 คายในะประเทีศ

จุฟาลงกรณัมหา รัทยาสัย

ทุนงบประมาณแผ่นดิน 2523

รายงานผลการวิจัย

การประมาณค่า normal probability integral ลัาหรับการคำนวณด้วยเคร้องคิดเ คย
โตย

ฝุ่ช่าดา คร้พนธุ้

มิถุนายน 2526

Nicosims

The Thai Government's fiscal Budget

An Approximation of the Normal Probability Integral for Desk Calculators

CHULALONGKORN UNIVERSITY

by

Suchada Siripant

June 1983

รายการ หน้า
บทคัดย่อ 1
Abstract 2
Introduction 4
Method 4
Result 5DiscussionReferences8

Chulalongiorn University

เลขหม่ $\frac{\text { จท } 15}{}$	
เลขทะเบียน002\%41	
วนเเดิอ	148.0 .28.

การประมาณค่า normal probability integral

ล้าหรบการคำนวณด้วย เคร่องคึดเลย

> สุชาดา ศิรันธ์ มิถุนายน 2526

บทศัดย่อ

งานวิสยยนี้ ได้เสนอริธการประมาณค่า normal probability integral

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

วรี้นั้ดวกล้าหรไบนำไปไข้กับเคร์องคิดเลขทั้งช่นิดรรรมดาและยยนิดที่ล่ามารถโปรแกรมได้ ฟึงทำให้คำนวน keystrokes ค่ใข้สคลง

ค่ายอง probability $Q(x)$ ประมาณไได้โดย

$$
Q(x) \tilde{n}_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

เม่อ

$$
\begin{aligned}
& a_{0}=0.0002743166 \\
& a_{1}=0.3943689450 \\
& a_{2}=0.0216086002 \\
& a_{3}=-0.1083530025 \\
& a_{4}=0.0373481450 \\
& a_{5}=-0.0040289291
\end{aligned}
$$

AN APPROXIMATION OF THE NORMAL PROBABILITY INTEGRAL FOR DESK CALCULATES

Suchada Siripant

June 1983

Abstract

In this paper, we shall present a method of approximating the normal probability integral

$$
Q(x)=\frac{1}{2 \pi} \int_{x}^{\infty} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

This method is practical for use on electronic hand calculators and programable calculators. The method minimizes the number of keystrokes.

The probability $Q(x)$ is approximated by

$$
Q(x) \approx a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}
$$

where

$$
\begin{aligned}
& a_{0}=0.0002743166 \\
& a_{1}=0.3943689450, \\
& a_{2}=0.0216086002, \\
& a_{3}=-0.1083530025, \\
& a_{4}=0.0373481450,
\end{aligned}
$$

$a_{5}=-0.0040289291$

with a relative of error less than 0.04% in the range $0 \leq x \leq 3$.

Introduction

By the use of suitable approximations most functions can be conveniently evaluated on digital computers. In this paper we describe a method of approximating the normal probability integral

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \exp \left(-\frac{t^{2}}{2}\right) d t
$$

This approximation function is practical for use on hand calculators since we can not write a program to compute $Q(x)$ on calculators. Moreover, we can not use the values from the normal probability integral table because many keystrokes are required for entering these values. Our method consists of three parts

1. selecting a suitable form for the approximation
2. fitting the approximation to the function
3. finding the best coefficients for the approximation

Method

1. Selecting a Suitable Form. Many electronic calculators are equipped with $\sqrt{x}, \sin x, \ln x, e^{x}, x^{y}$ etc. keys. One should consider whether or not the function to be approximated resembles one of them.

The electronic calculators can evaluate polynomials as rapidly as the keys are depressed. This suggests that a polynomial

$$
P(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

should be used.
2. Fitting the Approximation to the Function. After a polynomial $P(x)$ has been chosen, the unknown coefficients a_{0} to a_{n} must be selected so that $P(x)$ fits the function $Q(x)$ to be approximated. The criterion of approximation that we shall use is the least-square approximation which requires that the summation of the square errors

$$
S=\sum_{j=0}^{n}\left[P\left(x_{j}\right)-Q\left(x_{j}\right)\right]^{2}
$$

be minimized.
3. Finding the Best Coefficients. After using the leastsquare method, we found that a polynomial of degree five is suitable. After finding a suitable polynomial of degree 5 we improved the coefficients by using small intervals of x_{j} and thus found the best approximation.

Result

The best coefficients $o_{k}(k=0,1, \ldots, 5)$ were obtained by using matrices and they are :

$$
\begin{aligned}
& a_{0}=0.0002743166 \\
& a_{1}=0.3943689450
\end{aligned}
$$

The approximations which yield the minimum errors described

above are presented in Table I.

RESULT
.0398226387052042
.0792040934491976
.117896972818897
.155459534845194
.191 .525168961985
.225797561291136
.258045859927448
.28809984022361 .5

- 315845070075181.
.341218075205509
.364201504450732
.38481929504472
.403131837904039
.4192311429 .12912 .43323600420818 . 445287165464263 .455542485178116 .4641721019542 .47135359978943 .477267173358148 .482090793297079 .485995371490274 .489139926354123
.491 .666748122232
.493696564130482
.495323704101905
.496611265431688
.49758627847213
.498234871817587 . 498497437589458

TFUE FEESULT
. 0398
.0793
.1179
.1554
.1915
.2257
. 258
.2881
.3159
.3413
.3643

- 3849
.4032
.4192
.4332
.4452
.4554
.4641
.4713
.4772
.4821
.4861
.4893
.4918
.4938
.4953
.4965
.4974
.4981
. 4987
\%ERROR
.0568811688547739
$-.120941425980328$
$-.00256758363273961$
.0383107111930502
.0131430610887728
.0432260926610545
.0177751656775194
$-.0000554586549809094$
$-.0173883902560937$
$-.0240037487521242$
$-.0270369336447982$
$-.0209677722213562$
$-.0169052817363591$.00742912998854962 .00831122072483841 .0195789452522462 .0312879178998682 .0155358660202543
.0113727539635052
.0140765628977368
$-.00190970813544908$
$-.0215240711224028$
$-.03271482646168$
$-.027094729111 .0207$
$-.0209469156577562$.00478580696648496 .0224099560298087 .0374504366968235 .0270772570943586 $-.0406180891401644$

This approximation has a relative error of less than 0.04%

```
In the range 0\leqx\leq3
```


Discussion

The polynomial approximation can be evaluated repidly by electronic calculators. The approximation presented here is useful for calculators (programmable and non-programmable) since it reduces the number of keystrokes.

References

1. Young, D.M. and Gregory, K.T. 1972. A Survey of Numerical Mathematics
2. Froberg, C.E. 1969. Introduction to Numerical Analysis
3. Haming, R.W. 1971. Introduction to Applied Numerical Analysis.
4. Ralston, A. 1965. A first Course in Numerical Analysis.
5. Theodore, C.A. 1975, Applied Mathematics.
6. Booth, Andrew D. Numerical Methods; Butterworth \& Co. Ltd London, 1966.
7. Cheney, E.W. Introduction to Approximation Theory; McGrawHill Inc. New York, 1966.
8. Conte, S.D. and de Boor, Carl Elementary Numerical Analysis; McGraw-Hill Kogakusha Inc., Japan, 1965.
9. Grove, Wendell E. Brief Numerical Methods; Prentice Hall Inc. Englewood Cliffss New Jersey, 1966.
10. Henrici, Peter, Elements of Numerical Analysis; John Wiley and Sons, Inc. New York, 1964.
11. Johnson Lee W. and Riess R. Dean, Numerical Analysis; Reading, Massachusettss Addison - Wesley Publishing Company, 11977.
12. Scarborough, James B. Numerical Mathematical Analysis; Oxford \& IBH Publishing Co. New Delhi, 1966.
