison. Surprisingly, supervised methods 
outperform sophisticated OOD methods even on unseen anomalies by a large margin. 
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2. Related work 
 

Despite its critical nature, the issue of image data validation has been largely ignored within 
the medical imaging field. On the other hand, many studies have been conducted on the control 
and assessment of picture quality [13, 14]. These techniques aim to determine the perceived image 
quality to identify issues like noise, compression artifacts, or lens distortion. However, there are no 
guarantees that these picture quality assessment models will not fail when dealing with OOD data. 
Previous research on out-of-distribution detection techniques mainly concentrated on finding 
aberrant or unhealthy structures through the use of statistical shape analysis [15], clustering [16], 
and one-class learning [17]. In this study, our focus is on verifying the authenticity of incoming 
images that are intended to be utilized by a downstream system, about which we possess no 
information except for the training data utilized to train the system. Thus, our problem setting has 
to deal with more unknowns. Other relevant studies include [18-20], which compare the results of 
confidence-based models. Our research examines a more diverse set of methods, including 
classification and generative models, for OOD detection. 
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3. Background 
 

 

Out-of-distribution Detection 
 
It has been shown that deep learning models can incorrectly categorize samples from 

distributions it has not been trained with. This gives rise to the topic of out-of-distribution (OOD) 
detection[21], which attempts to identify test samples with labels that do not overlap with the 
training data. It also requires models to reject label-shifted examples to ensure dependability and 
safety. In the OOD detection task, test samples are drawn from a distribution with a semantic shift 

away from in-distribution (ID), i.e., 𝑃(𝑌) ≠ 𝑃′(𝑌). The shift might be from a single class or a 
collection of classes. When several classes are present in training, OOD detection should not impair 
the capacity of ID categorization. 

 

3.1 Out-of-distribution Detection Methods 

 
OOD detection methods can be classified into three broad categories, namely confidence-based, 
generative, and classification. We list the methods considered below: 
 

3.1.1 Maximum Class Probability (MCP)[4]: 

 
MCP is a technique for identifying out-of-distribution (OOD) samples in a neural network. 

For the MCP method, the premise is that the classifier is more confident when accurately classifying 
in-distribution data and less confident when correctly classifying out-of-distribution samples. It is a 
straightforward method that uses the maximum class probability of the network prediction as a 
proxy for model confidence. 
 

The approach compares the maximum class probability against a threshold to differentiate 
between in-distribution and out-of-distribution samples. The threshold can be determined using 
either the maximum class probabilities of the training samples or a validation set. In general, the 
maximum class probabilities of in-distribution samples are greater than those of OOD samples. 
 
During the testing phase, it can also be altered dynamically based on the application and the 
required performance. 
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3.1.2 Mahalanobis Distance[22]: 

 
Lee et al. proposed a technique for detecting anomalous samples, including adversarial 

examples and out-of-distribution data, by utilizing a pre-trained neural network classifier. The 
method is based on Gaussian discriminant analysis and uses the Mahalanobis distance to compute 
a confidence score for each sample. This method is more robust in situations where the training 
dataset has noisy labels or a small number of samples. 
 

3.1.3 Out-of-Distribution Detector for Neural Networks (ODIN)[23] 

 
ODIN is built on adding a small amount of noise to the input samples during the inference 

stage and assessing the improvement in confidence in the model's output. The idea is that out-of-
distribution (OOD) samples will be less resilient to the added noise, resulting in a noticeable change 
in the model's confidence compared to samples from inside the distribution. 
 

The approach applies a temperature-scaled noise to the model's input. The temperature 
scaling determines the noise level, and the output confidence of the model is calculated from the 
softmax output probability. By tracking the change in the output confidence, a threshold is applied 
to differentiate between data that belongs to the in-distribution and out-of-distribution categories. 
 

3.1.4 Supervised classification 

 
Another simple yet effective method is treating OOD detection as a binary classification 

between ID data and the rest. Multiple kinds of OOD data can be gathered and treated as positive 
data (OOD). This type of method has the possible caveat that it is impossible to envision all the 
possible anomalies beforehand, so the model might fail to detect a new kind of anomaly. 
 
We consider four possible famous image classification models. 
 

3.1.4.1 Visual Geometry Group (VGG)[24]:  

VGG architecture is well-known for its extensive use of convolutional layers, often 
with small filters (3x3) and a relatively straightforward design. Each block of the VGG 
architecture consists of many convolutional layers, followed by max-pooling layers. The 
max-pooling layers limit the spatial resolution of the feature maps, making the network 
more resistant to input picture translations. The combination of convolutional filters and 
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pooling layers permits the network to learn a considerable number of distinct feature 
maps, which is advantageous for collecting fine-grained visual information. 
 

3.1.4.2 Residual Network (ResNet) [25]: 

ResNet's most significant innovation is the use of the so-called “residual 
connections,” which enable the model to learn a residual mapping between the input 
and output of a layer as opposed to the conventional strategy of learning the whole 
mapping. This alleviates the issue of disappearing gradients in deep neural networks, which 
can make training challenging. The ResNet design is composed of a succession of levels, 
with the possibility to use “shortcut connections” to bypass one or more layers. These 
shortcut connections permit the network to discover the residual mapping, which is the 
difference between a layer's input and output. By learning the residual mapping rather 
than the whole mapping, the network will learn more readily and converge more quickly. 
 

3.1.4.3 Densely Connected Convolutional Networks (DenseNet)[26]: 

The DenseNet architecture is recognized for its utilization of dense connections, 
which means that every layer is directly connected to all previous layers. In DenseNet, 
each layer receives the input feature maps from all preceding layers and combines them 
with its feature maps. This enables the network to learn a broader range of features and 
addresses the issue of disappearing gradients that can happen in deep networks. 
Additionally, the architecture includes transition layers that decrease the number of 
feature maps and control the expansion rate of the network. This makes the DenseNet 
architecture more efficient and less susceptible to overfitting. 
 

3.1.4.4 Pyramid Localization Network (PYLON)[27]: 

PYLON is a deep learning model that enhances the accuracy of identifying specific 
locations within images by using a technique called class activation maps (CAM) to 
generate high-resolution heat maps. It is particularly effective in identifying small objects 
and can be trained using only image-level labels, rather than requiring specialized 
annotations. PYLON has been shown to be effective in both general and medical image 
domains. 

 

3.1.5 Adversarially learned anomaly detection (ALAD)[28]: 
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The ALAD method is similar to the AnoGAN[8] method, an early GAN-based anomaly 
detection method based on image reconstruction. ALAD improves on AnoGAN by creating bi-
directional GANs that includes an encoder network for mapping data samples to latent variables. 
Unlike AnoGAN, which uses a standard GAN and requires computationally expensive inference 
procedures to recover latent variables, ALAD recovers these variables through a single feed-forward 
pass through the encoder network at test time, thus avoiding this computational cost. Furthermore, 
the anomaly scoring criteria used in ALAD is distinct from that in AnoGAN, and recent advances in 
GAN training are also incorporated to enhance model stability. 
 

3.1.6 f-AnoGAN[29]: 

 
Schlegl et al. proposed the f-AnoGAN, an anomaly detection system designed for real-time 

applications, that requires a two-step training process. The first step is the GAN training, where they 
utilized the Wasserstein GAN (WGAN) [30] architecture, which was state-of-the-art at that time. The 
second step involves training the encoder. During this step, the generator and discriminator 
parameters from the first step were frozen, while only the encoder was allowed to change. Three 
loss functions were used to enhance the model: the first loss function was based on the encoding 
of the real input images and their reconstructions, the second loss function resulted from the 
discriminator's classification of the real input images and their reconstructions, and the last loss 
function was based on a random latent space and the output from the encoder. 
 

3.1.7 The Efficient GAN-Based Anomaly Detection (EGBAD) [31]: 

 
The model presented by Zenati et al. in 2018 also utilized the bi-directional GAN (BiGAN) 

[32] concept, which includes an extra encoder compared to standard GANs. In BiGANs, the 
discriminator is responsible for classifying real latent codes and fake images or fake latent codes 
and real images. 
The proposed model employs two additional discriminators, in contrast to ALAD. 

The first discriminator attempts to differentiate between the pairs (𝑥, 𝑥) and (𝑥, 𝐺(𝐸(𝑥))), 

while the second discriminator attempts to differentiate between the pairs (𝑧, 𝑧) and 

(𝑧, 𝐸(𝐺(𝑧))). 𝑥, 𝑧, 𝐺(), 𝐸()  represent the in domain data, the embedding, the generator, 

and the encoder, respectively. 
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3.1.8 GANomaly [33]: 

 
Akcay et al. proposed an enhanced GAN architecture by incorporating an encoder-decoder-

encoder network and two additional losses (Adversarial Loss and Contextual Loss). The architecture 
comprises three sub-networks: an autoencoder network as the generator to learn the input data 
representation and reconstruct the input image, an encoder network for compressing the 
generator's output from the generator network, and a discriminator network for distinguishing 
between the input and output images as real or fake. 
 

3.1.9 HealthyGAN [34]: 

 
HealthyGAN is an image-to-image translation technique that works in a one-directional 

manner. The method comprises a generator network and a discriminator network, with the latter 
following the PatchGAN [35] architecture. The discriminator network determines whether an input 
image is real or fake. On the other hand, the generator network translates any images it receives, 
without requiring their labels, into healthy images. Once the model has learned how to perform 
the translation, it generates a difference map for each input image by computing the difference 
between the input image and its translated output. The difference map highlights regions with 
significant responses that correspond to potential anomalies. 
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4. Method 
 

4.1 Dataset 
  
     The Montgomery dataset [36] was produced through a collaboration with the Montgomery 
County Department of Health and Human Services located in Montgomery, Maryland, USA. It 
consists of 138 frontal chest X-rays acquired as part of Montgomery County's Tuberculosis screening 
program. Among the 138 images, 80 were determined to be normal, and the remaining 58 exhibited 
symptoms of TB. The images are presented in Portable Network Graphics (PNG) format. 
 
     The Shenzhen dataset [36] was compiled in partnership with Shenzhen No.3 People's Hospital, 
Guangdong Medical College, and other institutions in Shenzhen, China. The dataset comprises 662 
frontal chest X-rays, of which 326 are normal cases, and 336 are cases with TB symptoms, including 
pediatric X-rays (AP). The X-ray images are available in PNG format. 
 
     The RSNA Pediatric Bone Age Challenge data collection [37], which included 14,236 hand 
radiographs (12,611 training sets, 1,425 validation sets, and 200 test sets), was made accessible to 
challenge participants who enrolled. 
 
     The Pneumonia Detection Challenge dataset from the Radiological Society of North America 
(RSNA) [38]  (hereafter, the RSNA dataset). has 30,000 frontal view chest radiographs, randomly 
assigned unique identification numbers, 16,248 posteroanterior views, and 13,752 anteroposterior 
views. It was extracted from the publicly available NIH CXR8 dataset containing only frontal views. 
     
This paper employs several datasets, including the Montgomery and Shenzhen datasets[36] for 
chest X-rays and the RSNA Pediatric Bone Age[37] and Pneumonia Detection Challenge datasets[38]. 
The Montgomery dataset comprises 138 frontal chest X-rays, while the Shenzhen dataset contains 
662 frontal chest X-rays. The RSNA Pediatric Bone Age Challenge data collection has 14,236 hand 
radiographs, while the RSNA Pneumonia Detection Challenge dataset contains 30,000 frontal view 
chest radiographs. 
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4.2 Generating Corrupted Images 
 
We evaluate the models' performance using synthetic corruption, as we do not have access to 
corrupted image datasets. In our experiment, we established a criterion for selecting corruption 
classes by applying a corruption class to an image and submitting it to the trained model for 
Tuberculosis detection. The corruption class was considered a factor if it decreased the model's 
performance by more than five points in terms of AUROC. This results in 15 corruption/OOD classes. 
Test datasets were generated by applying the same corruption to images from the test splits. The 
applied corruptions can be classified into two categories: those that affect local image statistics 
while preserving the overall appearance and those that affect image-level statistics while preserving 
local image statistics. Examples of these corruptions are illustrated in Fig.1. 
 

 
Figure  1: Sample corrupted images 
 
 

In our study, we presented a summary of the different categories of corruption and their 
corresponding percentages of elements. These categories included In-Distribution (ID) at 40%, 
followed by various types of corruption such as Blur, Gaussian Blur (GB), Contrast, Brightness, Rotate, 
Gaussian Noise, Uniform Noise (UN), Flat Value (FV), Horizontal Half (H. Half), Vertical Half (V. Half), 
Coarse Dropout (CD), Wrong Position (WP), Different Source (DS), OOD1, and OOD2, each accounting 
for 4% of the total elements. In order to simulate a realistic out-of-distribution (OOD) detection 
task in a clinical setting, we separated the RSNA dataset into in-distribution (ID) and OOD images 
and applied various corruption classes. To represent the problem of “difference sources,” we 
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utilized the Montgomery and Shenzhen datasets, both of which contain images of the same 
disease. Additionally, the RSNA Pediatric Bone Age Challenge data was employed as “OOD1” to 
represent the problem of images coming from outside the domain. Lastly, a dataset of X-ray images 
from patients with HIV was used as “OOD2” to describe the problem of unseen diseases. This 
allowed us to simulate a realistic OOD detection task in a clinical setting and evaluate the 
performance of different OOD detection methods under various scenarios. 
 

4.3 Models 
 
In our study, we employed a selection of state-of-the-art models for OOD detection. Specifically, 
we used Resnet50, Densenet201, VGG-NETS19Bn, and PYLON as our classification models. For 
generative models, we used ALAD, EGBAD, f-AnoGAN, GANomaly, and HealthyGAN. And for 
confidence-based models, we used Mahalanobis Distance, MCP, and ODIN. In order to ensure 
consistency and fairness in our evaluation, we used the configuration values and hyperparameters 
as specified in the original papers for each of these models. This allowed us to accurately compare 
the performance of these different models under the same conditions and draw meaningful 
conclusions about their relative strengths and weaknesses. 
 

4.4 Evaluation Metrics 
 

We utilized the area under the receiver operating characteristic (AUROC) to measure the 
accuracy and performance of the model in classifying ID and OOD tasks. Moreover, in the real 
scenario, the imbalance problem is prevalent, and OOD is rarely encountered. Therefore, we 
employed the area under the precision-recall curve (AUCPR) to assess the model's performance 
from a precision and recall perspective. 
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5. Experimental results 
 

5.1 Results 
 
The performance comparison of out-of-distribution (OOD) detection between confidence-based, 
classification, and generative models is presented in Table 1. The results are an average of five 
runs. In all cases, the classification models consistently outperformed the baseline model in OOD 
detection, often by substantial margins. The generative models were more accurate than the 
confidence-based models. However, the generative models performed substantially worse than 
the classification models, except for HealthyGAN, which only lagged behind the classification model 
by a maximum of six percentage points. 
 
Table  1: Comparing the average AUROC and AUCPR scores with 
different models 

Model AUROC score AUCPR score 
Classification 

 Densenet201 

 PYLON 

 Resnet50 

 VGG-NETS19Bn 

  
0.98 0.99 
0.98 0.99 
0.98 0.99 
0.98 0.99 

Confidence based 

 Confidence Branch 

 Maximum Softmax Probability 

 ODIN 

  
0.47 0.60 
0.38 0.52 
0.44 0.58 

Generative 

 EGBAD 

 ALAD 

 Ganomaly 

 f-AnoGAN 

 HealthyGAN 

  
0.79 0.87 
0.75 0.84 
0.73 0.82 
0.60 0.74 
0.92 0.96 
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6. Further Analysis 
 

We selected models with scores higher than 0.9 for further analysis. To provide a more 
realistic evaluation, we examined the performance of the out-of-distribution detection models 
under a condition where the models may not have seen certain corrupted classes before. We 
removed one class of corrupted data during the training phase and reintroduced it during the 
testing phase and repeated this process for all corrupted classes to determine which corrupted 
class has the most significant impact on the models. 
 
 

In our study, we evaluated the impact of various corruption classes on the performance 
of out-of-distribution (OOD) detection models. The results of our analysis of the OOD data indicate 
that certain corruption classes significantly affect the performance of the models under 
investigation. Specifically, the “blur'” class of corruption had a significant impact on the 
performance of the HealthyGAN model, while the “brightness” class had a significant impact on 
both the PYLON and HealthyGAN models. The “rotate” class had a significant impact on both the 
VGG-NETS19Bn and Resnet50 models, the “horizontal half” class significantly affected the 
Densenet201 model, and the “vertical half” class had a significant effect on the VGG-NETS19Bn 
model. The “difference source” and “OOD1” classes had a significant impact on the HealthyGAN 
model and the “OOD2” class had a significant impact on the PYLON model. Of all the corruption 
classes evaluated, Coarse Dropout was found to have the hardest type to detect. As shown in Fig. 
2 and Fig. 3, the HealthyGAN model could not regenerate an image in the presence of Coarse 
Dropout if it had not been trained on this corruption class beforehand. Among all the models 
selected in our study, resnet50 had the best overall performance
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Figure  2: Part of the training data 

contains Coarse Dropout 
 

 
Figure  3: The model never encounters Coarse Dropout during training. The model completely 

fails to handle this 
kind of corruption if unseen. 

 
 

To bridge the gap between testing and real-world scenarios, we conducted full-loop testing 
by simulating various scenarios and utilizing a new dataset, which is a private resource obtained 
from three hospitals in Thailand, namely Banglamung Hospital, Bureau of Tuberculosis, Thailand, 
and Maesot Hospital, Thailand. The dataset comprises two main classes: TB and non-TB. In the first 
scenario, we employed a TB classification model (PYLON 50) that had been trained using the 
standard process to classify a dataset and evaluate the model's performance. In the second 
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scenario, we randomly selected a dataset from the first scenario and converted 50% of the total 
data to out-of-distribution (OOD) data. We then allowed the model to classify this dataset again to 
examine the impact of OOD data on the model's performance. In the last scenario, we used the 
same dataset as the second scenario and employed an OOD detection model (Resnet50) to score 
the images and identify OOD images. We classified images with the top 20% OOD scores as OOD 
images, removed them from the dataset, and used this modified dataset to measure the model's 
performance and evaluate whether removing OOD data would improve the model's robustness. 
The results are displayed in Table 3. 

 
Table  3: Performance of TB classification model (PYLON 50) 
with and without OOD data and OOD detection model (Resnet50) 

Scenario AUROC FPR at 95% TPR 
The dataset without OOD data 0.95 0.04 
The dataset with OOD data 0.86 0.45 
The dataset with filtering OOD data out 20% 0.88 0.27 

 
 

 
Figure  4: Comparison of the ROC curve from various scenarios 
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The first scenario showed that the model has the potential to classify TB patients with an 

accuracy of 95% and a false positive rate (FPR) of 0.04 at a true positive rate (TPR) of 95%. However, 
when the dataset contained OOD data, the accuracy dropped dramatically to 86%, and the FPR at 
95% TPR increased significantly to 0.45, as shown in Table 3. Finally, the results of the third scenario 
demonstrated that detecting and removing OOD data before sending it to the model can improve 
its robustness. The model's accuracy with the OOD detector to screen the input was slightly higher 
than that of the model without the detector. Furthermore, the FPR at 95% TPR decreased 
dramatically by 18%. 
 

We conducted further analysis of the OOD data to gain insights. When we exclusively fed 
the TB classification model with OOD data, the model's performance dropped significantly to 
77.51% from its initial accuracy of 95%. This indicates that OOD detection can effectively identify 
data that adversely affects the model's performance. 
 

However, we hypothesized that if we remove the output data for which the TB model 
lacks confidence (probabilities in the range between 40 and 60), would the model's performance 
remain the same? The results, as shown in Figure 5 and Table 4, demonstrate that the output from 
the OOD detection and the output obtained by removing the data within the 40 to 60 percentile 
range are identical. Moreover, it is important to note that the OOD detection approach removed 
69 TB images, whereas the method of removing data at the specified percentile only removed 24 
images. This implies that there is no need to feed the input data to the OOD detection method; 
instead, we can utilize the approach of removing the output data within the 40 to 60 percentile 
range to achieve the desired outcome and save on execution costs. 

 
Table  4: Comparing the number of images in each class using various methods. 

Method Label 
TB Non-TB Total 

OOD data out 20% 69 169 238 
Filtered data between 
40 and 60 percentiles 

24 215 239 
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Figure  5: Comparison of the ROC curve from further analysis of the OOD data 
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7. Conclusion and future work 
 

This study aimed to evaluate various state-of-the-art methods for out-of-distribution (OOD) 
detection in medical imaging. Our findings indicated that methods based on simple classification 
models performed better on medical imaging tasks compared to those in the confidence-based 
and generative areas. Furthermore, we observed that the use of Coarse Dropout had a significant 
impact on the OOD detection performance for both classification models and HealthyGAN. 
Additionally, we conducted a real-world scenario to demonstrate the impact of OOD data and 
validated that screening the OOD data can enhance the model's robustness, including reducing the 
false positive rate. Further research should investigate OOD detection methods across other 
datasets and tasks, with a specific focus on the effects of various corrupted classes on the 
performance and reliability of these methods for real-world deployment. 
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8. Appendix A. Details of datasets. 
 
 
 

Table  5: The percentages of corruption classes and example. 
Corruption class Percentage Example 

No corruption 40% 

 
Wrong position 4% 

 
Blur 4% 
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Gaussian Blur 4% 

 
Contrast 4% 

 
Gaussian Noise 4% 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 22 

Uniform Noise 4% 

 
Flat Value 4% 

 
Horizontal Half 4% 
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Vertical Half 4% 

 
Brightness 4% 

 
Coarse Dropout 4% 
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Different Source 4% 

 
Out-of-Distribution 1 
(Different  Domain) 

4% 

 
Out-of-Distribution 2 
(Different  Symptom) 

4% 
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