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ABSTRACT (THAI) 
 ภัทริน นุวงศ์ศรี : การศึกษารูปแบบการแสดงออกของยีนในกลุ่มเซลล์สามมิตเิพื่อใช้ในการจัดกลุ่ม

ทางโมเลกลุของมะเร็งลำไส้ใหญ.่ ( CLASSIFICATION OF ORGANOID TRANSCRIPTOMIC 
PROFILES UNRAVELLING COLORECTAL CANCER MOLECULAR SUBTYPES) อ.ที่ปรึกษาหลัก 
: รศ.ดร. นพ.นิพัญจน์ อิศรเสนา ณ อยุธยา, อ.ที่ปรึกษาร่วม : ดร.สริะ ศรสีวัสดิ ์

  
มะเร็งลำไส้ใหญ่เป็นโรคที่มีความหลากหลายทางพันธุกรรม ทำให้มีการแสดงออกของยีนที่แตกต่าง

กันไป ก่อนหน้าน้ีมีงานวิจัยที่ทำการจัดกลุ่มทางโมเลกุลของมะเร็งชนิดนี้ด้วย Consensus Molecular Subtype 
(CMS) ซึ่งมีแนวโน้มในการนำไปใช้ทำนายการดำเนินโรคและการตอบสนองต่อการรักษา แต่อย่างไรก็ดี CMS ใช้
ข้อมูลการแสดงออกของยีนจากช้ินเนื้อที่ประกอบด้วยเซลล์มะเร็งและเซลล์อื่นๆภายใน stromal เช่น เซลล์เม็ด
เลือดขาว จึงนำมาสู่คำถามวิจัยทีว่าหากใช้ข้อมูล Transcriptome ของเซลล์มะเร็งโดยเฉพาะจะช่วยให้สามารถ
แยกกลุ่มของมะเร็งลำไส้ใหญ่ได้ดีขึ้นหรือไม่ และนำมาสู่การศึกษานี้ที่จำแนกกลุ่มของมะเร็งลำไส้ใหญ่  โดยใช้
ข้อมูลการแสดงออกของยีนที่ได้จากกลุ่มเซลล์สามมิติ (Organoid) ซึ่งประกอบขึ้นจากเซลล์มะเร็งเป็นหลัก ใน
การศึกษานี้ เริ่มต้นจากการประเมินความเปลี่ ยนแปลงในระดับ  Genome โดยใช้ข้อมูล whole exome 
sequencing จากผลการวิเคราะห์พบลักษณะของ chromosomal instability (CIN) และ microsatellite 
instability (MSI) ซึ่งเป็นกระบวนการในการเกิดมะเร็งลำไส้ใหญ่ที่แตกต่างกัน นอกจากนั้นข้อมูลนี้ยังแสดงให้
เห็นลักษณะการกลายพันธุ์ที่หลากหลายของยีนที่มีความเกี่ยวข้องกับมะเร็งชนิดนี้  ต่อมาในส่วนของข้อมูล 
Transcriptome ของ organoid นั้นสามารถจำแนกได้เป็น  4 กลุ่ม (P1-P4) โดยใช้วิธีการ non-negative 
matrix factorization (NMF) ซึ่งยีนที่เป็นเอกลักษณ์ของแต่ละกลุ่ม แสดงให้เห็นว่าแต่ละกลุ่มนั้นมีลักษณะ
เฉพาะที่แตกต่างกัน P1มีกระบวนการเมทาบอลิซึมของไขมันและคอเลสเตอรอลที่สูงขึ้น  P2และP3 มีการ

แสดงออกของ TGFβ pathway ที่สูง และกลุ่มสุดท้าย P4 ที่แสดงคุณสมบัติคล้ายกับเซลล์ต้นกำเนิดและมีการ
แสดงออกของยีนในกลุ่มที่มีหน้าที่เกี่ยวกับการซ่อมแซม DNA ที่สูงขึ้น ซึ่งลักษณะดังกล่าวนี้มีความสอดคล้องกับ
การต้านทานต่อยาเคมีบำบัดและรังสีรักษา นอกจากน้ัน ribosome biogenesis pathway ยังถูกกระตุ้นมากขึ้น
ในกลุ่ม P4 ซึ่งลักษณะดังกล่าวอาจจะสามารถนำมาพัฒนาเป็นเป้าหมายในการรักษามะเรง็ลำไส้ใหญ่ได้ในอนาคต 
ต่อมาเพื่อหายีนที่เป็นตัวบ่งช้ีของแต่ละกลุ่ม LASSO logistic regression model จึงถูกสร้างขึ้นเพื่อหายีนที่
สามารถจำแนกแต่ละกลุ่มได้ จากผลการศึกษานี้แสดงให้เห็นว่ายีนเอกลักษณ์ของกลุ่มเซลล์สามมิตินั้นจึงอาจจะ
นำมาพัฒนาให้เป็นเครื่องมือสำหรับแยกกลุม่และพัฒนาการรกัษาสำหรับมะเรง็ลำไส้ใหญ่ที่มคีวามจำเพาะมากข้ึน 
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ABSTRACT (ENGLISH) 
# # 6174019030 : MAJOR MEDICAL SCIENCES 
KEYWORD: colorectal cancer, molecular classification, organoid, non-negative matrix 

factorization (NMF), gene signature 
 Pattarin Nuwongsri : CLASSIFICATION OF ORGANOID TRANSCRIPTOMIC PROFILES 

UNRAVELLING COLORECTAL CANCER MOLECULAR SUBTYPES. Advisor: Asst. Prof. 
NIPAN ISRASENA, Ph.D. Co-advisor: SIRA SRISWASDI, Ph.D. 

  
Colorectal cancer (CRC) is genetically and transcriptomically heterogeneous disease. 

Molecular subtyping of colorectal cancer using consensus molecular subtype (CMS) system 
demonstrated the potential predictive value for tumor progression and treatment response. 
However, the CMS system was developed from data of whole tissues containing both cancer 
and non-tumor transcripts components for classification which does not directly represent 
intrinsic heterogeneity of cancer cells. In this study genetic profiles of CRC organoids were 
investigated first, and the results indicate chromosomal instability (CIN) and microsatellite 
instability (MSI) as pathogenic pathways of CRC. Furthermore, the results also revealed diverse 
patterns of somatic mutations of these CRC organoids. Subsequently, we evaluated a strategy 
of subtyping CRCs based on transcriptomics data from patient-derived CRC organoids, which 
mainly contain cancer cells. We demonstrated that using non-negative matrix factorization 
(NMF) CRC cancer organoids could be classified into four groups (P1-P4). Cluster-specific genes 
and Gene Set Enrichment Analysis (GSEA) displayed different characteristics of each group. P1 
exhibit enriched lipid and cholesterol metabolism pathways and P2 and P3 presented high 

TGF-β pathway. Lastly, P4 show stem cell-like properties and highly expressed genes in the 
DNA repair pathway associated with chemotherapy and radiation resistance. Moreover, P4 
organoids present a hyperactivated ribosome biogenesis pathway which may be developed as 
a biomarker of P4 and a target of CRC treatment. Then, LASSO logistic regression was built to 
identify gene signatures and developed a classifier of each group of organoids. These results 
suggested that the signature gene of organoid groups has the potential to be developed into a 
useful tool for CRC subtyping and developing more specific therapeutic strategies.  
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CHAPTER I 

INTRODUCTION 
 

 

1.1 Background and Rationale 

Colorectal cancer (CRC) is the third most common cancer worldwide and frequently 

diagnosed at advanced clinical stage (1). 60-65% of CRC sporadically arise through acquired 

somatic mutations and epigenetic alterations. Importantly, the 5-year overall survival rate drops 

drastically from 64% to 14% when the tumor becomes metastatic (2). Although an increasing 

number of therapeutic treatments have been developed for CRC, clinical outcomes are still 

undesirable. This is because the disease is highly heterogeneous and can progress through many 

alternative pathways, each with different genetic alterations, molecular profiles, clinical 

outcomes, and treatment responses. Consequently, it is challenging to identify the optimal 

therapy for each patient. Current clinical classifications of CRC depend on histopathological 

features and a simplistic tumor-node-metastasis (TNM) staging. However, patients with the same 

stage respond vastly differently to the same treatment. For these reasons, improvements to CRC 

subtype classification and treatment response prediction are needed (3). While additional 

molecular markers, such as microsatellite instability (MSI) status and BRAF and KRAS mutations, 

have been introduced, they could not capture the complexity of CRC tumor biology and are 

insufficient for treatment selection or prognosis prediction (3, 4).  

Gene expression profiling technologies such as microarray and RNA-sequencing can provide 

comprehensive molecular characteristics of a tumor. Accordingly, CRC classification framework 

has recently shifted towards transcriptomic data (4-8). A major breakthrough came in 2015 when 

a network-based analysis was used to unify six CRC classification studies and derive the first 

consensus CRC subtyping scheme, named the consensus molecular subtype (CMS). CMS method 

stratifies patients based on gene expression data into four major subtypes (CMS1-4) and a 

separate group of patients with mixed phenotypes. It was also speculated that further 

refinements of CRC classification, such as segregation of intra-CMS subgroups and delineation of 

unclassified samples with mixed phenotypes, will be necessary. One possible area of 

improvement is to reduce the interference from non-tumor cells, such as stromal components 

and infiltrated immune cells, in the gene expression profile of bulk tumor tissue. To avoid effects 

of stromal components, a CRC intrinsic subtypes (CRIS) classification scheme has been developed 
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by implanting patient-derived xenografts (PDXs) into mice and subsequently extracting human-

specific transcriptomic profiles from the PXDs. This technique enables acquisition of tumor cell-

specific gene expression data. An unsupervised clustering of PXD-based transcriptomic data 

indicated that CRC tumor may be stratified into five molecular classes (CRIS-A to CRIS-E) (9). As 

expected, a finer classification of CRC subtypes, especially for CMS2 group, can be achieved when 

interference from non-tumor cells was reduced. However, PDX-based classification method still 

suffers from cross-species reactivity between human and mouse cytokines which distort cancer 

cell transcriptome and from some stromal-derived transcripts. Inconsistencies between CMS and 

CRIS approaches also need to be explained. Therefore, alternative methods for extracting cancer 

cell’s transcriptional profile from patient tumors are needed to delicately stratify CRC subgroups 

(9).  

Recently, 3D cell culture systems have been developed. These techniques allow us to grow 

organoids composing of multiple organ-specific epithelium in the absence of stromal cells. 

Furthermore, organoids can preserve intra-tumoral heterogeneity, transcriptomic pattern, and key 

phenotypes of the original tissue (10, 11). Patient-derived organoids (PDOs) serve as effective 

preclinical models of human cancer as well as enable rapid, high-throughput ex vivo drug testing 

and screening since PDOs could be propagated and expanded within a few weeks. Notably, drug 

response of PDOs have been shown to correlate with the patients’ actual response (10). Hence, 

we hypothesize that intrinsic transcriptomic profile of cancer cells could be gleaned through 

gene expression data of CRC organoids which consist mainly of epithelial cells. 

In this study, transcriptomic data from 54 PDOs of CRC patients were grouped into 4 

prospective subtypes by unsupervised clustering methods. Then, differential expression and 

functional enrichment analyses were performed to identify molecular signatures of each group. 

Furthermore, copy-number variation, MSI score and mutation profiles of CRC organoids were 

identified using exome sequencing. Interestingly, organoids with radiation resistance were 

clustered together and demonstrated shared chromosomal instability and upregulation of DNA 

repair and ribosome biogenesis pathways. Finally, supervised machine learning techniques were 

used to construct a subtype classification model and to identify signature genes that contribute 

to the classification of each subtype. 
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1.2 Research question 

Whether transcriptomic data of organoids could be used to classify molecular subtype of 

CRC? 

1.3 Hypothesis 

The gene expression profiles of colorectal cancer organoids provide molecular subtype of 

CRC and gene signature of each organoid group 

1.4 Objectives 

• To classify molecular subtype of CRC by using transcriptomic data of organoids 

• To identify gene markers specific to each organoid group 
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CHAPTER II 

LITERATURE REVIEWS 

 

2.1 Stepwise progressions of colorectal cancer 

Tumorigenesis of colorectal cancer progresses through three different pathways including 

adenoma-carcinoma sequence, Serrated pathway, and inflammatory pathway. Adenoma-

carcinoma sequence is a classical or canonical pathway of CRC. This pathway begins with the 

acquisition of adenomatous polyposis coli (APC) mutations that upregulate Wnt/β-catenin 

signaling pathway, followed by KRAS mutation activation and TP53 tumor suppressor gene 

inactivation. Furthermore, transformation into metastatic phenotypes also occurs through 

dysregulation of multiple signaling pathways involved in cell cycle regulation and cellular 

proliferation. Chromosomal instability (CIN) due to loss of heterozygosity (LOH) and aneuploidy 

have also been found in 85% of sporadic tumors.  

Serrated pathway drives the progression from normal cells to hyperplastic polyp. It has 

been reported that serrated CRC patients has worse prognosis than patients with aberrations in 

canonical pathway. There are two characteristic molecular events in the serrated pathway. A 

critical early event is BRAF mutation which causes uncontrolled cell proliferation via activation of 

MAPK pathway and leads to hyperplastic polyp formation. Another event, called CpG island 

methylator phenotype (CIMP), is the hypermethylation of specific target promoter which 

contributes to microsatellite instability (MSI) and inactivation of tumor suppressor genes that 

promote later progression of polyps into sessile serrated adenoma and carcinoma. Notably, CIMP 

positivity was found about 75% of sessile serrated adenomas. Additionally, MSI is marked by 

alterations in the length of microsatellite (short nucleotides repeated and distributed along DNA 

sequence), this is owing to loss of DNA mismatch repair (MMR) system leading to genetic 

instability.   

Chronic inflammation can also lead to carcinogenic progression. This pathway begins 

with no dysplasia unlike canonical adenoma and serrated adenoma. Instead, dysplasia 

subsequently arises on the background of chronic inflammation. This type of CRC is frequently 

located in flat mucosa which conceals the lesion. Major molecular events in this pathway consist 

of TP53 mutation in the early stage and rare APC mutations in the late stage. Less than 2% of all 

CRCs arise through this pathway (1). 
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2.2 Colorectal treatment 

Generally, the ideal treatment of CRC is to entirely remove all tumors and metastases 

through surgery. However, this is not possible especially for advanced stage CRCs. Accordingly, 

radiotherapy and chemotherapy are used to halt the growth and spread of tumors in such 

patients (12). The standard chemotherapies for metastatic CRC utilize fluoropyrimidines, 

oxaliplatin and irinotecan, which result in median overall survival of approximately 18 to 20 

months. Drugs such as epidermal growth factor receptor (EGFR) inhibitors can also be prescribed 

together with chemotherapies to improve the median survival to 30 months. Several agents have 

been developed to target known CRC tumorigenesis and metastasis pathways, including Wnt/β-

catenin, Notch, Hedgehog and TGF-β/SMAD. Some agents also target signaling cascades such as 

PI3K/AKT or RAS/RAF. At present, there is no proven CRC treatment that is effective for every 

patient. 

2.3 Clinical classifications of colorectal cancer 

The union for international cancer control (UICC) and American Joint Committee on 

Cancer (AJCC) suggested the widely used Tumor Node Metastasis (TNM) classification guidelines 

for determining colorectal cancer staging and selecting treatments. Yet, the treatment outcomes 

of CRC patients with the same TNM classifications are still highly variable (13). 

To date, several mutation-based classifications have been used to guide treatment 

selections for CRCs. For example, TP53 mutations are predictive of decreased sensitivity to most 

chemotherapeutic agents, especially 5-fluorouracil. Previous studies found that BRAF inhibitors 

were ineffective in CRC patients with BRAF V600E mutations owing to EGFR feedback activation 

(4). MSI-high status is associated with poor response to 5-fluorouracil-based chemotherapy but 

suggests the possibility for immunotherapy with immune checkpoint targeting molecules such as 

PD-1. Although mutation-centered CRC classification has shown some promises in prognosis 

prediction and aiding treatment selection (1), it still does not provide sufficient predictive power 

and insight to improve our understanding of CRC tumor biology. 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 7 

Table  1 the previous six independent studies used for the consensus molecular subtype 
identification (4) 
Classification 
system 

Discovery 
dataset 

Validation 
dataset 

Clustering 
method 

Statistic for 
cluster count 
selection 

Classification 
method 

subtypes 

Schlicker et al. 
(2012) 
(14) 

62 samples 
 

1643 
samples 

Iterative non-
negative 
matrix 
factorization 
(NMF) -based 
consensus 
clustering 

Cophenetic 
correlation 
coefficient 

Two-step 
hierarchical 
clustering 

Subtype 1.1, 
1.2, 1.3 
Subtype 2.1, 
2.2 

Marisa et al. 
(2013) 
(15) 
 

443 
samples 

1029 
samples 

Classical 
consensus 
clustering 

Area under 
cumulative 
distribution 
function (CDF) 
curve 

Standard 
centroid-based 
classifier 

C1 -C6 

Sadanandam et 
al. (2013) 
(16) 

445 
samples 

744 
samples 

NMF-based 
consensus 
clustering 

Cophenetic 
correlation 
coefficient 

Prediction 
analysis for 
microarrays 
(PAM) 

Goblet-like, 
enterocyte, 
stem-like, 
inflammatory, 
transit-
amplifying 

De Sousa E Melo 
et al. (2013) 
(17) 

90 samples 1074 
samples 

Classical 
consensus 
clustering 

Gap statistic Prediction 
analysis for 
microarrays 
(PAM) 

CCS1-CCS3 

Budinska et al. 
(2013) 
(18) 
 

1113 
samples 

720 
samples 

Classical 
consensus 
clustering 

Dynamic cut 
tree 

Multiclass 
linear 
discriminant 
(LDA) 

Surface crypt-
like, lower 
crypt-like, 
CIMP-H-like, 
mesenchymal, 
mixed 

Roepman et 
al.(2014)  
(19) 

188 
samples 

543 
samples 

Hierarchical 
clustering 

N/A Single sample 
centroid-based 
classifier 

Type A-C 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 8 

2.4 Consensus molecular subtype (CMS) classification 

Multiple molecular subtyping techniques were evaluated and resulted in inconsistent 

results thus to manage with it the CRC subtyping consortium (CRCSC) was formed. Subsequently, 

consensus molecular subtype (CMS) classification has been developed by using network-based 

approach on large-scale data from six independent studies of transcriptomic-based subtyping 

methods (18 CRC data sets, n = 4,151 patients) in order to study the association among these six 

classifications. CMS classification is able to classify most CRC tumors into four molecular subtypes 

with unique pathway enrichment traits. 

Firstly, most MSI-high tumors are in the CMS1 (immune subtype, 14%) most tumor 

present hypermutation, hypermethylation and contain BRAF(V600E) mutations. Moreover, its 

present immune cell infiltration within tumor microenvironment which is significantly associated 

with better prognosis in MSI tumors. It is reported that local-infiltration is highly enriched with 

tumor-infiltrating cytotoxic T lymphocytes (CTLs) in core tumor area and surrounding peritumoral 

area. The local inflammatory response is widely reported in tumor progression in most of the 

cancers and presence of tumor infiltrating lymphocytes (TILs) are most important in the 

suppression of tumor progression and invasion. Inhibitors, such as immune checkpoint inhibitor 

that stimulate TILs have been proposed to regulate CRC progression such as PD1 blocker. 

Secondly, tumor with chromosomal instability (CIN), that are commonly non-hypermutated, can 

be transcriptome-based subclassified into three groups: CMS2 (canonical subtype, 37%); CMS3 

(metabolic subtype, 13%); CMS4 (mesenchymal subtype, 23%). CMS2 tumors showed more 

frequent copy-number alterations than other subtypes. Additionally, found that WNT and MYC 

downstream targets are highly upregulated and higher expression of the EGFR, ERBB2 (also known 

as HER2), insulin-like growth factor 2 (IGF2), as well as cyclins. Moreover, CMS3 tumors are 

characterized by up to 30% present with MSI and gene hypermethylation in intermediate levels. 

It also contains metabolic reprogramming as well as it enriched for KRAS-activating mutations 

linked to marked metabolic adaptation in CRC. Therefore, an understanding of glucose metabolic 

pathway in cancer may also be seen as novel therapeutic targets. Finally, CMS4 tumors are 

activated in pathways associated with epithelial-mesenchymal transition (EMT) and stemness 

such as TGFβ and show prominent expression of proteins in extracellular matrix remodeling and 

angiogenesis. This subtype tends to be diagnosed at more advance stages. Corresponding to 

patient cohort CMS4 tumors result in worse overall survival. Importantly, the combination of 

chemotherapy and TGF-β receptor (TGFR) inhibitor has already moved to clinical trials in patients 
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whose tumor test positive for TGFβ activated. Instead, there are 13% of early-stage tumor cannot 

be assigned in any subtypes, demonstrating mixed phenotypes or intra-tumoral heterogeneity. 

In the pre-clinical studies, they found an association with sensitivity to chemotherapy-

induced apoptosis prevalent in CMS2 and CMS4 (20). Moreover, different studies retrospectively 

evaluated CMS as a prognostic factor for stage III CRC patients treated with FOLFOX adjuvant 

chemotherapy, finding that CMS was predictive in these patients. In 2019, Lenz et al. 

demonstrated that the CMSs are highly prognostic and predictive for overall survival (OS) and 

progression-free survival (PFS). In the CMS1 group, patients treated with bevacizumab had a 

significantly longer OS than those treated with cetuximab. For the CMS2, patients treated with 

cetuximab had a significantly longer OS than patients treated with bevacizumab. These findings 

highlight the possible application of CMSs in clinic and suggest that refinement of the CMS 

classification may provide a path toward identifying patients who are most likely to benefit from 

specific targeted therapy (21).  Menter et al. purposed that absent knowledge of the CMS, 

multiple drugs have been tried on the entire CRC population and it may only show a low 

responses rate due to the drug affects to specific group of patients. Unfortunately, these drugs 

would likely have been discarded as ineffective for CRC. For these reasons, they assume that if 

we have a drug targeting pathway alteration which is a characteristic of each subtype. This can 

lead to increasing of response rate of these subgroups and greatly enhanced progression free and 

overall survival, this would be considered a complete success (22).  

However, most of data used in training set were derived from bulk tumor tissue which 

provide transcriptomic profiles of stromal cell resulting in variation of expression patterns due to 

different location of tumor. Moreover, stromal transcripts are significantly influenced molecular 

classification processes. Besides, previous study suggested that it is necessary to perform further 

refinement in subtype classification with intra-CMS subgroup and better classification of samples 

with mixed phenotypes. 

Recent study demonstrated that CMS2 subtype has the same proportion in both the 

early and advanced stages. This is possibly the most heterogeneous gene expression subtype. In 

fact, CMS2 includes two of their original CRCAssigner subtypes (enterocyte and transit-amplifying 

or TA) and three Marisa subtypes (C1, C5 and C6). Thus, it may be reasonable to subdivide the 

CMS2 to further understand biological heterogeneity, stage distribution, and potential 

personalized target of this subtype. Similarly, the recent study demonstrated significantly 
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different prognostic value when the CMS4 subtype was further subdivided into CMS4-C4 (worse 

DFS and OS) and CMS4-not C4 based on Marisa classification (8). These examples highlight how 

CMS subtypes define the overall profiles of major CRC subgroups; however, even within each 

subtype, there may be biological variability and important sub-subtypes with distinctive biological 

parameter that requires careful consideration(23). In 2019, Purcell et al. (24) investigated the 

utility of CMS to predict prognosis of CRC patients compared to the routinely used staging. They 

found that CMS4 was not an independent prognostic marker for survival while TNM staging 

significantly explains mortality independently of age and gender. Multiple studies revealed that 

intra-tumoral heterogeneity may affect the classification of CMS4 tumors due to the EMT-

associated genes seen in CMS4 tumors may present upregulated gene derived from fibroblast 

and mesenchymal cells present in the stromal background rather than directly from the tumor 

itself. Moreover, previous studies suggested that the location and number of tumor biopsies can 

undermine the accuracy of CMS (5, 9, 25). 

2.5 Colorectal cancer intrinsic subtype (CRIS) classification 

It is necessary to classify patients by using transcriptomic data still unaffected by stromal 

variables. Thus, Colorectal cancer intrinsic subtype (CRIS) classification has been developed based 

on human-specific transcriptome in CRC PDX models because original tumor stroma is replaced 

by mouse stroma. Consequently, using human-specific probes can extract intrinsic gene 

expression of cancer cells. Then, transcriptomic patterns were analyzed through unsupervised 

clustering to stratify samples into five subgroups: (i) CRIS-A mostly are MSI tumor together with 

CpG island methylator phenotype (CIMP) and hypermutation as well as KRAS and BRAF mutation 

CRIS-A has mucinous and glycolytic phenotypes: (ii) CRIS-B contains BRAF mutations, displayed 

strong TGFβ activity and epithelial-mesenchymal transition (EMT) characteristics. They purposed 

that CRIS-B tumors had poor prognosis: (iii) CRIS-C shows KRAS-wild-type as well as contains MYC 

proto-oncogene and elevated EGFR signaling: (iv) CRIS-D was enriched for IGF2 amplification and 

WNT activation: (v) CRIS-E contains KRAS and TP53 mutations, Paneth cell-like phenotype. 

Additionally, CRIS-C, D and E are presented CIN. Importantly, molecular subtypes of previous 

studies have not reported to associated with these characteristics of individual CRIS subtypes. 

This indicates removing of stromal transcriptome throughout the classification process improved 

sensitivity to identification of intrinsic characteristics of cancer cells. Another study compared 

CMS to CRIS using multiple sampling method approaches, they concluded that CRIS provide 

more spatially, and temporally robust classification of molecular subtypes compared to CMS (26). 
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Thus, this group combined CRIS transcriptional subtyping and CD8 immunohistochemistry to 

identify poor prognosis stage II/III CRC patients who were able to benefit from adjuvant 

chemotherapy (27). 

Previous study revealed that CRIS signature genes are predominantly expressed in 

epithelial cell type contribute to improve subgroup segregation and this method perform higher 

level of agreement in subtype classification than the CMS classifier, when perform the same data. 

However, they suggested that some stromal-derived expression patterns are remained in CRIS 

classification. Additionally, PDX models might present cross-species reactivity between human 

and mouse cytokines leading to distortion of cancer cell transcriptome. These data indicated that 

alternative methods to keep exclusively cancer cell transcriptional profile from patient tumors 

are necessary to delicately segregated subgroup (9). 

2.6 Unsupervised clustering methods 

According to the advent of microarray and RNA-sequencing, it is possible to simultaneous 

observe gene expression data of the sample. However, interpretation of the expression data to 

gain insight of biological process and disease mechanisms are still challenged. Thus, various 

methods have been developed for clustering genes or samples. 

Hierarchical clustering (HC) has been developed for clustering genes or samples that 

show similar expression patterns. HC is a frequently used and beneficial method. It has been 

successfully used to analyze gene expression patterns to predict patient outcome among 

lymphoma patients (28) and to provide molecular portraits of breast cancer (29). However, this 

method has limitations in their ability to focus on the prevailing structures in a data set and fail 

to capture alternative structures and local behavior. Moreover, HC has the additional drawback 

that it imposes a stringent tree structure on the data, is highly sensitive to the metric used to 

assess similarity, and normally requires subjective evaluation to define clusters. 

Non-negative matrix factorization (NMF) algorithm has been firstly proposed by Lee and 

Seung (30) as part-based learning of faces and semantic features of text. For example, NMF 

decompose human face images into parts reminiscent of features such as eye, nose, etc. This 

method is different to other methods such as principal components analysis that learn holistic 

representations. The NMF is discriminated from the other methods by its application of non-

negative constraints. These constraints lead to a parts-based representation because they allow 

only additive, not subtractive, combinations.  Next, several variations of it have been proposed 
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for clustering a single high-dimensional data. In 2004, Brunet et al. demonstrated the use of NMF 

to reduce the dimension of gene expression data to a small number of metagenes (31). Then, 

the metagene expression patterns provide a robust clustering of samples. This study suggested 

that the ability of NMF to retrieve meaningful biological information from microarray data of 

cancer. Notably, this method exhibit benefits over other methods such as hierarchical clustering. 

Moreover, it seems to less sensitive to gene selection or initial conditions and allow to detect 

different or context-dependent patterns of gene expression in complex biological systems. Thus, 

they proposed NMF as a general method for robust molecular pattern discovery. 

 

2.7 Colorectal cancer organoid: a pre-clinical cancer model 

In the past few decades traditional cancer cell lines and animal models have been used 

to study about tumorigenesis, tumor progression and drug responses of colorectal cancer. 

Whereas this approach is associated with a high failure rate of drug responses in the later clinical 

trial steps due to cancer cell lines poorly represent many features of the original tumors include 

genetic heterogeneity in the cancer cells lead to gene expression adaptations which attributed to 

varying treatment responses. Subsequently, Patient-derived xenografts (PDXs) model has been 

developed by isolating tumor cells from patients and transplanting them into immunodeficiency 

mice. This approach almost completely represents the genotypes and phenotypes of tumors. 

Nonetheless, PDX models are limited by a long time of establishment including inappropriate for 

purposes of high-throughput screening. 

Organoids, 3D culture models, have been proposed as a pre-clinical cancer model based 

on knowledge of signal regulation of self-renewal, proliferation, and differentiation within 

intestinal stem cells (ISCs), allowing continuing expansion of Lgr5+ ISCs into crypt-villus structure. 

For CRC organoid propagation CRC biopsies were isolated and embedded within Matrigel along 

with combination of specific niche factors to mimic microenvironment in the crypt include 

epidermal growth factor (EGF), Noggin, R-spondin1 and Wnt3A with addition of TGFβ inhibitor and 

p38 inhibitor (11).  

The CRC organoids consist of multiple cell types of the organ which can recapitulate the 

heterogeneity of their original tumors (32). Additionally, it contains the gene expression patterns 

and some key features and functions of that organs. Furthermore, many studies revealed that 

organoids demonstrated concordance of somatic mutations patterns between organoids and 
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corresponding biopsy (33, 34). Due to organoids can be generated and expanded from every 

individual patient and it can closely resemble to the original tumors indicate that organoid is a 

promising model which can more representative and clinical related than cell lines for drug 

screening. Therefore, patient-derived tumor organoids can be used to predict patient responses 

for novel targeted drugs. However, not for all patients with molecular pathway alterations may 

be susceptible to molecular targeted treatment. The low success rate of drug testing may be due 

to the drug was not tested in the proper patient group. Accordingly, to explain which targeted 

agents correspond which molecular patterns, large studies of prospective biomarkers are 

necessary (33). For this reason, molecular classification of organoids may help to select the 

reasonable targeted agents suited for drug testing in organoid models. Moreover, organoids 

generated from tissue stem cells are mainly structured by the epithelial cells and lack of stromal 

and immune cell types(10). Thus, transcriptomic profiles represent intrinsic gene patterns of the 

tumor cells which may enhance molecular subtypes classification based on pathway alterations 

of CRC organoids. 
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CHAPTER III  

RESEARCH METHODOLOGY 
 

3.1 Data collection 

PDOs of colorectal cancer were obtained from Chulalongkorn cancer organoid bank. These 

PDOs were generated from tissues of stage II and III CRC patients who could be treated with 

neoadjuvant chemoradiation follow by the ESMO guideline for rectal cancer 2013 or patients with 

metastatic cancer non-responding to standard treatment. The PDOs were maintained according 

to culture protocol of previous study (35). Samples in this study consists of 55 colorectal cancer 

PDOs and 5 organoids derived from adjacent normal tissue. RNA was extracted from PDOs using 

Qiagen kit. mRNA isolation with poly(A) mRNA magnetic isolation module. Then, the libraries were 

subjected to 2x150bp paired-end sequencing on an Illumina HiSeq instrument. In addition, DNA 

was extracted from CRC organoids and corresponding peripheral blood mononuclear cells 

(PBMCs) with a QiaAmp Blood mini kit (Qiagen). For whole exome sequencing, SureSelect Human 

V6-Post (Agilent), an exome capture kit was used according to the manufacturer’s instructions 

then it was sequenced using Illumina Hiseq2500 (outsourced to Macrogen, Inc.). The quality of 

sequencing data were visually checked using FastQC (36). 

3.2 Somatic variant calling 

Whole exome sequencing data in FASTQ format were aligned to the human reference 

genome version GRCh38 (hg38) using Burrows-Wheeler Aligner (version 0.7.17)(37). Alignment 

results in SAM format were pre-processed using the Genome Analysis Toolkits (GATK, version 

4.1.2.0) (38, 39) according to the best practice developed by the authors. This step removes 

duplicate reads and recalibrates base calling quality scores (38). Processed whole exome 

sequencing data from the patient’s tumor tissue and PBMC were compared using the Mutect2 

module in GATK to identify tumor-specific somatic variants. Mutect2 removes non-tumor-specific 

variants by comparing variants identified in the tumor sample to those found in the matched 

PBMC or a panel of normals (PONs), which consists of sequencing data from other healthy 

individuals. Mutect2 also estimates the extent of contamination of normal cells in tumor sample 

and utilizes germline allele frequency information from a population of healthy individuals to 

select tumor-specific somatic variants. Panel of normals and germline allele frequency data were 

obtained from WES data of peripheral blood.  Funcotator was used to annotate the clinical 
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impact and biological function of each identified variant. Finally, maftools (40) was used to 

visualize the output. 

3.3 Copy number variation (CNV) calling and MSI score 

CNVs were called from processed whole exome sequencing data using CNVkit (41). 

Firstly, “coverage” command computes the log2 mean read depth for a sample using an aligned 

sequencing reads in BAM format and the target bins in BED format. Then, the “reference” 

command estimates the expected read depth of each bin across a panel of control samples to 

produce a reference copy-number profile that can then be used to correct other test samples. 

Next, the test samples were normalized to the reference using “fix” command. After correction 

of coverage biases the copy ratio estimates of each sample can be segmented into dicrete copy-

number regions using the “segment” command. Finally, log2 copy ratio of multiple samples were 

visualized as a heatmap. For MSI score, paired tumor-normal whole exome sequencing data of 

each CRC organoid were investigated MSI sites through MSIsensor followed by recommended 

pipeline (42). 

3.4 Differential gene expression analysis 

RNA sequencing data were first trimmed using Cutadapt (v1.9.1) (43) and subsequently 

aligned to human reference genome (hg38) and quantified using Kallisto (version 0.46.2) (44) with 

20 bootstraps. Next, differential gene expression between normal and cancer organoids were 

analyzed through Sleuth (version 0.30.0) (45) R package. Differentially expressed genes (DEGs) 

were reported (adjusted p-value < 0.05). Gene expression level (tpm) were presented by boxplot 

through ‘ggplot2’ R package (46). 

3.5 unsupervised clustering of gene expression data 

Hierarchical clustering was performed using the pvclust R package (version 2.2.0) (47). 

Expression data of 747 DEGs between cancer and normal organoids were normalized to count 

per million (CPM), loP2 transformed, and used as input for the clustering. The hierarchical 

clustering process was repeated with 10,000 bootstraps to assess the uncertainty. Pearson 

correlation distance and average linkage method were selected. 

Non-negative matrix factorization (NMF) was performed using the NMF R package (48). 

The expression matrix of the 12,529 high variance (variance >1) genes was analyzed to identify 

the predetermined number of clusters (K) varying from 2 to 6. At each number of cluster setting, 

40 iterations of NMF were performed. The algorithm of Brunet et al. (49) was selected. Quality of 
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the clustering was evaluated by the cophenetic coefficient and the number of clusters at which 

the coefficient began to drop was chosen as the optimal number of clusters (31).  

3.6 Functional annotation and enrichment analysis 

To characterize the gene functional signature of each PDO cluster, differential expression 

analysis was performed between PDOs in that cluster against all other cancer PDOs as described 

above. DEGs (adjusted p-value < 0.05) and their corresponding log2 fold difference values were 

than submitted to a gene set enrichment analysis (GSEA) (50) against the KEGG pathway 

databases using the WebGestalt interface (http://www.webgestalt.org/) (51). Top 10 up- and 

down-regulated pathways are listed in Table1.  

3.7 Consensus molecular subtype (CMS) and CRC intrinsic subtype (CRIS) 

CMS subtypes for PDOs in this study were predicted using DeepCC (52). For DeepCC, the 

log2 transformed expression data of CRC organoids were used as input. Additionally, CRC intrinsic 

subtype (CRIS) prediction was performed through the CRISclassifier R package (9). All prediction 

results were filtered using an adjust p-values ≤ 0.05. 

3.8 prediction of subtype clusters from unsupervised analysis 

Transcriptomic data of 14283 genes of 54 samples of stage II and III CRC were first 

normalized and log transformed. The processed expression data were then divided into a training 

and a test dataset with 35 and 19 samples, respectively. The least absolute shrinkage and 

selection operator (LASSO) logistic regression models were trained using the glmnet R package 

(53) to classify each sample according to the clusters identified via NMF method. 3-fold cross 

validation was performed on the training dataset to tune the regularization parameter λ of the 

LASSO model. The value of λ that yielded the lowest average classification error over cross-

validation was selected. Finally, a LASSO logistic regression model was trained using the whole 

training set and evaluated using the test dataset. Genes with nonzero coefficients in this model 

were designated as signature genes for the NMF clusters. 

3.9 co-expression matrix  

 Gene expression data of CRC organoids in ribosome biogenesis pathway were extracted 

using gene list from the Molecular Signatures Database (MSigDB). Next, these genes were 

calculated for Pearson correlation then plotted in heatmap using pheatmap R package (54). 

Hierarchical clustering of genes was performed using Euclidean distance and average clustering 

method. Clusters were identified by using cutree R function.  

http://www.webgestalt.org/
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CHAPTER IV  

RESULTS 
 

4.1 Genetic profiling of individual CRC organoids 

 To investigate genomic alterations of CRC organoids 38 whole-exome sequencing data 

were examined. Firstly, according to the majority of CRC demonstrated chromosomal instability 

(CIN) during cell division and this feature leads to gains and losses of various genes thus copy-

number variation (CNV) was analyzed. The results demonstrated that 18 out of 38 organoid 

samples (47.37%) present high CNV and these samples shown deletion of chromosome 18 

involving several tumor suppressor genes (Figure1). This result indicated the chromosomal 

instability (CIN) feature of organoids in this study. Secondly, the most frequently mutated genes 

of CRC were found in these organoids including APC, TP53 and KRAS genes (Figure3A). Then, the 

mutation frequency of organoids was compared to TCGA database (Figure3B). The CRC organoids 

in this study exhibit slightly different mutation frequencies of these genes. Nevertheless, 

organoids presented lower frequency in important genes than that were found in the TCGA 

database such as APC, TP53 and KRAS mutations. Lastly, to evaluate the microsatellite instability 

(MSI) status of all organoids, MSI scores were calculated. The results revealed that 4 out of 38 

CRC organoids (10.53%) have high MSI scores referring to abnormalities of DNA mismatch repair 

(MMR) (Figure2). The CRC organoids with MSI high have the possibility of increased gene mutation 

leading to distinct biologic characteristics compared to the microsatellite stable group. In 

summary, these genomic profiling results demonstrated that CRC organoids generated in this 

study contained diverse genetic alterations and consistent with that were found in colorectal 

cancer. 
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Figure  1 Copy-number variations (CNV) heatmap of organoids 

heatmap visualize log2 gene copy ratio of each sample red and blue indicate amplification and 

deletion of copy number, respectively. 

 
Figure  2  MSI score (%) of individual CRC organoid 
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B  

 

Figure  3 Mutation patterns of 38 CRC organoids in this study  

(A) Somatic mutations of CRC frequently mutated genes; (B) mutation frequency of CRC organoids 
(orange) and TCGA database (blue)  
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4.2 Clustering of CRC organoids transcriptomic data 

To classify molecular subtypes of CRC organoids, unsupervised clustering of 

transcriptomic data from 54 CRC organoids with non-negative matrix factorization (NMF) method 

was analyzed. The clustering results indicated that the data can be robustly delineated into 

groups at various resolutions, from k = 2 to k = 6 clusters (Figure 4A). Using cophenetic coefficient 

to measure the quality of clustering revealed that the optimal number of clusters is at k = 4 after 

which the coefficient steadily drops (Figure4B). With k =4, the clusters classified by NMF are 

extremely robust (cophenetic coefficient = 0.996). Thus, using this method can classify CRC 

organoids into four groups: P1 (14/54; 25.93%), P2 (15/54; 27.78%), P3 (12/54; 22.22%) and P4 

(13/54; 24.07%). 

As an alternative, hierarchical clustering (pvclust method) was also performed on the 

transcriptomic data. Here, instead of considering all genes, a set of 747 genes that are 

differentially expressed between cancer and normal organoids were selected. Transcriptomic 

data from 5 paired normal organoids were also included in the analysis. The dendrogram was 

then constructed with average linkage and correlation distance (Figure 5A). This shows a clear 

separation between normal and CRC organoids and suggests that CRC organoids may be classified 

into up to four groups (G1-G4). While G1 and G2 are well-separated, there is no clear boundary 

between G3 and G4. 

Comparison between the clusters identified by pvclust and NMF indicate a good 

agreement, especially between G1 and G4 groups of pvclust method and P1 and P4 groups of 

NMF (Figure 5B). As the NMF method was more objectively tuned using cophenetic coefficient 

and did not rely on gene selection, the clusters identified by NMF (P1-P4) were selected to 

further analyses. 
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Figure  4 NMF-based consensus clustering of the PDOs transcriptomic data 

(A) Consensus map of NMF clustering result (k = 2-6) (B) The trend of cophenetic coefficient 

as the number of cluster (k) increases.  k=4 is selected as the optimal number of cluster 

as it is where the cophenetic coefficient begins to drop 
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Figure  5 Hierarchical clustering of PDOs transcriptomic data based on 747 differentially 

expressed genes. 
(A) Hierarchical clustering results from pvclust R package. Approximately Unbiased p-values (red) 

and Bootstrap p-values (green) produced by pvclust were shown at each branching point. (B) 
Comparison of predicted CMS subtype, predicted CRIS subtype, and clustering results obtained 

from pvclust or NMF. 
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4.3 comparison between NMF-derived clusters, CMS, and CRIS 

To compare NMF-derived clusters with the established CMS and CRIS systems, the 

subtypes of CRC organoids were also predicted using DeepCC (52) and CRISclassifier (9), 

respectively. The results shown in Figure5B demonstrate that most samples in P1 were predicted 

as CMS3 (metabolic subtype), CRIS-A (hypoxic and glycolytic subtype), and CRIS-C (Epidermal 

growth factor receptor (EGFR) pathway activation). P2 and P3 are associated with multiple CMS 

and CRIS subtypes. Interestingly, CMS4 was exclusively predicted only in P2 and shared a similar 

characteristic of TGFβ upregulation with CRIS-B by. Moreover, CRIS-D and CRIS-E, which are 

associated with upregulation in WNT pathway, were identified in P4 which is predominantly 

predicted as CMS2 (canonical wnt subtype).  

 

4.4 Functional characteristic of individual group 

 To better describe the functional characteristics inherent to each CRC organoid group 

defined by NMF clustering, differential expression analysis was performed to identify significantly 

up- or down-regulated genes in that group compared to the others. Next, Gene Set Enrichment 

Analysis (GSEA) was applied to identify enriched pathways from the Kyoto Encyclopedia of Genes 

and Genomes (KEGG) databases. The top 10 of KEGG pathways associated with each cluster were 

listed in Table2 and described in more details below. 
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Table  2 The results of top 10 up- and down-regulated KEGG pathway enrichment influenced 

by the differentially expressed genes of individual group. 

  

Gene Set Description P Value FDR Gene Set Description P Value FDR

KEGG: hsa00140 Steroid hormone biosynthesis 0.000 * 0.000 * KEGG: hsa03030 DNA replication 0.000 * 0.000 *

KEGG: hsa00830 Retinol metabolism 0.000 * 0.000 * KEGG: hsa03010 Ribosome 0.000 * 0.000 *

KEGG: hsa04975 Fat digestion and absorption 0.000 * 0.001 * KEGG: hsa04110 Cell cycle 0.000 * 0.000 *

KEGG: hsa00040 Pentose and glucuronate interconversions 0.000 * 0.002 * KEGG: hsa03460 Fanconi anemia pathway 0.000 * 0.005 *

KEGG: hsa04144 Endocytosis 0.000 * 0.003 * KEGG: hsa03008 Ribosome biogenesis in eukaryotes 0.002 * 0.012 *

KEGG: hsa00982 Drug metabolism 0.003 * 0.003 * KEGG: hsa03013 RNA transport 0.000 * 0.012 *

KEGG: hsa00601 Glycosphingolipid biosynthesis 0.000 * 0.004 * KEGG: hsa03440 Homologous recombination 0.000 * 0.013 *

KEGG: hsa04923 Regulation of lipolysis in adipocytes 0.002 * 0.007 * KEGG: hsa03420 Nucleotide excision repair 0.003 * 0.047 *

KEGG: hsa05204 Chemical carcinogenesis 0.003 * 0.007 * KEGG: hsa04310 Wnt signaling pathway 0.002 * 0.049 *

KEGG: hsa04972 Pancreatic secretion 0.000 * 0.014 * KEGG: hsa03410 Base excision repair 0.007 * 0.049 *

KEGG: hsa04310 Wnt signaling pathway 0.007 * 0.085  KEGG: hsa05169 Epstein-Barr virus infection 0.879  0.874  

KEGG: hsa05205 Proteoglycans in cancer 0.003 * 0.097  KEGG: hsa05222 Small cell lung cancer 0.853  0.966  

KEGG: hsa05225 Hepatocellular carcinoma 0.030 * 0.286  KEGG: hsa05203 Viral carcinogenesis 0.174  0.987  

KEGG: hsa05165 Human papillomavirus infection 0.206  0.534  KEGG: hsa01100 Metabolic pathways 0.128  1.000  

KEGG: hsa04060 Cytokine-cytokine receptor interaction 0.066  0.536  KEGG: hsa04714 Thermogenesis 0.367  1.000  

KEGG: hsa05146 Amoebiasis 0.207  0.546  KEGG: hsa04024 cAMP signaling pathway 0.530  1.000  

KEGG: hsa04010 MAPK signaling pathway 0.093  0.557  KEGG: hsa04723 Retrograde endocannabinoid signaling 0.642  1.000  

KEGG: hsa04933 AGE-RAGE signaling pathway in diabetic complications 0.199  0.557  KEGG: hsa04380 Osteoclast differentiation 0.665  1.000  

KEGG: hsa04144 Endocytosis 0.271  0.565  KEGG: hsa04520 Adherens junction 0.759  1.000  

KEGG: hsa04390 Hippo signaling pathway 0.111  0.572  KEGG: hsa05202 Transcriptional misregulation in cancer 0.866  1.000  

KEGG: hsa03010 Ribosome 0.000 * 0.149  KEGG: hsa04144 Endocytosis 0.005 * 0.172  

KEGG: hsa04110 Cell cycle 0.006 * 0.236  KEGG: hsa04270 Vascular smooth muscle contraction 0.016 * 0.179  

KEGG: hsa04360 Axon guidance 0.011 * 0.254  KEGG: hsa04923 Regulation of lipolysis in adipocytes 0.007 * 0.186  

KEGG: hsa04060 Cytokine-cytokine receptor interaction 0.008 * 0.315  KEGG: hsa00561 Glycerolipid metabolism 0.018 * 0.193  

KEGG: hsa05323 Rheumatoid arthritis 0.010 * 0.351  KEGG: hsa04142 Lysosome 0.021 * 0.193  

KEGG: hsa04115 p53 signaling pathway 0.044 * 0.456  KEGG: hsa04915 Estrogen signaling pathway 0.028 * 0.236  

KEGG: hsa04064 NF-kappa B signaling pathway 0.038 * 0.473  KEGG: hsa02010 ABC transporters 0.004 * 0.242  

KEGG: hsa04390 Hippo signaling pathway 0.041 * 0.493  KEGG: hsa04213 Longevity regulating pathway 0.057  0.244  

KEGG: hsa04062 Chemokine signaling pathway 0.037 * 0.523  KEGG: hsa04611 Platelet activation 0.070  0.245  

KEGG: hsa04145 Phagosome 0.046 * 0.566  KEGG: hsa04970 Salivary secretion 0.066  0.258  

KEGG: hsa03030 DNA replication 0.000 * 0.000 * KEGG: hsa05146 Amoebiasis 0.000 * 0.001 *

KEGG: hsa03460 Fanconi anemia pathway 0.000 * 0.000 * KEGG: hsa00982 Drug metabolism 0.000 * 0.002 *

KEGG: hsa03008 Ribosome biogenesis in eukaryotes 0.000 * 0.008 * KEGG: hsa04144 Endocytosis 0.000 * 0.003 *

KEGG: hsa03440 Homologous recombination 0.000 * 0.009 * KEGG: hsa04060 Cytokine-cytokine receptor interaction 0.000 * 0.008 *

KEGG: hsa05033 Nicotine addiction 0.002 * 0.032 * KEGG: hsa05418 Fluid shear stress and atherosclerosis 0.000 * 0.019 *

KEGG: hsa04110 Cell cycle 0.000 * 0.035 * KEGG: hsa00512 Mucin type O-glycan biosynthesis 0.004 * 0.019 *

KEGG: hsa03430 Mismatch repair 0.010 * 0.065  KEGG: hsa04510 Focal adhesion 0.000 * 0.020 *

KEGG: hsa03013 RNA transport 0.004 * 0.071  KEGG: hsa00040 Pentose and glucuronate interconversions 0.000 * 0.020 *

KEGG: hsa03410 Base excision repair 0.025 * 0.098  KEGG: hsa04668 TNF signaling pathway 0.000 * 0.023 *

KEGG: hsa03020 RNA polymerase 0.015 * 0.105  KEGG: hsa04810 Regulation of actin cytoskeleton 0.000 * 0.025 *

P4

Group
Up-regulated Down-regulated

P1

P2

P3
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4.4.1 P1: metabolic pathway alterations 

GSEA-based phenotypic analyses reveal metabolic pathway alteration of P1. It is 

enriched pathway involved in metabolism of lipid and cholesterol including fat digestion and 

absorption, regulation of lipolysis in adipocytes, retinol metabolism and steroid hormone 

biosynthesis pathways (Table2). Moreover, organoids in P1 also show upregulated pentose and 

glucuronate interconversions pathway. As expected, by DeepCC, 9 out of 14 samples in P1 were 

predicted as CMS3 metabolic subtype (Figure5B). Then, the enriched pathways of P1 were 

compared to CMS3. The result indicated that CMS3 presented alterations in diverse metabolic 

pathways such as glucose and pentose metabolism, nitrogen metabolism and fatty acid 

metabolism etc. Interestingly, CMS3 were enriched in metabolic of phospholipid and fatty acids 

which might be associated with lipid metabolism of P1. 

Then, to explore additional characteristic of P1, Crypt top and crypt base gene signatures 

of colon from previous study (55) were applied to investigate expression pattern of each groups. 

Interestingly, P1 organoids expressed higher signature of crypt top signature indicated that it 

presented more kind of differentiated cell than others (Figure10A). 

4.4.2 P2: highly expressed WNT7A and WNT7B and TGFβ activation 

Comparison between P2 and other groups, 379 DEGs were identified before applied 

these DEGs as input of GSEA. However, KEGG pathway enrichment results of P2 presented three 

pathways were significantly enriched (p value < 0.05) including Wnt signaling, proteoglycans in 

cancer, and Hepatocellular carcinoma pathways (Table2). Wnt signaling pathway which is one of 

the most frequent abnormalities in human cancer. When explore the wnt signature the results 

demonstrated that P2 was not presented the highest wnt pathway (Figure6D). However, P2 show 

higher expression of WNT7A and WNT7B which are ligand of this pathway than other groups 

(Figure6A-C). Furthermore, TGFB1 ligand and SMAD3 downstream target of TGF beta pathway 

significantly upregulated in P2. Additionally, this groups also show higher expression of 

mesenchymal signature than other groups. Importantly, 3 out of 7 samples of P2 contain 

mutation in SMAD4 gene which is downstream target gene of this pathway. However, organoid 

culture media contain TGF beta inhibitor which might result in ambiguous difference between P2 

and P3 thus withdrawal of grow factors from culture media is needed to further investigate 

molecular characteristic of these groups. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 26 

For DeepCC results, 6 out of 15 samples in P2 were predicted in CMS4 which is 

mesenchymal subtype and highly expressed TGF beta pathway (Figure5B). Together with 

molecular characteristics of P2, these results indicate the association between P2 and CMS4. 

A      B 

  

C      D 

 

Figure  6 Expression levels of wnt signaling pathway in P2 
(A) WNT7B, (B) WNT7A, (C) heatmap of WNT ligand expression and (D) heatmap of WNT signature 

expression 
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A      B 

  

C      D 

 

Figure  7 Expression levels of TGF-β pathway in P2 

(A) TGFB1 (B) SMAD3 (C) mesenchymal signature (D) mutations in TGFβ pathway of P2 organoids  
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4.4.3 P3: TGFβ and chemokines activation 

After performed functional enrichment analysis to 1173 DEGs of P3, the results indicated that 

these pathways are not significantly enriched with False discovery rate (FDR) < 0.05 (Table2). 

However, associated genes of P3 were further identified including chemokine-related genes such 

as CXCL8 and CCL2 (Figure8B, C). Furthermore, BCL2, apoptosis suppressor gene, demonstrated 

significantly high expression in P3 compared to other groups (Figure8D). Additionally, AQP1 and 

TGFBI involving in cell migration demonstrated significantly high expression in this group (Figure8E, 

F). Besides, organoids in P3 presented high expression of TGFB1 and TGFβ pathway but it slightly 

lower than P2 (Figure8A). According to this group showed some similar characteristic with P2 thus 

growth factors withdrawal which was previously mentioned might allow to separate difference 

between these two groups. Finally, CMS prediction results of DeepCC in P3 showed diverse 

subtypes including CMS1-3 and unclassified subtype (Figure5B).  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 29 

A      B 

 

C      D 

 

E      F 

  

Figure  8 Highly expressed genes in P3 

(A) Heatmap of TGFβ pathway (B-F) Expression levels of CCL2, CXCL8, BCL2, TGFBI and 
AQP1 genes, respectively. 
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4.4.4 P4: stem cell-like features and DNA damage responses associated with drug resistance 

In P4 10,467 DEGs were applied to GSEA then the top10 significantly up- and down-

regulated pathways were shown in Table2. The results demonstrated that organoid in P4 are 

highly expressed genes involved in DNA-damaged repair pathway including base excision repair, 

Fanconi anemia (FA) pathway, homologous recombination (HR), and mismatch repair (MMR) 

pathway. These pathways related to DNA damaged response (DDR) which plays an important role 

in the maintenance of genome stability and integrity through correcting the impaired DNA that 

may contribute to carcinogenesis (56). Importantly, when combined with radiation response of 

organoid from previous study P4 organoids presented radiation resistance which reveal aggressive 

tumor of this group (Figure9). Thus, we hypothesized that upregulated DDR pathway associated 

with radiation resistance by relieving DNA lesions and chromosomal abnormalities that occur 

together with cancer cell proliferation. Interestingly, this molecular feature was found in cancer 

stem cells (CSCs) ae well to resist DNA damage repair capacity and protecting DNA damage by an 

efficient scavenging of reactive oxygen species (ROS), generated by the chemotherapy or 

radiotherapy. 

Then, to investigate stem cell features of P4 organoids, gene signature of LRG5+ 

intestinal stem cells (ISCs) and WNT expression from previous study were applied (57). The 

results were presented in heatmaps (Figure10C, D). Unsurprisingly, P4 highly expressed gene 

signature of colon crypt base which intestinal stem and progenitor cells are located (Figure10B). 

This result agrees with upregulation of LGR5+ ISC and Wnt signatures. Hence, we hypothesized 

that organoids in P4 have stem cell-like patterns. 

 

Figure  9 Radiation response of CRC organoids 

The heatmap presents Area under the survival curve (AUC) after CRC organoids exposed different 

doses of radiation 
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A       B 

 

C       D 

 

 

Figure  10  Stem cell-like properties of P4 

 (A) crypt top signature, (B) crypt base signature, (C) gene in WNT signaling pathway and (D) 

human Lgr5+ intestinal stem cells (ISCs). Color in heatmap represented fold changes, the higher 

expression (red) and lower expression (blue). 
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4.4.5 P4: Upregulation of ribosome biogenesis pathway 

In P4, ribosome biogenesis in eukaryotes, RNA polymerase and RNA transport pathways 

were highly enriched. These pathways involved in protein synthesis which support to continuous 

growth of cancer cells (58) and associated with the high activation of cell cycle and DNA 

replication pathways found in P4. Moreover, the activation of ribosome biogenesis has been 

comprehensively linked to sustained RNA polymerase I and III activation. Thus, high expression 

level of RNA polymerase I (POLR1A) and III (POLR3A) of P4 were confirmed in Figure11A, B. 

Moreover, a prominent role in the regulation of rRNA transcription in cancer is played by the C-

MYC proto-oncogene. C-MYC boosts all steps of rRNA biosynthesis and maturation through 

diverse molecular mechanisms. As expected, organoids in P4 showed significantly high expression 

of MYC gene (Figure11C). These results supported the remarkable increase of ribosome biogenesis 

in P4 which might be applied as a biomarker of this group. 

Interestingly, mutations in APC, TP53 and KRAS genes were dominantly found in P4 

organoids (Figure11D). In addition to these mutations, in P4 organoid group copy-number 

variations were higher than other groups (Figure11E, F). these results support the tumor 

aggressiveness of this group. 
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A      B 

  

C      D 

   

E      F 

 

Figure  11  Expression levels of ribosome biogenesis related genes and genomic profiles of P4 

(A) POLR1A, (B) POLR3A, (C) MYC, (D) Mutations of APC, TP53 and KRAS genes found in P4. (E,F) 

high CNV of P4 compared to other groups.  

 

Other groups P4 
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4.5 Co-expression of genes in Ribosome biogenesis pathway 

 Transcriptome and clinical data demonstrated that P4 organoids show characteristics of 

aggressive tumor and ribosome biogenesis pathway was specifically enriched in this group thus 

we hypothesized that organoids in P4 might be identified by using a few gene in ribosome 

biogenesis pathway. Hence, to investigate the most correlated gene in this pathway ribosomal 

biogenesis genes were analyzed as a co-expression matrix. The result demonstrated that in 

ribosome biogenesis pathway there are six groups of genes functioning as shown in red diagonal 

(Figure12). Then, overlapped DEGs between P4 and CMS2 were labeled, and the result indicated 

that mainly of these genes are located in cluster 1 and 2. Consequently, the top10 genes of 

these two clusters were proposed as genes markers of P4 ribosome biogenesis group (Table3).  

 

 

Figure  12 co-expression heatmap of ribosome biogenesis pathway in CRC organoids 
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Table  3 Top10 genes of cluster 1 and 2 of ribosome biogenesis pathway ranked by log2 fold 

change of gene expression 
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4.6 Gene signature of individual NMF cluster identified by LASSO logistic regression 

To construct a gene panel and develop a classifier for individual NMF clusters, 

transcriptomic data of 14283 genes with high variance values (variance > 1) of 35 CRC organoid 

samples were used to train the least absolute shrinkage and selection operator (LASSO) logistic 

regression models. This technique effectively sets the coefficients of unimportant genes to zero 

and thus helps select a small number of genes that are important to the classification (Table 4). 

Subsequently, the LASSO model was evaluated on the test dataset of 19 samples. The overall 

accuracy is 78.95% with most of the classification errors occurred on samples from P2 (Figure 13). 

Table  4 parameter values of model for signature genes of individual group 

 

 

 

Figure  13 confusion matrix of prediction model 

ALPI 0.359582 ARHGEF17 0.12308 BRK1 0.006076 CGREF1 0.001625

CEBPA 0.001572 DBN1 0.016764 CADM1 0.091102 EVA1A 0.01896

CMAS 0.004479 EPHA2 0.009396 CD200 0.12079 FAM222A 0.06392

COL17A1 0.004827 FKRP 0.003578 EEF1A1P6 1.675654 HSPH1 0.027029

CTSS 0.033819 HDAC7 0.047626 RPL31 1.97E-06 NUP42 0.021811

FXYD3 0.000143 PPL 0.009162 SHISA6 0.029785 OSER1 0.045119

HMOX1 0.000932 PRSS22 0.007914 STAMBPL1 0.039384 POU5F1B 0.070034

PLOD2 0.037818 SHB 0.032714 TMEM258 0.00204

SLC22A18AS 0.00877 UBXN6 0.008412 TMEM51 0.006253

SLC51A 0.003305

TRIM7 0.043088

WSCD1 0.021776

P1 P2 P3 P4
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4.7 candidate gene markers selection for ribosome biogenesis  

Since a unique characteristic of the P4 group, which is associated with resistance to 

chemotherapy treatment, is the up-regulation of ribosome biogenesis, another LASSO model was 

built to specifically classify the P4 group using expression profiles of 49 DEGs of P4 that are 

annotated with ribosome biogenesis pathway. This yielded a 7-gene signature for ribosome 

biogenesis (Table 5) that can classify the P4 group with 88.24% accuracy and 66.67% specificity 

on the test dataset. 

 

Table  5 signature genes of ribosome biogenesis obtained from prediction model 
 

  

Ribosome biogenesis 

related genes
Coefficient log2FC

BOP1 0.0757 1.0195

GTPBP4 0.0295 0.6785

MPHOSPH10 0.2238 0.3234

PNO1 0.0334 0.7789

POP7 0.0629 0.3585

RRS1 0.1065 0.5812

TBL3 0.1007 0.2749
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CHAPTER V  

DISCUSSION 
 

Genomic instability of CRC organoids in this study demonstrates two different genetic 

pathways in the development of sporadic CRC. Firstly, chromosomal instability pathway (47.37%) 

which is characterized by wide-spread alterations in chromosome number. Secondly, 

microsatellite instability pathway (10.53%) which exhibit defect in DNA mismatch repair system. In 

addition, somatic mutation profiles of these organoids exhibit mutations in several genes in 

adenoma-carcinoma sequence including APC gene as an early event, then activating KRAS 

mutation, and loss-of-function of TP53 tumor suppressor gene. Likewise, diverse mutation 

patterns of genes associated with CRC also identified in these organoids. However, the mutation 

frequencies in this study are lower frequency than the results found in TCGA database. This might 

be according to difference of disease stage and specimen between this study and TCGA 

database. However, this result exhibited genetically heterogeneous of these cancer organoids 

which consistent with that were found in colorectal cancer. 

Application of NMF method to CRC organoids transcriptomic data able to be classified 

molecular subtypes into four groups with different molecular characteristics. P1: lipid 

metabolism, P2: WNT7A, B and high TGF-β pathway activation, P3: highly expressed TGF-β 

pathway, and P4: DNA repair upregulation, stem cell like subtype and ribosome biogenesis. These 

characters correlated with CMS2-4 while CMS1 are not enriched in any organoid group. This may 

cause from organoid sample are consist of epithelial cells without immune infiltrated cells thus 

including of MSI status might be necessary for additional marker. The classification results of this 

study demonstrated inconsistency among CMS subtypes prediction method in assigning CMS 

subtype from CRC organoid transcriptomic data. This result suggests that non-cancer transcripts 

from whole cancer tissues are required for current CMS classification method algorithm. 

Molecular classification using transcriptomic data of CRC organoid which were particularly 

consisted of epithelial cells provide intrinsic molecular patterns of individual organoid grouping. 

Interestingly, P1 obviously presents lipid metabolism alteration correlated with CMS3. Moreover, 

this study able to divide TGF beta high associated with CMS4 into two group (P2 and P3) which 

were likely to metastasis by different mechanism. Besides, molecular features of P4 stem cell-like 

group such as high expression of WNT and MYC genes and chromosomal instability were 
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consistent to characteristics of CMS2, but previous CMS study demonstrated cancer stem cells 

(CSCs) traits were found in CMS4. This result might indicate sub-population of CMS2 which 

behave as CSCs of CRC. Furthermore, by using this approach stem cell like features, DNA repair 

and ribosome biogenesis pathway were identified in P4 radiotherapy resistance group.  

Majority of enriched pathways of P1 involved in lipid and cholesterol metabolism which 

function in the cells by providing energy storage, structural component of cell membrane and 

messengers of metabolic signaling for the sake of cell proliferation (59). Furthermore, along the 

cancer transformation process, the acquisition of pro-survival abilities is an essential step that 

allow cancer cells to adapt to harsh cancer microenvironment and their contribution to cancer 

pathogenesis and progression (60, 61). Thus, cancer cells rewire their metabolism to acquire the 

fittest metabolic rate for homeostasis of cancer.  Interestingly, it has been proposed that lipid 

metabolism alterations were found association with growth of primary tumor but also conducting 

tumor progression and metastasis (59). Thus, deeply investigate key enzymes involved in lipid 

metabolism can contribute to the development of the targeted therapy. However, sugar 

metabolism alterations together with KRAS mutation involving in metabolism rewiring of cancer 

were not found in this group. Thus, further investigation cause of lipid metabolism upregulation in 

this group is challenged. 

The molecular characteristic of P2 and P3 are still ambiguous but upregulation of TGFβ 

pathway of this group were found. Hence, withdrawal of growth factors might be needed to 

further distinguish these groups. 

For organoids in P4, most of it are present CIN phenotype involving the classic adenoma-

carcinoma sequence characterized by a characteristic set of mutations in specific genes including 

APC, KRAS and TP53 (62, 63). Moreover, loss of APC function leads to hyperactivation of 

Wnt/beta-catenin signaling which regulate growth advantages in epithelial cells and it also 

considered as an early event in CRC tumorigenesis (64). This result support the characteristic of 

Wnt pathway hyperactivation of P4 organoids. Besides, the intestinal stem cells located in the 

base of the colon crypts are maintained in their undifferentiated state by wnt signaling pathway 

which contributes not only to the survival of normal stem cells but also to the survival of cancer 

stem cells. Activation of this pathway due to APC mutation leads to retention of a stem cell 

phenotype, which prevents them from migrating to top of the colon crypts to be discarded. This 

also agree with the intestinal stem cell-like properties of this group. Then, the aggregation of 
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undifferentiated cells in the colonic crypts eventually results in the formation of a polyp. 

Subsequently, accumulation of additional mutations in  genes such as KRAS and TP53 may finally 

lead to carcinoma (65).  

DNA damaged repair pathways play an important role in the maintenance of genome 

stability and integrity through correcting the impaired DNA that may contribute to carcinogenesis 

(56). Activation of the Fanconi anemia (FA) pathway occurs as a result of DNA replication of DNA 

damage, especially the damage triggered from DNA crosslinking agents. On the other hand, highly 

expression of FA genes and DNA damage repair capacity is helpful for relieving DNA lesions and 

chromosomal abnormalities that occur together with rapid proliferation of cancer cells. This was 

found pervasively in cancers and it was associated with chemoresistance (66). Moreover, it has 

been reported that tumor with high level of DNA damage repair related genes exhibited 

resistance to Cisplatin which is one of the most widely used chemotherapeutic drugs (67). 

Interestingly, the chemotherapy currently used in medical regiments for CRC patients including 

oxaliplatin, irinotecan, and 5-FU are directly or indirectly induced DNA damage which are 

recognized by specific DNA repair pathways. Thus, further testing of chemotherapy drugs in these 

CRC organoids are needed. Furthermore, these data indicate the need for development of gene 

markers to evaluate DNA repair capacity (DRC) of tumor cells which has been known to 

associated with chemo- and radiotherapy resistance (68).  

For addition characteristic of P4, increased ribosome biogenesis in cancer cell is required to 

support cell growth and cell proliferation due to hyperproliferative cells were perturbed 

homeostasis of energy and increase protein synthesis activity. Moreover, continuous renewing of 

colon epithelium depends on self-renewal of stem cell, differentiation and proliferation activities 

which are maintain by the process of cell growth, division, protein synthesis and ribosome. 

Importantly, previous study found that in mouse colon organoids transcriptomic data, ribosome 

biogenesis signature was increased accompanied by differentiation of intestinal stem cells. 

Additionally, ribosome biogenesis factor and DNA-binding proteins are grouped together as 

nucleolus localized proteins. Majority of these proteins involved in DNA repair processes as well 

(69). 

Intriguingly, ribosome biogenesis pathway associated with several mechanism of cancer cells. 

Thus, this pathway might be proposed as biomarker and candidate target for cancer treatment 

especially in radiotherapy resistance group. It has been studied that the clinical alkylating agent 
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Oxaliplatin does not induce cancer cell death through DNA damage but through ribosome 

biogenesis inhibition instead (70). These data support development of new drugs designed to 

selectively induce inhibition of ribosome biogenesis without the genotoxic effects which were 

currently used as anticancer drugs. Currently, ribosome biogenesis inhibitors were developed 

such as CX-3543 molecule disrupting the interaction of rDNA G-quadruplexes with a nucleolar 

protein necessary for Pol I transcription (71), CX-5461 inhibitor of rRNA transcription which 

presently under phase I clinical studies (72, 73), and BMH-21 molecule repressing RNA 

polymerase I transcription without causing DNA damage (74). These inhibitors have two main 

benefits. Firstly, they do not affect resting cells because the long half-life of cytoplasmic 

ribosomes and second, they can induce the apoptotic death of cancer cells, especially cancer 

with hyperactivation of ribosome biogenesis (58). Due to specific action mechanism these 

inhibitors can be combined with other anticancer drugs which act through different cytotoxic 

pathways such as energy related pathway to ensure a sufficient cancer cell destruction. 

To detect ribosome biogenesis alteration in cancer cells, the silver staining of Nucleolar 

Organizer Regions (AgNOR) was used as a simple visualization. The AgNOR substitutes different 

argyrophilic nuclear proteins such as nucleolin and fibrillarin which are essential regulators of 

ribosome biogenesis (75). Towards AgNOR distribution was discovered to be associated with the 

nucleolus size which is linked to the cancer growth rate. Unfortunately, the AgNOR staining 

reaction is complicated to be automatized and requires laboratory technicians thus this approach 

is still not officially recommended in tumor pathology (58). This data reveals the need for the 

development of molecular markers to detect abnormality of ribosome biogenesis that could be 

applied in clinical practice. Accordingly, a seven-gene signature from supervised machine learning 

in this study might be developed as a prediction marker to classify samples with aberration in the 

ribosome biogenesis pathway. Likewise, candidate genes from co-expression analysis of this 

pathway provide additional results and have the potential as alternative gene markers as well. 

However, increase sample size and validation to other datasets are needed in further studies. 

Finally, to develop detection of ribosome marker using real-time quantitative polymerase chain 

reaction (RT- qPCR) method which easily use in clinical operation, additional PCR data collection 

of that gene signature is required for prediction model construction and indicate cutoff value. 

In summary, unsupervised clustering of CRC organoid transcriptomic data reveals four 

organoid groups with different molecular characteristics. These data lead to pathway specific drug 

testing in each group of CRC organoids. Importantly, samples with stem cell-like properties were 
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clustered together in P4. This group highly expressed DNA repair pathways, hyperactivated 

ribosome biogenesis and performed radiation resistance. Thus, we purpose ribosome biogenesis 

pathway as a potentially alternative target for treatment and suggest gene signature of this 

pathway to predict organoids with radiation resistance. 
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