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Colorectal cancer (CRC) is genetically and transcriptomically heterogeneous disease.
Molecular subtyping of colorectal cancer using consensus molecular subtype (CMS) system
demonstrated the potential predictive value for tumor progression and treatment response.
However, the CMS system was developed from data of whole tissues containing both cancer
and non-tumor transcripts components for classification which does not directly represent
intrinsic heterogeneity of cancer cells. In this study genetic profiles of CRC organoids were
investigated first, and the results indicate chromosomal instability (CIN) and microsatellite
instability (MSI) as pathogenic pathways of CRC. Furthermore, the results also revealed diverse
patterns of somatic mutations of these CRC organoids. Subsequently, we evaluated a strategy
of subtyping CRCs based on transcriptomics data from patient-derived CRC organoids, which
mainly contain cancer cells. We demonstrated that using non-negative matrix factorization
(NMF) CRC cancer organoids could be classified into four groups (P1-P4). Cluster-specific genes
and Gene Set Enrichment Analysis (GSEA) displayed different characteristics of each group. P1
exhibit enriched lipid and cholesterol metabolism pathways and P2 and P3 presented high
TGF—B pathway. Lastly, P4 show stem cell-like properties and highly expressed genes in the
DNA repair pathway associated with chemotherapy and radiation resistance. Moreover, P4
organoids present a hyperactivated ribosome biogenesis pathway which may be developed as
a biomarker of P4 and a target of CRC treatment. Then, LASSO logistic regression was built to
identify gene signatures and developed a classifier of each group of organoids. These results
suggested that the signature gene of organoid groups has the potential to be developed into a

useful tool for CRC subtyping and developing more specific therapeutic strategies.
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CHAPTER |
INTRODUCTION

1.1 Background and Rationale

Colorectal cancer (CRC) is the third most common cancer worldwide and frequently
diagnosed at advanced clinical stage (1). 60-65% of CRC sporadically arise through acquired
somatic mutations and epigenetic alterations. Importantly, the 5-year overall survival rate drops
drastically from 64% to 14% when the tumor becomes metastatic (2). Although an increasing
number of therapeutic treatments have been developed for CRC, clinical outcomes are still
undesirable. This is because the disease is highly heterogeneous and can progress through many
alternative pathways, each with different genetic alterations, molecular profiles, clinical
outcomes, and treatment responses. Consequently, it is challenging to identify the optimal
therapy for each patient. Current clinical classifications of CRC depend on histopathological
features and a simplistic tumor-node-metastasis (TNM) staging. However, patients with the same
stage respond vastly differently to the same treatment. For these reasons, improvements to CRC
subtype classification and treatment response prediction are needed (3). While additional
molecular markers, such as microsatellite instability (MSI) status and BRAF and KRAS mutations,
have been introduced, they could not capture the complexity of CRC tumor biology and are

insufficient for treatment selection or prognosis prediction (3, 4).

Gene expression profiling technologies such as microarray and RNA-sequencing can provide
comprehensive molecular characteristics of a tumor. Accordingly, CRC classification framework
has recently shifted towards transcriptomic data (4-8). A major breakthrough came in 2015 when
a network-based analysis was used to unify six CRC classification studies and derive the first
consensus CRC subtyping scheme, named the consensus molecular subtype (CMS). CMS method
stratifies patients based on gene expression data into four major subtypes (CMS1-4) and a
separate group of patients with mixed phenotypes. It was also speculated that further
refinements of CRC classification, such as segregation of intra-CMS subgroups and delineation of
unclassified samples with mixed phenotypes, will be necessary. One possible area of
improvement is to reduce the interference from non-tumor cells, such as stromal components
and infiltrated immune cells, in the gene expression profile of bulk tumor tissue. To avoid effects

of stromal components, a CRC intrinsic subtypes (CRIS) classification scheme has been developed



by implanting patient-derived xenografts (PDXs) into mice and subsequently extracting human-
specific transcriptomic profiles from the PXDs. This technique enables acquisition of tumor cell-
specific gene expression data. An unsupervised clustering of PXD-based transcriptomic data
indicated that CRC tumor may be stratified into five molecular classes (CRIS-A to CRIS-E) (9). As
expected, a finer classification of CRC subtypes, especially for CMS2 group, can be achieved when
interference from non-tumor cells was reduced. However, PDX-based classification method still
suffers from cross-species reactivity between human and mouse cytokines which distort cancer
cell transcriptome and from some stromal-derived transcripts. Inconsistencies between CMS and
CRIS approaches also need to be explained. Therefore, alternative methods for extracting cancer
cell’s transcriptional profile from patient tumors are needed to delicately stratify CRC subgroups

9.

Recently, 3D cell culture systems have been developed. These techniques allow us to grow
organoids composing of multiple organ-specific epithelium in the absence of stromal cells.
Furthermore, organoids can preserve intra-tumoral heterogeneity, transcriptomic pattern, and key
phenotypes of the original tissue (10, 11). Patient-derived organoids (PDOs) serve as effective
preclinical models of human cancer as well as enable rapid, high-throughput ex vivo drug testing
and screening since PDOs could be propagated and expanded within a few weeks. Notably, drug
response of PDOs have been shown to correlate with the patients’ actual response (10). Hence,
we hypothesize that intrinsic transcriptomic profile of cancer cells could be gleaned through

gene expression data of CRC organoids which consist mainly of epithelial cells.

In this study, transcriptomic data from 54 PDOs of CRC patients were grouped into 4
prospective subtypes by unsupervised clustering methods. Then, differential expression and
functional enrichment analyses were performed to identify molecular signatures of each group.
Furthermore, copy-number variation, MSI score and mutation profiles of CRC organoids were
identified using exome sequencing. Interestingly, organoids with radiation resistance were
clustered together and demonstrated shared chromosomal instability and upregulation of DNA
repair and ribosome biogenesis pathways. Finally, supervised machine learning techniques were
used to construct a subtype classification model and to identify signature genes that contribute

to the classification of each subtype.



1.2 Research question

Whether transcriptomic data of organoids could be used to classify molecular subtype of

CRC?

1.3 Hypothesis

The gene expression profiles of colorectal cancer organoids provide molecular subtype of
CRC and gene signature of each organoid group

1.4 Objectives
® To classify molecular subtype of CRC by using transcriptomic data of organoids

® To identify gene markers specific to each organoid group



CHAPTER Il
LITERATURE REVIEWS

2.1 Stepwise progressions of colorectal cancer

Tumorigenesis of colorectal cancer progresses through three different pathways including
adenoma-carcinoma sequence, Serrated pathway, and inflammatory pathway. Adenoma-
carcinoma sequence is a classical or canonical pathway of CRC. This pathway begins with the
acquisition of adenomatous polyposis coli (APC) mutations that upregulate Wnt/B—catenin
signaling pathway, followed by KRAS mutation activation and TP53 tumor suppressor gene
inactivation. Furthermore, transformation into metastatic phenotypes also occurs through
dysregulation of multiple signaling pathways involved in cell cycle regulation and cellular
proliferation. Chromosomal instability (CIN) due to loss of heterozygosity (LOH) and aneuploidy

have also been found in 85% of sporadic tumors.

Serrated pathway drives the progression from normal cells to hyperplastic polyp. It has
been reported that serrated CRC patients has worse prognosis than patients with aberrations in
canonical pathway. There are two characteristic molecular events in the serrated pathway. A
critical early event is BRAF mutation which causes uncontrolled cell proliferation via activation of
MAPK pathway and leads to hyperplastic polyp formation. Another event, called CpG island
methylator phenotype (CIMP), is the hypermethylation of specific target promoter which
contributes to microsatellite instability (MSI) and inactivation of tumor suppressor genes that
promote later progression of polyps into sessile serrated adenoma and carcinoma. Notably, CIMP
positivity was found about 75% of sessile serrated adenomas. Additionally, MSI is marked by
alterations in the length of microsatellite (short nucleotides repeated and distributed along DNA
sequence), this is owing to loss of DNA mismatch repair (MMR) system leading to genetic

instability.

Chronic inflammation can also lead to carcinogenic progression. This pathway begins
with no dysplasia unlike canonical adenoma and serrated adenoma. Instead, dysplasia
subsequently arises on the background of chronic inflammation. This type of CRC is frequently
located in flat mucosa which conceals the lesion. Major molecular events in this pathway consist
of TP53 mutation in the early stage and rare APC mutations in the late stage. Less than 2% of all

CRCs arise through this pathway (1).



2.2 Colorectal treatment

Generally, the ideal treatment of CRC is to entirely remove all tumors and metastases
through surgery. However, this is not possible especially for advanced stage CRCs. Accordingly,
radiotherapy and chemotherapy are used to halt the growth and spread of tumors in such
patients (12). The standard chemotherapies for metastatic CRC utilize fluoropyrimidines,
oxaliplatin and irinotecan, which result in median overall survival of approximately 18 to 20
months. Drugs such as epidermal growth factor receptor (EGFR) inhibitors can also be prescribed
together with chemotherapies to improve the median survival to 30 months. Several agents have
been developed to target known CRC tumorigenesis and metastasis pathways, including Wnt/B—
catenin, Notch, Hedgehog and TGF—B/SMAD. Some agents also target signaling cascades such as
PI3K/AKT or RAS/RAF. At present, there is no proven CRC treatment that is effective for every

patient.

2.3 Clinical classifications of colorectal cancer

The union for international cancer control (UICC) and American Joint Committee on
Cancer (AJCQO) suggested the widely used Tumor Node Metastasis (TNM) classification guidelines
for determining colorectal cancer staging and selecting treatments. Yet, the treatment outcomes

of CRC patients with the same TNM classifications are still highly variable (13).

To date, several mutation-based classifications have been used to guide treatment
selections for CRCs. For example, TP53 mutations are predictive of decreased sensitivity to most
chemotherapeutic agents, especially 5-fluorouracil. Previous studies found that BRAF inhibitors
were ineffective in CRC patients with BRAF V600E mutations owing to EGFR feedback activation
(4). MSI-high status is associated with poor response to 5-fluorouracil-based chemotherapy but
suggests the possibility for immunotherapy with immune checkpoint targeting molecules such as
PD-1. Although mutation-centered CRC classification has shown some promises in prognosis
prediction and aiding treatment selection (1), it still does not provide sufficient predictive power

and insight to improve our understanding of CRC tumor biology.



Table
identification (4)

1 the previous six independent studies used for the consensus molecular subtype

Classification Discovery | Validation | Clustering Statistic for Classification | subtypes
system dataset dataset method cluster count | method
selection
Schlicker et al |62 samples |1643 Iterative non- | Cophenetic Two-step Subtype 1.1,
(2012) samples | negative correlation hierarchical 12,13
(14) matrix coefficient clustering Subtype 2.1,
factorization 2.2
(NMF) -based
consensus
clustering
Marisa et al. 443 1029 Classical Area under Standard C1-Cé
(2013) samples samples | consensus cumulative centroid-based
(15) clustering distribution classifier
function (CDF)
curve
Sadanandam et |445 744 NMF-based Cophenetic Prediction Goblet-like,
al. (2013) | samples samples [ consensus correlation analysis for enterocyte,
(16) clustering coefficient microarrays stem-like,
(PAM) inflammatory,
transit-
amplifying
De Sousa E Melo 90 samples | 1074 Classical Gap statistic Prediction CCS1-CCs3
et al. (2013) samples | consensus analysis for
@1n clustering microarrays
(PAM)
Budinska et al. 1113 720 Classical Dynamic cut | Multiclass Surface crypt-
(2013) samples samples | consensus tree linear like, lower
(18) clustering discriminant crypt-like,
(LDA) CIMP-H-like,
mesenchymal,
mixed
Roepman et| 188 543 Hierarchical N/A Single sample | Type A-C
al.(2014) samples samples | clustering centroid-based

(19)

classifier




2.4 Consensus molecular subtype (CMS) classification

Multiple molecular subtyping techniques were evaluated and resulted in inconsistent
results thus to manage with it the CRC subtyping consortium (CRCSC) was formed. Subsequently,
consensus molecular subtype (CMS) classification has been developed by using network-based
approach on large-scale data from six independent studies of transcriptomic-based subtyping
methods (18 CRC data sets, n = 4,151 patients) in order to study the association among these six
classifications. CMS classification is able to classify most CRC tumors into four molecular subtypes

with unique pathway enrichment traits.

Firstly, most MSI-high tumors are in the CMS1 (immune subtype, 14%) most tumor
present hypermutation, hypermethylation and contain BRAF(V600E) mutations. Moreover, its
present immune cell infiltration within tumor microenvironment which is significantly associated
with better prognosis in MSI tumors. It is reported that local-infiltration is highly enriched with
tumor-infiltrating cytotoxic T lymphocytes (CTLs) in core tumor area and surrounding peritumoral
area. The local inflammatory response is widely reported in tumor progression in most of the
cancers and presence of tumor infiltrating lymphocytes (TILs) are most important in the
suppression of tumor progression and invasion. Inhibitors, such as immune checkpoint inhibitor
that stimulate TILs have been proposed to regulate CRC progression such as PD1 blocker.
Secondly, tumor with chromosomal instability (CIN), that are commonly non-hypermutated, can
be transcriptome-based subclassified into three groups: CMS2 (canonical subtype, 37%), CMS3
(metabolic subtype, 13%);, CMS4 (mesenchymal subtype, 23%). CMS2 tumors showed more
frequent copy-number alterations than other subtypes. Additionally, found that WNT and MYC
downstream targets are highly upregulated and higher expression of the EGFR, ERBB2 (also known
as HER2), insulin-like growth factor 2 (IGF2), as well as cyclins. Moreover, CMS3 tumors are
characterized by up to 30% present with MSI and gene hypermethylation in intermediate levels.
It also contains metabolic reprogramming as well as it enriched for KRAS-activating mutations
linked to marked metabolic adaptation in CRC. Therefore, an understanding of glucose metabolic
pathway in cancer may also be seen as novel therapeutic targets. Finally, CMS4 tumors are
activated in pathways associated with epithelial-mesenchymal transition (EMT) and stemness
such as TGFP and show prominent expression of proteins in extracellular matrix remodeling and
angiogenesis. This subtype tends to be diagnosed at more advance stages. Corresponding to
patient cohort CMS4 tumors result in worse overall survival. Importantly, the combination of

chemotherapy and TGF-[3 receptor (TGFR) inhibitor has already moved to clinical trials in patients



whose tumor test positive for TGFB activated. Instead, there are 13% of early-stage tumor cannot

be assigned in any subtypes, demonstrating mixed phenotypes or intra-tumoral heterogeneity.

In the pre-clinical studies, they found an association with sensitivity to chemotherapy-
induced apoptosis prevalent in CMS2 and CMS4 (20). Moreover, different studies retrospectively
evaluated CMS as a prognostic factor for stage Il CRC patients treated with FOLFOX adjuvant
chemotherapy, finding that CMS was predictive in these patients. In 2019, Lenz et al
demonstrated that the CMSs are highly prognostic and predictive for overall survival (OS) and
progression-free survival (PFS). In the CMS1 group, patients treated with bevacizumab had a
significantly longer OS than those treated with cetuximab. For the CMS2, patients treated with
cetuximab had a significantly longer OS than patients treated with bevacizumab. These findings
highlight the possible application of CMSs in clinic and suggest that refinement of the CMS
classification may provide a path toward identifying patients who are most likely to benefit from
specific targeted therapy (21). Menter et al. purposed that absent knowledge of the CMS,
multiple drugs have been tried on the entire CRC population and it may only show a low
responses rate due to the drug affects to specific group of patients. Unfortunately, these drugs
would likely have been discarded as ineffective for CRC. For these reasons, they assume that if
we have a drug targeting pathway alteration which is a characteristic of each subtype. This can
lead to increasing of response rate of these subgroups and greatly enhanced progression free and

overall survival, this would be considered a complete success (22).

However, most of data used in training set were derived from bulk tumor tissue which
provide transcriptomic profiles of stromal cell resulting in variation of expression patterns due to
different location of tumor. Moreover, stromal transcripts are significantly influenced molecular
classification processes. Besides, previous study suggested that it is necessary to perform further
refinement in subtype classification with intra-CMS subgroup and better classification of samples

with mixed phenotypes.

Recent study demonstrated that CMS2 subtype has the same proportion in both the
early and advanced stages. This is possibly the most heterogeneous gene expression subtype. In
fact, CMS2 includes two of their original CRCAssigner subtypes (enterocyte and transit-amplifying
or TA) and three Marisa subtypes (C1, C5 and C6). Thus, it may be reasonable to subdivide the
CMS2 to further understand biological heterogeneity, stage distribution, and potential

personalized target of this subtype. Similarly, the recent study demonstrated significantly
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different prognostic value when the CMS4 subtype was further subdivided into CMS4-C4 (worse
DFS and OS) and CMS4-not C4 based on Marisa classification (8). These examples highlight how
CMS subtypes define the overall profiles of major CRC subgroups; however, even within each
subtype, there may be biological variability and important sub-subtypes with distinctive biological
parameter that requires careful consideration(23). In 2019, Purcell et al. (24) investicated the
utility of CMS to predict prognosis of CRC patients compared to the routinely used staging. They
found that CMS4 was not an independent prognostic marker for survival while TNM staging
significantly explains mortality independently of age and gender. Multiple studies revealed that
intra-tumoral heterogeneity may affect the classification of CMS4 tumors due to the EMT-
associated genes seen in CMS4 tumors may present upregulated gene derived from fibroblast
and mesenchymal cells present in the stromal background rather than directly from the tumor
itself. Moreover, previous studies suggested that the location and number of tumor biopsies can

undermine the accuracy of CMS (5, 9, 25).

2.5 Colorectal cancer intrinsic subtype (CRIS) classification

It is necessary to classify patients by using transcriptomic data still unaffected by stromal
variables. Thus, Colorectal cancer intrinsic subtype (CRIS) classification has been developed based
on human-specific transcriptome in CRC PDX models because original tumor stroma is replaced
by mouse stroma. Consequently, using human-specific probes can extract intrinsic gene
expression of cancer cells. Then, transcriptomic patterns were analyzed through unsupervised
clustering to stratify samples into five subgroups: (i) CRIS-A mostly are MSI tumor together with
CpG island methylator phenotype (CIMP) and hypermutation as well as KRAS and BRAF mutation
CRIS-A has mucinous and glycolytic phenotypes: (i) CRIS-B contains BRAF mutations, displayed
strong TGFP activity and epithelial-mesenchymal transition (EMT) characteristics. They purposed
that CRIS-B tumors had poor prognosis: (iii) CRIS-C shows KRAS-wild-type as well as contains MYC
proto-oncogene and elevated EGFR signaling: (iv) CRIS-D was enriched for IGF2 amplification and
WNT activation: (v) CRIS-E contains KRAS and TP53 mutations, Paneth cell-like phenotype.
Additionally, CRIS-C, D and E are presented CIN. Importantly, molecular subtypes of previous
studies have not reported to associated with these characteristics of individual CRIS subtypes.
This indicates removing of stromal transcriptome throughout the classification process improved
sensitivity to identification of intrinsic characteristics of cancer cells. Another study compared
CMS to CRIS using multiple sampling method approaches, they concluded that CRIS provide

more spatially, and temporally robust classification of molecular subtypes compared to CMS (26).
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Thus, this group combined CRIS transcriptional subtyping and CD8 immunohistochemistry to
identify poor prognosis stage I/l CRC patients who were able to benefit from adjuvant

chemotherapy (27).

Previous study revealed that CRIS signature genes are predominantly expressed in
epithelial cell type contribute to improve subgroup segregation and this method perform higher
level of agreement in subtype classification than the CMS classifier, when perform the same data.
However, they suggested that some stromal-derived expression patterns are remained in CRIS
classification. Additionally, PDX models might present cross-species reactivity between human
and mouse cytokines leading to distortion of cancer cell transcriptome. These data indicated that
alternative methods to keep exclusively cancer cell transcriptional profile from patient tumors

are necessary to delicately segregated subgroup (9).

2.6 Unsupervised clustering methods

According to the advent of microarray and RNA-sequencing, it is possible to simultaneous
observe gene expression data of the sample. However, interpretation of the expression data to
gain insight of biological process and disease mechanisms are still challenged. Thus, various

methods have been developed for clustering genes or samples.

Hierarchical clustering (HC) has been developed for clustering genes or samples that
show similar expression patterns. HC is a frequently used and beneficial method. It has been
successfully used to analyze gene expression patterns to predict patient outcome among
lymphoma patients (28) and to provide molecular portraits of breast cancer (29). However, this
method has limitations in their ability to focus on the prevailing structures in a data set and fail
to capture alternative structures and local behavior. Moreover, HC has the additional drawback
that it imposes a stringent tree structure on the data, is highly sensitive to the metric used to

assess similarity, and normally requires subjective evaluation to define clusters.

Non-negative matrix factorization (NMF) algorithm has been firstly proposed by Lee and
Seung (30) as part-based learning of faces and semantic features of text. For example, NMF
decompose human face images into parts reminiscent of features such as eye, nose, etc. This
method is different to other methods such as principal components analysis that learn holistic
representations. The NMF is discriminated from the other methods by its application of non-
negative constraints. These constraints lead to a parts-based representation because they allow

only additive, not subtractive, combinations. Next, several variations of it have been proposed
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for clustering a single high-dimensional data. In 2004, Brunet et al. demonstrated the use of NMF
to reduce the dimension of gene expression data to a small number of metagenes (31). Then,
the metagene expression patterns provide a robust clustering of samples. This study suggested
that the ability of NMF to retrieve meaningful biological information from microarray data of
cancer. Notably, this method exhibit benefits over other methods such as hierarchical clustering.
Moreover, it seems to less sensitive to gene selection or initial conditions and allow to detect
different or context-dependent patterns of gene expression in complex biological systems. Thus,

they proposed NMF as a general method for robust molecular pattern discovery.

2.7 Colorectal cancer organoid: a pre-clinical cancer model

In the past few decades traditional cancer cell lines and animal models have been used
to study about tumorigenesis, tumor progression and drug responses of colorectal cancer.
Whereas this approach is associated with a high failure rate of drug responses in the later clinical
trial steps due to cancer cell lines poorly represent many features of the original tumors include
genetic heterogeneity in the cancer cells lead to gene expression adaptations which attributed to
varying treatment responses. Subsequently, Patient-derived xenografts (PDXs) model has been
developed by isolating tumor cells from patients and transplanting them into immunodeficiency
mice. This approach almost completely represents the genotypes and phenotypes of tumors.
Nonetheless, PDX models are limited by a long time of establishment including inappropriate for

purposes of high-throughput screening.

Organoids, 3D culture models, have been proposed as a pre-clinical cancer model based
on knowledge of signal regulation of self-renewal, proliferation, and differentiation within
intestinal stem cells (ISCs), allowing continuing expansion of Lgr5+ ISCs into crypt-villus structure.
For CRC organoid propagation CRC biopsies were isolated and embedded within Matrigel along
with combination of specific niche factors to mimic microenvironment in the crypt include
epidermal growth factor (EGF), Noggin, R-spondinl and Wnt3A with addition of TGF[3 inhibitor and
p38 inhibitor (11).

The CRC organoids consist of multiple cell types of the organ which can recapitulate the
heterogeneity of their original tumors (32). Additionally, it contains the gene expression patterns
and some key features and functions of that organs. Furthermore, many studies revealed that

organoids demonstrated concordance of somatic mutations patterns between organoids and
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corresponding biopsy (33, 34). Due to organoids can be generated and expanded from every
individual patient and it can closely resemble to the original tumors indicate that organoid is a
promising model which can more representative and clinical related than cell lines for drug
screening. Therefore, patient-derived tumor organoids can be used to predict patient responses
for novel targeted drugs. However, not for all patients with molecular pathway alterations may
be susceptible to molecular targeted treatment. The low success rate of drug testing may be due
to the drug was not tested in the proper patient group. Accordingly, to explain which targeted
agents correspond which molecular patterns, large studies of prospective biomarkers are
necessary (33). For this reason, molecular classification of organoids may help to select the
reasonable targeted agents suited for drug testing in oreanoid models. Moreover, organoids
generated from tissue stem cells are mainly structured by the epithelial cells and lack of stromal
and immune cell types(10). Thus, transcriptomic profiles represent intrinsic gene patterns of the
tumor cells which may enhance molecular subtypes classification based on pathway alterations

of CRC organoids.
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CHAPTER Il
RESEARCH METHODOLOGY

3.1 Data collection

PDOs of colorectal cancer were obtained from Chulalongkorn cancer organoid bank. These
PDOs were generated from tissues of stage Il and Il CRC patients who could be treated with
neoadjuvant chemoradiation follow by the ESMO guideline for rectal cancer 2013 or patients with
metastatic cancer non-responding to standard treatment. The PDOs were maintained according
to culture protocol of previous study (35). Samples in this study consists of 55 colorectal cancer
PDOs and 5 organoids derived from adjacent normal tissue. RNA was extracted from PDOs using
Qiagen kit. mRNA isolation with poly(A) mRNA magnetic isolation module. Then, the libraries were
subjected to 2x150bp paired-end sequencing on an Illumina HiSeq instrument. In addition, DNA
was extracted from CRC organoids and corresponding peripheral blood mononuclear cells
(PBMCs) with a QiaAmp Blood mini kit (Qiagen). For whole exome sequencing, SureSelect Human
V6-Post (Agilent), an exome capture kit was used according to the manufacturer’s instructions
then it was sequenced using Illumina Hiseg2500 (outsourced to Macrogen, Inc.). The quality of

sequencing data were visually checked using FastQC (36).

3.2 Somatic variant calling

Whole exome sequencing data in FASTQ format were aligned to the human reference
genome version GRCh38 (hg38) using Burrows-Wheeler Aligner (version 0.7.17)(37). Alignment
results in SAM format were pre-processed using the Genome Analysis Toolkits (GATK, version
4.1.2.0) (38, 39) according to the best practice developed by the authors. This step removes
duplicate reads and recalibrates base calling quality scores (38). Processed whole exome
sequencing data from the patient’s tumor tissue and PBMC were compared using the Mutect2
module in GATK to identify tumor-specific somatic variants. Mutect2 removes non-tumor-specific
variants by comparing variants identified in the tumor sample to those found in the matched
PBMC or a panel of normals (PONs), which consists of sequencing data from other healthy
individuals. Mutect2 also estimates the extent of contamination of normal cells in tumor sample
and utilizes germline allele frequency information from a population of healthy individuals to
select tumor-specific somatic variants. Panel of normals and germline allele frequency data were

obtained from WES data of peripheral blood. Funcotator was used to annotate the clinical
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impact and biological function of each identified variant. Finally, maftools (40) was used to

visualize the output.

3.3 Copy number variation (CNV) calling and MSI score

CNVs were called from processed whole exome sequencing data using CNVkit (41).
Firstly, “coverage” command computes the log2 mean read depth for a sample using an aligned
sequencing reads in BAM format and the target bins in BED format. Then, the “reference”
command estimates the expected read depth of each bin across a panel of control samples to
produce a reference copy-number profile that can then be used to correct other test samples.
Next, the test samples were normalized to the reference using “fix” command. After correction
of coverage biases the copy ratio estimates of each sample can be segmented into dicrete copy-
number regions using the “segment” command. Finally, log2 copy ratio of multiple samples were
visualized as a heatmap. For MSI score, paired tumor-normal whole exome sequencing data of
each CRC organoid were investigated MSI sites through MSisensor followed by recommended

pipeline (42).

3.4 Differential gene expression analysis

RNA sequencing data were first trimmed using Cutadapt (v1.9.1) (43) and subsequently
aligned to human reference genome (hg38) and quantified using Kallisto (version 0.46.2) (44) with
20 bootstraps. Next, differential gene expression between normal and cancer organoids were
analyzed through Sleuth (version 0.30.0) (45) R package. Differentially expressed genes (DEGs)
were reported (adjusted p-value < 0.05). Gene expression level (tpm) were presented by boxplot

through ‘ggplot2’ R package (46).

3.5 unsupervised clustering of gene expression data

Hierarchical clustering was performed using the pvclust R package (version 2.2.0) (47).
Expression data of 747 DEGs between cancer and normal organoids were normalized to count
per million (CPM), loP2 transformed, and used as input for the clustering. The hierarchical
clustering process was repeated with 10,000 bootstraps to assess the uncertainty. Pearson

correlation distance and average linkage method were selected.

Non-negative matrix factorization (NMF) was performed using the NMF R package (48).
The expression matrix of the 12,529 high variance (variance >1) genes was analyzed to identify
the predetermined number of clusters (K) varying from 2 to 6. At each number of cluster setting,

40 iterations of NMF were performed. The algorithm of Brunet et al. (49) was selected. Quality of
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the clustering was evaluated by the cophenetic coefficient and the number of clusters at which

the coefficient began to drop was chosen as the optimal number of clusters (31).

3.6 Functional annotation and enrichment analysis

To characterize the gene functional signature of each PDO cluster, differential expression
analysis was performed between PDOs in that cluster against all other cancer PDOs as described
above. DEGs (adjusted p-value < 0.05) and their corresponding log2 fold difference values were
than submitted to a gene set enrichment analysis (GSEA) (50) against the KEGG pathway

databases using the WebGestalt interface (http://www.webgestalt.org/) (51). Top 10 up- and

down-regulated pathways are listed in Tablel.

3.7 Consensus molecular subtype (CMS) and CRC intrinsic subtype (CRIS)

CMS subtypes for PDOs in this study were predicted using DeepCC (52). For DeepCC, the
log2 transformed expression data of CRC organoids were used as input. Additionally, CRC intrinsic
subtype (CRIS) prediction was performed through the CRISclassifier R package (9). All prediction

results were filtered using an adjust p-values < 0.05.

3.8 prediction of subtype clusters from unsupervised analysis

Transcriptomic data of 14283 genes of 54 samples of stage Il and Il CRC were first
normalized and log transformed. The processed expression data were then divided into a training
and a test dataset with 35 and 19 samples, respectively. The least absolute shrinkage and
selection operator (LASSO) logistic regression models were trained using the glmnet R package
(53) to classify each sample according to the clusters identified via NMF method. 3-fold cross
validation was performed on the training dataset to tune the regularization parameter A of the
LASSO model. The value of A that yielded the lowest average classification error over cross-
validation was selected. Finally, a LASSO logistic regression model was trained using the whole
training set and evaluated using the test dataset. Genes with nonzero coefficients in this model

were designated as signature genes for the NMF clusters.

3.9 co-expression matrix

Gene expression data of CRC organoids in ribosome biogenesis pathway were extracted
using gene list from the Molecular Signatures Database (MSigDB). Next, these genes were
calculated for Pearson correlation then plotted in heatmap using pheatmap R package (54).
Hierarchical clustering of genes was performed using Euclidean distance and average clustering

method. Clusters were identified by using cutree R function.
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CHAPTER IV
RESULTS

4.1 Genetic profiling of individual CRC organoids

To investigate genomic alterations of CRC organoids 38 whole-exome sequencing data
were examined. Firstly, according to the majority of CRC demonstrated chromosomal instability
(CIN) during cell division and this feature leads to gains and losses of various genes thus copy-
number variation (CNV) was analyzed. The results demonstrated that 18 out of 38 organoid
samples (47.37%) present high CNV and these samples shown deletion of chromosome 18
involving several tumor suppressor genes (Figurel). This result indicated the chromosomal
instability (CIN) feature of organoids in this study. Secondly, the most frequently mutated genes
of CRC were found in these organoids including APC, TP53 and KRAS genes (Figure3A). Then, the
mutation frequency of organoids was compared to TCGA database (Figure3B). The CRC organoids
in this study exhibit slightly different: mutation frequencies of these genes. Nevertheless,
organoids presented lower frequency in important genes than that were found in the TCGA
database such as APC, TP53 and KRAS mutations. Lastly, to evaluate the microsatellite instability
(MSI) status of all organoids, MSI scores were calculated. The results revealed that 4 out of 38
CRC organoids (10.53%) have high MSI scores referring to abnormalities of DNA mismatch repair
(MMR) (Figure2). The CRC organoids with MSI high have the possibility of increased gene mutation
leading to distinct biologic characteristics compared to the microsatellite stable group. In
summary, these genomic profiling results demonstrated that CRC organoids generated in this
study contained diverse genetic alterations and consistent with that were found in colorectal

cancer.
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4.2 Clustering of CRC organoids transcriptomic data

To classify molecular subtypes of CRC organoids, unsupervised clustering of
transcriptomic data from 54 CRC organoids with non-negative matrix factorization (NMF) method
was analyzed. The clustering results indicated that the data can be robustly delineated into
groups at various resolutions, from k = 2 to k = 6 clusters (Figure 4A). Using cophenetic coefficient
to measure the quality of clustering revealed that the optimal number of clusters is at k = 4 after
which the coefficient steadily drops (FiguredB). With k =4, the clusters classified by NMF are
extremely robust (cophenetic coefficient = 0.996). Thus, using this method can classify CRC
organoids into four groups: P1 (14/54; 25.93%), P2 (15/54; 27.78%), P3 (12/54; 22.22%) and P4
(13/54; 24.07%).

As an alternative, hierarchical clustering (pvclust method) was also performed on the
transcriptomic data. Here, instead of considering all genes, a set of 747 genes that are
differentially expressed between cancer and normal organoids were selected. Transcriptomic
data from 5 paired normal organoids were also included in the analysis. The dendrogram was
then constructed with average linkage and correlation distance (Figure 5A). This shows a clear
separation between normal and CRC organoids and suggests that CRC organoids may be classified
into up to four groups (G1-G4). While G1 and G2 are well-separated, there is no clear boundary
between G3 and G4.

Comparison between the clusters identified by pvclust and NMF indicate a good
agreement, especially between G1 and G4 groups of pvclust method and P1 and P4 groups of
NMF (Figure 5B). As the NMF method was more objectively tuned using cophenetic coefficient
and did not rely on gene selection, the clusters identified by NMF (P1-P4) were selected to

further analyses.
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4.3 comparison between NMF-derived clusters, CMS, and CRIS

To compare NMF-derived clusters with the established CMS and CRIS systems, the
subtypes of CRC organoids were also predicted using DeepCC (52) and CRISclassifier (9),
respectively. The results shown in Figure5B demonstrate that most samples in P1 were predicted
as CMS3 (metabolic subtype), CRIS-A (hypoxic and glycolytic subtype), and CRIS-C (Epidermal
growth factor receptor (EGFR) pathway activation). P2 and P3 are associated with multiple CMS
and CRIS subtypes. Interestingly, CMS4 was exclusively predicted only in P2 and shared a similar
characteristic of TGFB upregulation with CRIS-B by. Moreover, CRIS-D and CRIS-E, which are
associated with upregulation in WNT pathway, were identified in P4 which is predominantly

predicted as CMS2 (canonical wnt subtype).

4.4 Functional characteristic of individual group

To better describe the functional characteristics inherent to each CRC organoid group
defined by NMF clustering, differential expression analysis was performed to identify significantly
up- or down-regulated genes in that group compared to the others. Next, Gene Set Enrichment
Analysis (GSEA) was applied to identify enriched pathways from the Kyoto Encyclopedia of Genes
and Genomes (KEGG) databases. The top 10 of KEGG pathways associated with each cluster were

listed in Table2 and described in more details below.
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Table 2 The results of top 10 up- and down-regulated KEGG pathway enrichment influenced

by the differentially expressed genes of individual group.

Grou Up-regulated Down-regulated
P Gene Set Description P Value FDR |Gene Set  Description P Value FDR
KEGG: hsa00140  Steroid hormone biosynthesis 0.000 *  0.000 * |KEGG: hsa03030 DNA repication 0.000 *  0.000 *
KEGG: hsa00830  Retinol metabolsm 0.000 *  0.000 * |KEGG: hsa03010 Ribosome 0.000 *  0.000 *
KEGG: hsa04975  Fat digestion and absorption 0.000 *  0.001 * |KEGG: hsa04110 Cell cycle 0.000 *  0.000 *
KEGG: hsa00040 Pentose and glucuronate interconversions 0.000 *  0.002 * |KEGG: hsa03460 Fanconi anemia pathway 0.000 *  0.005 *
P1 KEGG: hsa04144  Endocytosis 0.000 *  0.003 * |KEGG: hsa03008 Ribosome biogenesis in eukaryotes 0.002 *  0.012 *
KEGG: hsa00982  Drug metabolism 0.003 *  0.003 * |KEGG: hsa03013 RNA transport 0.000 *  0.012 *
KEGG: hsa00601  Glycosphingolipid biosynthesis 0.000 *  0.004 * |KEGG: hsa03440 Homologous recombination 0.000 *  0.013 *
KEGG: hsa04923  Regulation of lipolysis in adipocytes 0.002 *  0.007 * |KEGG: hsa03420 Nucleotide excision repair 0.003 * 0,047 *
KEGG: hsa05204 Chemical carcinogenesis 0.003 *  0.007 * |KEGG: hsa04310 Wnt signaling pathway 0.002 *  0.049 *
KEGG: hsa04972 _Pancreatic secretion 0.000 *  0.014 * |KEGG: hsa03410 Base excision repai 0.007 *  0.049 *
KEGG: hsa04310  Wnt signaling pathway 0.007 *  0.085 |KEGG: hsa05169 Epstein-Barr virus infection 0.879 0.874
KEGG: hsa05205  Proteoglycans in cancer 0.003 *  0.097 |KEGG: hsa05222 Small cel lung cancer 0.853 0.966
KEGG: hsa05225 Hepatocelular carcinoma 0.030 * 0.286 |KEGG: hsa05203 Viral carcinogenesis 0.174 0.987
KEGG: hsa05165 Human papilomavirus infection 0.206 0.534  |KEGG: hsa01100 Metabolic pathways 0.128 1.000
P2 KEGG: hsa04060  Cytokine-cytokine receptor interaction 0.066 0.536  |KEGG: hsa04714 Thermogenesis 0.367 1.000
KEGG: hsa05146  Amoebiasis 0.207 0.546 KEGG: hsa04024 cAMP signaling pathway 0.530 1.000
KEGG: hsa04010  MAPK signaling pathway 0.093 0.557 KEGG: hsa04723 Retrograde endocannabinoid signaling 0.642 1.000
KEGG: hsa04933  AGE-RAGE signaling pathway in diabetic complications 0.199 0.557 KEGG: hsa04380 Osteoclast differentiation 0.665 1.000
KEGG: hsa04144  Endocytosis 0.271 0.565 KEGG: hsa04520 Adherens junction 0.759 1.000
KEGG: hsa04390 Hippo signaling pathway 0.111 0.572 KEGG: hsa05202 Transcriptional misregulation in cancer 0.866 1.000
KEGG: hsa03010 Ribosome 0.000 *  0.149 KEGG: hsa04144 Endocytosis 0.005*  0.172
KEGG: hsa04110 Cel cycle 0.006 *  0.236 KEGG: hsa04270 Vascular smooth muscle contraction 0.016 *  0.179
KEGG: hsa04360 Axon guidance 0.011* 0.254 |KEGG: hsa04923 Regulation of lipolysis in adipocytes 0.007 *  0.186
KEGG: hsa04060  Cytokine-cytokine receptor interaction 0.008 * 0.315 |KEGG: hsa00561 Glycerolpid metabolism 0.018 *  0.193
P3 KEGG: hsa05323  Rheumatoid arthritis 0.010 *  0.351 KEGG: hsa04142 Lysosome 0.021*  0.193
KEGG: hsa04115  p53 signaling pathway 0.044 *  0.456  |KEGG: hsa04915 Estrogen signaling pathway 0.028 *  0.236
KEGG: hsa04064 NF-kappa B signaling pathway 0.038 *  0.473  |KEGG: hsa02010 ABC transporters 0.004*  0.242
KEGG: hsa04390  Hippo signaling pathway 0.041 *  0.493 KEGG: hsa04213 Longevity regulating pathway 0.057 0.244
KEGG: hsa04062 Chemokine signaling pathway 0.037 *  0.523 KEGG: hsa04611 Platelet activation 0.070 0.245
KEGG: hsa04145 Phagosome 0.046 *  0.566 KEGG: hsa04970 Salivary secretion 0.066 0.258
KEGG: hsa03030 DNA replication 0.000 *  0.000 * |KEGG: hsa05146 Amoebiasis 0.000 *  0.001 *
KEGG: hsa03460 Fanconi anemia pathway 0.000 *  0.000 * |KEGG: hsa00982 Drug metabolism 0.000 *  0.002 *
KEGG: hsa03008 Ribosome biogenesis in eukaryotes 0.000 *  0.008 * |KEGG: hsa04144 Endocytosis 0.000 *  0.003 *
KEGG: hsa03440 Homologous recombination 0.000 *  0.009 * |KEGG: hsa04060 Cytokine-cytokine receptor interaction 0.000 *  0.008 *
P4 KEGG: hsa05033  Nicotine addiction 0.002*  0.032* [KEGG: hsa05418 Fiuid shear stress and atherosclerosis 0.000 *  0.019 *
KEGG: hsa04110  Cel cycle 0.000 *  0.035* |KEGG: hsa00512 Mucin type O-glycan biosynthesis 0.004* 0,019 *
KEGG: hsa03430 Mismatch repair 0.010* 0.065 |KEGG: hsa04510 Focal adhesion 0.000 * 0,020 *
KEGG: hsa03013  RNA transport 0.004 * 0.071  |KEGG: hsa00040 Pentose and glucuronate interconversions 0.000 * 0,020 *
KEGG: hsa03410 Base excision repair 0.025*  0.098 |KEGG: hsa04668 TNF signaling pathway 0.000 * 0,023 *
KEGG: hsa03020 RNA polymerase 0.015* 0.105 |KEGG: hsa04810 Regulation of actin cytoskeleton 0.000 *  0.025 *
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4.4.1 P1: metabolic pathway alterations

GSEA-based phenotypic analyses reveal metabolic pathway alteration of P1. It is
enriched pathway involved in metabolism of lipid and cholesterol including fat digestion and
absorption, regulation of Llipolysis in adipocytes, retinol metabolism and steroid hormone
biosynthesis pathways (Table2). Moreover, organoids in P1 also show upregulated pentose and
glucuronate interconversions pathway. As expected, by DeepCC, 9 out of 14 samples in P1 were
predicted as CMS3 metabolic subtype (Figure5B). Then, the enriched pathways of P1 were
compared to CMS3. The result indicated that CMS3 presented alterations in diverse metabolic
pathways such as glucose and pentose metabolism, nitrogen metabolism and fatty acid
metabolism etc. Interestingly, CMS3 were enriched in metabolic of phospholipid and fatty acids

which might be associated with lipid metabolism of P1.

Then, to explore additional characteristic of P1, Crypt top and crypt base gene signatures
of colon from previous study (55) were applied to investigate expression pattern of each groups.
Interestingly, P1 organoids expressed higher signature of crypt top signature indicated that it

presented more kind of differentiated cell than others (Figure10A).

4.4.2 P2: highly expressed WNT7A and WNT7B and TGFB activation

Comparison between P2 and other groups, 379 DEGs were identified before applied
these DEGs as input of GSEA. However, KEGG pathway enrichment results of P2 presented three
pathways were significantly enriched (p value < 0.05) including Wnt signaling, proteoglycans in
cancer, and Hepatocellular carcinoma pathways (Table2). Wnt signaling pathway which is one of
the most frequent abnormalities in human cancer. When explore the wnt signature the results
demonstrated that P2 was not presented the highest wnt pathway (Figure6D). However, P2 show
higher expression of WNT7A and WNT7B which are ligand of this pathway than other groups
(Figure6A-C). Furthermore, TGFB1 ligand and SMAD3 downstream target of TGF beta pathway
significantly upregulated in P2. Additionally, this groups also show higher expression of
mesenchymal signature than other groups. Importantly, 3 out of 7 samples of P2 contain
mutation in SMAD4 gene which is downstream target gene of this pathway. However, organoid
culture media contain TGF beta inhibitor which might result in ambiguous difference between P2
and P3 thus withdrawal of grow factors from culture media is needed to further investigate

molecular characteristic of these groups.
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For DeepCC results, 6 out of 15 samples in P2 were predicted in CMS4 which is
mesenchymal subtype and highly expressed TGF beta pathway (Figure5B). Together with

molecular characteristics of P2, these results indicate the association between P2 and CMS4.
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Figure 6 Expression levels of wnt signaling pathway in P2
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4.4.3 P3: TGFB and chemokines activation

After performed functional enrichment analysis to 1173 DEGs of P3, the results indicated that
these pathways are not significantly enriched with False discovery rate (FDR) < 0.05 (Table2).
However, associated genes of P3 were further identified including chemokine-related genes such
as CXCL8 and CCL2 (Figure8B, C). Furthermore, BCL2, apoptosis suppressor gene, demonstrated
significantly high expression in P3 compared to other groups (Figure8D). Additionally, AQP1 and
TGFBI involving in cell migration demonstrated significantly high expression in this group (Figure8E,
F). Besides, organoids in P3 presented high expression of TGFB1 and TGFB pathway but it slightly
lower than P2 (Figure8A). According to this group showed some similar characteristic with P2 thus
growth factors withdrawal which was previously mentioned might allow to separate difference
between these two groups. Finally, CMS prediction results of DeepCC in P3 showed diverse

subtypes including CMS1-3 and unclassified subtype (Figure5B).
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4.4.4 P4: stem cell-like features and DNA damage responses associated with drug resistance

In P4 10,467 DEGs were applied to GSEA then the topl10 significantly up- and down-
regulated pathways were shown in Table2. The results demonstrated that organoid in P4 are
highly expressed genes involved in DNA-damaged repair pathway including base excision repair,
Fanconi anemia (FA) pathway, homologous recombination (HR), and mismatch repair (MMR)
pathway. These pathways related to DNA damaged response (DDR) which plays an important role
in the maintenance of genome stability and integrity through correcting the impaired DNA that
may contribute to carcinogenesis (56). Importantly, when combined with radiation response of
organoid from previous study P4 organoids presented radiation resistance which reveal aggressive
tumor of this group (Figure9). Thus, we hypothesized that upregulated DDR pathway associated
with radiation resistance by relieving DNA lesions and chromosomal abnormalities that occur
together with cancer cell proliferation. Interestingly, this molecular feature was found in cancer
stem cells (CSCs) ae well to resist DNA damage repair capacity and protecting DNA damage by an
efficient scavenging of reactive oxygen species (ROS), generated by the chemotherapy or

radiotherapy.

Then, to investicate stem cell features of P4 organoids, gene signature of LRG5+
intestinal stem cells (ISCs) and WNT expression from previous study were applied (57). The
results were presented in heatmaps (Figure10C, D). Unsurprisingly, P4 highly expressed gene
signature of colon crypt base which intestinal stem and progenitor cells are located (Figure10B).
This result agrees with upregulation of LGR5+ ISC and Wnt signatures. Hence, we hypothesized

that organoids in P4 have stem cell-like patterns.

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm

Figure 9 Radiation response of CRC organoids
The heatmap presents Area under the survival curve (AUC) after CRC organoids exposed different

doses of radiation
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4.4.5 P4: Upregulation of ribosome biogenesis pathway

In P4, ribosome biogenesis in eukaryotes, RNA polymerase and RNA transport pathways
were highly enriched. These pathways involved in protein synthesis which support to continuous
growth of cancer cells (58) and associated with the high activation of cell cycle and DNA
replication pathways found in P4. Moreover, the activation of ribosome biogenesis has been
comprehensively linked to sustained RNA polymerase | and Ill activation. Thus, high expression
level of RNA polymerase | (POLR1A) and Ill (POLR3A) of P4 were confirmed in FigurellA, B.
Moreover, a prominent role in the regulation of rRNA transcription in cancer is played by the C-
MYC proto-oncogene. C-MYC boosts all steps of rRNA biosynthesis and maturation through
diverse molecular mechanisms. As expected, organoids in P4 showed significantly high expression
of MYC gene (Figure11C). These results supported the remarkable increase of ribosome biogenesis

in P4 which might be applied as a biomarker of this group.

Interestingly, mutations in APC, TP53 and KRAS genes were dominantly found in P4
organoids (Figure11D). In addition to these mutations, in P4 organoid group copy-number
variations were higher than other groups (FigurellE, F). these results support the tumor

aggressiveness of this group.
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Figure 11 Expression levels of ribosome biogenesis related genes and genomic profiles of P4
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high CNV of P4 compared to other groups.
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4.5 Co-expression of genes in Ribosome biogenesis pathway

Transcriptome and clinical data demonstrated that P4 organoids show characteristics of
aggressive tumor and ribosome biogenesis pathway was specifically enriched in this group thus
we hypothesized that organoids in P4 might be identified by using a few gene in ribosome
biogenesis pathway. Hence, to investigate the most correlated gene in this pathway ribosomal
biogenesis genes were analyzed as a co-expression matrix. The result demonstrated that in
ribosome biogenesis pathway there are six groups of genes functioning as shown in red diagonal
(Figure12). Then, overlapped DEGs between P4 and CMS2 were labeled, and the result indicated
that mainly of these genes are located in cluster 1 and 2. Consequently, the topl0 genes of

these two clusters were proposed as genes markers of P4 ribosome biogenesis group (Table3).
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Figure 12 co-expression heatmap of ribosome biogenesis pathway in CRC organoids
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Table 3 Top10 genes of cluster 1 and 2 of ribosome biogenesis pathway ranked by log2 fold

change of gene expression

Top10 genes of clusterl

SYMBOL
SUV39H1
GTF3A
UTP14A
NSUN5P1
DKC1
LASIL
PRKDC
MTG2
LYAR
RRP12

genes

ENSG00000101945
ENSG00000122034
ENSGO00000156697
ENSG00000223705
ENSG00000130826
ENSGO00000001497
ENSG00000253729
ENSG00000101181
ENSG00000145220
ENSG00000052749

Top10 genes of cluster2

SYMBOL
SRPK3
RPL3L
NSUN5P2
BOP1
CELF5
PRPF6
NSUN5
DDX10
BUD23
EIF3B

genes

ENSG00000184343
ENSG00000140986
ENSG00000106133
ENSG00000261236
ENSG00000161082
ENSG00000101161
ENSG00000130305
ENSG00000178105
ENSG00000071462
ENSG00000106263

logFC

logFC

AveExpr

1.476134 3.52651
1.300063 6.491799
1.24507 5.299221
1.230734 4.731074
1.154322 6.651386
1.114469 5.699689
1.091219 6.446777
1.011972 5.531135
0.999265 4.093263
0.989937 5.516368

AveExpr
1.823504 2.344521
1.600125 -2.55786
1.202103 2.178638
1.019543 6.602543
1.018047 -0.08126
1.010083 7.183575
0.949867 5.574691
0.878494 4.496791
0.826916 6.31088
0.776493 7.879597

adj.P.Val

4.96E-14
9.04E-11
5.22E-13
2.12E-07
5.49E-12
5.80E-11
1.65E-09
8.42E-11
3.50E-10
2.22E-09

adj.P.Val
1.34E-07
0.000279
9.67E-07
2.33E-11
0.022321
6.40E-12
9.77E-12
4.39E-09
9.31E-12
2.07E-11
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4.6 Gene signature of individual NMF cluster identified by LASSO logistic regression

To construct a gene panel and develop a classifier for individual NMF clusters,
transcriptomic data of 14283 genes with high variance values (variance > 1) of 35 CRC organoid
samples were used to train the least absolute shrinkage and selection operator (LASSO) logistic
regression models. This technique effectively sets the coefficients of unimportant genes to zero
and thus helps select a small number of genes that are important to the classification (Table 4).
Subsequently, the LASSO model was evaluated on the test dataset of 19 samples. The overall

accuracy is 78.95% with most of the classification errors occurred on samples from P2 (Figure 13).

Table 4 parameter values of model for signature genes of individual group

P1 P2 P3 P4
ALPI 0.359582|ARHGEF17 0.12308|BRK1 0.006076|CGREF1  0.001625
CEBPA 0.001572|DBN1 0.016764|CADM1 0.091102|EVA1A 0.01896
CMAS 0.004479|EPHA2 0.009396{CD200 0.12079|FAM222A  0.06392
COL17A1 0.004827|FKRP 0.003578|EEF1A1P6 1.675654|HSPH1 0.027029
CTSS 0.033819|HDAC7 0.047626|RPL31 1.97E-06|NUP42 0.021811

FXYD3 0.000143(PPL 0.009162|SHISA6  0.029785|OSER1 0.045119
HMOX1  0.000932|PRSS22  0.007914|STAMBPL1 0.039384|POUS5F1B 0.070034
PLOD2 0.037818|SHB 0.032714TMEM258 0.00204

SLC22A18/ 0.00877|UBXN6 0.008412|TMEM51  0.006253
SLC51A  0.003305
TRIM?7 0.043088
WSCD1 0.021776

Confusion Matrix and Statistics

Reference
Prediction P1 P2 P3 P4
P1 3 1 @ @
P2 8 5 B8 @
P3 @ 2 2 1
P4 8 B B8 5

Overall Statistics
Accuracy : 8.7895
95% CI : (0.5443, ©.9395)
No Information Rate : ©.4211
P-Value [Acc > NIR] : ©.801218
Kappa : 8.7175
Mcnemar®s Test P-Value : NA

Statistics by Class:

Class: P1 Class: P2 Class: P3 (Class: P4

Sensitivity 1.e000 @.6250 1.6008 8.8333
Specificity 8.9375 1.e880 8.8235 1.0000
Pos Pred Value 8.7500 1.88080 8.4008 1.06000
Neg Pred Value 1.e000 @.7857 1.6008 8.9286
Prevalence 8.1579 08.4211 8.1853 8.3158
Detection Rate 8.1579 8.2632 8.10853 8.2632
Detection Prevalence 0.2185 09.2632 8.2632 0.2632
Balanced Accuracy 0.9688 8.8125 2.9118 08.9167

Figure 13 confusion matrix of prediction model



37

4.7 candidate gene markers selection for ribosome biogenesis

Since a unique characteristic of the P4 group, which is associated with resistance to
chemotherapy treatment, is the up-regulation of ribosome biogenesis, another LASSO model was
built to specifically classify the P4 group using expression profiles of 49 DEGs of P4 that are
annotated with ribosome biogenesis pathway. This yielded a 7-gene signature for ribosome
biogenesis (Table 5) that can classify the P4 group with 88.24% accuracy and 66.67% specificity

on the test dataset.

Table 5 signature genes of ribosome biogenesis obtained from prediction model

R"’"ri‘:at““::';g::ses's Coefficient | log2FC
BOP1 0.0757 1.0195
GTPBP4 0.0295 0.6785
MPHOSPH10 0.2238 0.3234
PNO1 0.0334 0.7789

POP7 0.0629 0.3585

RRS1 0.1065 0.5812

TBL3 0.1007 0.2749
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CHAPTER V
DISCUSSION

Genomic instability of CRC organoids in this study demonstrates two different genetic
pathways in the development of sporadic CRC. Firstly, chromosomal instability pathway (47.37%)
which is characterized by wide-spread alterations in chromosome number. Secondly,
microsatellite instability pathway (10.53%) which exhibit defect in DNA mismatch repair system. In
addition, somatic mutation profiles of these organoids exhibit mutations in several genes in
adenoma-carcinoma sequence including APC gene as an early event, then activating KRAS
mutation, and loss-of-function of TP53 tumor suppressor gene. Likewise, diverse mutation
patterns of genes associated with CRC also identified in these organoids. However, the mutation
frequencies in this study are lower frequency than the results found in TCGA database. This might
be according to difference of disease stage and specimen between this study and TCGA
database. However, this result exhibited genetically heterogeneous of these cancer organoids

which consistent with that were found in colorectal cancer.

Application of NMF method to CRC organoids transcriptomic data able to be classified
molecular subtypes into four groups with different molecular characteristics. P1: lipid
metabolism, P2: WNT7A, B and high TGF-B pathway activation, P3: highly expressed TGF-3
pathway, and P4: DNA repair upregulation, stem cell like subtype and ribosome biogenesis. These
characters correlated with CMS2-4 while CMS1 are not enriched in any organoid group. This may
cause from organoid sample are consist of epithelial cells without immune infiltrated cells thus
including of MSI status might be necessary for additional marker. The classification results of this
study demonstrated inconsistency among CMS subtypes prediction method in assigning CMS
subtype from CRC organoid transcriptomic data. This result suggests that non-cancer transcripts

from whole cancer tissues are required for current CMS classification method algorithm.

Molecular classification using transcriptomic data of CRC organoid which were particularly
consisted of epithelial cells provide intrinsic molecular patterns of individual organoid grouping.
Interestingly, P1 obviously presents lipid metabolism alteration correlated with CMS3. Moreover,
this study able to divide TGF beta high associated with CMS4 into two group (P2 and P3) which
were likely to metastasis by different mechanism. Besides, molecular features of P4 stem cell-like

group such as high expression of WNT and MYC genes and chromosomal instability were
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consistent to characteristics of CMS2, but previous CMS study demonstrated cancer stem cells
(CSCs) traits were found in CMS4. This result might indicate sub-population of CMS2 which
behave as CSCs of CRC. Furthermore, by using this approach stem cell like features, DNA repair

and ribosome biogenesis pathway were identified in P4 radiotherapy resistance group.

Majority of enriched pathways of P1 involved in lipid and cholesterol metabolism which
function in the cells by providing energy storage, structural component of cell membrane and
messengers of metabolic signaling for the sake of cell proliferation (59). Furthermore, along the
cancer transformation process, the acquisition of pro-survival abilities is an essential step that
allow cancer cells to adapt to harsh cancer microenvironment and their contribution to cancer
pathogenesis and progression (60, 61). Thus, cancer cells rewire their metabolism to acquire the
fittest metabolic rate for homeostasis of cancer. Interestingly, it has been proposed that lipid
metabolism alterations were found association with growth of primary tumor but also conducting
tumor progression and metastasis (59). Thus, deeply investigate key enzymes involved in lipid
metabolism can contribute to the development of the targeted therapy. However, sugar
metabolism alterations together with KRAS mutation involving in metabolism rewiring of cancer
were not found in this group. Thus, further investigation cause of lipid metabolism upregulation in

this group is challenged.

The molecular characteristic of P2 and P3 are still ambiguous but upregulation of TGFB
pathway of this group were found. Hence, withdrawal of growth factors might be needed to

further distinguish these groups.

For organoids in P4, most of it are present CIN phenotype involving the classic adenoma-
carcinoma sequence characterized by a characteristic set of mutations in specific genes including
APC, KRAS and TP53 (62, 63). Moreover, loss of APC function leads to hyperactivation of
Wnt/beta-catenin signaling which regulate growth advantages in epithelial cells and it also
considered as an early event in CRC tumorigenesis (64). This result support the characteristic of
Wnt pathway hyperactivation of P4 organoids. Besides, the intestinal stem cells located in the
base of the colon crypts are maintained in their undifferentiated state by wnt signaling pathway
which contributes not only to the survival of normal stem cells but also to the survival of cancer
stem cells. Activation of this pathway due to APC mutation leads to retention of a stem cell
phenotype, which prevents them from migrating to top of the colon crypts to be discarded. This

also agree with the intestinal stem cell-like properties of this group. Then, the aggregation of
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undifferentiated cells in the colonic crypts eventually results in the formation of a polyp.
Subsequently, accumulation of additional mutations in genes such as KRAS and TP53 may finally

lead to carcinoma (65).

DNA damaged repair pathways play an important role in the maintenance of genome
stability and integrity through correcting the impaired DNA that may contribute to carcinogenesis
(56). Activation of the Fanconi anemia (FA) pathway occurs as a result of DNA replication of DNA
damage, especially the damasge triggered from DNA crosslinking agents. On the other hand, highly
expression of FA genes and DNA damage repair capacity is helpful for relieving DNA lesions and
chromosomal abnormalities that occur together with rapid proliferation of cancer cells. This was
found pervasively in cancers and it was associated with chemoresistance (66). Moreover, it has
been reported that tumor with high level of DNA damage repair related genes exhibited
resistance to Cisplatin which is one of the most widely used chemotherapeutic drugs (67).
Interestingly, the chemotherapy currently used in medical regiments for CRC patients including
oxaliplatin, irinotecan, and 5-FU are directly or indirectly induced DNA damage which are
recognized by specific DNA repair pathways. Thus, further testing of chemotherapy drugs in these
CRC organoids are needed. Furthermore, these data indicate the need for development of gene
markers to evaluate DNA repair capacity (DRC) of tumor cells which has been known to

associated with chemo- and radiotherapy resistance (68).

For addition characteristic of P4, increased ribosome biogenesis in cancer cell is required to
support cell growth and cell proliferation due to hyperproliferative cells were perturbed
homeostasis of energy and increase protein synthesis activity. Moreover, continuous renewing of
colon epithelium depends on self-renewal of stem cell, differentiation and proliferation activities
which are maintain by the process of cell growth, division, protein synthesis and ribosome.
Importantly, previous study found that in mouse colon organoids transcriptomic data, ribosome
biogenesis signature was increased accompanied by differentiation of intestinal stem cells.
Additionally, ribosome biogenesis factor and DNA-binding proteins are grouped together as
nucleolus localized proteins. Majority of these proteins involved in DNA repair processes as well

(69).

Intriguingly, ribosome biogenesis pathway associated with several mechanism of cancer cells.
Thus, this pathway might be proposed as biomarker and candidate target for cancer treatment

especially in radiotherapy resistance group. It has been studied that the clinical alkylating agent
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Oxaliplatin does not induce cancer cell death through DNA damage but through ribosome
biogenesis inhibition instead (70). These data support development of new drugs designed to
selectively induce inhibition of ribosome biogenesis without the genotoxic effects which were
currently used as anticancer drugs. Currently, ribosome biogenesis inhibitors were developed
such as CX-3543 molecule disrupting the interaction of rDNA G-quadruplexes with a nucleolar
protein necessary for Pol | transcription (71), CX-5461 inhibitor of rRNA transcription which
presently under phase | clinical studies (72, 73), and BMH-21 molecule repressing RNA
polymerase | transcription without causing DNA damage (74). These inhibitors have two main
benefits. Firstly, they do not affect resting cells because the long half-life of cytoplasmic
ribosomes and second, they can induce the apoptotic death of cancer cells, especially cancer
with hyperactivation of ribosome biogenesis (58). Due to specific action mechanism these
inhibitors can be combined with other anticancer drugs which act through different cytotoxic

pathways such as energy related pathway to ensure a sufficient cancer cell destruction.

To detect ribosome biogenesis alteration in cancer cells, the silver staining of Nucleolar
Organizer Regions (AgNOR) was used as a simple visualization. The AgNOR substitutes different
argyrophilic nuclear proteins such as nucleolin and fibrillarin which are essential regulators of
ribosome biogenesis (75). Towards AgNOR distribution was discovered to be associated with the
nucleolus size which is linked to the cancer growth rate. Unfortunately, the AgNOR staining
reaction is complicated to be automatized and requires laboratory technicians thus this approach
is still not officially recommended in tumor pathology (58). This data reveals the need for the
development of molecular markers to detect abnormality of ribosome biogenesis that could be
applied in clinical practice. Accordingly, a seven-gene signature from supervised machine learning
in this study might be developed as a prediction marker to classify samples with aberration in the
ribosome biogenesis pathway. Likewise, candidate genes from co-expression analysis of this
pathway provide additional results and have the potential as alternative gene markers as well.
However, increase sample size and validation to other datasets are needed in further studies.
Finally, to develop detection of ribosome marker using real-time guantitative polymerase chain
reaction (RT- gPCR) method which easily use in clinical operation, additional PCR data collection

of that gene signature is required for prediction model construction and indicate cutoff value.

In summary, unsupervised clustering of CRC organoid transcriptomic data reveals four
organoid groups with different molecular characteristics. These data lead to pathway specific drug

testing in each group of CRC organoids. Importantly, samples with stem cell-like properties were
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clustered together in P4. This group highly expressed DNA repair pathways, hyperactivated
ribosome biogenesis and performed radiation resistance. Thus, we purpose ribosome biogenesis
pathway as a potentially alternative target for treatment and suggest gene signature of this

pathway to predict organoids with radiation resistance.
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