#### IDENTIFICATION OF AROMA COMPOUNDS IN THAI COLORED RICE VARIETIES



A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in Pharmacy in Food Chemistry and Medical Nutrition Department of Food and Pharmaceutical Chemistry FACULTY OF PHARMACEUTICAL SCIENCES Chulalongkorn University Academic Year 2022 Copyright of Chulalongkorn University การพิสูจน์เอกลักษณ์ของสารให้ความหอมในพันธุ์ข้าวสีของไทย



วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาเภสัชศาสตรมหาบัณฑิต สาขาวิชาอาหารเคมีและโภชนศาสตร์ทางการแพทย์ ภาควิชาอาหารและเภสัชเคมี คณะเภสัชศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2565 ลิขสิทธิ์ของจุฬาลงกรณ์มหาวิทยาลัย

| Thesis Title      | IDENTIFICATION OF AROMA COMPOUNDS IN THAI    |
|-------------------|----------------------------------------------|
|                   | COLORED RICE VARIETIES                       |
| Ву                | Mr. Supawat Jindawatt                        |
| Field of Study    | Food Chemistry and Medical Nutrition         |
| Thesis Advisor    | Assistant Professor ROSSARIN TANSAWAT, Ph.D. |
| Thesis Co Advisor | Professor WANCHAI DE-EKNAMKUL, Ph.D.         |

Accepted by the FACULTY OF PHARMACEUTICAL SCIENCES, Chulalongkorn University in Partial Fulfillment of the Requirement for the Master of Science in Pharmacy

Dean of the FACULTY OF

PHARMACEUTICAL SCIENCES

(Assistant Professor PORNANONG ARAMWIT, Ph.D.)

THESIS COMMITTEE

Chairman

(Associate Professor SUYANEE PONGTHANANIKORN,

Dr.P.H.) จุฬาลงกรณ์มหาวิทยาลัย Thesis Advisor (Assistant Professor ROSSARIN TANSAWAT, Ph.D.) \_\_\_\_\_ Thesis Co-Advisor

(Professor WANCHAI DE-EKNAMKUL, Ph.D.)

Examiner

(Associate Professor WARANGKANA WARISNOICHAROEN,

Ph.D.)

External Examiner

(Umaporn Uawisetwathana, Ph.D.)

ศุภวัสส์ จินดาวัฒน์ : การพิสูจน์เอกลักษณ์ของสารให้ความหอมในพันธุ์ข้าวสีของไทย. ( IDENTIFICATION OF AROMA COMPOUNDS IN THAI COLORED RICE VARIETIES) อ.ที่ปรึกษาหลัก : ผศ. ภญ. ดร.รสริน ตันสวัสดิ์, อ.ที่ปรึกษาร่วม : ศ. ดร.วันชัย ดีเอก นามกูล

ผู้บริโภคมีความสนใจข้าวสีเนื่องจากมีประโยชน์ต่อสุขภาพ อีกทั้งยังมีปริมาณไฟเบอร์ และโปรตีนสูง โดยปกติกลิ่นของข้าวสีโดยทั่วไปจะไม่หอมเท่าข้าวหอมมะลิ นำมาสู่วัตถุประสงค์ แรกของงานวิจัย เพื่อศึกษาเวลาและอุณหภูมิที่เหมาะสมในการสกัดสารระเหยในข้าวสีพันธุ์ พื้นเมืองของไทยด้วยวิธีเฮดสเปซแก๊สโครมาโตกราฟฟี-แมสสเปคโตรเมทรี และวัตถุประสงค์ ประการที่สอง เพื่อระบุสารระเหยที่สำคัญของข้าวสีพันธุ์พื้นเมืองของไทย สำหรับการศึกษาแรกนำ ข้าวหอมแดง (KDML105R-PSL-E-14) มาทำการศึกษาพบว่า สภาวะที่เหมาะสมคือ ระยะเวลาการ อุ่นในเตาอบที่ 80 องศาเซลเซียส เป็นเวลา 5 ชั่วโมง ตามด้วยการสกัดบริเวณหัวฉีดเฮดสเปซที่ อุณหภูมิ 120 องศาเซลเซียส จากนั้นนำสภาวะดังกล่าวมาใช้ในการศึกษาที่สอง ซึ่งทำการศึกษา พันธุ์ข้าวจำนวน 23 พันธุ์ แบ่งเป็น 4 ประเภท คือ ข้าวขาวหอม ข้าวสีดำมีกลิ่นหอม ข้าวสีดำไม่มี กลิ่นหอม และข้าวสีแดงไม่มีกลิ่นหอม (n=10 ต่อสายพันธุ์) จากการศึกษานี้พบว่า ข้าวสีดำและสี แดงที่ไม่มีกลิ่นหอมมีปริมาณสารหอมระเหยต่ำกว่าข้าวขาวและข้าวสีดำที่มีกลิ่นหอม เมื่อมุ่งความ สนใจไปที่ข้าวสีดำที่มีกลิ่นหอม พบว่ามีสารหอมระเหยที่น่าจะเป็นสารหลัก 2 กลุ่มคือ อัลดีไฮด์ (3-เมฑิลบิวทานัล 2-เมฑิลบิวทานัล 2-เมฑิลโพรพานัล เพนทานัล และ เฮกซานัล) และแอลกอฮอล์ (บิ วเทน-2,3-ไดออล เพนทาน-1-ออล และ เฮกซัน-1-ออล)

## จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

| สาขาวิชา   | อาหารเคมีและโภชนศาสตร์ทาง | ลายมือชื่อนิสิต            |
|------------|---------------------------|----------------------------|
|            | การแพทย์                  |                            |
| ปีการศึกษา | 2565                      | ลายมือชื่อ อ.ที่ปรึกษาหลัก |
|            |                           | ลายมือชื่อ อ.ที่ปรึกษาร่วม |

#### # # 6076120933 : MAJOR FOOD CHEMISTRY AND MEDICAL NUTRITION

KEYWORD:Colored rice, Red Hawm rice, Black rice, Headspace, GC-MS, Volatile,Aroma, Metabolomics

Supawat Jindawatt : IDENTIFICATION OF AROMA COMPOUNDS IN THAI COLORED RICE VARIETIES. Advisor: Asst. Prof. ROSSARIN TANSAWAT, Ph.D. Co-advisor: Prof. WANCHAI DE-EKNAMKUL, Ph.D.

Consumers are interested in colored rice because its health benefits and its high fiber and protein content. Normally, the colored rice smell is generally not as strong as the jasmine rice. The first objective of this research was to investigate the proper preheated time and headspace incubation temperature to extract as many volatile compounds as possible from Thai-colored rice using the static headspace GC-MS approach. Secondly, this study aimed to identify the key volatile aroma compounds in Thai native-colored rice varieties. For optimum conditions, Red Hawm Rice (KDML105R-PSL-E-14) was used in this study. The optimal condition was preheated in a hot air oven for 5 hours at 80 °C, followed by a headspace extraction temperature of 120 °C. Afterward, Such conditions were utilized in the second study. Twenty-three rice varieties in four categories: aromatic white, aromatic black, non-aromatic black, and non-aromatic red, were investigated (n = 10 per variety). This study found that the non-aromatic black and red rice containing much lower content of most volatile constituents than the aromatic black and white rice. Focusing on the aromatic black rice, the samples appeared to contain high level of both compound groups of aldehydes (3-methylbutanal, 2methylbutanal, 2-methylpropanal, pentanal, and hexanal) and alcohols (butane-2,3-diol, pentan-1-ol, and hexan-1-ol).

| Field of Study: | Food Chemistry and | Student's Signature    |
|-----------------|--------------------|------------------------|
| ,               | 2                  | 5                      |
|                 | Medical Nutrition  |                        |
| Academic Year:  | 2022               | Advisor's Signature    |
|                 |                    | Co-advisor's Signature |

#### ACKNOWLEDGEMENTS

This thesis would not have been possible without support from the Agricultural Research Development Administration (Public Organization), Grant No. PRP6105022460. My sincerest thanks goes out to my advisers, Assistant Professor Rossarin Tansawat and Co-Adviser Professor Wanchai De-ekanamkul, who have provided me with information, chances, and great support. This thesis has provided me with a wealth of knowledge and significant experience. I would like to thank the Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, for their advice and tireless help throughout my study. Thanks to everyone who supported my studies and provided me with advice, encouragement, and assistance.

Lastly, I would like to thank my four classmates for always supporting me. Thanks to the Pharmacy Department, Vajira Hospital for giving me a valuable opportunity to study for a master's degree. I would like to thank Dr. Wanaporn Charoenchoktawee, the chief pharmacist, who has always given me valuable advice. I am deeply indebted to them. For all these reasons, it is like a promise that I will be a good pharmacist in my career path.

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Supawat Jindawatt

## TABLE OF CONTENTS

| Page                                             | è |
|--------------------------------------------------|---|
|                                                  |   |
| ABSTRACT (THAI)iii                               |   |
| iv                                               |   |
| ABSTRACT (ENGLISH)iv                             |   |
| ACKNOWLEDGEMENTSv                                |   |
| TABLE OF CONTENTSvi                              |   |
| LIST OF TABLESix                                 |   |
| LIST OF FIGURESx                                 |   |
| RESEARCH ORIENTATION                             |   |
| Chapter I BACKGROUND AND RATIONALE               |   |
| Conceptual framework and Objectives              |   |
| Benefit of the study                             |   |
| Chapter II LITERATURE REVIEW                     |   |
| Rice                                             |   |
| Botanical information7                           |   |
| Geography and climate for cultivation8           |   |
| Rice processing and storage11                    |   |
| Fragrant rice varieties and volatile compounds14 |   |
| Chemical group of rice grain volatiles22         |   |
| Phenolic compounds and health benefits24         |   |
| Metabolomics analysis in rice volatiles          |   |

| Chapter III PUBLISHED ARTICLE I                                                   |
|-----------------------------------------------------------------------------------|
| Title: Static headspace GC-MS analysis for determination of colored rice volatile |
| profile                                                                           |
| Abstract                                                                          |
| Introduction                                                                      |
| Methods                                                                           |
| Plant materials                                                                   |
| Sample preparation                                                                |
| Static headspace GC-MS                                                            |
| Results                                                                           |
| Discussion                                                                        |
| Conclusion                                                                        |
| References (Chapter III)                                                          |
| Chapter IV ARTICLE II (under review)                                              |
| Title: Metabolomics Approach to Identify Key Volatile Aromas in Thai Colored Rice |
| Cultivars                                                                         |
| Abstract                                                                          |
| Introduction                                                                      |
| Materials and Methods70                                                           |
| Rice Plants70                                                                     |
| Seed Preparation                                                                  |
| Metabolomic Analysis70                                                            |
| Sample Preparation70                                                              |
| Volatile Profile Analysis Using SHS-GC-MS71                                       |

| Data Processing and Statistical Analysis           | 72  |
|----------------------------------------------------|-----|
| Results                                            | 74  |
| Discussion                                         |     |
| Volatile Components in Thai Colored Rice Cultivars | 87  |
| Key Volatile Compounds                             |     |
| Conclusion                                         | 90  |
| References (Chapter IV)                            | 91  |
| CHAPTER V CONCLUSION OF THESIS                     | 94  |
| SUPPLEMENTARY DATA                                 | 96  |
| Supplementary Table 1                              | 96  |
| Supplementary Figure S1                            | 146 |
| Supplementary Figure S2                            | 147 |
| REFERENCES                                         | 149 |
| VITA                                               | 174 |
| จุฬาลงกรณ์มหาวิทยาลัย                              |     |
|                                                    |     |

### LIST OF TABLES

| Table 1 Structures of simple phenolic acids (hydroxybenzoic and hydroxycinnamic) in      |
|------------------------------------------------------------------------------------------|
| rice grains (Shao & Bao, 2019)26                                                         |
| Table 2 Structures and groups of flavonoids in rice grains (Shao & Bao, 2019)27          |
| Table 3 Structures of anthocyanidins in rice grains (Shao & Bao, 2019)                   |
| Table 4 Volatile compounds from Red Hawm Rice detected by static headspace GC-   MS   54 |
| Table 5 Average percentages and standard deviations (SD, in parentheses) of              |
| extraction of each volatile compound from Red Hawm Rice with regard to the total         |
| area at different preheated time (3, 4, 5, 6 and 7 h at 80 °C) in the hot air oven and   |
| different headspace incubation temperature (80 °C, 100 °C and 120 °C for 60 min) 55      |
| Table 6 List of rise camples                                                             |
| Table 0 List of fice samples                                                             |

# จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

Page

### LIST OF FIGURES

| ſ                                                                                                                                                                                                                                                                                | Page          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|
| Figure 1 Developmental stages of the rice plant (adapted from Moldenhauer et al. (2013))                                                                                                                                                                                         | 9             |
| Figure 2 Structure of rice grain (Khir & Pan, 2019).                                                                                                                                                                                                                             | 10            |
| Figure 3 Spatial photo shows rice cultivating regions. (adapted from Laborte et al. (2017))                                                                                                                                                                                      | 10            |
| Figure 4 Structure of 2-acetyl-1-pyrroline (2AP) (Wakte et al., 2017).                                                                                                                                                                                                           | 14            |
| Figure 5 A comparison of the (a) BADH2-dependent 2AP biosynthetic pathway<br>(Bradbury et al., 2008) and the (b) BADH2-independent 2AP biosynthetic pathway<br>(Huang et al., 2008; Sakthivel et al., 2009)                                                                      | 19            |
| Figure 6 Other volatiles in rice (adapted from Daygon et al. (2016); source:<br>https://pubchem.ncbi.nlm.nih.gov)                                                                                                                                                                | 21            |
| Figure 7 Structures of some proanthocyanidins in red rice grains (Shao & Bao, 2019).                                                                                                                                                                                             | 28            |
| Figure 8 GC-MS chromatograms of volatile compounds from Red Hawm Rice sample<br>with 3, 4, 5, 6 and 7 h preheated time at 80 °C in the hot air oven (followed by 120<br>°C headspace incubation temperature for 60 min)                                                          | es<br>)<br>57 |
| Figure 9 GC-MS chromatograms of volatile compounds from Red Hawm Rice sample<br>at 80 °C (blue line), 100 °C (green line), and 120 °C (red line) headspace incubation<br>temperature for 60 min. (All samples were previously preheated at 80 °C for 5 h in<br>the hot air oven) | es<br>58      |
| Figure 10 Representative chromatograms. (A) aromatic white rice (Basmati 370), (B) aromatic black rice (Klamhom), (C) non-aromatic black rice (Riceberry), (D) non-aromatic red rice (RD 69 Tubtim Chumphae); IS = internal standard.                                            | 80            |

| Figure 11 Enrichment of rice aroma compound groups classified by sets of main class        |
|--------------------------------------------------------------------------------------------|
| chemica                                                                                    |
| Figure 12 Partial least squares-discriminant analysis score plot of volatile profiles of   |
| aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice              |
| samples                                                                                    |
| Figure 13 Partial least squares-discriminant analysis of Thai colored rice volatile        |
| profiles. (A) aromatic black rice, (B) non-aromatic black rice, (C) non-aromatic red rice. |
|                                                                                            |
| Figure 14 Heatmap of aroma compounds identified in aromatic white, aromatic black,         |
| non-aromatic black, and non-aromatic red rice samples                                      |
| Figure 15 Box and whisker plots of principal aroma compounds identified in aromatic        |
| black rice samples                                                                         |
| Figure 16 Fold-change analysis of the volatile compounds abundance between (A)             |
| aromatic black rice and aromatic white rice samples, (B) aromatic black rice and non-      |
| aromatic black rice samples                                                                |
| Section 20                                                                                 |

# จุฬาลงกรณ์มหาวิทยาลัย Chill Al ONGKORN UNIVERSITY

#### **RESEARCH ORIENTATION**

This compilation thesis was composed of two published articles and constructed in accordance with Chulalongkorn University's guidelines. The thesis outline includes the following five chapters:

- **Chapter I:** BACKGROUND AND RATIONALE, which clarifies the main research question of thesis and explains connections with these two articles
- **Chapter II:** LITERATURE REVIEW, a comprehensive overview of relevant information from other research documents
- **Chapter III:** PUBLISHED ARTICLE I, which is written according to the Thai Journal of Pharmaceutical Sciences's guideline, Red Hawm Rice (KDML105R-PSL-E-14), a popular Thai colored rice, was developed from aromatic Jasmine Rice 105 (KDML105). Thus, aromatic compound research should begin with it.

Jindawatt, S., Ekkaphan, P., De-Eknamkul, W. and Tansawat, R. (2021). Static headspace GC-MS analysis for determination of colored rice volatile profile. *The 36th International Meeting in Pharmaceutical Sciences & Herbal Tradition Medicines 2021*, 17-20.

**Chapter IV:** ARTICLE II (under review), part of a research paper written in accordance with Frontiers in Plant Science guidelines

Tansawat, R., **Jindawatt, S.**, Ekkaphan, P., Ruengphayak, S., Vanavichit, A., Suttipanta, N., Vimolmangkang, S., De-Eknamkul, W. (2022). Metabolomics Approach to Identify Key Volatile Aromas in Thai Colored Rice Cultivars. *Frontiers in Plant Science*.

**Chapter V:** SUMMARY, a conclusion that integrates all pieces of work in this thesis and coherently presents key findings of both publications.

This chapter also includes a discussion of the study's limitations and suggestions for future avenues of inquiry building on this research.



**Chulalongkorn University** 

#### Chapter I

#### BACKGROUND AND RATIONALE

Alterations are being made all the time in consumer behavior (Ali & Ali, 2020). As an integral component of modern health care, the consumption of nutritious foods is a major focus of modern society. Consumers are more willing to pay greater prices than usual to get the foods that are cultivated rich in antioxidants and essential nutrients (De Magistris & Gracia, 2008; Krystallis & Chryssohoidis, 2005). One of the keys to a healthy diet and sustainable food production is to eat more plantbased meals and fewer that are animal-based (Langyan et al., 2021; Päivärinta et al., 2020). The global market for plant-based foods is anticipated to increase from 29.4 billion USD in 2020 to 161.9 billion USD in 2030 (Statistica, 2022). Consumers are interested in colored rice because to its health benefits, especially its antioxidant effects, which are stronger than in white rice (Sansenya & Nanok, 2020; Walter et al., 2013), and its high fiber and protein content, which makes it perfect as a plant-based food.

Rice, a member of the Poaceae (Gramineae) family, has a long breeding history. It is one of the major crop grains, particularly in Asian countries, because it is a primary energy source for human body. More than 400,000 rice germplasm accessions are stored in the gene bank around the world (Toriyama et al., 2004), suggesting that the chemical diversity across rice varieties is large. Thailand is the outstanding source of many fragrant rice varieties including Thai Jasmine rice (Khao Dok Mali 105 and RD 15) which are the most famous fragrant rice in the world. For the medical perspective, aromas of food can help increase appetite (Zoon et al., 2016). Thus, fragrant rice may be useful in the elderly or patients with chronic illness who can eat less than usual.

In addition to Thai Jasmine rice, which is white rice, Thailand also has many colored varieties of rice, such as Jao Hom Nin, Riceberry, Black Sticky Rice, Red Rice, Purple Rice, Sang Yod Rice, and Sang Rak Arun Siam Rice, which are of interest to many consumers. These rice varieties are primitive species with specific identities. It has dark in color ranging from red, brown to black, due to the accumulation of the antioxidant compounds such as proanthocyanidins, anthocyanins, flavonoids, and phenolic acids, which bring even more attention from several health-conscious consumers. Additionally, the characteristic of fragrant rice is that it has special breeding to produce and store the aroma compounds in each part of it, especially in the kernel. Nowadays, 2-acetyl-1-pyrroline (2AP) is the identified compound known to the key contribute to rice aroma.

Aroma compounds are classified as secondary metabolites. More than 300 aroma components have been identified in rice. In addition to the 2AP, fragrant rice also contains many aroma compounds such as hexanal, nonanal, octanal, *trans-2*nonenal, (E, E)-nona-2,4-dienal, heptanal, 1-octen-3-ol, 4-vinyl phenol, 4-vinyl guaicol, decanal, pentanal, *trans*-2-octenal, guaiacol, and vanillin (Daygon et al., 2016). However, most of the previous studies just reported the aroma profiles of white fragrant rice. There is lack of needed information about the chemical characteristics of aroma profiles of these colored rice varieties, and the specific identities of their aromas that differ from the typical white fragrant rice.

#### Conceptual framework and Objectives

The conceptual framework are summarized as follows in this thesis: Supplemental Figure S1. Red Hawm rice was used to modify two parameters, preheated time and incubation headspace temperature, beginning with the optimization procedure described in Chapter III. The resulting volatile profile was then utilized to determine the optimal condition to be implemented in Chapter IV. As a result, volatile profiles that can be used to determine the distinctiveness of Thai native-colored rice are developed.

#### ุหาลงกรณ์มหาวิทยาลัย

The contents are as follows: the first part of this thesis requires the development of a method for identifying its volatile components (Jindawatt et al., 2021). The objectives of the first study were to investigate the proper preheated time and headspace incubation temperature to extract as many volatile compounds as possible from Thai colored rice using the static headspace GC-MS approach. After finding a suitable condition, this method was used in the second part of this research. The second objective of this study was to analyze the types of aromatic

compounds in Thai colored rice varieties including aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice.

#### Benefit of the study

The findings of volatile profiles may one day be put to use to persuade individuals to consume colored rice varieties rather than white rice types for the purpose of improving their overall health and increasing the market worth of the nation.



6

## Chapter II

#### LITERATURE REVIEW

Rice

#### Botanical information

Rice, a member of the Poaceae (Gramineae) family, is classified into 24 species (two cultivated and 22 wild). The two cultivated species, including Asian cultivated rice (O. sativa), and African cultivated rice (O. glaberrima) (Wei & Huang, 2019). More than 400,000 rice germplasm accessions are stored in the gene bank around the world (Toriyama et al., 2004), suggesting that the chemical diversity across rice varieties is large. The rice plants consist of root, culm, leaf, panicle and spikelet. It usually takes 3-6 months from germination to maturity, depending on the variety and the environment under which it is grown (Yoshida, 1981b). The growth of rice plants is divided into 3 stages which are vegetative, reproductive, and ripening (Figure 1) (Moldenhauer et al., 2013). First, the vegetative stage refers to a period from germination to the initiation of panicle, which means active tillering, gradual increase in plant height, and leaf emergence at regular intervals. Second, the reproductive stage refers to a period from panicle initiation to heading, which means culm elongation, heading (panicle exsertion), and flowering (spikelet anthesis). Third, the ripening stage refers to a period from heading to maturity, which means leaf senescence and grain growth. The length of ripening, most of which is affected by the temperature, ranges from about 30 days in the tropics to 65 days in cool and

temperate regions such as Hokkaido, Japan and New South Wales, Australia (Yoshida, 1981b). The rice grain is shown in Figure 2, which enveloped by the husk (hull). When rice is brought into the shelling process, and brown rice which composed of the seed coat, nucleus, endosperm, is produced (Khir & Pan, 2019). The endosperm consists of the aleurone layer which enclose the embryo, and the starchy (Juliano, 2003). The white rice is produced by removing of outer layer of brown rice or milling process (Khir & Pan, 2019).

#### Geography and climate for cultivation

Presently, every continent (except Antarctica) can be used in the cultivation of rice (Figure 3), from northeastern China at latitude 53°N to New South Wales, Australia, at 40°S and from sea level in Kerala, India to an altitude of 3 km in Kashmir, India, and Nepal (Juliano, 2003; Yoshida, 1981a), with a concentration in tropical and temperate regions of Asia (Wei & Huang, 2019). In addition, It can be cultivated in both rainfed and irrigated conditions (Laborte et al., 2017), in both flooded (anaerobic soil) and upland (aerobic) conditions because it has air channels that connect to its roots (Juliano, 2016). Consequently, rice is cultivated two or three times per year in irrigated areas (Laborte et al., 2017).



<sup>3</sup> Stage III begins when 50% of the florets are pollinated

<sup>4</sup> Variable time -0 to 25 days (dependent upon cultivar).

Figure 1 Developmental stages of the rice plant (adapted from Moldenhauer et al. (2013))



Figure 3 Spatial photo shows rice cultivating regions. (adapted from Laborte et al. (2017))

3,000 Km

Since, the climate is influenced by geography, which temperature, solar radiation, and rainfall influence rice growing by directly affecting the physiological processes involved in grain production, and indirectly through diseases and insects. In the temperate regions, irrigated rice cultivation starts when spring temperatures are between 13°C and 20°C; the crop is harvested before temperatures drop below 13°C in the autumn. For, the tropics regions where temperature is suitable for rice growth throughout the year and irrigation is not available in most places, cultivation starts with the rainy season. In both the tropics and the temperate regions, rice yields are primarily determined by the level of incident solar radiation. In the tropics, the dry season rice usually produces higher yields than the wet season because it receives more sunlight (Yoshida, 1981a). Consequently, China and India are the major rice production countries, which can be cultivated about 50% of the world's rice. It is mainly grown in the Yangtze River basin, southeast coastal area, and northeast area of China, while India use the Gangetic Plain and coastal areas are the major rice cultivation (Wei & Huang, 2019).

#### Rice processing and storage

Rice processing can be defined as a set of operations, which consists of harvesting, drying, and milling. Initial. When the rice is ripening, it is inputted to harvesting process, which consisted of cutting, collecting, threshing the rice crop, separating, and cleaning the grains. This process can be used technology to increase yields, is resulting loss of only 1-2% yields. Harvesting process brings about rough rice (paddy rice) as a major product and straw as a by-product (Khir & Pan, 2019). Then, rough rice needs to be dried as soon as possible for prolonging the storage life of rice by slowing down respiration and preventing deterioration due to molds and insect attack (Khir et al., 2011). Nowadays, infrared (IR) heating is widely used in drying process because it offers many advantages compared to conventional drying (sun) methods (Sharma et al., 2005), which provides a high heating rate, rapid moisture removal, effective disinfestation and disinfection, good rice milling quality, and storage stability (Pan et al., 2008). Afterward, rough rice is entered to milling process, consisted of dehusking, whitening, polishing, and separation, which remove the outer layer from the endosperm simply accessible for human consumption. Approximately 65-72% of rough rice in milling process is edible rice (Singh et al., 2014).

Storage condition after rice processing have a big impact on yields and quality of the final product (Champagne, 2008). Many of the key factors effect in rice quality degrade during storage, such as rodents, birds, insects, microorganisms like fungi, moisture, and temperature. Especially, storage temperature and humidity are the most important environmental factors affecting rice quality (Chen et al., 2015). During storage, the rice aroma can change, mainly because of oxidation and losses over time (Griglione et al., 2015). Therefore, the deterioration of rice quality was accelerated by undesirable storage conditions (Pomeranz & Zeleny, 1971).

Park et al. (2012) reported that milled rice was stored at high temperatures (30 °C and 40 °C) showed higher fat acidity than rice stored at low temperatures (4 °C 20 °C), which fat acidity is commonly used as an index of quality deterioration during rice storage because lipid dissolution progresses more rapidly than that of protein and starch (Genkawa et al., 2008). Likewise, the study by Choi et al. (2019) reported that high temperature (35  $^{\circ}$ C) was not appropriate for storage of unmilled or milled black rice because it promoted lipid oxidation, producing volatile compounds. Additionally, previous studies showed that the levels of straight chain aldehydes, such as octanal, hexanal, (E)-2-octenal, and 2-nonenal in rice were significantly increased during storage of non-colored rice and various factors affect lipid-oxidationrelated volatiles (Griglione et al., 2015; Tananuwong & Lertsiri, 2010). Similarly, Biao et al. (2019) reported that volatile compounds such as aldehydes, ketones, and furans increased when rice was stored under high temperature-high humidity conditions, leading to a pronounced deterioration in rice quality. The relatively high content of aldehydes in the rice produced a detectable rancid odor.

Furthermore, higher storage temperatures (30  $^{\circ}$ C and 40  $^{\circ}$ C) significantly decreased all sensory values (*P* < 0.05) even after 1 month of storage (Park et al., 2012). Undesirable temperature affects rapidly the deterioration of rice quality. So, the grain should be stored in bags/vessels, bulk or hematic containers. The study by Norkaew et al. (2017) reported that Nylon/LLDPE pouches containing N<sub>2</sub> was the

most suitable packaging for preserving the key aroma compound 2-acetyl-1- pyrroline (2AP) (Figure 4), total phenolic, and anthocyanin contents of unpolished aromatic black rice.



Figure 4 Structure of 2-acetyl-1-pyrroline (2AP) (Wakte et al., 2017).

#### Fragrant rice varieties and volatile compounds

"Farmers are the backbone of the nation." It has been said for generations in Thailand. If this saying is true; consequently, rice which cultivated by farmers, is one of the important economic plants of Thailand. In 2010, Thailand was the biggest exporter of fragrant rice; 2.65 million tons of jasmine rice were exported (Wei & Huang, 2019), but in 2017 China's rice production was approximately 172 million tons, ranking first in the world (Nie & Peng, 2017), overtaking India, Pakistan and Thailand.

However, quality is still more important than quantity, in the opinion of consumers, the aroma of the rice has a big impact on consumers (Griglione et al., 2015). As a recent sensory study of Champagne et al. (2010), using popular varieties grown throughout South and Southeast Asia, revealed a characteristic flavor profile for those varieties commonly grown and consumed in Southeast Asia consisting of sweet, floral, grassy and dairy notes. In addition, globalization of cuisines and migration of rice consumers from asia to western countries have both led to an increase in demand for both Basmati rice (Ferrero, 2004) and Jasmine rice in western countries (Suwansri et al., 2002). Consequently, Thai Jasmine rice (e.g. Khao Dawk Mali 105) and Basmati rice (Indian fragrance rice) have remained world-renowned and have been in demand among consumers until now.

Moreover, the fragrant rice varieties are a high value agricultural product in the economy of the producing country, which are sold at a premium price in local and export markets because of their superior grain qualities and pleasant and distinctive aroma (Calingacion et al., 2014). In terms of aroma, study has shown that fragrant rice from different parts of the world contain the popcorn-like fragrant compound, 2-acetyl-1-pyrroline (2AP) (Buttery et al., 1983), and carry the same mutation in the fragrance (Bradbury et al., 2005; Fitzgerald et al., 2008). Hence, aroma is one of the quality markers for rice (Kovach et al., 2009) and 2AP is the key discriminator between fragrant and non-fragrant rice and many studies have focused on the concentration of 2AP in different rice varieties.

2AP was first identified in rice by Buttery et al. (1982), and is regarded as the most important aroma compound in rice, especially fragrant rice (Buttery et al., 1983). The IUPAC name of 2-acetyl-1-pyrroline (2AP) is 1-(3,4-dihydro-2H-pyrrol-5yl)ethanone, its CAS number is 85213-22-5 and its FEMA (Flavour and Extract Manufacturers Association) number is 4249 (Wei et al., 2017). It was described as popcorn-like aroma, together with its low odor threshold (Schieberle, 1991), but it an important contributor to a food's aroma when present (Bradbury et al., 2005; Fitzgerald et al., 2009).

Later, Buttery et al. (1988) found that 2AP in fragrant rice as 15 times more than in non-fragrant rice. Also, it can only be formed in the aerial parts of plants during growing in paddy fields (Yoshihashi, 2002). 2AP synthesis starts in the early vegetative stage, and accumulates to increase concentration in mature grains of fragrant rice is three times higher than in leaves, and finally gets accumulated in rice seeds (Routray & Rayaguru, 2018). The formation, accumulation, and forms of 2AP present in rice are determined by external factors, such as chemical parameters, agricultural practices, geographical locations, prevailing climatic conditions, cultivar types and genetic makeup (Bhattacharjee et al., 2002; Champagne, 2008; Routray & Rayaguru, 2018).

Various studies have shown that environmental factors affect to 2AP synthesis in rice. Initially, Yoshihashi et al. (2004) showed that more 2AP would be synthesized when rice is grown in a dry climate, due to increased accumulation of its precursor proline. For example, Khao Dawk Mali 105, a famous Thai fragrant rice variety. Samples of this variety were collected from an area under drought conditions, and 2AP accumulation was higher in these samples than that in rice samples collected from an area under non-drought conditions. Likewise, The effects of varying draining and harvesting time on rice sensory properties was studied and stable flavor was observed with timing of field draining (14-day span) and harvesting (32–48 days after flowering) (Champagne et al., 2005).

In addition to, some of studies noted that aroma formation and retention in grain was enhanced at low temperature during the grain filling stage. Basmati requires relatively cooler temperature (25 °C/21 °C day/night during crop maturity) for best retention of aroma (Mann, 1987). Also, Singh et al. (2000) reported that a Basmati variety would be more aromatic if cultivated in an area having relatively cool temperatures in the afternoon (25–32 °C) and night (20–25 °C) with humidity of about 70 – 80% during primordial and grain filling stages. Later, several studies confirmed that drought (Mannan et al., 2012), salinity (Gay et al., 2010; Wijerathna et al., 2014), and crop management practices such as plant populating, harvesting time (Goufo, Wongpornchai, et al., 2010), and storage conditions (Tananuwong & Lertsiri, 2010; Widjaja et al., 1996a) all affected 2AP accumulation or concentration in fragrant rice grains, due to higher proline accumulation in plants from environmental stresses (Szabados & Savouré, 2010).

Additionally, Yang et al. (2010) have found that application of nitrogenous fertilizer strengthens the aroma, by increasing free proline content in rice whereas

low fertilizer tends to result in lower 2AP content. In consequence, nitrogen is an important factor which increased 2AP formation in aromatic rice during the development (Itani et al., 2004; Yoshihashi et al., 2002). Moreover, other organisms can influence the increment of 2AP synthesis in rice. Li et al. (2019) found that rice-duck co-culture not only improved the yield and grain quality of fragrant rice, but also promoted both the precursors of 2AP biosynthesis and 2AP accumulation itself. Because, ducks increase the availability of nutrients, and stimulate the physiology of rice plants as they move around the rice fields.

Biosynthesis of 2AP in rice was discovered to be inhibited by a "dominant *BADH2* allele (located on chromosome 8) encoding betaine aldehyde dehydrogenase (*BADH2*)" which are shown in Figure 5 (Jodon, 1944; Kadam & Patankar, 1938; Lorieux et al., 1996). The mechanism was described as follows, normally, gene *BADH2* encodes an enzyme, betaine aldehyde hydrogenase (*BADH2*) which catalyzes the oxidation of 4-aminobutanal to 4-aminobutanoic acid (GABA). Non-fragrant rice varieties contain the *BADH2* gene and a functional *BADH2* enzyme. Whereas fragrant varieties have the mutated *BADH2* gene and so produce a non-functional enzyme. The mutated *BADH2* gene incurs a deletion of eight base pairs in exon 7, leading to early gene termination and production of a truncated non-functional *BADH2* enzyme (Bradbury et al., 2008; Kovach et al., 2009; Vanavichit et al., 2008). Consequently, this non-functional enzyme will not be able to oxidize 4-aminobutyraldehyde, leading to

a build-up of 1-pyrroline and hence increased 2AP synthesis (Bradbury et al., 2005; Bradbury et al., 2008).

Afterwards, Huang et al. (2008) proposed additional biosynthetic pathway of 2AP that did not involve *BADH2*. Glutamate was converted to 1-pyrroline-5-carboxylate then, it undergoes a reaction with methylglyoxal, giving rise to 2AP. Similarly, Fitzgerald et al. (2008) found that additional mutations in the pathway leading to 2AP synthesis came from a rigorous study involving a diverse panel of fragrant germplasm that identified several accessions, mostly from Southeast Asia, that had elevated levels of 2AP but did not carry the *BADH2* allele.





Figure 5 A comparison of the (a) BADH2-dependent 2AP biosynthetic pathway (Bradbury et al., 2008) and the (b) BADH2-independent 2AP biosynthetic pathway (Huang et al., 2008; Sakthivel et al., 2009).

From the aforementioned proposed mechanism showed that 1-pyrroline was a limiting substrate of the biosynthesis of 2AP, a recent study by Poonlaphdecha et al. (2016) found that increment of 2AP production in both fragrant and non-fragrant rice calli which were incubated with 1-pyrroline. Finally, even though the rice is of good quality, but rice aroma can be lost over time if rice was kept for a long time at high temperature. Thus, 2AP has been reported as a possible marker of ageing, because it decreases over time (Widjaja et al., 1996b; Wongpornchai et al., 2004). The study of Goufo, Duan, et al. (2010) found that higher 2AP was reported during storage of 3 months at -4 °C.

Aroma compounds are classified as secondary metabolites. More than 300 aroma components have been identified in rice by comparing their mass spectra and those of the authentic standard and/or the mass spectra found in reference libraries (Jezussek et al., 2002; Widjaja et al., 1996a). Not only fragrant rice has 2AP but also contains many aroma compounds which are shown in Figure 6; such as hexanal, nonanal, octanal, *trans*-2-nonenal, (E,E)-nona-2,4-dienal, heptanal, 1-octen-3-ol, 4vinyl phenol, 4-vinyl guaiacol, decanal, pentanal, *trans*-2-octenal, guaiacol, and vanillin (Daygon et al., 2016). Several studies confirmed that rice aroma included saturated and unsaturated aldehydes, alcohols, and cyclic compounds; in particular, hexanal, 1-octen-3-ol and 2-pentylfuran were the markers of both quality and ageing (Buttery et al., 1988; Champagne, 2008; Grimm et al., 2001; Laguerre et al., 2007; Mahatheeranont et al., 2001; Widjaja et al., 1996a).



Figure 6 Other volatiles in rice (adapted from Daygon et al. (2016); source: https://pubchem.ncbi.nlm.nih.gov).

Besides, further studies showed that the candidate volatiles included 2acetyl-1-pyrroline, (E,E)-2,4-decadienal, nonanal, hexanal, (E)-2-nonenal, octanal, decanal, 4-vinyl-guaiacol, 4-vinylphenol, 2-amino acetophenone, and 4,5-epoxy-(E)-2decenal (Buttery et al., 1988; Jezussek et al., 2002). The study from Yang et al. (2008) found 25 aroma-active compounds in Korean black rice. Compounds that had a high aroma intensity in Korean black rice were 2AP, (E)-2-nonanal, nonanal, hexanal and 3-octen3-one. Some of the key markers were found to be related to off-flavor depending on storage; most of these are products of lipid degradation, such as hexanal, octanal, 2-(E)-nonenal, dec-(2E)-enal, 2-pentylfuran, and (E,E)-2,4-decadienal (Champagne, 2008). Thus, the effects of ageing can be monitored through several compounds: 2-(E)-octenal was identified as an universal marker of ageing for all rice varieties, while 2-pentyl furan, 1-octen-3-ol and dec-(2E)-enal were varieties-specific markers (Griglione et al., 2015).

Eating quality is a major determinant of customer approval of a specific rice variety, and most consumers would not consume the cooked rice they dislike despite its possible health benefits (Wang et al., 2022). Texture is only one component of the more nuanced concept of eating quality. Flavor is often evaluated by taking into account scent, taste, and other sensory properties in order to arrive at a conclusion on which rice type will be preferred by consumers (Biao et al., 2019; Verma & Srivastav, 2022). There have been identified about five hundred volatile organic compounds that contribute to the flavor and odor of cooked rice (Hu et al., 2020). For examples, hexanal, 2-acetyl-1-pyrroline, and E-2-nonenal have been identified as essential aromatic components of cooked rice (Bergman et al., 2000). Juliano et al. (1981) noted that if the cooking method is a variable, then the eating quality may be affected (Juliano et al., 1981). This could be due to the alteration of aromatic compounds in the rice.

#### Chemical group of rice grain volatiles

More than 300 types of volatile organic chemicals have been discovered in rice (Jezussek et al., 2002), which can be classified into seven groups: aldehydes,

22

alcohols, ketones, acids, hydrocarbons, esters, and heterocyclic compounds(Hashemi et al., 2013; Wakte et al., 2017). 2-AP belongs to the pyrrolines class of chemical compounds, which is considered the most representative fragrance for identifying the overall aroma of cooked rice (Wei et al., 2017). Rice aroma can be traced back to the early 198s, when it was initially analyzed and evaluated under the term "popcorn aroma" (Buttery et al., 1988).

The most numerous chemicals were hydrocarbons, followed by aldehydes. Aldehydes and hydrocarbons account for the greatest proportion by weight of volatile chemicals in rice. alcohols, ketones, organic acids, esters, and heterocyclic compounds (Lin et al., 2010). Hydrocarbons found in rice, for example, 2,6,10trimethyl-12alkane, pentadecane, 2,6,10-trimethyl-15alkane, hexadecane, and heptadecane.

Pentanal, hexanal, heptanal, 2-heptene aldehyde, octanal, nonanal, decyl aldehyde, 2-methypropanal, 2-methylbutanal, 3-methylbutanal and benzene formaldehyde are examples of aldehydes. Hexanal and nonanal are present in higher proportions than the other chemicals in this category (Lin et al., 2010; Zheng et al., 2022). Among alcohols, there are substances that can be found such as 1-octen-3-ol, hexanol, 1-octanol which obtained a higher odor threshold, and they are considered to be more abundant compounds than aldehydes (Yang et al., 2008). Even so, there was considerable variation in the types of ketones detected in rice. The ketone content was much lower than the aldehyde content. There are other volatiles in ketones that can be found, such as acetone, 2-heptanone, 2-octanone, 2,3-octandione, and 6,10,14-trimethyl-2-pentadecanone. Heterocyclic compounds and alcohols Heterocyclic compounds, which are comprised of pyridines, thiazoles, pyrazines, furans, oxazoles, pyrroles, and their derivatives (Demyttenaere et al. 2002), The compounds discovered include dihydrobenzofuran, 2-pentylfuran, and 2-alkyl furans (Zheng et al., 2022).

#### Phenolic compounds and health benefits

Phenolics are secondary metabolites present ubiquitously throughout the plant kingdom (Khalid et al., 2019), which comprise of simple phenolic acids (Table 1), flavonoids (Table 2), anthocyanidins (Table 3), proanthocyanidins (Figure 7), lignins, and lignans (Soto-Vaca et al., 2012). Phenolics are synthesized in plants partly as the response to ecological and physiological stresses such as pathogens and insects, salt, drought, ultraviolet radiation, and wounding (Kong et al., 2004; Park et al., 2013). Major roles of flavonoids in plants include modulation of reactive oxygen species (ROS) by reducing the singlet oxygen's, hindering of enzymes involved in ROS generation (lipoxygenase, cyclooxygenase, xanthine oxidase, monooxygenase), by chelating transition metal ions which trigger the ROS production, and quenching lipid peroxidation by number of free radical reactions, and help in the recycling of other
antioxidants (Arora et al., 2000; Cotelle et al., 1996; Mierziak et al., 2014; Rice-Evans et al., 1996). In addition, resisting to harsh environment was observed in further studies (Armero et al., 2001; Schmidt et al., 1994) and found that the exudation of flavonoids to the rhizosphere was shown as signal molecules in response to symbiont or pathogenic microorganism, and abiotic stresses such as drought stress, nitrogen, temperature (Coronado et al., 1995; Dixon & Paiva, 1995; Juszczuk et al., 2004). Likewise, further studies showed that flavonoids transported to infection site gave prompt hypersensitivity reaction, which was the basic defense mechanism adopted by the infected plants. It was observed that flavonoids was assimilated into the walls of necrotic and adjacent cells (Beckman, 2000; Blount et al., 1992).

| Groups                    | Name    | $\mathbf{R_1}$ | $\mathbf{R}_2$   | $\mathbb{R}_3$   | $\mathbb{R}_4$   | $\mathbf{R}_{5}$ |
|---------------------------|---------|----------------|------------------|------------------|------------------|------------------|
|                           | GA      | Н              | НО               | НО               | НО               | Η                |
| HO                        | p-HA    | Η              | Н                | НО               | Н                | Н                |
| Rs, , , , , , R1          | 2,5-DHA | НО             | Н                | Н                | НО               | Н                |
| 2                         | PA      | Н              | НО               | НО               | Н                | Н                |
| $R_4 \xrightarrow{3} R_2$ | VA      | Н              | OCH <sub>3</sub> | НО               | Н                | Н                |
| дЯ                        | SYA     | Η              | OCH <sub>3</sub> | НО               | OCH <sub>3</sub> | Н                |
| Hydroxybenzoic acid       | SAA     | Н              | Н                | Н                | Н                | НО               |
| R5<br>  7 ОН              | CA      | Н              | НО               | НО               | Н                | Н                |
| $R_4 \rightarrow 5$       | p-CA    | Н              | Н                | НО               | Н                | Н                |
|                           | SIA     | Η              | OCH <sub>3</sub> | НО               | OCH <sub>3</sub> | Η                |
| R2 N3                     | FA      | Η              | OCH <sub>3</sub> | НО               | Н                | Н                |
| Hydroxycinnamic acid      | IFA     | Н              | НО               | OCH <sub>3</sub> | Η                | Η                |

Table 1 Structures of simple phenolic acids (hydroxybenzoic and hydroxycinnamic) in rice grains (Shao & Bao, 2019).

VA, vanillic acid; SYA, syringic acid; SAA, salicylic acid; CA, caffeic acid; p-CA, p-coumaric acid; SIA, sinapic acid; GA, gallic acid; p-HA, p-hydroxybenzoic acid; 2,5-DHA, 2,5-dihydroxybenzoic acid; PA, protocatechuic acid; FA, ferulic acid; IFA, isoferulic acid.

| Structure formula                                                                           | Group                                                                      | Description                                     | Examples                                                                                                             |                          |  |
|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------------------|--|
| 2, 3, 4,                                                                                    | Flavone                                                                    | 2-Phenylchromen-4-one                           | Luteolin, Apigenin, Tangeritin                                                                                       |                          |  |
| 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 | Flavonol or 3-<br>hydroxyflavone                                           | 3-Hydroxy-2-phenylchromen-4-one                 | Quercetin, Kaempferol, Myric<br>Fisetin,Galangin, Isorhanne<br>Pachypodol, Rhannazin,<br>Pyranoflavonols, Furanoflav | etin,<br>etin,<br>vonols |  |
|                                                                                             | Flavanone                                                                  | 2,3-Dihydro-2-phenylchromen4-one                | Hesperetin, Naringenin, Eriodi<br>Homoeriodictyol                                                                    | ictyol,                  |  |
|                                                                                             | Flavanonol or 3-<br>Hydroxyflavanone<br>or 2,3-Dihydroflavonol             | 3-Hydroxy-2,3-dihydro-2-<br>phenylchromen 4-one | Taxifolin, Dihydrokaempferol                                                                                         |                          |  |
| Table 3 Struct                                                                              | ures of anthocyani                                                         | dins in rice grains (Shao &                     | Bao, 2019).                                                                                                          | Í                        |  |
| Groups                                                                                      |                                                                            | Name                                            | R1                                                                                                                   | $\mathbb{R}_2$           |  |
|                                                                                             | ۳.<br>۳.                                                                   | Cyanidin                                        | НО                                                                                                                   | H                        |  |
|                                                                                             | 2 <sup>-1</sup> 4 <sup>-1</sup>                                            | Peonidin                                        | OCH3                                                                                                                 | Н                        |  |
| HO B C B C B C B C B C B C B C B C B C B                                                    | 0 <sup>+</sup> 1 <sup>-</sup> 5 <sup>-</sup> 5 <sup>-</sup> R <sub>2</sub> | Malvidin                                        | OCH3                                                                                                                 | OCH3                     |  |
| 9<br>9                                                                                      | c                                                                          | Pelargonidin                                    | Н                                                                                                                    | Н                        |  |
| 0H2                                                                                         | 4                                                                          | Delphinidin                                     | ЮН                                                                                                                   | НО                       |  |

Table 2 Structures and groups of flavonoids in rice grains (Shao & Bao, 2019).

Anthocyanidins are the sugar-free counterparts of anthocyanins.







Proanthocyanidins dimmers B (C4-C6)  $R_1=OH, R_2=H, R_3=OH, R_4=H$   $R_1=H, R_2=OH, R_3=H, R_4=OH$   $R_1=OH, R_2=H, R_3=H, R_4=OH$  $R_1=H, R_2=OH, R_3=OH, R_4=H$ 

Proanthocyanidins dimmers B (C4-C8)  $R_1=OH, R_2=H, R_3=OH, R_4=H$   $R_1=H, R_2=OH, R_3=H, R_4=OH$   $R_1=OH, R_2=H, R_3=H, R_4=OH$  $R_1=H, R_2=OH, R_3=OH, R_4=H$ 



Proanthocyanidins dimmers A (C4-C8, C2-O7)



Plants containing a high amount of flavonoids have been used to cure many ailments in humans due to their antioxidant, antibacterial, antiviral, antifungal, antiinflammatory and anticancer properties (Khalid et al., 2019). Antimicrobial activity of flavonoids has been shown in several studies; for instance, inhibitory activity of flavonoids against the human immunodeficiency virus (HIV) is the most important and dynamic area of research in plant sciences.

Most of the research work has focused against pandemic HIV-1 strain and its enzyme profiles. Flavonoid (Baicalein) has shown pronounced inhibitory activity to HIV-1 infection and replication of many other viruses (González-Molina et al., 2010; Tripoli et al., 2007).

Also, antibacterial activity was found in many phytochemical extracts with high flavonoids content (Ghandchi & Jamzad, 2015; Tereschuk et al., 1997). Similarly, some commercially available flavonoids like ponciretin (Kim et al., 1999), apigenin (Herrera et al., 2010; Sato et al., 2000), pinocembrin (Fukui et al., 1988; Ye et al., 2017), genkwanin (Palacious et al., 1983), naringin and naringenin (Rauha et al., 2000), luteolin and luteolin 7-glucoside (Sato et al., 2000) were found to be potent antibacterial agents. Additionally, propolis also showed activity against *Candida* spp. and dermatophytes because of its high flavonoid contents (Agüero et al., 2014), while another flavonol (galangin) most commonly found in propolis had inhibitory activities against A. flavus, A. tamari, Penicillium digitatum, P. italicum and Cladosporium sphaerospermum (Afolayan & Meyer, 1997; Famewo et al., 2017).

There are many chemical reactions in human metabolism which generate free radicals as by products all the time. It has been estimated that the average person has around 10,000 – 20,000 free radicals attacking each body cell each day. Uncontrolled free radical activity might combine with other factors to cause chronic diseases such as neurodegenerative diseases, diabetes, heart disease, cancers etc. (Pala & Gürkan, 2008). Fruits and vegetables, which usually rich in phenolic compounds (Chun et al., 2005; Kaur & Kapoor, 2001; Szajdek & Borowska, 2008; Vasco et al., 2008), are associated with a lower risk of chronic diseases (Block et al., 1992; Steinmetz & Potter, 1996). Thus, World Health Organization (WHO) recommends a daily intake of at least 400 g fruits and vegetables (potatoes not included) (WHO, 2002), and US health authorities recommend a minimum of 5 servings of fruits and vegetables a day (USDHSS, 1991).

Generally, in human metabolism, reactive oxygen species (ROS) formation is enhanced by metal ions, the mechanism involved in this reaction is that hydrogen peroxide is reduced by these metal ions resulting in the generation of hydroxyl radical, which is highly reactive (Mishra, Kumar, et al., 2013). Subsequently, cell membrane is attacked by ROS when an unbalance between the ROS and antioxidant, leading to loss of membrane integrity and normal function (Schneider & Oliveira, 2004). Cardiovascular disease is one of noncommunicable disease (NCDs) which is a leading cause of disability and death (Smith et al., 2012). The common phenomenon involved in the development of CVD is the atherosclerotic plaque formation which is initiated by endothelium damage. Atherosclerosis is characterized by the plaque formation in large arteries, and it is one of the major factors contributing to incidence of stroke and myocardial infarction. Also, inflammation and oxidative stress are the key factors contributing to the damage of endothelium (Kaleem & Ahmad, 2018). When the inflammation takes place for a long period of time, it can mediate the development of several chronic diseases such as CVD, cancer, arthritis, neurodegenerative diseases, and pulmonary diseases (Rubio-Perez & Morillas-Ruiz, 2012).

Several previous studies have shown that high intake of fruits and vegetables rich in flavonoids reduce several risk factors for development of atherosclerosis including high tolerance to glucose, maintaining good body mass index, lowering blood pressure (Mulvihill & Huff, 2010). As flavonoids are natural compounds, they can target multiple steps in the inflammation pathway as compared to monotargeted synthetic anti-inflammatory drugs (Sung et al., 2012). The capability of flavonoids to control oxidative stress and act as anti-inflammatory agents is responsible for their cardioprotective properties. The anthocyanins present in black rice grain and the proanthocyanidins found in red rice and grape seeds scavenge hydroxyl radicals and superoxide ion (Kruger et al., 2014; Walter & Marchesan, 2011)

production of nitric oxide (NO) is stimulated Furthermore. by proanthocyanidins which are present in red grapes. The availability of NO in acute oxidative stress like reperfusion/ischemia is protective to cardiomyocytes, because it inhibits the cardiomyocytes apoptosis (Jones & Bolli, 2006). Likewise, recently study by Bondonno et al. (2019) found the associations of flavonoid and flavonoid-rich wholefood intakes with all-cause mortality and the moderating effects of early mortality risk factors. The study included 2,349 participants of The Blue Mountains Eye Study, with a mean  $\pm$  SD age at baseline of 64.7  $\pm$  9.2 years. After 14 years of follow-up, moderate to high intakes of flavonoids and certain flavonoid subclasses may provide health benefits, particularly for individuals with at least one early mortality risk factor.

Cancer cells are normal cells which have defect in regulatory circuits that govern cell proliferation and homeostasis (Hanahan & Weinberg, 2000). Cancer treatment with chemotherapy often causes adverse reactions because normal cell is killed together with cancer cells too. An ideal anticancer agent is one which has a maximum capacity to inhibit tumor growth or to kill cancer cells, but causes minimum adverse health effects (Zhao et al., 2012). Nowadays, medical recommendations have confirmed that consumption of vegetables and fruits which are rich in flavonoids prevent the development of cancer (Mishra, Sharma, et al., 2013). Due to the presence of polyphenol aromatic rings in flavonoids, it has been found that flavonoids possess pro and antioxidant properties (Leung et al., 2007). Likewise, recently studies have shown that anticancer properties of flavonoids may be due to their pro-oxidant properties (Habtemariam & Dagne, 2010; Liu et al., 2012). Additionally, some flavonoid compounds, like genistein, quercetin, and flavopiridol, were at the late phase of clinical trials for cancer treatment (Lazarevic et al., 2011). *In vitro* study, higher oxidative stress was observed in the cancer cells as compared to normal cells, making them more susceptible to be killed by a substance which enhanced reactive oxygen species level like flavonoids (Valdameri et al., 2011; Yuan et al., 2012). Therefore, a flavonoids acting as pro-oxidant or antioxidant is dependent on the concentration, type of cell and culture condition in which it is grown (Pacifico et al., 2010). Besides, recently article by George et al. (2017) noted that the most efficacious plant flavonoids, including luteolin, epigallocatechin gallate, quercetin, apigenin, and chrysin, contributed to the chemoprevention with a focus on protection against DNA damage caused by various carcinogenic factors.

#### หาลงกรณมหาวิทยาลัย

Diabetes Mellitus (DM) is one of metabolic disorders characterized by the presence of hyperglycemia due to impairment of insulin secretion, defective insulin action or both (Punthakee et al., 2018). Recently, epidemiological studies found that DM was the ninth major cause of death, and related to unhealthy behaviors, including overweight and obesity, sedentary lifestyle, and increased consumption of unhealthy diets containing high levels of red meat and processed meat, refined grains and sugar-sweetened beverages (Zheng et al., 2018). Likewise, earlier study has found that consumption of flavonoids rich diet regulate digestion of carbohydrates, secretion of insulin and uptake of glucose in insulin sensitive tissue by regulating several intracellular pathways (Hanhineva et al., 2010). Especially, the anti-diabetic effect of flavon-3-ols was reported that the function of mitochondria was also improved by maintaining its functional integrity in pancreatic beta-cells exposed to glucose toxicity (Erdman Jr et al., 2007). Also, rat model study by Nizamutdinova et al. (2009) showed that the seed coat of black soybeans was rich in delphinidin, cyanidin and petunidin. Soybean seed coat extract ameliorated insulin resistance by improved the insulin concentration in the serum, along with improving tissue glucose utilization. Similar to EGCG and ECG, naringin and hesperidin minimized the oxidative stress and hyperglycemia in male albino rats in which diabetes is induced by streptozotocin, by oral administration at the dose of 50 mg/kg for a period of 1 month (Mahmoud et al., 2012).

Liver is one of the major vital organs of the human body. All of biochemical processes such as growth, nutrient provision, supply of energy and reproduction, are related by liver function (Adewusi & Afolayan, 2010). There are many factors that can cause liver damage in everyday life. On the other hand, consumption of certain foods protects against liver damage. Hepatoprotective properties of plant-based foods are mostly attributed to bioactive compounds like flavonoids. Following these successes, several studies have been conducted to check the hepatoprotective activities of plant extract rich in flavonoids or individual flavonoid compounds (Madrigal-Santillán et al., 2014). Several flavonoids such as guercetin, rutin, catechin, naringenin, and venoruton have been reported for their hepatoprotective effect (Tapas et al., 2008).

Likewise, Dogan and Celik (2012) noted that Grapes and grape seeds were rich source of flavonoids like resveratrol, proanthocyanidin, anthocyanidins, epicatechins, and catechins. The hepatoprotective effect and antioxidant activity of grape seeds was observed in rats in which hepatitis was induced by oxidative stress and assessed by marker enzymes like GGT, ASAT, LDH, ALAT, SOD, GSH, MDA, GPx, and GST. This level of marker enzymes was significantly decreased in rats, which was fed ethanol along with grape seed. This showed that the adverse effects caused by the oxidative stress of ethanol were minimized by the consumption of grape seed. Also, a flavonoid named Silymarin has three structural components: silydianine, silibinin, and silychristine. These are extracted from the seeds and fruit of milk thistle Silybum marianum (Compositae) and have been reported to stimulate enzymatic activity of DNA-dependent RNA polymerase 1 and subsequent biosynthesis of RNA and protein which results in biosynthesis of DNA and cell proliferation resulting in liver regeneration in damaged livers (He et al., 2004).

Voluminous interventional and epidemiological studies have shown that consumption of whole grains can reduce the risks of chronic diseases, such as cardiovascular diseases, type II diabetes, obesity, and some cancers. Consequently, whole rice grain is becoming popular in western countries due to its health benefits, and is more gradually accepted in developing countries with the improvement of living standards (Shao et al., 2011). The colors of the whole grain rice range from white to red, and black (dark purple). Red and black (dark purple) pericarp have higher antioxidant activities than white pericarp (Min et al., 2011). The health benefits of whole grain are mainly contributed by one of its major constituents, the polyphenols. Polyphenols in rice grain can be classified into three subgroups: (1) phenolic acids, which is the most common secondary metabolites in cereal grains; (2) anthocyanins, which only exist in black or dark purple grains, as a large group of secondary metabolites, are water-soluble flavonoids, and may appear red, purple, or blue depending on pH (Jaiswal et al., 2012); and (3) proanthocyanidins, which mainly consist of catechin and epicatechin block unit in red rice and are considered to be the most effective antioxidants in nature (Gunaratne et al., 2013; Jaiswal et al., 2012; Min et al., 2011; Qiu et al., 2010).

Previously, the studies have shown that higher intake of white rice are associated with a significantly increased risk of Type 2 diabetes, as well as an elevated risk of glucose homeostasis disorder (Soriguer et al., 2013). According to Ti et al. (2015) and Meng et al. (2018), black rice has received increasing attention principally because of its low postprandial blood glucose response, which the phenolic compounds can inhibit the activity of intestinal alpha-glucosidase and pancreatic alpha-amylase (Ranilla et al., 2010). However, prior study found that anthocyanins extracted from black rice also played an important role in reducing hypertriglyceridemia and adverse effects of alcohol (Hou et al., 2010). *In vitro* study by Yang et al. (2011) showed that dyslipidemic rats were fed with high fat diets supplemented with anthocyanin extracted from black rice (AEBR), the platelet hyperactivity and body weight gain was significantly lower than in those fed with only high fat diet, suggesting that dietary intake of AEBR facilitates the maintenance of optimal platelet function in dyslipidemic rats induced by high fat diets.

According to Shao et al. (2018), the phenolic acids was distributed within the whole body, after become absorbed in the stomach and small intestine, with concomitant health benefits such as inhibition against oxidation of low-density lipoprotein cholesterol (Min et al., 2012). Besides, the phenolic acids from brown rice bran also showed putative breast and colon cancer chemopreventive properties (Hudson et al., 2000). Lately, Niu et al. (2013) has reported that the extract from red rice grain has potential anti-inflammatory effect in a dose-dependent manner; may be suggested that can improve holistic health and reduce risk factors in cardiovascular disease. Likewise, in 2013, cyanidin-3-glucoside has shown an improvement of hypercholesterolemia and hyperlipidemia associated to a reduction of hepatic lipogenic enzymes on hyperlipidemic rats (Um et al., 2013). These pigments have been reported to be effective in reducing cholesterol levels in the human body (Lee et al., 2008). In addition to Chen et al. (2006), the study indicated that the whole black rice grain, specifically the anthocyanins, cyanidin 3-glucoside and peonidin 3-glucoside, contributed to inhibiting the invasion and mobility ability of human hepatocellular carcinoma (SKHep-1) cells with a reduced expression of matrix metalloproteinase-9 and urokinase-type plasminogen activator.

Finally, from several studies have confirmed that colored rice act as a natural antioxidant and free radical scavenger which may increase oxidative stress and potentially damage biological molecules such as lipids, proteins and DNA (Finocchiaro et al., 2010). Antioxidants in colored rice may influence biological functions either individually or synergistically (Shao et al., 2018), meaning that foods containing antioxidants, one or more, may deliver greater health benefits than the sum of each antioxidant alone.

จุหาลงกรณ์มหาวิทยาลัย CHULALONGKORN UNIVERSITY

#### Metabolomics analysis in rice volatiles

Metabolomics is defined as the systematic analytical study of "all metabolites" (metabolome) which are biologically synthesized or degraded compounds in biological system (cell, tissue, organ, biological fluid, or organism) at a specific point in time. It can be used in non-targeted analysis, metabolite profiling or metabolic profiling is a term used to describe; and targeted analysis for quantify specific metabolites (Bino et al., 2004; Fiehn, 2002; Fukusaki & Kobayashi, 2005; Hall, 2006; Saito et al., 2006). Previously, the study has estimated that the plant kingdom contains more than 200,000 metabolites (Dixon, 2003). Volatile compounds is characterized by small-molecule metabolite because it has low molecular weight (less than 900 daltons) (Macielag, 2012); and their high volatility, low vapor pressure (≥0.01 kPa at 20 °C), and low water solubility (Herrmann, 2010).

Recently, Matthews et al. (2015) has shown that gas chromatography (GC) coupled with mass spectrometry (MS) is particularly well suited to the study of low molecular weight that can be made amenable to gas chromatography by chemical derivatization. GC is a physical method of separation in which the components to be separated are distributed between two phases, one of which is stationary phase (column) and the mobile phase (carrier gas: He, N<sub>2</sub>, or H<sub>2</sub>) moves in a definite direction (McNair et al., 2019). Its applications include qualitative analysis in complex mixtures, determining solvent purity, analyzing organic synthesis products, monitoring

water and air quality, and detecting explosives (Vitha, 2016); and, quantitative analysis of a large number of low-polarity compounds because it has high sensitivity, reproducibility and speed of resolution (Wilson & Walker, 2010). Nowadays, single technique analysis may not be enough in modern analytical chemistry. Consequently, GC is integrated with MS, which is an extremely valuable technique in which the molecules in a test sample are converted to gaseous ions that are subsequently separated through a capillary column according to boiling point and detected in a mass spectrometer according to mass-to-charge (m/z) ratio (Wilson & Walker, 2010). Analytically, the most recent applications are mostly oriented towards biochemical problems, such as proteome, metabolome, high throughput in drug discovery and metabolism (Hoffmann & Stroobant, 2007), and it is a very powerful technique when coupled to gas chromatography (Wilson & Walker, 2010). Data management may be considered as an importantly step of metabolomics study; consequently, various statistical methods used in volatiles studies are applicable to metabolomic data by considering the amount of each metabolite as a trait value. Principal component analysis (PCA), an unsupervised multivariate data analysis method (Oikawa et al., 2008).

In 2016, volatile compounds and 2AP precursors (proline and methylglyoxal) were assessed at seven different growth stages in two fragrant rice varieties Basmati-370 (BA-370) and Ambemohar-157 (AM-157) and compared with non-fragrant rice varieties IR-64. PCA showed that N-heterocyclic (2AP, 2-acetyl-1-pyrrole and indole) was the major distinguishing class between fragrant from non-fragrant rice varieties; and maximum number of volatiles compound were synthesized at seedling stage and decreased gradually at reproductive and maturity. This study showed that volatiles accumulation pattern through developmental stages was specific. The variation in volatile profiles were more within the developmental stages than between the cultivars. Hence, developmental stages were separated more clearly than cultivars via multivariate analyses by PCA (Hinge et al., 2016).

Although the 2-AP content of Jasmine rice has been determined, there is little information on the aroma active components that make Jasmine rice unique from other fragrant (Basmati and Jasmati) rice varieties. As the study by Mahattanatawee and Rouseff (2014), PCA showed that the Jasmine variety was characterised by the pattern of sulphur volatiles which had predominantly 2-acetyl-2-thiazoline. Likewise, Mathure et al. (2011) found that the volatile profiles of local varieties include Kamod, Raibhog, and Ghansal were closely associated with Basmati types via PCA. These rices could be promoted further to boost their popularity among consumers.

Besides, the difference of volatiles profiles in *indica* and *japonica* varieties were evaluated with PCA by Daygon et al. (2016). The PCA biplot of the sensory data in two types of aromatic rice varieties (*indica* and *japonica*) showed that the pleasant descriptors such as corn, grainy, sweet taste, dairy, grassy, floral, pandan, popcorn and sweet aroma were closely associated with *indica* varieties more than *japonica*  varieties. Because of the biggest difference in rice volatiles was alpha-pinene which 20 times greater in *indica* than *japonica* varieties. This was followed by acetoin (six times greater in *indica* varieties), and the compounds limonene, 2,3-butanedione and 2-acetylpyrrole (twice the concentration in *indica* varieties). 2AP concentrations were on average 1.5 times greater in the *indica* varieties than the *japonica*. On the other hand, putative compounds with greater amounts on the average in the *japonica* varieties include dimethyl trisulfide, 2-methyl-2-undecanethiol, amylene hydrate, 2-methylbutanal, 2octyn-1-ol and 1-butanol.

Several studies have shown that PCA has obviously benefits to visualize the difference of interesting data. Cambodian rice were investigated by Concepcion et al. (2018), the authors showed that 157 compounds were emitted from nine Cambodian rice varieties. Based on the PCA loadings values, rice flavor was dominated by N-containing compounds (e.g., 2AP), aliphatic aldehydes, aliphatic ketones as well as 2-alkylfurans. Additionally, they also showed that the major variation in the amount of fatty acids is explained by PCA. The results indicated that there were statistically significant differences in the concentrations of two unsaturated fatty acids—oleic acid (C18:1n-9) and linoleic acid (C18:2n-6)—as well as of palmitic acid (C16:0). These fatty acids were the major free fatty acids produced during lipid hydrolysis in milled rice (Christie, 1973; Frankel, 1983, 2012; Lam & Proctor, 2003; Lam et al., 2001; Velasco et al., 2010).

# Chapter III

# PUBLISHED ARTICLE I

Title: Static headspace GC-MS analysis for determination of colored rice volatile profile

## First author: Supawat Jindawatt

Address : Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

# Correspondence Author: Rossarin Tansawat, Ph.D.

Address : Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

| Conference Name    | The 36th International Meeting in Pharmaceutical Sciences &      |  |  |  |  |  |  |  |  |  |
|--------------------|------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
|                    | Herbal Tradition Medicines 2021                                  |  |  |  |  |  |  |  |  |  |
| Year of Conference | 2021 LONGKORN UNIVERSITY                                         |  |  |  |  |  |  |  |  |  |
| Citation           | Jindawatt, S., Ekkaphan, P., De-Eknamkul, W. and Tansawat, R.    |  |  |  |  |  |  |  |  |  |
|                    | (2021). Static headspace GC-MS analysis for determination of     |  |  |  |  |  |  |  |  |  |
|                    | colored rice volatile profile. The 36th International Meeting in |  |  |  |  |  |  |  |  |  |
|                    | Pharmaceutical Sciences & Herbal Tradition Medicines 2021,       |  |  |  |  |  |  |  |  |  |
|                    | 17-20.                                                           |  |  |  |  |  |  |  |  |  |
| THEME              | Herbal and Traditional Medicine "Modernization of herbal         |  |  |  |  |  |  |  |  |  |
|                    | medicines for global emerging diseases and healthcare            |  |  |  |  |  |  |  |  |  |
| Date               | 28 May 2021                                                      |  |  |  |  |  |  |  |  |  |
| URL                | http://cu-amps.weebly.com/                                       |  |  |  |  |  |  |  |  |  |

## PUBLICATION

Static headspace GC-MS analysis for determination of colored rice volatile profile

Supawat Jindawatt<sup>1</sup>, Paweena Ekkaphan<sup>2</sup>, Wanchai De-Eknamkul<sup>3</sup>,

Rossarin Tansawat<sup>1</sup>\*

# Affiliation

<sup>1</sup> Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

<sup>2</sup> Scientific and Technological Research Equipment Centre, Chulalongkorn University, Bangkok 10330, Thailand

<sup>3</sup> Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

\* Corresponding author: Tel. +66(0)957975666; E-mail address:

rossarin.t@pharm.chula.ac.th

จุหาลงกรณ์มหาวิทยาลัย

# **CHULALONGKORN UNIVERSITY**

Keywords: Colored rice, Red Hawm rice, Headspace, GC-MS, Volatile profile

#### Abstract

Thai white jasmine rice has been well known worldwide for its unique distinctive aroma. Many studies were conducted to characterize its aromatic profile. Several other varieties of Thai-colored rice can be volatile as well. Since the colored rice smell is generally not as strong as the jasmine rice, it is worth identifying fragrant compounds in the rice. The objective of this study was to investigate the proper preheated time and headspace incubation temperature to extract as many volatile compounds as possible from Thai-colored rice using the static headspace GC-MS approach. Red Hawm Rice (KDML105R-PSL-E-14) was used in this study. One gram of red rice in a 10-mL headspace vial was placed in a hot air oven at 80 °C at different preheated times (3, 4, 5, 6 and 7 h). The headspace oven temperature was altered from 80, 100 to 120 °C for 60 min. The GC oven was programmed at 40 °C for 2 min and ramped to 250 °C at 5 °C/min and finally held for 4 min. The results showed that a total of 22 volatile compounds were identified from the red rice including methyl 2-methylpropanal, 2,3-butadione, 2-butanone, acetate, 3-methylbutanal,2methylbutanal, pentanal, 1-hydroxy-2-propanone, hexanal, furfural, 2-heptanone, heptanal, methyl n-hexanoate, benzaldehyde, 2-pentylfuran, nonanal, 2-hydroxy-5methylacetophenone, 2,5-di-tert-butylphenol, methyl isomyristate, methyl nhexadecanoate, methyl linoleate, and methyl oleate. The optimum condition was 5 h preheated time in the oven, followed by 120 °C headspace extraction temperature. More volatile compounds were identified at 5, 6 and 7 h compared to 3, 4 h incubation periods as some compounds were decomposed at equilibration time >5 h.

#### Introduction

Colored rice (Oryza sativa L.) is an unpolished rice that become more and more popular because of its vivid colors, which is a rich source of dietary fiber as well as antioxidants such as phenolic acids and anthocyanins (Walter et al., 2013). Anthocyanins found in Thai colored rice have been linked to a variety of health benefits such as high antioxidant activity, anti-hyperlipidemia, reduction of oxidative stress and anti-carcinogenic activity, etc. (Sivamaruthi et al., 2018). Supply is limited and demand is expanding as customers become more aware of its health benefits, so the price of colored rice is often set higher than normal white rice (Napasintuwong, 2020). Nevertheless, consumers nowadays are more concerned with consuming healthy foods and are willing to pay higher prices than in the past (De Magistris & Gracia, 2008; Krystallis & Chryssohoidis, 2005). In Thailand, domestic consumption of colored rice averaged 60,000 - 70,000 tons, with a rate of 2-3% increasing every year. In Europe, rice consumption increased from 4.7 kg per capita in 2005 to 5.5 kg in 2016. Colored rice has a selling price of 10-20 Euro/kg in Europe, which is 6-7 times higher than native European rice (Napasintuwong, 2020). Therefore, the colored rice market has the potential to grow both domestically and internationally.

Nowadays, Thailand has developed many new colored rice varieties that are both nutritious and appealing to customers. Several Thai-colored rice varieties can be volatile with its unique distinctive aroma. Red Hawm Rice (KDML105R-PSL-E-14), a well-known colored rice in Thailand, originated from the development of Jasmine Rice 105 (KDML105), which has genes to produce aromatic substances. Therefore, it should be used as an initial agent in the study of aromatic compounds (*Thai Rice DB*, 2022).

However, they are only popular in the local community, perhaps because the odor is not well-known among the general population. To resolve this problem, characterization of volatile profiles in the colored rice cultivars is needed to search for the identity of Thai scent rice. In the past, rice fragrance analysis was commonly performed on white rice, such as Thai jasmine rice or Basmati rice. Little is known about how to extract the colored rice volatile chemicals. Since the colored rice smell is generally not as strong that of white fragrant rice, therefore, it is required to find a method to identify its volatile components. Gas chromatography is one of the most extensively applied hybrid chemical analysis techniques. (Rodinkov et al., 2020).

Presently, headspace analysis refers to a hybrid technique that involves gas extraction and subsequent detection of analytes in liquid and solid media. When compared to conventional gas-chromatographic analysis when samples are administrated directly into the injector, headspace analysis provides a number of benefits (loffe et al., 1984). In modern laboratories, fused silica capillary columns are utilized, which require a well-controlled sample inlet for optimal results and to prevent column overloading (Hübschmann, 2015). The selection of the proper column is a further factor to consider. It is also vital to choose the correct column polarity. There are numerous column types that have been utilized in rice volatile profiles in the past, for example: HP-5, DB-5, DB-624, BP-20, DB-wax, and RTX-5 (Bryant & McClung, 2011; Grimm et al., 2001; Lim et al., 2018; Mahattanatawee & Rouseff, 2014; Mathure et al., 2011).

The objective of this study was to investigate the proper preheated time and headspace incubation temperature to extract as many volatile compounds as possible from Thai-colored rice using the static headspace GC-MS approach. The findings of this study may serve as important resource of the optimized method to identify the volatile profile of colored rice in the future. This kind of use can be found in the next chapter, which is an analysis of Thai native-colored rice varieties.

#### Methods

# Plant materials

Red Hawm Rice (KDML105R-PSL-E-14) was chosen as the rice sample in this study. It is derived from a natural mutation, which was always found in Khao Dawk Mali 105 (with the BADH2 allele) at the Surin Province Rice Research. When the rice seeds were planted, it was found that in one clump, the seed coat was reddish, containing starch for both glutinous rice and non-glutinous rice. Then the Phitsanulok Province Rice Research Center selects the varieties, produced outstanding rice cultivars resistant to brown planthoppers. Later, farmers near the Phitsanulok Rice Research Center brought the rice varieties to be planted and processed into red brown rice for sale until 1993. As a result, the Phitsanulok Provincial Rice Research Center brought new varieties to be selected. have become a species, KDML105R-PSL-E-14, which is a variety of rice that is widely planted today by using the name "Red Hawm Rice (*Thai Rice DB*, 2022)."

Rice samples were obtained from Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, as part of a collaborative project with Prof. Dr. Apichart Vanavichit and Dr. Siriphat Ruengphayak, the Rice Science Center of Thailand. It was kept at -80  $^{\circ}$ C until the analysis.

#### Sample preparation

The extraction protocol was adapted from Daygon et al. (2016). Briefly, one gram of uncooked red rice was weighed into 10-mL headspace vials. Ten  $\mu$ L of internal standard, 99% 2,4,6-trimethylpyridine (CAS Number: 108-75-8, Alfa Aesar, Heysham, England) was added into the sample. Then, rice samples were placed in an 80 °C hot air oven (WTC Binder Bd-53, Tuttlingen, Germany) at different incubation times for 3, 4, 5, 6 and 7 h before static headspace GC-MS analysis. All samples were prepared in triplicate for each preheated condition.

#### Static headspace GC-MS

The volatile profile of rice red was analyzed by static headspace extraction and separation by gas chromatograph-mass spectrometer (GC-MS). The rice sample vials were placed in a 7697A static headspace autosampler connected to a 7890B GC system and a 7000C Triple Quad mass spectrometer (Agilent Technologies, Palo Alto, CA, USA). The extraction temperatures of the headspace oven at 80, 100 and 120 °C for 60 min were investigated in order to select the best condition with the highest total peak of volatile compounds in the rice samples. The 1-mL headspace sample containing volatile compounds was collected at 140 °C and directly introduced into a GC-MS system. The temperature of GC inlet was 220°C with split ratio 20:1. The separation of volatile compounds was performed on a HP-5ms capillary column (5% phenyl/ 95% dimethylpolysiloxane, 30 m  $\times$  0.25 mm i.d., 0.25  $\mu$ m film thickness, Agilent, CA, USA). GC oven was programmed at 40 °C for 2 min and ramped to 250°C at 5°C/min and finally held for 4 min. Ultrahigh purity Helium used as carrier gas was maintained at average velocity 35 cm/s. The MS was operated in electron impact (EI) mode with electron energy 70 eV. The temperature of MS interface, EI source and quadrupole were set at 250, 230 and 150 °C, respectively. Chromatogram and mass spectra were acquired using scan mode over a mass range of 33-400 m/z. The data processing i.e., peak integration, peak identification and peak deconvolution was carried out using Agilent MassHunter Qualitative Analysis software, version B.07.02. The identification of volatile compounds was done by comparing both their mass

spectra (MS) and retention index (RI) with those contained in the National Institute of Standards and Technology library (NIST) 2011 database. The criteria acceptance for compound identification of mass spectrum was required matching score  $\geq$ 70 and RI value difference of  $\leq$ 20 units between the calculated RI and the database values for the same stationary phase. The RI value was calculated from the retention time of nalkane series (C7-C30) (Supelco, Sigma-Aldrich, PA, USA) following the equation (Bianchi et al., 2007):

 $\mathrm{RI}(x) = 100 \times z + 100 \times \frac{\mathrm{RT}(x) - \mathrm{RT}(z)}{\mathrm{RT}(z+1) - \mathrm{RT}(z)}$ 

where **RI** (x) is the retention index of the unknown compound x,

z is the number of carbon atoms of the n-alkane eluted before the unknown compound x,

z + 1 is the number of carbon atoms of the n-alkane eluted after the unknown compound x,

RT (x) is the retention time of the unknown compound x,

RT (z) the retention time of the n-alkane eluted before the unknown compound x,

RT (z + 1) is the retention time of n-alkane eluted after the unknown compound x.

# จุฬาลงกรณํมหาวิทยาลัย

Results

# Chulalongkorn University

A total of 22 volatile compounds were identified from Red Hawm Rice using static headspace GC-MS technique (Table 4). Most of the detected volatile compounds were aldehydes and ketones. Fatty acid methyl esters, such as methyl linoleate and methyl oleate, were eluted from the column at the end. Changes in red rice volatile profiles were observed at different conditions including preheated times and headspace oven temperatures. *Effect of preheated time:* It is noticeable that the longer time the samples were incubated in the hot air oven before the analysis by static headspace GC-MS, the more volatile compounds tended to be extracted. In order to provide better comparisons between each condition, percentages of the relative peak area of each volatile compound were calculated by dividing the peak area by the total peak area of all identified peaks in each chromatogram (Table 5). The total ion chromatogram (TIC) of each sample was used for peak area integration. Table 5 shows that there was no different in the eluted numbers of the compounds when using the preheated time for 3-7 h at 80 °C or 100 °C headspace oven temperatures. However, at 120 °C headspace incubation for 60 min, only 17 compounds were detected with the use of 3 h or 4 h preheated time as compared to 22 compounds identified from 5 h, 6 h and 7 h preheated times in the hot air oven (Table 5; Figure 8).

The 22 compounds are grouped into five groups: 1) aldehydes consisting of 2methylpropanal, 3-methylbutanal, 2-methylbutanal, pentanal, hexanal, furfural, heptanal, benzaldehyde, and nonanal; 2) ketones consisting of 2,3-butadione, 2butanone, 2-heptanone, and 2-hydroxy-5-methylacetophenone; 3) esters include methyl acetate, methyl n-hexanoate, methyl isomyristate, methyl n-hexadecanoate, methyl linoleate, and methyl oleate; 4) furan contains 2-pentylfuran; 5) phenol contains 2,5-di-tert-butylphenol. Nevertheless, 5 out of 22 compounds (22.73%) compounds including 2,3-butadione, methyl n-hexanoate, nonanal, 2-hydroxy-5methylacetophenone and 2,5-di-tert-butylphenol were decomposed at equilibration time >5 h.

*Effect of headspace oven temperature:* The results showed that the higher the headspace oven temperature, the more the volatile compounds were extracted from the red rice. The most volatile compounds could be detected at 120 °C (17-22 compounds), followed by 100 °C (10 compounds) and 80 °C (6-7 compounds) respectively, with use of any preheated hot air oven time from 3-7 h (Table 5). The chromatogram of 120 °C headspace incubation temperature also illustrates the higher peaks rising from a baseline than chromatographic peaks at 100 °C (green line) and 80 °C (blue line) when using the same preheated time (80 °C for 5 h) (Figure 9).

| No. | Rt     | RI   | Compounds               | Identification | MW  | Formula                                        | CAS No.   |
|-----|--------|------|-------------------------|----------------|-----|------------------------------------------------|-----------|
|     | (min)  |      |                         |                |     |                                                |           |
| 1   | 1.882  | *    | Methyl acetate          | RI             | 74  | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>   | 79-20-9   |
| 2   | 2.020  | *    | 2-Methylpropanal        | RI             | 72  | C <sub>4</sub> H <sub>8</sub> O                | 78-84-2   |
| 3   | 2.155  | *    | 2,3-Butadione           | RI             | 86  | C <sub>4</sub> H <sub>6</sub> O <sub>2</sub>   | 431-03-8  |
| 4   | 2.206  | *    | 2-Butanone              | RI             | 72  | C <sub>4</sub> H <sub>8</sub> O                | 78-93-3   |
| 5   | 2.714  | *    | 3-Methylbutanal         | RI             | 86  | C <sub>5</sub> H <sub>10</sub> O               | 590-86-3  |
| 6   | 2.807  | *    | 2-Methylbutanal         | RI             | 86  | C <sub>5</sub> H <sub>10</sub> O               | 96-17-3   |
| 7   | 3.222  | *    | Pentanal                | RI             | 86  | C <sub>5</sub> H <sub>10</sub> O               | 110-62-3  |
| 8   | 4.076  | 744  | 1-Hydroxy-2-propanone   | MS, RI         | 74  | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>   | 116-09-6  |
| 9   | 5.170  | 801  | Hexanal                 | MS, RI         | 100 | C <sub>6</sub> H <sub>12</sub> O               | 66-25-1   |
| 10  | 6.014  | 832  | Furfural                | MS, RI         | 96  | C <sub>5</sub> H <sub>4</sub> O <sub>2</sub>   | 98-01-1   |
| 11  | 7.604  | 891  | 2-Heptanone             | MS, RI         | 114 | C <sub>7</sub> H <sub>14</sub> O               | 110-43-0  |
| 12  | 7.911  | 902  | Heptanal                | MS, RI         | 114 | C <sub>7</sub> H <sub>14</sub> O               | 111-71-7  |
| 13  | 8.635  | 926  | Methyl n-hexanoate      | MS, RI         | 130 | C <sub>7</sub> H <sub>14</sub> O <sub>2</sub>  | 106-70-7  |
| 14  | 9.675  | 960  | Benzaldehyde            | MS, RI         | 106 | C <sub>7</sub> H <sub>6</sub> O                | 100-52-7  |
| 15  | 10.654 | 992  | 2-Pentylfuran           | MS, RI         | 138 | C <sub>9</sub> H <sub>14</sub> O               | 3777-69-3 |
| 16  | 14.108 | 1104 | Nonanal                 | MS, RI         | 142 | C <sub>9</sub> H <sub>18</sub> O               | 124-19-6  |
| 17  | 20.113 | 1314 | 2-Hydroxy-5-            | MS, RI         | 150 | C <sub>9</sub> H <sub>10</sub> O <sub>2</sub>  | 1450-72-2 |
|     |        |      | methylacetophenone      | A              |     |                                                |           |
| 18  | 25.170 | 1513 | 2,5-Di-tert-butylphenol | MS, RI         | 206 | C <sub>14</sub> H <sub>22</sub> O              | 5875-45-6 |
| 19  | 30.014 | 1725 | Methyl isomyristate     | MS, RI         | 242 | C <sub>15</sub> H <sub>30</sub> O <sub>2</sub> | 5129-58-8 |
| 20  | 34.155 | 1927 | Methyl n-hexadecanoate  | MS, RI         | 270 | C <sub>17</sub> H <sub>34</sub> O <sub>2</sub> | 112-39-0  |
| 21  | 37.351 | 2096 | Methyl linoleate        | MS, RI         | 294 | C <sub>19</sub> H <sub>34</sub> O <sub>2</sub> | 112-63-0  |
| 22  | 37.460 | 2102 | Methyl oleate           | MS, RI         | 296 | C <sub>19</sub> H <sub>36</sub> O <sub>2</sub> | 112-62-9  |

Table 4 Volatile compounds from Red Hawm Rice detected by static headspace GC-MS

Rt: retention time

**RI**: retention index (calculated from the retention time of n-alkane series (C7-C30) (Supelco, Sigma-Aldrich, PA, USA) following the equation (Bianchi et al., 2007)); **\*** cannot be calculated because the RT of the substance is outside the range of n-alkanes.

MW: molecular weight

Table 5 Average percentages and standard deviations (SD, in parentheses) of extraction of each volatile compound from Red Hawm Rice with regard to the total area at different preheated time (3, 4, 5, 6 and 7 h at 80 °C) in the hot air oven and different headspace incubation temperature (80 °C, 100 °C and 120 °C for 60 min).

| Compounds                 | 80 °C  |        |        |        |        |        | 120 °C |        |        |        |        |        |        |        |        |
|---------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| compositor                | 3 h    | 4 h    | 5 h    | 6 h    | 7 h    | 3 h    | 4 h    | 5 h    | 6 h    | 7 h    | 3 h    | 4 h    | 5 h    | 6 h    | 7 h    |
| Methyl acetate            | 66.90  | 57.52  | 49.15  | 50.55  | 57.35  | ND     | ND     | ND     | ND     | ND     | 6.64   | 9.10   | 6.18   | 5.70   | 5.10   |
|                           | (2.93) | (0.73) | (4.80) | (4.56) | (3.93) |        |        |        |        |        | (0.45) | (0.65) | (0.11) | (0.38) | (1.64) |
| 2-Methylpropanal          | 13.59  | 16.55  | 17.70  | 16.90  | 19.29  | ND     | ND     | ND     | ND     | ND     | 5.94   | 6.81   | 4.08   | 3.97   | 5.69   |
|                           | (0.45) | (0.39) | (2.71) | (2.42) | (4.03) | NH     | 122    | 1      |        |        | (0.70) | (0.27) | (0.36) | (0.17) | (2.29) |
| 2,3-Butadione             | ND     | 2.63   | 1.89   | 2.25   | 1.06   | 1.52   |
|                           |        |        |        | . inte | 1      |        |        |        | -      |        | (1.23) | (0.55) | (1.28) | (0.17) | (0.77) |
| 2-Butanone                | ND     | 2.43   | 2.09   | 0.85   | 1.20   | 1.99   |
|                           |        |        | -      |        |        |        |        |        | 2      |        | (0.92) | (0.39) | (0.11) | (0.20) | (1.06) |
| 3-Methylbutanal           | 10.71  | 12.87  | 13.01  | 13.00  | 15.26  | 43.01  | 43.22  | 44.62  | 46.82  | 42.41  | 6.01   | 7.05   | 4.21   | 4.13   | 6.57   |
|                           | (2.27) | (0.30) | (0.91) | (1.12) | (0.61) | (0.58) | (2.15) | (0.03) | (1.13) | (0.70) | (0.77) | (0.47) | (0.44) | (0.27) | (3.93) |
| 2-Methylbutanal           | ND     | ND     | 10.13  | 9.27   | ND     | 19.73  | 22.57  | 20.73  | 20.79  | 21.56  | 4.71   | 4.97   | 2.98   | 3.10   | 4.33   |
|                           |        |        | (2.18) | (1.50) |        | (0.83) | (0.88) | (0.90) | (1.59) | (0.80) | (1.02) | (0.99) | (0.51) | (0.98) | (1.85) |
| Pentanal                  | ND     | 2.48   | ND     | ND     | ND     | 3.99   | 6.45   | 5.14   | 3.54   | 5.96   | 3.47   | 4.03   | 2.35   | 2.29   | 2.66   |
|                           |        | (0.26) | _      |        |        | (0.15) | (0.43) | (1.25) | (0.86) | (0.43) | (0.40) | (0.58) | (0.40) | (0.65) | (0.26) |
| 1-Hydroxy-2-<br>propanone | ND     | ND     | 31     | าลง    | กรเ    | นั้มห  | 1131   | 181    | ลัย    | ND     | 5.12   | 6.26   | 3.88   | 3.59   | 2.99   |
|                           | 10     | C      | HUL    | ALO    | NG     | ORN    | U      | IIVE   | RSII   | Y      | (0.50) | (0.14) | (0.27) | (0.10) | (0.91) |
| Hexanal                   | 5.53   | 6.29   | 6.39   | 6.61   | 4.87   | 15.86  | 13.05  | 13.88  | 13.38  | 13.86  | 7.98   | 8.18   | 5.13   | 4.44   | 4.24   |
|                           | (0.66) | (0.74) | (2.75) | (2.46) | (0.19) | (2.06) | (1.68) | (1.28) | (1.03) | (0.64) | (0.44) | (0.64) | (0.47) | (0.46) | (0.59) |
| Furfural                  | ND     | 1.71   | 1.12   | 0.74   | 0.85   | 2.22   |
|                           |        |        |        |        |        |        |        |        |        |        | (1.27) | (0.16) | (0.15) | (0.31) | (1.19) |
| 2-Heptanone               | ND     | 0.36   | 0.51   | 0.63   |
|                           |        |        |        |        |        |        |        |        |        |        |        |        | (0.06) | (0.43) | (0.67) |
| Heptanal                  | ND     | 0.29   | 0.20   | 0.12   | 0.17   | 0.09   |
|                           |        |        |        |        |        |        |        |        |        |        | (0.24) | (0.02) | (0.03) | (0.13) | (0.01) |

Table 5 (cont.) Average percentages and standard deviations (SD, in parentheses) of extraction of each volatile compound from Red Hawm Rice with regard to the total area at different preheated time (3, 4, 5, 6 and 7 h at 80 °C) in the hot air oven and different headspace incubation temperature (80 °C, 100 °C and 120 °C for 60 min).

| Compounds                          |        |        | 80 °C  |        |        |         |        | 100 °C |        |        |        |        | 120 °C |        |        |
|------------------------------------|--------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| compounds                          | 3 h    | 4 h    | 5 h    | 6 h    | 7 h    | 3 h     | 4 h    | 5 h    | 6 h    | 7 h    | 3 h    | 4 h    | 5 h    | 6 h    | 7 h    |
|                                    |        |        |        |        |        |         |        |        |        |        |        |        |        |        |        |
| Methyl n-<br>hexanoate             | 0.75   | 0.94   | 0.75   | 0.74   | 0.60   | 1.51    | 1.16   | 1.45   | 1.50   | 1.57   | 1.18   | 0.48   | 0.48   | 0.41   | 0.37   |
|                                    | (0.10) | (0.05) | (0.10) | (0.11) | (0.17) | (0.11)  | (0.28) | (0.20) | (0.07) | (0.20) | (1.48) | (0.03) | (0.30) | (0.14) | (0.13) |
| Benzaldehyde                       | ND     | ND     | ND     | ND     | ND     | 0.54    | 0.50   | 0.49   | 0.49   | 0.42   | 1.03   | 1.28   | 0.77   | 0.74   | 0.67   |
|                                    |        |        |        | -9     | 1      | (0.06)  | (0.09) | (0.01) | (0.03) | (0.03) | (0.08) | (0.15) | (0.09) | (0.03) | (0.09) |
| 2-Pentylfuran                      | ND     | ND     | ND     | ND     | ND     | 1.08    | 0.78   | 0.85   | 0.87   | 0.79   | 0.84   | 0.76   | 0.47   | 0.43   | 0.33   |
|                                    |        |        |        |        |        | (0.18)  | (0.19) | (0.11) | (0.08) | (0.11) | (0.11) | (0.05) | (0.05) | (0.03) | (0.12) |
| Nonanal                            | ND     | ND     | ND     | ND     | ND     | ND      | ND     | ND     | ND     | ND     | ND     | ND     | 0.33   | 0.23   | 0.22   |
|                                    |        |        |        |        | 18     |         |        |        |        |        |        |        | (0.04) | (0.01) | (0.03) |
| 2-Hydroxy-5-<br>methylacetophenone | ND     | ND     | ND     | ND     | ND     |         | ND     | ND     | ND     | ND     | ND     | ND     | 0.15   | 0.13   | 0.12   |
|                                    | no     | ND     | G      |        | E.     |         |        |        |        | ND     | ND     | no     | (0.01) | (0.02) | (0.02) |
| 2,5-Di-tert-                       |        |        | C.     |        |        | 0.58    | 0.43   | 0.41   | 0.44   | 0.32   |        |        | 0.26   | 0.21   | 0.18   |
| butytphenot                        | ND     | ND     | ND     | ND     | ND     | (0.005) | (0.11) | (0.02) | (0.03) | (0.03) | ND     | ND     | (0.06) | (0.01) | (0.01) |
| Mathul                             |        |        | 9      | 101    |        | 010 64  |        |        | TOLC   |        |        |        |        |        |        |
| isomyristate                       | ND     | ND     | ND     | ND     | 0.21   | 0.93    | 0.81   | 0.81   | 0.80   | 0.86   | 0.62   | 0.83   | 0.61   | 0.58   | 0.51   |
|                                    |        |        |        |        | (0.04) | (0.20)  | (0.10) | (0.09) | (0.05) | (0.04) | (0.03) | (0.04) | (0.01) | (0.03) | (0.05) |
| Methyl n-<br>hexadecanoate         | 2.52   | 3.34   | 2.86   | 2.93   | 2.43   | 12.77   | 11.04  | 11.61  | 11.37  | 12.26  | 19.66  | 28.53  | 21.78  | 22.77  | 21.33  |
|                                    | (0.09) | (0.15) | (0.80) | (0.72) | (0.28) | (1.16)  | (0.39) | (0.73) | (0.97) | (0.27) | (1.53) | (1.05) | (1.08) | (0.92) | (2.77) |
| Methyl linoleate                   | ND     | ND     | ND     | ND     | ND     | ND      | ND     | ND     | ND     | ND     | ND     | 16.41  | 12.06  | 12.81  | 11.58  |
|                                    |        |        |        |        |        |         |        |        |        |        |        | (0.73) | (0.57) | (1.04) | (1.63) |
| Methyl oleate                      | ND     | ND     | ND     | ND     | ND     | ND      | ND     | ND     | ND     | ND     | 29.73  | ND     | 29.96  | 30.68  | 26.65  |
|                                    |        |        |        |        |        |         |        |        |        |        | (1.97) |        | (1.75) | (1.64) | (2.51) |

All samples were prepared in triplicate for each condition.

ND = not detected.



Figure 8 GC-MS chromatograms of volatile compounds from Red Hawm Rice samples with 3, 4, 5, 6 and 7 h preheated time at 80 °C in the hot air oven (followed by 120 °C headspace incubation temperature for 60 min).





#### Discussion

Volatile profile of red rice in this study differed from that of white fragrant rice such as jasmine rice (KDML105) in many previous studies. For example, 2-acetyl-1pyrroline (2AP), one of the key compounds responsible for desirable fragrant in the white jasmine rice (Hopfer et al., 2016; Sriseadka et al., 2006) was not detected from Red Hawm Rice. However, in the study conducted by Daygon et al. (2016) utilizing static HS, it was reported that the average concentration of 2AP was 1.5 times higher in the indica varieties (comprised of KDML105, PRD, RD6, and HNN cultivars) than in the japonica, and it was as much as four times lower in the Australian commercial cultivars Kyeema and Topaz. This addressed the need of the optimization method to identify the aromatic compounds in the colored rice. Despite not being 2AP, the compounds discovered this time have been reported to generate scents such as: The volatile chemical 2-methylpropanal was found in a wide variety of foods; it contributes those distinct "fruity," "almond," and "pungent" aromas and tastes (Chen et al., 2020). 3-methylbutanal was shown to be volatile in cooked black rice (Song et al., 2000), additionally, it contributes to the almond-like and cocoa-like fragrances and nutty flavor of cheese (Chen et al., 2020). Also, A total of 25 aroma-active chemicals were identified in Korean black rice in a study by Yang et al. (2008). 2AP, (E)-2-nonanal, nonanal, hexanal, and 3-octen-3-one all had a significant impact on the aroma of Korean black rice. When these compounds are coupled with other substances in minute proportions, the overall fragrance may also be distinctive.

Static headspace GC-MS is a tool that can be used to determine the volatile profiles of rice sample. According to our findings, numbers of identified compounds did not increase after 5 h preheated time in the hot air oven. The maximum number of volatile compounds were detected when the headspace incubation temperature was set at 120 °C. Thus, optimum condition to extract the most volatile compounds with the least degradation from Red Hawm Rice was 5 h preheated time in the 80 °C hot air oven, accompanied by 120 °C headspace incubation temperature for 60 min.

Equilibration time could be adjusted by increasing the amount of time that food samples are preheated (Hopfer et al., 2016; Sriseadka et al., 2006). Higher temperature in the headspace oven could cause more volatile compounds from food to enter headspace and accumulate until the equilibrium concentration is reached (Mathure et al., 2011; Sanz et al., 2001). These two steps resulted in a higher number of volatile compounds being released in a greater quantity. As a result, the quality of the GC separation will improve as shown by sharp chromatographic peaks. Overheating for long periods of time, on the other hand, does not always yield positive results. In this study, about 22% of the red rice volatile compounds were decreased in amount when using a preheated time in the hot air oven greater than 5 h. Excessive heat may cause degradation of some compounds. Since volatile
compounds have a low boiling point, in consequence, exposing them to too much heat might cause it to decompose easily (Hopfer et al., 2016; Sriseadka et al., 2006). Eventually, the modified method for assessing volatile compounds in Red Hawm rice can be utilized to identify volatile compounds in Thai native-colored rice.

#### Conclusion

Volatile profiles of the colored rice can be identified by static headspace GC-MS approach. By determining the optimum condition of preheated time and headspace oven temperature, satisfactory information about volatile compounds can be obtained without the chemicals being degraded by excessive heat. In the future, the improved method for identifying volatile compounds in Red Hawm rice can be used to other Thai native-colored rice.

#### References (Chapter III)

- Bianchi, F., Careri, M., Mangia, A., & Musci, M. (2007). Retention indices in the analysis of food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. *Journal of separation science*, *30*(4), 563-572.
- Bryant, R. J., & McClung, A. M. (2011). Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS. *Food Chemistry*, *124*(2), 501-513.
- Chen, C., Zhou, W., Yu, H., Yuan, J., & Tian, H. (2020). Evaluation of the perceptual interactions among aldehydes in a cheddar cheese matrix according to odor threshold and aroma intensity. *Molecules*, *25*(18), 4308.
- Daygon, V. D., Prakash, S., Calingacion, M., Riedel, A., Ovenden, B., Snell, P., Mitchell, J., & Fitzgerald, M. (2016). Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation. *Metabolomics*, 12(4). https://doi.org/10.1007/s11306-016-0989-6
- De Magistris, T., & Gracia, A. (2008). The decision to buy organic food products in Southern Italy. *British Food Journal*.
- Grimm, C. C., Bergman, C., Delgado, J. T., & Bryant, R. (2001). Screening for 2-acetyl-1pyrroline in the headspace of rice using SPME/GC-MS. *Journal of Agricultural and Food Chemistry*, *49*(1), 245-249.
- Hopfer, H., Jodari, F., Negre-Zakharov, F., Wylie, P. L., & Ebeler, S. E. (2016). HS-SPME-GC-MS/MS method for the rapid and sensitive quantitation of 2-acetyl-1pyrroline in single rice kernels. *Journal of Agricultural and Food Chemistry*, *64*(20), 4114-4120.
- Hübschmann, H.-J. (2015). Handbook of GC-MS: fundamentals and applications. John Wiley & Sons.
- loffe, B. V., Vitenberg, A. G. e., & loffe, B. (1984). *Head-space analysis and related methods in gas chromatography*. Wiley New York.

- Krystallis, A., & Chryssohoidis, G. (2005). Consumers' willingness to pay for organic food. *British Food Journal*, *107*(5), 320-343. https://doi.org/10.1108/00070700510596901
- Lim, D. K., Mo, C., Lee, D. K., Long, N. P., Lim, J., & Kwon, S. W. (2018). Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. *Journal of Food and Drug Analysis*, *26*(1), 260-267.
- Mahattanatawee, K., & Rouseff, R. L. (2014). Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD. *Food Chemistry*, *154*, 1-6.
- Mathure, S. V., Wakte, K. V., Jawali, N., & Nadaf, A. B. (2011). Quantification of 2-acetyl-1-pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. *Food Analytical Methods*, *4*(3), 326-333.
- Napasintuwong, O. (2020). Thailand's maize seed market structure, conduct, performance.
- Rodinkov, O., Bugaichenko, A., & Moskvin, L. (2020). Static headspace analysis and its current status. *Journal of Analytical Chemistry*, *75*(1), 1-17.
- Sanz, C., Ansorena, D., Bello, J., & Cid, C. (2001). Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee. *Journal of Agricultural and Food Chemistry*, *49*(3), 1364-1369.
- Sivamaruthi, B., Kesika, P., & Chaiyasut, C. (2018). Anthocyanins in Thai rice varieties: distribution and pharmacological significance. *International Food Research Journal*, *25*(5), 2024-2032.
- Song, S.-J., Lee, Y.-S., & Rhee, C.-O. (2000). Volatile flavor components in cooked black rice. *Korean Journal of Food Science and Technology*, *32*(5), 1015-1021.
- Sriseadka, T., Wongpornchai, S., & Kitsawatpaiboon, P. (2006). Rapid method for quantitative analysis of the aroma impact compound, 2-acetyl-1-pyrroline, in

fragrant rice using automated headspace gas chromatography. *Journal of Agricultural and Food Chemistry*, *54*(21), 8183-8189.

Thai Rice DB. (2022). https://www.thairicedb.com/rice-detail.php?id=11

- Walter, M., Marchesan, E., Massoni, P. F. S., da Silva, L. P., Sartori, G. M. S., & Ferreira,
  R. B. (2013). Antioxidant properties of rice grains with light brown, red and
  black pericarp colors and the effect of processing. *Food Research International*, *50*(2), 698-703.
- Yang, D. S., Shewfelt, R. L., Lee, K.-S., & Kays, S. J. (2008). Comparison of Odor-Active Compounds from Six Distinctly Different Rice Flavor Types. *Journal of Agricultural and Food Chemistry*, *56*(8), 2780-2787.



# Chapter IV

#### ARTICLE II (under review)

Title: Metabolomics Approach to Identify Key Volatile Aromas in Thai Colored Rice Cultivars

#### Second author: Supawat Jindawatt

Address : Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

## Correspondence Authors:

Rossarin Tansawat, Ph.D.

Wanchai De-Eknamkul, Ph.D.

Address : Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand

# จุหาลงกรณ์มหาวิทยาลัย

PUBLICATION CHULALONGKORN UNIVERSITY

| Journal           | Frontiers in Plant Science (under review)                          |
|-------------------|--------------------------------------------------------------------|
| Specialty Section | Plant Metabolism and Chemodiversity                                |
| Received          | 19 Jun 2022                                                        |
| Revised           | 14 Nov 2022                                                        |
| Citation          | Tansawat, R., Jindawatt, S., Ekkaphan, P., Ruengphayak, S.,        |
|                   | Vanavichit, A., Suttipanta, N., Vimolmangkang, S., De-Eknamkul,    |
|                   | W. (2022). Metabolomics Approach to Identify Key Volatile          |
|                   | Aromas in Thai Colored Rice Cultivars. Frontiers in Plant Science. |
| URL               | www.frontiersin.org                                                |

# Metabolomics Approach to Identify Key Volatile Aromas in Thai Colored Rice Cultivars

Rossarin Tansawat<sup>1\*</sup>, Supawat Jindawatt<sup>1</sup>, Paweena Ekkaphan<sup>2</sup>, Siriphat Ruengphayak<sup>3</sup>,

Apichart Vanavichit<sup>3,4</sup>, Nitima Suttipanta<sup>5</sup>, Sornkanok Vimolmangkang<sup>6</sup>,

Wanchai De-Eknamkul<sup>6\*</sup>

# Affiliation

<sup>1</sup> Department of Food and Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

<sup>2</sup> Scientific and Technological Research Equipment Center, Chulalongkorn University, Bangkok, Thailand

<sup>3</sup> Rice Science Center & Rice Gene Discovery Unit, Kasetsart University, Kamphaeng Sean Campus, Nakhon Pathom, Thailand

<sup>4</sup> Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom, Thailand

<sup>5</sup> Faculty of Pharmaceutical Sciences, Ubon Ratchathani University, Ubon Ratchathani, Thailand

<sup>6</sup> Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand

\* Correspondence: Corresponding Authors

rossarin.t@pharm.chula.ac.th

wanchai.d@chula.ac.th

Keywords: colored rice, black rice, volatile, aroma, metabolomics, headspace, GC-MS

#### Abstract

In addition to white jasmine rice, Thailand has many native-colored rice varieties with numerous health benefits and the potential to become a global economic crop. However, the chemical characteristics of aromatic substances in native-colored rice are still mostly unknown. This study aimed to identify the key volatile aroma compounds in Thai native-colored rice varieties, leading to its uniqueness in its ability to promote the consumption of nutritious rice both domestically and internationally. Twentythree rice varieties in four categories: aromatic white, aromatic black, non-aromatic black, and non-aromatic red, were investigated (n=10 per variety). Paddy seeds from each variety were harvested from 10 randomly selected plants. Seed husks were removed before the analysis of rice volatile aromas by static headspace gas chromatography-mass spectrometry. Untargeted metabolomics was used to discover the key volatile compounds in colored rice. Forty-eight compounds were identified. Statistical analysis revealed that 38 of the 48 compounds significantly differed among groups at p < 0.05, 28 of which at p < 0.05, 28 0.001, with the non-aromatic black and red rice containing much lower content of most volatile constituents than the aromatic black and white rice. Focusing on the aromatic black rice, the samples appeared to contain high level of both compound groups of aldehydes (3-methylbutanal, 2-methylbutanal, 2-methylpropanal, pentanal, hexanal) and alcohols (butane-2,3-diol, pentan-1-ol, hexan-1-ol).

#### Introduction

In addition to the well-known white jasmine rice, Thailand has numerous rice varieties with potential to become a worldwide economic crop. Consumers are currently interested in colored rice because of its health benefits, particularly its antioxidant effects, stronger than in white rice (Sansenya & Nanok, 2020; Walter et al., 2013). Thai native-colored rice such as riceberry, black glutinous rice, red rice, etc., have dark tones ranging from red, brown, and black due to the accumulation of proanthocyanin, anthocyanin, flavonoid, and phenolic acid compounds. Antioxidant activity, anti-hyperlipidemia, oxidative stress reduction, and anti-carcinogenic activity have all been related to the anthocyanins present in colored rice (Sivamaruthi et al., 2018).

Moreover, colored rice is high in fiber and protein, making it ideal as plantbased food. Black rice, according to Kushwaha (2016), has a higher protein content than other rice varieties. For a healthy diet and sustainable food production, increasing the consumption of plant-based diets and less animal-based foods is key (Langyan et al., 2021; Päivärinta et al., 2020). The global plant-based food market is predicted to grow from 29.4 billion USD in 2020 to 161.9 billion USD in 2030 (Statistica, 2022).

Currently, Thailand has developed novel colored rice types, both nutritious and appealing to customers. Although their aromatic properties have been established in several colored rice cultivars, information on the chemical characteristics of volatile substances in these colored rice varieties is still limited, particularly the compounds responsible for colored rice's distinct scent and flavor compared to white rice's. Hence, this study aimed to analyze the types of aromatic compounds in Thai native-colored rice varieties and determine key volatile compounds which could indicate biosynthesis pathways and genetic markers for improvement of Thai colored rice. The technology for analyzing the candidate compounds has tremendously come out over the years. Untargeted metabolomics, the hypothesis-generating tool (Schrimpe-Rutledge et al., 2016), is an emerging technique that combines high-resolution technology, like mass spectrometry or nuclear magnetic resonance, with advanced statistical analysis to extract the important compounds among a large number of metabolites in a biological sample. Metabolomics analysis of volatile organic compounds is applied in various research fields, notably medicine (Sukaram et al., 2022), food (Diez-Simon et al., 2019), and plant sciences (Mhlongo et al., 2022). In this study, static headspace gas chromatography-mass spectrometry (SHS-GC-MS) was employed for the analysis of the aromatic compounds in rice samples. This study aimed to identify the key volatile aroma compounds in Thai native-colored rice varieties, leading to their uniqueness in their ability to promote the consumption of nutritious rice both domestically and internationally.

# Materials and Methods *Rice Plants*

Twenty-three rice varieties in four categories: aromatic white, aromatic black, non-aromatic black, and non-aromatic red (Table 6), were planted at the Rice Science Center, Kasetsart University, Kamphaeng Sean Campus, Nakhon Pathom Province, Thailand, during 2018's wet season (August 2018- January 2019). This investigation focuses on the aromatic chemicals found in natively colored rice. Not included is the Red Hawm rice from prior. Twenty-one-day-old seedlings were transplanted to the paddy field at 10 rows x 10 plants per row per variety, with 25 X 25 cm plant spacing and 50 cm variety spacing. Paddy seeds from each variety were harvested from 10 randomly selected plants.

## Seed Preparation

The husk of paddy rice seed was removed by hand. One hundred and ten seeds per plants and 10 plants per variety from each field location were collected and stored at -80 °C before analysis.

#### Metabolomic Analysis

#### Sample Preparation

Rice sample preparation was done using the optimum condition previously established by Jindawatt et al. (2021), which specifically developed for the volatile analysis of colored rice. Briefly, 1 g of rice was placed into 10-mL headspace vials. Then, 10 µL 99% 2,4,6-trimethylpyridine (CAS No. 108-75- 8, Alfa Aesar, Heysham, England) was added into the vials as an internal standard. The vials were sealed and preheated in a hot air oven (WTC Binder Bd-53, Tuttlingen, Germany) at 80°C for 5 h before being transferred to the SHS-GC-MS in order to extract as many volatile compounds as possible.

#### Volatile Profile Analysis Using SHS-GC-MS

After equilibration, SHS-GC-MS analysis was carried out with a 7697A SHS autosampler coupled to 7890B GC system and 7000C QQQ MS (Agilent Technologies, Palo Alto, CA, USA) equipped with an HP-5ms capillary column (5% phenyl/ 95% dimethylpolysiloxane, 30 m × 0.25 mm i.d., 0.25  $\mu$ m film thickness, Agilent, CA, USA). A single quadrupole in scan mode was used for GC-MS analysis, which suitable for qualitative analysis or identification (an untargeted metabolomics). Samples were placed into a headspace autosampler oven and incubated again at 120°C for 60 min. Next, 1-mL headspace volatile was collected at 140°C and directly introduced into a GC-MS system. The temperature of the GC inlet was 220°C. Ultra-high purity helium (99.99%) was used as carrier gas at average velocity of 35 cm/s and a 20:1 split ratio. The initial oven temperature was set at 40°C for 2 min, ramped to 250°C at 5°C/min, and finally held for 4 min. The MS was operated in electron impact (EI) mode at 70 eV. The temperature of the MS interface, EI source, and quadrupole were set at 250,

230, and 150°C, respectively. Chromatogram and mass spectra were acquired using a scan mode ranging from 33-400 m/z.

#### Data Processing and Statistical Analysis

Rice volatile compounds were identified by comparing both the mass spectra and retention index (RI) against the National Institute of Standards and Technology library (NIST) 2014 library. The RI of the n-alkane series (C7-C30; Supelco, Sigma-Aldrich, PA, USA) was used to compute the RI values. A matching score  $\geq$ 70 and a RI value difference  $\leq$ 20 units between the calculated RI and the database values for the same stationary phase were required for compound identification. A pooled quality control (QC) sample was included every 10 samples. Peak picking, spectral deconvolution, and data alignment were performed using MS-DIAL 4.70 software (Tsugawa et al., 2015). Multivariate analysis, metabolite set enrichment analysis (MSEA), and analysis of variance (ANOVA) were performed with MetaboAnalyst 5.0 (Xia & Wishart, 2010). Table 6 List of rice samples.

| No. | Rice varieties                       | Code    | Pericarp | BADH2 allele |
|-----|--------------------------------------|---------|----------|--------------|
|     |                                      |         | color    |              |
| 1   | Basmati 370                          | BMT     | white    | aromatic     |
| 2   | Khao Dawk Mali 105                   | KDML105 | white    | aromatic     |
| 3   | Klamhom                              | КН      | black    | aromatic     |
| 4   | LeumPua glutinous rice               | LP      | black    | aromatic     |
| 5   | UP_460_Chanohnai                     | UP_460  | black    | aromatic     |
| 6   | UP_463_Pi-isu                        | UP_463  | black    | aromatic     |
| 7   | UP_468_Pi-isu Maeradnoi              | UP_468  | black    | aromatic     |
| 8   | UP_469_Pi-isu Maekwangnuea           | UP_469  | black    | aromatic     |
| 9   | UP_470_Pi-isu Maekwangnuea           | UP_470  | black    | aromatic     |
| 10  | Niew Dam khaika glutinous rice       | DKG     | black    | aromatic     |
| 11  | Khao Hom Mae Phaya Tongdam           | MTK     | black    | aromatic     |
| 12  | Mu1309                               | Mu1309  | black    | aromatic     |
| 13  | Mu2313                               | Mu2313  | black    | aromatic     |
| 14  | Mu2550                               | Mu2550  | black    | aromatic     |
| 15  | Riceberry 2 (#909)                   | RB2     | black    | aromatic     |
| 16  | Niew Dam Chomaipai 49 glutinous rice | BSHMP   | black    | non-aromatic |
| 17  | Riceberry                            | RB      | black    | non-aromatic |
| 18  | Niew Dammo 37 glutinous rice         | DM37    | black    | non-aromatic |
| 19  | Niew Dammuebueng glutinous rice      | DMB     | black    | non-aromatic |
| 20  | Jao Hom Nin                          | JHNVERS | black    | non-aromatic |
| 21  | Khao Mednaifuy                       | MNF     | black    | non-aromatic |
| 22  | RD 69 (Tubtim Chumphae)              | RUBY    | red      | non-aromatic |
| 23  | UP_417_Buetolasosobkhong             | UP_417  | red      | non-aromatic |

#### Results

Forty-eight volatile compounds were identified in 23 rice varieties (Table 7, Figure 10). A complete dataset is presented in Supplementary Table 1, which includes retention time (RT), RI, metabolite ID, CAS no., InChIKey, matching score, signal-to-noise ratio (S/N), EI spectrum, and peak area. Metabolite set enrichment analysis was carried out to observe the patterns of the main chemical class sets by MetaboAnalyst software. In the MetaboAnalyst 5.0 database, 33 out of the 48 chemicals identified had a PubChem CID (compound ID number) match, as shown in the overview of aroma compound sets in Figure 11. Fatty aldehydes, aldehydes, and fatty esters were the most common volatile chemical classes found in the rice samples.

Prior to multivariate statistical analysis, data were normalized using log transform and pareto scale for volatile chemical profiling. Due to the complication of the obtained data, PCA may not be distinguished; therefore, The partial least squares-discriminant analysis (PLS-DA) was employed to help explain. PLS-DA is a multivariate projection method utilized to describe the connection between dependent variables (Y, the volatile profiles) and independent factors (X, the rice samples). PLS-DA aims at finding the variables and directions in the multivariate space which discriminate the established classes in the set. PLS-DA score plot shows different volatile profiles among the four rice types ( $R^2 = 0.76$  and  $Q^2 = 0.68$ , see

Supplementary Figure S2 for the output of permutation test) (Figure 12). Start the comparison by dividing the group by pericarp to facilitate consumption promotion. Investigate the connection between the pericarp and aromatic components of the various cultivars. White and black rice patterns, and black and red rice samples, are the opposite. The volatile compound pattern in black rice is similar. It can be seen that the black circle is aromatic black rice and the gray cross is non-aromatic black rice. They are mostly overlapping. Similarly, with white rice and red rice, white rice is represented by the light blue circle that will overlap with red rice to form a red cross, indicating a similar pattern of volatiles. Therefore, it may be concluded that the volatile profile of red rice tends to resemble that of white rice. However, the aromatic and non-aromatic black rice profiles are remarkably similar.

When considering each colored rice sample group independently, the volatile compounds present in black aromatic rice varieties are grouped together. From the top view, the volatile components of UP460, UP463, UP468, UP469, and UP470 are close to each other and positioned slightly isolated from DKG, MTK, Mu1309, Mu2313, Mu2550, and RB2 (Figure 13A). As for the volatile components of nonaromatic black rice cultivars, the RB aroma profile is related to MNF. However, it is quite different from that of BSHMP, located close to DM37 and DMB (Figure 13B). The red rice volatile profiles RUBY and UP417 are plotted separately in the PLS-DA scores plot (Figure 13C). Overall, the heatmap in Figure 14 shows the different patterns of volatile chemicals derived from the various colored rice groups. Statistical analyses by ANOVA followed by Tukey's HSD post-hoc test showed significant differences at p < 0.05 in 38 of the 48 compounds among the four rice groups, 28 of which at p <0.001 (Table 7). From statistical analysis in Table 7, the primary volatile chemicals discovered in the black rice samples as compared to the four categories of rice are shown in Figure 15, which include 2-methylpropanal, 3-methylbutanal, and 2methoxyphenol. In addition, fold-change values were calculated to identify which volatile compounds are more abundant between the two groups (Figure 16). When compare between aroma rice (aroma black vs. aroma white rice), the results illustrate that white rice has a higher concentration of several volatile components while there are only two substances, 2-methoxyphenol and butane-2,3-diol, that are higher in the black fragrant rice (Figure 16A). On the contrary, when comparing solely the two types of black rice (aroma vs. non-aroma), aroma black rice exhibits higher levels of many volatile compounds than the non-aroma rice (Figure 16B). This study did not detect 2AP in aromatic white rice. This may be because analytical methods have been modified to focus on finding as many substances as possible.

| No. | RT (min) | Metabolite name                            | Formula                                        | CAS No.      | p-value* | f-value |
|-----|----------|--------------------------------------------|------------------------------------------------|--------------|----------|---------|
| 1   | 1.829    | methyl acetate                             | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>   | 79-20-9      | SN       | I       |
| 2   | 1.961    | 2-methylpropanal                           | C <sub>4</sub> H <sub>8</sub> O                | 78-84-2      | <0.0001  | 26.49   |
| 3   | 2.641    | 3-methylbutanal                            | $C_5H_{10}O$                                   | 590-86-3     | <0.0001  | 8.90    |
| 4   | 2.746    | 2-methylbutanal                            | $C_5H_{10}O$                                   | 96-17-3      | NS       | I       |
| 5   | 2.818    | 4-(dimethylamino)-3-hydroxybutanoic acid   | C <sub>6</sub> H <sub>13</sub> NO <sub>3</sub> | 3688-46-8    | NS       | I       |
| 9   | 3.107    | pentane-2,3-dione                          | C <sub>5</sub> H <sub>8</sub> O <sub>2</sub>   | 600-14-6     | NS       | I       |
| 7   | 3.151    | pentanal                                   | C <sub>5</sub> H <sub>10</sub> O               | 110-62-3     | NS       | I       |
| 8   | 3.232    | acetic acid                                | $C_2H_4O_2$                                    | 64-19-7      | SN       | I       |
| 6   | 3.310    | formyl acetate                             | $C_3H_4O_3$                                    | 2258-42-6    | <0.001   | 5.69    |
| 10  | 3.731    | 1-hydroxypropan-2-one                      | C <sub>3</sub> H <sub>6</sub> O <sub>2</sub>   | 116-09-6     | SN       | I       |
| 11  | 4.390    | pentan-1-ol                                | C <sub>5</sub> H <sub>12</sub> O               | 71-41-0      | <0.001   | 6.77    |
| 12  | 5.075    | hexanal                                    | $C_6H_{12}O$                                   | 66-25-1      | <0.0001  | 12.5    |
| 13  | 5.568    | butane-2,3-diol                            | $C_4H_{10}O_2$                                 | 513-85-9     | NS       | I       |
| 14  | 5.698    | 4-methylpyrimidine                         | C <sub>5</sub> H <sub>6</sub> N <sub>2</sub>   | 3438-46-8    | <0.0001  | I       |
| 15  | 5.927    | furan-2-carbaldehyde                       | $C_5H_4O_2$                                    | 98-01-1      | <0.0001  | 12.11   |
| 16  | 5.984    | 1-(5-methyl-1H-pyrazol-3-yl)propan-2-amine | $C_7H_{13}N_3$                                 | 1025087-55-1 | <0.0001  | 11.21   |
| 17  | 6.628    | 3,3-dimethyl-4-(methylamino)butan-2-one    | $C_7H_{15}NO$                                  | 123528-99-4  | <0.01    | 3.4781  |
| 18  | 6.901    | hexan-1-ol                                 | $C_6H_{14}O$                                   | 111-27-3     | <0.0001  | 11.8    |
| 19  | 7.505    | heptan-2-one                               | $C_7H_{14}O$                                   | 110-43-0     | <0.0001  | 12.26   |
| 20  | 7.799    | heptanal                                   | $C_7H_{14}O$                                   | 111-71-7     | <0.0001  | 9.42    |
| 21  | 8.116    | 2,6-dimethylpyrazine                       | $C_6H_8N_2$                                    | 108-50-9     | <0.0001  | 27.28   |
|     |          |                                            |                                                |              |          |         |

| es.        |
|------------|
| npl        |
| sar        |
| e          |
| .≘<br>∽    |
| Б<br>Ю     |
| atic       |
| BMa        |
| arc        |
| -uc        |
| Ž          |
| anc        |
| ¥.         |
| olac       |
| . <u>u</u> |
| nat        |
| D<br>D     |
| n-a        |
| lou        |
| Ъ,         |
| ola        |
| Ľ.         |
| nat        |
| aroi       |
| ,<br>Û     |
| /hit       |
| ≤<br>∪     |
| lati       |
| ΩO         |
| ום ר       |
| .≕<br>q    |
| ćte        |
| ete        |
| s d        |
| nd         |
| JOC        |
| m          |
| U<br>U     |
| atil∈      |
| /olã       |
| ><br>~     |
| ole        |
| Tak        |

Note: Gray grid = more prevalent in black rice, light blue grid = more prevalent in white rice.

| No. | RT (min) | Metabolite name                     | Formula                                       | CAS No.   | p-value* | f-value |
|-----|----------|-------------------------------------|-----------------------------------------------|-----------|----------|---------|
| 22  | 8.514    | methyl hexanoate                    | $C_7H_{14}O_2$                                | 106-70-7  | <0.0001  | 24.69   |
| 23  | 9.539    | benzaldehyde                        | C <sub>7</sub> H <sub>6</sub> O               | 100-52-7  | <0.0001  | 20.15   |
| 24  | 10.307   | 2-propylpropanedioic acid           | $C_6H_{10}O_4$                                | 616-62-6  | <0.05    | 3.9392  |
| 25  | 10.881   | octanal                             | $C_8H_{16}O$                                  | 124-13-0  | <0.0001  | 13.18   |
| 26  | 11.563   | methyl 5-methylhexanoate            | $C_8H_{16}O_2$                                | 2177-83-5 | <0.0001  | 26.48   |
| 27  | 11.582   | methyl heptanoate                   | C <sub>8</sub> H <sub>16</sub> O <sub>2</sub> | 106-73-0  | <0.0001  | 8.81    |
| 28  | 11.976   | 3-hydroxy-4,4-dimethyloxolan-2-one  | $C_6H_{10}O_3$                                | 79-50-5   | <0.01    | 5.73    |
| 29  | 12.117   | 2-phenylacetaldehyde                | C <sub>8</sub> H <sub>8</sub> O               | 122-78-1  | <0.05    | 3.9562  |
| 30  | 13.515   | 2-methoxyphenol                     | $C_7H_8O_2$                                   | 90-05-1   | <0.0001  | 393.51  |
| 31  | 13.977   | nonanal                             | C <sub>9</sub> H <sub>18</sub> O              | 124-19-6  | <0.01    | 9.31    |
| 32  | 14.598   | methyl octanoate                    | $C_9H_{18}O_2$                                | 111-11-5  | <0.0001  | 23.57   |
| 33  | 15.038   | methyl pyridine-3-carboxylate       | $C_7H_7NO_2$                                  | 93-60-7   | <0.01    | 4.32    |
| 34  | 15.150   | 1-methylpyridin-1-ium-3-carboxylate | $C_7H_7NO_2$                                  | 535-83-1  | <0.0001  | 10.20   |
| 35  | 16.165   | methyl 2-phenylacetate              | $C_9H_{10}O_2$                                | 101-41-7  | <0.0001  | 9.34    |
| 36  | 16.286   | naphthalene                         | $C_{10}H_8$                                   | 91-20-3   | <0.0001  | 11.89   |
| 37  | 16.962   | decanal                             | $C_{10}H_{20}O$                               | 112-31-2  | <0.01    | 7.046   |
| 38  | 17.324   | 2,3-dihydro-1-benzofuran            | C <sub>8</sub> H <sub>8</sub> O               | 496-16-2  | <0.0001  | 7.94    |
| 39  | 17.496   | methyl nonanoate                    | $C_{10}H_{20}O_2$                             | 1731-84-6 | <0.0001  | 14.87   |

Table 7 (cont.) Volatile compounds detected in aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice samples.

Note: Gray grid = more prevalent in black rice, light blue grid = more prevalent in white rice.

| No.   | RT (min)      | Metabolite name                                   | Formula                           | CAS No.           | p-value* | f-value |
|-------|---------------|---------------------------------------------------|-----------------------------------|-------------------|----------|---------|
| 40    | 17.732        | 3-ethyl-4-methylpyrrole-2,5-dione                 | $C_7H_9NO_2$                      | 20189-42-8        | <0.0001  | 29.20   |
| 41    | 19.973        | 1-(2-hydroxy-5-methylphenyl)ethanone              | $C_9H_{10}O_2$                    | 1450-72-2         | <0.0001  | 24.58   |
| 42    | 25.311        | methyl 10-methylundecanoate                       | $C_{13}H_{26}O_2$                 | 5129-56-6         | <0.0001  | 11.75   |
| 43    | 29.865        | methyl 12-methyltridecanoate                      | $C_{15}H_{30}O_2$                 | 5129-58-8         | NS       | I       |
| 44    | 32.394        | 6,10,14-trimethylpentadecan-2-one                 | C <sub>18</sub> H <sub>36</sub> O | 502-69-2          | <0.0001  | 19.17   |
| 45    | 34.001        | methyl hexadecanoate                              | $C_{17}H_{34}O_2$                 | 112-39-0          | <0.001   | 7.21    |
| 46    | 37.165        | methyl (9Z,11E)-octadeca-9,11-dienoate            | $C_{19}H_{34}O_2$                 | 13058-52-1        | NS       | I       |
| 47    | 37.185        | methyl (10E,12Z)-octadeca-10,12-dienoate          | $C_{19}H_{34}O_2$                 | 21870-97-3        | <0.01    | 5.66    |
| 48    | 37.296        | methyl-octadec-9-enoate                           | $C_{19}H_{36}O_2$                 | 112-62-9          | <0.0001  | 11.20   |
| Vote: | Grav erid = n | more prevalent in black rice, light blue grid = m | iore prevale                      | nt in white rice. |          |         |

Table 7 (cont.) Volatile compounds detected in aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice samples.

Note: dray grue infore prevatent in brack ince, ugue prove grue infore prevatent in write ince. \* P-value is determined by ANOVA among the four groups of rice (aroma white, aroma black, non-aroma black, and non-aroma red rice) of each compound; NS: not significant (p>0.05).



Figure 10 Representative chromatograms. (A) aromatic white rice (Basmati 370), (B) aromatic black rice (Klamhom), (C) non-aromatic black rice (Riceberry), (D) non-aromatic red rice (RD 69 Tubtim Chumphae); IS = internal standard.







Figure 12 Partial least squares-discriminant analysis score plot of volatile profiles of aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice samples.







Figure 14 Heatmap of aroma compounds identified in aromatic white, aromatic black, non-aromatic black, and non-aromatic red rice samples





Figure 16 Fold-change analysis of the volatile compounds abundance between **(A)** aromatic black rice and aromatic white rice samples, **(B)** aromatic black rice and nonaromatic black rice samples.

#### Discussion

#### Volatile Components in Thai Colored Rice Cultivars

The results showed that the main volatile found in the black rice was 2methoxyphenol. Although both 2-methoxyphenol and butane-2,3-diol showed large fold-changes when compared between the two aroma rice groups (black vs. white, Figure 16), levels of butane-2,3-diol were not significantly different among the four rice groups as revealed in Table 7. 2-methoxyphenol levels in both aromatic and non-aromatic black rice were significantly higher than in white and red rice (p < 0.001), with the highest f-value (393.94) and the highest VIP score (> 2.0). This finding agrees with previous research by Yang et al. (2008), who found that 2methoxyphenol is the primary component underlying black rice's uniqueness, and that it also contributes to the aroma of smoked and roasted foods like bacon and coffee (Schranz et al., 2017). The food and perfume industries employ it for aromatization, and it can be found in a wide variety of plant life. 3-methylbutanal was highly present in aromatic black rice as compared to other rice types. This compound was also reported as volatile in cooked black rice (Song et al., 2000), and it has been noted that it contributes to the almond-like and cocoa-like aromas, nutty flavor of cheese (Chen et al., 2020). 2-methylpropanal, a volatile chemical present in numerous foods, This volatile substance, which has been linked to fruity, almond, and pungent flavors (Chen et al., 2020), was found in lower concentrations in white rice than in black and red rice (Figure 15).

The aromatic rice samples with BADH2 genotype, volatile compounds detected in both white and black aromatic rice unique to non-aromatic rice in this study were methyl 5-methylhexanoate, methyl octanoate, 4-methylpyrimidine, methyl hexanoate, methyl nonanoate, hexanal, methyl 10-methylundecanoate, heptan-2-one, octanal, hexan-1-ol, naphthalene, furan-2-carbaldehyde, 1-(5-methyl-1H-pyrazol-3-yl)propan-2-amine, pentan-1-ol, nonanal, and 2-phenylacetaldehyde (Figure 14). Nevertheless, several volatile components in white fragrant rice samples were found at higher levels than in aromatic black rice samples. These aroma compounds include 3-ethyl-4-methylpyrrole-2,5-dione, previously observed in pandan leaves (Cheetangdee & Chaiseri, 2006) 2,6-dimethylpyrazine, that gives a bread-like aroma (FooDB Version 1.0, 2022) 1-(2-hydroxy-5-methylphenyl)ethanone and 3,3-dimethyl-4-(methylamino)butan-2-one, with a sweet floral fragrance (FooDB Version 1.0, 2022; Koksal et al., 2015) benzaldehyde and methyl 2-phenylacetate, a smell (*FooDB Version 1.0*, 2022) 2methyl ester with an almond-like propylpropanedioic acid, found in honey (Tian et al., 2018) 1-methylpyridin-1-ium-3carboxylate or trigonelline, found in roasted coffee (FooDB Version 1.0, 2022; Heo et al., 2020) and the characteristic tobacco-like herbaceous odor of methyl pyridine-3carboxylate or methyl nicotinate (FooDB Version 1.0, 2022; Rao et al., 2007).

In addition, many rice-related aromatic compounds were found at higher amounts in white rice samples. These compounds were 2,3-dihydro-1-benzofuran, contained in the rice husks (Tian et al., 2021), 3-hydroxy-4,4-dimethyloxolan-2-one, formerly observed in cooked rice (Jinakot & Jirapakkul, 2018) and 6,10,14trimethylpentadecan-2-one, the major volatile substance of red rice (Sukhonthara et al., 2009), found in high concentrations in both white and red rice samples in this study. Fatty aldehydes such as decanal as well as fatty acid methyl esters including methyl-octadec-9-enoate, methyl hexadecanoate, and methyl (10E,12Z)-octadeca-10,12-dienoate were also identified. Unsurprisingly, when only the black variety is considered, aroma black rice contains more volatile compounds than the non-aroma rice (Figure 16B). Volatile substances that have been reported pleasant smells include a buttery, creamy scent from butane-2,3-diol (FooDB Version 1.0, 2022), a fruity and floral-like smell from heptan-2-one (Verma & Srivastav, 2020) and a sweet, fresh flavor from methyl hexanoate (FooDB Version 1.0, 2022). Hexanal and hexan-1ol contribute to a green scent in rice (Choi & Lee, 2021; Verma & Srivastav, 2020) and pentan-1-ol is described a fusel oil-like odor(Verma & Srivastav, 2020), which might contribute to the unpleasant smell of the black rice.

#### Key Volatile Compounds

The heatmap patterns shown in Figure 14, which summarize quantitatively various volatile components detected in the four categories of rice samples, show that the non-aroma group (black and red) had a much lower content of most volatile components than the aroma group (black and white). Interestingly, the heatmap also

clearly shows that each rice category has its own uniqueness in terms of major volatile components. The non-aroma black rice showed high content of pentane-2,3dione, 2-methoxyphenol and 4-methylpyrimidine while the non-aroma red showed high content of acetic acid, decanal, 3,3-dimethyl-4-(methylamino)butan-2-one. On the other hand, the aroma black appeared to contain high content of some aldehyde components, specifically of 3-methylbutanal, 2-methylbutanal, 2-methylpropanal, pentanal, hexanal, and some alcohol components, mainly of butane-2,3-diol, pentan-1-ol, hexan-1-ol. By comparing with the white-aroma rice, these main black-aroma constituents are in only the minor components of the white-aroma rice (Figure 14).

#### Conclusion

The key volatile aromas in Thai native-colored rice cultivars were identified using SHS-GC-MS untargeted metabolomics approach. 2-methylpropanal was the most distinctive volatile in colored rice (black and red rice). 2-methoxy phenol was mainly found in both aromatic and non-aromatic black rice, while 3-methylbutanal was the major compound in aromatic black rice. However, it should be noted that all the volatile constituents were detected in all the four rice categories but in different accumulated contents. Research on volatile profiles may be utilized to advocate for eating different types of colored rice for better health and economic growth.

#### References (Chapter IV)

- Cheetangdee, V., & Chaiseri, S. (2006). Free amino acid and reducing sugar composition of pandan (Pandanus amaryllifolius) leaves. *Agriculture and Natural Resources, 40*(6 (Suppl.)), 67-74.
- Chen, C., Zhou, W., Yu, H., Yuan, J., & Tian, H. (2020). Evaluation of the perceptual interactions among aldehydes in a cheddar cheese matrix according to odor threshold and aroma intensity. *Molecules*, *25*(18), 4308.
- Choi, S., & Lee, J. (2021). Volatile and sensory profiles of different black rice (Oryza sativa L.) cultivars varying in milling degree. *Food Research International*, *141*, 110150.
- Diez-Simon, C., Mumm, R., & Hall, R. D. (2019). Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. *Metabolomics*, *15*(3), 1-20.

FoodDB Version 1.0. (2022). FoodDB. https://foodb.ca/

- Heo, J., Adhikari, K., Choi, K. S., & Lee, J. (2020). Analysis of caffeine, chlorogenic acid, trigonelline, and volatile compounds in cold brew coffee using highperformance liquid chromatography and solid-phase microextraction—gas chromatography-mass spectrometry. *Foods*, *9*(12), 1746.
- Jinakot, I., & Jirapakkul, W. (2018). Effect of degrees of milling on aroma compounds in cooked rice (Khao Dawk Mali 105). 56. Kasetsart University Annual Conference, Bangkok (Thailand), 30 Jan-2 Feb 2018,
- Jindawatt, S., Ekkaphan, P., De-Eknamkul, W., & Tansawat, R. (2021). Static headspace GC-MS analysis for determination of colored rice volatile profile. *The 36th International Meeting in Pharmaceutical Sciences & Herbal Tradition Medicines 2021*, 17-20. <<u>http://cu-amps.weebly.com</u>>
- Koksal, N., Kafkas, E., Sadighazadi, S., & Kulahlioglu, I. (2015). Floral fragrances of daffodil under salinity stress. *Rom Biotechnol Lett*, *20*(4), 10600-10610.
- Kushwaha, U. (2016). Black rice. In Black Rice (pp. 21-47). Springer.
- Langyan, S., Yadava, P., Khan, F. N., Dar, Z. A., Singh, R., & Kumar, A. (2021). Sustaining protein nutrition through plant-based foods. *Frontiers in Nutrition*, 8.

- Mhlongo, M. I., Piater, L. A., & Dubery, I. A. (2022). Profiling of volatile organic compounds from four plant growth-promoting *Rhizobacteria* by SPME–GC–MS: a metabolomics study. *Metabolites*, *12*(8), 763.
- Päivärinta, E., Itkonen, S. T., Pellinen, T., Lehtovirta, M., Erkkola, M., & Pajari, A.-M. (2020). Replacing animal-based proteins with plant-based proteins changes the composition of a whole Nordic diet—a randomised clinical trial in healthy Finnish adults. *Nutrients*, 12(4), 943.
- Rao, B. M., Saradhi, U., Rani, N. S., Prabhakar, S., Prasad, G., Ramanjaneyulu, G., & Vairamani, M. (2007). Identification and quantification of methyl nicotinate in rice (Oryza sativa L.) by gas chromatography–mass spectrometry. *Food Chemistry*, 105(2), 736-741.
- Sansenya, S., & Nanok, K. (2020). **α**-glucosidase, **α**-amylase inhibitory potential and antioxidant activity of fragrant black rice (Thai coloured rice). *Flavour and Fragrance Journal*, *35*(4), 376-386.
- Schranz, M., Lorber, K., Klos, K., Kerschbaumer, J., & Buettner, A. (2017). Influence of the chemical structure on the odor qualities and odor thresholds of guaiacolderived odorants, part 1: alkylated, alkenylated and methoxylated derivatives. *Food Chemistry*, 232, 808-819.
- Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted metabolomics strategies—challenges and emerging directions. *Journal of the American Society for Mass Spectrometry*, *27*(12), 1897-1905.
- Sivamaruthi, B., Kesika, P., & Chaiyasut, C. (2018). Anthocyanins in Thai rice varieties: distribution and pharmacological significance. *International Food Research Journal*, *25*(5), 2024-2032.
- Song, S.-J., Lee, Y.-S., & Rhee, C.-O. (2000). Volatile flavor components in cooked black rice. *Korean Journal of Food Science and Technology*, *32*(5), 1015-1021.
- Statistica. (2022). Value of the plant-based food market worldwide from 2020 to 2030 <u>https://www.statista.com/statistics/1280394/global-plant-based-food-</u> market-value/

- Sukaram, T., Tansawat, R., Apiparakoon, T., Tiyarattanachai, T., Marukatat, S., Rerknimitr, R., & Chaiteerakij, R. (2022). Exhaled volatile organic compounds for diagnosis of hepatocellular carcinoma. *Scientific Reports*, 12(1), 1-9.
- Sukhonthara, S., Theerakulkait, C., & Miyazawa, M. (2009). Characterization of volatile aroma compounds from red and black rice bran. *Journal of Oleo Science*, *58*(3), 155-161.
- Tian, B., Xu, L., Jing, M., Liu, N., & Tian, Y. (2021). A comprehensive evaluation on pyrolysis behavior, kinetics, and primary volatile formation pathways of rice husk for application to catalytic valorization. *Fuel Processing Technology*, 214, 106715.
- Tian, H., Shen, Y., Yu, H., & Chen, C. (2018). Aroma features of honey measured by sensory evaluation, gas chromatography-mass spectrometry, and electronic nose. *International Journal of Food Properties*, *21*(1), 1755-1768.
- Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. *Nature Methods*, 12(6), 523-526.
- Verma, D. K., & Srivastav, P. P. (2020). A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. *Food Research International*, *130*, 108924.
- Walter, M., Marchesan, E., Massoni, P. F. S., da Silva, L. P., Sartori, G. M. S., & Ferreira,
  R. B. (2013). Antioxidant properties of rice grains with light brown, red and
  black pericarp colors and the effect of processing. *Food Research International*, *50*(2), 698-703.
- Xia, J., & Wishart, D. S. (2010). MetPA: a web-based metabolomics tool for pathway analysis and visualization. *Bioinformatics*, *26*(18), 2342-2344.
- Yang, D. S., Shewfelt, R. L., Lee, K.-S., & Kays, S. J. (2008). Comparison of Odor-Active Compounds from Six Distinctly Different Rice Flavor Types. *Journal of Agricultural and Food Chemistry*, *56*(8), 2780-2787.

#### CHAPTER V

#### CONCLUSION OF THESIS

To summarize key findings of both research studies in the thesis, colored rice is an unpolished rice that has grown in popularity because to its vivid colors, which are a rich source of dietary fiber and antioxidants include phenolic acids and anthocyanins. The proper incubation time and temperature to extract the volatile compounds in Thai-colored rice using the static headspace GC-MS approach. The optimum condition was 5 h preheated time in the oven, followed by 120 °C headspace extraction temperature. For the analysis of volatile compounds in native colored rice, this study found the main volatile substances 2-methoxyphenol, 3methylbutanal, and 2-methylbutanal. In the future, samples of purple or black rice may be used as a representative of optimum conditions. Besides red rice, it should help to select the appropriate conditions more efficiently. Validate extraction method using static headspace GC-MS with 2-3 types of spike key volatile with different volatility. It will increase the confidence in applying the method to other test samples in the future. This new finding will lead to improvements in Thai colored-rice breeding so that the native-colored rice in Thailand will be commercially valuable in the future.

However, 2AP, the key contributes to rice aroma, did not clearly detected by the optimized in this study. There are two main possible explanations. The first reason is that 2AP is heat labile and might have been degraded by the preheated process. For the untargeted metabolomics analysis point of view, the goal was to identify as many metabolites (volatile compounds) as possible. So, we tried to get a lot of volatile compounds and might have lost the 2AP. Another possible explanation is regarding to the parameters that were set in the data processing step. Metabolomics data processing steps include deconvolution, peak picking, and data alignment. This step is critical prior to multivariate statistical analysis. S/N ratio  $\geq$ 3 was generally used for a noise cut-off for peak picking process, and it could be greater than the 2AP chromatogram signal. From this thesis, the findings of volatile profiles may be used to promote the consumption of colored rice varieties for optimal consumer health and to increase the country's market value.

Chulalongkorn University

# SUPPLEMENTARY DATA

Supplementary Table 1 A complete dataset that includes retention time (RT), RI, metabolite ID, CAS no., InChIKey, matching score, signal-to-noise ratio

(S/N), El spectrum, and peak area

Supplementary Table 1

| No. | Aver RT(min) | Ave RI  | Quant mass | Metabolite ID                              | Formula  |
|-----|--------------|---------|------------|--------------------------------------------|----------|
| 1   | 1.829        | 640.68  | 43.2       | methyl acetate                             | C3H6O2   |
| 2   | 1.961        | 646.95  | 39.17273   | 2-methylpropanal                           | C4H8O    |
| ŝ   | 2.641        | 675.47  | 44.21203   | 3-methylbutanal                            | C5H10O   |
| 4   | 2.746        | 679.79  | 57.19853   | 2-methylbutanal                            | C5H100   |
| 2   | 2.818        | 682.81  | 58.16667   | 4-(dimethylamino)-3-hydroxybutanoic acid   | C6H13NO3 |
| 9   | 3.107        | 694.67  | 79         | pentane-2,3-dione                          | C5H8O2   |
| 7   | 3.151        | 696.65  | 44.14667   | pentanal                                   | C5H10O   |
| 00  | 3.232        | 699.07  | 60.1       | acetic acid                                | C2H4O2   |
| 6   | 3.310        | 703.83  | 60.1       | formyl acetate                             | C3H4O3   |
| 10  | 3.731        | 726.27  | 43.2       | 1-hydroxypropan-2-one                      | C3H6O2   |
| 11  | 4.390        | 760.93  | 55.13077   | pentan-1-ol                                | C5H12O   |
| 12  | 5.075        | 797.15  | 72.2       | hexanal                                    | C6H12O   |
| 13  | 5.568        | 815.72  | 45.2       | butane-2,3-diol                            | C4H10O2  |
| 14  | 5.698        | 820.47  | 94.0698    | 4-methylpyrimidine                         | C5H6N2   |
| 15  | 5.927        | 829.15  | 96         | furan-2-carbaldehyde                       | C5H4O2   |
| 16  | 5.984        | 831.07  | 57.04047   | 1-(5-methyl-1H-pyrazol-3-yl)propan-2-amine | C7H13N3  |
| 17  | 6.628        | 854.79  | 60.06808   | 3,3-dimethyl-4-(methylamino)butan-2-one    | C7H15NO  |
| 18  | 6.901        | 864.86  | 56.15278   | hexan-1-ol                                 | C6H14O   |
| 19  | 7.505        | 887.16  | 43.15714   | heptan-2-one                               | C7H14O   |
| 20  | 7.799        | 898.06  | 70.07609   | heptanal                                   | C7H14O   |
| 21  | 8.116        | 908.53  | 108.0554   | 2,6-dimethylpyrazine                       | C6H8N2   |
| 22  | 8.514        | 921.65  | 74.10102   | methyl hexanoate                           | C7H14O2  |
| 23  | 9.539        | 955.15  | 106.0614   | benzaldehyde                               | C7H60    |
| 24  | 10.307       | 980.27  | 60.02821   | 2-propylpropanedioic acid                  | C6H10O4  |
| 25  | 10.881       | 70.999  | 84.05306   | octanal                                    | C8H16O   |
| 26  | 11.563       | 1021.27 | 74.03287   | methyl 5-methylhexanoate                   | C8H16O2  |
| 27  | 11.582       | 1021.95 | 54.96667   | methyl heptanoate                          | C8H16O2  |
| 28  | 11.976       | 1034.69 | 71.04681   | 3-hydroxy-4,4-dimethyloxolan-2-one         | C6H10O3  |

Sheet 1 of 50
| No. | Aver RT(min) | Ave RI  | Quant mass | Metabolite ID                            | Formula  |
|-----|--------------|---------|------------|------------------------------------------|----------|
| 29  | 12.117       | 1039.30 | 91.07306   | 2-phenylacetaldehyde                     | C8H8O    |
| 30  | 13.515       | 1084.78 | 124.025    | 2-methoxyphenol                          | C7H8O2   |
| 31  | 13.977       | 1099.88 | 57.12347   | nonanal                                  | C9H18O   |
| 32  | 14.598       | 1120.89 | 74.05056   | methyl octanoate                         | C9H18O2  |
| 33  | 15.038       | 1135.94 | 106.0079   | methyl pyridine-3-carboxylate            | C7H7NO2  |
| 34  | 15.150       | 1139.55 | 67.96154   | 1-methylpyridin-1-ium-3-carboxylate      | C7H7NO2  |
| 35  | 16.165       | 1173.95 | 91.05605   | methyl 2-phenylacetate                   | C9H1002  |
| 36  | 16.286       | 1178.02 | 127.9975   | naphthalene                              | C10H8    |
| 37  | 16.962       | 1200.98 | 57.03519   | decanal                                  | C10H200  |
| 38  | 17.324       | 1213.87 | 120.0364   | 2,3-dihydro-1-benzofuran                 | C8H8O    |
| 39  | 17.496       | 1220.10 | 74.07265   | methyl nonanoate                         | C10H2002 |
| 40  | 17.732       | 1228.49 | 139.0385   | 3-ethyl-4-methylpyrrole-2,5-dione        | C7H9NO2  |
| 41  | 19.973       | 1309.18 | 150.0386   | 1-(2-hydroxy-5-methylphenyl)ethanone     | C9H1002  |
| 42  | 25.311       | 1518.81 | 74.00948   | methyl 10-methylundecanoate              | C13H2602 |
| 43  | 29.865       | 1718.57 | 74.06219   | methyl 12-methyltridecanoate             | C15H3002 |
| 44  | 32.394       | 1839.00 | 43.01667   | 5,10,14-trimethylpentadecan-2-one        | C18H36O  |
| 45  | 34.001       | 1919.06 | 74.1       | methyl hexadecanoate                     | C17H34O2 |
| 46  | 37.165       | 2085.60 | 55.1       | methyl (92,11E)-octadeca-9,11-dienoate   | C19H34O2 |
| 47  | 37.185       | 2087.09 | 81.10619   | methyl (10E,122)-octadeca-10,12-dienoate | C19H34O2 |
| 48  | 37.296       | 2093.06 | 55.15072   | methyl-octadec-9-enoate                  | C19H3602 |

| No. | MS fragment pattern (m/z)                   | CAS no       | InChiKey                    | R match | S/N average |
|-----|---------------------------------------------|--------------|-----------------------------|---------|-------------|
|     | 43, 74, 42, 59, 44, 45, 41                  | 79-20-9      | KXKVLQRXCPHEJC-UHFFFAOYSA-N | 932     | 759.90      |
| 10  | 43, 41, 72, 39, 42, 38                      | 78-84-2      | AMIMRNSIRUDHCM-UHFFFAOYSA-N | 863     | 97.71       |
| ſ   | 44, 43, 41, 58, 39, 57, 71, 42              | 590-86-3     | YGHRJJRRZDOVPD-UHFFFAOYSA-N | 918     | 435.53      |
| 4   | 41, 57, 58, 39, 43, 86, 55                  | 96-17-3      | BYGQBDHUGHBGMD-UHFFFAOYSA-N | 859     | 3691.63     |
| 2   | 58, 42, 44, 88, 59, 147, 33, 43             | 3688-46-8    | NXDDNODAJKZARA-UHFFFAOYSA-N | 832     | 177.29      |
| 9   | 43, 57, 42, 100                             | 600-14-6     | TZMFJUDUGYTVRY-UHFFFAOYSA-N | 755     | 46.37       |
|     | 44, 58, 41, 57, 43, 39, 42, 45              | 110-62-3     | HGBOYTHUEUWSSQ-UHFFFAOYSA-N | 873     | 38.04       |
| 8   | 43, 45, 60, 42, 41                          | 64-19-7      | QTBSBXVTEAMEQO-UHFFFAOYSA-N | 916     | 1072.95     |
| 6   | 43, 75, 85, 101, 47, 117, 58                | 2258-42-6    | ORWKVZNEPHTCQE-UHFFFAOYSA-N | 798     | 4443.94     |
| 10  | 43, 74, 42, 45, 44                          | 116-09-6     | XLSMFKSTNGKWQX-UHFFFAOYSA-N | 885     | 1443.16     |
| 11  | 42, 55, 41, 70, 43, 57, 39                  | 71-41-0      | AMQJEAYHLZJPGS-UHFFFAOYSA-N | 859     | 26.66       |
| 12  | 44, 56, 41, 43, 57, 39, 45, 72, 82          | 66-25-1      | JARKCYVAAOWBJS-UHFFFAOYSA-N | 942     | 23.98       |
| 13  | 45, 43, 57, 47, 44, 46                      | 513-85-9     | OWBTYPJTUOEWEK-UHFFFAOYSA-N | 790     | 130.66      |
| 14  | 94, 40, 53, 67, 39, 52, 79, 38              | 3438-46-8    | LVILGAOSPDLNRM-UHFFFAOYSA-N | 851     | 78.11       |
| 15  | 96, 95, 39, 38, 37, 67, 40, 97, 42          | 98-01-1      | HYBBIBNJHNGZAN-UHFFFAOYSA-N | 864     | 29.98       |
| 16  | 96, 44, 95, 42, 39, 41, 45, 97, 81, 54      | 1025087-55-1 | OHGJHBXVKFERPR-UHFFFAOYSA-N | 750     | 8.35        |
| 17  | 44, 43, 42, 71, 41, 55, 70, 45, 86, 39, 100 | 123528-99-4  | QPKSAEVZZQMSER-UHFFFAOYSA-N | 794     | 15.58       |
| 18  | 56, 43, 41, 55, 39, 69, 84                  | 111-27-3     | ZSIAUFGUXNUGDI-UHFFFAOYSA-N | 845     | 178.74      |
| 19  | 43, 58, 71, 41, 39, 59, 42, 99, 114         | 110-43-0     | CATSNJVOTSVZJV-UHFFFAOYSA-N | 803     | 46.05       |
| 20  | 70, 41, 44, 43, 55, 57, 42, 39, 81, 96      | 111-71-7     | FXHGMKSSBGDXIY-UHFFFAOYSA-N | 825     | 22.22       |
| 21  | 108, 42, 40, 39, 38, 41, 67, 109, 37        | 108-50-9     | HJFZAYHYIWGLNL-UHFFFAOYSA-N | 835     | 41.97       |
| 22  | 74, 87, 43, 59, 99, 55, 41, 101, 42, 71     | 106-70-7     | NUKZAGXMHTUAFE-UHFFFAOYSA-N | 882     | 305.64      |
| 23  | 77, 106, 105, 51, 50, 78, 52, 74, 107, 39   | 100-52-7     | HUMNYLRZRPPJDN-UHFFFAOYSA-N | 903     | 246.45      |
| 24  | 60, 44, 73, 41, 43, 45, 55, 42              | 616-62-6     | VQDJODAWOFNASI-UHFFFAOYSA-N | 842     | 9.76        |
| 25  | 43, 44, 41, 56, 84, 57, 55, 42, 69, 100     | 124-13-0     | NUJGJRNETVAIRJ-UHFFFAOYSA-N | 897     | 19.02       |
| 26  | 74, 43, 87, 69, 41, 9, 101, 55, 95          | 106-73-0     | XNCNNDVCAUWAIT-UHFFFAOYSA-N | 724     | 25.40       |
| 27  | 74, 87, 43, 113, 55, 101, 59, 41, 39, 75    | 106-73-0     | XNCNNDVCAUWAIT-UHFFFAOYSA-N | 759     | 5.30        |
| 28  | 71, 43, 41, 57, 55, 39, 72, 56              | 79-50-5      | SERHXTVXHNVDKA-UHFFFAOYSA-N | 725     | 18.06       |

Sheet 3 of 50

| No. | MS fragment pattern (m/z)                             | CAS no     | InChiKey                    | R match | S/N average |
|-----|-------------------------------------------------------|------------|-----------------------------|---------|-------------|
| 29  | 91, 92, 120, 65, 39, 63, 51, 89, 121, 50              | 122-78-1   | DTUQWGWMVIHBKE-UHFFFA0YSA-N | 895     | 101.01      |
| 30  | 109, 124, 81, 53, 52, 51, 39, 50, 63, 110             | 90-05-1    | LHGVFZTZFXWLCP-UHFFFAOYSA-N | 821     | 73.12       |
| 31  | 57, 41, 43, 56, 44, 55, 70, 98, 69                    | 124-19-6   | GYHFUZHODSMOHU-UHFFFAOYSA-N | 859     | 78.91       |
| 32  | 74, 87, 43, 41, 55, 57, 127, 59, 115                  | 111-11-5   | JGHZJRVDZXSNKQ-UHFFFAOYSA-N | 806     | 25.49       |
| 33  | 106, 78, 137, 51, 136, 50, 107, 105, 77, 52           | 93-60-7    | YNBADRVTZLEFNH-UHFFFAOYSA-N | 926     | 51.04       |
| 34  | 106, 78, 137, 44, 51, 50, 136, 79, 42, 52             | 535-83-1   | WWNNZCOKKKDOPX-UHFFFAOYSA-N | 880     | 7.95        |
| 35  | 91, 150, 65, 92, 89, 59, 63, 39, 90, 151              | 101-41-7   | CRZQGDNQQAALAY-UHFFFAOYSA-N | 857     | 38.43       |
| 36  | 128, 129, 127, 51, 64, 102, 126, 63, 77, 75           | 91-20-3    | UFWIBTONFRDIAS-UHFFFAOYSA-N | 788     | 30.94       |
| 37  | 43, 41, 57, 55, 44, 70, 56, 68, 71                    | 112-31-2   | KSMVZQYAVGTKIV-UHFFFAOYSA-N | 753     | 6.94        |
| 38  | 120, 91, 119, 92, 39, 89, 63, 65, 121, 51             | 496-16-2   | HBEDSQVIWPRPAY-UHFFFAOYSA-N | 759     | 32.17       |
| 39  | 74, 87, 55, 43, 41, 59, 141, 129, 143, 57             | 1731-84-6  | IJXHLVMUNBOGRR-UHFFFAOYSA-N | 818     | 49.58       |
| 40  | 53, 139, 67, 68, 124, 96, 110, 94, 95, 111            | 20189-42-8 | CUBICSJJYOPOIA-UHFFFAOYSA-N | 787     | 19.70       |
| 41  | 135,150, 107, 77, 43, 136, 51, 151, 79, 39            | 1450-72-2  | YNPDFBFVMJNGKZ-UHFFFAOYSA-N | 850     | 67.11       |
| 42  | 74, 87, 57, 41, 43, 55, 69, 143, 59, 75, 214          | 5129-56-6  | XPVCTJYIICVJOE-UHFFFAOYSA-N | 741     | 15.97       |
| 43  | 74, 87, 43, 55, 41, 199, 57, 143, 59, 75              | 5129-58-8  | FLESKWMKPOBWDE-UHFFFAOYSA-N | 795     | 54.30       |
| 44  | 43, 58, 71, 57, 59, 41, 55, 69, 85, 95                | 502-69-2   | WHWDWIHXSPCOKZ-UHFFFAOYSA-N | 694     | 8.60        |
| 45  | 74, 87, 43, 55, 41, 143, 75, 57, 69, 227, 270         | 112-39-0   | FLIACVVOZYBSBS-UHFFFAOYSA-N | 903     | 1926.32     |
| 46  | 67, 81, 95, 79, 55, 82, 96, 68, 109, 69, 262          | 13058-52-1 | KVIWYYOMPLJRMC-OCBXPSTGSA-N | 893     | 34.62       |
| 47  | 67, 81, 95, 55, 82, 79, 96, 68, 294, 54               | 21870-97-3 | KMXSXYSNZMSDFK-UQGDGPGGSA-N | 802     | 228.94      |
| 48  | 55, 69, 74, 83, 97, 41, 96, 87, 43, 84, 222, 264, 296 | 112-62-9   | QYDYPVFESGNLHU-KHPPLWFESA-N | 866     | 335.31      |
|     |                                                       |            |                             |         |             |

Sheet 4 of 50

|             |           | Class       | Blank    | white aroma |
|-------------|-----------|-------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|             |           | File type   | Blank    | Sample      |
|             | Spectrum  |             |          |             |             |             |             |             |             |             |             |
|             | reference |             |          |             |             |             |             |             |             |             |             |
| <u>۱</u> ٥. | file name | El spectrum | Blank    | BMT_1       | BMT_2       | BMT_3       | BMT_4       | BMT_5       | BMT_6       | BMT_7       | BMT_8       |
| 1           | BMT_9     | 29.1:34523  | 12595.86 | 2120320     | 4022418     | 3537319     | 1849103     | 2523384     | 4324584     | 2297588     | 4057372     |
| 2           | BMT_10    | 29.1:23814  | 2988.972 | 126124      | 123359      | 156265      | 146061      | 139210      | 144109      | 166602      | 134621      |
| m           | BMT_1     | 29.2:143345 | 8854.098 | 2048825     | 601968      | 596656      | 605592      | 705291      | 804483      | 954113      | 698230      |
| 4           | BMT_1     | 29.3:151024 | 2238.208 | 1311870     | 1000651     | 1613490     | 1333583     | 1376528     | 550085      | 1141675     | 1037882     |
| 2           | BSHMP_1   | 29.1:2583 3 | 432.9984 | 28799       | 760925      | 1183199     | 1069862     | 1068594     | 57032       | 7923        | 4525        |
| 9           | BMT_6     | 30.1:204 32 | 1750.808 | 2138        | 714         | 616         | 699         | 1107        | 3273        | 664         | 1425        |
| 7           | BMT_2     | 29.2:9644 3 | 5189.124 | 409399      | 51306       | 99483       | 105472      | 93268       | 118175      | 30220       | 71499       |
| ∞           | BMT_1     | 29.2:3312 3 | 134.4884 | 6229736     | 4374542     | 19223       | 5268546     | 31759       | 759         | 5509775     | 4882345     |
| 6           | BMT_10    | 29.2:72423  | 466.6143 | 32506       | 4443323     | 4486257     | 5700525     | 4907696     | 4725940     | 5605076     | 4867373     |
| 10          | BMT_1     | 29.2:38139  | 2601.178 | 1793670     | 939772      | 37724       | 7677        | 1336522     | 26602       | 1032801     | 855975      |
| 11          | BMT_1     | 29.2:1976 3 | 1440.991 | 134040      | 58837       | 68721       | 63992       | 53123       | 62550       | 60176       | 70268       |
| 12          | BMT_1     | 29.3:523 31 | 558.9857 | 146640      | 65773       | 66545       | 64842       | 54056       | 62835       | 60044       | 72324       |
| 13          | BMT_1     | 30.2:556 31 | 1352.826 | 236071      | 24303       | 34774       | 25442       | 25306       | 195         | 33045       | 21449       |
| 14          | BMT_1     | 32.1:803 34 | 822.7706 | 248380      | 59963       | 105143      | 69325       | 44601       | 27762       | 62316       | 79453       |
| 15          | BMT_1     | 30.9:273 34 | 176.933  | 252570      | 86275       | 78778       | 87060       | 79917       | 74353       | 66628       | 68439       |
| 16          | BMT_1     | 33:120 37.1 | 670.6593 | 7574        | 4817        | 1330        | 4209        | 5347        | 2433        | 3668        | 5065        |
| 17          | BMT_3     | 29.1:888 30 | 227.8461 | 71656       | 4752        | 20010       | 11101       | 19450       | 10799       | 19725       | 19291       |
| 18          | BMT_1     | 29.2:11099  | 1359.278 | 334621      | 66302       | 95863       | 83878       | 66629       | 62982       | 79149       | 88186       |
| 19          | BMT_1     | 30.2:345 31 | 1242.432 | 78690       | 22281       | 24610       | 19197       | 18007       | 16746       | 22032       | 23008       |
| 20          | BMT_1     | 29.2:3765 3 | 1028.067 | 48915       | 17514       | 14330       | 14411       | 10537       | 14017       | 11424       | 11022       |
| 21          | BMT_1     | 31.1:415 32 | 60.25156 | 187436      | 29131       | 26547       | 24776       | 31058       | 24895       | 19204       | 17383       |
| 22          | BMT_1     | 29.2:7678 3 | 291.5629 | 427952      | 116202      | 159738      | 90706       | 98734       | 112105      | 100079      | 108151      |
| 23          | BMT_1     | 29.2:10113  | 693.6786 | 392290      | 141274      | 127607      | 128483      | 116378      | 120770      | 105836      | 99095       |
| 24          | BMT_1     | 29.2:1048 3 | 58.9946  | 32872       | 7453        | 9740        | 7717        | 9177        | 3879        | 3896        | 5407        |
| 25          | BMT_1     | 29.1:3563 3 | 155.5682 | 36463       | 13822       | 12393       | 12441       | 6696        | 14127       | 10069       | 11168       |
| 26          | BMT_1     | 29.2:1392 3 | 287.2936 | 60299       | 19071       | 17761       | 13064       | 14500       | 14903       | 12379       | 11580       |
| 27          | BMT_1     | 29.1:589 32 | 779.2449 | 11494       | 5762        | 4868        | 4805        | 4818        | 6039        | 5246        | 4082        |
| 28          | BMT_1     | 37:278 38.3 | 331.7184 | 66815       | 7630        | 8469        | 6199        | 3980        | 7445        | 6124        | 4019        |

Sheet 5 of 50

| 1  |
|----|
| e, |
| q  |
| Ta |
| ≥  |
| ta |
| G  |
| Ĕ  |
| e  |
| d  |
| d  |
| Š  |

|     |            | Class        | Blank    | white aroma |
|-----|------------|--------------|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     |            | File type    | Blank    | Sample      |
|     | Spectrum   |              |          |             |             |             |             |             |             |             |             |
|     | reference  |              |          |             |             |             |             |             |             |             |             |
| No. | file name  | El spectrum  | Blank    | BMT_1       | BMT_2       | BMT_3       | BMT_4       | BMT_5       | BMT_6       | BMT_7       | BMT_8       |
| 29  | BMT_1      | 29.1:1289 3  | 1876.34  | 209479      | 75601       | 73739       | 61284       | 65551       | 59734       | 61821       | 51775       |
| 30  | BSHMP_10   | 30.2:235 37  | 0        | 10266       | 2558        | 878         | 2425        | 1210        | 1219        | 1141        | 1552        |
| 31  | $BMT_1$    | 29.1:5648 3  | 1641.944 | 132962      | 41742       | 34290       | 41929       | 32538       | 43676       | 25024       | 23689       |
| 32  | $BMT_1$    | 29.2:1569 3  | 755.8695 | 74567       | 16652       | 15730       | 10860       | 12316       | 16503       | 12035       | 11725       |
| 33  | $BMT_1$    | 30.2:308 32  | 54.71814 | 249869      | 128751      | 121819      | 55739       | 66078       | 137948      | 29149       | 89785       |
| 34  | $BMT_1$    | 29.1:634 30  | 54.67401 | 15514       | 3958        | 4480        | 3898        | 3840        | 3474        | 2619        | 2717        |
| 35  | $BMT_1$    | 30.1:50 32.2 | 949.8409 | 112860      | 27504       | 21586       | 18743       | 20952       | 23890       | 13682       | 19105       |
| 36  | $BMT_1$    | 29.1:467 29  | 576.2521 | 48327       | 15266       | 11344       | 8831        | 10601       | 11099       | 8976        | 7894        |
| 37  | $BMT_1$    | 29.1:988 31  | 762.771  | 13100       | 3622        | 3239        | 3480        | 3622        | 2209        | 514         | 2274        |
| 38  | $BMT_1$    | 29.2:631 32  | 171.7302 | 150620      | 41426       | 31573       | 26510       | 18810       | 16534       | 8410        | 8046        |
| 39  | $BMT_1$    | 29.1:1150 3  | 456.8582 | 137286      | 37883       | 28765       | 25859       | 24559       | 33386       | 20125       | 18340       |
| 40  | $BMT_1$    | 29.1:1 30.2: | 63.99809 | 31753       | 6060        | 5693        | 4303        | 3733        | 2421        | 1004        | 1786        |
| 41  | $BMT_1$    | 31.1:177 32  | 174.6236 | 139096      | 39429       | 41056       | 43061       | 37647       | 36661       | 30057       | 28253       |
| 42  | $BMT_1$    | 29.8:63 32.2 | 1101.084 | 30367       | 10035       | 9441        | 6714        | 5140        | 6249        | 8133        | 3907        |
| 43  | $BMT_1$    | 29.2:688 29  | 841.2583 | 53961       | 18418       | 25177       | 14094       | 15559       | 19862       | 15939       | 12544       |
| 44  | $BMT_1$    | 29.9:167 30  | 1557.963 | 14277       | 7743        | 5472        | 6217        | 6086        | 6243        | 4668        | 5182        |
| 45  | $BMT_1$    | 29.2:12074   | 3242.613 | 1583578     | 535312      | 699339      | 408727      | 381224      | 445323      | 523361      | 364594      |
| 46  | $BMT_{10}$ | 29.1:2216 3  | 971.9097 | 54520       | 34605       | 47239       | 37549       | 35950       | 32901       | 32418       | 29701       |
| 47  | $BMT_1$    | 29.2:2136 3  | 260.6558 | 111079      | 55912       | 82663       | 62320       | 60934       | 64851       | 57270       | 56391       |
| 48  | BMT_1      | 29.2:7969 3  | 986.3108 | 349650      | 120343      | 174196      | 126748      | 114443      | 136068      | 138762      | 115324      |

|    | white aroma |
|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | Sample      |
|    |             |             |             |             |             |             |             |             |             |             |             |
|    | BMT_9       | BMT_10      | KDML_1      | KDML_2      | KDML_3      | KDML_4      | KDML_5      | KDML_6      | KDML_7      | KDML_8      | KDML_9      |
|    | 3655534     | 3100914     | 2513910     | 3472612     | 2694896     | 1805566     | 1857192     | 2880761     | 1984607     | 3293160     | 2853619     |
| 2  | 137060      | 143981      | 134631      | 348103      | 157313      | 160314      | 143502      | 155235      | 137771      | 150886      | 183654      |
| m  | 2145309     | 865567      | 465696      | 1573021     | 566728      | 634562      | 621750      | 672676      | 684703      | 621008      | 706142      |
| 4  | 1109714     | 1222860     | 1141559     | 3002897     | 1006521     | 1030878     | 914786      | 1019862     | 979239      | 550141      | 1121418     |
| 5  | 3016        | 8155        | 241587      | 38607       | 136022      | 105125      | 126626      | 212921      | 180662      | 82635       | 169721      |
| 9  | 363         | 482         | 1005        | 778         | 7010        | 461         | 1879        | 1462        | 282         | 1178        | 114         |
|    | 451293      | 69          | 220683      | 40941       | 83549       | 107244      | 109994      | 97931       | 88539       | 100300      | 97776       |
| ∞  | 5112911     | 5776453     | 514         | 4279515     | 1569        | 985         | 3093        | 1532        | 552         | 694         | 103721      |
| 6  | 21226       | 5820418     | 7008579     | 4538647     | 4212473     | 4689573     | 4164341     | 4973198     | 5039464     | 4436832     | 5324898     |
| 12 | 1058336     | 1034342     | 31888       | 967023      | 70875       | 38159       | 76139       | 75795       | 19479       | 37795       | 54870       |
| 11 | 56459       | 90969       | 109081      | 57105       | 49053       | 50897       | 47198       | 47848       | 869         | 61456       | 52043       |
| 2  | 48282       | 64775       | 142820      | 87176       | 47460       | 61490       | 51855       | 42925       | 40481       | 56915       | 42899       |
| m  | 39206       | 21153       | 2487        | 20591       | 1084        | 1725        | 996         | 491         | 1356        | 1149        | 86408       |
| 4  | 75296       | 34635       | 186697      | 56988       | 46297       | 34143       | 61793       | 52056       | 35678       | 20730       | 67987       |
| 2  | 64893       | 72846       | 241095      | 100511      | 81135       | 87236       | 81870       | 69815       | 72956       | 78749       | 79251       |
| 9  | 4800        | 3481        | 6307        | 5883        | 3656        | 2824        | 4040        | 4375        | 3082        | 2784        | 3444        |
|    | 2514        | 2006        | 12904       | 23783       | 9824        | 6448        | 7884        | 3034        | 2247        | 9202        | 2560        |
| 8  | 65496       | 00/6/       | 114589      | 38597       | 40678       | 35069       | 26980       | 28376       | 24252       | 36399       | 39572       |
| 6  | 18767       | 21585       | 65885       | 28282       | 17940       | 20721       | 14112       | 15452       | 21848       | 17710       | 13917       |
| 20 | 10104       | 10139       | 35946       | 13776       | 9761        | 11189       | 7986        | 6972        | 6945        | 9175        | 7366        |
| 12 | 23470       | 21864       | 177506      | 48347       | 30327       | 18239       | 23488       | 32375       | 18152       | 14006       | 26649       |
| 2  | 104758      | 96313       | 451333      | 222566      | 136615      | 187208      | 119175      | 110991      | 87651       | 156616      | 125323      |
| 3  | 89297       | 93627       | 496938      | 202281      | 138591      | 150587      | 142116      | 121187      | 116881      | 119251      | 115536      |
| 4  | 5386        | 4663        | 7030        | 10829       | 7972        | 5352        | 9058        | 4217        | 6285        | 9578        | 5946        |
| 52 | 8605        | 9589        | 29276       | 11869       | 10449       | 10770       | 7467        | 6929        | 10499       | 9637        | 5170        |
| 26 | 11958       | 11595       | 78841       | 24084       | 20642       | 25236       | 17002       | 18728       | 16406       | 19666       | 17073       |
|    | 643         | 5455        | 14530       | 8329        | 2669        | 3833        | 5347        | 6761        | 967         | 7289        | 5305        |
| 8  | 5373        | 6550        | 68637       | 12254       | 11583       | 11626       | 10550       | 7584        | 7675        | 6002        | 9536        |

Sheet 7 of 50

|     | white aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | BMT_9       | BMT_10      | KDML_1      | KDML_2      | KDML_3      | KDML_4      |             | KDML_6      | KDML_7      | KDML_8      | KDML_9      |
| 25  | 9 46686     | 49624       | 237441      | 100265      | 63599       | 65568       | 60588       | 59877       | 53384       | 48131       | 55826       |
| 30  | 202         | 417         | 8282        | 2545        | 2130        | 852         | 656         | 1805        | 1017        | 479         | 1393        |
| 31  | 1 20648     | 24494       | 92889       | 34242       | 27673       | 30907       | 17286       | 17118       | 21178       | 21690       | 18414       |
| 32  | 2 14939     | 10439       | 111094      | 29726       | 24452       | 30996       | 20709       | 18609       | 15894       | 28711       | 18461       |
| 33  | 3 4531      | 73468       | 293908      | 127850      | 84769       | 60816       | 69998       | 79368       | 66863       | 90365       | 67796       |
| 34  | 4 2861      | 861         | 16858       | 2642        | 3239        | 3187        | 1950        | 2635        | 2832        | 1083        | 2762        |
| 35  | 15393       | 15489       | 200395      | 41131       | 36294       | 43706       | 22294       | 31647       | 31233       | 33725       | 29163       |
| 36  | 7404        | 8014        | 72735       | 23261       | 12683       | 11847       | 8862        | 11083       | 10842       | 11000       | 7904        |
| 37  | 7 1312      | 1744        | 11031       | 3176        | 1595        | 3287        | 2564        | 2505        | 1375        | 2049        | 1516        |
| 38  | 8172        | 7190        | 100062      | 26908       | 23913       | 17692       | 14723       | 3909        | 9807        | 8119        | 7745        |
| 36  | 9 22720     | 20629       | 194013      | 41261       | 33479       | 43873       | 28589       | 30828       | 29752       | 40649       | 31578       |
| 40  | 1 486       | 805         | 31406       | 4634        | 4199        | 3228        | 2242        | 2898        | 2055        | 3066        | 397         |
| 41  | 1 29119     | 24953       | 211365      | 65404       | 65838       | 88156       | 56943       | 52960       | 63785       | 47426       | 44965       |
| 42  | 2 9318      | 5305        | 35830       | 11412       | 7309        | 4245        | 7151        | 6433        | 5273        | 5529        | 14249       |
| 43  | 3 14535     | 13639       | 77340       | 38805       | 29493       | 38858       | 40103       | 30244       | 25308       | 30368       | 39427       |
| 44  | 4053        | 4426        | 8978        | 1562        | 4721        | 4301        | 3451        | 4656        | 4166        | 3057        | 5141        |
| 45  | 5 477118    | 281158      | 5462945     | 5616387     | 2801235     | 6030291     | 4020985     | 3031776     | 3012215     | 3527249     | 3702743     |
| 46  | 38938       | 31585       | 271366      | 128123      | 127536      | 274073      | 214461      | 170525      | 177213      | 167461      | 170227      |
| 47  | 7 71011     | 46816       | 523997      | 246073      | 266665      | 535198      | 431427      | 327637      | 330921      | 325744      | 308625      |
| 46  | 8 148378    | 98137       | 843415      | 795197      | 684598      | 1613836     | 1220933     | 816592      | 887321      | 948036      | 934382      |

Sheet 8 of 50

|          | white aroma | black aroma |
|----------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|          | Sample      |
|          |             |             |             |             |             |             |             |             |             |             |             |
| <u>.</u> | KDML_10     | KH_1        | KH_2        | KH_3        | KH_4        | KH_5        | КН_6        | кн_7        | KH_8        | КН_9        | KH_10       |
| 1        | 2461057     | 3370495     | 5626685     | 4429574     | 4133717     | 3898642     | 5874127     | 4071638     | 4668308     | 4546352     | 3810160     |
| 2        | 130620      | 247457      | 345399      | 291882      | 295756      | 321952      | 335654      | 313095      | 316567      | 300875      | 338855      |
| m        | 630872      | 607867      | 1019732     | 776741      | 876388      | 1008924     | 1034084     | 999241      | 1014304     | 858744      | 1285655     |
| 4        | 1 787761    | 1000516     | 960564      | 743919      | 1385604     | 852478      | 791039      | 744958      | 761959      | 725440      | 1013924     |
| 2        | 49124       | 253571      | 2244        | 119595      | 289228      | 712         | 575685      | 308857      | 934         | 214274      | 246541      |
| 9        | 162         | 12924       | 1245        | 4358        | 1690        | 870         | 686         | 3597        | 1030        | 2546        | 2675        |
| 7        | 31962       | 288464      | 297017      | 235085      | 241543      | 202376      | 223258      | 191759      | 199451      | 149185      | 176338      |
| 8        | 5281265     | 4528        | 890         | 1802        | 7201        | 8670        | 9766        | 511         | 2262        | 707         | 6766        |
| 6        | 5360000     | 7709257     | 107         | 5169        | 5321344     | 373         | 233         | 209227      | 1479        | 6337732     | 6738559     |
| 10       | 1038017     | 48075       | 35370       | 42976       | 12164       | 36407       | 64851       | 42462       | 34110       | 74103       | 22224       |
| 11       | 42499       | 407527      | 434448      | 359028      | 371480      | 294722      | 322631      | 264580      | 265632      | 216330      | 207316      |
| 12       | 37669       | 270552      | 298094      | 226816      | 250328      | 192118      | 210912      | 174610      | 180220      | 132379      | 127331      |
| 13       | 11060       | 4716        | 15107       | 15651       | 1357        | 2658        | 3806        | 2952        | 3012        | 3161        | 1891        |
| 14       | 37998       | 203569      | 134764      | 92040       | 101283      | 103301      | 54342       | 71695       | 90588       | 31432       | 87771       |
| 15       | 57931       | 199270      | 103627      | 68606       | 82938       | 97980       | 90832       | 77428       | 84164       | 68379       | 77200       |
| 16       | 2120        | 8601        | 6221        | 5340        | 2414        | 1812        | 5380        | 4211        | 4416        | 4349        | 2579        |
| 17       | 1127        | 17517       | 20803       | 26073       | 1796        | 1033        | 11577       | 13891       | 8619        | 1996        | 1570        |
| 18       | 24241       | 724607      | 540297      | 389065      | 417722      | 294089      | 427611      | 242082      | 235718      | 204785      | 180738      |
| 19       | 12716       | 151397      | 127884      | 77683       | 84115       | 75402       | 86386       | 56534       | 69193       | 41038       | 46096       |
| 20       | 7131        | 58187       | 26242       | 21369       | 19068       | 20970       | 23955       | 20035       | 20527       | 10978       | 18027       |
| 21       | 15951       | 121170      | 30597       | 27751       | 15796       | 23157       | 20256       | 24684       | 25431       | 11712       | 19326       |
| 22       | 76801       | 871380      | 573515      | 543268      | 484975      | 369009      | 406145      | 316693      | 386808      | 250805      | 200930      |
| 23       | 91305       | 267260      | 130643      | 114333      | 90528       | 103944      | 92595       | 88521       | 88870       | 59009       | 69783       |
| 24       | 2934        | 21957       | 29343       | 45163       | 18302       | 3985        | 17978       | 20372       | 16928       | 1951        | 4947        |
| 25       | 8146        | 45407       | 20403       | 18319       | 14048       | 17678       | 15193       | 18055       | 19078       | 11784       | 16769       |
| 26       | 12093       | 59681       | 27970       | 24896       | 17470       | 18116       | 18713       | 17263       | 18240       | 11681       | 10775       |
| 27       | 1671        | 10677       | 7225        | 8698        | 5692        | 7304        | 8097        | 7049        | 1161        | 5587        | 3459        |
| 28       | 3973        | 32974       | 10727       | 11073       | 6095        | 4612        | 5479        | 8144        | 4593        | 4312        | 4951        |

Sheet 9 of 50

|     | white aroma | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | KDML_10     | KH_1        | KH_2        | KH_3        | KH_4        | KH_5        | кн_6        | кн_7        | KH_8        | <b>КН_9</b> | KH_10       |
| 29  | 9 47340     | 158983      | 65029       | 57405       | 62195       | 65092       | 56266       | 50515       | 53843       | 46445       | 58087       |
| 30  | 740         | 175889      | 89807       | 61280       | 55102       | 66181       | 46847       | 40455       | 54903       | 40136       | 43153       |
| 31  | L 20015     | 236340      | 102027      | 82521       | 68579       | 117463      | 104225      | 118896      | 119055      | 71270       | 99091       |
| 32  | 2 10602     | 58340       | 23000       | 23100       | 18609       | 17638       | 18346       | 13950       | 16952       | 10873       | 11375       |
| 33  | 3 56665     | 97152       | 26397       | 66749       | 55204       | 48764       | 63448       | 47642       | 53385       | 55148       | 32099       |
| 34  | t 2587      | 8239        | 3555        | 2623        | 1924        | 2089        | 2659        | 2110        | 2168        | 1004        | 2053        |
| 35  | 26007       | 105966      | 42564       | 44473       | 26193       | 29828       | 24987       | 25408       | 30256       | 25418       | 21880       |
| 36  | 8737        | 62193       | 24114       | 28637       | 9073        | 14149       | 12619       | 12103       | 18184       | 7934        | 8107        |
| 37  | 1582        | 12407       | 4417        | 3827        | 2677        | 3860        | 3519        | 3012        | 4562        | 2511        | 1772        |
| 38  | 3 4658      | 25996       | 12580       | 5257        | 4387        | 5223        | 4770        | 5249        | 3008        | 1818        | 926         |
| 39  | 18376       | 117712      | 45106       | 37776       | 34977       | 35223       | 32896       | 27370       | 33306       | 18362       | 21285       |
| 40  | 1134        | 2316        | 658         | 343         | 66          | 67          | 427         | 625         | 92          | 487         | 81          |
| 41  | 46850       | 81154       | 42274       | 38906       | 30246       | 35170       | 35750       | 35259       | 25322       | 22315       | 26978       |
| 42  | 2 4067      | 21793       | 10353       | 8698        | 7235        | 7363        | 7101        | 4628        | 6060        | 5929        | 6965        |
| 43  | 3 23039     | 32415       | 21101       | 16124       | 16301       | 9799        | 15331       | 12009       | 11807       | 10629       | 16271       |
| 44  | t 3962      | 7476        | 4264        | 3699        | 2486        | 4183        | 4485        | 2894        | 1894        | 1630        | 1720        |
| 45  | 2493764     | 396457      | 351561      | 282830      | 237340      | 222373      | 189925      | 177942      | 201511      | 161905      | 197147      |
| 46  | 149085      | 175         | 24743       | 24140       | 24633       | 24873       | 18467       | 24159       | 27159       | 21563       | 29360       |
| 47  | 7 277767    | 29848       | 44562       | 47768       | 45923       | 42535       | 32517       | 44167       | 43867       | 37862       | 47393       |
| 48  | 587393      | 42814       | 70602       | 82865       | 73927       | 64634       | 45681       | 67816       | 64748       | 50369       | 88653       |

Sheet 10 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | LP_1        | LP_2        | LP_3        | LP_4        | LP_5        | LP_6        | LP_7        | LP_8        | 6_91        | LP_10       | UP460_1     |
| 1   | 4606097     | 6409573     | 5668075     | 3590930     | 7922578     | 6407584     | 4684016     | 6651369     | 5083198     | 4661315     | 4846026     |
| 2   | 405805      | 436887      | 436825      | 395910      | 321102      | 455929      | 426967      | 460516      | 457778      | 435847      | 306246      |
| 3   | 1158458     | 1359719     | 1376277     | 1297131     | 1193030     | 1236137     | 1513473     | 1468483     | 1442548     | 1502751     | 2770366     |
| 4   | 968198      | 1256078     | 1295998     | 1001011     | 874855      | 1152833     | 1136898     | 1228599     | 1335978     | 1199704     | 2296061     |
| 2   | 3985        | 6607        | 1405        | 2266        | 2217        | 2251        | 349         | 3529        | 1825        | 2680        | 1907466     |
| 9   | 13694       | 3029        | 5442        | 1019        | 1724        | 2401        | 410         | 4702        | 1544        | 483         | 1254        |
| 7   | 464364      | 235775      | 212057      | 286175      | 287052      | 241767      | 333390      | 317349      | 278727      | 4669        | 377029      |
| 8   | 4455        | 3406        | 2889        | 5139        | 3456        | 3226        | 1160        | 3455        | 3935        | 3212        | 4991243     |
| 6   | 679         | 429         | 6349474     | 1021        | 2542        | 62          | 139         | 3543        | 472         | 657         | 30028       |
| 10  | 107605      | 17038       | 17389       | 4323        | 101489      | 11575       | 16495       | 6614        | 27667       | 16005       | 1312624     |
| 11  | 546         | 235892      | 220980      | 318313      | 301659      | 251870      | 325705      | 348320      | 257191      | 268032      | 208915      |
| 12  | 461726      | 261471      | 204851      | 300042      | 266638      | 234418      | 301678      | 271318      | 1147        | 200926      | 210184      |
| 13  | 25518       | 33776       | 1482        | 18420       | 9500        | 27425       | 3015        | 21107       | 36658       | 10139       | 37953       |
| 14  | 163878      | 120120      | 100871      | 51861       | 53672       | 60938       | 94326       | 109014      | 83823       | 77793       | 131023      |
| 15  | 356433      | 208776      | 178801      | 178870      | 120825      | 129724      | 193723      | 156151      | 145677      | 144271      | 118376      |
| 16  | 8673        | 8196        | 7471        | 7522        | 6828        | 5395        | 7746        | 7570        | 6736        | 3619        | 6083        |
| 17  | 1720        | 1905        | 1502        | 2755        | 3162        | 1782        | 2875        | 2566        | 2514        | 2622        | 1879        |
| 18  | 685326      | 267446      | 191987      | 617241      | 312549      | 184412      | 305346      | 339390      | 293811      | 342898      | 253862      |
| 19  | 258145      | 95297       | 85935       | 123531      | 131865      | 105038      | 124525      | 134193      | 96797       | 96639       | 101098      |
| 20  | 49468       | 18097       | 13869       | 14459       | 12911       | 10714       | 15439       | 14462       | 11176       | 9746        | 22939       |
| 21  | 109118      | 27069       | 17654       | 22597       | 14646       | 13542       | 20122       | 17377       | 15957       | 12634       | 42573       |
| 22  | 1018195     | 415946      | 263933      | 352087      | 578674      | 321592      | 343659      | 506311      | 205197      | 232064      | 544342      |
| 23  | 368817      | 149156      | 140560      | 144006      | 113881      | 118691      | 138832      | 138474      | 109236      | 105548      | 174040      |
| 24  | 4200        | 1164        | 6733        | 1032        | 6594        | 3448        | 3471        | 3774        | 4834        | 3415        | 1287        |
| 25  | 38948       | 18909       | 8529        | 11061       | 11442       | 7792        | 14817       | 13283       | 11002       | 8735        | 15825       |
| 26  | 62460       | 21154       | 16138       | 14949       | 22385       | 20257       | 14855       | 20043       | 10817       | 11573       | 28942       |
| 27  | 11549       | 6323        | 4395        | 7426        | 8233        | 5541        | 5718        | 7575        | 875         | 1370        | 7255        |
| 28  | 30502       | 15714       | 14253       | 16927       | 6279        | 6129        | 12963       | 7204        | 9639        | 12433       | 10048       |

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | LP_1        | LP_2        | LP_3        | LP_4        | LP_5        | 1P_6        | LP_7        | LP_8        | 12_9        | LP_10       | UP460_1     |
| 25  | 9 253429    | 109700      | 107127      | 95002       | 88379       | 94885       | 104894      | 110535      | 106968      | 83137       | 143041      |
| 30  | 99074       | 52924       | 47924       | 55325       | 49462       | 46266       | 41957       | 55252       | 39915       | 38807       | 81824       |
| 31  | 161224      | 60937       | 29677       | 28743       | 26301       | 19822       | 33684       | 27378       | 25791       | 28585       | 56713       |
| 32  | 80732       | 25741       | 15053       | 14956       | 21931       | 18412       | 14714       | 18434       | 10869       | 11155       | 25264       |
| 33  | 61270       | 59534       | 36754       | 26108       | 66766       | 43947       | 30820       | 39602       | 23609       | 9076        | 65955       |
| 34  | I 5118      | 2299        | 2367        | 1920        | 712         | 1180        | 359         | 2329        | 1158        | 71          | 3885        |
| 35  | 74382       | 22523       | 19024       | 13597       | 26177       | 10979       | 14815       | 18336       | 14714       | 13635       | 58740       |
| 36  | 47027       | 17165       | 13731       | 14071       | 13419       | 13312       | 14017       | 13393       | 10254       | 11620       | 20831       |
| 37  | 7683        | 3687        | 2405        | 1568        | 1047        | 1915        | 2324        | 2207        | 1514        | 2026        | 1881        |
| 38  | 133887      | 50255       | 35636       | 36041       | 31148       | 21870       | 21169       | 17449       | 15583       | 12543       | 39798       |
| 36  | 150545      | 42407       | 26054       | 21093       | 25756       | 25567       | 18827       | 22854       | 19656       | 23278       | 60875       |
| 40  | 1552        | 352         | 961         | 429         | 57          | 84          | 731         | 167         | 0           | 66          | 295         |
| 41  | 100042      | 69383       | 64940       | 56797       | 48986       | 49393       | 58844       | 56578       | 55136       | 36074       | 40652       |
| 42  | 25692       | 12157       | 16543       | 6543        | 8957        | 7699        | 6003        | 8369        | 7401        | 9398        | 13732       |
| 43  | 74213       | 55102       | 57345       | 31697       | 36780       | 54430       | 29321       | 33924       | 23854       | 30364       | 31396       |
| 44  | t 7229      | 4046        | 4725        | 2173        | 3374        | 3927        | 3638        | 1079        | 2873        | 1685        | 4318        |
| 45  | 1002000     | 806910      | 748613      | 373408      | 490078      | 875596      | 377993      | 382081      | 266756      | 580784      | 534256      |
| 46  | 91          | 67063       | 74348       | 47293       | 45072       | 53536       | 40123       | 38073       | 37164       | 43438       | 43772       |
| 47  | 87198       | 126310      | 132922      | 87128       | 84762       | 108708      | 76086       | 64142       | 67352       | 78354       | 79768       |
| 48  | 172303      | 214680      | 182511      | 127986      | 114983      | 113100      | 104071      | 106217      | 97042       | 149704      | 128191      |

143041 56713 56713 25264 65959 3889 58740 20831 1881 38776 209 40652 13732 299 40652 13732 31396 4318 534256 4318 534256 43772 79768

Supplementary Table 1

Sheet 12 of 50

|    | black aroma |
|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | Sample      |
|    |             |             |             |             |             |             |             |             |             |             |             |
|    | UP460_2     | UP460_3     | UP460_4     | UP460_5     | UP460_6     | UP460_7     | UP460_8     | UP460_9     | UP460_10    | UP463_1     | UP463_2     |
| -  | 4834511     | 5631916     | 4884649     | 4927657     | 4921408     | 4458867     | 4363166     | 4911850     | 3755567     | 4762536     | 4025801     |
| 2  | 282541      | 343298      | 366726      | 352233      | 352305      | 316240      | 434985      | 311923      | 359467      | 305671      | 362879      |
| m  | 834522      | 1186600     | 1235766     | 1120746     | 1171852     | 1127950     | 1379716     | 1054814     | 1232497     | 1078599     | 1065757     |
| 4  | 762521      | 2354486     | 954903      | 2501528     | 879104      | 864200      | 1094360     | 794213      | 933634      | 804335      | 932331      |
| 5  | 522285      | 88153       | 711         | 2095897     | 2607        | 2066        | 2028        | 1069        | 260290      | 4545        | 3812        |
| 9  | 586         | 866         | 670         | 2058        | 1560        | 688         | 2165        | 1604        | 2583        | 4554        | 8198        |
| 7  | 3738        | 46780       | 189416      | 181588      | 143083      | 165074      | 150472      | 119492      | 172917      | 248785      | 172490      |
| ∞  | 1395        | 3955117     | 741         | 1585        | 1801        | 666         | 6464        | 4321        | 8145        | 2640        | 3841        |
| 6  | 2454        | 12344       | 1511        | 7636654     | 1591        | 67          | 1618        | 158250      | 173263      | 20004       | 1095        |
| 10 | 38274       | 1227609     | 26597       | 19285       | 22254       | 15975       | 31498       | 27368       | 32599       | 16024       | 9019        |
| 11 | 183535      | 204632      | 209810      | 192794      | 148557      | 205122      | 162864      | 151004      | 173307      | 239240      | 204245      |
| 12 | 106916      | 145134      | 151383      | 153506      | 97123       | 147487      | 92566       | 90029       | 143625      | 255050      | 164515      |
| 13 | 21234       | 13536       | 18631       | 65987       | 35448       | 10795       | 4967239     | 7008        | 295357      | 2874        | 23944       |
| 14 | 92606       | 100733      | 112692      | 129940      | 73843       | 90023       | 211783      | 77463       | 89844       | 119258      | 135439      |
| 15 | 67731       | 72596       | 84631       | 89395       | 74989       | 72940       | 128143      | 56575       | 80110       | 118517      | 113708      |
| 16 | 5018        | 5255        | 5695        | 5538        | 3339        | 4364        | 4518        | 3623        | 924         | 8512        | 5225        |
| 17 | 507         | 2112        | 2124        | 2439        | 2348        | 883         | 1522        | 1555        | 3652        | 1569        | 4349        |
| 18 | 216858      | 231713      | 207554      | 224711      | 137288      | 216890      | 148898      | 171870      | 164675      | 182901      | 148089      |
| 19 | 47899       | 67161       | 75477       | 68267       | 45942       | 57058       | 45202       | 41130       | 49642       | 106772      | 69941       |
| 20 | 11719       | 11797       | 12015       | 13864       | 11166       | 12987       | 12676       | 9321        | 9761        | 19610       | 10988       |
| 21 | 29768       | 22587       | 24569       | 26307       | 25255       | 22077       | 26703       | 20889       | 20597       | 67318       | 35997       |
| 22 | 235990      | 345156      | 308133      | 344636      | 205852      | 205393      | 207955      | 254250      | 185116      | 536740      | 263931      |
| 23 | 95361       | 93048       | 116159      | 112918      | 98926       | 89560       | 103596      | 72297       | 81103       | 162765      | 114853      |
| 24 | 1834        | 14754       | 13179       | 3987        | 865         | 10036       | 2269        | 2235        | 437         | 2772        | 7483        |
| 25 | 9717        | 5485        | 9818        | 13492       | 9796        | 15622       | 11297       | 4209        | 8484        | 15713       | 10477       |
| 26 | 14563       | 14841       | 15021       | 15133       | 15279       | 11712       | 12981       | 12656       | 10092       | 34435       | 18479       |
| 27 | 4565        | 6711        | 1676        | 6159        | 4874        | 6286        | 1541        | 719         | 4195        | 10151       | 6103        |
| 28 | 13339       | 8791        | 10941       | 7762        | 6594        | 9804        | 4819        | 8716        | 7136        | 17113       | 14295       |

Sheet 13 of 50

|     | black arows | amore deeld | black around | black aroms | concerned | black aroma | concerned and | hack around | amore deeld | black around | block second |
|-----|-------------|-------------|--------------|-------------|-----------|-------------|---------------|-------------|-------------|--------------|--------------|
|     | Sample      | Sample      | Sample       | Sample      | Sample    | Sample      | Sample        | Sample      | Sample      | Sample       | Sample       |
|     |             |             |              |             |           |             |               |             |             |              |              |
|     |             |             |              |             |           |             |               |             |             |              |              |
| No. | UP460_2     | UP460_3     | UP460_4      | UP460_5     | UP460_6   | UP460_7     | UP460_8       | UP460_9     | UP460_10    | UP463_1      | UP463_2      |
| 25  | 9 78833     | 77432       | 99287        | 92611       | 81018     | 69497       | 91737         | 60162       | 59415       | 137125       | 88547        |
| 30  | 78366       | 70698       | 55736        | 67218       | 67156     | 61213       | 78522         | 57249       | 41576       | 76971        | 66629        |
| 31  | 39728       | 35418       | 33829        | 41846       | 41301     | 48452       | 45340         | 26863       | 34756       | 48192        | 38161        |
| 32  | 13508       | 17317       | 17133        | 14768       | 14079     | 12475       | 13538         | 14323       | 8937        | 28669        | 14792        |
| 33  | 45522       | 63319       | 58477        | 64238       | 39797     | 48944       | 43257         | 41001       | 30491       | 28453        | 33759        |
| 34  | t 2705      | 1271        | 1996         | 2557        | 1051      | 1115        | 1188          | 1141        | 1562        | 2661         | 2352         |
| 35  | 27651       | 23049       | 24994        | 23994       | 28835     | 16770       | 27631         | 21586       | 14655       | 56832        | 23976        |
| 36  | 9770        | 9754        | 11072        | 11984       | 9775      | 5096        | 9295          | 8014        | 7677        | 20187        | 14789        |
| 37  | 1846        | 2533        | 1994         | 2597        | 1938      | 2957        | 2119          | 985         | 1665        | 3252         | 2956         |
| 38  | 22177       | 14267       | 15052        | 19289       | 11598     | 5978        | 2996          | 5464        | 5261        | 21365        | 11645        |
| 35  | 29759       | 31732       | 34202        | 30301       | 39126     | 21157       | 32520         | 31886       | 19835       | 65589        | 31833        |
| 40  | 124         | 0           | 570          | 73          | 153       | 122         | 59            | 27          | 293         | 1523         | 942          |
| 41  | 28284       | 27676       | 37742        | 33305       | 25436     | 33465       | 22200         | 19770       | 24094       | 41243        | 37821        |
| 42  | 8221        | 7976        | 7616         | 6846        | 8942      | 5981        | 7839          | 8581        | 8312        | 15381        | 12454        |
| 43  | 20238       | 21574       | 28249        | 19323       | 22087     | 17832       | 24894         | 17075       | 21224       | 53191        | 47243        |
| 44  | 1 3642      | 2637        | 3859         | 347         | 1853      | 2296        | 3080          | 872         | 1969        | 6796         | 3542         |
| 45  | 273187      | 346369      | 359580       | 339645      | 242077    | 253439      | 425584        | 299831      | 265609      | 539972       | 545773       |
| 46  | 27263       | 31622       | 49024        | 30663       | 30504     | 28674       | 36001         | 34217       | 32416       | 46921        | 63721        |
| 47  | 51140       | 55890       | 98503        | 55223       | 56960     | 57128       | 00669         | 61102       | 56699       | 88732        | 113614       |
| 48  | s 60343     | 65092       | 128766       | 72980       | 64810     | 67199       | 125522        | 82243       | 67580       | 94523        | 131693       |

|    | black aroma |
|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | Sample      |
|    |             |             |             |             |             |             |             |             |             |             |             |
| ю. | UP463_3     | UP463_4     | UP463_5     | UP463_6     | UP463_7     | UP463_8     | UP463_9     | UP463_10    | UP468_1     | UP468_2     | UP468_3     |
| 1  | 6311004     | 3989409     | 4562433     | 5098362     | 4956040     | 3449730     | 3757267     | 3500750     | 3184864     | 3561420     | 2212641     |
| 2  | 256461      | 322464      | 359537      | 464671      | 285545      | 444356      | 340998      | 295044      | 219925      | 323706      | 295387      |
| m  | 728479      | 1102770     | 980471      | 1575981     | 1019548     | 1539510     | 1049320     | 1043101     | 859491      | 978278      | 1117333     |
| 4  | 753942      | 949357      | 1001716     | 1251097     | 924120      | 1209045     | 869263      | 994642      | 1089525     | 930161      | 691766      |
| S  | 2162        | 3360        | 4243        | 1658        | 161299      | 2534        | 711         | 3580        | 338696      | 216519      | 409815      |
| 9  | 751         | 3065        | 2945        | 2442        | 970         | 1891        | 2411        | 514         | 5028        | 6053        | 950         |
| 7  | 93933       | 138308      | 137827      | 255743      | 162805      | 178892      | 115948      | 82078       | 138065      | 130760      | 139314      |
| 8  | 823         | 5276        | 380         | 3428        | 1447        | 2664        | 1763        | 1517        | 4576        | 1280        | 6973        |
| 6  | 4367        | 465         | 0           | 14948       | 7298171     | 368         | 485         | 11531       | 5999848     | 4975798     | 109146      |
| 10 | 23694       | 21258       | 20479       | 44131       | 26727       | 6633        | 11490       | 14630       | 54549       | 44337       | 23666       |
| 11 | 135747      | 155910      | 153573      | 261835      | 175915      | 165668      | 118055      | 102526      | 72988       | 71309       | 92506       |
| 12 | 84452       | 122506      | 115772      | 249450      | 144384      | 153905      | 92034       | 59873       | 87346       | 75780       | 109243      |
| 13 | 2384        | 27693       | 1294        | 972         | 74487       | 1098        | 291318      | 6241        | 5891        | 354055      | 847         |
| 14 | 79244       | 117399      | 100497      | 96101       | 78022       | 82465       | 117746      | 92724       | 98908       | 145207      | 110787      |
| 15 | 61570       | 82445       | 106192      | 131692      | 61996       | 107992      | 86688       | 66524       | 117729      | 93607       | 142319      |
| 16 | 7037        | 5953        | 5752        | 6585        | 3111        | 4500        | 5995        | 3403        | 6993        | 6573        | 4525        |
| 17 | 4096        | 3660        | 2737        | 2513        | 1139        | 3385        | 5691        | 3120        | 8325        | 45900       | 3600        |
| 18 | 99876       | 134964      | 136783      | 156758      | 114830      | 105991      | 96229       | 69645       | 60664       | 73095       | 90680       |
| 19 | 55749       | 57883       | 60157       | 109471      | 59637       | 76331       | 42369       | 39304       | 40638       | 25876       | 25131       |
| 20 | 6858        | 9018        | 9541        | 12896       | 8348        | 8800        | 7305        | 5781        | 19531       | 15774       | 17449       |
| 21 | 24622       | 23128       | 30291       | 36389       | 26077       | 24285       | 40937       | 18303       | 44144       | 38836       | 60555       |
| 22 | 172695      | 248235      | 259785      | 265576      | 213929      | 221975      | 191996      | 96687       | 243420      | 207173      | 141269      |
| 23 | 70601       | 90944       | 103978      | 128952      | 81449       | 111314      | 73702       | 56396       | 180132      | 146137      | 162687      |
| 24 | 3851        | 3666        | 1600        | 5282        | 6878        | 1024        | 2578        | 3059        | 9494        | 10333       | 3236        |
| 25 | 6286        | 8506        | 9579        | 12670       | 9406        | 9392        | 6195        | 3701        | 22049       | 15655       | 23038       |
| 26 | 9118        | 15454       | 16516       | 16555       | 12227       | 12978       | 11700       | 5659        | 30927       | 22394       | 14905       |
| 27 | 3258        | 5938        | 5846        | 5153        | 4201        | 4112        | 5251        | 1219        | 9406        | 9104        | 3153        |
| 28 | 12549       | 9416        | 10786       | 10010       | 7128        | 10091       | 6720        | 5092        | 8369        | 7520        | 5171        |

Sheet 15 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP463_3     | UP463_4     | UP463_5     | UP463_6     | UP463_7     | UP463_8     | UP463_9     | UP463_10    | UP468_1     | UP468_2     | UP468_3     |
| 29  | 67166       | 74999       | 93632       | 63369       | 78365       | 92758       | 69710       | 51296       | 99183       | 87322       | 82206       |
| 30  | 69443       | 58842       | 67627       | 57565       | 53793       | 41144       | 46347       | 54840       | 9367        | 10139       | 37975       |
| 31  | 17089       | 20864       | 27687       | 33771       | 22672       | 23006       | 12929       | 14665       | 70556       | 44358       | 58269       |
| 32  | 10532       | 14866       | 17732       | 15643       | 15073       | 12831       | 12629       | 7298        | 29098       | 20457       | 16178       |
| 33  | 72404       | 27716       | 53814       | 41008       | 23936       | 28395       | 25653       | 19492       | 80914       | 86858       | 36423       |
| 34  | 1 993       | 1677        | 2250        | 1856        | 1294        | 1754        | 1072        | 552         | 4267        | 3233        | 3131        |
| 35  | 10508       | 24827       | 24393       | 15254       | 8867        | 14162       | 16411       | 9745        | 54894       | 38079       | 28784       |
| 36  | 10793       | 8522        | 10412       | 9762        | 11370       | 9522        | 7413        | 5799        | 23074       | 14465       | 13425       |
| 37  | 1356        | 2044        | 2865        | 1912        | 1870        | 1053        | 1786        | 121         | 3562        | 3189        | 304/        |
| 38  | 9129        | 3883        | 5912        | 4596        | 5876        | 1677        | 1090        | 1247        | 29137       | 18430       | 19663       |
| 39  | 15202       | 29370       | 23857       | 25816       | 20687       | 22729       | 21772       | 13005       | 63219       | 34832       | 28908       |
| 40  | 171         | 222         | 145         | 1000        | 509         | 204         | 282         | 0           | 2900        | 3267        | 1740        |
| 41  | 19693       | 31831       | 16167       | 34693       | 20793       | 27011       | 16952       | 15386       | 59402       | 57211       | 53574       |
| 42  | 8802        | 7686        | 9406        | 7672        | 5827        | 7911        | 11335       | 8331        | 11932       | 12480       | 7585        |
| 43  | 24790       | 33805       | 52808       | 32139       | 27612       | 44826       | 33641       | 16080       | 36459       | 25785       | 16480       |
| 44  | 966         | 2149        | 2063        | 5061        | 3384        | 537         | 736         | 492         | 5012        | 9179        | 6420        |
| 45  | 337808      | 362984      | 966790      | 365689      | 345994      | 450453      | 409782      | 222178      | 785890      | 858658      | 536651      |
| 46  | 28484       | 34778       | 76940       | 49870       | 38209       | 54003       | 48070       | 25160       | 46900       | 63442       | 44324       |
| 47  | 51096       | 66529       | 137609      | 83772       | 67175       | 107686      | 83434       | 44979       | 79539       | 109955      | 81674       |
| 48  | 32515       | 65075       | 172616      | 90527       | 75342       | 126273      | 94941       | 37181       | 156133      | 166834      | 132734      |

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP468_4     | UP468_5     | UP468_6     | UP468_7     | UP468_8     | UP468_9     | UP468_10    | UP469_1     | UP469_2     | UP469_3     | UP469_4     |
| 1   | 2568890     | 3896074     | 2486746     | 3254544     | 3267747     | 3351144     | 1886289     | 5484054     | 4688937     | 4478161     | 3916517     |
| 2   | 378760      | 275530      | 300308      | 333093      | 254660      | 279570      | 275647      | 326601      | 367697      | 363181      | 390856      |
| 3   | 1419549     | 1281827     | 1086459     | 1198799     | 1037251     | 1088367     | 1003596     | 909788      | 1081055     | 1211467     | 1215244     |
| 4   | 992097      | 805806      | 1028063     | 1236990     | 1851629     | 737985      | 1996395     | 951989      | 1023022     | 977207      | 1180959     |
| 5   | 682192      | 702092      | 323945      | 207469      | 238102      | 230149      | 80025       | 671445      | 460         | 1699        | 850349      |
| 9   | 1836        | 6093        | 3168        | 3751        | 2094        | 2224        | 06          | 3807        | 1709        | 670         | 3831        |
| 7   | 160536      | 186505      | 165822      | 117329      | 143553      | 108926      | 114943      | 142068      | 182537      | 165226      | 139808      |
| 8   | 2265        | 1233        | 639         | 4958        | 2598        | 4290        | 4868        | 3538        | 2636        | 3315        | 3851        |
| 6   | 808         | 15770       | 4884790     | 5655332     | 5393331     | 6707440     | 5340407     | 376034      | 3047        | 395         | 1282        |
| 10  | 59315       | 68118       | 30877       | 40881       | 23460       | 18096       | 1192285     | 51327       | 27992       | 22579       | 6045        |
| 11  | 74580       | 102858      | 84105       | 61335       | 81913       | 58960       | 63638       | 167024      | 198367      | 207830      | 164337      |
| 12  | 101848      | 135382      | 114916      | 514         | 105344      | 56449       | 76028       | 115603      | 176839      | 148807      | 120239      |
| 13  | 1920        | 3502        | 66079       | 133881      | 80023       | 1372        | 37766       | 50402       | 23376       | 35504       | 18911       |
| 14  | 164721      | 85348       | 94671       | 100450      | 87836       | 50911       | 41861       | 63127       | 75971       | 116614      | 71431       |
| 15  | 123883      | 102366      | 72988       | 83434       | 71447       | 87774       | 64640       | 84671       | 82660       | 86956       | 83535       |
| 16  | 3828        | 5690        | 3207        | 3979        | 3873        | 2775        | 1368        | 7314        | 2432        | 4526        | 5651        |
| 17  | 38300       | 5168        | 29457       | 30055       | 29698       | 3454        | 25299       | 2631        | 1988        | 2281        | 2146        |
| 18  | 58967       | 54689       | 73374       | 45530       | 73391       | 30141       | 36882       | 272351      | 250025      | 153277      | 242739      |
| 19  | 30134       | 33473       | 33177       | 18886       | 37319       | 16510       | 22895       | 72911       | 95799       | 86665       | 65212       |
| 20  | 13016       | 14812       | 12005       | 10415       | 11645       | 8215        | 7420        | 13367       | 12957       | 13116       | 9802        |
| 21  | 25890       | 28937       | 14449       | 17552       | 20565       | 14894       | 13432       | 24897       | 33262       | 31676       | 26747       |
| 22  | 159716      | 276697      | 109811      | 129595      | 126459      | 108585      | 72192       | 438682      | 277431      | 175681      | 262080      |
| 23  | 177962      | 152881      | 106470      | 118324      | 93631       | 105228      | 75197       | 119440      | 123899      | 120083      | 99995       |
| 24  | 15699       | 26446       | 13882       | 9790        | 16053       | 3515        | 11079       | 5985        | 5406        | 3161        | 1868        |
| 25  | 10789       | 14309       | 8734        | 11803       | 7639        | 13692       | 5695        | 9543        | 8663        | 9393        | 6865        |
| 26  | 19294       | 25507       | 8678        | 17202       | 9556        | 12801       | 8690        | 20991       | 12769       | 13646       | 15062       |
| 27  | 6471        | 6949        | 3483        | 5602        | 1274        | 4518        | 3994        | 6027        | 4885        | 3725        | 5948        |
| 28  | 5014        | 6862        | 5741        | 6302        | 5588        | 4451        | 4126        | 17319       | 14612       | 10509       | 8205        |

Sheet 17 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP468_4     | UP468_5     | UP468_6     | UP468_7     | UP468_8     | UP468_9     | UP468_10    | UP469_1     | UP469_2     | UP469_3     | UP469_4     |
| 5   | 9 80942     | 92343       | 70755       | 74741       | 62170       | 56953       | 52919       | 101455      | 110686      | 112681      | 82712       |
| 3(  | 0 12693     | 10331       | 13533       | 11181       | 13724       | 5863        | 4885        | 84771       | 72441       | 93864       | 77566       |
| ŝ   | 1 34701     | 40581       | 25959       | 34533       | 16867       | 24652       | 14479       | 26503       | 22010       | 36243       | 20986       |
| 3.  | 2 21754     | 25299       | 9295        | 16915       | 9833        | 15508       | 7377        | 26934       | 11299       | 12076       | 19355       |
| ŝ   | 3 48216     | 70161       | 70376       | 86680       | 97609       | 50293       | 43864       | 45483       | 58428       | 45043       | 26826       |
| ň   | 4 2187      | 2862        | 2300        | 2387        | 2364        | 712         | 1381        | 2454        | 2614        | 1310        | 1929        |
| ŝ   | 5 23835     | 28394       | 15120       | 16703       | 16295       | 23607       | 9515        | 32451       | 30548       | 31474       | 17647       |
| 3(  | 11144       | 13697       | 8677        | 11975       | 9876        | 8841        | 4090        | 16543       | 13778       | 13150       | 11124       |
| ŝ   | 7 3059      | 1802        | 1587        | 1907        | 2075        | 1780        | 100         | 2435        | 1584        | 3002        | 2048        |
| Ř   | 8 11329     | 27426       | 15604       | 10181       | 16229       | 5858        | 2006        | 26985       | 20717       | 11735       | 13597       |
| ŝ   | 9 28355     | 50553       | 16670       | 27331       | 16511       | 22330       | 11734       | 41034       | 23711       | 25415       | 31064       |
| 4(  | 0 401       | 648         | 317         | 1705        | 856         | 911         | 836         | 278         | 0           | 269         | 79          |
| 4   | 1 49846     | 53168       | 36554       | 37555       | 32771       | 34967       | 34280       | 26241       | 33517       | 34481       | 27619       |
| 4.  | 10061       | 12019       | 5064        | 8561        | 7967        | 8871        | 9461        | 12439       | 9409        | 9424        | 10244       |
| 4   | 3 23699     | 51271       | 18380       | 25514       | 25435       | 18253       | 21686       | 30403       | 30412       | 26087       | 30587       |
| 4   | 4 3449      | 5562        | 6787        | 5597        | 3979        | 3774        | 460         | 2636        | 4259        | 2176        | 2368        |
| 4   | 5 1130529   | 1239132     | 384308      | 1623051     | 1403616     | 822889      | 721349      | 443823      | 321159      | 294170      | 501191      |
| 4(  | 87304       | 92585       | 32208       | 87438       | 80520       | 59977       | 54321       | 0           | 40877       | 41355       | 60958       |
| 4   | 7 171304    | 166553      | 63410       | 162682      | 138042      | 106668      | 97112       | 59428       | 72311       | 73151       | 117756      |
| 4   | 3 262122    | 423424      | 80097       | 327895      | 234237      | 263847      | 150079      | 53928       | 79049       | 79537       | 134808      |

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP469_5     | UP469_6     | UP469_7     | UP469_8     | UP469_9     | UP469_10    | UP470_1     | UP470_2     | UP470_3     | UP470_4     | UP470_5     |
| 1   | 5010717     | 3965223     | 4996701     | 3140806     | 4897084     | 5087135     | 5080181     | 4397445     | 3638096     | 3825965     | 4201834     |
| 2   | 341162      | 490749      | 482791      | 432919      | 575366      | 506597      | 324653      | 403921      | 343020      | 390441      | 361079      |
| m   | 1252744     | 1766623     | 1829274     | 1426374     | 1915427     | 1821928     | 835978      | 1441837     | 1041431     | 1113535     | 1094379     |
| 4   | 1668457     | 1566216     | 3011374     | 1278017     | 1643781     | 1481443     | 712665      | 2935050     | 2214264     | 1804008     | 2554864     |
| 5   | 241149      | 3913        | 181856      | 2278        | 941         | 1294        | 62312       | 2245696     | 103339      | 81709       | 78425       |
| 9   | 885         | 1734        | 1696        | 808         | 492         | 3860        | 5177        | 218         | 550         | 5388        | 798         |
| 7   | 117754      | 143515      | 108565      | 180720      | 157895      | 159175      | 115501      | 5102        | 84789       | 108844      | 98054       |
| 8   | 266         | 4417        | 329         | 3376        | 6333        | 1359        | 1514        | 5109552     | 3323        | 1126        | 1534        |
| 6   | 6598172     | 351         | 6627510     | 490         | 102         | 8233016     | 5080207     | 5372074     | 5730214     | 5557750     | 5497598     |
| 10  | 14489       | 19827       | 76756       | 44745       | 36649       | 37243       | 44656       | 888825      | 53431       | 28432       | 43651       |
| 11  | 114985      | 158035      | 116719      | 171258      | 151721      | 140406      | 78179       | 67901       | 58736       | 72355       | 50136       |
| 12  | 93785       | 110822      | 88280       | 136834      | 108532      | 141311      | 66821       | 58390       | 54261       | 68030       | 47294       |
| 13  | 1882        | 18553       | 25662       | 20237       | 4462        | 5552        | 2204        | 98799       | 00069       | 2147        | 1189        |
| 14  | 87853       | 85427       | 90397       | 73310       | 120848      | 51613       | 79946       | 63071       | 42029       | 37175       | 21174       |
| 15  | 68028       | 72566       | 66715       | 78101       | 113678      | 150041      | 75801       | 90852       | 75736       | 70627       | 59012       |
| 16  | 6250        | 3880        | 2410        | 3243        | 5601        | 7094        | 3402        | 2014        | 5180        | 5935        | 5090        |
| 17  | 962         | 1771        | 1313        | 1207        | 205         | 3129        | 18716       | 40301       | 13305       | 16646       | 13395       |
| 18  | 120199      | 130015      | 108052      | 153786      | 159551      | 123984      | 59618       | 48572       | 50632       | 55244       | 37358       |
| 19  | 46961       | 68969       | 44967       | 74168       | 49401       | 60097       | 24773       | 29478       | 27080       | 23441       | 18348       |
| 20  | 9934        | 10622       | 9462        | 11913       | 10896       | 9756        | 12296       | 14125       | 9688        | 11310       | 10242       |
| 21  | 18409       | 30469       | 21252       | 18713       | 30451       | 21928       | 28877       | 18914       | 19284       | 15758       | 13819       |
| 22  | 297374      | 163800      | 252859      | 125646      | 211367      | 293205      | 167918      | 232655      | 102799      | 103722      | 109875      |
| 23  | 82115       | 110736      | 83743       | 93883       | 112518      | 87549       | 131987      | 134903      | 121388      | 106877      | 105389      |
| 24  | 3457        | 2030        | 4674        | 3157        | 1634        | 4569        | 8646        | 13535       | 5921        | 12772       | 4385        |
| 25  | 8444        | 12458       | 5730        | 11427       | 8427        | 7333        | 11888       | 13871       | 9851        | 10556       | 6945        |
| 26  | 16281       | 12094       | 14292       | 7567        | 9358        | 19941       | 20847       | 23177       | 11572       | 11562       | 14148       |
| 27  | 6227        | 4859        | 427         | 3508        | 934         | 1241        | 5620        | 6736        | 3840        | 3647        | 3202        |
| 28  | 7465        | 10128       | 8985        | 8100        | 8242        | 8488        | 7843        | 6985        | 6739        | 5414        | 4835        |

Sheet 19 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP469_5     | UP469_6     | UP469_7     | UP469_8     | UP469_9     | UP469_10    | UP470_1     | UP470_2     | UP470_3     | UP470_4     | UP470_5     |
| 29  | 80666       | 145574      | 121053      | 80256       | 109979      | 72552       | 88248       | 89084       | 82646       | 68152       | 69389       |
| 30  | 60922       | 71349       | 48681       | 75118       | 59621       | 43220       | 24132       | 26149       | 18041       | 16536       | 19153       |
| 31  | 37858       | 50391       | 36248       | 57708       | 35723       | 33923       | 37087       | 72853       | 38951       | 46450       | 35988       |
| 32  | 17158       | 15150       | 18967       | 7657        | 15596       | 18178       | 15429       | 27466       | 11559       | 8955        | 13229       |
| 33  | 54682       | 37172       | 47492       | 19486       | 38146       | 39530       | 62612       | 51910       | 37624       | 41061       | 22401       |
| 34  | 1794        | 1503        | 830         | 1065        | 2077        | 2565        | 2993        | 3874        | 2473        | 2764        | 2216        |
| 35  | 24726       | 26472       | 13277       | 16628       | 31999       | 15658       | 52704       | 38586       | 35271       | 20433       | 28359       |
| 36  | 13112       | 11383       | 9977        | 10852       | 10277       | 13479       | 13088       | 11645       | 8911        | 8502        | 5533        |
| 37  | 754         | 2081        | 1294        | 2686        | 1806        | 1599        | 2440        | 3140        | 3035        | 2061        | 1635        |
| 38  | 6467        | 6222        | 8514        | 7361        | 4915        | 3149        | 7679        | 4942        | 3567        | 1737        | 1705        |
| 39  | 30969       | 28050       | 39547       | 19624       | 28547       | 67629       | 48674       | 80686       | 28552       | 31906       | 39723       |
| 40  | 442         | 249         | 0           | 57          | 96          | 398         | 3730        | 1666        | 1934        | 1863        | 478         |
| 41  | 22251       | 25378       | 17491       | 21079       | 22395       | 27440       | 19803       | 17918       | 16426       | 16225       | 13725       |
| 42  | 7432        | 6534        | 9372        | 5105        | 11126       | 16049       | 17469       | 23631       | 10962       | 10997       | 6866        |
| 43  | 25506       | 22953       | 26672       | 18040       | 34368       | 57602       | 34659       | 43293       | 30541       | 40743       | 26947       |
| 44  | 2270        | 3039        | 1053        | 795         | 963         | 505         | 7088        | 9144        | 6521        | 6863        | 8268        |
| 45  | 385439      | 373999      | 939859      | 245199      | 1053132     | 3480111     | 491679      | 1307826     | 477100      | 751922      | 519054      |
| 46  | 36233       | 45095       | 73566       | 37264       | 68615       | 84671       | 22562       | 60616       | 42176       | 48990       | 31910       |
| 47  | 60915       | 83832       | 136151      | 64958       | 118546      | 153954      | 44978       | 110099      | 73053       | 90353       | 58499       |
| 48  | 82145       | 99004       | 213213      | 87528       | 268877      | 708532      | 47405       | 144635      | 86277       | 120351      | 72415       |

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP470_6     | UP470_7     | UP470_8     | UP470_9     | UP470_10    | DKG_1       | DKG_2       | DKG_3       | DKG_4       | DKG_5       | DKG_6       |
|     | 3311538     | 6123904     | 2979336     | 3468396     | 3400442     | 3190032     | 3463745     | 444         | 2299076     | 2707296     | 2064676     |
|     | 340305      | 461915      | 381443      | 1793825     | 421809      | 148757      | 208174      | 166890      | 143693      | 136731      | 167386      |
|     | 1010578     | 4114374     | 1116845     | 7457650     | 1313981     | 1606965     | 970265      | 522752      | 385427      | 425742      | 447647      |
| 1   | t 2263250   | 3008655     | 1944399     | 14923010    | 2468250     | 1357505     | 1489901     | 1137982     | 1102367     | 941923      | 1157947     |
|     | 21088       | 3072        | 132163      | 149210      | 6862        | 1085544     | 1384668     | 11884       | 48198       | 941038      | 1147853     |
|     | 467         | 343         | 318         | 293         | 57          | 3087        | 1268        | 846         | 734         | 784         | 2402        |
|     | 90689       | 377506      | 76043       | 89888       | 66254       | 806297      | 24371       | 4839        | 35144       | 30320       | 45277       |
|     | 10660       | 6871674     | 594         | 1049        | 6778451     | 5250159     | 5103890     | 4607752     | 23320       | 128637      | 13065       |
|     | 6028010     | 1990        | 6742751     | 7956212     | 7061685     | 23449       | 5253169     | 4660480     | 4822768     | 5172613     | 5357280     |
| 10  | 35592       | 825365      | 3098        | 81911       | 1025565     | 1433579     | 1638353     | 1271102     | 19479       | 1268861     | 33654       |
| 11  | 61802       | 75493       | 50961       | 52981       | 67750       | 89561       | 63563       | 60070       | 45823       | 41719       | 42747       |
| 12  | 57529       | 52902       | 44632       | 42161       | 55917       | 54438       | 27973       | 23539       | 22475       | 25745       | 24691       |
| 1   | 38522       | 48974       | 31853       | 3912256     | 58150       | 62935       | 47647       | 19009       | 2712        | 821         | 1177        |
| 1   | 46563       | 84079       | 26810       | 148152      | 64205       | 109440      | 76218       | 81437       | 46556       | 27065       | 29104       |
| 15  | 61003       | 92235       | 65421       | 1846124     | 66441       | 79976       | 49125       | 42116       | 50522       | 46009       | 48986       |
| 16  | 2304        | 6476        | 1092        | 17757       | 2264        | 3087        | 2984        | 4218        | 1542        | 2164        | 2117        |
| 17  | 14701       | 4974        | 4626        | 4354        | 3631        | 2898        | 19018       | 20366       | 21045       | 16711       | 21520       |
| 18  | 55256       | 48876       | 33189       | 38072       | 44572       | 111136      | 71945       | 66189       | 41425       | 34332       | 47472       |
| 15  | 21707       | 30403       | 20699       | 21309       | 17811       | 41289       | 18397       | 17776       | 13195       | 15953       | 16666       |
| 2(  | 9890        | 13868       | 7194        | 12584       | 9263        | 11957       | 5279        | 4668        | 5490        | 5791        | 6413        |
| 21  | 17513       | 26779       | 14535       | 25497       | 10512       | 33632       | 23502       | 24428       | 20729       | 12065       | 10665       |
| 22  | 89053       | 215062      | 57227       | 98443       | 87284       | 322511      | 116493      | 97395       | 63254       | 80679       | 57437       |
| 23  | 98623       | 121375      | 93951       | 144849      | 101387      | 91356       | 49737       | 47692       | 39461       | 42973       | 41978       |
| 24  | 1 5934      | 4106        | 5069        | 1055        | 4902        | 9031        | 9287        | 7588        | 4985        | 2915        | 4404        |
| 25  | 8181        | 10361       | 7245        | 10620       | 6744        | 9966        | 4652        | 4725        | 3446        | 3035        | 4177        |
| 26  | 8442        | 16137       | 7318        | 11179       | 9541        | 26294       | 8125        | 8474        | 5802        | 9173        | 6730        |
| 27  | 3933        | 6008        | 1045        | 5718        | 646         | 5790        | 4157        | 1537        | 2677        | 1770        | 2149        |
| 28  | 4410        | 4069        | 4278        | 6526        | 2693        | 9625        | 10118       | 6799        | 8977        | 3995        | 4790        |

Sheet 21 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | UP470_6     | UP470_7     | UP470_8     | UP470_9     | UP470_10    | DKG_1       | DKG_2       | DKG_3       | DKG_4       | DKG_5       | DKG_6       |
| 25  | 68051       | 65511       | 70192       | 314865      | 66333       | 89748       | 74752       | 46677       | 39037       | 37952       | 40568       |
| 30  | 16872       | 18746       | 15911       | 23664       | 13345       | 72690       | 42755       | 40695       | 41709       | 37716       | 40843       |
| 31  | 33208       | 47723       | 29816       | 50502       | 29648       | 36426       | 10369       | 9673        | 12303       | 12857       | 15097       |
| 32  | 11186       | 15011       | 4627        | 11553       | 29086       | 25796       | 8727        | 7106        | 5766        | 8634        | 5422        |
| 33  | 30209       | 33859       | 12692       | 33703       | 21674       | 63493       | 54698       | 76867       | 19938       | 51168       | 39036       |
| 34  | t 1858      | 1600        | 2988        | 1864        | 1570        | 3811        | 972         | 206         | 1367        | 1974        | 1002        |
| 35  | 18065       | 27506       | 16482       | 25447       | 17833       | 37177       | 16837       | 13012       | 13354       | 13419       | 12187       |
| 36  | 6233        | 5927        | 6186        | 5509        | 4821        | 45487       | 12749       | 14150       | 11324       | 12070       | 10684       |
| 37  | 1956        | 2436        | 954         | 2582        | 2238        | 2690        | 1142        | 1643        | 1104        | 1094        | 878         |
| 38  | 917         | 585         | 210         | 754         | 165         | 31437       | 19808       | 10233       | 6290        | 4600        | 8027        |
| 35  | J 29159     | 51301       | 17996       | 40415       | 29224       | 44342       | 13293       | 12474       | 11275       | 15198       | 9652        |
| 40  | 134         | 326         | 311         | 1737        | 882         | 1171        | 312         | 565         | 329         | 779         | 385         |
| 41  | 14490       | 11359       | 10794       | 8523        | 13042       | 33057       | 27414       | 21302       | 27038       | 26032       | 20084       |
| 42  | 8844        | 16477       | 7690        | 14304       | 12124       | 15064       | 11512       | 7314        | 5355        | 5332        | 2847        |
| 43  | 19477       | 36057       | 25680       | 31071       | 29801       | 59936       | 44543       | 20634       | 15121       | 31008       | 22981       |
| 44  | 5146        | 3291        | 5777        | 6120        | 3354        | 1581        | 1500        | 1026        | 2023        | 2605        | 2344        |
| 45  | 329920      | 952070      | 444309      | 591283      | 603240      | 1039411     | 744628      | 389242      | 297204      | 1585662     | 289825      |
| 46  | 26431       | 38638       | 30891       | 40800       | 49714       | 60811       | 75877       | 52012       | 42930       | 125438      | 48057       |
| 47  | 47642       | 70851       | 62889       | 67667       | 80670       | 91450       | 140827      | 89070       | 68824       | 243003      | 86758       |
| 48  | 54257       | 100809      | 74749       | 83766       | 112638      | 208531      | 219552      | 137547      | 966996      | 546954      | 115802      |

Sheet 22 of 50

|                | black aroma |
|----------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
| •,             | Sample      |
|                |             |             |             |             |             |             |             |             |             |             |
| -              | okg_8       | DKG_9       | DKG_10      | MTK_1       | MTK_2       | MTK_3       | MTK_4       | MTK_5       | MTK_6       | MTK_7       |
| l.             | 3745092     | 3807822     | 3227989     | 3117055     | 2889148     | 3966504     | 1934555     | 2641061     | 1830895     | 2936037     |
| 8              | 168982      | 179807      | 189557      | 148360      | 136161      | 163078      | 148792      | 195182      | 178669      | 180612      |
| 5              | 608015      | 516775      | 565439      | 1010108     | 702262      | 550061      | 968309      | 664214      | 888273      | 2198140     |
| 10             | 1327143     | 1172247     | 1042915     | 1157756     | 844462      | 1020159     | 989172      | 1306423     | 995398      | 1081493     |
| <del>,</del> + | 37614       | 1240731     | 3143        | 6655        | 2619        | 6177        | 3632        | 976056      | 760167      | 2565        |
| 10             | 1079        | 238         | 646         | 256         | 288         | 828         | 706         | 521         | 561         | 76          |
| C              | 39259       | 30731       | 5766        | 24921       | 31285       | 17525       | 1658        | 28000       | 19100       | 565893      |
| 10             | 69009       | 6260201     | 5830467     | 5165899     | 4562375     | 4258952     | 5071173     | 5213217     | 5403286     | 5438276     |
| C              | 5898208     | 6571541     | 6083644     | 5442869     | 4842327     | 4509490     | 4443577     | 5301580     | 5085606     | 19284       |
| 8              | 1350355     | 1292004     | 1195274     | 1292268     | 1128572     | 1003692     | 1039918     | 1067703     | 1013803     | 967027      |
| _              | 47400       | 41744       | 41762       | 40542       | 26765       | 29942       | 28348       | 32342       | 25968       | 23824       |
| <del>,</del> + | 25451       | 24799       | 22691       | 38875       | 17585       | 21722       | 24563       | 20160       | 19567       | 18256       |
| ŝ              | 28654       | 2388847     | 27038       | 10247       | 19630       | 12868       | 27355       | 1966        | 5378        | 10930       |
| C              | 29732       | 108684      | 62039       | 63237       | 32250       | 24163       | 35222       | 53509       | 21497       | 30112       |
| 2              | 47707       | 56366       | 44548       | 96948       | 51967       | 44161       | 52382       | 53931       | 45794       | 41900       |
| 8              | 3125        | 2600        | 1085        | 7089        | 2850        | 3593        | 2528        | 2091        | 2531        | 2243        |
| ŝ              | 21590       | 3183        | 3631        | 2293        | 4432        | 1933        | 2285        | 873         | 807         | 5533        |
| 0              | 39743       | 41750       | 34843       | 34608       | 22090       | 17289       | 17589       | 24528       | 19528       | 20699       |
| 4              | 14060       | 18359       | 9796        | 16993       | 12212       | 10115       | 8602        | 7565        | 10402       | 12956       |
|                | 9196        | 5421        | 5825        | 11626       | 5115        | 5515        | 6293        | 6154        | 5366        | 4361        |
| 4              | 13270       | 9341        | 9387        | 24147       | 13541       | 16836       | 13220       | 8626        | 10573       | 6818        |
| ŝ              | 61182       | 94198       | 73748       | 170815      | 74012       | 62962       | 69757       | 81368       | 45159       | 67287       |
|                | 40783       | 34792       | 35790       | 114414      | 55168       | 56175       | 62380       | 59683       | 46569       | 47091       |
| 8              | 1848        | 1286        | 2698        | 2208        | 4420        | 2379        | 1854        | 3159        | 2669        | 1759        |
| ŝ              | 6413        | 3953        | 6132        | 8839        | 4721        | 3788        | 1882        | 3710        | 4488        | 4102        |
| ŝ              | 5467        | 6592        | 5958        | 24038       | 10957       | 9604        | 11671       | 10063       | 6766        | 8419        |
|                | 1087        | 3389        | 577         | 3227        | 2038        | 3786        | 3440        | 3396        | 2789        | 139         |
| 4              | 3652        | 2385        | 5065        | 12796       | 8480        | 3666        | 6329        | 4689        | 5757        | 4306        |

Sheet 23 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | DKG_7       | DKG_8       | DKG_9       | DKG_10      | MTK_1       | MTK_2       | MTK_3       | MTK_4       | MTK_5       | MTK_6       | MTK_7       |
| 29  | 34332       | 47261       | 37424       | 36453       | 77680       | 38777       | 40099       | 41027       | 49452       | 44218       | 35231       |
| 30  | 32899       | 38197       | 34660       | 36471       | 82261       | 62772       | 54144       | 55888       | 51808       | 61767       | 46107       |
| 31  | 0366 j      | 21741       | 16990       | 16489       | 32758       | 13589       | 15412       | 12927       | 13813       | 17170       | 14766       |
| 32  | Z601        | 3819        | 5671        | 7255        | 22883       | 8868        | 7393        | 8113        | 9285        | 8337        | 7607        |
| 33  | 52731       | 60769       | 47962       | 37874       | 135043      | 113083      | 170947      | 39055       | 71943       | 73495       | 79470       |
| 34  | t 667       | 1289        | 153         | 266         | 3386        | 2138        | 943         | 1192        | 1575        | 1216        | 1250        |
| 35  | 10430       | 12681       | 13321       | 10943       | 50855       | 26359       | 18370       | 18383       | 17400       | 15772       | 15949       |
| 36  | 9827        | 13768       | 10762       | 9723        | 24575       | 10025       | 8595        | 9920        | 6754        | 9178        | 9655        |
| 37  | 1277        | 2203        | 1865        | 1085        | 3964        | 1183        | 2424        | 1543        | 1811        | 3042        | 2036        |
| 38  | 4318        | 1258        | 3274        | 2010        | 13159       | 8399        | 5242        | 2688        | 1144        | 2495        | 2277        |
| 39  | 13519       | 10641       | 11161       | 14031       | 51481       | 20210       | 14072       | 18614       | 20012       | 14138       | 12919       |
| 40  | 1 475       | 238         | 230         | 286         | 814         | 815         | 200         | 155         | 508         | 229         | 197         |
| 41  | را 22289    | 20956       | 17773       | 19453       | 32315       | 28833       | 19606       | 23365       | 13526       | 21412       | 17221       |
| 42  | 5059        | 5129        | 0669        | 10041       | 12985       | 11116       | 4385        | 3485        | 4509        | 2740        | 3708        |
| 43  | 28086       | 27823       | 22912       | 22380       | 33476       | 24083       | 14942       | 13592       | 17817       | 8267        | 10401       |
| 44  | 1281        | 2091        | 2034        | 518         | 2157        | 2049        | 2154        | 579         | 766         | 2886        | 1998        |
| 45  | 594362      | 528918      | 550316      | 752964      | 1737155     | 1256735     | 618272      | 598320      | 1190005     | 365502      | 514964      |
| 46  | 64506       | 54399       | 68114       | 74111       | 100783      | 103359      | 61295       | 64041       | 91920       | 41430       | 46088       |
| 47  | 120525      | 106040      | 130305      | 149952      | 186672      | 201315      | 114132      | 115771      | 170149      | 68588       | 93020       |
| 48  | 3 222674    | 188937      | 211933      | 306310      | 237281      | 231658      | 112042      | 128137      | 266888      | 75442       | 92420       |

Sheet 24 of 50

| Table         |  |
|---------------|--|
| Supplementary |  |

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
|     | MTK_8       | MTK_9       | MTK_10      | Mu1309_1    | Mu1309_2    | Mu1309_3    | Mu1309_4    | Mu1309_5    | Mu1309_6    | Mu1309_7    | Mu1309_8    |
|     | 2732575     | 3238526     | 2392450     | 2693769     | 2963685     | 3353071     | 2280726     | 2785952     | 1898435     | 2907088     | 2765946     |
|     | 168712      | 153110      | 168337      | 209029      | 208153      | 184395      | 256585      | 249125      | 228567      | 296944      | 262193      |
| m   | 993254      | 722519      | 762729      | 968543      | 665212      | 703369      | 891045      | 869770      | 817213      | 990913      | 943161      |
| 4   | 1009525     | 1026213     | 898804      | 2565943     | 2068763     | 2003564     | 1642533     | 2329154     | 2273420     | 2312971     | 2423402     |
| S   | 748137      | 759231      | 4907        | 1859678     | 19991       | 1440318     | 25660       | 4554        | 10488       | 7697        | 3788        |
| 9   | 398         | 192         | 300         | 966         | 1051        | 1060        | 2963        | 332         | 175         | 762         | 1097        |
|     | 56612       | 1045        | 3055        | 19871       | 76452       | 35157       | 82264       | 73042       | 63862       | 76965       | 64668       |
| ∞   | 5390595     | 5547020     | 6072469     | 4555954     | 1222        | 4016561     | 3718        | 154736      | 256995      | 0           | 130047      |
| σ   | 5680152     | 5545594     | 6351066     | 4564061     | 4920016     | 4082350     | 4993702     | 5950798     | 5764856     | 4924271     | 5877881     |
| 12  | 934856      | 1043326     | 1085452     | 1082468     | 64933       | 902137      | 23484       | 1193411     | 30318       | 13802       | 28698       |
|     | 29578       | 26515       | 29245       | 1120        | 36051       | 1045        | 35388       | 54752       | 33038       | 36135       | 36000       |
| 121 | 20920       | 14523       | 15714       | 48658       | 32442       | 26873       | 33599       | 54255       | 25676       | 37785       | 41265       |
| ш   | 5082        | 9702        | 7031        | 21871       | 53249       | 41330       | 5291        | 23346       | 1667        | 78109       | 26396       |
| 4   | 42027       | 38102       | 25262       | 76198       | 70822       | 59816       | 83640       | 69923       | 44992       | 73659       | 24789       |
| 5   | 49062       | 33320       | 39909       | 92632       | 70878       | 47471       | 62889       | 87478       | 64027       | 55506       | 65485       |
| 16  | 1825        | 1029        | 1444        | 4673        | 3808        | 4412        | 1809        | 3421        | 2844        | 4467        | 2355        |
| 1   | 3319        | 1692        | 1299        | 14949       | 17615       | 8486        | 17891       | 3626        | 10157       | 20884       | 598         |
| 18  | 18800       | 17511       | 16592       | 38494       | 36243       | 21277       | 31534       | 51673       | 27172       | 25726       | 26744       |
| 10  | 9293        | 8111        | 4504        | 19781       | 14666       | 7703        | 12300       | 14280       | 11014       | 15803       | 11628       |
| 2   | 5604        | 3385        | 4790        | 15327       | 10265       | 7796        | 8436        | 11673       | 9506        | 8664        | 8475        |
| 12  | 10487       | 7492        | 10158       | 17067       | 16110       | 8229        | 15243       | 11822       | 7876        | 6952        | 9545        |
| 2   | 75082       | 42977       | 40106       | 181002      | 121192      | 88254       | 85806       | 192545      | 62133       | 89539       | 93373       |
| ß   | 49927       | 34009       | 40656       | 139443      | 89415       | 80053       | 91910       | 98936       | 79138       | 76179       | 73449       |
| 2   | 1410        | 910         | 1744        | 6738        | 6942        | 1263        | 8281        | 7397        | 6142        | 2657        | 3154        |
| 25  | 4832        | 3634        | 1593        | 12142       | 7708        | 6358        | 6752        | 9066        | 8116        | 8129        | 4845        |
| 26  | 11659       | 5681        | 3971        | 15763       | 10367       | 11138       | 10044       | 13634       | 6192        | 11843       | 9479        |
| 2   | 4247        | 1995        | 173         | 4256        | 4726        | 4093        | 4092        | 4789        | 3435        | 2263        | 669         |
| 18  | 7058        | 5041        | 7344        | 8499        | 5730        | 7726        | 7523        | 4731        | 5854        | 3664        | 5212        |

Sheet 25 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | MTK_8       | MTK_9       | MTK_10      | Mu1309_1    | Mu1309_2    | Mu1309_3    | Mu1309_4    | Mu1309_5    | Mu1309_6    | Mu1309_7    | Mu1309_8    |
| 29  | 35685       | 30174       | 28351       | 86723       | 52784       | 54797       | 61549       | 73691       | 46203       | 52205       | 48419       |
| 30  | 53564       | 58251       | 45027       | 96141       | 97798       | 72851       | 72102       | 64653       | 69341       | 58011       | 74390       |
| 31  | 16380       | 9544        | 10044       | 48714       | 51432       | 40149       | 33001       | 46753       | 33489       | 31024       | 44533       |
| 32  | 7421        | 2896        | 3705        | 13428       | 9486        | 10265       | 8430        | 14279       | 7934        | 14786       | 6220        |
| 33  | 101015      | 84630       | 63609       | 61013       | 62062       | 94374       | 47844       | 71866       | 34182       | 54373       | 50305       |
| 34  | t 1695      | 502         | 1279        | 3483        | 2889        | 1534        | 1111        | 3092        | 1219        | 2500        | 1511        |
| 35  | 17476       | 12072       | 20359       | 33773       | 30568       | 17414       | 19412       | 23126       | 14360       | 14416       | 22050       |
| 36  | 8100        | 5670        | 5648        | 24099       | 14428       | 11083       | 9912        | 12570       | 9517        | 11136       | 11634       |
| 37  | 2258        | 1401        | 1902        | 3958        | 2368        | 2353        | 2648        | 2897        | 2764        | 2335        | 1180        |
| 38  | 1107        | 241         | 795         | 7617        | 4643        | 2638        | 4158        | 3574        | 757         | 216         | 339         |
| 39  | 17147       | 6994        | 7704        | 23661       | 26511       | 23045       | 19892       | 23462       | 17013       | 29181       | 18166       |
| 40  | 0           | 351         | 122         | 858         | 925         | 473         | 0           | 295         | 66          | 134         | 0           |
| 41  | 17930       | 12735       | 15539       | 25234       | 29302       | 21807       | 21936       | 24501       | 18033       | 19784       | 19030       |
| 42  | 5494        | 6786        | 5156        | 9567        | 10173       | 7675        | 4784        | 5202        | 3716        | 5644        | 4386        |
| 43  | 11265       | 15413       | 10392       | 17488       | 17745       | 17379       | 16040       | 18101       | 11254       | 25209       | 16277       |
| 44  | 1576        | 1102        | 741         | 1520        | 1988        | 1588        | 1033        | 2050        | 897         | 854         | 201         |
| 45  | 567111      | 434772      | 269712      | 641713      | 705670      | 791511      | 521527      | 569802      | 332786      | 2327516     | 992230      |
| 46  | 55706       | 46468       | 36156       | 32703       | 65527       | 58349       | 51156       | 45398       | 34352       | 123888      | 63554       |
| 47  | 97791       | 85569       | 63138       | 58338       | 118971      | 102231      | 94394       | 81790       | 61022       | 231648      | 123294      |
| 48  | 117146      | 81256       | 61045       | 78474       | 188701      | 141413      | 123088      | 128486      | 83428       | 496244      | 206251      |

| חומריי מו הווומ | Sample   | Mu2313 9    | 7 3074158 | 3 213927 | 5 1727841 | ) 1371771 | 1 1098468 | 7 1181 | 2 525853 | 3 5721449 | 0 67267 | 7 741676 | 26850 | 2 17003 | 5 15402 | 3 11453 | ) 28554 | 1 2067 | 9 3354 | ) 25502 | 1 7723 | 2 12688 | ) 6016 | 1 38187 | 1 48732 | 5 1641 | 3 6357 | 3 7575 | 5 2858 | 7 1809 |
|-----------------|----------|-------------|-----------|----------|-----------|-----------|-----------|--------|----------|-----------|---------|----------|-------|---------|---------|---------|---------|--------|--------|---------|--------|---------|--------|---------|---------|--------|--------|--------|--------|--------|
| black aroma     | Sample   | Mu2313 8    | 2069747   | 204918   | 668735    | 1370470   | 51474     | 637    | 5632     | 5641528   | 587878( | 953177   | 30492 | 17412   | 76186   | 28643   | 29680   | 233/   | 3035   | 26140   | 6971   | 15062   | 13230  | 32131   | 53271   | 2205   | 8298   | 6373   | 2076   | 3237   |
| black aroma     | Sample   | Mu2313 7    | 3454745   | 232540   | 676552    | 1742684   | 36563     | 353    | 45583    | 5474504   | 5803916 | 34218    | 35323 | 21534   | 23383   | 28766   | 22986   | 2550   | 3909   | 24205   | 12817  | 10478   | 5608   | 41410   | 57836   | 3351   | 6636   | 9394   | 3005   | 4259   |
| black aroma     | Sample   | Mu2313 6    | 3125755   | 238617   | 1602525   | 1473623   | 1264019   | 221    | 327937   | 5347959   | 30231   | 738753   | 31978 | 19894   | 24648   | 33483   | 31400   | 1997   | 2809   | 30067   | 11099  | 13026   | 6610   | 61306   | 60381   | 5673   | 6738   | 17309  | 6288   | 3005   |
| olack aroma     | Sample   | Mu2313 5    | 3758177   | 245534   | 749183    | 1882343   | 43595     | 6      | 37936    | 164741    | 5324737 | 724524   | 39466 | 28443   | 26423   | 26221   | 34521   | 3261   | 3527   | 40072   | 17583  | 17867   | 8565   | 74115   | 74920   | 2766   | 10590  | 13021  | 4838   | 3930   |
| olack aroma     | Sample   | Mu2313 4    | 3011632   | 232601   | 2120200   | 1610099   | 6325      | 2008   | 981113   | 4477830   | 4143    | 715501   | 34399 | 23365   | 20977   | 25072   | 35821   | 2219   | 1489   | 30187   | 13230  | 15027   | 5902   | 102600  | 64963   | 8644   | 4836   | 21165  | 5476   | 2815   |
| olack aroma     | Sample   | Mu2313 3    | 2439100   | 281552   | 808702    | 1397475   | 222551    | 517    | 85164    | 4338      | 5839001 | 22793    | 49440 | 35878   | 782     | 45866   | 50282   | 2718   | 2552   | 53478   | 14711  | 23269   | 9421   | 69784   | 88618   | 5571   | 10530  | 11000  | 4053   | 7748   |
| olack aroma     | Sample   | Mu2313 2    | 3493226   | 195812   | 670036    | 1420444   | 35625     | 1646   | 9582     | 4609304   | 4675937 | 777106   | 39661 | 27673   | 44325   | 34419   | 44538   | 3402   | 2296   | 41773   | 11200  | 20385   | 4283   | 90925   | 80400   | 9598   | 11044  | 12892  | 5684   | 7852   |
| olack aroma t   | sample 3 | Mu2313 1 1  | 3532537   | 204148   | 1323335   | 1491939   | 43389     | 3110   | 1908     | 5609068   | 5890466 | 751283   | 45236 | 40684   | 73224   | 15218   | 47481   | 5595   | 2853   | 54304   | 17862  | 38540   | 9814   | 166859  | 97232   | 2077   | 17789  | 33860  | 7889   | 8065   |
| olack aroma     | Sample   | Mu1309 10 1 | 1593154   | 225735   | 1373945   | 2388723   | 2519      | 237    | 2768     | 5821238   | 6078966 | 1262554  | 28221 | 18795   | 12884   | 56624   | 55124   | 3173   | 2895   | 19306   | 12179  | 6695    | 16498  | 46445   | 54625   | 1723   | 4863   | 4924   | 836    | 5922   |
| black aroma t   | Sample   | Mu1309 9 1  | 2561750   | 217034   | 808810    | 2529174   | 3295      | 304    | 14650    | 213093    | 5085424 | 1107972  | 34894 | 19538   | 15098   | 39379   | 51671   | 625    | 1934   | 23804   | 7217   | 7460    | 9462   | 65441   | 63054   | 1292   | 4496   | 6654   | 2189   | 4199   |
|                 | , ,      | No.         | F         | 2        | m         | 4         | 5         | 9      | 7        | 8         | 6       | 10       | 11    | 12      | 13      | 14      | 15      | 16     | 17     | 18      | 19     | 20      | 21     | 22      | 23      | 24     | 25     | 26     | 27     | 28     |

sheet 27 of 50

| lack aroma    | ample    | Au2313_9   | 32773 | 40739 | 19896 | 6311  | 48288 | 1380 | 16531 | 6104  | 1756 | 165  | 16080 | 295  | 9173  | 5305  | 15790 | 871  | 548622  | 38860 | 74285  | 109421 |
|---------------|----------|------------|-------|-------|-------|-------|-------|------|-------|-------|------|------|-------|------|-------|-------|-------|------|---------|-------|--------|--------|
| ack aroma b   | ample S  | 1u2313_8 N | 33326 | 54690 | 26363 | 4621  | 11807 | 1087 | 12184 | 4699  | 2675 | 753  | 16611 | 402  | 8876  | 3338  | 10555 | 1053 | 332560  | 29430 | 52439  | 61175  |
| ack aroma b   | ample S  | 1u2313_7 N | 45672 | 60635 | 21234 | 11885 | 3373  | 1588 | 16029 | 9251  | 1952 | 67   | 23311 | 28   | 10633 | 5424  | 17491 | 800  | 1155718 | 76046 | 131091 | 241243 |
| ack aroma bl  | ample S  | 1u2313_6 N | 40097 | 49254 | 23389 | 12397 | 48705 | 1865 | 17038 | 10177 | 2092 | 238  | 37802 | 301  | 8097  | 6174  | 13790 | 2049 | 357965  | 25513 | 46177  | 50727  |
| ack aroma bl  | ample S  | 1u2313_5 N | 32156 | 52315 | 34699 | 11770 | 84914 | 1563 | 22166 | 9878  | 2289 | 452  | 27059 | 589  | 10536 | 5862  | 19489 | 2360 | 548744  | 34063 | 53679  | 67871  |
| ack aroma bl  | ample Si | 1u2313_4 N | 39368 | 43505 | 27348 | 17151 | 64316 | 2654 | 18788 | 6807  | 2429 | 1085 | 47440 | 283  | 9121  | 9704  | 27439 | 1449 | 611989  | 36360 | 64774  | 79410  |
| ack aroma bl  | ample S  | 1u2313_3 N | 49861 | 63519 | 38798 | 10576 | 50679 | 2028 | 17073 | 16810 | 3732 | 2987 | 25722 | 311  | 15028 | 6758  | 12287 | 2107 | 317289  | 26729 | 49809  | 54330  |
| lack aroma b  | ample S  | /u2313_2 N | 42946 | 56853 | 45757 | 11991 | 74800 | 2917 | 25355 | 13216 | 4040 | 2699 | 31254 | 1383 | 12445 | 11116 | 20602 | 2010 | 548517  | 37658 | 66780  | 84795  |
| lack aroma b  | ample S  | /u2313_1 N | 47101 | 57653 | 86745 | 26209 | 71416 | 3621 | 27237 | 30041 | 5155 | 4795 | 80198 | 839  | 16247 | 10014 | 20259 | 3240 | 514909  | 28920 | 47445  | 54701  |
| olack aroma b | Sample   | Mu1309_10  | 53211 | 53487 | 27158 | 4358  | 26552 | 189  | 11691 | 7317  | 1137 | 73   | 10187 | 0    | 17688 | 6088  | 12031 | 612  | 469010  | 49182 | 91510  | 120876 |
| black aroma t | Sample   | Mu1309_9   | 52026 | 56629 | 23624 | 5875  | 35899 | 1102 | 18885 | 6582  | 1656 | 0    | 16297 | 138  | 16265 | 5958  | 17843 | 554  | 771340  | 65320 | 113728 | 186632 |
|               |          | No.        | 29    | 30    | 31    | 32    | 33    | 34   | 35    | 36    | 37   | 38   | 39    | 40   | 41    | 42    | 43    | 44   | 45      | 46    | 47     | 48     |

Sheet 28 of 50

|     | black aroma |
|-----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|     | Sample      |
|     |             |             |             |             |             |             |             |             |             |             |             |
| No. | Mu2313_10   | Mu2550_1    | Mu2550_2    | Mu2550_3    | Mu2550_4    | Mu2550_5    | Mu2550_6    | Mu2550_7    | Mu2550_8    | Mu2550_9    | Mu2550_10   |
|     | 2886974     | 3823676     | 2777630     | 2021996     | 3988805     | 2766917     | 2890309     | 2801609     | 2178417     | 2523384     | 2550153     |
| 2   | 220430      | 287580      | 234458      | 259544      | 411211      | 259407      | 289950      | 313692      | 363229      | 209164      | 286911      |
| m   | 1705397     | 1013374     | 785939      | 2710519     | 1635504     | 1004241     | 1093892     | 1295720     | 1372404     | 609747      | 1118898     |
| 4   | 1370241     | 1955346     | 1496430     | 1856508     | 1162238     | 1805442     | 2093073     | 2283860     | 2590590     | 1385304     | 2015776     |
| 5   | 2912        | 1488183     | 22426       | 1459626     | 815706      | 28518       | 9554        | 68620       | 8681        | 10642       | 20181       |
| 9   | 367         | 1231        | 438         | 275         | 426         | 1682        | 1135        | 857         | 1327        | 190         | 117         |
| 7   | 1102348     | 70442       | 78114       | 5152        | 149474      | 71424       | 65113       | 72264       | 79332       | 780         | 48425       |
| ∞   | 5668375     | 83200       | 28160       | 4616228     | 1895        | 5662        | 125565      | 1715        | 557         | 4828935     | 152763      |
| 6   | 1095        | 5467320     | 4920405     | 4244        | 417         | 5055460     | 5504491     | 5932318     | 7311295     | 4963114     | 6637161     |
| 10  | 668350      | 1194416     | 30054       | 1362686     | 65546       | 42379       | 1307658     | 23011       | 1485768     | 920613      | 1258727     |
| 11  | 31424       | 45935       | 49205       | 32445       | 53549       | 33802       | 31166       | 35256       | 38796       | 30343       | 32751       |
| 12  | 18125       | 46762       | 48671       | 28256       | 64358       | 29968       | 30745       | 32165       | 40123       | 16026       | 28030       |
| 13  | 7896        | 29672       | 1371        | 10602       | 18560       | 843         | 6932        | 2680        | 13483       | 32113       | 27209       |
| 14  | 10853       | 29636       | 42672       | 69857       | 94593       | 69689       | 70168       | 23663       | 84917       | 17888       | 67611       |
| 15  | 26689       | 82506       | 77645       | 70897       | 92491       | 66894       | 69282       | 65939       | 79602       | 25680       | 55631       |
| 16  | 1402        | 4670        | 4003        | 3434        | 5265        | 4576        | 3967        | 3064        | 3108        | 2222        | 1904        |
| 17  | 608         | 16165       | 11898       | 952         | 16433       | 5282        | 1652        | 6474        | 9794        | 2306        | 4340        |
| 18  | 23174       | 32019       | 24546       | 18786       | 27783       | 23593       | 20028       | 19203       | 18419       | 16724       | 16326       |
| 19  | 10598       | 19738       | 14252       | 14652       | 11628       | 9472        | 9335        | 8240        | 11698       | 7265        | 7988        |
| 20  | 11578       | 11314       | 8927        | 10098       | 12237       | 9665        | 6275        | 8192        | 8910        | 7914        | 5133        |
| 21  | 5336        | 20739       | 24063       | 17251       | 14085       | 6668        | 18822       | 12869       | 21882       | 5485        | 13442       |
| 22  | 38922       | 215886      | 107145      | 70599       | 146187      | 107671      | 89318       | 73641       | 62617       | 31259       | 67949       |
| 23  | 45655       | 123651      | 108601      | 84341       | 132791      | 83816       | 87037       | 93504       | 99562       | 42550       | 74150       |
| 24  | 1991        | 4217        | 4913        | 7533        | 5920        | 1826        | 1516        | 2210        | 4112        | 1416        | 1454        |
| 25  | 5279        | 8178        | 10466       | 6038        | 8704        | 7193        | 5971        | 7903        | 7714        | 2404        | 4230        |
| 26  | 0668        | 26011       | 14877       | 10887       | 18506       | 13535       | 10560       | 11072       | 9227        | 2925        | 9591        |
| 27  | 434         | 5653        | 4338        | 3206        | 6244        | 5298        | 3506        | 3666        | 3978        | 1723        | 4074        |
| 28  | 3467        | 8230        | 11517       | 2894        | 6790        | 3169        | 6619        | 6887        | 5839        | 1655        | 4699        |

Sheet 29 of 50

|    | black aroma |
|----|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|
|    | Sample      |
|    |             |             |             |             |             |             |             |             |             |             |             |
|    | Mu2313_10   | Mu2550_1    | Mu2550_2    | Mu2550_3    | Mu2550_4    | Mu2550_5    | Mu2550_6    | Mu2550_7    | Mu2550_8    | Mu2550_9    | Mu2550_10   |
| 29 | 26614       | 90217       | 69082       | 66249       | 74535       | 68663       | 72837       | 73806       | 75359       | 32908       | 62808       |
| 30 | 37892       | 42814       | 13353       | 57084       | 41971       | 58019       | 29486       | 24487       | 20514       | 49336       | 24902       |
| 31 | 18695       | 30235       | 41627       | 26372       | 34462       | 27185       | 20552       | 27800       | 30883       | 9895        | 15895       |
| 32 | 7032        | 25418       | 17244       | 9880        | 17746       | 13976       | 11348       | 8947        | 6896        | 3909        | 9784        |
| 33 | 37272       | 96945       | 41335       | 36618       | 74679       | 42440       | 69043       | 62679       | 34178       | 30781       | 47861       |
| 34 | 1492        | 2769        | 3091        | 2383        | 3176        | 1495        | 1876        | 2012        | 1538        | 1240        | 286         |
| 35 | 13898       | 34823       | 32265       | 25416       | 31378       | 27108       | 16830       | 22771       | 26067       | 21359       | 22544       |
| 36 | 5548        | 22373       | 10876       | 10370       | 13714       | 9395        | 10675       | 11978       | 9391        | 6148        | 6329        |
| 37 | 1360        | 2977        | 2719        | 2119        | 3352        | 2538        | 006         | 921         | 2311        | 1457        | 1075        |
| 38 | 0           | 8927        | 11812       | 1991        | 8386        | 298         | 879         | 634         | 541         | 0           | 337         |
| 39 | 18674       | 47204       | 29183       | 19466       | 28557       | 20897       | 21905       | 18277       | 13395       | 4936        | 16035       |
| 40 | 72          | 1984        | 2051        | 68          | 1549        | 144         | 358         | 1035        | 728         | 362         | 553         |
| 41 | 7942        | 36261       | 52855       | 24386       | 38474       | 20167       | 30168       | 24629       | 27793       | 7851        | 22696       |
| 42 | 8394        | 18069       | 10498       | 8829        | 13592       | 5058        | 6644        | 6463        | 4712        | 3292        | 12324       |
| 43 | 17360       | 177843      | 94010       | 89860       | 175978      | 44246       | 78532       | 119366      | 85284       | 19951       | 143556      |
| 44 | 400         | 6132        | 3692        | 2649        | 5534        | 3286        | 3585        | 3681        | 3653        | 125         | 2230        |
| 45 | 794720      | 4298662     | 4328565     | 2213213     | 5599838     | 2487238     | 4364134     | 4705578     | 3345749     | 582888      | 7829225     |
| 46 | 56554       | 178830      | 211924      | 0           | 268840      | 125645      | 194532      | 222490      | 174258      | 61604       | 369051      |
| 47 | 106766      | 316859      | 408396      | 253722      | 528464      | 239215      | 381479      | 409340      | 352743      | 113529      | 720088      |
| 48 | 178687      | 857706      | 1030123     | 563744      | 1319676     | 698903      | 1100081     | 1119337     | 902756      | 177312      | 1727477     |

| black and |       | black anoma   | blad around | black and and | black around  | blad around  |             | black around | black around | blad, around |                 |
|-----------|-------|---------------|-------------|---------------|---------------|--------------|-------------|--------------|--------------|--------------|-----------------|
| 2         | PLIC  | DIACK AFOITIA | DIACK AFOMA | DIACK AFOINA  | DIACK AFOITIA | DIACK AFOINA | DIACK AFOMA | DIACK AFOTTA | DIACK AFOTTA | DIACK AFOTTA | DIACK NON-Aroma |
| 읭         |       | Sample        | Sample      | Sample        | Sample        | Sample       | Sample      | Sample       | Sample       | Sample       | Sample          |
|           |       |               |             |               |               |              |             |              |              |              |                 |
| Ξ.        | _     | RB2_2         | RB2_3       | RB2_4         | RB2_5         | RB2_6        | RB2_7       | RB2_8        | RB2_9        | RB2_10       | BSHMP_1         |
| 100       | 08340 | 3309235       | 5 2688806   | 1950605       | 1848967       | 3370537      | 2381652     | 2668042      | 2648140      | 1833871      | 3499856         |
| 24        | 10049 | 236568        | 3 267459    | 272016        | 252245        | 247850       | 245801      | 240443       | 230784       | 204330       | 296982          |
| 63        | 33383 | 771026        | 5 743012    | 813261        | 2121317       | 911496       | 873348      | 764214       | 851845       | 845327       | 627340          |
| 225       | 52455 | 2022760       | ) 2123563   | 2113359       | 2022839       | 1434539      | 2159213     | 1871020      | 1722113      | 1277553      | 2189615         |
| 167       | 78921 | 33416         | 5 16853     | 47504         | 13171         | 30997        | 20131       | 3825         | 3347         | 955107       | 243738          |
|           | 531   | 1017          | 7 1882      | 727           | 658           | 879          | 720         | 532          | 822          | 78           | 1323            |
| 10        | 1308  | 83180         | 74230       | 66555         | 872284        | 73407        | 78076       | 41019        | 3095         | 292061       | 96617           |
| 679       | 8097  | 1475          | 9009        | 16            | 4084372       | 2194         | 27575       | 5148509      | 4652472      | 5476001      | 870             |
| 712       | 26575 | 5084651       | 1 5028887   | 5780866       | 21106         | 5269253      | 5427910     | 5413788      | 4923528      | 5724247      | 6189653         |
| 10        | )5259 | 35610         | ) 28354     | 37108         | 1692086       | 13114        | 1543383     | 1471119      | 1287837      | 1511780      | 61312           |
| 11        | 1384  | 71614         | 1 56653     | 47693         | 46595         | 49469        | 42217       | 47433        | 39749        | 48555        | 143207          |
| б         | 97768 | 52378         | 3 41897     | 30713         | 28988         | 32634        | 32567       | 28402        | 25235        | 20356        | 84755           |
| 7         | 73758 | 710           | ) 43185     | 4777          | 14398         | 1001         | 56474       | 24671        | 20448        | 39612        | 82730           |
| 14        | 19742 | 47368         | 3 78018     | 49381         | 59950         | 19934        | 44145       | 30234        | 34601        | 37889        | 163695          |
| 22        | 28390 | 86762         | 2 83538     | 87025         | 76844         | 68166        | 75418       | 70012        | 56754        | 50308        | 84616           |
| 1         | 11041 | 5388          | 3 4966      | 3575          | 3884          | 5453         | 4979        | 5190         | 3451         | 2526         | 7008            |
|           | 4564  | 7742          | 2 17250     | 7614          | 4008          | 11554        | 20042       | 13917        | 5933         | 1346         | 12342           |
| 21        | L5400 | 100899        | 91146       | 61163         | 54422         | 54058        | 55712       | 55922        | 46325        | 80269        | 242042          |
| 4         | 17952 | 30723         | 3 22023     | 14597         | 17194         | 16028        | 17384       | 11499        | 12773        | 14798        | 68382           |
| ŝ         | 34027 | 14359         | 9810        | 6945          | 8681          | 9347         | 8039        | 12432        | 8408         | 7411         | 15385           |
| S         | 56555 | 14549         | 9 20729     | 14501         | 29818         | 11193        | 10973       | 13047        | 10862        | 14990        | 88480           |
| 34        | 906/t | 140477        | 7 105841    | 82968         | 77142         | 78719        | 77170       | 71231        | 63645        | 53303        | 279047          |
| 26        | 52723 | 93732         | 2 84064     | 81738         | 83595         | 72540        | 67500       | 67036        | 58205        | 45553        | 122638          |
|           | 7797  | 7283          | 3 9804      | 9764          | 6594          | 3299         | 6521        | 4876         | 2333         | 3279         | 11290           |
| 2         | 26486 | 9422          | 8000        | 1096          | 7602          | 8170         | 6904        | 9688         | 8493         | 8845         | 10716           |
| ŝ         | 30202 | 10689         | 9 6874      | 5222          | 6323          | 7160         | 6514        | 5623         | 4232         | 3950         | 17631           |
|           | 5870  | 3733          | 3 2614      | 2472          | 2747          | 2797         | 2775        | 4510         | 448          | 1734         | 6420            |
| ŝ         | 39136 | 11591         | 7764        | 6174          | 6366          | 5782         | 8186        | 6549         | 2896         | 3281         | 10123           |

Sheet 31 of 50

|     | black aroma<br>Sample | black ar<br>Sampl | e    |
|-----|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-------------------|------|
| No. | RB2 1                 | RB2_2                 | RB2_3                 | RB2_4                 | RB2_5                 | RB2_6                 | RB2_7                 | RB2_8                 | RB2_9                 | RB2               | 10   |
| 52  | 9 220719              | 71109                 | 65098                 | 68982                 | 62506                 | 58603                 | 62213                 | 52531                 | 46767                 |                   | 0169 |
| 30  | 7 248040              | 73871                 | 77486                 | 73070                 | 65831                 | 76243                 | 61720                 | 62419                 | 48808                 | 4                 | 9767 |
| 3   | 1 151196              | 56730                 | 41458                 | 22964                 | 33907                 | 32543                 | 19829                 | 69134                 | 50013                 | 49                | 677  |
| 32  | 28624                 | 9429                  | 7205                  | 5765                  | 4781                  | 5230                  | 5585                  | 7263                  | 2799                  | 2                 | 866  |
| 30  | 3 126693              | 78954                 | 68306                 | 40185                 | 42735                 | 61402                 | 58793                 | 54119                 | 49474                 | 374               | 139  |
| 37  | 1 4011                | 1932                  | 1306                  | 548                   | 196                   | 442                   | 847                   | 500                   | 674                   | Ψ                 | 59   |
| 35  | 84624                 | 27542                 | 20239                 | 18836                 | 14919                 | 17315                 | 14352                 | 16048                 | 11705                 | 122               | 21   |
| 36  | 5 41877               | 16470                 | 7892                  | 10444                 | 7754                  | 10237                 | 9057                  | 8836                  | 6082                  | 52                | 22   |
| 3.  | 7 9134                | 2826                  | 2199                  | 2900                  | 2228                  | 2524                  | 927                   | 2668                  | 1628                  | 19                | 37   |
| Ĩ   | 3 15405               | 8490                  | 5573                  | 3067                  | 1054                  | 699                   | 595                   | 1407                  | 114                   | 2                 | 50   |
| 36  | 37711                 | 11204                 | 9572                  | 7843                  | 4558                  | 5515                  | 8001                  | 10621                 | 6289                  | 32                | 30   |
| 4   | J 2657                | 006                   | 744                   | 363                   | 64                    | 99                    | 100                   | 234                   | 134                   | ĉ                 | 11   |
| 4   | 1 56366               | 28815                 | 26945                 | 30648                 | 19115                 | 19774                 | 19666                 | 16278                 | 18099                 | 129               | 34   |
| 4   | 20872                 | 8528                  | 7927                  | 4955                  | 4423                  | 4977                  | 6501                  | 4264                  | 2769                  | 35(               | 01   |
| 4   | 3 45282               | 20841                 | 28637                 | 19788                 | 17597                 | 17228                 | 34029                 | 12469                 | 10237                 | 103               | 6    |
| 4   | 1 7020                | 1094                  | 981                   | 1413                  | 833                   | 1286                  | 1148                  | 1045                  | 469                   | 26                | 29   |
| 45  | 1183240               | 649408                | 588543                | 348303                | 315734                | 435842                | 3565884               | 309199                | 198238                | 1471              | 69   |
| 46  | 5 40377               | 40997                 | 46550                 | 37398                 | 29974                 | 19662                 | 41643                 | 20673                 | 18504                 | .66               | 77   |
| 47  | 7 65692               | 75721                 | 83797                 | 68100                 | 51645                 | 40265                 | 76095                 | 33352                 | 34334                 | 161               | 5    |
| 4   | 3 106390              | 102787                | 109233                | 75800                 | 53895                 | 40640                 | 394450                | 49548                 | 31779                 | 1362              | 6    |

Sheet 32 of 50

## Sheet 33 of 50

|       | black non-aroma |
|-------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|       | Sample          |
|       |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No.   | BSHMP_2         | BSHMP_3         | BSHMP_4         | BSHMP_5         | BSHMP_6         | BSHMP_7         | BSHMP_8         | BSHMP_9         | BSHMP_10        | RB_1            |
|       | 1 3649033       | 4283196         | 3170957         | 3641461         | 2768093         | 4038561         | 4068148         | 3600266         | 2552603         | 1977646         |
|       | 2 245291        | 248924          | 317172          | 273971          | 302826          | 282187          | 297520          | 263554          | 281801          | 234561          |
|       | <b>3</b> 687326 | 829644          | 882259          | 918946          | 874607          | 987886          | 980018          | 888442          | 874697          | 652113          |
| 1     | 4 702318        | 800983          | 826603          | 801658          | 831215          | 843011          | 884055          | 850763          | 790044          | 2199569         |
| 1,1,1 | 5 189332        | 288705          | 498710          | 410955          | 461121          | 466828          | 384032          | 495183          | 292437          | 3409            |
|       | 616             | 8142            | 5430            | 323             | 4790            | 487             | 5227            | 6336            | 7695            | 1274            |
|       | 7 103881        | 109316          | 104631          | 85199           | 92362           | 95022           | 128104          | 90417           | 99756           | 75330           |
|       | 853             | 654             | 556             | 1511            | 884             | 769             | 847             | 676             | 1147            | 4989910         |
| 5,    | 9 516           | 101741          | 84              | 17511           | 76538           | 6443598         | 41745           | 6897194         | 7037008         | 5076827         |
| 1(    | 47076           | 48399           | 42181           | 11442           | 42162           | 39845           | 46466           | 40448           | 46726           | 22563           |
| 1     | 1 122687        | 124300          | 2254            | 102933          | 115906          | 112617          | 109389          | 104543          | 90658           | 52968           |
| 12    | 2 62811         | 72686           | 73973           | 57542           | 53911           | 68256           | 66656           | 47835           | 68281           | 52463           |
| 13    | 3 1175          | 3363            | 31950           | 3015            | 3406            | 42039           | 4511            | 2267            | 1450            | 47982           |
| 1     | 97537           | 40233           | 76651           | 116411          | 119429          | 98978           | 98973           | 33968           | 87853           | 180577          |
| 15    | 5 62003         | 50685           | 52503           | 53044           | 49110           | 49804           | 56331           | 45639           | 49768           | 184795          |
| 16    | <b>6</b> 2441   | 3940            | 1846            | 4265            | 1923            | 2790            | 2068            | 4498            | 2644            | 4595            |
| 17    | 7 15990         | 20378           | 7406            | 13280           | 12242           | 7663            | 13126           | 13927           | 17239           | 38463           |
| 18    | 133511          | 119864          | 167032          | 107704          | 131596          | 97538           | 112357          | 111230          | 83523           | 48032           |
| 15    | 34039           | 37802           | 43569           | 29860           | 24392           | 33799           | 37748           | 29746           | 28731           | 18877           |
| 2(    | 0 11168         | 8993            | 8296            | 8191            | 7631            | 7241            | 9731            | 5810            | 5566            | 33472           |
| 21    | 1 23756         | 24863           | 26696           | 22644           | 22729           | 15022           | 12300           | 12207           | 13543           | 66142           |
| 22    | 133958          | 114214          | 112007          | 108182          | 77443           | 92326           | 105093          | 84124           | 62909           | 103582          |
| 25    | 3 80410         | 06069           | 68088           | 73431           | 67725           | 62229           | 66431           | 53987           | 50702           | 270970          |
| 54    | 4 18907         | 16961           | 9529            | 10603           | 7383            | 7587            | 7455            | 14034           | 12235           | 3776            |
| 25    | 5 8319          | 5700            | 3794            | 5153            | 5414            | 4791            | 6290            | 4773            | 5221            | 25639           |
| 26    | 10452           | 7381            | 7753            | 8297            | 5071            | 6854            | 6843            | 6259            | 4676            | 23797           |
| 27    | 7 4499          | 3151            | 2774            | 3304            | 2374            | 2805            | 2695            | 849             | 1111            | 4472            |
| 28    | 8 14434         | 11283           | 8448            | 3751            | 7983            | 6155            | 6135            | 4529            | 5761            | 30004           |

| e |
|---|
| P |
| ש |
| - |
| ≥ |
| a |
| Ē |
| ē |
| E |
| e |
| ۵ |
| ₽ |
| 3 |
|   |

-

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | BSHMP_2         | BSHMP_3         | BSHMP_4         | BSHMP_5         | BSHMP_6         | BSHMP_7         | BSHMP_8         | BSHMP_9         | BSHMP_10        | $RB_1$          |
| 29  | 50273           | 45168           | 53143           | 49394           | 50519           | 47884           | 49075           | 38712           | 37352           | 23446           |
| 30  | 75080           | 73584           | 54900           | 59889           | 60151           | 56966           | 57051           | 52677           | 58257           | 16477           |
| 31  | 27253           | 20483           | 11888           | 17911           | 24108           | 14990           | 17345           | 12373           | 14789           | 10780           |
| 32  | 9795            | 4499            | 8278            | 6346            | 5953            | 6418            | 4861            | 5675            | 3116            | 2938            |
| 33  | 85209           | 77572           | 68149           | 79823           | 48148           | 38134           | 70505           | 56419           | 32906           | 18924           |
| 34  | 1875            | 1160            | 1634            | 1731            | 1158            | 781             | 1570            | 1051            | 726             | 529             |
| 35  | 27713           | 27767           | 19729           | 18623           | 12074           | 14667           | 17191           | 12955           | 13110           | 67362           |
| 36  | 13832           | 12405           | 9102            | 11844           | 10742           | 9091            | 8711            | 7772            | 5539            | 338             |
| 37  | 2795            | 1340            | 1279            | 1741            | 2100            | 1326            | 1392            | 536             | 996             | 861(            |
| 38  | 18376           | 8252            | 8380            | 5394            | 5730            | 5999            | 2699            | 4886            | 1485            | 551             |
| 39  | 21398           | 12906           | 11852           | 16280           | 8975            | 9165            | 11048           | 11493           | 3 12732         | 8889(           |
| 40  | 665             | 80              | 0               | 237             | 275             | 0               | 245             | 0               | ) 27            | 497             |
| 41  | 28480           | 18510           | 22697           | 21687           | 21213           | 17962           | 15461           | 16293           | 3 18322         | 6145            |
| 42  | 8941            | 4863            | 5080            | 4693            | 2455            | 3172            | 3774            | 4349            | 5365            | 2213            |
| 43  | 19549           | 17935           | 16256           | 21176           | 13034           | 13140           | 17111           | 11738           | 3 14546         | 6457(           |
| 44  | 2672            | 1744            | 711             | 1839            | 2738            | 277             | 524             | 1873            | 929             | 601             |
| 45  | 255975          | 406271          | 266053          | 398776          | 217404          | 230730          | 282288          | 198475          | 5 261349        | 195047          |
| 46  | 25537           | 42966           | 28133           | 42832           | 27772           | 23336           | 30103           | 21108           | 34520           | 8916            |
| 47  | 44732           | 72406           | 56338           | 75953           | 46928           | 46236           | 51332           | 36924           | 61372           | 16390           |
| 48  | 57977           | RODAS           | 51737           | 114184          | 61689           | 29400           | 55182           | 40611           | 95196           | 40678           |

| ÷           |
|-------------|
| ble         |
| Та          |
| <b>V</b> IE |
| nta         |
| ше          |
| ole         |
| đ           |
| S           |

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | RB_2            | RB_3            | RB_4            | RB_5            | RB_6            | RB_7            | RB_8            | RB_9            | $RB_10$         | DM37_1          |
| 1   | 2708462         | 2412261         | 2362396         | 1918923         | 3172928         | 2086981         | 2623282         | 2523915         | 2165169         | 4018509         |
| 2   | 256550          | 266335          | 274435          | 289067          | 281588          | 311395          | 307710          | 281386          | 290764          | 188420          |
| 3   | 1712749         | 764497          | 1005760         | 871679          | 1025001         | 3032552         | 1130563         | 1041990         | 1061805         | 1753702         |
| 4   | 1655139         | 2037812         | 2141117         | 2105615         | 1581563         | 2041459         | 2037873         | 1774785         | 1942250         | 1436935         |
| 5   | 1214920         | 8805            | 1617124         | 1559346         | 2440            | 4296            | 7715            | 3129            | 2344            | 1100713         |
| 9   | 776             | 187             | 503             | 1167            | 572             | 363             | 799             | 368             | 481             | 1700            |
| 7   | 974886          | 28899           | 1444            | 18843           | 80701           | 383127          | 4830            | 1057            | 15169           | 906730          |
| 8   | 3222812         | 3692815         | 4380395         | 4069903         | 1019            | 4413159         | 4112863         | 4135976         | 4483402         | 3065282         |
| 6   | 24070           | 3684556         | 4577152         | 4287735         | 4068193         | 20794           | 50644           | 4360551         | 4716830         | 59851           |
| 10  | 1034447         | 1230913         | 1120072         | 1058141         | 21139           | 1055762         | 966475          | 985383          | 1101986         | 892788          |
| 11  | 30053           | 26985           | 26982           | 34043           | 32550           | 27210           | 30308           | 28040           | 23902           | 47038           |
| 12  | 18376           | 20719           | 19443           | 18049           | 25982           | 16193           | 21897           | 14745           | 16163           | 23460           |
| 13  | 78522           | 17903           | 12647           | 8038            | 5432            | 4417            | 1835            | 13258           | 20428           | 7239            |
| 14  | 75944           | 95353           | 37790           | 98019           | 72588           | 76402           | 54879           | 5223            | 60004           | 53583           |
| 15  | 54569           | 65667           | 65575           | 57812           | 54207           | 63995           | 64391           | 49291           | 45408           | 27455           |
| 16  | 4696            | 3067            | 2794            | 1929            | 2201            | 3905            | 2514            | 2809            | 2716            | 916             |
| 17  | 4467            | 4638            | 20709           | 3706            | 17259           | 1231            | 4142            | 6775            | 3950            | 1377            |
| 18  | 21676           | 22199           | 20839           | 19001           | 17800           | 15314           | 16871           | 16426           | 15993           | 43110           |
| 19  | 10682           | 7574            | 7364            | 14986           | 8015            | 5185            | 7080            | 7299            | 3164            | 17060           |
| 20  | 10373           | 10318           | 9523            | 8905            | 7917            | 8739            | 8884            | 6511            | 7687            | 5758            |
| 21  | 14334           | 13979           | 15289           | 20614           | 10443           | 11051           | 12229           | 12571           | 13060           | 12174           |
| 22  | 36639           | 41640           | 34780           | 31957           | 35404           | 34605           | 43638           | 32182           | 24557           | 61616           |
| 23  | 88108           | 89256           | 88405           | 89788           | 83334           | 80676           | 80906           | 60267           | 61065           | 48614           |
| 24  | 814             | 1650            | 1772            | 3135            | 1037            | 2239            | 564             | 989             | 1097            | 2149            |
| 25  | 9128            | 6720            | 7705            | 8268            | 0969            | 7208            | 5945            | 3863            | 6534            | 5456            |
| 26  | 6993            | 8256            | 6218            | 6775            | 7664            | 7862            | 7139            | 5747            | 4595            | 6847            |
| 27  | 2085            | 2210            | 2793            | 3230            | 2307            | 377             | 3003            | 1351            | 1819            | 2670            |
| 28  | 6362            | 4123            | 5359            | 5124            | 3780            | 5755            | 4773            | 2801            | 3157            | 5375            |

## Sheet 35 of 50

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | RB_2            | RB_3            | RB_4            | RB_5            | RB_6            | RB_7            | RB_8            | RB_9            | RB_10           | DM37_1          |
| 29  | 76541           | 78028           | 73176           | 70903           | 67333           | 62762           | 68360           | 60585           | 60701           | 47307           |
| 30  | 50729           | 56117           | 47457           | 50405           | 46996           | 36796           | 43458           | 37141           | 32868           | 37805           |
| 31  | 30478           | 32185           | 37534           | 32349           | 27694           | 31030           | 28734           | 23791           | 31975           | 11378           |
| 32  | 5885            | 7367            | 6727            | 9124            | 6247            | 5606            | 6938            | 6932            | 3351            | 5980            |
| 33  | 103154          | 80929           | 81067           | 60510           | 84398           | 58660           | 68075           | 58405           | 55717           | 63291           |
| 34  | 1075            | 2163            | 388             | 1257            | 1502            | 1509            | 695             | 597             | 312             | 123             |
| 35  | 19263           | 16806           | 19224           | 15686           | 17150           | 14267           | 16467           | 11933           | 14945           | 7648            |
| 36  | 495             | 635             | 129             | 232             | 120             | 364             | 447             | 481             | 224             | 16000           |
| 37  | 2950            | 2684            | 1116            | 4267            | 2116            | 1688            | 1996            | 682             | 1663            | 2046            |
| 38  | 3454            | 983             | 1099            | 64              | 60              | 265             | 234             | 187             | 68              | 18885           |
| 39  | 19467           | 22080           | 16144           | 17484           | 17336           | 23066           | 21088           | 15562           | 9822            | 10627           |
| 40  | 429             | 66              | 326             | 0               | 0               | 32              | 26              | 140             | 93              | 235             |
| 41  | 13334           | 24341           | 24518           | 21414           | 20339           | 18106           | 17476           | 12124           | 15590           | 23566           |
| 42  | 8286            | 3761            | 4676            | 5213            | 3577            | 5633            | 7722            | 5431            | 3538            | 6145            |
| 43  | 26007           | 20569           | 16816           | 21991           | 21033           | 30300           | 23490           | 18519           | 15099           | 43296           |
| 44  | 2223            | 1100            | 3304            | 440             | 1808            | 1440            | 1072            | 287             | 852             | 725             |
| 45  | 792104          | 872065          | 480768          | 672157          | 717624          | 3129020         | 1197862         | 599584          | 617694          | 632882          |
| 46  | 55121           | 70775           | 48358           | ŝ               | 65334           | 79093           | 84186           | 51848           | 56679           | 65896           |
| 47  | 115258          | 127619          | 92336           | 115990          | 109730          | 142173          | 145155          | 97784           | 107328          | 113737          |
| 48  | 208217          | 251939          | 140441          | 228262          | 207873          | 744621          | 338188          | 185779          | 212365          | 185588          |

Sheet 36 of 50

| -           |  |
|-------------|--|
| Table       |  |
| pplementary |  |
| S           |  |

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | DM37_2          | DM37_3          | DM37_4          | DM37_5          | DM37_6          | DM37_7          | DM37_8          | DM37_9          | DM37_10         | DMB_1           |
| 1   | 4008800         | 2897400         | 4052700         | 3572777         | 3043700         | 4341017         | 3000017         | 3538730         | 3260200         | 3393176         |
| 2   | 180514          | 236235          | 204246          | 189978          | 181344          | 222001          | 215104          | 198107          | 179968          | 235922          |
| 3   | 553101          | 615630          | 535411          | 1392134         | 520818          | 569664          | 552791          | 611648          | 451043          | 657302          |
| 4   | 1347679         | 2063330         | 621849          | 1393251         | 1235522         | 762600          | 910164          | 1628456         | 1041742         | 573059          |
| 5   | 128421          | 56791           | 56959           | 1093782         | 51795           | 50917           | 11105           | 8828            | 7322            | 395810          |
| 9   | 7496            | 413             | 5638            | 489             | 3702            | 2884            | 2993            | 329             | 349             | 2158            |
| 7   | 69143           | 41273           | 42947           | 827597          | 38594           | 6698            | 44398           | 12305           | 34475           | 170678          |
| 8   | 3213            | 967             | 3590            | 4127900         | 192             | 4514            | 455             | 4762205         | 4852964         | 1165            |
| 6   | 4275752         | 5334418         | 4536949         | 23450           | 4560682         | 4683470         | 5840180         | 4885695         | 5142716         | 8664            |
| 10  | 25557           | 8589            | 8498            | 854280          | 15217           | 12788           | 7351            | 879428          | 1077521         | 35661           |
| 11  | 58988           | 41085           | 51441           | 44530           | 39516           | 50858           | 38545           | 43725           | 31152           | 106259          |
| 12  | 39854           | 25066           | 17987           | 18456           | 15218           | 19368           | 13623           | 22177           | 12382           | 104552          |
| 13  | 3814            | 22440           | 3365            | 9714            | 1161            | 1972            | 1690            | 24028           | 0               | 34433           |
| 14  | 82595           | 76271           | 42089           | 31152           | 37837           | 62601           | 27113           | 47258           | 26713           | 83259           |
| 15  | 45217           | 33507           | 22952           | 19756           | 18676           | 19795           | 24317           | 20503           | 21709           | 150433          |
| 16  | 3956            | 2429            | 1917            | 1960            | 305             | 2633            | 2021            | 861             | 1953            | 7521            |
| 17  | 15570           | 12848           | 14775           | 2679            | 1927            | 11647           | 14988           | 6417            | 5457            | 2251            |
| 18  | 57079           | 35774           | 38757           | 41915           | 28515           | 37119           | 26180           | 42209           | 25372           | 94957           |
| 19  | 25963           | 12176           | 15642           | 19400           | 14424           | 19439           | 9961            | 17333           | 9438            | 74455           |
| 20  | 7375            | 6001            | 5556            | 5184            | 5001            | 6592            | 4543            | 3666            | 6063            | 29101           |
| 21  | 16771           | 13854           | 11593           | 8006            | 8227            | 8081            | 13286           | 9550            | 4733            | 47848           |
| 22  | 106828          | 60989           | 54394           | 64934           | 36290           | 50866           | 25706           | 54922           | 25355           | 328406          |
| 23  | 58072           | 54653           | 37468           | 44363           | 36388           | 39677           | 35117           | 36339           | 25855           | 175584          |
| 24  | 8056            | 3334            | 3404            | 3874            | 1495            | 2689            | 237             | 5641            | 2825            | 6688            |
| 25  | 5017            | 3075            | 3524            | 4049            | 3351            | 4831            | 3059            | 3059            | 4475            | 19167           |
| 26  | 11531           | 5170            | 3734            | 4889            | 4268            | 4815            | 3313            | 4042            | 2129            | 44724           |
| 27  | 3807            | 3249            | 1723            | 710             | 1084            | 1865            | 942             | 51              | 1389            | 7984            |
| 28  | 6847            | 5288            | 4539            | 3575            | 3677            | 3738            | 3793            | 3471            | 3340            | 19936           |

Sheet 37 of 50
| Table         |  |
|---------------|--|
| Supplementary |  |

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | DM37_2          | DM37_3          | DM37_4          | DM37_5          | DM37_6          | DM37_7          | DM37_8          | DM37_9          | DM37_10         | DMB_1           |
| 29  | 42607           | 57713           | 32937           | 33054           | 28601           | 26932           | 27763           | 36423           | 21278           | 145225          |
| 30  | 43287           | 38470           | 45481           | 30656           | 36439           | 41678           | 28175           | 26591           | . 26658         | 114205          |
| 31  | 20399           | 10828           | 12302           | 9152            | 11489           | 17959           | 7999            | 7770            | 27560           | 62584           |
| 32  | 9140            | 7277            | 6692            | 7656            | 5313            | 6215            | 2292            | 4479            | 4025            | 41153           |
| 33  | 3 77597         | 46362           | 55641           | 45452           | 39205           | 54618           | 26365           | 32364           | 40305           | 87521           |
| 34  | 922             | 954             | 1196            | 1564            | 1451            | 597             | 482             | 585             | 100             | 6857            |
| 35  | 8946            | 7774            | 9169            | 5458            | 3667            | 4993            | 5152            | 5147            | 5370            | 57508           |
| 36  | 9515            | 8898            | 10971           | 10198           | 7252            | 9553            | 8632            | 5984            | 3274            | 48851           |
| 37  | 1833            | 1369            | 1291            | 2437            | 587             | 918             | 1009            | 807             | 1729            | 3946            |
| 38  | 15201           | 15116           | 8491            | 6788            | 5902            | 2574            | 1323            | 2180            | 1136            | 29303           |
| 39  | 20741           | 11719           | 11619           | 13736           | 10012           | 10938           | 3608            | 6754            | 8464            | 119093          |
| 40  | 723             | 441             | 459             | 57              | 148             | 181             | 0               | 0               | 0               | 2899            |
| 41  | 34876           | 25236           | 18556           | 20540           | 17913           | 15853           | 11609           | 17445           | 11385           | 38499           |
| 42  | 8670            | 6923            | 4651            | 4987            | 3579            | 3603            | 3154            | 4122            | 6512            | 24151           |
| 43  | 53201           | 54907           | 24170           | 31058           | 33266           | 24761           | 36023           | 36595           | 20977           | 55511           |
| 44  | 1400            | 1791            | 1363            | 1469            | 1962            | 1341            | 405             | 926             | 314             | 3878            |
| 45  | 1499126         | 1135815         | 492999          | 469399          | 761374          | 438878          | 510590          | 751808          | 805695          | 2740259         |
| 46  | 150611          | 117216          | 63986           | 63476           | 91298           | 61009           | 64541           | 82257           | 89128           | 122046          |
| 47  | 274816          | 230873          | 113022          | 115458          | 173887          | 99824           | 120991          | 161755          | 163132          | 217060          |
| 48  | 497778          | 412183          | 199163          | 172335          | 367553          | 176027          | 204198          | 359563          | 381927          | 571712          |

| -      |
|--------|
| e      |
| ab     |
| Γ<br>Γ |
| tar    |
| eu     |
| E      |
| ble    |
| dh     |
| S      |

|        | black non-aroma |
|--------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|        | Sample          |
|        |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No.    | DMB_2           | DMB_3           | DMB_4           | DMB_5           | DMB_6           | DMB_7           | DMB_8           | DMB_9           | DMB_10          | JHN_1           |
|        | 4551772         | 4565108         | 2995499         | 3812988         | 5187883         | 3199767         | 4457858         | 3336827         | 2733840         | 2754393         |
|        | 209548          | 225475          | 228843          | 217662          | 208012          | 225428          | 271612          | 180501          | 206861          | 232637          |
| m      | 589753          | 702775          | 641291          | 742982          | 746683          | 769380          | 833650          | 613741          | 775663          | 823038          |
| 4      | 1304200         | 611720          | 1175132         | 1207614         | 563414          | 594919          | 749209          | 692978          | 689973          | 2463162         |
| 2<br>2 | 293795          | 425098          | 378449          | 472310          | 298974          | 1532            | 433951          | 430066          | 298188          | 1860129         |
| 9      | 1570            | 3328            | 2820            | 820             | 3022            | 3833            | 5408            | 2543            | 186             | 1494            |
| -      | 60009           | 86887           | 6643            | 55324           | 62582           | 61009           | 62515           | 53031           | 32450           | 104136          |
| ∞      | 749             | 1957            | 62              | 1238            | 1379            | 1298            | 2580            | 3787            | 835             | 5034966         |
| 5      | 5019086         | 157             | 5578301         | 3368            | 5544547         | 25077           | 6962779         | 5969930         | 6592847         | 5378198         |
| 10     | 57952           | 73536           | 40150           | 20893           | 21904           | 17857           | 17313           | 41888           | 16310           | 69972           |
| 11     | 54213           | 69289           | 52735           | 44528           | 57495           | 41910           | 54608           | 37753           | 35029           | 76101           |
| 12     | 38292           | 57138           | 27739           | 27079           | 39110           | 24013           | 39416           | 21109           | 19608           | 90367           |
| 13     | 2385            | 2023            | 3163            | 5913            | 4517            | 1953            | 10520           | 2041            | 3917            | 78167           |
| 14     | 57675           | 62078           | 78012           | 34492           | 26536           | 71658           | 86567           | 38121           | 54509           | 94059           |
| 15     | 48900           | 50174           | 45665           | 43029           | 56526           | 49915           | 63192           | 37070           | 40269           | 141474          |
| 16     | 1958            | 3631            | 1753            | 2725            | 3195            | 2673            | 3474            | 1838            | 1406            | 3643            |
| 17     | 4617            | 4152            | 5203            | 3225            | 11697           | 569             | 1248            | 1085            | 1778            | 10463           |
| 18     | 42289           | 42538           | 59001           | 34349           | 31933           | 24900           | 51139           | 25336           | 17751           | 90712           |
| 19     | 17986           | 28758           | 17021           | 10117           | 22712           | 13899           | 16595           | 11540           | 9728            | 34661           |
| 20     | 6812            | 9917            | 5612            | 5669            | 6144            | 5412            | 7206            | 5595            | 4174            | 26161           |
| 21     | 13583           | 15095           | 22748           | 16253           | 13438           | 10687           | 15225           | 10168           | 9433            | 27069           |
| 22     | 91271           | 120307          | 61691           | 63064           | 82160           | 58746           | 66604           | 52781           | 43958           | 306955          |
| 23     | 57852           | 59628           | 55796           | 55282           | 46481           | 47171           | 53842           | 33602           | 39060           | 157954          |
| 24     | 3502            | 6444            | 5083            | 2194            | 4267            | 2266            | 2648            | 2743            | 2251            | 13370           |
| 25     | 6405            | 7536            | 4869            | 5598            | 2825            | 5873            | 7875            | 3422            | 4358            | 13986           |
| 26     | 8877            | 11136           | 5745            | 8410            | 8179            | 7306            | 7291            | 5986            | 3967            | 23674           |
| 27     | 3343            | 2934            | 1687            | 3899            | 2979            | 3332            | 2475            | 324             | 2000            | 7044            |
| 28     | 7914            | 10319           | 5968            | 5298            | 5168            | 5911            | 5407            | 5132            | 5934            | 14032           |

Sheet 39 of 50

| Table         |  |
|---------------|--|
| Supplementary |  |

-

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | DMB_2           | DMB_3           | DMB_4           | DMB_5           | DMB_6           | DMB_7           | DMB_8           | DMB_9           | DMB_10          | JHN_1           |
| 25  | 55740           | 56233           | 53900           | 50094           | 40735           | 44266           | 50742           | 38625           | 36595           | 119506          |
| 30  | 43896           | 56905           | 37652           | 32393           | 43981           | 33786           | 39000           | 23959           | 24680           | 38260           |
| 31  | 17115           | 26240           | 10757           | 10545           | 19330           | 14156           | 17015           | 14339           | 13270           | 53620           |
| 32  | 9193            | 9040            | 6479            | 7317            | 7970            | 8091            | 4707            | 5405            | 3509            | 26701           |
| 33  | 87386           | 41237           | 50588           | 17867           | 76899           | 29180           | 48545           | 18465           | 19396           | 93385           |
| 34  | 2496            | 1902            | 1600            | 962             | 1276            | 1242            | 1307            | 1334            | 624             | 3387            |
| 35  | 14912           | 15901           | 6313            | 7490            | 10951           | 8797            | 9500            | 9772            | 9974            | 44363           |
| 36  | 11830           | 11940           | 8481            | 8535            | 8306            | 7872            | 7162            | 5867            | 5135            | 27513           |
| 37  | 894             | 2000            | 491             | 979             | 494             | 2106            | 1536            | 367             | 1133            | 3570            |
| 38  | 7902            | 11941           | 5952            | 3527            | 1751            | 6842            | 2786            | 1337            | 1915            | 9781            |
| 35  | 21078           | 28894           | 10672           | 17610           | 16983           | 19015           | 10256           | 14830           | 11174           | 29340           |
| 40  | 481             | 196             | 0               | 0               | 397             | 0               | 177             | 116             | 216             | 2425            |
| 41  | 22900           | 24477           | 23273           | 23872           | 20832           | 22757           | 21718           | 17627           | 17647           | 38331           |
| 42  | 7813            | 6756            | 3223            | 5016            | 5579            | 4564            | 2306            | 3869            | 3842            | 8741            |
| 43  | 27132           | 34835           | 16814           | 19014           | 25347           | 21136           | 18791           | 16692           | 19790           | 34932           |
| 44  | 3328            | 1276            | 1582            | 1657            | 364             | 2400            | 1434            | 414             | 391             | 3784            |
| 45  | 551252          | 1402107         | 385191          | 431977          | 1151358         | 1016349         | 413870          | 504315          | 540472          | 768958          |
| 46  | 42319           | 96631           | 42704           | 50001           | 91781           | 84766           | 36358           | 59851           | 61872           | 40011           |
| 47  | 89368           | 192827          | 77594           | 92249           | 178954          | 179806          | 76719           | 115879          | 106319          | 79276           |
| 48  | 15334           | <b>434788</b>   | 115208          | 154439          | 417457          | 471139          | 17/773          | 719367          | 766757          | 140076          |

Sheet 40 of 50

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| No. | JHN_2           | JHN_3           | JHN_4           | JHN_5           | JHN_6           | 7_NHL           | JHN_8           | 9_NHL           | JHN_10          | MNF_1           |
| 1   | 2568401         | 2060376         | 2305573         | 2647789         | 2120272         | 2488511         | 2671351         | 2429565         | 1264691         | 3537904         |
| 2   | 285023          | 251276          | 281430          | 295982          | 267147          | 304773          | 284892          | 266919          | 234454          | 170674          |
| ŝ   | 896945          | 1003494         | 1114178         | 1161634         | 1254249         | 1322948         | 1212775         | 2874422         | 2305810         | 454932          |
| 4   | 2511158         | 2521941         | 2937583         | 3054118         | 2551961         | 2625038         | 2648753         | 2442635         | 1931477         | 1364863         |
| 2   | 22287           | 1960014         | 20748           | 19064           | 19905           | 5009            | 5271            | 3231            | 2657            | 1008623         |
| 9   | 460             | 548             | 1419            | 2117            | 858             | 221             | 666             | 333             | 536             | 76              |
| 7   | 14856           | 4223            | 20360           | 53376           | 1479            | 15983           | 6409            | 499707          | 1148800         | 39508           |
| 8   | 4772100         | 5410706         | 4749424         | 59905           | 5305709         | 5683604         | 5721695         | 6143479         | 5887718         | 51974           |
| 6   | 5047611         | 5507341         | 4755291         | 5983546         | 5269139         | 5852647         | 5913367         | 23701           | 20012           | 4915047         |
| 10  | 1446488         | 1328613         | 1477018         | 1493045         | 1388040         | 1517881         | 1623688         | 1466873         | 1322948         | 28616           |
| 11  | 60788           | 38821           | 46278           | 50738           | 37221           | 35645           | 39558           | 917             | 29079           | 37427           |
| 12  | 57172           | 29760           | 35771           | 48820           | 34298           | 30982           | 43801           | 32432           | 22876           | 25537           |
| 13  | 64899           | 122578          | 98857           | 64834           | 47454           | 43131           | 39548           | 32068           | 134454          | 41314           |
| 14  | 72684           | 39247           | 72120           | 79355           | 62832           | 61425           | 55896           | 50151           | 57353           | 40198           |
| 15  | 91788           | 85331           | 81221           | 102152          | 127501          | 74911           | 78164           | 67568           | 72115           | 50333           |
| 16  | 2370            | 3922            | 2680            | 5586            | 4651            | 4495            | 3364            | 4066            | 1566            | 4606            |
| 17  | 3727            | 3319            | 1759            | 5441            | 1416            | 1266            | 1612            | 2985            | 2506            | 3597            |
| 18  | 63315           | 33782           | 46830           | 42599           | 33224           | 20848           | 26932           | 25164           | 21961           | 37961           |
| 19  | 19281           | 18136           | 9235            | 13878           | 8992            | 5665            | 14153           | 12592           | 8512            | 12033           |
| 20  | 17934           | 12403           | 15419           | 12930           | 11309           | 8564            | 10574           | 9112            | 10420           | 6188            |
| 21  | 23215           | 18529           | 28424           | 20964           | 16019           | 20230           | 14755           | 10726           | 7000            | 12965           |
| 22  | 304204          | 105141          | 122949          | 154219          | 110564          | 90273           | 101243          | 88700           | 49908           | 121871          |
| 23  | 95874           | 87210           | 94253           | 111027          | 85104           | 80831           | 82620           | 67488           | 51651           | 49917           |
| 24  | 13055           | 3876            | 6472            | 1970            | 8918            | 5293            | 5153            | 2112            | 4081            | 4598            |
| 25  | 8432            | 6734            | 9059            | 7871            | 6948            | 6306            | 6303            | 5010            | 6105            | 6058            |
| 26  | 19643           | 7115            | 9993            | 14075           | 11377           | 10948           | 7874            | 7407            | 5399            | 11527           |
| 27  | 6494            | 2667            | 4405            | 568             | 4249            | 3660            | 2741            | 3150            | 481             | 3278            |
| 28  | 8217            | 11045           | 10690           | 7159            | 7148            | 5352            | 4416            | 2825            | 5987            | 9575            |

Sheet 41 of 50

|     | black non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|     | Sample          |
|     | -               | -               | _               | -               | -               | -               | -               |                 | -               |                 |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |                 |
| lo. | JHN_2           | JHN_3           | JHN_4           | JHN_5           | JHN_6           | 7_NHL           | JHN_8           | 6_NHL           | JHN_10          | MNF_1           |
| 29  | 105510          | 93006           | 116132          | 132391          | 88750           | 91212           | 87992           | 78971           | 68029           | 3902/           |
| 30  | 62102           | 41663           | 41588           | 57105           | 37110           | 43980           | 43438           | 36451           | 31884           | 34466           |
| 31  | 42213           | 22098           | 43178           | 34451           | 20910           | 25257           | 22992           | 20011           | 26371           | 2114]           |
| 32  | 24994           | 10931           | 11538           | 16827           | 11020           | 10503           | 9175            | 8723            | 5610            | 8573            |
| 33  | 84211           | 44977           | 59631           | 84909           | 49557           | 56104           | 51267           | 32450           | 10463           | 74790           |
| 34  | 2086            | 2476            | 1703            | 1135            | 1454            | 2188            | 1890            | 1516            | 1048            | 169/            |
| 35  | 45606           | 31030           | 35321           | 36696           | 26975           | 34556           | 20410           | 2248C           | 15687           | 32334           |
| 36  | 15471           | 12721           | 12114           | 13018           | 12582           | 8980            | 8933            | 5640            | 4005            | 16052           |
| 37  | 3303            | 2637            | 3259            | 3319            | 2153            | 2757            | 2333            | 1591            | 1037            | 134(            |
| 38  | 6195            | 3324            | 2168            | 1529            | 1795            | 1948            | 1522            | 625             | 99 99           | 1039/           |
| 39  | 26268           | 11762           | 15621           | 17707           | 14870           | 14017           | 11352           | 9856            | 8266            | 23070           |
| 40  | 839             | 850             | 1298            | 350             | 757             | 397             | 558             | 33              | 3 226           | 408             |
| 41  | 38655           | 26288           | 30206           | 33838           | 25812           | 24456           | 23861           | 23175           | 18637           | 1350/           |
| 42  | 9441            | 9251            | 6198            | 5656            | 2117            | 6176            | 6015            | 8822            | 7464            | 8774            |
| 43  | 30835           | 49378           | 24177           | 30142           | 32455           | 58040           | 75877           | 35461           | 24506           | 27416           |
| 44  | 3765            | 3129            | 414             | 1650            | 1097            | 964             | 652             | 569             | 9 404           | 1688            |
| 45  | 951297          | 549971          | 438927          | 1392771         | 1419556         | 1557585         | 2790655         | 1385982         | 250338          | 834469          |
| 46  | 68398           | 51040           | 49066           | 80765           | 98374           | 109733          | 151906          | 100685          | 34465           | 7406/           |
| 47  | 135561          | 93041           | 79354           | 155072          | 176971          | 186880          | 287034          | 187616          | 56689           | 144405          |
| 48  | 246728          | 154066          | 136571          | 370411          | 423701          | 425989          | 735226          | 424354          | t 89709         | 263401          |

### Sheet 43 of 50

| ed non-aroma       | ample    | NUBY 1 | 2195986 | 161649 | 420306  | 1226243 | 7528    | 1620 | 59544   | 3718825 | 3977094 | 883926  | 71726 | 36482 | 1944  | 21386 | 78326 | 2169 | 21192 | 71923 | 2220  | 15750 | 21066 | 110046 | 148143 | 2851 | 13887 | 12118 | 2767 | 8468 |
|--------------------|----------|--------|---------|--------|---------|---------|---------|------|---------|---------|---------|---------|-------|-------|-------|-------|-------|------|-------|-------|-------|-------|-------|--------|--------|------|-------|-------|------|------|
| ack non-aroma      | ample S  | 1NF 10 | 1607848 | 196871 | 559781  | 1176421 | 14576   | 3105 | 6063    | 1802    | 6135219 | 35475   | 24415 | 12204 | 36248 | 32981 | 40196 | 1711 | 1155  | 19950 | 7651  | 3953  | 8837  | 26423  | 33785  | 1620 | 5279  | 2843  | 1289 | 2850 |
| ack non-aroma bl   | ample Si | INF 9  | 2396700 | 211546 | 666839  | 758805  | 21066   | 2656 | 51761   | 2076    | 6467308 | 22118   | 26831 | 17277 | 1446  | 21126 | 40452 | 638  | 9792  | 20823 | 6605  | 4510  | 7091  | 37515  | 40033  | 932  | 4607  | 4972  | 580  | 3628 |
| ack non-aroma bl   | ample S  | INF 8  | 1621070 | 171816 | 1365772 | 1169755 | 1973    | 736  | 1008573 | 5025026 | 1056    | 1145880 | 22420 | 11596 | 22516 | 36628 | 39967 | 1091 | 873   | 21316 | 9455  | 4003  | 8055  | 33337  | 31816  | 1714 | 4161  | 4513  | 1887 | 2918 |
| ack non-aroma bl   | ample Si | INF 7  | 1621257 | 178741 | 575085  | 1483153 | 1092272 | 145  | 37138   | 0       | 6147398 | 39243   | 31735 | 13527 | 30639 | 28728 | 47938 | 1355 | 702   | 30295 | 7488  | 5882  | 8481  | 33455  | 39407  | 1369 | 5721  | 4393  | 629  | 4908 |
| ack non-aroma bl   | ample Si | 1NF 6  | 3306723 | 191868 | 610164  | 993803  | 23631   | 3825 | 26562   | 1730    | 5478091 | 15772   | 32757 | 18855 | 1872  | 27408 | 37477 | 3412 | 6249  | 24250 | 9549  | 6331  | 9032  | 41588  | 42017  | 2058 | 4356  | 5790  | 363  | 5090 |
| ack non-aroma bl   | ample Si | 1NF 5  | 2372607 | 184893 | 580180  | 1198420 | 6312    | 555  | 35238   | 753     | 5851977 | 47368   | 29324 | 16055 | 47043 | 21221 | 49488 | 2151 | 2314  | 27797 | 8084  | 4878  | 11678 | 55186  | 41706  | 1471 | 6209  | 7515  | 1315 | 4664 |
| ack non-aroma bl   | ample Si | 1NF 4  | 3278842 | 204864 | 669932  | 627627  | 443205  | 3375 | 59949   | 1400    | 5308659 | 21438   | 35487 | 21025 | 2894  | 17888 | 48144 | 3769 | 6452  | 28740 | 8940  | 9609  | 10975 | 64166  | 43980  | 1554 | 4657  | 8055  | 2918 | 4361 |
| ick non-aroma bla  | ample Sa | INF 3  | 2156496 | 184509 | 568370  | 711682  | 30977   | 4228 | 43643   | 1004    | 4768831 | 14666   | 29933 | 17041 | 3360  | 45764 | 41535 | 1652 | 8971  | 30480 | 7262  | 6083  | 12008 | 54994  | 46607  | 4008 | 3244  | 6048  | 2385 | 6128 |
| lack non-aroma bla | ample St | ANF 2  | 2533720 | 204277 | 551834  | 1064310 | 29350   | 1755 | 27138   | 254     | 5763820 | 11674   | 34646 | 17337 | 3586  | 34289 | 46116 | 2400 | 5339  | 32295 | 11203 | 5330  | 13118 | 63002  | 51305  | 2816 | 3087  | 7996  | 3179 | 7680 |
| 19                 | S        | °<br>N | 1       | 2      | m       | 4       | 5       | 9    | 7       | ∞       | 6       | 10      | 11    | 12    | 13    | 14    | 15    | 16   | 17    | 18    | 19    | 20    | 21    | 22     | 23     | 24   | 25    | 26    | 27   | 28   |

# Supplementary Table 1

|     | black non-aroma | red non-aroma |
|-----|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|---------------|
|     | Sample          | Sample        |
|     |                 |                 |                 |                 |                 |                 |                 |                 |                 |               |
| No. | MNF_2           | MNF_3           | MNF_4           | MNF_5           | MNF_6           | MNF_7           | MNF_8           | MNF_9           | MNF_10          | RUBY_1        |
| 29  | 36741           | 40137           | 42043           | 38496           | 41211           | 36387           | 31257           | 30386           | 31689           | 79827         |
| 30  | 44015           | 27715           | 34871           | 29042           | 28518           | 31129           | 22351           | 28106           | 24536           | 3146          |
| 31  | 12931           | 10698           | 19246           | 18706           | 17995           | 16910           | 13254           | 15210           | 16741           | 43628         |
| 32  | 6716            | 4647            | 7347            | 5573            | 4178            | 3241            | 3809            | 3895            | 3135            | 9940          |
| 33  | 31825           | 29335           | 62178           | 25654           | 56300           | 22716           | 19812           | 39814           | 6944            | 53582         |
| 34  | 1963            | 1563            | 714             | 1595            | 1439            | 574             | 588             | 746             | 686             | 2932          |
| 35  | 20788           | 19051           | 19489           | 15630           | 16557           | 15329           | 8758            | 16917           | 14237           | 38756         |
| 36  | 8612            | 9256            | 9454            | 6062            | 7225            | 6495            | 4818            | 5540            | 3622            | 16407         |
| 37  | 1546            | 1261            | 1247            | 1378            | 2179            | 066             | 529             | 328             | 804             | 6111          |
| 38  | 5102            | 2917            | 1756            | 1779            | 1986            | 778             | 470             | 73              | 526             | 22145         |
| 39  | 15574           | 9704            | 15241           | 14866           | 15529           | 9413            | 8921            | 13442           | 10045           | 16998         |
| 40  | 216             | 182             | 123             | 120             | 36              | 34              | 0               | 197             | 0               | 4731          |
| 41  | 11192           | 10332           | 10856           | 11000           | 8894            | 9448            | 8434            | 8701            | 10907           | 43949         |
| 42  | 6107            | 3951            | 5442            | 5003            | 5114            | 1951            | 3288            | 5168            | 4589            | 9012          |
| 43  | 13199           | 16799           | 19494           | 16485           | 20804           | 13816           | 12887           | 13912           | 15266           | 15602         |
| 44  | 1919            | 937             | 2971            | 1131            | 434             | 479             | 988             | 343             | 1016            | 4587          |
| 45  | 312766          | 392824          | 643599          | 468013          | 780767          | 341550          | 318020          | 393865          | 430240          | 292998        |
| 46  | 37695           | 52452           | 59030           | 60359           | 82371           | 43358           | 45830           | 53154           | 56158           | 19301         |
| 47  | 65229           | 96230           | 100872          | 108935          | 148322          | 83342           | 81007           | 96324           | 107835          | 31234         |
| 48  | 96687           | 173828          | 208882          | 186383          | 359040          | 133593          | 137305          | 185457          | 201362          | 38754         |

| -             |  |
|---------------|--|
| Table         |  |
| Supplementary |  |

|     | red non-aroma |
|-----|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|     | Sample        |
|     |               |               |               |               |               |               |               |               |               |               |               |
| No. | RUBY_2        | RUBY_3        | RUBY_4        | RUBY_5        | RUBY_6        | RUBY_7        | RUBY_8        | RUBY_9        | RUBY_10       | UP417_1       | UP417_2       |
| 1   | 2076050       | 3074789       | 1996961       | 2434571       | 2307104       | 2041732       | 2894333       | 2371332       | 1534293       | 2506313       | 3142979       |
| 2   | 202041        | 194973        | 242300        | 215669        | 211567        | 251930        | 224406        | 193068        | 189267        | 275207        | 259299        |
| ŝ   | 377217        | 480223        | 599973        | 549551        | 527630        | 610925        | 586823        | 539773        | 537057        | 1048812       | 852553        |
| 4   | 1042676       | 714888        | 1143151       | 737583        | 1251174       | 757764        | 1166127       | 991585        | 889822        | 2017217       | 1760746       |
| 5   | 18214         | 510605        | 28829         | 543766        | 7834          | 26446         | 13096         | 4111          | 4698          | 78637         | 49709         |
| 9   | 828           | 3532          | 581           | 4005          | 496           | 188           | 1008          | 194           | 233           | 926           | 1850          |
| 7   | 38988         | 53652         | 50802         | 56915         | 55917         | 44476         | 66189         | 9989          | 2009          | 152394        | 74271         |
| 8   | 5263          | 1487          | 924           | 244           | 7379          | 489           | 868           | 3842651       | 4463220       | 5188230       | 2999855       |
| 6   | 3385483       | 2610228       | 4409725       | 3937605       | 4300783       | 4283490       | 4374400       | 4038396       | 4674485       | 5387305       | 3071430       |
| 10  | 10155         | 11919         | 18803         | 25448         | 733171        | 24372         | 6243          | 581476        | 751344        | 965485        | 4847          |
| 11  | 42292         | 44114         | 43060         | 52504         | 49112         | 40770         | 67890         | 43151         | 32768         | 94314         | 60001         |
| 12  | 18034         | 17381         | 16478         | 19335         | 14825         | 12108         | 27615         | 11670         | 9757          | 104428        | 59706         |
| 13  | 26542         | 1928          | 3548          | 35729         | 1670          | 4041          | 1396          | 9823          | 9185          | 44013         | 1028          |
| 14  | 12109         | 18505         | 21631         | 15230         | 12793         | 21287         | 18227         | 8413          | 18484         | 36296         | 9285          |
| 15  | 49697         | 32232         | 46397         | 33154         | 40347         | 39418         | 36761         | 32265         | 39879         | 176014        | 51566         |
| 16  | 1143          | 1324          | 1818          | 1942          | 1998          | 828           | 3492          | 1148          | 1261          | 4616          | 4336          |
| 17  | 27080         | 17993         | 21304         | 17780         | 19562         | 21597         | 22814         | 4857          | 4819          | 1888          | 15992         |
| 18  | 43300         | 31936         | 24853         | 50942         | 30110         | 22923         | 45578         | 25168         | 26353         | 69367         | 24302         |
| 19  | 17666         | 10876         | 10211         | 11024         | 11774         | 9673          | 14324         | 11960         | 7252          | 45433         | 20560         |
| 20  | 7670          | 5728          | 4602          | 4838          | 4957          | 5355          | 5908          | 3686          | 4549          | 36043         | 10140         |
| 21  | 4387          | 4346          | 4234          | 4704          | 4813          | 7602          | 2406          | 5510          | 5366          | 23470         | 8325          |
| 22  | 41335         | 40346         | 35776         | 44851         | 32275         | 25190         | 40696         | 30060         | 19179         | 244550        | 81280         |
| 23  | 76818         | 77076         | 81870         | 71297         | 73879         | 66336         | 71653         | 56463         | 50450         | 324774        | 121994        |
| 24  | 7503          | 4725          | 2874          | 3567          | 2873          | 1393          | 2997          | 1590          | 1916          | 7112          | 10802         |
| 25  | 6978          | 4933          | 5109          | 3973          | 4028          | 7015          | 4633          | 4757          | 2140          | 30198         | 8992          |
| 26  | 5875          | 4706          | 4733          | 5334          | 4232          | 3930          | 4662          | 2203          | 2684          | 35140         | 10083         |
| 27  | 2442          | 1643          | 2242          | 2412          | 3001          | 1213          | 605           | 2020          | 569           | 8326          | 3024          |
| 28  | 8873          | 6587          | 2904          | 2788          | 5306          | 5115          | 4931          | 4583          | 5051          | 15247         | 4679          |

Sheet 45 of 50

|     | red non-aroma |
|-----|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|
|     | Sample        |
|     |               |               |               |               |               |               |               |               |               |               |               |
| No. | RUBY_2        | RUBY_3        | RUBY_4        | RUBY_5        | RUBY_6        | RUBY_7        | RUBY_8        | RUBY_9        | RUBY_10       | UP417_1       | UP417_2       |
| 25  | 9 51248       | 38777         | 44019         | 38940         | 36926         | 36195         | 37195         | 34779         | 30427         | 200368        | 70124         |
| 30  | 1151          | 1265          | 1551          | 1605          | 584           | 910           | 957           | 61            | 60            | 2532          | 928           |
| 31  | 1 27494       | 14707         | 15238         | 19826         | 14448         | 22115         | 17894         | 16895         | 17328         | 158847        | 39714         |
| 32  | 2 5444        | 4508          | 4204          | 4871          | 4499          | 4678          | 3588          | 1908          | 3179          | 39449         | 8450          |
| 33  | 3 46531       | 79664         | 42105         | 57531         | 35726         | 39400         | 47139         | 40645         | 23740         | 99245         | 86947         |
| 34  | 1901          | 490           | 1168          | 651           | 733           | 1051          | 1655          | 556           | 1296          | 9796          | 3005          |
| 35  | 18841         | 10031         | 11533         | 12723         | 10157         | 14672         | 9183          | 12758         | 13535         | 104028        | 42260         |
| 36  | 5 6483        | 6363          | 4534          | 3977          | 5318          | 5395          | 5452          | 4300          | 3554          | 42055         | 14338         |
| 37  | 7 4186        | 3082          | 2728          | 2503          | 2259          | 2368          | 2437          | 1858          | 1557          | 9248          | 1915          |
| 38  | 3 16364       | 5314          | 2343          | 8841          | 6093          | 4050          | 4007          | 819           | 665           | 11181         | 3471          |
| 35  | 11770         | 8813          | 8209          | 8460          | 9380          | 8385          | 8067          | 7022          | 7673          | 95303         | 18012         |
| 40  | 1 4038        | 1487          | 1043          | 473           | 1193          | 1336          | 1189          | 1012          | 233           | 10663         | 868           |
| 41  | 1 33566       | 27118         | 19084         | 24956         | 21601         | 22646         | 24560         | 17856         | 13761         | 21558         | 9884          |
| 42  | 2 6531        | 4618          | 5924          | 4410          | 3473          | 3844          | 6744          | 2912          | 4731          | 21854         | 4640          |
| 43  | 3 14865       | 12536         | 15106         | 9634          | 9582          | 12217         | 14217         | 10333         | 8466          | 100895        | 40001         |
| 44  | 1 1578        | 1423          | 2883          | 1939          | 1871          | 3747          | 1594          | 1546          | 2045          | 9193          | 3784          |
| 45  | 280694        | 369920        | 287765        | 207566        | 134792        | 260969        | 324120        | 167874        | 102970        | 1715994       | 1194346       |
| 46  | 5 25979       | 27003         | 28483         | 18597         | 13604         | 27735         | 32889         | 18602         | 12515         | 73900         | 79376         |
| 47  | 45025         | 57232         | 48224         | 31278         | 27263         | 47498         | 54793         | 34551         | 19896         | 132365        | 170389        |
| 48  | 3 62697       | 73664         | 65993         | 38660         | 30868         | 70039         | 77926         | 41384         | 21873         | 271588        | 310708        |

Sheet 46 of 50

| 20  |
|-----|
| of  |
| 47  |
| eet |
| She |

| ÷             |  |
|---------------|--|
| Table         |  |
| Supplementary |  |

|          | red non-aroma |             |                 |
|----------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|-----------------|
|          | Sample        | Average     | Average         |
|          |               |               |               |               |               |               |               |               |             |                 |
| <u>o</u> | UP417_3       | UP417_4       | UP417_5       | UP417_6       | UP417_7       | UP417_8       | UP417_9       | UP417_10      | white aroma | black non-aroma |
| 1        | 2682052       | 2065312       | 2372714       | 3647755       | 2177107       | 3128140       | 3030200       | 2379412       | 2865296     | 3644634         |
| 2        | 272158        | 275515        | 290302        | 283485        | 299361        | 262775        | 241718        | 289836        | 155971      | 306922          |
| 3        | 1033569       | 878403        | 1742851       | 984184        | 984807        | 834274        | 823082        | 1022458       | 860160      | 1172016         |
| 4        | 1842996       | 1933412       | 1801358       | 1852317       | 2055234       | 1674610       | 1491599       | 1705128       | 1162670     | 1552671         |
| 2        | 10103         | 50000         | 31997         | 82245         | 1659909       | 32232         | 1189555       | 42625         | 276753      | 295246          |
| 9        | 343           | 320           | 1276          | 563           | 375           | 3207          | 866           | 348           | 1289        | 1710            |
| 7        | 21103         | 42450         | 760367        | 80482         | 80948         | 36884         | 19200         | 16249         | 120455      | 152079          |
| 8        | 3460880       | 3615497       | 4246593       | 951           | 10019         | 3506049       | 3820291       | 4660019       | 2343975     | 1587407         |
| 6        | 3695213       | 3660078       | \$ 4463314    | 3840939       | 4385877       | 3674511       | 4035259       | 21877         | 4517917     | 3398811         |
| 10       | 651599        | 41892         | 665814        | 25915         | 29081         | 562892        | 550387        | 719748        | 526673      | 439825          |
| 11       | 47984         | 41269         | 46189         | 50817         | 576           | 58844         | 43277         | 1425          | 60791       | 112554          |
| 12       | 41208         | 31183         | 31013         | 35820         | 47577         | 40490         | 27166         | 25570         | 65890       | 26606           |
| 13       | 36716         | 67883         | 25236         | 157962        | 26373         | 25583         | 20803         | 22749         | 29413       | 115426          |
| 14       | 44125         | 19140         | 40558         | 23183         | 20415         | 18074         | 20600         | 8441          | 70362       | 72465           |
| 15       | 55832         | 64956         | 56244         | 58733         | 55864         | 54462         | 40906         | 47392         | 94115       | 96247           |
| 16       | 3287          | 3788          | 3 2255        | 4969          | 1786          | 2906          | 2896          | 1699          | 4062        | 4278            |
| 17       | 4252          | 980           | 3010          | 12416         | 12749         | 2604          | 4744          | 2117          | 13016       | 7718            |
| 18       | 23391         | 20306         | 5 21138       | 23617         | 21491         | 24802         | 14250         | 18987         | 71646       | 120130          |
| 19       | 18439         | 14616         | 18679         | 14579         | 16168         | 18434         | 12044         | 9516          | 24675       | 41368           |
| 20       | 9019          | 9482          | 7929          | 7939          | 8278          | 12101         | 6036          | 6155          | 13933       | 12247           |
| 21       | 6272          | 9859          | 5177          | 3360          | 2090          | 10416         | 4674          | 4642          | 40540       | 21131           |
| 22       | 84482         | 54973         | 53947         | 60586         | 50063         | 73788         | 50978         | 39264         | 154451      | 191193          |
| 23       | 113620        | 105068        | 107998        | 92983         | 94325         | 103057        | 76816         | 75225         | 155467      | 96676           |
| 24       | 4267          | 7610          | ) 4540        | 3523          | 6535          | 2200          | 1596          | 1809          | 0267        | 6030            |
| 25       | 6344          | 5382          | 6427          | 4326          | 8465          | 9922          | 4480          | 4466          | 12429       | 9819            |
| 26       | 9154          | 8269          | 7744          | 8117          | 7382          | 9278          | 5936          | 6381          | 22154       | 14129           |
| 27       | 3485          | 3201          | 2957          | 2870          | 3726          | 1698          | 2628          | 1777          | 5712        | 4212            |
| 28       | 7053          | 7089          | 4359          | 1983          | 2916          | 3764          | 3146          | 3431          | 13631       | 7875            |

|     | red non-aroma |             |                 |
|-----|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|-------------|-----------------|
|     | Sample        | Average     | Average         |
|     |               |               |               |               |               |               |               |               |             |                 |
| No. | UP417_3       | UP417_4       | UP417_5       | UP417_6       | UP417_7       | UP417_8       | UP417_9       | UP417_10      | white aroma | black non-aroma |
| 29  | 82036         | 85576         | 66552         | 63292         | 71349         | 68850         | 55349         | 49701         | 77366       | 73609           |
| 30  | 150           | 391           | 815           | 304           | 461           | 265           | 250           | 157           | 2117        | 52732           |
| 31  | 34251         | 52756         | 27254         | 27550         | 35562         | 45174         | 19687         | 20391         | 36120       | 40024           |
| 32  | 11435         | 8741          | 7896          | 7898          | 5778          | 11187         | 6712          | 5998          | 25251       | 13998           |
| 33  | 81846         | 45385         | 32294         | 71775         | 37992         | 65295         | 57168         | 33472         | 77779       | 52739           |
| 34  | 1793          | 2729          | 2256          | 1852          | 1947          | 3370          | 1861          | 1479          | 4200        | 1888            |
| 35  | 41709         | 57162         | 30700         | 25458         | 22047         | 34856         | 26344         | 29251         | 39240       | 23935           |
| 36  | 6089          | 9038          | 8661          | 9717          | 7635          | 10090         | 4939          | 4661          | 15835       | 12391           |
| 37  | 2377          | 2406          | 2100          | 2041          | 3267          | 3156          | 2828          | 1346          | 3290        | 2378            |
| 38  | 3895          | 3182          | 400           | 763           | 1034          | 380           | 460           | 160           | 26741       | 9103            |
| 39  | 21111         | 20036         | 18732         | 13924         | 13435         | 25757         | 14931         | 17933         | 43098       | 27768           |
| 40  | 2029          | 3473          | 1621          | 2046          | 1151          | 1187          | 370           | 334           | 5665        | 576             |
| 41  | 13166         | 12615         | 7906          | 8308          | 8758          | 9733          | 7766          | 7036          | 59651       | 28206           |
| 42  | 6019          | 5468          | 5385          | 4650          | 2504          | 3247          | 8418          | 7270          | 9805        | 8677            |
| 43  | 65054         | 42572         | 34181         | 25626         | 17080         | 18548         | 35409         | 41345         | 28836       | 31595           |
| 44  | 2410          | 3533          | 3123          | 4130          | 1959          | 3027          | 250           | 2649          | 5418        | 2808            |
| 45  | 2941132       | 1128684       | 512796        | 777446        | 951541        | 729990        | 1444730       | 775418        | 2269966     | 891528          |
| 46  | 167539        | 111547        | 55327         | 59810         | 82150         | 77710         | 110216        | 73365         | 111274      | 57012           |
| 47  | 335490        | 224800        | 108954        | 119106        | 146167        | 132944        | 218867        | 146257        | 212165      | 108485          |
| 48  | 639687        | 39226         | 189273        | 209765        | 276370        | 218016        | 430330        | 297969        | 542438      | 196453          |

|     | Average     | Average       |
|-----|-------------|---------------|
| No. | black aroma | red non-aroma |
| 1   | 3007406     | 2502957       |
| 2   | 239278      | 241826        |
| 3   | 939391      | 771723        |
| 4   | 1418445     | 1402781       |
| 5   | 347389      | 219607        |
| 9   | 2150        | 1138          |
| 7   | 141918      | 86141         |
| 8   | 1833929     | 2177487       |
| 6   | 3747788     | 3811375       |
| 10  | 467863      | 363226        |
| 11  | 49477       | 46604         |
| 12  | 33871       | 31392         |
| 13  | 23167       | 26208         |
| 14  | 61107       | 20409         |
| 15  | 57246       | 54522         |
| 16  | 2812        | 2483          |
| 17  | 7289        | 11987         |
| 18  | 46746       | 31737         |
| 19  | 17067       | 15773         |
| 20  | 8719        | 8808          |
| 21  | 15820       | 7386          |
| 22  | 81116       | 60683         |
| 23  | 67124       | 99492         |
| 24  | 4746        | 4114          |
| 25  | 6261        | 7323          |
| 26  | 8342        | 7898          |
| 27  | 2524        | 2630          |
| 28  | 6594        | 5414          |

Sheet 49 of 50

|     | Average     | Average       |
|-----|-------------|---------------|
|     |             |               |
| No. | black aroma | red non-aroma |
| 29  | 60170       | 62077         |
| 30  | 45073       | 877           |
| 31  | 23065       | 33538         |
| 32  | 8332        | 8018          |
| 33  | 55790       | 53874         |
| 34  | 1432        | 2126          |
| 35  | 18366       | 28300         |
| 36  | 8609        | 8950          |
| 37  | 1810        | 2989          |
| 38  | 4724        | 4778          |
| 39  | 17618       | 17698         |
| 40  | 398         | 2024          |
| 41  | 20787       | 17791         |
| 42  | 5956        | 6083          |
| 43  | 26815       | 27163         |
| 44  | 1504        | 2864          |
| 45  | 789908      | 730087        |
| 46  | 63789       | 55782         |
| 47  | 119894      | 106617        |
| 48  | 245042      | 187889        |

Sheet 50 of 50



**Supplementary Figure S1** Diagram of the research framework in "Identification of Aroma Compounds in Thai Colored Rice Varieties"







จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

### REFERENCES

- Adewusi, E. A., & Afolayan, A. J. (2010). A review of natural products with hepatoprotective activity. *Journal of Medicinal Plants Research, 4*(13), 1318-1334.
- Afolayan, A. J., & Meyer, J. J. M. (1997). The antimicrobial activity of 3, 5, 7trihydroxyflavone isolated from the shoots of *Helichrysum aureonitens*. *Journal of Ethnopharmacology*, *57*(3), 177-181.
- Agüero, M. B., Svetaz, L., Baroni, V., Lima, B., Luna, L., Zacchino, S., Saavedra, P., Wunderlin, D., Feresin, G. E., & Tapia, A. (2014). Urban propolis from San Juan province (Argentina): Ethnopharmacological uses and antifungal activity against Candida and dermatophytes. *Industrial Crops and Products*, *57*, 166-173.
- Ali, T., & Ali, J. (2020). Factors affecting the consumers' willingness to pay for health and wellness food products. *Journal of Agriculture and Food Research*, *2*.
- Armero, J., Requejo, R., Jorrín, J., López-Valbuena, R., & Tena, M. (2001). Release of phytoalexins and related isoflavonoids from intact chickpea seedlings elicited with reduced glutathione at root level. *Plant Physiology and Biochemistry*, 39(9), 785-795.
- Arora, A., Byrem, T. M., Nair, M. G., & Strasburg, G. M. (2000). Modulation of liposomal membrane fluidity by flavonoids and isoflavonoids. *Archives of Biochemistry and Biophysics*, *373*(1), 102-109.
- Beckman, C. H. (2000). Phenolic-storing cells: keys to programmed cell death and periderm formation in wilt disease resistance and in general defence responses in plants? *Physiological and Molecular Plant Pathology*, *57*(3), 101-110.
- Bergman, C., Delgado, J., Bryant, R., Grimm, C., Cadwallader, K., & Webb, B. (2000). Rapid gas chromatographic technique for quantifying 2-acetyl-1-pyrroline and hexanal in rice (Oryza sativa, L.). *Cereal Chemistry*, 77(4), 454-458.
- Bhattacharjee, P., Singhal, R. S., & Kulkarni, P. R. (2002). Basmati rice: a review. International journal of food science & technology, 37(1), 1-12.
- Bianchi, F., Careri, M., Mangia, A., & Musci, M. (2007). Retention indices in the analysis of

food aroma volatile compounds in temperature-programmed gas chromatography: Database creation and evaluation of precision and robustness. *Journal of Separation Science*, *30*(4), 563-572.

- Biao, Y., Chanjuan, Z., Ming, Y., Dechun, H., McClements, D. J., Zhigang, H., & Chongjiang,C. (2019). Influence of gene regulation on rice quality: Impact of storage temperature and humidity on flavor profile. *Food Chemistry*, 283, 141-147.
- Bino, R. J., Hall, R. D., Fiehn, O., Saito, K., Draper, J., Nikolau, B. J., Mendes, P., Roessner-Tunali, U., Beale, M., & Trethewey, R. N. (2004). The further development of metabolomics as a functional genomics tool. Book of abstracts of the Third International Congress on Plant Metabolomics, Ames, Iowa, USA, June 3-6 2004,
- Block, G., Patterson, B., & Subar, A. (1992). Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. *Nutrition and Cancer, 18*(1), 1-29.
- Blount, J. W., Dixon, R. A., & Paiva, N. L. (1992). Stress responses in alfalfa (*Medicago sativa* L.) XVI. Antifungal activity of medicarpin and its biosynthetic precursors; implications for the genetic manipulation of stress metabolites. *Physiological and Molecular Plant Pathology*, *41*(5), 333-349.
- Bondonno, N. P., Lewis, J. R., Blekkenhorst, L. C., Bondonno, C. P., Shin, J. H., Croft, K. D.,
  Woodman, R. J., Wong, G., Lim, W. H., Gopinath, B., Flood, V. M., Russell, J.,
  Mitchell, P., & Hodgson, J. M. (2019). Association of flavonoids and flavonoid-rich
  foods with all-cause mortality: The Blue Mountains Eye Study. *Clinical Nutrition*.
- Bradbury, L., Fitzgerald, T., Henry, R. J., Jin, Q., & Waters, D. (2005). The gene for fragrance in rice. *Plant Biotechnology Journal*, *3*, 363-370.
- Bradbury, L., Gillies, S. A., Brushett, D. J., Waters, D., & Henry, R. J. (2008). Inactivation of an aminoaldehyde dehydrogenase is responsible for fragrance in rice. *Plant Molecular Biology*, *68*(4), 439-449.
- Bryant, R. J., & McClung, A. M. (2011). Volatile profiles of aromatic and non-aromatic rice cultivars using SPME/GC–MS. *Food Chemistry*, *124*(2), 501-513.
- Buttery, R. G., Ling, L. C., & Juliano, B. O. (1982). Cooked rice aroma and 2-acetyl-1pyrroline in rice. *Chem. Ind (London), 24*, 958-959.
- Buttery, R. G., Ling, L. C., Juliano, B. O., & Turnbaugh, J. G. (1983). Cooked rice aroma

and 2-acetyl-1-pyrroline. *Journal of Agricultural and Food Chemistry*, *31*(4), 823-826.

- Buttery, R. G., Turnbaugh, J. G., & Ling, L. C. (1988). Contribution of volatiles to rice aroma. *Journal of Agricultural and Food Chemistry*, *36*(5), 1006-1009.
- Calingacion, M., Laborte, A., Nelson, A., Resurreccion, A., Concepcion, J. C., Daygon, V. D., Mumm, R., Reinke, R., Dipti, S., Bassinello, P. Z., Manful, J., Sophany, S., Lara, K. C., Bao, J., Xie, L., Loaiza, K., El-hissewy, A., Gayin, J., Sharma, N., . . . Fitzgerald, M. (2014). Diversity of global rice markets and the science required for consumer-targeted rice breeding. *PLoS One*, *9*(1), e85106.
- Champagne, E. T. (2008). Rice Aroma and Flavor: A Literature Review. *Cereal Chemistry*, *85*(4), 445-454.
- Champagne, E. T., Bett-Garber, K. L., Fitzgerald, M. A., Grimm, C. C., Lea, J., Ohtsubo, K., Jongdee, S., Xie, L., Bassinello, P. Z., Resurreccion, A., Ahmad, R., Habibi, F., & Reinke, R. (2010). Important Sensory Properties Differentiating Premium Rice Varieties. *Rice*, *3*(4), 270-281.
- Champagne, E. T., Bett-Garber, K. L., Thompson, J., Mutters, R., Grimm, C. C., & McClung,
   A. M. (2005). Effects of drain and harvest dates on rice sensory and physicochemical properties. *Cereal Chemistry*, *82*(4), 369-374.
- Cheetangdee, V., & Chaiseri, S. (2006). Free amino acid and reducing sugar composition of pandan (Pandanus amaryllifolius) leaves. *Agriculture and Natural Resources*, *40*(6 (Suppl.)), 67-74.
- Chen, C., Zhou, W., Yu, H., Yuan, J., & Tian, H. (2020). Evaluation of the perceptual interactions among aldehydes in a cheddar cheese matrix according to odor threshold and aroma intensity. *Molecules*, *25*(18), 4308.
- Chen, P. N., Kuo, W. H., Chiang, C. L., Chiou, H. L., Hsieh, Y. S., & Chu, S. C. (2006). Black rice anthocyanins inhibit cancer cells invasion via repressions of MMPs and u-PA expression. *Chemico-Biological Interactions*, *163*(3), 218-229.
- Chen, Y., Jiang, W., Jiang, Z., Chen, X., Cao, J., Dong, W., & Dai, B. (2015). Changes in Physicochemical, Structural, and Sensory Properties of Irradiated Brown Japonica Rice during Storage. *Journal of Agricultural and Food Chemistry*, *63*(17), 4361-

4369.

- Choi, S., & Lee, J. (2021). Volatile and sensory profiles of different black rice (Oryza sativa L.) cultivars varying in milling degree. *Food Research International*, *141*, 110150.
- Choi, S., Seo, H. S., Lee, K. R., Lee, S., Lee, J., & Lee, J. (2019). Effect of milling and longterm storage on volatiles of black rice (*Oryza sativa* L.) determined by headspace solid-phase microextraction with gas chromatography-mass spectrometry. *Food Chemistry*, *276*, 572-582.
- Christie, W. W. (1973). Lipid analysis (Vol. 167). Pergamon press Oxford.
- Chun, O. K., Kim, D. O., Smith, N., Schroeder, D., Han, J. T., & Lee, C. Y. (2005). Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. *Journal of the Science of Food and Agriculture*, *85*(10), 1715-1724.
- Concepcion, J. C. T., Ouk, S., Riedel, A., Calingacion, M., Zhao, D., Ouk, M., Garson, M. J.,
  & Fitzgerald, M. A. (2018). Quality evaluation, fatty acid analysis and untargeted profiling of volatiles in Cambodian rice. *Food Chemistry*, 240, 1014-1021.
- Coronado, C., Zuanazzi, J. S., Sallaud, C., Quirion, J.-C., Esnault, R., Husson, H.-P., Kondorosi, A., & Ratet, P. (1995). Alfalfa root flavonoid production is nitrogen regulated. *Plant Physiology*, *108*(2), 533-542.
- Cotelle, N., Bernier, J.-L., Catteau, J.-P., Pommery, J., Wallet, J.-C., & Gaydou, E. M. (1996). Antioxidant properties of hydroxy-flavones. *Free Radical Biology and Medicine*, *20*(1), 35-43.
- Daygon, V. D., Prakash, S., Calingacion, M., Riedel, A., Ovenden, B., Snell, P., Mitchell, J.,
  & Fitzgerald, M. (2016). Understanding the Jasmine phenotype of rice through metabolite profiling and sensory evaluation. *Metabolomics*, *12*(4).
- De Magistris, T., & Gracia, A. (2008). The decision to buy organic food products in Southern Italy. *British Food Journal*.
- Diez-Simon, C., Mumm, R., & Hall, R. D. (2019). Mass spectrometry-based metabolomics of volatiles as a new tool for understanding aroma and flavour chemistry in processed food products. *Metabolomics*, *15*(3), 1-20.

Dixon, R. A. (2003). Phytochemistry meets genome analysis, and beyond.

Phytochemistry, 62, 815-816.

- Dixon, R. A., & Paiva, N. L. (1995). Stress-induced phenylpropanoid metabolism. *The Pplant Cell*, 7(7), 1085.
- Dogan, A., & Celik, I. (2012). Hepatoprotective and antioxidant activities of grapeseeds against ethanol-induced oxidative stress in rats. *British Journal of Nutrition*, *107*(1), 45-51.
- Erdman Jr, J. W., Balentine, D., Arab, L., Beecher, G., Dwyer, J. T., Folts, J., Harnly, J., Hollman, P., Keen, C. L., & Mazza, G. (2007). Flavonoids and heart health: proceedings of the ILSI North America flavonoids workshop, May 31–June 1, 2005, Washington, DC. *The Journal of Nutrition*, *137*(3), 718S-737S.
- Famewo, E. B., Clarke, A. M., & Afolayan, A. J. (2017). The effect of polyherbal medicines used for the treatment of tuberculosis on other opportunistic organisms of humans infected with tuberculosis. *Pharmacognosy Magazine*, 13(Suppl 3), S539.
- Ferrero, A. (2004). Constraints and opportunities for the sustainable development of rice-based production systems in Europe. International Conference on Sustainable Rice Systems, FAO, Rome, Italy, 2004,
- Fiehn, O. (2002). Metabolomics—the link between genotypes and phenotypes. In *Functional Genomics* (pp. 155-171). Springer.
- Finocchiaro, F., Ferrari, B., & Gianinetti, A. (2010). A study of biodiversity of flavonoid content in the rice caryopsis evidencing simultaneous accumulation of anthocyanins and proanthocyanidins in a black-grained genotype. *Journal of Cereal Science*, *51*(1), 28-34.
- Fitzgerald, M. A., McCouch, S. R., & Hall, R. D. (2009). Not just a grain of rice: the quest for quality. *Trends in Plant Science*, *14*(3), 133-139.
- Fitzgerald, M. A., Sackville Hamilton, N. R., Calingacion, M. N., Verhoeven, H. A., & Butardo, V. M. (2008). Is there a second fragrance gene in rice? *Plant Biotechnology Journal*, 6(4), 416-423.

FooDB Version 1.0. (2022). FoodDB. https://foodb.ca/

Frankel, E. N. (1983). Volatile lipid oxidation products. *Progress in lipid research*, *22*(1), 1-33.

- Frankel, E. N. (2012). Chapter 4 Hydroperoxide decomposition. In E. N. Frankel (Ed.), *Lipid Oxidation (Second Edition)* (pp. 67-98). Woodhead Publishing.
- Fukui, H., GOTO, K., & TABATA, M. (1988). Two antimicrobial flavanones from the leaves of Glycyrrhiza glabra. *Chemical and Pharmaceutical Bulletin*, *36*(10), 4174-4176.
- Fukusaki, E., & Kobayashi, A. (2005). Plant metabolomics: potential for practical operation. *Journal of Bioscience and Bioengineering*, *100*(4), 347-354.
- Gay, F., Maraval, I., Roques, S., Gunata, Z., Boulanger, R., Audebert, A., & Mestres, C. (2010). Effect of salinity on yield and 2-acetyl-1-pyrroline content in the grains of three fragrant rice cultivars (*Oryza sativa* L.) in Camargue (France). *Field Crops Research*, *117*(1), 154-160.
- Genkawa, T., Uchino, T., Inoue, A., Tanaka, F., & Hamanaka, D. (2008). Development of a low-moisture-content storage system for brown rice: Storability at decreased moisture contents. *Biosystems Engineering*, *99*(4), 515-522.
- George, V. C., Dellaire, G., & Rupasinghe, H. P. V. (2017). Plant flavonoids in cancer chemoprevention: role in genome stability. *The Journal of Nutritional Biochemistry*, 45, 1-14.
- Ghandchi, S., & Jamzad, M. (2015). Total flavonoids contents and anti bacterial activity of the extracts of two Labiateae species: Nepeta menthoides and Thymus trautvetteri.
- González-Molina, E., Domínguez-Perles, R., Moreno, D., & García-Viguera, C. (2010). Natural bioactive compounds of Citrus limon for food and health. *Journal of Pharmaceutical and Biomedical Analysis*, *51*(2), 327-345.
- Goufo, P., Duan, M., Wongpornchai, S., & Tang, X. (2010). Some factors affecting the concentration of the aroma compound 2-acetyl-1-pyrroline in two fragrant rice cultivars grown in South China. *Frontiers of Agriculture in China*, *4*(1), 1-9.
- Goufo, P., Wongpornchai, S., & Tang, X.-R. (2010). Appropriate set of pre and postharvest treatments for obtaining high levels of 2-acetyl-1-pyrroline in new fragrant rice cultivars developed in china. *Journal of Biotechnology*(150), 66.
- Griglione, A., Liberto, E., Cordero, C., Bressanello, D., Cagliero, C., Rubiolo, P., Bicchi, C., & Sgorbini, B. (2015). High-quality Italian rice cultivars: chemical indices of ageing and aroma quality. *Food Chemistry*, *172*, 305-313.

- Grimm, C. C., Bergman, C., Delgado, J. T., & Bryant, R. (2001). Screening for 2-acetyl-1pyrroline in the headspace of rice using SPME/GC-MS. *Journal of Agricultural and Food Chemistry*, *49*(1), 245-249.
- Gunaratne, A., Wu, K., Li, D., Bentota, A., Corke, H., & Cai, Y.-Z. (2013). Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins. *Food Chemistry*, *138*(2), 1153-1161.
- Habtemariam, S., & Dagne, E. (2010). Comparative antioxidant, prooxidant and cytotoxic activity of sigmoidin A and eriodictyol. *Planta Medica*, *76*(06), 589-594.
- Hall, R. D. (2006). Plant metabolomics: from holistic hope, to hype, to hot topic. *New Phytologist*, *169*(3), 453-468.
- Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57-70.
- Hanhineva, K., Törrönen, R., Bondia-Pons, I., Pekkinen, J., Kolehmainen, M., Mykkänen,
  H., & Poutanen, K. (2010). Impact of dietary polyphenols on carbohydrate metabolism. *International Journal of Molecular Sciences*, 11(4), 1365-1402.
- Hashemi, F. G., Rafii, M., Ismail, M., Mahmud, T., Rahim, H., Asfaliza, R., Malek, M., & Latif,
  M. (2013). Biochemical, genetic and molecular advances of fragrance characteristics in rice. *Critical Reviews in Plant Sciences*, *32*(6), 445-457.
- He, Q., Kim, J., & Sharma, R. P. (2004). Silymarin protects against liver damage in BALB/c mice exposed to fumonisin B1 despite increasing accumulation of free sphingoid bases. *Toxicological Sciences*, *80*(2), 335-342.
- Heo, J., Adhikari, K., Choi, K. S., & Lee, J. (2020). Analysis of caffeine, chlorogenic acid, trigonelline, and volatile compounds in cold brew coffee using highperformance liquid chromatography and solid-phase microextraction—gas chromatography-mass spectrometry. *Foods*, *9*(12), 1746.
- Herrera, C. L., Alvear, M., Barrientos, L., Montenegro, G., & Salazar, L. A. (2010). The antifungal effect of six commercial extracts of Chilean propolis on *Candida* spp. *Ciencia e Investigación Agraria*, *37*(1), 75-84.
- Herrmann, A. (2010). The chemistry and biology of volatiles. Wiley Online Library.
- Hinge, V. R., Patil, H. B., & Nadaf, A. B. (2016). Aroma volatile analyses and 2AP characterization at various developmental stages in Basmati and Non-Basmati scented rice (*Oryza sativa* L.) cultivars. *Rice*, *9*(1), 38.

- Hoffmann, E., & Stroobant, V. (2007). *Mass spectrometry : principles and applications.* (3rd ed.). John Wiley & Sons Ltd.
- Hopfer, H., Jodari, F., Negre-Zakharov, F., Wylie, P. L., & Ebeler, S. E. (2016). HS-SPME-GC-MS/MS method for the rapid and sensitive quantitation of 2-acetyl-1-pyrroline in single rice kernels. *Journal of Agricultural and Food Chemistry*, *64*(20), 4114-4120.
- Hou, Z., Qin, P., & Ren, G. (2010). Effect of anthocyanin-rich extract from black rice (*Oryza sativa* L. Japonica) on chronically alcohol-induced liver damage in rats. *Journal of Agricultural and Food Chemistry*, 58(5), 3191-3196.
- Hu, X., Lu, L., Guo, Z., & Zhu, Z. (2020). Volatile compounds, affecting factors and evaluation methods for rice aroma: A review. *Trends in food Science & Technology*, 97, 136-146.
- Huang, T.-C., Teng, C.-S., Chang, J.-L., Chuang, H.-S., Ho, C.-T., & Wu, M.-L. (2008).
   Biosynthetic Mechanism of 2-Acetyl-1-pyrroline and Its Relationship with Δ1 Pyrroline-5-carboxylic Acid and Methylglyoxal in Aromatic Rice (*Oryza sativa* L.)
   Callus. *Journal of Agricultural and Food Chemistry*, *56*(16), 7399-7404.
- Hübschmann, H.-J. (2015). *Handbook of GC-MS: fundamentals and applications*. John Wiley & Sons.
- Hudson, E. A., Dinh, P. A., Kokubun, T., Simmonds, M. S., & Gescher, A. (2000). Characterization of potentially chemopreventive phenols in extracts of brown rice that inhibit the growth of human breast and colon cancer cells. *Cancer Epidemiology and Prevention Biomarkers, 9*(11), 1163-1170.
- Ioffe, B. V., Vitenberg, A. G. e., & Ioffe, B. (1984). *Head-space analysis and related methods in gas chromatography*. Wiley New York.
- Itani, T., Tamaki, M., Hayata, Y., Fushimi, T., & Hashizume, K. (2004). Variation of 2-acetyl-1-pyrroline concentration in aromatic rice grains collected in the same region in Japan and factors affecting its concentration. *Plant Production Science*, 7(2), 178-183.
- Jaiswal, R., Jayasinghe, L., & Kuhnert, N. (2012). Identification and characterization of proanthocyanidins of 16 members of the Rhododendron genus (Ericaceae) by tandem LC–MS. *Journal of Mass Spectrometry*, *47*(4), 502-515.

- Jezussek, M., Juliano, B. O., & Schieberle, P. (2002). Comparison of Key Aroma Compounds in Cooked Brown Rice Varieties Based on Aroma Extract Dilution Analyses. *Journal of Agricultural and Food Chemistry*, *50*(5), 1101-1105.
- Jinakot, I., & Jirapakkul, W. (2018). Effect of degrees of milling on aroma compounds in cooked rice (Khao Dawk Mali 105). 56. Kasetsart University Annual Conference, Bangkok (Thailand), 30 Jan-2 Feb 2018,
- Jindawatt, S., Ekkaphan, P., De-Eknamkul, W., & Tansawat, R. (2021). Static headspace GC-MS analysis for determination of colored rice volatile profile. *The 36th International Meeting in Pharmaceutical Sciences & Herbal Tradition Medicines* 2021, 17-20. <<u>http://cu-amps.weebly.com</u>>
- Jodon, N. E. (1944). inheritance of flower fragrance and other characters in rice. *Journal* of the American Society of Agronomy.
- Jones, S. P., & Bolli, R. (2006). The ubiquitous role of nitric oxide in cardioprotection. Journal of Molecular and Cellular Cardiology, 40(1), 16-23.
- Juliano, B. O. (2003). RICE. In *Encyclopedia of Food Sciences and Nutrition* (Second Edition ed., pp. 4995-5001). Academic Press.
- Juliano, B. O. (2016). Rice: Overview. In *Encyclopedia of Food Grains* (Vol. 1, pp. 125-129). Acedemic Press.
- Juliano, B. O., Perez, C. M., Barber, S., Blakeney, A. B., Iwasaki, T. A., Shibuya, N., Keneaster, K. K., Chung, S., Laignelet, B., & Launay, B. (1981). International cooperative comparison of instrument methods for cooked rice texture. *Journal of Texture Studies*, *12*(1), 17-38.
- Juszczuk, I. M., Wiktorowska, A., Malusá, E., & Rychter, A. M. (2004). Changes in the concentration of phenolic compounds and exudation induced by phosphate deficiency in bean plants (*Phaseolus vulgaris* L.). *Plant and Soil*, *267*(1-2), 41-49.
- Kadam, B. S., & Patankar, V. K. (1938). Inheritance of aroma in rice. *Chronica Botanica*, *4*, 32.
- Kaleem, M., & Ahmad, A. (2018). Flavonoids as nutraceuticals. In *Therapeutic, Probiotic,* and Unconventional Foods (pp. 137-155). Elsevier.
- Kaur, C., & Kapoor, H. C. (2001). Antioxidants in fruits and vegetables the millennium's health. *International Journal of Food Science & Technology*, *36*(7), 703-725.

- Khalid, M., Saeed ur, R., Bilal, M., & Huang, D.-f. (2019). Role of flavonoids in plant interactions with the environment and against human pathogens A review. *Journal of Integrative Agriculture*, *18*(1), 211-230.
- Khir, R., & Pan, Z. (2019). Rice. In Z. Pan, R. Zhang, & S. Zicari (Eds.), *Integrated Processing Technologies for Food and Agricultural By-Products* (pp. 21-58). Academic Press.
- Khir, R., Pan, Z., Salim, A., Hartsough, B. R., & Mohamed, S. (2011). Moisture diffusivity of rough rice under infrared radiation drying. *LWT - Food Science and Technology*, 44(4), 1126-1132.
- Kim, D.-H., Bae, E.-A., & Han, M. J. (1999). Anti-Helicobacter pylori activity of the metabolites of poncirin from Poncirus trifoliata by human intestinal bacteria. *Biological and Pharmaceutical Bulletin*, 22(4), 422-424.
- Koksal, N., Kafkas, E., Sadighazadi, S., & Kulahlioglu, I. (2015). Floral fragrances of daffodil under salinity stress. *Rom Biotechnol Lett*, *20*(4), 10600-10610.
- Kong, C., Xu, X., Zhou, B., Hu, F., Zhang, C., & Zhang, M. (2004). Two compounds from allelopathic rice accession and their inhibitory activity on weeds and fungal pathogens. *Phytochemistry*, *65*(8), 1123-1128.
- Kovach, M. J., Calingacion, M. N., Fitzgerald, M. A., & McCouch, S. R. (2009). The origin and evolution of fragrance in rice (*Oryza sativa* L.). *Proceedings of the National Academy of Sciences*, *106*(34), 14444-14449.
- Kruger, M. J., Davies, N., Myburgh, K. H., & Lecour, S. (2014). Proanthocyanidins, anthocyanins and cardiovascular diseases. *Food Research International*, *59*, 41-52.
- Krystallis, A., & Chryssohoidis, G. (2005). Consumers' willingness to pay for organic food. *British Food Journal*, *107*(5), 320-343.
- Kushwaha, U. (2016). Black rice. In Black Rice (pp. 21-47). Springer.
- Laborte, A. G., Gutierrez, M. A., Balanza, J. G., Saito, K., Zwart, S. J., Boschetti, M., Murty,
  M. V. R., Villano, L., Aunario, J. K., Reinke, R., Koo, J., Hijmans, R. J., & Nelson, A.
  (2017). RiceAtlas, a spatial database of global rice calendars and production. *Scientific Data*, 4, 170074.
- Laguerre, M., Mestres, C., Davrieux, F., Ringuet, J., & Boulanger, R. (2007). Rapid

discrimination of scented rice by solid-phase microextraction, mass spectrometry, and multivariate analysis used as a mass sensor. *Journal of Agricultural and Food Chemistry*, *55*(4), 1077-1083.

- Lam, H. S., & Proctor, A. (2003). Milled Rice Oxidation Volatiles and Odor Development. *Journal of Food Science*, *68*(9), 2676-2681.
- Lam, H. S., Proctor, A., & Meullenet, J.-F. (2001). Free fatty acid formation and lipid oxidation on milled rice. *Journal of the American Oil Chemists' Society*, *78*(12), 1271-1275.
- Langyan, S., Yadava, P., Khan, F. N., Dar, Z. A., Singh, R., & Kumar, A. (2021). Sustaining protein nutrition through plant-based foods. *Frontiers in Nutrition*, *8*.
- Lazarevic, B., Boezelijn, G., Diep, L. M., Kvernrod, K., Ogren, O., Ramberg, H., Moen, A., Wessel, N., Berg, R. E., & Egge-Jacobsen, W. (2011). Efficacy and safety of shortterm genistein intervention in patients with localized prostate cancer prior to radical prostatectomy: a randomized, placebo-controlled, double-blind Phase 2 clinical trial. *Nutrition and Cancer, 63*(6), 889-898.
- Lee, J. C., Kim, J. D., Hsieh, F. h., & Eun, J. B. (2008). Production of black rice cake using ground black rice and medium-grain brown rice. *International Journal of Food Science & Technology*, *43*(6), 1078-1082.
- Leung, H. W.-C., Lin, C.-J., Hour, M.-J., Yang, W.-H., Wang, M.-Y., & Lee, H.-Z. (2007). Kaempferol induces apoptosis in human lung non-small carcinoma cells accompanied by an induction of antioxidant enzymes. *Food and Chemical Toxicology*, *45*(10), 2005-2013.
- Li, M., Li, R., Liu, S., Zhang, J. e., Luo, H., & Qiu, S. (2019). Rice-duck co-culture benefits grain 2-acetyl-1-pyrroline accumulation and quality and yield enhancement of fragrant rice. *The Crop Journal*.
- Lim, D. K., Mo, C., Lee, D. K., Long, N. P., Lim, J., & Kwon, S. W. (2018). Non-destructive profiling of volatile organic compounds using HS-SPME/GC-MS and its application for the geographical discrimination of white rice. *Journal of Food and Drug Analysis*, *26*(1), 260-267.
- Lin, J.-Y., Fan, W., Gao, Y.-N., Wu, S.-F., & Wang, S.-X. (2010). Study on volatile

compounds in rice by HS-SPME and GC-MS. Julius-Kühn-Archiv(425), 125.

- Liu, T., Zhao, J., Ma, L., Ding, Y., & Su, D. (2012). Hepatoprotective effects of total triterpenoids and total flavonoids from Vitis vinifera L against immunological liver injury in mice. *Evidence-Based Complementary and Alternative Medicine*, 2012.
- Lorieux, M., Petrov, M., Huang, N., Guiderdoni, E., & Ghesquière, A. (1996). Aroma in rice: genetic analysis of a quantitative trait. *Theoretical and Applied Genetics*, *93*(7), 1145-1151.
- Macielag, M. J. (2012). Chemical properties of antimicrobials and their uniqueness. In *Antibiotic Discovery and Development* (pp. 793-820). Springer.
- Madrigal-Santillán, E., Madrigal-Bujaidar, E., Álvarez-González, I., Sumaya-Martínez, M. T., Gutiérrez-Salinas, J., Bautista, M., Morales-González, Á., y González-Rubio, M. G.-L., Aguilar-Faisal, J. L., & Morales-González, J. A. (2014). Review of natural products with hepatoprotective effects. *World Journal of Gastroenterology*, 20(40), 14787.
- Mahatheeranont, S., Keawsa-ard, S., & Dumri, K. (2001). Quantification of the rice aroma compound, 2-acetyl-1-pyrroline, in uncooked Khao Dawk Mali 105 brown rice. *Journal of Agricultural and Food Chemistry*, *49*(2), 773-779.
- Mahattanatawee, K., & Rouseff, R. L. (2014). Comparison of aroma active and sulfur volatiles in three fragrant rice cultivars using GC–Olfactometry and GC–PFPD. *Food Chemistry*, *154*, 1-6.
- Mahmoud, A. M., Ashour, M. B., Abdel-Moneim, A., & Ahmed, O. M. (2012). Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. *Journal of Diabetes and its Complications, 26*(6), 483-490.
- Mann, R. A. (1987). Basmati rice: a wonder of Pakistan's agriculture. *International Rice Commission Newsletter*.
- Mannan, M. A., Bhuiya, M. S. U., Akhand, M. I. M., & Saman, M. M. (2012). Growth and yield of Basmati and traditional aromatic rice as influenced by water stress and nitrogen level. *Journal of Science Foundation*, *10*(2), 52-62.

Mathure, S. V., Wakte, K. V., Jawali, N., & Nadaf, A. B. (2011). Quantification of 2-acetyl-1-

pyrroline and other rice aroma volatiles among Indian scented rice cultivars by HS-SPME/GC-FID. *Food Analytical Methods*, *4*(3), 326-333.

- Matthews, J. P., Gemme, S., Huebschmann, H.-J., Llorente, C., Jimenez, R., & Sreenivasulu, N. (2015). Metabolomics of rice genotypes using GC-MS/MS. Retrieved 12 September 2019
- McNair, H. M., Miller, J. M., & Snow, N. H. (2019). *Basic gas chromatography*. John Wiley & Sons.
- Meng, L., Zhang, W., Wu, Z., Hui, A., Gao, H., Chen, P., & He, Y. (2018). Effect of pressuresoaking treatments on texture and retrogradation properties of black rice. *LWT* -*Food Science and Technology*, *93*, 485-490.
- Mhlongo, M. I., Piater, L. A., & Dubery, I. A. (2022). Profiling of Volatile Organic Compounds from Four Plant Growth-Promoting Rhizobacteria by SPME–GC–MS: A Metabolomics Study. *Metabolites*, *12*(8), 763.
- Mierziak, J., Kostyn, K., & Kulma, A. (2014). Flavonoids as important molecules of plant interactions with the environment. *Molecules*, *19*(10), 16240-16265.
- Min, B., Gu, L., McClung, A. M., Bergman, C. J., & Chen, M.-H. (2012). Free and bound total phenolic concentrations, antioxidant capacities, and profiles of proanthocyanidins and anthocyanins in whole grain rice (*Oryza sativa* L.) of different bran colours. *Food Chemistry*, 133(3), 715-722.
- Min, B., McClung, A. M., & Chen, M. H. (2011). Phytochemicals and antioxidant capacities in rice brans of different color. *Journal of Food Science*, *76*(1), C117-C126.
- Mishra, A., Kumar, S., & Pandey, A. K. (2013). Scientific validation of the medicinal efficacy of *Tinospora cordifolia*. *The Scientific World Journal*, *2013*.
- Mishra, A., Sharma, A. K., Kumar, S., Saxena, A. K., & Pandey, A. K. (2013). Bauhinia variegata leaf extracts exhibit considerable antibacterial, antioxidant, and anticancer activities. *BioMed Research International*, *2013*.
- Moldenhauer, K., Counce, P., & Hardke, J. (2013). Rice Growth and Development. In *Arkansa Rice Production Handbook*.

https://www.uaex.edu/publications/pdf/mp192/chapter-2.pdf

Mulvihill, E. E., & Huff, M. W. (2010). Antiatherogenic properties of flavonoids: implications for cardiovascular health. *Canadian Journal of Cardiology*, *26*, 17A- 21A.

Napasintuwong, O. (2020). Thailand's colored rice standard and markets.

- Nie, L., & Peng, S. (2017). Rice Production in China. In B. S. Chauhan, K. Jabran, & G. Mahajan (Eds.), *Rice Production Worldwide* (pp. 33-52). Springer International Publishing.
- Niu, Y., Gao, B., Slavin, M., Zhang, X., Yang, F., Bao, J., Shi, H., Xie, Z., & Yu, L. L. (2013). Phytochemical compositions, and antioxidant and anti-inflammatory properties of twenty-two red rice samples grown in Zhejiang. *LWT - Food Science and Technology*, 54(2), 521-527.
- Nizamutdinova, I. T., Jin, Y. C., Chung, J. I., Shin, S. C., Lee, S. J., Seo, H. G., Lee, J. H., Chang, K. C., & Kim, H. J. (2009). The anti-diabetic effect of anthocyanins in streptozotocin-induced diabetic rats through glucose transporter 4 regulation and prevention of insulin resistance and pancreatic apoptosis. *Molecular Nutrition & Food Research*, *53*(11), 1419-1429.
- Norkaew, O., Boontakham, P., Dumri, K., Noenplab, A. N. L., Sookwong, P., & Mahatheeranont, S. (2017). Effect of post-harvest treatment on bioactive phytochemicals of Thai black rice. *Food Chemistry*, *217*, 98-105.
- Oikawa, A., Matsuda, F., Kusano, M., Okazaki, Y., & Saito, K. (2008). Rice Metabolomics. *Rice*, 1(1), 63-71.
- Pacifico, S., Scognamiglio, M., D'Abrosca, B., Piccolella, S., Tsafantakis, N., Gallicchio, M., Ricci, A., & Fiorentino, A. (2010). Spectroscopic characterization and antiproliferative activity on HepG2 human hepatoblastoma cells of flavonoid Cglycosides from *Petrorhagia velutina*. *Journal of Natural Products*, *73*(12), 1973-1978.
- Päivärinta, E., Itkonen, S. T., Pellinen, T., Lehtovirta, M., Erkkola, M., & Pajari, A.-M. (2020). Replacing animal-based proteins with plant-based proteins changes the composition of a whole Nordic diet—a randomised clinical trial in healthy Finnish adults. *Nutrients*, 12(4), 943.
- Pala, F. S., & Gürkan, H. (2008). The role of free radicals in ethiopathogenesis of diseases. *Advances in Molecular Biology*, *1*, 1-9.

- Palacious, P., Gutkind, G., Randina, R. V. D., De Torres, R., & Coussio, J. D. (1983). Antimicrobial activity of *B. crispa* and *B. notosergila*. Genus Baccharis II. *Planta Medica*, 49, 128.
- Pan, Z., Khir, R., Godfrey, L. D., Lewis, R., Thompson, J. F., & Salim, A. (2008). Feasibility of simultaneous rough rice drying and disinfestations by infrared radiation heating and rice milling quality. *Journal of Food Engineering*, *84*(3), 469-479.
- Park, C.-E., Kim, Y.-S., Park, K.-J., & Kim, B.-K. (2012). Changes in physicochemical characteristics of rice during storage at different temperatures. *Journal of Stored Products Research*, 48, 25-29.
- Park, H. L., Lee, S.-W., Jung, K.-H., Hahn, T.-R., & Cho, M.-H. (2013). Transcriptomic analysis of UV-treated rice leaves reveals UV-induced phytoalexin biosynthetic pathways and their regulatory networks in rice. *Phytochemistry*, *96*, 57-71.
- Pomeranz, Y., & Zeleny, L. (1971). Biochemical and functional changes in stored cereal grains. *C R C Critical Reviews in Food Technology*, *2*(1), 45-80.
- Poonlaphdecha, J., Gantet, P., Maraval, I., Sauvage, F.-X., Menut, C., Morère, A., Boulanger, R., Wüst, M., & Gunata, Z. (2016). Biosynthesis of 2-acetyl-1-pyrroline in rice calli cultures: Demonstration of 1-pyrroline as a limiting substrate. *Food Chemistry*, 197, 965-971.
- Punthakee, Z., Goldenberg, R., & Katz, P. (2018). Definition, classification and diagnosis of diabetes, prediabetes and metabolic syndrome. *Canadian Journal of Diabetes*, 42, S10-S15.
- Qiu, Y., Liu, Q., & Beta, T. (2010). Antioxidant properties of commercial wild rice and analysis of soluble and insoluble phenolic acids. *Food Chemistry*, *121*(1), 140-147.
- Ranilla, L. G., Kwon, Y.-I., Apostolidis, E., & Shetty, K. (2010). Phenolic compounds, antioxidant activity and in vitro inhibitory potential against key enzymes relevant for hyperglycemia and hypertension of commonly used medicinal plants, herbs and spices in Latin America. *Bioresource Technology*, 101(12), 4676-4689.
- Rao, B. M., Saradhi, U., Rani, N. S., Prabhakar, S., Prasad, G., Ramanjaneyulu, G., & Vairamani, M. (2007). Identification and quantification of methyl nicotinate in

rice (Oryza sativa L.) by gas chromatography-mass spectrometry. *Food Chemistry*, *105*(2), 736-741.

- Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kähkönen, M., Kujala, T., Pihlaja, K., Vuorela, H., & Vuorela, P. (2000). Antimicrobial effects of Finnish plant extracts containing flavonoids and other phenolic compounds. *International Journal of Food Microbiology*, *56*(1), 3-12.
- Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. *Free Radical Biology and Medicine*, *20*(7), 933-956.
- Rodinkov, O., Bugaichenko, A., & Moskvin, L. (2020). Static headspace analysis and its current status. *Journal of Analytical Chemistry*, 75(1), 1-17.
- Routray, W., & Rayaguru, K. (2018). 2-Acetyl-1-pyrroline: A key aroma component of aromatic rice and other food products. *Food Reviews International*, *34*(6), 539-565.
- Rubio-Perez, J. M., & Morillas-Ruiz, J. M. (2012). A review: inflammatory process in Alzheimer's disease, role of cytokines. *The Scientific World Journal*, 2012.
- Saito, K., Dixon, R. A., & Willmitzer, L. (2006). *Plant Metabolomics* (Vol. 57). Springer Science & Business Media.
- Sakthivel, K., Sundaram, R. M., Rani, N. S., Balachandran, S. M., & Neeraja, C. N. (2009). Genetic and molecular basis of fragrance in rice. *Biotechnology Advances*, *27*(4), 468-473.
- Sansenya, S., & Nanok, K. (2020). **α**-glucosidase, **α**-amylase inhibitory potential and antioxidant activity of fragrant black rice (Thai coloured rice). *Flavour and Fragrance Journal*, *35*(4), 376-386.
- Sanz, C., Ansorena, D., Bello, J., & Cid, C. (2001). Optimizing headspace temperature and time sampling for identification of volatile compounds in ground roasted Arabica coffee. *Journal of Agricultural and Food Chemistry*, *49*(3), 1364-1369.
- Sato, Y., Suzaki, S., Nishikawa, T., Kihara, M., Shibata, H., & Higuti, T. (2000). Phytochemical flavones isolated from *Scutellaria barbata* and antibacterial activity against methicillin-resistant *Staphylococcus aureus*. *Journal of*

Ethnopharmacology, 72(3), 483-488.

- Schieberle, P. (1991). Primary odorants in popcorn. *Journal of Agricultural and Food Chemistry*, *39*(6), 1141-1144.
- Schmidt, P. E., Broughton, W. J., & Werner, D. (1994). Nod factors of *Bradyrhizobium japonicum* and *Rhizobium* sp. NGR234 induce flavonoid accumulation in soybean root exudate. *Molecular Plant-Microbe Interactions: MPMI (USA)*.
- Schneider, C. D., & Oliveira, A. R. d. (2004). Oxygen free radicals and exercise: mechanisms of synthesis and adaptation to the physical training. *Revista Brasileira de Medicina do Esporte*, *10*(4), 308-313.
- Schranz, M., Lorber, K., Klos, K., Kerschbaumer, J., & Buettner, A. (2017). Influence of the chemical structure on the odor qualities and odor thresholds of guaiacolderived odorants, part 1: alkylated, alkenylated and methoxylated derivatives. *Food Chemistry*, *232*, 808-819.
- Schrimpe-Rutledge, A. C., Codreanu, S. G., Sherrod, S. D., & McLean, J. A. (2016). Untargeted metabolomics strategies—challenges and emerging directions. *Journal of the American Society for Mass Spectrometry*, *27*(12), 1897-1905.
- Shao, Y., & Bao, J. (2019). Rice phenolics and other natural products. In J. Bao (Ed.), *Rice* (Fourth Edition ed., pp. 221-271). Woodhead Publishing.
- Shao, Y., Hu, Z., Yu, Y., Mou, R., Zhu, Z., & Beta, T. (2018). Phenolic acids, anthocyanins, proanthocyanidins, antioxidant activity, minerals and their correlations in non-pigmented, red, and black rice. *Food Chemistry*, *239*, 733-741.
- Shao, Y., Jin, L., Zhang, G., Lu, Y., Shen, Y., & Bao, J. (2011). Association mapping of grain color, phenolic content, flavonoid content and antioxidant capacity in dehulled rice. *Theoretical and Applied Genetics*, *122*(5), 1005-1016.
- Sharma, G. P., Verma, R. C., & Pathare, P. B. (2005). Thin-layer infrared radiation drying of onion slices. *Journal of Food Engineering*, *67*(3), 361-366.
- Singh, A., Mithu, D., Bal, S., & Banerjee, R. (2014). Rice Processing. In R. d. P. F. Guiné & P.M. d. R. Correia (Eds.), *Engineering Aspects of Cereal and Cereal-Based Products* (pp. 71-96). CRC Press.

Singh, V. P., Singh, U., & Khush, G. (2000). Basmati rice of India. Aromatic rices, 135.

Sivamaruthi, B., Kesika, P., & Chaiyasut, C. (2018). Anthocyanins in Thai rice varieties:

distribution and pharmacological significance. *International Food Research Journal*, *25*(5), 2024-2032.

- Smith, S. C., Collins, A., Ferrari, R., Holmes, D. R., Logstrup, S., McGhie, D. V., Ralston, J.,
  Sacco, R. L., Stam, H., Taubert, K., Wood, D. A., & Zoghbi, W. A. (2012). Our Time:
  A Call to Save Preventable Death From Cardiovascular Disease (Heart Disease and Stroke). *Journal of the American College of Cardiology*, 60(22), 2343.
- Song, S.-J., Lee, Y.-S., & Rhee, C.-O. (2000). Volatile flavor components in cooked black rice. *Korean Journal of Food Science and Technology*, *32*(5), 1015-1021.
- Soriguer, F., Gutiérrez-Repiso, C., Rubio-Martín, E., García-Fuentes, E., Almaraz, M. C., Colomo, N., Esteva de Antonio, I., de Adana, M. S. R., Chaves, F. J., & Morcillo, S. (2013). Metabolically healthy but obese, a matter of time? Findings from the prospective Pizarra study. *The Journal of Clinical Endocrinology & Metabolism*, 98(6), 2318-2325.
- Soto-Vaca, A., Gutierrez, A., Losso, J. N., Xu, Z., & Finley, J. W. (2012). Evolution of phenolic compounds from color and flavor problems to health benefits. *Journal of Agricultural and Food Chemistry*, *60*(27), 6658-6677.
- Sriseadka, T., Wongpornchai, S., & Kitsawatpaiboon, P. (2006). Rapid method for quantitative analysis of the aroma impact compound, 2-acetyl-1-pyrroline, in fragrant rice using automated headspace gas chromatography. *Journal of Agricultural and Food Chemistry, 54*(21), 8183-8189.
- Statistica. (2022). Value of the plant-based food market worldwide from 2020 to 2030 https://www.statista.com/statistics/1280394/global-plant-based-food-marketvalue/
- Steinmetz, K. A., & Potter, J. D. (1996). Vegetables, fruit, and cancer prevention: a review. *Journal of the American Dietetic Association*, *96*(10), 1027-1039.
- Sukaram, T., Tansawat, R., Apiparakoon, T., Tiyarattanachai, T., Marukatat, S., Rerknimitr,
   R., & Chaiteerakij, R. (2022). Exhaled volatile organic compounds for diagnosis of
   hepatocellular carcinoma. *Scientific Reports*, *12*(1), 1-9.
- Sukhonthara, S., Theerakulkait, C., & Miyazawa, M. (2009). Characterization of volatile aroma compounds from red and black rice bran. *Journal of Oleo Science*, *58*(3), 155-161.

- Sung, B., Prasad, S., Gupta, S. C., Patchva, S., & Aggarwal, B. B. (2012). Regulation of inflammation-mediated chronic diseases by botanicals. In *Advances in Botanical Research* (Vol. 62, pp. 57-132). Elsevier.
- Suwansri, S., Meullenet, J. F., Hankins, J. A., & Griffin, K. (2002). Preference mapping of domestic/imported Jasmine rice for US-Asian consumers. *Journal of Food Science*, *67*(6), 2420-2431.
- Szabados, L., & Savouré, A. (2010). Proline: a multifunctional amino acid. *Trends in Plant Science*, *15*(2), 89-97.
- Szajdek, A., & Borowska, E. J. (2008). Bioactive compounds and health-promoting properties of berry fruits: a review. *Plant Foods for Human Nutrition*, *63*(4), 147-156.
- Tananuwong, K., & Lertsiri, S. (2010). Changes in volatile aroma compounds of organic fragrant rice during storage under different conditions. *Journal of the Science of Food and Agriculture, 90*(10), 1590-1596.
- Tapas, A. R., Sakarkar, D. M., & Kakde, R. B. (2008). Flavonoids as nutraceuticals: a review. *Tropical Journal of Pharmaceutical Research*, 7(3), 1089-1099.
- Tereschuk, M. L., Riera, M. V. Q., Castro, G. R., & Abdala, L. R. (1997). Antimicrobial activity of flavonoids from leaves of Tagetes minuta. *Journal of Ethnopharmacology*, *56*(3), 227-232.

Thai Rice DB. (2022). https://www.thairicedb.com/rice-detail.php?id=11

- Ti, H., Zhang, R., Zhang, M., Wei, Z., Chi, J., Deng, Y., & Zhang, Y. (2015). Effect of extrusion on phytochemical profiles in milled fractions of black rice. *Food Chemistry*, *178*, 186-194.
- Tian, B., Xu, L., Jing, M., Liu, N., & Tian, Y. (2021). A comprehensive evaluation on pyrolysis behavior, kinetics, and primary volatile formation pathways of rice husk for application to catalytic valorization. *Fuel Processing Technology*, 214, 106715.
- Tian, H., Shen, Y., Yu, H., & Chen, C. (2018). Aroma features of honey measured by sensory evaluation, gas chromatography-mass spectrometry, and electronic nose. *International Journal of Food Properties*, *21*(1), 1755-1768.

- Toriyama, K., Heong, K. L., & Hardy, B. (2004, 4-7 November 2004). Rice is life: scientific perspectives for the 21st century. Proceedings of the World Rice Research Conference Tokyo and Tsukaba, Japan.
- Tripoli, E., La Guardia, M., Giammanco, S., Di Majo, D., & Giammanco, M. (2007). Citrus flavonoids: Molecular structure, biological activity and nutritional properties: A review. *Food Chemistry*, *104*(2), 466-479.
- Tsugawa, H., Cajka, T., Kind, T., Ma, Y., Higgins, B., Ikeda, K., Kanazawa, M., VanderGheynst, J., Fiehn, O., & Arita, M. (2015). MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. *Nature Methods*, 12(6), 523-526.
- Um, M. Y., Ahn, J., Jung, C. H., & Ha, T. Y. (2013). Cholesterol-lowering effect of rice protein by enhancing fecal excretion of lipids in rats. *Preventive Nutrition and Food Science*, *18*(3), 210.
- USDHSS. (1991). Healthy people 2000: National health promotion and disease prevention objectives. In *Healthy people 2000: National health promotion and disease prevention objectives*. US Government Printing Office.
- Valdameri, G., Trombetta-Lima, M., Worfel, P. R., Pires, A. R. A., Martinez, G. R., Noleto, G. R., Cadena, S. M. S. C., Sogayar, M. C., Winnischofer, S. M. B., & Rocha, M. E. M. (2011). Involvement of catalase in the apoptotic mechanism induced by apigenin in HepG2 human hepatoma cells. *Chemico-Biological Interactions*, *193*(2), 180-189.
- Vanavichit, A., Tragoonrung, S., Toojinda, T., Wanchana, S., & Kamolsukyunyong, W. (2008). Transgenic rice plants with reduced expression of Os2AP and elevated levels of 2-acetyl-1-pyrroline. U.S. Patent No. 7,319,181. Washington, DC: U.S. Patent and Trademark Office.
- Vasco, C., Ruales, J., & Kamal-Eldin, A. (2008). Total phenolic compounds and antioxidant capacities of major fruits from Ecuador. *Food Chemistry*, *111*(4), 816-823.
- Velasco, J., Dobarganes, C., & Márquez-Ruiz, G. (2010). 1 Oxidative rancidity in foods and food quality. In L. H. Skibsted, J. Risbo, & M. L. Andersen (Eds.), *Chemical Deterioration and Physical Instability of Food and Beverages* (pp. 3-32).
Woodhead Publishing.

- Verma, D. K., & Srivastav, P. P. (2020). A paradigm of volatile aroma compounds in rice and their product with extraction and identification methods: A comprehensive review. *Food Research International*, *130*, 108924.
- Verma, D. K., & Srivastav, P. P. (2022). Extraction, identification and quantification methods of rice aroma compounds with emphasis on 2-acetyl-1-pyrroline (2-AP) and its relationship with rice quality: A comprehensive review. *Food Reviews International*, *38*(2), 111-162.
- Vitha, M. F. (2016). Chromatography: principles and instrumentation (Vol. 185). John Wiley & Sons.
- Wakte, K., Zanan, R., Hinge, V., Khandagale, K., Nadaf, A., & Henry, R. (2017). Thirty-three years of 2-acetyl-1-pyrroline, a principal basmati aroma compound in scented rice (*Oryza sativa* L.): a status review. *Journal of the Science of Food and Agriculture*, *97*(2), 384-395.
- Walter, M., & Marchesan, E. (2011). Phenolic compounds and antioxidant activity of rice. Brazilian Archives of Biology and Technology, 54(2), 371-377.
- Walter, M., Marchesan, E., Massoni, P. F. S., da Silva, L. P., Sartori, G. M. S., & Ferreira, R.
  B. (2013). Antioxidant properties of rice grains with light brown, red and black pericarp colors and the effect of processing. *Food Research International*, *50*(2), 698-703.
- Wang, Z., Wang, J., Chen, X., Li, E., Li, S., & Li, C. (2022). Mutual Relations between Texture and Aroma of Cooked Rice—A Pilot Study. *Foods*, *11*(22), 3738.
- Wei, X., Handoko, D. D., Pather, L., Methven, L., & Elmore, J. S. (2017). Evaluation of 2acetyl-1-pyrroline in foods, with an emphasis on rice flavour. *Food Chemistry*, 232, 531-544.
- Wei, X., & Huang, X. (2019). Origin, taxonomy, and phylogenetics of rice. In J. Bao (Ed.), *Rice* (Fourth Edition ed., pp. 1-29). Woodhead Publishing.
- WHO. (2002). *Diet, nutrition and the prevention of chronic diseases* [WHO technical report series ; 916].

https://apps.who.int/iris/bitstream/handle/10665/42665/WHO\_TRS\_916.pdf;jsessi

onid=53EE500C1DF3611B90996C59563B7E8A?sequence=1

- Widjaja, R., Craske, J. D., & Wootton, M. (1996a). Changes in Volatile Components of Paddy, Brown and White Fragrant Rice During Storage. *Journal of the Science of Food and Agriculture*, 71(2), 218-224.
- Widjaja, R., Craske, J. D., & Wootton, M. (1996b). Comparative studies on volatile components of non-fragrant and fragrant rices. *Journal of the Science of Food and Agriculture*, *70*(2), 151-161.
- Wijerathna, Y. M. A. M., Kottearachchi, N. S., Gimhani, D. R., & Sirisena, D. N. (2014). Exploration of relationship between fragrant gene and growth performances of fragrant rice (*Oryza sativa* L.) seedlings under salinity stress. *Journal of Experimental Biology and Agricultural Sciences*, 2(1), 7-12.
- Wilson, K., & Walker, J. (2010). *Principles and techniques of biochemistry and molecular biology*. Cambridge university press.
- Wongpornchai, S., Dumri, K., Jongkaewwattana, S., & Siri, B. (2004). Effects of drying methods and storage time on the aroma and milling quality of rice (*Oryza sativa* L.) cv. Khao Dawk Mali 105. *Food Chemistry*, *87*(3), 407-414.
- Xia, J., & Wishart, D. S. (2010). MetPA: a web-based metabolomics tool for pathway analysis and visualization. *Bioinformatics*, *26*(18), 2342-2344.
- Yang, D. S., Lee, K. S., & Kays, S. J. (2010). Characterization and discrimination of premium-quality, waxy, and black-pigmented rice based on odor-active compounds. *Journal of the Science of Food and Agriculture*, *90*(15), 2595-2601.
- Yang, D. S., Shewfelt, R. L., Lee, K.-S., & Kays, S. J. (2008). Comparison of Odor-Active Compounds from Six Distinctly Different Rice Flavor Types. *Journal of Agricultural and Food Chemistry*, *56*(8), 2780-2787.
- Yang, Y., Andrews, M. C., Hu, Y., Wang, D., Qin, Y., Zhu, Y., Ni, H., & Ling, W. (2011). Anthocyanin extract from black rice significantly ameliorates platelet hyperactivity and hypertriglyceridemia in dyslipidemic rats induced by high fat diets. *Journal of Agricultural and Food Chemistry*, 59(12), 6759-6764.
- Ye, R., Fan, Y.-H., & Ma, C.-M. (2017). Identification and enrichment of  $\alpha$ -glucosidaseinhibiting dihydrostilbene and flavonoids from Glycyrrhiza uralensis leaves.

Journal of Agricultural and Food Chemistry, 65(2), 510-515.

- Yoshida, S. (1981a). Climatic environment and its influence. In *Fundamentals of rice crop science* (pp. 65-110).
- Yoshida, S. (1981b). Growth and development of the rice plant. In *Fundamentals of rice crop science* (pp. 1-63).
- Yoshihashi, T. (2002). Quantitative Analysis on 2-Acetyl-1-pyrroline of an Aromatic Rice by Stable Isotope Dilution Method and Model Studies on its Formation during Cooking. *Journal of Food Science*, *67*(2), 619-622.
- Yoshihashi, T., Huong, N. T. T., & Inatomi, H. (2002). Precursors of 2-acetyl-1-pyrroline, a potent flavor compound of an aromatic rice variety. *Journal of Agricultural and Food Chemistry*, *50*(7), 2001-2004.
- Yoshihashi, T., Nguyen, T. T. H., & Kabaki, N. (2004). Area dependency of 2-acetyl-1pyrroline content in an aromatic rice variety, Khao Dawk Mali 105. *Japan Agricultural Research Quarterly: JARQ*, *38*(2), 105-109.
- Yuan, L., Wang, J., Xiao, H., Xiao, C., Wang, Y., & Liu, X. (2012). Isoorientin induces apoptosis through mitochondrial dysfunction and inhibition of PI3K/Akt signaling pathway in HepG2 cancer cells. *Toxicology and Applied Pharmacology*, 265(1), 83-92.
- Zhao, X., Shu, G., Chen, L., Mi, X., Mei, Z., & Deng, X. (2012). A flavonoid component from *Docynia delavayi* (Franch.) Schneid represses transplanted H22 hepatoma growth and exhibits low toxic effect on tumor-bearing mice. *Food and Chemical Toxicology*, *50*(9), 3166-3173.
- Zheng, Y., Ley, S. H., & Hu, F. B. (2018). Global aetiology and epidemiology of type 2 diabetes mellitus and its complications. *Nature Reviews Endocrinology*, *14*(2), 88.
- Zheng, Z., Zhang, C., Liu, K., & Liu, Q. (2022). Volatile Organic Compounds, Evaluation Methods and Processing Properties for Cooked Rice Flavor. *Rice*, *15*(1), 1-22.
- Zoon, H. F., De Graaf, C., & Boesveldt, S. (2016). Food odours direct specific appetite. *Foods*, *5*(1), 12.



Chulalongkorn University



Chulalongkorn University

## VITA

| SUPAWAT JINDAWATT                                                      |
|------------------------------------------------------------------------|
| 29 August 1986                                                         |
| Bangkok, Thailand                                                      |
| The Degree of Bachelor of Science in Pharmacy<br>(Second Class Honors) |
| 3 Assumption 15 Alley Bangpai Bangkae BKK 10160                        |
| ลงกรณ์มหาวิทยาลัย<br>LONGKORN UNIVERSITY                               |
|                                                                        |