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ABSTRACT (THAI)  นานดา คูมารี : การศึกษาเปรียบเทียบวิธีเชิงปัญญาประดิษฐ์สำหรับการตรวจจับ การ

จำแนกประเภท และการระบุตำแหน่งความผิดพร่องในสายจำหน่าย. ( A comparative 
study on artificial intelligence-based methods for fault detection, 
classification, and localization in distribution lines ) อ.ที่ปรึกษาหลัก : ชาญ
ณรงค์ บาลมงคล 

  
ในช่วงหลายปีที่ผ่านมา การเรียนรู้ของเครื่องแบบมีผู้สอน (SML) ได้แสดงให้เห็นว่ามี

ประสิทธิภาพในการระบุรูปแบบในชุดข้อมูลและคาดการณ์ผลลัพธ์  งานวิจัยนี้มีวัตถุประสงค์เพ่ือ
พัฒนาอัลกอริทึมที่ใช้ การจำแนกด้วย SML และความสามารถของสมการถดถอย เพ่ือจำแนก
ประเภทและระบุตำแหน่งของความผิดพร่องที่เกิดกับสายจำหน่ายไฟฟ้าอย่างมีความแม่นยำ 
อัลกอริทึมที่นำเสนอใช้ค่าประสิทธิผลและค่าองค์ประกอบสมมาตรลำดับศูนย์ของกระแสไฟฟ้าและ
แรงดันไฟฟ้าที่วัดได้จากปลายข้างหนึ่งของสายจำหน่ายเป็นข้อมูลขาเข้าแล้วส่งประเภทของ
ความผิดพร่องเป็นข้อมูลขา การประเมินประสิทธิผลของอัลกอริทึมทำโดยการจำลองระบบไฟฟ้า 
IEEE 14 บัสในโปรแกรม MATLAB แล้วสร้างเหตุการณ์ผิดพร่องประเภทต่างๆ ที่ตำแหน่งและ
ความต้านทานผิดพร่องที่หลากหลายเพ่ือเก็บเป็นฐานข้อมูล อัลกอริทึมจะใช้ฐานข้อมูลและเทคนิค 
SML หลายประเภทได้แก่ การวิเคราะห์จำแนกเชิงเส้น (LDA) เครื่องเวกเตอร์สนับสนุน (SVM) วิธี
เพ่ือนบ้านใกล้ที่สุด (KNN) รวมทั้งวิธีการถดถอยแบบกำลังสองน้อยที่สุด (LMS) เพ่ือเปรียบเทียบ
ความสามารถในการจำแนกประเภทและตำแหน่งของการเกิดความผิดพร่อง  นอกจากนี้ยังมี
การศึกษาความอ่อนไหวต่อตัวแปรในระบบไฟฟ้า ได้แก่ ความไม่แน่นอนของหม้อแปลงเครื่องมือวัด 
การมีเครื่องกำเนิดไฟฟ้าหรือสายจำหน่ายหลุดออกจากระบบไฟฟ้า 
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KEYWORD: SML, classification, regression, comparative, study 
 Nanda Kumari : A comparative study on artificial intelligence-based 

methods for fault detection, classification, and localization in distribution 
lines . Advisor: Channarong Banmonkol 

  
In recent years, supervised machine learning (SML) has demonstrated its 

effectiveness in pattern recognition and outcome prediction within datasets. The 
objective of this research is to develop an algorithm that utilizes SML classification 
and regression equation capabilities to accurately classify and locate faults 
occurring in electricity distribution lines. The proposed algorithm takes the 
measured values of electrical current and voltage at one end of the distribution 
line as input data and outputs the type of fault. The algorithm evaluates its 
performance by simulating the IEEE 14-bus power system using MATLAB and 
generating various types of faults at different locations and with different fault 
resistances to create a comprehensive fault database. The algorithm can employ 
various types of SML techniques and approaches, including Linear Discriminant 
Analysis (LDA), Support Vector Machines (SVM), K-Nearest Neighbors (KNN), and the 
Least Mean Squares (LMS) regression method, to compare their abilities in 
classifying fault types and identifying fault locations. Additionally, the study 
investigates the system's vulnerability to variables such as uncertainty in 
transformer instrument measurements and the presence of generator or 
transmission line outages in the power system. 
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Chapter 1 Introduction  
 
1.1 Background 
 
Transmission and distribution lines around the globe are subjected to various faults 

due to the following reasons: switching surges, insulation failure, lighting, snow, 

conducting path failure, excessive growth in the right of way, falling of trees, creepers 

on the towers and poles, harsh climatic conditions, lightning surges, sudden changes 

in load parameters at the customer end leading to short circuits, under/over current, 

under voltage, unbalanced phase voltage, trespassing of animals and often surge 

leads to fire, loss of service and damages the equipment.  The frequent faults cause 

wear and tear causing insulation failure, and the life span of the line and the 

substation equipment becomes a major concern and the same applies to Bhutan.  

The distribution network in Bhutan is spread across three climatic zones. North with 

severe cold and snow during winter, central with heavy rainfall in summer and cold 

in winter. The south with extreme heat followed by thunderstorms in summer. When 

the fault occurs especially in such drastic climatic conditions, the information from 

the overcurrent relay regarding the fault doesn’t suffice to figure out the location of 

the fault thus, the responsibility of the line restoration is entirely dependent on the 

operation and maintenance team. In the process of executing line restoration, the 

safety of the line operators comes at stake. This line fault diagnosis is of major 

concern to the utility.  

Over the last two decades, studies on various fault detection studies and methods 

like phasor-based methods, traveling wave-based methods, and knowledge-based 

methods in terms of fault location have been extensively conducted and various 

researchers have made efforts to make the techniques less sophisticated for easy 

adoption.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 2 

The techniques developed have their drawbacks, mostly the cost being the main 

factor leading to difficulty in implementation in real-time and the errors and their 

complexities causing hindrance to the adoption in the field. Bhutan is a country that 

has not graduated from the list of least developed countries, thus upgrading the 

entire distribution network to a smart network in one go is not possible due to 

budget constrain followed by the unavailability proper communication network.  

The frequent faults and delayed restoration cause wear and tear to the distribution 

components, especially the distribution transformer. With minimum to no 

communication link between the numerous distribution Transformers and 

substations, scheduling predictive and preventive maintenance is out of the question 

and the fault recognition and spot becomes very tedious. The responsibility of the 

line restoration is entirely dependent on the operation and maintenance team; thus, 

the restoration process becomes tiresome and time-consuming due to changes in 

climatic conditions like extreme rainfall with thunderstorms and freezing winter 

accompanied by snowfall and harsh heat of summer and autumn. In executing line 

restoration via the trial-and-error method, accidents occur both fatally and 

nonfatally.  

 

1.2 Motivation 
 

Bhutan Power Corporation’s (BPC) vision is to provide clients with cheap, sufficient, 

dependable, and high-quality electrical services, to fulfill this vision timely fault 

restoration is of utmost priority. To ease the fault restoration time despite the cost 

constraint communicable and non-communicable fault passage indicator(FPI) has 

been installed [1] at subtle locations however the reliability has not been assured as 

the FPI performance is largely affected by climatic conditions and battery durability, 
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a good communication network. The table below shows the accident history of the 

last three years.  

 

 

Figure  1 Distribution line Accident History(2019-2021) 
 

From the table, it’s clear that both fatal and nonfatal accidents are prominent thus 

the prevention of such accidents is vital for the country with such a small working 

population thus this research is started with the perspective of minimizing the 

accidents. Thus, as an alternative method to get information on the distribution 

during the fault condition, a simple algorithm is proposed that can directly make use 

of monitoring data from the SCADA (Supervisory Control and Data Acquisition)  as the 

database and generate the required information when the fault occurs on the line. 

With the proper information regarding the faulted line, the operation and 

maintenance team can be mobilized accordingly to the faulted location to restore 

the line as soon as possible. In this regard develop/implement fault location 

techniques that can be easily applied and cost-effective to ease fault detection and 

location so that the burden on the operation and maintenance team can be reduced 

and fault restoration can be seamless during harsh climatic conditions. 
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1.3  Objective  
 
As per the smart grid master plan [2] Bhutan aims to develop a fault location, 

isolation, and service restoration (FLISR) by 2030 thus, as a step towards the master 

plan the main objective of this research is as follows: 

a. To develop effective fault detection, classification, and location algorithm 

using various supervised machine learning (SML) methods. 

b. To compare different SML methods for fault detection, classification, and 

location using IEEE 14 bus System. 

c. To carry out a parameter sensitivity study on the IEE14 bus system using SML 

techniques. 

1.4 Scope of the research 
 
The research will emphasize the areas that the company has planned as per the 

reference [3], thus with the idea of working on the distribution management master 

plan following is the scope of research.  

a. The distribution system in Bhutan is spread across the extreme climatic zone 

and 90% of accidents occur during outage restoration the reliability of the 

service provided is affected, thus the algorithm is to be developed that can 

come to the rescue of the operation & maintenance team. 

b. The proposed study to detect the occurrence of a fault, classify the fault 

types:   single line to ground, double line to ground, three-phase faults, and 

estimate the fault location. 

c. The effectiveness of various methods to be tested by modeling the real-time 

distribution system and IEEE 14 bus system and generating the database for 

study.  

d. Carry out case studies with the generated database.  
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1.5 Anticipated contribution  
 

a. The accidents that occur during right-of-way clearing, and line restoration 

during harsh climatic conditions can be greatly reduced since the operators 

will be aware of system health, fault type, and location beforehand.   

b. With the history of event record the proposed method to effectively detect, 

classify and locate the fault. 

c. Communication devices won’t be required at both ends, the information data 

from the substation relay will serve the purpose thereby implication of 

additional cost. 

d. The lineman and the operators can easily use the proposed technique 

without the need for expertise.   

e. With the information on fault location and fault type the O&M team can be 

mobilized accordingly for the outage restoration.  

f. The developed method will rescue the O&M team in a timely restoring the 

line, preventing power loss due to an outage and collective equipment life 

expectancy can be extended.  

g. The method will be the door to enhance the reliability of distribution service 

and mitigation measures to reduce accidents. 
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Chapter 2 Theoretical background and method descriptions  
 
To start the literature, it’s necessary to understand the system’s normal and faulted 

conditions. When a 50 Hz normal system functions smoothly and the system values 

remain within the constant limits the system is said to be normal. As the system 

deviates from the normal system parameters, it’s a sign of system abnormalities. 

When the system parameters reach the maximum permissible limit, the system is 

faulty, and the breaker trips to isolate the faulty section. Thus, system engineers are 

keenly interested in learning about the adverse effects of faults on the system and 

resolving the associated problems based on knowledge or research. Figure  2 shows 

the history of blackouts over the last 3 decades and the identified root causes are 

classified as natural, accidental, malicious, and cascading.  

 

 
Figure  2 History of blackouts around the world with the  root cause (1994-2019) [4] 
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2.1 Causes of faults 
 
Frequently observed causes are conducting path failure and sudden changes in load 

parameters at the customer end which causes short circuits, under/over current, and 

under/over voltage which for instance causes fire hazards when not taken. System 

abnormality can be caused due to several reasons, which are listed below. 

a. Insulation deterioration due to aging electrical components. 
b. The swinging effect of conductors is caused by a strong wind. 
c. Malfunction of joints of cables and overhead lines  
d. Failure of one or more phases of a circuit breaker or conductor  
e. Melting of the fuse caused by overcurrent.  
f. Inadequate design, and installations.  
g. Overloading and lightning surges cause insulation failure and mechanical 

failure. 
h.  Property damage by public intervention.  

 
The figure below gives the pictorial overview of the various fault causes.  
 

Weather 
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Vegetation Fire Hazard
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Figure  3 Causes of faults 
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2.2 Effects of  faults  
 
Power systems are the primary revenue generator and service provider around the 
globe thus the utility aims to minimize the effects of the faults and the following are 
frequently observed effects of the fault.  

a. System reliability at stake: Loss of power in faulty are as well as 
interconnected areas, when not taken care of leads to a blackout. 

b. Overcurrent due to fault damages costly electrical equipment. 
c. Increased costs for repair and maintenance.  
d. Risk to the safety of line operators: fatal and nonfatal.  
e. Short-circuit ignites fires at utilities. 

A descriptive illustration of the effects of fault is illustrated in given below. 
 

System 
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Risk Substation

/Home 
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AccidentsRepair & 

Maintenance 

Effects Of Faults 

 
Figure  4 Effects of faults 
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2.3 Types of faults 
 
As a three-phase power system behaves differently each time a fault occurs the 
faults can be categorized into open and short circuits which are further classified into 
symmetrical (balanced) and unsymmetrical(unbalanced)[5].To get a brief idea of how 
the system reacts and what its adverse effects let’s study the fault types in detail. As 
per the reference [6] fault types are classified in Figure 5. 
 
 

Types of Faults
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Ground (LLLG)

Triple 

Line(LLL)

Asymmetrical 
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Open Circuit Short Circut
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Double Phase 

Open fault

Three Phase 

Open Fault

  
Figure  5 Fault classification 

 

2.3.1 Series fault (open circuit fault) 
 

Open Circuit faults, also known as series faults, occur when one more conductor fails 
in a three-phase system. Series fault can be single, double, and three-phases as 
illustrated in  Figure  6, 7 & 8 where each phase of circuit is represented line with 
respective color code (RYB). 
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The faults are mainly caused by the malfunction of joints of cables and overhead 
lines followed by failure of one or more phases of a circuit breaker or conductor and 
melting of the fuse. This fault can be unsymmetrical or unbalanced except for three 
phases of open fault. 

 

R

Y

B  
Figure  6 Single-phase open fault 
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Figure  7 Double-phase open fault 
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                                    Figure  8 Three-phase open fault 

 

The distribution network of Bhutan 66/33/11 kV carters the power from the 
substation to the transformer to the customer, and the load at the customer end 
can be balanced and unbalanced. If the transformer runs with the balanced load 
before the open fault, the transformer load increases and over-voltage at the 
transmission line is triggered to an extent that will cause a short circuit. Therefore, 
single and double-phase open circuit causes damage to the conductor and electrical 
components, system abnormalities, and insulation failure. The system can withhold 
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the open circuit fault for a longer duration, as the open circuit fault does not 
generate a short circuit current, but it must be detected and rectified before it poses 
greater damage to the system. 

 
2.3.2 Shunt fault  

The shunt fault is further classified as balanced and unbalanced; details are given 
below. 

 
2.3.2.1 Symmetrical circuit fault (balanced) 

 

 When the fault magnitudes of load currents are displaced by a 120° in phase during 
the fault condition such faults are known as symmetrical or balanced circuit faults 
which are characterized by the circuit's three-phase short-circuited.  The probability 
of this fault rarely ranges from 2-5% of overall system faults. However, these faults 
hurt the power system even when the system remains in a balanced condition.  The 
fault analysis of the system is executed using the bus impedance matrix or 
Thevenin’s theorem by utilizing system data such as the breaking capacity of a circuit 
breaker, data from relays, and switch gear protective equipment. 

a. Triple line fault  (LLLF): When three-phase gets short-circuited.  
     b. Triple line to ground fault(LLLGF): When the three phases get short-circuited 
and encounter the ground. 
 

2.3.2.2 Unsymmetrical circuit fault (unbalanced) 
 
When the fault is characterized by unequal phase displacement with different fault 
magnitudes of load currents; then it’s known as an unsymmetrical or unbalanced 
circuit fault. This fault is classified by both open circuit faults (single and two-phase 
open circuit faults) and short circuit faults excluding L-L-L and L-L-L-G faults.  As per 
reference [5] SLG fault comprises 70%  of overall system faults and the adverse 
effect on the system is significant.  
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The LLG fault usually occurs when the two conductors come in contact due to the 
swinging effect caused by a strong wind or any other external factors.  
The double line to ground fault is severe as two lines encounter each other followed 
by contact with the ground. This fault accumulates to 10% of the overall system 
faults. An unsymmetrical circuit’s fault analysis is comparatively tedious compared to 
symmetrical fault analysis and methods of unsymmetrical components with system 
data like current and voltage magnitudes are utilized. The largest short circuit current 
occurs in L-G or L-L fault, and it is necessary to carry out fault analysis.  
 

2.3.2.3 Short circuit fault 
 

When the exceptionally low impedance of two different potential points gets 
connected accidentally or with the intent, it gives rise to system abnormalities known 
as short circuits or shunt faults. This fault is the most widely occurred fault that 
causes abnormally high inrush current to the electrical equipment and line igniting 
major damage, thus this fault needs to be rectified as early as possible. The main 
cause of the short circuit fault is insulation failure between the phases of the 
conductor, between the phase and earth conductor, or both.  
 
The three-phase fault clear of earth and three-phase fault are also known as 
balanced or symmetrical, phase to phase, single line to earth, two-phase to earth 
and phase to phase, and single phase to earth are unsymmetrical faults. Short circuit 
faults are mainly caused by internal or external factors. The internal factors are a 
failure of electrical equipment, and lines, insulation deterioration due to aging 
electrical components, and inadequate design, and installations. External factors like 
overloading and lightning surges cause insulation failure, mechanical failure, and 
property damage by public intervention.  
 
A short circuit fault is considered one of the most hazardous, as it often leads to 
arching and igniting fire causing an explosion of equipment like breakers and 
transformers. Further short circuits initiate abnormal currents in the system leading to 
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overheating of equipment and lowering the life span of insulation. The short circuit 
fault also disturbs operating voltages causing the voltage to rise or drop from the 
permissible limits thereby affecting the quality of service provided to customers. If a 
Short circuit persists in the system and could not be located, it causes major power 
interruptions and equipment failure.  
 

1. Single line to a ground fault (SLGF): When one phase of a conductor 
contacts the ground or neutral wire on a distribution line.  
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Figure  9 SLGF 

 
2. Line-to-line fault (LLF): When strong wind causes a  short circuit between 

two phases of the conductor.  
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B  
Figure  10 LLF 

 
3. Double line to ground fault(LLGF): When the fault is associated with the 

falling tree which connects two-phase to the ground. 
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Figure  11 LLGF 

 
4. Triple Line fault (LLLF): For example, the fault is associated with a falling 

tree connecting three phases of the conductor.  
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B  
Figure  12 LLLF 

 

5. Triple line to ground fault (LLLGF): For example, the fault is associated 
with a falling tree connecting three phases of the conductor and ground. 
 

R

Y

B

 
Figure  13 LLLGF 

           
Usually, the transmission line system has relays to give system information and 
health, and data can be easily downloaded and analyzed in the form of waveforms 
or magnitudes. Whereas in the distribution system fuse and ARCBs are used and 
there is no coordination between the ARCB and fuse thus making the system analysis 
difficult and fault detection a challenge.  
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 15 

2.4 Measurement equipment in the substation 
 

The power system faults are analyzed through the recorded power system 
parameters through various power system measurement equipment like current 
transformers (CT), potential/voltage (PT/VT) transformers, sequence analyzers, phasor 
measurement units(PMUs), and digital fault recorders. The measurement equipment 
is manufactured according to IEEE standards [7]. This equipment plays vital a role as 
the data obtained from the measurement equipment is used as a basis to evaluate 
the faults in the power system. The power system engineers thoroughly study the 
parameters and predict various stages of power system status for predictive and 
preventive maintenance. With the technology upgradation various power system 
measurements have been developed and are currently being used as per the power 
system requirement as discussed below.  
 

2.4.1 Current transformer (CT) 
 
CT is the type of transformer used to measure electrical current in a power system 
and it works on the principle of electromagnetic induction. It transforms high current 
to low current in the power system to low current that can be measured by the 
measuring device. To obtain reliable and accurate measurement is essential to select 
the correct CT with accuracy and class. The accuracy class of CT is expressed in the 
percentage of rated current and it’s defined as the maximum deviation of output 
current from actual input current under simplified conditions [7]. The classes are 
expressed as follows: 

a. Class 0.1: This is the CT with the highest accuracy with a maximum 
permissible error of 0.1% of the rated current. 

b. Class 0.2: This is the CT with accuracy with a maximum permissible error of 
0.2% at the rated current. 

c. Class 0.5: This is the CT with accuracy with a maximum permissible error of 
0.5% of the rated current. 
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d. Class 1: This is the CT with accuracy with a maximum permissible error of 1% 
of rated current. 

e. Class 3: This is the CT with accuracy with a maximum permissible error of 3% 
of rated current. 

 
The CTs used in power systems are classified as protection, bus bar, feeder, and 
metering. The protection CT is used for the relaying and protection with a rated 
current of 1A or 0.5 with an accuracy class of 5P or 10P. Metering CT is used for 
revenue and billing and the rated current of  CT ranges from 1A or 5A with accuracy 
and class of 0.2 or 0.5. Bus bar CT measures current flowing through the bus bar and 
the rated current CT ranges from 100A to 500 A with an accuracy of 0.5 or 1. Overall, 
the accuracy of CT and class are important for ensuring the reliability of the power 
system measurement obtained.  
 

2.4.2 Potential/voltage transformer (PT/VT) 
 
The potential or voltage transformer is used to measure the electrical voltage or 
monitor voltage fluctuations by transforming high voltage levels to the low & 
manageable voltage level. The primary winding is connected to the high-voltage side 
and the secondary winding is connected to the measuring instrument or relay.  The 
ratio of primary voltage to secondary voltage is called the transformation ratio and 
it’s used to calculate the voltage of the secondary side. The PT/VT accuracy is 
defined as the maximum permissible between actual secondary voltage and rated 
secondary voltage at specified load conditions The classes are expressed as follows:  

a. Class 0.1: This is the VT with the highest accuracy with a maximum 
permissible error of 0.1% of the rated secondary voltage. 

b. Class 0.2: This is the VT with accuracy with a maximum permissible error of 
0.2% of the rated secondary voltage. 

c. Class 0.5: This is the VT with accuracy with a maximum permissible error of 
0.5% of the rated secondary voltage. 
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d. Class 3: This is the VT with accuracy with a maximum permissible error of 3% 
of rated secondary voltage. 

The VTs in the power system can be low and medium and are used for metering, 
protection, and monitoring. The VT is selected as per the requirement of the utility 
considering voltage & frequency rating, accuracy class, burden rating, and insulation 
level. 
 

2.4.3 Sequence analyzer  
 
A sequence analyzer is an instrument that analyzes the signal in a power system to 
determine the sequence components of the signal. The information about the 
sequence components can be used to detect, classify, and locate the fault.   
 
       2.4.4 Sequence components 
 
In the study of faults, it’s necessary to know about the sequence components of the 
power system which often come in the form of positive negative, or zero sequences 
in a three-phase power system and it plays a major role in the process of 
understanding and creating fault detecting techniques. This sequence applies to 
current, impedance, and voltage; a balanced system gives rise to a positive 
sequence, unbalanced to negative, and grounded to zero sequence component.  
 
In a three-phase balanced system, the current and voltage are mathematically equal, 

and the phasor is displaced by a 120° in clockwise rotation of ABC. This 
phenomenon is called a positive sequence. Positive Sequence components play an 
important role in power system protection as in most of the microprocessor-based 
relays in power systems, the positive component is utilized over-current protection 
which is a vital scheme of system protection.  
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                                Figure  14 Positive Sequence Components 
 
In a three-phase balanced system, the current and voltage are mathematically equal, 

and the phasor is displaced by a 120° in counterclockwise ABC (-) rotation direction. 

This phenomenon is called the negative sequence component. Negative sequence 

components are used by relays for directional and unbalanced protection, and it is 

kept as an option for the -current protection.   

 
 

                            Figure  15 Negative Sequence Components 
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The phasor is equal in magnitude 0 degrees phase separation in the three-phase 
balanced system. This phenomenon is called zero Sequence. 

 
Figure  16 Zero sequence components 

 
Zero Sequence is used for fault detection and fault calculation and as per the zero 
sequences formula; the neutral current (the sum of Ia, Ib, and Ic) is three times that 
of the zero-sequence current (3I0). This concept is implemented for the identification 
of ground faults in grounded neutral systems by integrating three current 
transformers on three phase lines in parallel. 
 

2.4.5 Phasor measurement unit (PMU) 
 
The PMU is a device used in power systems for synchronized measurements of 
electrical phasors. Electrical phasors are mathematical representations of sinusoidal 
voltage and current used to describe AC power systems' behavior. The PMU 
measures phasor quantities of current and voltage given location, mostly for high-
voltage transmission lines. These measurements are time-stamped and sent to the 
central monitoring system, where real-time monitoring takes place. The data 
obtained from PMUs can also be utilized in machine learning process in the electrical 
fields. With technology advancement data from PMU has become an important 
aspect for the power engineers to study the behavior of the power system and lines. 
The PMUs are classified according to their functions.   
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a . Stand-alone PMU: The PMU is installed independently in the power system, 
measures voltage and current at a single location, and sends the data to the central 
monitoring system for analysis.  

b. Integrated PMU: The PMU is integrated into another device, such as a protective 
relay or digital fault recorder. The device is used to measure phasors and power 
system parameters that are used for monitoring and protection purposes.  

c. Synchronized Phasor Gateway: This is the device that is used to monitor and 
distribute data collected via multiple PMUs in a system. The device helps the 
operators improve the efficiency of the control system.  

d. Substation PMU: This type of PMU is installed in the substation to measure the 
voltage and current phasors located at the junction or interconnection point of 
transmission and distribution systems. This device is essential for controlling and 
monitoring transmission and distribution lines.  

 

2.4.6 Digital fault recorder (DFR)  
 

The digital fault recorder (DFR) is used to capture and retain data about faults, 
disturbances, and other occurrences that occur in the electricity system. DFRs are 
used in electric power systems to give engineers and managers useful information 
that will aid in locating and diagnosing power system issues. Data from voltage and 
current waveforms, fault position, system frequency, and other significant factors can 
all be recorded by DFRs. To identify the cause of the fault or disruption, assess the 
impact on the electricity system, and develop strategies to prevent similar issues in 
the future, the recorded data can be reviewed. DFRs are usually placed in the power 
system at key locations, such as high-voltage transmission lines or transmission 
substations. For research and archiving, the captured data is frequently sent to a hub. 
Modern power systems now place a greater emphasis on DFRs because of their 
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potential to increase system reliability, decrease downtime, and guard against 
machine harm. The data obtained from the DFR has become increasingly important 
to understanding the power system and thus these data/signatures are used widely 
in machine learning models. 

 
2.5 Fault detection, classification, and location techniques 

 
The main concern of the generation and distribution utilities is the power system’s 
reliability. With the rapid increase in the demand for power in all techno-driven 
industries and smart homes, research on improving power system reliability is on the 
rise.  The ongoing research is described in the sections below.  
 

2.5.1 Fault Location 
 
In Bhutan, the distribution lines are spread across the regions with low consumption 
patterns and almost no proper communication. The operators rely on the 
information displayed in the relay during faults. In most instances, the prediction 
doesn’t work, and its restoration work becomes tiresome. Though there are lots of 
the latest developments in the market, due to cost and communication constraints 
it’s difficult to implement them. The ongoing research can be broadly explained as 
per [8] along with the advantages and disadvantages. The overview of the method is 
illustrated in Figure 17. 
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Figure  17 Fault location techniques 
 

2.5.2 Impedance-based method 
 

The basic principle is illustrated in figure 4 where 𝑉𝑓 & 𝐼𝑓  corresponds to fault 
voltage and fault current. Where Vs is sending end voltage, Zs is the total line 
impedance, and m is the distance to the fault.   
 

Vs

Fault

Vf

If

m*ZlZs m*Z1l

 
Figure  18 Impedance-based method basic diagram.  

 
 
Using the ohms law, the following equation can be derived. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 23 

   𝑚 =
𝑉𝑓

𝐼𝑓 ∗ 𝑍1𝑙
                       (1) 

 
The impedance-based methods are classified as single-ended (uses measurement 
from one end) two ended methods (uses measurement from both ends). To meet 
the current requirement of the utility an algorithm using the single-end impedance 
method has been developed as indicated in [9] which uses three-phase current and 
voltage values when zero sequence impedance and positive sequence impedance 
are known.  
 
The Method proposed as in reference [10] utilizes the frequency, current, and 
voltage recorded before and during a fault (single-phase-to-ground fault) on a radial 
system a system and fault location technique involves six steps.  

a. Apparent Faulted Section: is implemented using fault type, current, and 
phasor sequence parameters.  

b. Equivalent Radial System: here the apparent fault location is disregarded and 
loads of adjacent node is considered. 

c. Load Modeling: here properties of the load are reflected by current 
compensation and constants and voltage are used to calculate load 
admittance and sequence current.  

d. Voltages and Currents at the Fault and Remote end are utilized. IV. Estimating 
of fault location: via resistive nature of fault impedance and voltage-current 
properties at the fault. 

e. Converting Multiple Estimates to Single Estimate: the estimates from the fault 
locator arrive at a single point using the software.  

 
The setback of the method was the size of the fault locator and the software 
interface. The method as per reference [11] uses the current and voltage data from 
the fault locator and uses a separate algorithm for single phase and 3 phase 
computation using the impedance-based method to compute the fault location. 
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However, the accuracy of the algorithm depends on the accuracy of pre-fault 
condition determination from the substation.  
 
The reference [12] ventures into the concept of fault location in short transmission 
line loads including the tapped lines indicated by lumped parameters impedance 
and positioning them after the fault. This method of compensating the tapped load 
is accurate as tapped load impedance is larger than the feeder impedance based on 
pre-fault and fault voltage measured from the substation. The negative sequence 
component is used for unbalanced faults and to reduce the source impedance error 
between pre-fault and fault conditions. This method was found accurate when the 
tapped loaded was minimum, however, as the tapped load increased the accuracy 
was reduced. However, impedance-based methods are widely used because of their 
simplicity and this method can be used with information available from a single end. 
 
To access the feasibility of the impedance-based method as per the reference [9] 
meet an algorithm using the single-end method has been developed as indicated 
which uses three-phase current and voltage values when positive sequence 
impedance is known.  
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Figure  19 Logical & impedance-based flowchart. 

 

The logical expression is formulated for the detection and classification using the 
fault voltage and location using the impedance-based method as indicated in [9] as 
equations are given in Table  1 Where Va, Vb, and Vc are three-phase voltage Ia, Ib, Ic 
is a three-phase current.  
 

          k    is                  
(𝑍𝑜 𝐿−𝑍1 𝐿)

3𝑍1 
          (9) 

          ZIL positive sequence line impedance  
          Z0L is zero sequence impedance  
          m is faut location in km  
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Table  1 Fault location equations as per  [9] 

Fault type 
Positive sequence 

impedance (mZ1L =) 

AG Va / (Ia + kIR )                    

BG Vb / (Ib + kIR )                   

CG Vc / (Ic + kIR)                     

AB or  ABG Vab / Iab                              

BC or BCG Vbc / Ibc                              

CA or CAG Vca / Ica                              

ABC 
any of the aforementioned: 
Vab / Iab, Vbc / Ibc, Vca / Ica              

 

As per the table the system Va, Vb, Vc , Ia , Ib & Ic can be measured at substation via 

the measurement equipment like current and voltage relay and the algorithm for this 

method uses the formulas as given in Table 1.   

 
           

 
2.5.3 Traveling wave-based method 

 
Traveling based method uses high-frequency waves that get initiated during the fault 
condition. Usually, current reflections’ arrival time is used to calculate the fault 
location as the polarity of the waves doesn’t change as it reflects in the same 
direction. By measuring one end equation 2 is used to calculate the fault location. 
 

𝑚 =
𝐶% ∗ 𝑐 ∗ 𝑡

2
                       (2) 
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Where C% is the relative speed of light factor.  
           c is the speed of light  
           t is the time between reflected waves  
           m is % distance to fault in km  
Further, Figure  20 gives a simple illustration of the traveling wave which consist of 2 

node A & B as measuring point.  L is the total line length & 𝑓𝑑  is the line length from 

one end. The 𝑡2 & 𝑡1 are the time taken for the waves to travel to faulted points 
and return.  
 

 
Figure  20 Traveling wave-based method basic diagram [8] 

 
 
Thus, equation 2 can be further written as per [8] 
 

𝑓𝑑 =
𝑣(𝑡2 − 𝑡1)

2
                       (3) 

 

Where 𝑣 is the velocity of propagation and the time taken to travel and return is 
known as the inception angle. The reference [8] explains different traveling wave 
methods implemented over the years. This method needs high sampling devices and 
thus there is a cost constrain implementation of this method in a complex system 
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the error increases due to the requirement of synchronized observations devices like 
GPS (Global positioning system) and PMU(Phasor measurement unit) 
 
 

2.5.4 Artificial intelligence-based method 
 
Artificial intelligence refers to a computer system's capacity to replicate human 
cognitive abilities like problem-solving and learning. The AI computer system may 
construct reasoning that can be used to learn from the received information and 
make conclusions using logic, mathematics, and pattern recognition.   
 

2.5.4.1 Machine learning 
 

Machine learning is an application of AI. Machine learning is the practice of applying 
data-driven mathematical models to assist a computer in learning without being 
explicitly instructed. As a result, a computer system may keep picking up new skills 
and become better on its own as per [13]. Figure 21 shows an overview of machine 
learning techniques. 
 

Machine Learning 
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Figure  21 Classification of machine learning 
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2.5.4.2 Supervised machine learning (SML) 
 

Supervised learning requires correctly labeled input and output sample data as an 
example to train a network or model. Supervised learning is of two types: 
classification & regression as in Figure 21. The classification classifies the input into a 
predetermined output, such as genuine or spam mail. The regression method is the 
most common machine language used across various fields and it predicts 
continuous responses, for example, the relationship between the effect of sales after 
advertisement or reckless driving and road accidents.  The reference [14] uses 
supervised learning for the classification of various fault causes like faults caused by 
birds, and animals using the disturbance recorder files which are in the form of 
waveforms of various fault cases. The method was found effective, and classifications 
were accurate, and Table 2 shows the overview of the ML techniques.  
 

Table  2 Machine learning techniques supervised and unsupervised. 

             Supervised Unsupervised 

Classification          Regression   

Support Vector Machine 
(SVM) 

Linear regression (LR) K-means, K-median 

Linear  discriminant  
analysis (LDA) 

Ensemble methods 
(EM) 

Fuzzy, C-means 

Naïve Bayes (NB) Decision trees (DT) Hierarchical 

Nearest neighbor (KNN) Least squares (LS) Gaussian mixture 

Neural Networks (NN) Neural networks (NN) Neural networks 
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2.5.4.3 Linear discriminant analysis (LDA) 
 

A statistical technique called discriminant analysis is used to categorize items into 
predetermined categories (classes) based on several predictor factors. It is applied to 
categorize fresh observations based on their combination of predictor values and to 
identify the set of variables that best distinguishes across classes. Building a 
discriminant function that properly distinguishes the various classes and can be used 
to foretell the class membership of fresh data is the aim of discriminant analysis [13]. 

 
𝐷(𝑋) = 𝑊𝑋 + 𝑊0          (4) 

 
Where  "W" denotes the vector of coefficients,  
           "X" is the vector of predictor values for a particular observation, and  
           "W0" denotes the intercept term.  
By calculating the value of the function for each observation and allocating it to the 
class with the biggest value, the discriminant function distinguishes the classes. Using 
techniques like maximum likelihood estimation, the coefficients and the intercept 
term are inferred from the training data. Depending on the type of discriminant 
analysis performed, the specific shape of the discriminant function may change (e.g., 
linear, quadratic, Mahala Nobis). 
 
 

2.5.4.4 Neural network (NN) 
 

Inspired by the working of the human brain, a neural network consists of  several 
nodes known as artificial neurons organized in layers    and the neural network can 
be represented as [13] 
 

y = f(z)              (5) 
 

where "y"  represents the neuron's output. 
"z" represents the inputs' weighted sum. 
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"f" represents the activation function.  
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Figure  22 Neural network 

 
With time there is a gradual shift of focus to AI-based techniques with an improved 
platform to perform data analysis research. AI-based methods are on the rise and all 
the above methods and techniques are used for data analysis across various fields. 
The research will focus on supervised learning and will widely explore classification 
and regression methods. In fault analysis, artificial neural networks are in use owing 
to their accuracy and their ability to understand the system behavior through existing 
data. It analyses the inputs and assigns them to predetermined outputs as indicated 
[4]. A neural network consists of an input layer, a hidden layer, and an output layer. 
It analyses the inputs and assigns them to predetermined outputs per reference [8].  
 

2.5.4.5 Decision tree (DT) 
A decision tree is a model that takes the form of a tree, with internal nodes 

representing decisions based on specific attributes, branches representing the 

resulting outcomes of these decisions, and leaf nodes representing either class labels 

or numerical values used for prediction.  The decision tree algorithm recursively 

partitions data into subsets based on input features, selecting the feature that 
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provides the most information gain at each internal node. Decision trees are popular 

and interpretable due to their ease of understanding and ability to handle both 

categorical and numerical data. However, they can suffer from overfitting and may 

not perform well with interactions between features, which can be mitigated by 

pruning, ensemble methods, or boosting algorithms. 

 
                                              Figure  23 Decision Tree 
 

 

2.5.4.6 K-nearest neighbors (KNN) 
 

K-Nearest Neighbors (KNN) is a simple and intuitive algorithm used in supervised 

machine learning for classification and regression tasks. It finds the k-closest training 

samples (neighbors) in feature space to a new input data point and predicts the class 

label or value based on the majority vote or average of the k-nearest neighbors. 

Distance between data points is typically calculated using the Euclidean distance or 

other distance metrics. KNN is versatile and easy to implement but may not perform 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 33 

well on high-dimensional or sparse data and requires a careful selection of 

hyperparameters to avoid overfitting or underfitting. 

 

2.5.4.7 Support vector machines (SVM) 
 

Support Vector Machines (SVM) is a powerful algorithm used in supervised machine 

learning for classification and regression tasks. It aims to find the hyperplane that 

best separates data into different classes. SVM can handle both binary and multi-

class classification problems and regression tasks by finding the hyperplane that best 

fits the data while minimizing error. SVM is advantageous due to its ability to handle 

high-dimensional data, flexibility in handling both linear and non-linear decision 

boundaries, and robustness to outliers. However, SVM can be sensitive to the choice 

of kernel function and hyperparameters and may be computationally expensive for 

large datasets. Optimal performance can be achieved through careful selection of 

hyperparameters and kernel functions. 

 

 
Figure  24 Support vector machine 
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2.5.4.8 Least square method (LSM) 
 

The LS is a mathematical approach used to fit the line/curve to set data points. It 
works by minimizing the sum of the squared difference between the observed data 
points and the corresponding predicted values generated by the model. The 
equation for the LS can be expressed as  
 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ . . +𝛽𝑝𝑥𝑝 + 𝜀   (6) 
where: 
 y is response variable meaning the variable that will be predicted 

𝑥1, 𝑥2 … 𝑥𝑝,is the  predictor variables i.e. variables used to predict the response.  

β0, β1, β2, …, βp are parameters that need to be estimated/predicted 

ε is the random error term i.e difference between the predicted and observed 
values.  

The goal of the model is to find β0, β1, β2, …, βp that minimize the sum of of 
squared errors (SSE) between predicted and observed values.  
 

SSE = Σ(yi - ŷi)²                          (7) 
 
 
Were, 
yi is the observed value of the response variable for the ith data point. 

ŷi is the predicted value of the response variable for the ith data point. 
 

To find values of β0, β1, β2, …, βp that minimize the SSE, least squared method is 
used, and it takes the partial derivatives of SSE concerning each coefficient, setting 

them equal to zero and resulting values of β0, β1, β2, …, βp provide best- fit for 
the line and curve for the given data set. 
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2.5.4.9 Linear regression method (LRM) 
 
Linear regression is a statistical technique that is utilized to investigate the 
connection between a dependent variable, also known as an outcome or response 
variable, and one or more independent variables, also known as predictor or 
explanatory variables. The main objective of linear regression is to determine the 
best-fitting straight line, or hyperplane in the case of multiple independent variables, 
that describes the relationship between the variables. In a simple linear regression, 
there is only one dependent variable and one independent variable, and their 
relationship is illustrated by the equation of a straight line given as: 
 

𝑌 = 𝑏0 + 𝑏1 ∗ 𝑋         (8) 
 

Here, 𝑌 represents the dependent variable, 𝑋 represents the independent variable, 
𝑏0 denotes the intercept, and subscript represents the slope of the line. The goal of 
linear regression is to calculate the values of b0 and b1 that minimize the difference 
between the observed Y values and the predicted Y values based on the equation 
mentioned above. 
 

 
2.5.5.0 Unsupervised machine learning (UML) 
 

Whereas unsupervised learning doesn’t need the example. The system uses the data 
in the cluster and groups them with shared characteristics known as clustering and 
it’s widely used in gene sequencing, market research, and object orientation 
recognition like digital image processing.  The machine learning techniques discussed 
here can be further divided into various categories and used in various research 
fields.  
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2.5.5.1 Related work 
 
Some of the existing methods in power system are discussed here: The fault 
classification Distribution Management System-based fault location as per [15] The 
reference demonstrates how the DMS and network information can be integrated to 
form a distribution automation system using the existing microprocessor-based relay 
without much cost implication. The fault detectors are vital for the process, and they 
need to be correctly placed so that correct information can be retrieved despite 
adverse weather conditions or geographical implications. The fault location principle 
uses the difference between calculated current data and the one obtained from 
relays and fault detectors and analyzes the data via algorithm and processes through 
fuzzy logic to find the faults of the section with an approximate distance. The DMS 
user interface provides incorporation of GPS coordinates so that the real-time 
overview of the lines can be monitored along with a geographic view of the network 
and fault data and restoration options. The DMS is commercialized and is widely 
used around the world. However, the fault detection technique is limited to only 
short circuits. 
 
The reference [7] uses an improved cuckoo search algorithm to find the fault, use 
current data from the field terminal unit(FTU), and perform a generic switching 
function. In this case, the algorithm’s accuracy depends on the accuracy of data 
obtained from the FTU.  The methods described have their setbacks and fault 
locators and fault passage indicators have cost and communications constraints, 
followed by separate algorithms for detection, classification, and location so this 
paper aims to develop a user-friendly single algorithm that detects, classifies, and 
locates the fault. 
 
The fault classification Distribution Management System-based fault location as per 
[15] reference demonstrates how the DMS and network information can be 
integrated to form a distribution automation system using the existing 
microprocessor-based relay without much cost implication. The fault detectors are 
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vital for the process, and they need to be correctly placed so that correct 
information can be retrieved despite adverse weather conditions or geographical 
implications. The fault location principle uses the difference between calculated 
current data and the one obtained from relays and fault detectors and analyzes the 
data via algorithm and processes through fuzzy logic to find the faults of the section 
with an approximate distance. The DMS user interface provides incorporation of GPS 
coordinates so that the real-time overview of the lines can be monitored along with 
a geographic view of the network and fault data and restoration options. The DMS is 
commercialized and is widely used around the world. However, the fault detection 
technique is limited to only short circuits. The research will focus on supervised 
learning and will widely explore classification and regression methods. In fault 
analysis, artificial neural networks are used due to their accuracy and their ability to 
understand the system behavior through existing data. 
 

2.5.5.2 Hybrid method 
 
The combination of AI methods with the conventional method is known as the 
hybrid method. The main aim of this method is to combine the advantages of AI-
based techniques and conventional techniques and get better accuracy in the 
algorithm. The hybrid method classification is illustrated in Figure 24. 
 

Hybrid Method 

AI+ Wavelet Transform
AI+ Conventional 

Methods
 

Figure  25 Hybrid method 
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The reference [16] uses multilevel wavelet transform, principal component analysis, 
support vector machines, and adaptive structural neural networks to simultaneously 
determine fault kind and location. In addition to introducing the methodology of the 
analytical approaches, a pattern-recognition approach using neural networks, and a 
collaborative decision-making mechanism, this study lays forth the core idea of the 
proposed framework. The tasks of problem detection, classification, and localization 
are completed in 1.28 cycles using a well-trained framework, which is far quicker 
than the necessary fault clearance time.  As indicated in reference [8] though the 
algorithm's accuracy is highly anticipated, the requirement of filters, high sampling 
devices, complex nature, and cost constraints make it difficult to implement in the 
field. 

 

2.5.5.3 Decimated wavelet decomposition (DWD) 
 
   In reference [17] wavelet theory and its application are discussed, and it is primarily 
used in AI and hybrid methods. The study's focus is on DWD, which involves a 
maximum of log2 N steps for a signal s with a duration of N. The first step involves 
generating two sets of coefficients, namely, approximation coefficients cA1 and detail 
coefficients cD1, from the signal s. This is achieved by combining s with the low-pass 
filter LoD and the high-pass filter HiD and then conducting dyadic decimation to 
obtain the approximation and detail coefficients (downsampling). 
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Figure  26 Wavelet decomposition  

 
The length of each filter is 2n, where n is a positive integer. If the length of the signal 
s is N, then the lengths of coefficients cA1 and cD1 are Floor(N-1)/2)+n, and the 
lengths of signals F and G are N+2n-1. In the next step, the same approach is used to 
divide the approximation coefficients cA1 into two halves, generating cA2 and cD2 
after replacing s with cA1. 
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Figure  27 One-Dimensional wavelet decomposition 
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The signal wavelet decomposition, as determined by the level j analysis, is 
composed of the following elements: [cAj, cDj..., cD1]. For j = 3, this structure holds 
the terminal nodes of the following tree: 
 

S

CA1 CD1

CD2CA2

CD3CA3  
Figure  28 Structure of  Decomposition tree 

 
Wavelets are widely used to understand waveforms through the decomposition 
pross using the high pass and low pass filters and analyzing the small basic details of 
the features obtained and these features are then used to train the network or the 
model.  
 
2.6 Research gap/problem statement 
 
After detailed research, the following problem statement was identified. 

a. Need for research on advanced fault localization techniques that leverage 
supervised machine learning approaches to improve the accuracy and 
efficiency of fault location estimation in distribution lines. 

b. Research is needed to assess the trade-offs between accuracy, computational 
requirements, and implementation costs for each approach. 

c. There is limited research that directly compares two or more SML 
approaches. 
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2.7 Anticipated contribution  
 

a. The accidents that occur during right-of-way clearing, and line restoration 

during harsh climatic conditions can be greatly reduced since the operators 

will be aware of system health, fault type, and location beforehand.   

b. With the use of existing devices and data the proposed method to effectively 

detect, classify and locate the fault. 

c. Communication devices won’t be required at both ends, the information data 

from the substation relay will serve the purpose thereby implication of 

additional cost. 

d. The lineman and the operators can easily use the proposed technique 

without the need for expertise.   

e. With the information on fault location and fault type the O&M team can be 

mobilized accordingly for the outage restoration.  

f. The developed method will rescue the O&M team in a timely restoring the 

line, preventing power loss due to an outage and collective equipment life 

expectancy can be extended.  

g. The method will be the door to enhance the reliability of distribution service 

and mitigation measures to reduce accidents. 
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Chapter 3 The overview of the framework  
 

3.1 The proposed technique 
 
AI techniques are broadly researched due to their ability to understand the system's 
behavior through the data sets and research exploring conventional & AI   methods. 
The conventional method becomes outdated as technology advances and new 
technology is required to meet the need of communication technology. As our 
country has visioned in the reference  [2, 3], this research work explored the 
possibilities to use SML mitigate current condition of the distribution line in the 
country using  the proposed technique SML based fault detection, classification & 
location. With improved communication technologies followed by readily available 
sensors the AI based technology are growing in all the fields, and these methods 
have proven its ability in distribution fields as per reference [4]. Thus, this study 
utilizes various SML technologies to carry out the comparative study.  
 
3.2 The research methodology  
 

The research methodology used in this study is of utmost importance as it provides 

the framework for planning, executing, and analyzing the research process. It 

encompasses various components such as the test system, database, algorithm or 

trained network, and the obtained results. These components work together to 

ensure a systematic and reliable approach to the research. 

The test system is a crucial element of the methodology, as it defines the 

experimental setup or environment in which the research is conducted. It includes 

the necessary tools & instruments that are used to collect data or perform 

experiments. 
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The database forms an integral part of the research methodology as it provides the 

primary source of data for analysis and evaluation. It contains the relevant 

information and records that are used to train the algorithm or network and to 

validate the obtained results. The database may consist of structured data, 

unstructured data, or a combination of both, depending on the nature of the 

research. 

The algorithm or trained network represents the core component of the research 

methodology. It encompasses the mathematical models, statistical techniques, or 

machine learning approaches that are employed to analyze the data and make 

predictions or classifications. The algorithm or trained network is designed and 

optimized based on the research objectives and the characteristics of the dataset. 

Finally, the results obtained through the research methodology provide valuable 

insights, conclusions, or predictions related to the research problem or question. 

These results are derived by applying the algorithm or trained network to the 

available data and analyzing the output. The results are typically evaluated and 

interpreted to draw meaningful conclusions and make informed decisions. 

Figure 29 provides an overview of the proposed system, illustrating how the different 

components of the research methodology interact and contribute to the overall 

research process. It serves as a visual representation of the methodology, highlighting 

the flow and connection between the various stages involved in conducting the 

research. 
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Figure  29 The methodology  

 

3.3 The test system 
 
IEEE 14 bus system is widely used as the benchmark to evaluate the performance of 

different power system analysis techniques, algorithms, and optimization methods. 

Researchers and engineers often use it as a test system to propose new 

methodologies for power system analysis. Thus this study also utilizes 14 bus system 

as per reference [19] is to generate the database for checking the efficiency of 

algorithm.  

The IEEE 14 bus system consists of 14 buses with bus configuration and slack bus 

(reference) , PV and PQ bus. It is connected to 5 generators located at bus 2,3,5,6 & 

8. and 11 loads. The system has 20 transmission lines that connect the buses. The 

availability of the data and its simplicity makes IEEE 14 bus a good choice for the 

proposed study. 

The 14-bus system simulated in MATLAB  to create the database. The standard IEEE 

14 bus system is simulated in MATLAB/Simulink, with the transmission line 

parameters converted from per unit to actual values. However, the data sheet 
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assumes zero half charging susceptance, resulting in unrealistic line lengths and 

capacitance. To address this, a small factor of (0.00005pu) is introduced as line 

charging susceptance between line 8 and line 20 to reflect real-world power system 

networks. This allows for more accurate representation of line length and 

capacitance. The modeled system uses the system data as per [20] , which further 

utilizes the parameters as per the reference [19]. The snapshot of the modeled 

system is given in Figure 31.  
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                            Figure  30 IEEE 14 bus system 
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                         Figure  31 Snapshot of the IEEE 14 modeled in MATLAB 
 
3.4 Fault occurrence & database generation  
 

Various faults are applied at different fault resistance ranging from 0.01 to 200 Ω  

and a database is generated by applying faults at lines L12, L15, and L56 to create 

the database. The fault resistance ranging from 0.01 to 200 ohms was applied at line 

and RMS  values of three-phase voltage and current (Ir, Iy, Ib, Vr, Vy, Vb) & zero 

sequence current, and voltage (I0, V0) collected from bus 1. 

Table 3 shows different fault conditions simulated, and binary bits are assigned to 

classify between various fault types as given in Table 3, where ABC is the 

representation of three phases and D is representation of ground phase. When there 

is no fault and phase current, and voltage doesn’t fluctuate then the binary bit [0 0 

0 0 ] indicating that there is no fault in all the phase and if there is fault in A phase 

bit assigned is [1 0 0 0]. 
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Table  3 Sample of Fault type binary assignment 
          

A B C D Fault Type 

0 0 0 0 Normal 
1 0 0 1 AG 
0 1 0 1 BG 
0 0 1 1 CG 
1 1 0 1 ABG 
1 0 1 1 ACG 
0 1 1 1 BCG 
1 1 1 1 ABCG 
1 1 1 0 ABC 
1 1 0 0 AB 
1 0 1 0 AC 
0 1 1 0 BC 

     
 

To generate the data various shunt faults which are the most frequent in lines 
applied at L12, L15, L23,  and L56 as indicated in Figure 30. The shunt faults are 
classified as  a. Single line to ground (SLG): When a single-phase encounters ground 
and the remaining two phases remain intact. b. Double line to bottom (LLG): When 
two phases encounter ground and a single phase remains intact. c. The triple line to 
ground fault  (LLLG): When all the three-phase encounter ground. d. Double line (LL): 
When two phases come in contact with each other. e. The triple line (LLL): When the 
three-phase comes in contact with each other.  
     All the above-mentioned faults are applied with fault resistance ranging from 0.01 
to 200 ohms. and the RMS values of three phases and zero sequence current & 
voltage (Ir, Iy, Ib, Vr, Vy, Vb, I0, V0) are stored. Then the data is labeled as per the 
actual fault class & classification. A total of 5200 data was collected through multiple 
simulations. 
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Table  4 Data distribution 

  The training set  
70% of 5200 

Validation set.   
15% of 5200 

Testing set     
15% of 5200 

3640 780 780 

 

 

3.5 Algorithm  
 
The research data underwent analysis and was transformed into a predictive model 
using the Levenberg-Marquardt algorithm, also known as the damped least-squares 
(DLS) approach, as referenced in [18]. This algorithm is commonly used to address 
non-linear least squares problems, particularly when fitting least squares curves. The 
LMA incorporates techniques from both the Gauss-Newton algorithm and gradient 
descent, making it more robust than GNA and able to find a solution even when 
starting far from the minimum. 
 
However, it may run slower than GNA for well-behaved functions and appropriate 
initial values. Additionally, the trust region technique to Gauss-Newton can also be 
applied to LMA. Donald Marquardt and independent researchers Girard, Wynne, and 
Morrison discovered the algorithm in 1963, as mentioned in[18]. The algorithm 
process flow can be understood via illustration in Figure 32 that provides a visual 
representation of the algorithm's process flow, and this method is deduced to 
resolve the drawbacks of the impedance-based methods. 
 
The algorithm uses three phase RMS current & voltage , zero sequence current and 
voltage from the stored database as the input. The algorithm then distributes the 
database into training, testing and validation as indicated in Table 4. Next various 
SML methods like LDA, KNN, DT, NN and SVM are used for detection and 
classification. The methods like LSM, DT and LR are used for location as indicated in 
Figure 33. Once the network is trained an additional 15% new sets of data are 
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simulated to check the efficiency of the trained network. Once the process is 
completed, the algorithm generates the results followed by the confusion matrix.  
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Figure  32 Supervised Machine Learning based flow chart. 
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Input

RMS:Vr,Vy,Vb,Ir,Iy,Ib

Zero Sequence:I0,V0

Historical Data

Current & Voltage magnitudes: 

Excel File 

Data Division

Training 70%, 

Testing 15% , 

Validation 15%

Additional test 15% 

SML Methods 

Detection: LDA, 

KNN,DT,SVM

Classification: NN

Location: 

LSM,DT,LR

Results:

Detection: Normal or faulty 

Classification: AG,AB,ABC,ABCG

Location: Predicted fault in km  

Figure  33 AI-based algorithm process flow 
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Chapter 5 Simulation and results  
 
The developed algorithm’s efficiency and accuracy is assessed using IEEE 14 bus 
system under various case studies. The simulations and results of  detection, 
classification and location are analyzed, and various case studies are considered.   
 
5.1 Case studies with training set without errors & outages  
 
Developed supervised machine learning(SML) based fault detection and classification 
algorithm and carried out case studies considering current & voltage transformer 
(CT&VT) errors, generator, and line outages. The algorithm employed various SML 
techniques such as linear discriminant analysis (LDA), support vector machine (SVM), 
K-nearest neighbor (KNN), neural network (NN), and decision tree (DT) using single-
ended measurement. The RMS values of three-phase voltage & current, as well as 
zero sequence voltage & current stored during normal & faulty conditions, are used 
as input and labeled class & fault classifications as outputs. The algorithm is tested 
using an additional test data set of different cases and accuracy compared with the 
SML techniques.  To assess the algorithm case studies without error , with CT , VT 
errors , generator outage and line under maintenance is considered. Detailed case 
studies are given below.  
 

5.1.1 Fault detection without measurement errors  
 
Using the 5000 data sets the training & testing was executed as per Table 5. Three 
models were able to detect and identify the faulty  efficiently as in Table 6 and only 
KNN performance was 91.7%. The detection results using LDA indicated as in 
confusion matrix in  Figure 34 .  The confusion matrix is a table used to evaluate the 
results of the classification model and the matrix gives the visual representation of 
the relationship between actual and predicted data.  
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Figure  34 Detection using LDA  result in positive predictive values (PPV) & false 

discovery rate (FDR) 
 
The positive predictive values (PPV) & false discovery rate (FDR) are the performance 
metric that provide the insights into accuracy and reliability of positive prediction 
made by the model.  
  

Table  5 Detection accuracy comparison using different models 

Sl. No Machine Learning Models Accuracy % 

1 KNN 91.70% 

2 SVM 100% 

3 Decision Tree 100% 

4 Linear Discriminant  100% 
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5.1.2 Fault classification without measurement errors  
 

The regression neural network models are used to classify based on the assigned 
label and 100% accuracy is achieved as indicated by confusion matrix in Figure 35.  

 

 
Figure  35 Classification confusion matrix NN  

 
The neural network confusion matrix provides valuable information regarding the 
correlation between the actual class labels and the predicted class labels in a 
classification task. In a confusion matrix, the rows represent the actual class labels of 
the data, while the columns represent the predicted class labels generated by the 
neural network model. Each cell in the matrix represents the number of data 
instances that belong to a specific class according to the actual labels and are 
predicted correctly or incorrectly by the model. By examining the confusion matrix, 
we can gain insights into how well the neural network model is performing for each 
class. The diagonal cells of the matrix represent the correctly predicted instances, 
indicating a strong correlation between the actual and predicted class labels. 
Conversely, the off-diagonal cells represent instances that are misclassified by the 
model, highlighting a discrepancy between the actual and predicted class labels. 
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The confusion matrix helps us understand the types of errors made by the neural 

network. For example, it reveals if certain classes are consistently misclassified or 

confused with one another. By analyzing the patterns in the matrix, we can identify 

areas where the model may need improvement, such as providing more training data 

for specific classes or adjusting the model's parameters. 

The neural network confusion matrix is a useful tool for evaluating the performance 

of the model in classification tasks. It provides a clear representation of the 

relationship between the actual and predicted class labels, allowing us to assess the 

model's accuracy and identify areas for further optimization. 

 

Figure  36 Regression plot using neural network.  
 

Figure 36 depicts the relationship between actual and predicted values and the plot 
helps in visually understanding the correlation between the actual and predicted 
values. The regression R=1 indicates 100% accuracy as the model could identify all 
12 different fault types accurately in all the different fault conditions. The 
classification pattern recognition tool was also used to classify the labeled data set, 
but the regression neural network outperformed the classification NN. 
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5.1.3 Fault location without measurement errors  
 

The fault data collected at different fault locations are used and the algorithm 
predicts the output. The testing data consists of faults applied at the step of 4 km at 
fault resistance ranging from 0.01 to 150 ohms and the total line length is 44.47km. 
The plot is generated by an algorithm as indicated in Figure 37 that compares the 
overall accuracy using the three methods. The accuracy of least squares is 79.85%, 
followed by linear regression at  85.40% and the decision tree at 97.26%. 
 

 
Figure  37 Overall accuracy for all fault locations 

 

The algorithm first trains the network using the initial training, validation, and testing 
data. The accuracy detection was 100% where the algorithm precisely distinguishes 
between normal and faulty classes among 780 total testing observations. Similarly, 
the classification accuracy of 100% where the algorithm accurately classified all the 
fault types when error-free test data was used.  
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Initially, the network was  trained using fault-free simulated datasets. These datasets 
were carefully designed to represent normal operating conditions without any faults 
or anomalies. The purpose of training the network with these fault-free datasets was 
to teach it the patterns and characteristics of normal data, enabling it to establish a 
baseline for comparison. 
 
After the training phase, the performance of the algorithm was evaluated using a new 
dataset. This new dataset consisted of various cases or scenarios, each representing 
different fault conditions or anomalies. These cases were specifically designed to 
challenge the network and assess its ability to accurately detect and classify faults. 
 
By testing the algorithm on this new dataset, aimed to evaluate its performance and 
measure its effectiveness in identifying and categorizing faults. The different cases 
within the dataset allowed for a comprehensive assessment of the algorithm's 
robustness and adaptability across a range of fault scenarios. 
 

5.1.4 Detection & classification with 3% CT error  
        
 In this case, the additional test set with the current measurement with a 3% CT 
error is used as a test set. The test set is utilized to test with the already trained 
network. Table 1&2  shows detection and classification accuracy using different 
models SML models with a 3% error in CT measurement. The model performed 
poorly in the case of detection. The SVM & NN performed well with 91.66% 
accuracy, but DT outperformed even in this case with 100% accuracy for 
classification.  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 57 

715

65

Faulty

Normal

Faulty Normal

T
ru

e 
C

la
ss

Model (Fine tree)

Predicted Class  

         Figure  38 Detection  test confusion matrix using DT 

 
Figure  39 Classification test confusion matrix using SVM 

 
5.1.5 Detection & classification with 3% VT error  

 
In this case, the additional test set with VT measurement with a 3% error is used. 
While testing it was found that most of the SML models performed poorly but DT 
outperformed all with 100% accuracy in detection and LDA with 67% accuracy in 
classification indicated in Table 7. This shows that accuracy decreases with 
measurement errors in most cases. 
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5.1.6 Detection & classification with 3% error in CT & VT 
 

An additional test dataset was used, which introduced a 3% error in both the Current 
Transformer (CT) and Voltage Transformer (VT) measurements. This dataset was 
designed to simulate a scenario where measurement errors are present, challenging 
the performance of the models. Upon evaluating the performance of various models 
on this additional test dataset, it was observed that all the models performed 
poorly. Despite the presence of measurement errors, the Linear Discriminant Analysis 
(LDA) model achieved a classification accuracy of 67%, as indicated in Tables 6 & 7.  
 
The observed performance differences among the models can be attributed to their 
unique capabilities and the features available in the dataset. Each machine learning 
model has its own strengths and weaknesses, and their accuracy is influenced by the 
characteristics of the dataset and the specific problem being addressed. 
 
It is important to note that the introduction of measurement errors can significantly 
impact the performance of the models. The 3% error in both CT and VT 
measurements likely affected the models' ability to accurately detect and classify 
faults. The complexity introduced by the measurement errors requires the models to 
adapt and account for these uncertainties, which can be challenging. 
 
The variation in accuracy among the models suggests that some models may be 
more robust or better suited to handle measurement errors compared to others. The 
LDA model, despite the presence of errors, achieved a relatively higher classification 
accuracy of 67%. This implies that the LDA model's inherent capabilities and its 
ability to leverage the available features in the dataset allowed it to perform 
relatively better under the given conditions. 
 
In summary, the utilization of an additional test dataset with a 3% error in CT and VT 
measurements revealed poor performance across all models, indicating the 
challenges posed by measurement errors. The varying accuracy among the models 
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highlights the importance of selecting models that are well-suited for the problem at 
hand and considering their capabilities and the features present in the dataset. The 
accuracy achieved depends on the models' ability to handle measurement errors 
and leverage the available information accurately. 
 
                           Table  6 Detection accuracy for different cases 

            

Sl. No 
Machine 
Learning 
Models 

Error-
free 

3% 
3% CT 
error  

3%  
CT& VT 
error 

VT 
error 

%Acc %Acc %Acc %Acc 

1 KNN 100% 91.78% 8.22% 91.78% 

2 LDA 100% 91.78% 8.22% 8.20% 

3 NN 100% 8.30% 8.22% 8.20% 

4 SVM 100% 8.30% 8.22% 8.20% 

5 DT 100% 100% 8.22% 8.20% 

 
     

 
Table 6 presents the detection accuracy of various machine learning models under 
different scenarios. The scenarios considered in the table include error-free 
conditions, a 3% CT error, a 3% CT and VT (Voltage Transformer) error, and a VT 
error. The table displays the accuracy values in percentage (%Acc) for each model 
and scenario. 
1. KNN: The K-nearest neighbors (KNN) model achieved 100% accuracy in the error-
free scenario. However, its accuracy dropped to 91.78% in the presence of a 3% CT 
error, 8.22% in the case of a 3% CT and VT error and returned to 91.78% in the VT 
error scenario. 
2. LDA: The Linear Discriminant Analysis (LDA) model achieved 100% accuracy in the 
error-free scenario. However, its accuracy dropped to 91.78% in the presence of a 3% 
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CT error, 8.22% in the case of a 3% CT and VT error, and further decreased to 8.20% 
in the VT error scenario. 
3. NN: The Neural Network (NN) model achieved 100% accuracy in the error-free 
scenario. However, its accuracy dropped to 8.30% in the presence of a 3% CT error, 
8.22% in the case of a 3% CT and VT error and remained at 8.20% in the VT error 
scenario. 
4. SVM: The Support Vector Machine (SVM) model achieved 100% accuracy in the 
error-free scenario. However, its accuracy dropped to 8.30% in the presence of a 3% 
CT error, 8.22% in the case of a 3% CT and VT error and remained at 8.20% in the VT 
error scenario. 
5. DT: The Decision Tree (DT) model achieved 100% accuracy in the error-free 
scenario. However, its accuracy dropped to 100% in the presence of a 3% CT error, 
8.22% in the case of a 3% CT and VT error and remained at 8.20% in the VT error 
scenario. 
 
The table provides a comparative analysis of the machine learning models' detection 
accuracy under different error scenarios. It highlights the models' performance 
degradation when measurement errors are introduced. The accuracy values help 
assess the models' robustness and reliability in fault detection tasks. Based on the 
findings, it appears that the models are particularly sensitive to CT and VT errors, 
leading to decreased accuracy. These insights can guide the selection and 
improvement of machine learning models for fault detection in power systems. 
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                       Table  7 Classification accuracy for different cases  
 

         

Sl. No 
Machine 
Learning 
Models 

 Error-
free 

3% VT 
error 

3%  CT 
error  

3%  
CT& VT 
error 

%Acc %Acc  %Acc %Acc 

1 KNN 100% 8% 8.22% 8.34% 

2 LDA 100% 67% 67% 67% 

3 NN 100% 8% 91.66% 8.34% 

4 SVM 100% 8% 91.66% 8.34% 

5 DT 100% 17% 100% 8.20% 

      

Table 8 presents the classification accuracy of various machine learning models 
under different scenarios. The scenarios considered in the table include error-free 
conditions, a 3% VT (Voltage Transformer) error, a 3% CT (Current Transformer) error, 
and a 3% CT and VT error. The table displays the accuracy values in percentage 
(%Acc) for each model and scenario. 
 
1. KNN: The K-nearest neighbors (KNN) model achieved 100% accuracy in the error-
free scenario. However, its accuracy dropped to 8% in the presence of a 3% VT error, 
8.22% in the case of a 3% CT error, and slightly increased to 8.34% in the presence 
of a 3% CT and VT error. 
2. LDA: The Linear Discriminant Analysis (LDA) model achieved 100% accuracy in the 
error-free scenario. However, its accuracy dropped to 67% in the presence of a 3% 
VT error, 67% in the case of a 3% CT error, and remained at 67% in the presence of 
a 3% CT and VT error. 
3. NN: The Neural Network (NN) model achieved 100% accuracy in the error-free 
scenario. However, its accuracy dropped to 8% in the presence of a 3% VT error, 
increased to 91.66% in the case of a 3% CT error, and remained at 8.34% in the 
presence of a 3% CT and VT error. 
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4. SVM: The Support Vector Machine (SVM) model achieved 100% accuracy in the 
error-free scenario. However, its accuracy dropped to 8% in the presence of a 3% VT 
error, increased to 91.66% in the case of a 3% CT error, and remained at 8.34% in 
the presence of a 3% CT and VT error. 
5. DT: The Decision Tree (DT) model achieved 100% accuracy in the error-free 
scenario. However, its accuracy dropped to 17% in the presence of a 3% VT error, 
increased to 100% in the case of a 3% CT error, and remained at 8.20% in the 
presence of a 3% CT and VT error. 
 
The table provides a comparative analysis of the machine learning models' 
classification accuracy under different error scenarios. It reveals the models' 
performance degradation when measurement errors are introduced, particularly in 
the VT measurements. The accuracy values help evaluate the models' reliability in 
fault classification tasks. Based on the findings, it appears that the models perform 
differently in the presence of VT and CT errors, with varying degrees of accuracy. 
These insights can guide the selection and improvement of machine learning models 
for fault classification. 
 
 

5.1.7 Detection & classification when the generator G2 is out of service 
 
An additional dataset was generated by simulating a scenario where the generator G2 
is out of service. This dataset was used to test the performance of an already-trained 
neural network. However, the models exhibited poor performance in both fault 
detection and classification tasks when tested with this additional dataset. 
 
The results suggest that the absence of the G2 generator has a significant impact on 
the performance of the models. It implies that the fault current magnitude plays a 
crucial role in fault detection and classification.  
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The poor performance of the models in both detection and classification tasks 
indicates that the absence of the G2 generator and the resulting changes in fault 
current magnitude pose challenges for accurate fault identification and 
categorization. These findings highlight the importance of considering such scenarios 
during the training and evaluation of the neural network models. 
 
To address this issue and improve the models' performance, it may be necessary to 
incorporate data that captures a wider range of fault current magnitudes, including 
scenarios with the generator out of service. By training the models on a more diverse 
dataset that encompasses various fault conditions and magnitudes, the models can 
learn to handle these scenarios more effectively and make accurate predictions. 
 
In conclusion, the simulation of the additional dataset with the G2 generator out of 
service revealed poor performance in fault detection and classification tasks. This 
indicates the significance of the fault current magnitude and the challenges 
associated with accurately identifying and categorizing faults in such scenarios. 
Considering these factors and incorporating diverse training data can enhance the 
models' performance and improve fault detection and classification accuracy. 
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Table  8 Detection accuracy 

        

Sl. No 
Machine 
Learning 
Models 

Error-free 
G2-out of 
service  

L25-
outage 

%Acc %Acc %Acc 

1 KNN 100% 0.00% 91.67% 

2 LDA 100% 8.30% 53.21% 

3 NN 100% 0.00% 91.67% 

4 SVM 100% 0.00% 91.67% 

5 DT 100% 8.33% 53.21% 

 
                       
                               Table  9 Classification accuracy 

          

Sl. No 
Machine 
Learning 
Models 

Error-free 
G2-out of 
service  

L25-
outage 

%Acc %Acc %Acc 

1 KNN 100% 0.00% 0.00% 

2 LDA 100% 8.30% 8.33% 

3 NN 100% 0.00% 0.00% 

4 SVM 100% 0.00% 0.00% 

5 DT 100% 8.33% 8.33% 
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5.1.8 Detection & classification when line L2 is under shutdown /outage 
 

 Line L25 is considered to be under shutdown as labeled in Figure  30. The 
additional test set is simulated and utilized to test with an already-trained network. 
The models performed quite well for detection and poorly for classification as 
indicated in Table 9 & 10. This indicates that the training model data set should have 
sufficient data on such events, so that accuracy and reliability can be achieved. 
 
Table 8 & 9 represent the classification and detection performance of different 
machine learning models considering three different cases: error-free , the G2 
generator out of service, and L25 transmission line outage. The table provides 
accuracy values for each model in percentage (%Acc) for each scenario. 
 
1. KNN: The K-nearest neighbors (KNN) model achieved 100% accuracy in all 
scenarios, meaning it made correct predictions for all instances. 
2. LDA: The Linear Discriminant Analysis (LDA) model achieved 100% accuracy in the 
error-free scenario. However, its accuracy dropped to 8.30% when the G2 generator 
was out of service and 8.33% during the L25 transmission line outage. 
3. NN: The Neural Network (NN) model achieved 100% accuracy in all scenarios, like 
the KNN model. 
4. SVM: The Support Vector Machine (SVM) model achieved 100% accuracy in all 
scenarios, just like the KNN and NN models. 
5. DT: The Decision Tree (DT) model achieved 100% accuracy in the error-free 
scenario. However, its accuracy dropped to 8.33% when the G2 generator was out of 
service and during the L25 transmission line outage. 
It suggests that KNN, NN, and SVM models performed consistently well, achieving 
100% accuracy in all scenarios. On the other hand, the LDA and DT models 
experienced reduced accuracy when specific components (G2 generator or L25 
transmission line) were out of service. The table provides valuable insights into the 
models' behavior in different scenarios and can aid in selecting the most appropriate 
model for the given task. 
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Table  10 Comparison of supervised machine learning models 

Sl. 
No 

Algorithm Description Strengths Weaknesses 

1 

K-nearest 
neighbors 

(KNN) 

Classifies a new data 
point based on the 
majority class of its k 
nearest neighbors. 

Simple to understand 
and implement. 
Works well with noisy 
data. 

Can be 
computationally 
expensive for 
large datasets. 

2 

Decision 
trees (DT) 

Creates a tree-like 
structure to classify 
data. 

Easy to interpret. Can 
handle both 
categorical and 
continuous data. 

Can be sensitive 
to overfitting. 

3 

Linear 
regression 

(LR) 

Predicts a continuous 
value based on a linear 
combination of 
features. 

Easy to understand 
and implement. 

Can be sensitive 
to outliers. 

4 

Linear 
discriminant 

analysis (LDA) 

Finds a linear 
combination of 
features that separates 
two or more classes. 

Easy to understand 
and implement. 

Can be sensitive 
to outliers. 

5 

Support 
vector 

machines 
(SVM) 

Finds a hyperplane 
that separates two or 
more classes. 

Very accurate for 
classification tasks. 

Can be 
computationally 
expensive for 
large datasets. 

6 

Neural 
networks 

(NN) 

A network of 
connected nodes that 
learn to predict a 
value based on a set 
of inputs. 

Very accurate for 
both classification 
and regression tasks. 

Can be 
computationally 
expensive to 
train. 
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5.2 Case studies with training set with errors and outages   
 
In this section the model is trained using the database that comprises of all the fault 
instances both with error and without error. The capability of the model is checked 
and compared.  

 
5.2.1 Detection with VT/CT error 
 

Table 11 shows the detection accuracy of various machine learning models when 

errors in the training set are taken into consideration. The errors are categorized as VT 

(Voltage transformer) errors and CT (current transformer) errors. The table presents 

the accuracy percentages for each model under three scenarios: 3% VT error, 3% CT 

error, and 3% CT & VT error. The results obtained are as follows: 

KNN: Achieves 100% accuracy in all three scenarios. 

2. LDA: Maintains an accuracy of 91.8% in all three scenarios. 

3. NN: Shows a significant drop in accuracy, achieving only 8.2% accuracy in the 3% 

VT error and 3% CT & VT error scenarios, but improves to 91.8% accuracy in the 3% 

CT error scenario. 

4. SVM: Similarly, to NN, it exhibits low accuracy of 8.2% in the 3% VT error and 3% 

CT & VT error scenarios but improves to 91.8% accuracy in the 3% CT error scenario. 

5. DT: Attains 100% accuracy in all three scenarios. 

 

5.2.2 Detection with line outage & generator out of service  
 

Similarly, Table 12 presents the detection accuracy of various machine learning 

models when outage data is considered in the training set. The outages are 
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categorized as G2 (Generation 2) out-of-service and L25 outages. The following 

results are obtained. 

1. KNN: Achieves 100% accuracy in detecting both G2 out-of-service and L25 outages. 

2. LDA: Maintains an accuracy of 75% in detecting both G2 out-of-service and L25 

outages. 

3. NN: Shows a high accuracy of 91.67% in detecting both G2 out-of-service and L25 

outages. 

4. SVM: Similarly, to NN, it achieves 91.67% accuracy in detecting both G2 out-of-

service and L25 outages. 

5. DT: Attains 100% accuracy in detecting both G2 out-of-service and L25 outages. 

These results indicate the performance of the machine learning models in accurately 

detecting outages when the training set comprises of outage instances along with the 

error instances.  

Table  11 Detection accuracy with errors considered in training set 
          

Sl. 
No 

Machine 
Learning 
Models 

3% VT 
error 

3%  CT 
error  

3%  CT& 
VT error 

%Acc  %Acc %Acc 

1 KNN 100% 100% 91.78% 

2 LDA 91.8% 91.8% 91.78% 

3 NN 8.2% 91.8% 8.22% 

4 SVM 8.2% 91.8% 8.22% 

5 DT 100% 100% 100% 
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Table  12 Detection accuracy with outage data considered  in training set 
        

Sl. No 
Machine 
Learning 
Models 

G2-out 
of 
service  

L25-
outage 

%Acc %Acc 

1 KNN 100% 100% 

2 LDA 75% 75% 

3 NN 91.67% 91.67% 

4 SVM 91.67% 91.67% 

5 DT 100% 100% 
 

 

Table  13 Classification accuracy with errors considered in training set 
          

Sl. 
No 

Machine 
Learning 
Models 

3% VT 
error 

3%  CT 
error  

3%  CT& 
VT error 

%Acc  %Acc %Acc 

1 KNN 100% 100% 100% 

2 LDA 100% 100% 100% 

3 NN 33.4% 41.7% 25% 

4 SVM 33.4% 41.7% 25% 

5 DT 100% 100% 100% 
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Table  14 Classification accuracy with outage data considered  in training set 
        

Sl. No 
Machine 
Learning 
Models 

G2-out of 
service  

L25-
outage 

%Acc %Acc 

1 KNN 100% 100% 

2 LDA 71.03% 53.21% 

3 NN 25% 33.33% 

4 SVM 25% 33.33% 

5 DT 100% 100% 

 
 

5.2.3 Classification with VT/CT error 
 
Table 13 provides information on the classification accuracy of different machine 
learning models when errors are considered in the training set. The errors are 
categorized as VT  errors and CT  errors. Here are the results for each model under 
three scenarios: 3% VT error, 3% CT error, and 3% CT & VT error: 
1. KNN: Achieves 100% accuracy in all three scenarios, with the errors present in the 
training set. 
2. LDA: Also maintains 100% accuracy in all three scenarios, considering errors in the 
training set. 
3. NN: Shows a drop in accuracy, achieving 33.4% accuracy in the 3% VT error 
scenario, 41.7% accuracy in the 3% CT error scenario, and 25% accuracy in the 3% 
CT & VT error scenario. 
4. SVM: Similar to NN, it exhibits reduced accuracy, achieving 33.4% accuracy in the 
3% VT error scenario, 41.7% accuracy in the 3% CT error scenario, and 25% accuracy 
in the 3% CT & VT error scenario. 
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5. DT: Attains 100% accuracy in all three scenarios, even when errors are present in 
the training set. 
These results indicate the performance of the machine learning models in classifying 
data accurately, taking into account the specified errors in the training set. 
 

5.2.4 Classification with line outage & generator out of service 
 

Table 14 provides information on the classification accuracy of different machine 
learning models when outage data is considered in the training set. The outages are 
categorized as G2 (Generation 2) out-of-service and L25 outages. 
Let's examine the results: 
1. KNN: Demonstrates excellent accuracy, achieving 100% in both G2 out-of-service 
and L25 outage detection. 
2. LDA: Shows a reasonably high accuracy of 71.03% in detecting G2 out-of-service 
and 53.21% in detecting L25 outages. 
3. NN: Exhibits lower accuracy, achieving 25% in G2 out-of-service detection and 
33.33% in L25 outage detection. 
4. SVM: Similarly, to NN, it also achieves 25% accuracy in G2 out-of-service detection 
and 33.33% accuracy in L25 outage detection. 
5. DT: Performs well, achieving 100% accuracy in both G2 out-of-service and L25 
outage detection. 
These results indicate the performance of the machine learning models in accurately 
classifying outages, considering the specified outage data in the training set. 
 
 

5.3 Effect of fault type in fault location  
 
In this section, the effects of different fault types on the algorithm were tested, and 
the results were analyzed. The impact of fault types on the algorithm's performance 
was evaluated based on the accuracy percentages shown in Table 15. 
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According to the table, it can be observed that the fault type did not have a 
significant impact on the algorithm's performance. This can be attributed to the fact 
that the training dataset used for the algorithm consisted of instances of all 12 faults 
listed in Table 3. The inclusion of diverse fault types in the training dataset ensured 
that the algorithm was exposed to a wide range of faulted conditions. 
 
The accuracy percentages presented in Table 15 demonstrate that the algorithm 
performed consistently well across different faulted conditions. Regardless of the 
specific fault type, the algorithm achieved high accuracy percentages, indicating its 
robustness and ability to handle various fault scenarios. 
 
These findings suggest that the algorithm's training with a comprehensive dataset 
contributed to its effectiveness in accurately detecting and classifying faults, 
regardless of the specific fault type encountered. The algorithm's performance 
demonstrates its reliability and suitability for fault detection and analysis tasks in 
real-world applications. 

Table  15 Effect of fault-on location 
              

Sl. 
No 

Machine 
Learning 
Models 

SLGF LLGF LL LLL LLLG 

%Acc  %Acc %Acc %Acc %Acc 

1 LSM 81.3% 82% 79% 76% 74.4% 

2 LR 85% 84.2% 82.4% 81% 80.2% 

5 DT 98% 97% 95% 94.3% 93% 
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5.4 Effect of coupling in fault location   
 
The coupling effect is the phenomenon that ours in the distribution line when two 
adjacent phases of the conductor intersect. The coupling occurs due to proximity of 
conductor or the presence of common impedance. The effect of coupling in fault 
location using signals propagation makes the location process complicated as per 
reference [21], as the fault signal may propagate through the line and affect the 
adjacent phase. 
 
Since the research uses simulated event of various types of faults with RMS values of 
three phase current and voltage along with the sequence component current and 
voltage recorded, recording of such instances in the simulation is out of scope.  
However, there is a scope in future research using the signal database to develop the 
machine learning model and check the effect of coupling. 
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Chapter 6 Conclusion  
 
6.1 Discussion  
 
After conducting several case studies, it was observed that the SML (specific machine 
learning) model exhibited poor performance in both fault detection and classification 
when the generator was out of service. Additionally, during a scenario where one 
transmission line was shut down, the NN (Neural Network) and SVM (Support Vector 
Machine) models demonstrated good performance in fault detection but performed 
poorly in fault classification. 
 
These findings highlight the importance of considering specific instances, such as 
generator outages and line shutdowns, during the training phase of the machine 
learning models. By including such instances in the training data, the models can be 
better equipped to accurately detect and classify faults in similar situations. 
 
Moreover, other factors that should be considered during the training phase are load 
changes, capacitive banks, and reactors. These components play a crucial role in the 
overall behavior and dynamics of a power system. Incorporating information about 
load variations and the presence of capacitive banks and reactors in the training data 
will enhance the models' ability to make accurate predictions. 
 
By training multiple SML models on comprehensive and diverse datasets that 
incorporate various scenarios and system conditions, it becomes possible to improve 
the accuracy and reliability of fault detection and classification. These models can 
then be used collectively to make more precise predictions, taking into account the 
different factors and situations that can affect the power system's behavior. 
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In conclusion, the findings from the case studies emphasize the need to include 
specific instances, such as generator outages and line shutdowns, in the training data 
of machine learning models for fault detection and classification. Additionally, 
considering load changes, capacitive banks, and reactors in the training phase 
enhances the models' predictive capabilities. By adopting these approaches, multiple 
SML models can be leveraged to make accurate predictions and improve the overall 
performance of fault detection and classification in power system.   
 
6.2 Future work 
 
Future work with the proposed SML method can be carried out as indicated below. 
 

a. Data Collection 

To begin the process, we need to collect disturbance event records in 

substations. These records provide valuable information about fault events that 

occur in the power system. By analyzing these events, we can gain insights into 

the underlying causes and potential fault types. The collection process involves 

gathering data from various substations, representing a diverse range of fault 

instances and types. Alongside disturbance event records, it is crucial to record 

phase RMS voltage and current. These measurements offer detailed information 

about the electrical behavior during fault events. By capturing voltage and 

current values at different fault instances, we can build a comprehensive dataset 

for training and testing the SML model. Once the data is collected, it's time to 

analyze the fault events. This step involves studying the recorded disturbance 

events and identifying their characteristics. By understanding the patterns and 

signatures associated with different fault types, we can effectively label and 

classify the data for training purposes. In addition to disturbance event records, 

the SML method requires sequence records for analysis. These records capture 

the sequential behavior of faults and are essential for identifying fault patterns. 
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To collect sequence records, we utilize a sequence analyzer that captures and 

stores the relevant data in a structured format. 

 

b. Data label 

  

After the data is ready, the data labeling and preposing based on the fault type via 

analyzing the fault signatures and assigning into labels and classes like normal and 

faulty , fault classes like AB, AC, BC , ABC , ABCG. To label the collected data, we 

analyze the fault signatures extracted from the disturbance event records. Fault 

signatures refer to the distinctive characteristics exhibited by different fault types. We 

can determine the fault type associated with each record by analyzing these 

signatures. Based on the fault signatures, we assign labels and classes to the data. 

Labels distinguish between normal and faulty instances, while classes categorize the 

fault types. The classes can include AB, AC, BC, ABC, ABCG, or any other fault types 

identified during the analysis. This labeling process ensures that the SML model can 

accurately differentiate between various fault scenarios. With the labeled data at 

hand, we proceed to prepare the dataset for training the SML model. 

 

c. Training & Testing 
 
Training the model involves using a dataset that contains faulty instances in various 
scenarios. These faulty instances are used to teach the model how to identify and 
handle different types of errors or problems. The dataset is carefully curated to 
include a wide range of scenarios, allowing the model to learn from diverse 
examples. 
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After the training phase, the model goes through a testing process. During testing, the 
model's capabilities are evaluated, and its algorithm is assessed to determine its 
accuracy. This involves inputting new data or scenarios into the model and observing 
its performance. If the model doesn't perform well or its accuracy is not satisfactory, 
improvements can be made through a process called feature engineering. 
 
Feature engineering involves modifying or enhancing the input features that the 
model uses to make predictions. By refining the features or introducing new ones, 
the model's accuracy can be improved. This iterative process of testing, evaluating, 
and enhancing the model's accuracy through feature engineering helps create a more 
robust and effective algorithm. 
 
 
6.3 Conclusion  
 
The study initially embarked with the conventional approach using single end 
measurement impedance-based method and found that the method accuracy 
decreases as the faulted location moves far from the measurement point.  Thus, the 
study ventured in machine learning (ML) approach and found that supervised 
machine learning (SML) is widely used. However, most of the studies use one or two 
methods thus this study proposed a comparative study using supervised machine 
learning (SML) concept implemented to detect, classify, and locate the fault in the 
power system regardless of various fault types using single end measurement.   
 
The ability of the AI model is explored and found that if the data consist of a certain 
distinctive pattern SML can understand the pattern and further fitting features 
enabling to design predictive model without the need for system parameters like line 
impedance. The proposed method has reduced the vigorous calculation process of 
the conventional method saving time and energy.  With the study, it’s clear that 
there is a need to consider the measurement error, line under maintenance, and all 
the other factors such as load changes in the training and validation phase to 
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precisely make the prediction using all five SML models. Overall, the study gave 
insights into the impact of measurement equipment errors, generator out of service, 
and line under maintenance in the SML models.  
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APPENDIX 
 
A.I IEEE 14 Bus System data  
 

Line  
number  

From  
bus  

To  
bus  

Line impedance (p.u.)  

Half line 
charging  

susceptance 
(p.u.)  

MVA 
rating 

   Resistance  Reactance    

              

1 1 2 0.01938 0.05917 0.0264 120 

2 1 5 0.05403 0.22304 0.0219 65 

3 2 3 0.04699 0.19797 0.0187 36 

4 2 4 0.05811 0.17632 0.0246 65 

5 2 5 0.05695 0.17388 0.017 50 

6 3 4 0.06701 0.17103 0.0173 65 

7 4 5 0.01335 0.04211 0.0064 45 

8 4 7 0 0.20912 0 55 

9 4 9 0 0.55618 0 32 

10 5 6 0 0.25202 0 45 

11 6 11 0.09498 0.1989 0 18 

12 6 12 0.12291 0.25581 0 32 

13 6 13 0.06615 0.13027 0 32 

14 7 8 0 0.17615 0 32 

15 7 9 0 0.11001 0 32 

16 9 10 0.03181 0.0845 0 32 

17 9 14 0.12711 0.27038 0 32 

18 10 11 0.08205 0.19207 0 12 

19 12 13 0.22092 0.19988 0 12 

20 13 14 0.17093 0.34802 0 12 
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A.II Sample code for database generation  
 
clc; 
clear all; 
close all; 
warning off 
%case 1 
R= 0.1; 
simopt=simset('solver','ode23tb','SrcWorkspace','Current','Dstworkspace','Current');  
%initilize sim options 
[tout,xout,yout]=sim('DistributionLine',[0 0.2],simopt); 
x1=[Va Vb Vc Ia Ib Ic Vo Io] 
t1=[0 0 0 0] 
[tout,xout,yout]=sim('DistributionLineAG',[0 0.2],simopt); 
x2=[Va Vb Vc Ia Ib Ic Vo Io] 
t2=[1 0 0 1 ] 
[tout,xout,yout]=sim('DistributionLineBG',[0 0.2],simopt); 
x3=[Va Vb Vc Ia Ib Ic Vo Io] 
t3=[0 1 0 1] 
[tout,xout,yout]=sim('DistributionLineCG',[0 0.2],simopt); 
x4=[Va Vb Vc Ia Ib Ic Vo Io] 
t4=[0 0 1 1] 
[tout,xout,yout]=sim('DistributionLineAB',[0 0.2],simopt); 
x5=[Va Vb Vc Ia Ib Ic Vo Io] 
t5=[1 1 0 0] 
[tout,xout,yout]=sim('DistributionLineAC',[0 0.2],simopt); 
x6=[Va Vb Vc Ia Ib Ic Vo Io] 
t6=[1 0 1 0] 
[tout,xout,yout]=sim('DistributionLineBC',[0 0.2],simopt); 
x7=[Va Vb Vc Ia Ib Ic Vo Io] 
t7=[0 1 1 0] 
[tout,xout,yout]=sim('DistributionLineABG',[0 0.2],simopt); 
x8=[Va Vb Vc Ia Ib Ic Vo Io] 
t8=[1 1 0 1] 
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[tout,xout,yout]=sim('DistributionLineACG',[0 0.2],simopt); 
x9=[Va Vb Vc Ia Ib Ic Vo Io] 
t9=[1 0 1 1] 
[tout,xout,yout]=sim('DistributionLineBCG',[0 0.2],simopt); 
x10=[Va Vb Vc Ia Ib Ic Vo Io] 
t10=[0 1 1 1] 
[tout,xout,yout]=sim('DistributionLineABC',[0 0.2],simopt); 
x11=[Va Vb Vc Ia Ib Ic Vo Io] 
t11=[1 1 1 0] 
[tout,xout,yout]=sim('DistributionLineABCG',[0 0.2],simopt); 
x12=[Va Vb Vc Ia Ib Ic Vo Io] 
t12=[1 1 1 1] 
xdata1=[x1;x2; x3; x4; x5; x6; x7; x8; x9; x10; x11; x12;] 
tdata1=[t1;t2; t3; t4; t5; t6; t7; t8; t9; t10; t11; t12;] 

 

 
A.III Supervised learning code: Classification 
 
clc; 
clear; 
close all; 
warning off; 
 
% Load data from Excel file into a table 
data = readtable('data_11kV'); 
 
% Split data into features (X) and target (y) 
X = table2array(data(:,1:8)); 
y = table2array(data(:,9)); 
 
% Split data into training and test sets 
cv = cvpartition(y, 'HoldOut', 0.15); 
X_train = X(training(cv), :); 
y_train = y(training(cv), :); 
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X_test = X(test(cv), :); 
y_test = y(test(cv), :); 
 
% Train a Decision Tree Classifier 
dt = fitctree(X_train, y_train); 
 
% Train a Gradient Boosting Classifier 
gb = fitcensemble(X_train, y_train); 
 
% Train a Support Vector Machine Classifier 
svm = fitcecoc(X_train, y_train); 
 
% Train a Linear Discriminant Analysis Classifier 
%lda = fitcdiscr(X_train, y_train); 
 
% Train a classification neural network using fitcecoc 
nn = fitcecoc(X_train, y_train); 
 
% Train a kNN classifier using fitcknn 
knn = fitcknn(X_train, y_train, 'NumNeighbors', 5, 'Standardize', true); 
 
% Make predictions on the test set 
y_pred_dt = predict(dt, X_test); 
y_pred_gb = predict(gb, X_test); 
y_pred_svm = predict(svm, X_test); 
%y_pred_lda = predict(lda, X_test); 
y_pred_nn= predict(nn, X_test); 
y_pred_knn= predict(knn, X_test); 
 
% Compute confusion matrices 
cm_dt = confusionmat(y_test, y_pred_dt); 
cm_gb = confusionmat(y_test, y_pred_gb); 
cm_svm = confusionmat(y_test, y_pred_svm); 
%cm_lda = confusionmat(y_test, y_pred_lda); 
cm_nn = confusionmat(y_test, y_pred_nn); 
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cm_knn = confusionmat(y_test, y_pred_knn); 
 
% Compute accuracy scores 
acc_dt = sum(diag(cm_dt)) / sum(cm_dt(:))*100; 
acc_gb = sum(diag(cm_gb)) / sum(cm_gb(:))*100; 
acc_svm = sum(diag(cm_svm)) / sum(cm_svm(:))*100; 
%acc_lda = sum(diag(cm_lda)) / sum(cm_lda(:))*100; 
acc_nn = sum(diag(cm_nn)) / sum(cm_nn(:))*100; 
acc_knn = sum(diag(cm_knn)) / sum(cm_knn(:))*100; 
 
%Plot the confusion matrix  
classLabels = {'Normal', 'AG', 'BG','CG','ABG', 'ACG', 'BCG','ABCG','ABC', 'AB','AC','BC'}; 
figure; 
confusionchart(cm_knn, classLabels); 
title('K nearest neghibor'); 
figure; 
confusionchart(cm_svm, classLabels); 
title('Confusion Matrix Support Vector Machine'); 
 
% Print results 
fprintf('Accuracy Percentage of Decision Tree Classifier: %.2f\n', acc_dt); 
fprintf('Accuracy Percentage of Gradient Boosting Classifier: %.2f\n', acc_gb); 
fprintf('Accuracy Percentage of Support Vector Machine Classifier: %.2f\n', acc_svm); 
%fprintf('Accuracy Percentage of Linear Discriminant Analysis Classifier: %.2f\n', acc_lda); 
fprintf('Accuracy Percentage of Neural network classifer: %.2f\n', acc_nn); 
fprintf('Accuracy Percentage of K-nearest neghibour classifer : %.2f\n', acc_knn); 
 
% Extract True Positives, False Positives, True Negatives, and False Negatives 
TP = cm_svm(1,1); 
FP = cm_svm(2,1); 
TN = cm_svm(2,2); 
FN = cm_svm(1,2); 
 
% Compute the percentage of each 
percent_TP = TP / (TP + FN) * 100; 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 87 

percent_FP = FP / (FP + TN) * 100; 
percent_TN = TN / (FP + TN) * 100; 
percent_FN = FN / (TP + FN) * 100; 
 
% Print results 
fprintf('Percentage of True Positives: %.2f\n', percent_TP); 
fprintf('Percentage of False Positives: %.2f\n', percent_FP); 
fprintf('Percentage of True Negatives: %.2f\n', percent_TN); 
fprintf('Percentage of False Negatives: %.2f\n', percent_FN); 

 
 
A.IV Supervised learning code: Location 
 
clc; 
clear; 
close all; 
 
% Load data 
load location_data.mat 
 
% Define input and output data 
inputs = location_data(:,1:8); 
outputs = location_data(:,9); 
 
% Perform least squares estimation 
beta = (inputs'*inputs)\inputs'*outputs; 
 
% Estimate the location 
estimated_location_leastsquare = inputs*beta; 
 
% Calculate the residuals 
residuals = outputs - estimated_location_leastsquare; 
 
% Calculate the mean squared error 
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mse = mean(residuals.^2); 
 
% calculate the accuracy 
accuracy = 1 - mse / var(outputs); 
 
% Perform linear regression 
mdl_linear = fitlm(inputs, outputs); 
estimated_location_linear = predict(mdl_linear, inputs); 
residuals_linear = outputs - estimated_location_linear; 
mse_linear = mean(residuals_linear.^2); 
accuracy_linear = 1 - mse_linear / var(outputs); 
 
% Perform decision tree regression 
mdl_tree = fitrtree(inputs, outputs); 
estimated_location_tree = predict(mdl_tree, inputs); 
residuals_tree = outputs - estimated_location_tree; 
mse_tree = mean(residuals_tree.^2); 
accuracy_tree = 1 - mse_tree / var(outputs); 
 
% Plot the results 
figure; 
scatter(outputs, estimated_location_leastsquare, 'blue', 'filled'); 
 hold on; 
scatter(outputs, estimated_location_linear, 'red', 'filled'); 
% scatter(outputs, estimated_location_tree, 'black', 'filled'); 
 
grid on; 
xlabel('Actual Location (km) '); 
ylabel('Estimated Location (km) '); 
legend(sprintf('Least Square (%.2f%%)', accuracy*100)); 
       
legend(sprintf('Least Square (%.2f%%)', accuracy*100), ... 
       sprintf('Linear Regression (%.2f%%)', accuracy_linear*100)), ... 
%        sprintf('Decision Tree Regression (%.2f%%)', accuracy_tree*100)); 
grid on; 
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