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CHAPTER I

INTRODUCTION

Inflation theory was first proposed by Guth in 1981 [1]. Inflation is a pe-

riod of accelerated expansion in the early universe. It occurs when the energy

density of the universe is dominated by the potential energy of some scalar field

called inflaton. During this period, the universe has accelerated expansion, and

the quantum fluctuations are enlarged to be the primordial density fluctuations.

They grow into the large-scale structure in the universe today. In order that in-

flation can occur, the slow roll approximation (the inflaton rolls very slowly along

the almost flat potential) is needed to have a large amount of inflation to solve

problems arising from the standard Big Bang model as well as the large scale of

perturbations [1]-[3], [12]. Inflation ends when the inflaton comes to a minimum of

the potential and oscillates about it. During the damped oscillations, the energy

lost of the inflaton reheats the universe and all the ordinary matters are created.

The cosmic microwave background radiation (CMB) was discovered in 1964

by Penzias and Wilson [4]. It is the roughly isotropic radiation. Its spectrum is

almost the blackbody spectrum of temperature about 2.725 K. However, it has

small variations of temperature. The degree of anisotropies in CMB is about one

part in 100,000 [2]. The origin of anisotropies in CMB is thought to be associated

with the density fluctuations at the decoupling time, the time when the universe

cooled down enough for protons and electrons to form neutral Hydrogen atoms

(380,000 years after big bang). These fluctuations are the primordial density fluc-

tuations generated from quantum fluctuations during inflation period. We study

CMB anisotropies by using the power spectrum which indicates the amplitude of

variations of the temperature as a function of the angular scale. For inflation, the

shapes of the theoretical power spectrum depends on the parameters assumed by

the model. In each model, the power spectrum and its derivatives (the spectral

index and the running of the spectral index) are computed as the appropriate

inflationary observables and compared with the present CMB observations.

The aim of this thesis is to test and discriminate different slow-roll inflation

models by using CMB observations. The thesis is organized as follows. In Chap-
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ter II, CMB formation and its anisotropy associated with inflation are considered.

Structure formation, all fluctuation scales and CMB power spectrum are discussed

respectively. We end this chapter by showing the recent CMB data.

Chapter III concerns dynamics of inflation as well as the slow roll conditions:

the conditions required for inflation. The following section presents cosmological

perturbations in the form of the perturbed Einstein equation. In the last section,

we compute the power spectrum of the primordial perturbations and its deriva-

tives in terms of the slow roll parameters.

In Chapter IV, the inflation models driven by a single scalar field are studied.

The commutative inflation and its problems will be in our interest. Noncommuta-

tive inflation model [13]-[21] is described as a candidate of solving the problems.

The perturbation equation of motion and the power spectrum in Chapter III are

modified due to the existence of the noncommutative parameter. All parameters

of the noncommutative power-law inflation are constrained by the observational

data and the results will be seen to be in good agreement with the observations.

Multi-field inflation models [29, 31] are studied in Chapter V. The classifi-

cation of the primordial perturbations are included here. We continue to compute

the evolution of multiple scalar fields. The simplest model called double inflation

[25, 28, 30] is then discussed, as well as the correlation between perturbations [24]-

[28]. In the last section, the realistic double inflation model in supersymmetric

theory [28, 30] and some constrains due to WMAP data [27, 30] are described.

Finally, we draw our conclusion in Chapter VI.



CHAPTER II

COSMIC MICROWAVE

BACKGROUND

ANISOTROPIES

There are many models explaining the origin and the evolution of the uni-

verse. Inflation theory is one of the possible candidates. Which one is the

best model of inflation? The inflationary parameters, as well as the cosmolog-

ical parameters, are constrained by the recent data from Wilkinson Microwave

Anisotropy Probe (WMAP). One of the WMAP results is the observed cosmic

microwave background (CMB) anisotropies. Before constructing any inflation

models, it is important to study the CMB observations.

2.1 Formation of the CMB and Its Properties

Cosmic microwave background radiation is the primordial light we can observe

from every direction today. Photons are formed after the inflation period in the

radiation era (when the age of the universe is less than one second). When the

universe has cooled down enough for protons and electrons to form neutral hydro-

gen atoms in the matter era, photons have no charged particles to scatter, then

they move freely to us as CMB.

The universe begins with the gigantic explosion called Big Bang. At that

time the universe is very hot and dense, and when it expands it becomes cooler

and less dense. The universe is a hot plasma containing particles such as electrons,

protons, neutrons and photons. Photons interact with electrons by Thomson scat-

tering1 . When the temperature of the universe is about 3000K, atoms are formed,

mostly hydrogen. There are no free electrons for photons to scatter, then they

1Thomson scattering being the Compton scattering in low temperature is the scattering of

the electromagnetic wave by a point charge, and the incident wave has the same wavelength
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travel freely in the direction of last scattering. Their wavelengths are stretched to

be in microwave range owing to the expansion of the universe. The universe is not

a plasma any longer, photons do not couple with matter anymore, so it becomes

transparent. This time is called decoupling time occurred when the age of the

universe is about 380,000 years old (in the matter-dominated period).

CMB is the most perfect black-body spectrum we know; however, its tem-

perature is slightly different on different patches of the sky to 1 part in 100,000.

This is called anisotropies [8, 9] which are caused by the variation of frequency as

photons move into and out of more dense and less dense regions, and the Doppler

effect (the photon is red shifted or blue shifted when the electron it scattered off

is moving away or toward us).

The origins of the fluctuations in the density at the decoupling time are

quantum fluctuations in the early universe. Next section, CMB anisotropies and

their connection to inflation will be considered.

2.2 Anisotropy Mechanisms and Inflation

From the previous section, one of the important sources of CMB anisotropies is

the gravitational potential fluctuations at the time CMB is formed. The photon

gains energy (blueshifting) when it falls into the gravitational potential wells, and

loses energy (redshifting) when it climbs out of the gravitational potential wells.

The gravitational potential fluctuations at the decoupling time come from

the very tiny fluctuations in the early universe. According to the Heisenberg

Uncertainty Principle, there are quantum fluctuations2 created all the time. Ac-

cording to the observations [5], the age of the universe today is about 13.7 billion

years. The age is too short for quantum fluctuations ( l ∼ 10−35 m.) to grow to

be galaxies or clusters of galaxies (l > 1024 m.) Inflation, which begins when the

age of the universe is less than one second (about Planck time), can be one of

with the scatter wave. The Thomson scattering cross section of photons by electron is

σT =
8πα2

3m2

where m is the electron mass and α = e2

2πc~ is the fine structure constant.
2Quantum fluctuations can be classified into two kinds:

• Fluctuations in the inflaton field: φ(t, ~x) = φ(t) + δφ(t, ~x).

• Geometrical perturbations of the spacetime metric: gµν = gµν + δgµν .
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the answers. Inflation enlarges fluctuations on quantum scales into cosmic scales.

Because there are all scales of fluctuations, after inflation, classical fluctuations

can be separated into three scales: large scale fluctuations which are the source of

galaxies and clusters of galaxies, intermediate scale fluctuations, and small scale

fluctuations.

After inflation, the enlarged fluctuations are considered in the form of gravi-

tational potential wells (more dense regions) and gravitational potential hills (less

dense regions) in the plasma.

Gravity compresses all matters in the plasma into potential wells, but the

photon pressure coming from the scattering of electrons resists the gravity. These

events cause acoustic oscillations or sound waves. When the sound wave causes

compression, the plasma gets more dense and hotter, but when it causes rarefac-

tion, the plasma gets less dense and colder. From inflation, there are many scales

of fluctuations, so there are different modes of oscillation in different length scales.

Each mode oscillates independently3. The frequency of oscillation is kcs where

cs is the sound speed. The oscillations tell us that there is the changing in time

between the less dense state and the more dense state in each region.

Acoustic oscillations stop at the decoupling time when electrons are com-

bined into atoms, so photons bound with nothing. They travel freely to us as

CMB. Modes that reach the extrema of their oscillations will increase the differ-

ence in the energy density, and also the temperature. The patterns at the end of

the oscillations are sent to us as the CMB anisotropies.

2.3 Structure Formation and Fluctuation Scales

After the decoupling time (all modes stop oscillating), gravitational fluctuations

are amplified by gravity and grow into structure observed today.

Different scales of fluctuations cause different scales of structure.

2.3.1 Large Angular Scales (θ ≥ 10◦)

Large scale fluctuations (enlarged by inflation) are the modes in which length

scales are much larger than the wavelength of the sound wave. These modes

will not oscillate until the decoupling time. Then the fluctuations amplitudes

are unchanged and become the large scale anisotropies in CMB, and will grow

3if the fluctuations are Gaussian.
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to be galaxies and clusters of galaxies. Because the large scale fluctuations come

from the quantum fluctuations in the early universe, they tell us about the initial

conditions of the universe.

2.3.2 Intermediate Angular Scales (1◦ ≤ θ < 10◦)

Intermediate scale fluctuations whose wavelengths are of the order of the sound

horizon have acoustic oscillations. The oscillations stop at the decoupling time

and leave the fluctuations in the new patterns which cause intermediate scale

anisotropies in CMB.

This scale of the anisotropies corresponds to the scale in the CMB power

spectrum in the range 100 ≤ l < 1000.

2.3.3 Small Angular Scales (θ � 1◦)

We know that the decoupling time is not instantaneous, photons are able to dif-

fuse out of the more/less dense regions and balance their temperature. This event

reduces photons temperature variations, and decays the fluctuations amplitudes

during the oscillations. So, the anisotropies in the small scale have the Silk damp-

ing as we see in the power spectrum for l ≥ 1000.

We see that only the large scale perturbations bring the information of in-

flation directly to us because they neither oscillate, nor damp.

2.4 CMB Power Spectrum

CMB power spectrum shows the size of variations of the temperature as a function

of the angular scale. Since temperature fluctuations distribute over the surface of

the sphere, it is convenient to write them in terms of the spherical harmonics. One

introduces the temperature fluctuation Θ(n̂) ≡ 4T
T

[6]:

Θ(n̂) =
∑
lm

almYlm(n̂). (2.1)

In this work, we consider only the Gaussian random fluctuations whose statistic

properties give

< a∗lmal′m′ >= δll′δmm′Cl. (2.2)
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In addition, the temperature perturbation field can be described by its Fourier

modes

Θ(x̂) =

∫
d3k

(2π)3
Θ(~k)ei~k·~x, (2.3)

each Fourier mode corresponds to the mode of acoustic oscillations. The Gaus-

sianity provides that Fourier components of the fluctuations are uncorrelated and

have random phases.

Considering the n̂-direction on the sky today, the temperature variation generated

at the decoupling time is

Θ(n̂) =

∫
d3k

(2π)3
Θ(~k)ei~k·D∗n̂, (2.4)

where D∗ = c(t0− t∗) is the distance traveled by light (CMB) from the decoupling

time (t∗) to today (t0).

One expands the plane wave in terms of the spherical harmonics

ei~k·D∗n̂ = 4π
∑
lm

iljl(kD∗)Y
∗
lm(k̂)Ylm(n̂). (2.5)

Substituting (2.1) and (2.5) in (2.4), one finds∑
lm

almYlm(n̂) = 4π

∫
d3k

(2π)3
Θ(~k)

∑
lm

iljl(kD∗)Y
∗
lm(k̂)Ylm(n̂). (2.6)

The orthogonality of the spherical harmonics provides the multipole moments as

alm = 4π

∫
d3k

(2π)3
Θ(~k)iljl(kD∗)Ylm(k̂). (2.7)

By using the two-point correlation function,

< Θ(~k)∗Θ(~k′) >= (2π)3δ(~k − ~k′)PT (k) (2.8)

with the power spectrum PT ≡ k3

2π2PT (k), one computes < a∗lmal′m′ > as

< a∗lmal′m′ >= δll′δmm′4π

∫
d ln kj2

l (kD∗)P2
T (k) (2.9)

For the slowly varying P2
T (k) e.g. the power spectrum for the large scale perturba-

tions, the dominant contribution comes from peaks of the spherical Bessel function.

Since jl(x) is strongly peaked at x ≈ l (here x = kD∗), we can take k = l/D∗ as

the characteristic scale corresponding to l [6]. From
∫∞

0
j2
l (x)d lnx = [2l(l+ 1)]−1

the power spectrum is

P2
T (k)

∣∣∣
k = l/D∗

=
l(l + 1)

2π
Cl. (2.10)

The power spectrum of CMB anisotropies is plotted using the quantity
l(l+1)

2π
Cl against the multipole l. Oscillation modes that reach an extrema of the

oscillation become the peaks in the CMB power spectrum as shown in Figure 2.1.
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Figure 2.1: CMB power spectrum [10].

2.4.1 First Peak and Geometry of the Universe

The first peak corresponds to the sound horizon which is the distance the sound

wave has propagated until the decoupling time, rs. This mode is the longest wave-

length of fluctuations of the acoustic oscillations. The fluctuations in this scale

are the dominant fluctuations existed in the plasma at last scattering. Moreover,

this mode reaches an extrema of the oscillation at decoupling, so the first peak is

the highest peak in the power spectrum.

The location of the peak depends on the total matter in the universe,

l ∼ 200√
Ωtot

(For flat universe: Ωtot ' 1). According to the power spectrum, one

obtains l ≈ 200, therefore we live in the flat space as the inflation predicted

(another evidence is the data from WMAP: Ωtot = 1.02± 0.02 [5]).

2.4.2 Relative Height of Peaks and Dark Matter

Another parameter that affects the height of every peak is the amount of baryons.

If the amount of baryons is increased, the odd peaks corresponding to the com-

pression of the plasma will be higher. This is because more baryons mean more

mass which will cause more infall. On the other hand, the even peaks correspond-

ing to the rarefaction of the plasma will be lower. The more baryons, the higher
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the odd peaks and the lower the even peaks.

All observations in [5] constrain the amount of the baryons in the universe

to be Ωbh
2 = 0.024 ± 0.001. If all matters contained in the universe are purely

baryons: Ωmh
2 ≈ Ωbh

2, the relative height of the first two peaks is less than that

appears in Figure 2.1. In order to have the relative height between the odd and the

even peaks as in Figure 2.1, the existence of the dark baryons or the dark matter

is required. An inflation model called double inflation, which will be studied in

Chapter V, can explain the origin of dark matter.

Although the acoustic peaks give much information about the universe, we

are interested in the power spectrum on the angular scale greater than 10◦ (or

l ≤ 20) when we study the initial conditions or inflation.

2.5 Observational Data

As we know the sources of CMB temperature anisotropies come from the gravita-

tion potential wells at the decoupling time, and the gravitation potential wells are

caused by the quantum fluctuations during the inflation period. The two types of

quantum fluctuations are combined into the curvature perturbation R. Therefore

from the equation (2.10),

P2
R(k) = P2

T (k) =
l(l + 1)

2π
Cl. (2.11)

It can be seen that the CMB power spectrum is an important observation for

testing inflation models. Moreover, the derivatives of the power spectrum are the

other constraints for discriminating among inflation models. The WMAP data [5]

on the large scale are

k = 0.05Mpc−1 : PR = 2.46× 10−9, nR = 0.93± 0.03,
dnR
d ln k

= −0.031+0.016
−0.017,

k = 0.002Mpc−1 : PR = 2.09× 10−9, nR = 1.20+0.12
−0.11,

dnR
d ln k

= −0.077+0.050
−0.052.

where nR and dnR
d ln k

are the first and second derivatives of PR with respect to ln k

respectively. Note that 1 Mpc = 3.086× 1024 cm.

The scale k = 0.05Mpc−1 corresponds to the galactic scale L = 20Mpc

whereas the scale k = 0.002Mpc−1 is for the cluster of galaxies L = 500Mpc.

We use only the large scale observations because the temperature fluctuations

on these scales are directly caused by the primordial perturbations in the early

universe (inflation).
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Another observation that can test inflation models is the CMB polarization

[8, 34, 35]. The polarization of the CMB at the end of the decoupling time can

give some information about the primordial perturbations. However, detecting the

CMB polarization precisely is very difficult. In the near future, Planck satellite

may give us the high-resolution map of the CMB polarization. In our study, we

consider only the data of the CMB anisotropies.



CHAPTER III

INFLATION REVIEW

3.1 Scalar Field Dynamics

In this chapter, we consider a single scalar field, called inflaton during the period

of inflation (the multi-field model will be considered in Chapter V).

The Lagrangian1 of the inflaton, φ, is

L = −1

2
gµν∂µφ∂νφ− V (φ), (3.2)

where

gµν = a2(η)


−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 , (3.3)

is the the Friedmann-Robertson-Walker (FRW) metric in the unperturbed space-

time with the conformal time coordinate, η. (For convenience, the proper time,

t, is changed to the conformal time, η, by the definition dt = a(η)dη). And a(η)

is the scale factor which depends only on time. It tells us about the rate of the

expansion of the universe.

The action for the inflation is

S =

∫
d4x

√
−gL (3.4)

= −
∫
d4x

√
−g
[1
2
gµν∂µφ∂νφ+ V (φ)

]
, (3.5)

1Normally, the Lagrangian is defined as

L =
1
2
gµν∂µφ∂νφ− V (φ), (3.1)

in this form, the metric is gµν = a2ηµν where ηµν ≡ diag(1,−1,−1,−1) is the Minkowski

metric. The metric gµν gives ∂µφ∂
µφ =

(
∂φ
∂η

)2

− (∇φ)2. But for the notation above, ∂µφ∂
µφ =

−
(

∂φ
∂η

)2

+ (∇φ)2 gives the opposite sign of the kinetic term.
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where
∫
d4x

√
−g is the invariant volume element, and the determinant of the

metric gµν is

g = det gµν = −a8(η). (3.6)

The invariance of the action under changing field configurations is

δS = 0

= −
∫
d4x

√
−g
[
1

2
gµν∂µδφ∂νφ+

1

2
gµν∂µφ∂νδφ+ δV (φ)

]
= −

∫
d4x

[
∂ν(g

µν
√
−g∂µφδφ)−

(
∂ν(g

µν
√
−g∂µφ)−

√
−g δV

δφ

)
δφ

]
.

Due to vanishing variations at the boundary, the surface terms vanish. Then the

equation of motion becomes

1√
−g

∂ν(g
µν
√
−g∂µφ)− Vφ = 0, (3.7)

where Vφ is the derivative of the potential, V , with respect to the field, φ. Re-

placing gµν with a2(η)ηµν , one gets the equation of motion for the inflaton in the

conformal time coordinate [see appendix A.1]

∂2φ

∂η2
+

2

a

(da
dη

)∂φ
∂η

−∇2φ+ a2Vφ(φ) = 0. (3.8)

Spatially homogeneity implies that the gradient of φ vanishes, the equation of

motion becomes

∂2φ

∂η2
+

2

a

(da
dη

)∂φ
∂η

+ a2Vφ(φ) = 0. (3.9)

The Hubble parameter in the conformal time and the proper time coordinates is

H =
1

a2(η)

da

dη
=

ȧ

a
. (3.10)

From the definition, H, measures the rate of change of the scale factor, therefore

one calls it the Hubble rate. The equation of motion in terms of the Hubble

parameter can be written as follow,

∂2φ

∂η2
+ 2aH

∂φ

∂η
+ a2Vφ(φ) = 0. (3.11)

The energy-momentum tensor for the inflation is given by

Tµν = ∂µφ∂νφ+ Lgµν

= ∂µφ∂νφ− gµν

(1
2
gαβ∂αφ∂βφ+ V (φ)

)
(3.12)
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For any perfect fluid which has no viscosity and heat flow. The energy-momentum

tensor is

T µ
ν =


−ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (3.13)

Here ρ and p are the density and the pressure of the perfect fluid respectively.

Because Tµν = gµβT
β

ν , one obtains

Tµν = a2(η)


ρ 0 0 0

0 p 0 0

0 0 p 0

0 0 0 p

 . (3.14)

Considering the inflaton field as a homogeneous perfect fluid (∇φ = 0), its energy-

momentum tensor in (3.12) can be written in components as

T00 =
[1
2

(∂φ
∂η

)2
+ V (φ)a2(η)

]
, (3.15a)

T0i = 0, (3.15b)

Tij =
[1
2

(∂φ
∂η

)2 − V (φ)a2(η)
]
δij. (3.15c)

Comparing the results with (3.14), the energy density and the pressure of the

inflaton are

ρ =
1

2a2(η)

(∂φ
∂η

)2
+ V (φ), (3.16a)

p =
1

2a2(η)

(∂φ
∂η

)2 − V (φ). (3.16b)

It can be seen that when the potential energy of the inflaton is larger than its

kinetic energy, the negative pressure appears. This condition is very important in

order to have inflation (ä > 0).

The continuity equation derived from ∇µT
µ
0 = 0 is

ρ̇+ 3H(ρ+ p) = 0. (3.17)

The equation of state is

p = ωρ, (3.18)
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where ω is a number depending on fluid types. The Friedmann equations derived

by Einstein equation are

1

a2(η)

(da
dη

)2
+ k2 =

ρa2

3m2
pl

, (3.19)

1

a(η)

(d2a

dη2

)
− 1

a2(η)

(da
dη

)2
= − a2

6m2
pl

(ρ+ 3p), (3.20)

where mpl ≡ 1√
8πG

is the reduced Planck mass, and k is the curvature constant

describing the geometry of the universe in three-dimensional space.

Using (3.16), the Friedmann equations in the flat universe (k = 0) become

1

a2(η)

(da
dη

)2
=

1

3m2
pl

[
a2(η)V (φ) +

1

2

(∂φ
∂η

)2]
, (3.21)

1

a(η)

(d2a

dη2

)
− 1

a2(η)

(da
dη

)2
=

1

3m2
pl

[
a2(η)V (φ)−

(∂φ
∂η

)2]
. (3.22)

Using the equation of state, the continuity equation and the (flat) Friedmann

equations, one finds

a ∝ ρ3(1+ω), a ∝ t
2

3(1+ω) , (3.23)

this shows that the energy density of the universe determines its evolution2. For

the negative pressure in the inflation epoch (ω < 0): a ∝ tp, p > 1. Notice that,

the distance traveled by light is a = ct, c = 1. Therefore during inflation epoch,

the spacetime expands faster than the speed of light.

In the next section we will consider all conditions necessary for having in-

flation and the relevant parameters are included there.

3.2 Slow Roll Conditions

From (3.9), the field equation in the proper time coordinate, t, can be written as

φ̈+ 3
( ȧ
a

)
φ̇+ Vφ(φ) = 0. (3.24)

In the inflation period, the energy density of the universe is dominated by the

inflaton potential energy. It means V (φ) � φ̇2. Moreover, the friction is large,

so the inflaton rolls slowly along the potential with a constant velocity (as in the

2For example, during the epoch of relativistic matter (ω = 1
3 ): a ∝ ρ4 and a ∝ t

1
2 . During

the epoch of non-relativistic matter (ω = 0): a ∝ ρ3 and a ∝ t
2
3 .
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case of a ball falls in a fluid with high viscosity). Then the φ̈-term in the equation

of motion can be neglected.

3Hφ̇+ Vφ(φ) ' 0. (3.25)

The first Friedmann equation (in the proper time coordinate) in the slow roll limit,
(φ̇)2

2
� V (φ), is

H2 ' V (φ)

3m2
pl

. (3.26)

Using (3.25) and (3.26), one obtains

(φ̇)2

2
=

m2
pl

6

[Vφ(φ)]2

V (φ)
(3.27)

� V (φ),

therefore the first consistency condition is:

m2
pl

6

[
Vφ(φ)

V (φ)

]2

� 1, (3.28)∣∣∣∣mpl
Vφ(φ)

V (φ)

∣∣∣∣ �
√

6. (3.29)

Differentiating (3.27) with respect to time, one has

1

2
(2φ̇)φ̈ =

m2
pl

6

[
2Vφ(φ)Vφφ(φ)φ̇

V (φ)
−
[
Vφ(φ)

V (φ)

]2

Vφ(φ)φ̇

]

φ̈ =
m2

pl

3

Vφ(φ)Vφφ(φ)

V (φ)
−
m2

pl

6

[
Vφ(φ)

V (φ)

]2

Vφ(φ). (3.30)

The last term is neglected due to the first consistency condition in (3.28). Besides,

the result from the slow roll approximation in (3.25) gives φ̈� Vφ(φ). Then

∣∣φ̈∣∣ '
∣∣∣∣m2

pl

3

Vφ(φ)Vφφ(φ)

V (φ)

∣∣∣∣� ∣∣Vφ(φ)
∣∣,∣∣∣m2

pl

3

Vφφ(φ)

V (φ)

∣∣∣ � 1,

or ∣∣∣∣m2
pl

Vφφ(φ)

V (φ)

∣∣∣∣� 3. (3.31)

This is the second consistency condition.

These two slow roll consistency conditions require a very flat inflaton potential.
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This kind of potential also gives the large amount of inflation or the large amount

of e-folding, N , which is defined by3

N =

∫ tf

ti

H(t)dt, (3.32)

where ti and tf are the time at the beginning and the end of the inflation period.

From (3.26), the number of e-folding is [see appendix A.2]

N =

∫ φi

φf

1

m2
pl

V (φ)

Vφ(φ)
dφ. (3.33)

The Friedmann equation in (3.21) can be written in terms of the Hubble parameter

as

H2 = 1
a4(η)

(da
dη

)2 = 1
3m2

pl

[
V (φ) + 1

a2(η)
(∂φ

∂η
)2
]
. (3.34)

Differentiating the equation with respect to the conformal time, one finds

dH

dη
= − 1

2m2
pla(η)

(dφ
dη

)2

, (3.35)

Hφ(φ) = − 1

2m2
pla(η)

dφ

dη
. (3.36)

Here, Hφ ≡ ∂H
∂φ

. Using (3.34) and (3.36), we have

V (φ) = 2m4
pl

[
3

2m2
pl

H2(φ)−
(
Hφ(φ)

)2]
(3.37)

= 3m2
plH

2(φ)

[
1−

2m2
pl

3

[
Hφ(φ)

H(φ)

]2
]

≡ 3m2
plH

2(φ)
[
1− 1

3
ε(φ)

]
, (3.38)

where ε is a slow roll parameter defined by4

ε(φ) ≡ 2m2
pl

[Hφ(φ)

H(φ)

]2
. (3.39)

The derivatives of the potential Vφ(φ) and Vφφ(φ) are [see appendix A.3]

Vφ(φ) = −3
√

2mplH
2(φ)

√
ε(φ)

[
1 + δ1(φ)

]
, (3.40)

Vφφ(φ) = 3H2
[
ε(φ)− δ1(φ)− 1

3
δ2
1(φ)− 1

3
φ̇δ2(φ)

]
, (3.41)

3N(t) =
∫ tf

t
H(t′)dt′ is the e-folds between a particular time, t, and the end of inflation.

4ε = 2m2
pl

[
Hφ(φ)
H(φ)

]2
= − Ḣ

H2 = 1
2m2

pl

(
φ̇
H

)2

.
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where the other slow roll parameters are defined by

δn ≡
1

Hnφ̇

dn+1φ

dtn+1
. (3.42)

The Friedmann equation in (3.22) is rewritten in term of the slow roll parameter,

ε, as [see appendix A.4] ( ä
a

)
= H2(φ)

[
1− ε(φ)

]
. (3.43)

It can be seen that ε < 1 gives ä > 0 which is a condition for inflation. Moreover,

the large amount of inflation is needed in order that quantum fluctuations are

enlarged to be the large scale structure today. It requires ε� 1 as well as δn � 1.

From the equations (3.40) and (3.41), the limit of the slow roll parameters gives

Vφ(φ) � 1 and Vφφ(φ) � 1 which satisfy the consistency conditions.

The equation of state in the inflation period can be expressed as [see ap-

pendix A.5]

p = −ρ
(
1− 2

3
ε(φ)

)
. (3.44)

It shows that −ρ ≤ p < −ρ
3

or −1 ≤ ω < −1
3

during inflation.

Now we have already known about the slow roll conditions for inflaton field

dynamics. Next section, using the conditions, dynamics of inflaton field fluctua-

tions in the perturbed spacetime are studied.

3.3 Perturbed Einstein Equation

The two sections above concern the dynamics of the homogeneous inflaton field in

the homogeneous spacetime. But the universe cannot be perfectly homogeneous

in the past because of inhomogeneities today. In this section all fluctuations are

considered as perturbations in the Einstein equation.

3.3.1 Metric Fluctuations

The most generic perturbed FRW-metric is written as [11]

ds2 = a2
(
(−1− 2A)dτ 2 + 2B,i dτ dx

i + (1− 2ψ)δijdx
i dxj

)
+ a2

(
E,ij dx

i dxj
)
. (3.45)
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where B,i≡ ∂B
∂xi and E,ij ≡ ∂E

∂xi∂xj . One transforms the coordinates as follow

η → η − (B − E ′)

xi → xi + γijE,j (3.46)

( γij is the spatial metric) to simplify the problem. The perturbed FRW-metric

becomes

ds2 = a2
(
− (1 + 2A)dη2 + ((1− 2ψ)δij ) dxi dxj

)
. (3.47)

This is called the longitudinal gauge which keeps only the scalar perturbations.

From (3.47), the metric tensor is

gµν = a2

(
−1 − 2A 0

0 (1 − 2ψ) δij

)
, (3.48)

= gµν + δgµν . (3.49)

Here the unperturbed metric is

gµν = a2

(
−1 0

0 δij

)
, (3.50)

while the perturbed metric is

δgµν = a2

(
−2A 0

0 2ψδij

)
. (3.51)

From gµα gαν = δµ
ν , the lowest order of the unperturbed inverse metric is

gµν =
1

a2

(
−1 0

0 δij

)
, (3.52)

so the inverse metric of gµν can be written in general,

gµν = a2

(
−1 + X 0

0 (1 + Y ) δij

)
. (3.53)

The 00-component is

g0α gα0 = −(−1 + X)(1 + 2A) = 1,

X = 2A. (3.54)

The ij-component is

giα gαj = (1 + Y ) δil (1 − 2ψ) δlj = δi
j,

Y = 2ψ. (3.55)
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So, the inverse metric is

gµν =
1

a2

(
−1 + 2A 0

0 (1 + 2ψ) δij

)
. (3.56)

where

δgµν =
2

a2

(
A 0

0 ψ δij

)
. (3.57)

The perturbations in the spacetime metric, δgµν , lead to the perturbations

in the Christoffel connections which will be studied in the next subsection.

3.3.2 Perturbed Christoffel Connections

The Christoffel connections, Γα
βγ, are defined in terms of the metric tensor as,

Γα
βγ =

1

2
gαρ (gργ,β + gβρ,γ − gβγ,ρ ) , (3.58)

where gργ,β ≡ ∂gργ

∂xβ . The first order in the perturbations of the connections are

δΓα
βγ =

1

2
δgαρ (gργ,β + gβρ,γ − gβγ,ρ )

+
1

2
gαρ (δgργ,β + δgβρ,γ − δgβγ,ρ ) . (3.59)

By the computation in appendix B.1, the non-zero components of the unperturbed

Christoffel connections are

Γ0
00 =

a′

a
; Γi

0j =
a′

a
δi

j ; Γ0
ij =

a′

a
δij, (3.60)

where a′ is the derivative of a with respect to the conformal time, η.

The perturbed part of the connections are

δΓ0
00 = A′ ; (3.61)

δΓ0
0i = ∂iA ; (3.62)

δΓi
00 = ∂iA ; (3.63)

δΓ0
ij = − 2

a′

a
(A+ ψ) δij − ψ′ δij ; (3.64)

δΓi
0j = −ψ′δi

j ; (3.65)

δΓi
jk = − ∂jψ δk

i − ∂kψ δj
i + ∂iψ δjk . (3.66)
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3.3.3 Perturbed Ricci Tensor

In order to compute the perturbed Einstein equation, the perturbed Ricci tensor

and Ricci scalar are needed.

The Ricci tensor is defined by

Rµν = ∂αΓα
µν − ∂µΓα

να + Γα
σα Γσ

µν − Γα
σν Γσ

µα . (3.67)

The first order in the perturbations of the tensor is

δRµν = ∂αδΓ
α
µν − ∂µδΓ

α
να + δΓα

σα Γσ
µν + Γα

σα δΓ
σ
µν

− δΓα
σν Γσ

µα − Γα
σν δΓ

σ
µα . (3.68)

The non-zero components of the unperturbed Ricci tensor are [see appendix B.2]

R00 = − 3
a′′

a
+ 3

(a′
a

)2

; (3.69)

Rij =

(
a′′

a
+
(a′
a

)2
)
δij, (3.70)

whereas the components of the perturbed part are

δR00 = ∂i∂
iA + 3ψ′′ + 3

a′

a
ψ′ + 3

a′

a
A′ ; (3.71)

δR0i = 2∂iψ
′ + 2

a′

a
∂iA ; (3.72)

δRij =
(
− a′

a
A′ − 5

a′

a
ψ′ − 2

a′′

a
A − 2

(
a′

a

)2

A − 2
a′′

a
ψ

− 2

(
a′

a

)2

ψ − ψ′′ + ∂k∂
kψ
)
δij + ∂i∂jψ − ∂i∂jA. (3.73)

3.3.4 Perturbed Ricci Scalar

The Ricci scalar is defined by contracting the Ricci tensor with the metric tensor

R = gµαRαµ, (3.74)

Its first order perturbations are

δR = δgµαRαµ + gµα δRαµ. (3.75)

Its unperturbed part is [see appendix B.3]

R =
6

a2

a′′

a
, (3.76)

while the perturbed part is

δR = − 1

a2

(
2∂i∂

iA+ 6ψ′′ + 6
a′

a
A′ + 18

a′

a
ψ′ + 12

a′′

a
A− 4∂i∂

iψ
)
. (3.77)

Now the perturbed Einstein tensor can be derived.
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3.3.5 Perturbed Einstein Tensor

The Einstein tensor is

Gµν = Rµν −
1

2
gµν R. (3.78)

The first order perturbations of the Einstein tensor can be written in terms of the

perturbed Ricci tensor and Ricci scalar as follow

δGµν = δRµν −
1

2
δgµν R − 1

2
gµν δR. (3.79)

The non-zero unperturbed components of the tensor are [see appendix B.4]

G00 = 3

(
a′

a

)2

; (3.80)

Gij =

(
− 2

a′′

a
+

(
a′

a

)2
)
δij . (3.81)

The perturbed components are

δG00 = −6
a′

a
ψ′ + 2 ∂i∂

i ψ ; (3.82)

δG0i = 2∂i ψ
′ + 2

a′

a
∂iA ; (3.83)

δGij =

(
2
a′

a
A′ + 4

a′

a
ψ′ + 4

a′′

a
A− 2

(
a′

a

)2

A+ 4
a′′

a
ψ

−2

(
a′

a

)2

ψ + 2ψ′′ − ∂k∂
k ψ + ∂k∂

kA

)
δij

+ ∂i∂jψ − ∂i∂jA. (3.84)

From Gµ
ν = gµαGαν , so

δGµ
ν = δ(gµαGαν)

= δgµαGαν + gµα δGαν . (3.85)

The non-zero components of the Einstein tensor are

δG0
0 =

1

a2

(
6

(
a′

a

)2

A + 6
a′

a
ψ′ − 2∂i∂

iψ

)
; (3.86)

δG0
i =

1

a2

(
−2∂iψ

′ − 2
a′

a
∂iA

)
; (3.87)

δGi
j =

1

a2

{(
2
a′

a
A′ + 4

a′′

a
A − 2

(a′
a

)2

A + ∂k∂
kA + 4

a′

a
ψ′

+ 2ψ′′ − ∂k∂
kψ

)
δi

j − ∂i∂jA + ∂i∂jψ

}
. (3.88)
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Raising one of the indices of the Einstein tensor makes the computation shorter

as we will see later.

We have already obtained the geometrical perturbations in form of the per-

turbed Einstein tensor. Now the perturbations of the energy momentum tensor

in needed in order to complete the Einstein equation.

3.3.6 Perturbed Energy-Momentum Tensor

In this subsection, the matter part in the Einstein equation is considered. Matter

is represented in the energy-momentum tensor whose background part is

Tµν = ∂µφ ∂νφ − gµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
, (3.89)

while its perturbed part is

δTµν = ∂µδφ ∂νφ + ∂µφ ∂νδφ − δgµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− gµν

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ Vφ δφ

)
. (3.90)

The background components are the same as in (3.15)

T00 =
1

2
φ′

2
+ V (φ) a2 ;

T0i = 0 ;

Tij =

(
1

2
φ′

2 − V (φ) a2

)
δij , (3.91)

whereas the perturbed components are [see appendix B.5]

δT00 = δφ′ φ′ + 2AV (φ) a2 + a2 Vφ δφ ; (3.92)

δT0i = ∂i δφ φ
′ ; (3.93)

δTij =
(
δφ′ φ′ − Aφ′

2 − a2 Vφ δφ− ψ φ′
2
+ 2ψ V (φ) a2

)
δij . (3.94)

Again,

δT µ
ν = δ(gµα Tαν)

= δgµα Tαν + gµα δTαν , (3.95)

which is written in components as

δT 0
0 =

1

a2

(
Aφ′

2 − δφ′ φ′ − δφ
∂V

∂φ
a2

)
; (3.96)

δT 0
i =

1

a2
(− ∂iδφ φ

′) ;

δT i
j =

1

a2

(
−Aφ′2 + δφ′ φ′ − δφ

∂V

∂φ
a2

)
δi

j . (3.97)

We are ready to find the Einstein equation in each component.
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3.3.7 Perturbed Einstein Equation

The background Einstein equations:

G00 =
1

m2
pl

T00(
a′

a

)2

=
1

3m2
pl

(
1

2
φ′

2
+ V (φ) a2

)
. (3.98)

The equation above is the first Friedmann equation while the second can be derived

from the ij-component of the Einstein equation below

Gij =
1

m2
pl

Tij

a′′

a
−
(
a′

a

)2

=
1

3m2
pl

(
V (φ) a2 − φ′

2
)
. (3.99)

In the proper time coordinate, the second Friedmann equation is

ä

a
=

1

3m2
pl

(
V (φ) − 1

a2
φ′

2

)
, (3.100)

where ä = 1
a

[
a′′

a
−
(

a′

a

)2]
.

The perturbed Einstein equation is considered. Since there are no non-diagonal

component in the energy momentum tensor, the non-diagonal part of the Einstein

tensor is equal to zero 5

∂i∂jψ − ∂i∂jA = 0

ψ = A. (3.101)

The components of the perturbed Einstein equation are [see appendix B.6]

3H2ψ + 3Hψ′ − ∇2ψ =
1

2m2
pl

(
ψφ′

2 − δφ′φ′ − δφVφa
2
)

; (3.102)

Hψ + ψ′ =
1

2m2
pl

(δφφ′) ; (3.103)

H2ψ + 2H′ψ + 3Hψ′ + ψ′′ =
1

2m2
pl

(
−ψφ′2 + δφ′φ′ − δφVφa

2
)
, (3.104)

5Consider Bardeen’s potentials [11]

Φ = −A +
1
a

[(
−B +

E′

2

)
a

]′
,

Ψ = −ψ − 1
6
∇2E +

a′

a

(
B − E′

2

)
,

which are gauge invariant. For longitudinal gauge, one finds

Φ = −A, Ψ = − ψ.
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where H ≡ a′/a = aH and a′′/a = H2 +H′.

Summing (3.102) and (3.104), replacing δφ by using (3.103), then using the (ho-

mogeneous) field equation, one obtains

ψ′′ + 2

(
H − φ′′

φ′

)
ψ′ − ∇2 ψ + 2

(
H′ − H φ′′

φ′

)
ψ = 0. (3.105)

From the perturbed Einstein equation, the perturbation in the matter field, δφ(η, ~x),

leads to the perturbation in the spacetime metric, ψ(η, ~x), and vise versa. After

the inflation era, the two quantum perturbations, δφ and ψ, are enlarged to be

the classical perturbations called primordial perturbations. Their solutions in the

long wavelength limit and short wavelength limit will be considered in the next

section.

3.4 Primordial Perturbations and Their Power

Spectrum

During the period of inflation, spacetime expands faster than the speed of light. So

the wavelengths of perturbations are stretched outside the causal-contact region

called horizon.6 Their magnitudes are assumed to be constant if there are no other

sources (entropy perturbations) when they leave outside the horizon. However, the

metric perturbation, ψ, is not constant even in the large scale [12] (λ > H−1

a
or

k < aH where k is the comoving wave number), one introduces the comoving

curvature perturbation, R, which takes the form

R ≡ ψ +
H
φ′
δφ. (3.106)

This is for a single field inflation model, which has no entropy perturbation,7 thus

the curvature perturbation is constant (will be proved later) in the large scale.

6the furthest distance/area that light can travel: the furthest distance that the observer can

observe. The region inside the horizon contains all events that are visible while the outside

contains all events that cannot be observed by the observer. From the definition of the Hubble

parameter, the comoving horizon size is H−1

a .
7There are no entropy perturbation in single field models, therefore perturbations are purely

adiabatic (will be explained in Chapter V).
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Substituting (3.106) in (3.105), the result is8

R′′ + 2
z′

z2
R′ − ∇2R = 0. (3.108)

Here, z ≡ aφ′/H = aφ̇/H.

In order to eliminate the friction term, the curvature perturbation is replaced by

a gauge invariant quantity, u = zR. The equation of motion for u(η, ~x) is

u′′ − ∇2u− z′′

z
u = 0. (3.109)

Inflation occurs when the size of the universe is about the Planck scale in which

quantum effect cannot be neglected. We quantize the perturbation field by ex-

panding it into a creation operator, â†~k, and an annihilation operator, â~k.

u(η, ~x) =

∫
d3k

(2π)
3
2

(
uk(η)â~ke

i~k·~x + u∗k(η)â
†
~k
e−i~k·~x

)
(3.110)

where the two operators satisfy the commutator [â~k, â
†
~k′

] = δ(3)(~k − ~k′).

The equation of motion becomes

u′′k +

(
k2 − z′′

z

)
uk = 0. (3.111)

Computing z′′/z in terms of the slow roll parameters (appendix C.1), the result is

z′′

z
= 2(aH)2

(
1 + ε+

3

2
δ1 +

δ2
2

+ ε2 + 2εδ1

)
. (3.112)

Recall that the slow roll parameters are small because of the almost flat inflaton

potential, one needs to keep the first few orders in the slow roll parameters. Using

aH =
−1

η(1− ε)
, −∞ < η < 0, (3.113)

one finds

z′′

z
=

2

η2(1− ε)2

(
1 + ε+

3

2
δ1 +

δ2
2

+ ε2 + 2εδ1

)
=

2

η2
(1 + 2ε+ ...)

(
1 + ε+

3

2
δ1 + ...

)
≈ 1

η2
(2 + 6ε+ 3δ1) . (3.114)

8This equation in the Fourier space is

R′′k + 2
z′k
z2
k

R′k + k2Rk = 0. (3.107)
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Consider the second order differential equation:

x2 d
2y

dx2
+ (2p+ 1)x

dy

dx
+
[
α2x2r + β2

]
y = 0, (3.115)

the solution is

y = x−p
[
AH

(1)
q
r

(α
r
xr
)

+ BH
(2)
q
r

(α
r
xr
)]
, q =

√
p2 − β2,

where A and B are integration constants. H
(1)
q
r

(
α
r
xr
)

is the Hankel function of the

first kind while H
(2)
q
r

(
α
r
xr
)

=
[
H

(1)
q
r

(
α
r
xr
)]∗

is the Hankel function of the second

kind.

In order to find the solution of (3.111), one rewrites it in the form

u′′k +

[
k2 − 1

η2
(ν2 − 1

4
)

]
uk = 0

(kη)2 d2uk

d(kη)2
+

[
(kη)2 − (ν2 − 1

4
)

]
uk = 0. (3.116)

where ν2 = 9
4

+ 6ε + 3δ1. It can be seen that the equation (3.116) is in the form

of (3.115) with p = −1/2, α = r = 1, β2 = −(ν2− 1/4) and q = ν. Therefore the

solution for (3.116) is given in terms of the Hankel functions:

uk(η) =
√
−kη

[
AkH

(1)
ν (−kη) + BkH

(2)
ν (−kη)

]
, (3.117)

the negative sign shows that η lies in −∞ < η < 0. The range of the conformal

time corresponds to the range of the comoving time as 0 < t <∞.

After inflation, the spacetime expands slower than the horizon. Thus pertur-

bations will re-enter the horizon when their wavelengths become smaller than the

horizon size. The perturbations re-entered the horizon at the matter-dominated

period, since that time they have grown by the gravitational attraction and caused

the structure formations and anisotropies in the CMB radiation. These perturba-

tions are universally called primordial perturbations.

For convenience, we consider the perturbations in small scale and large scale

separately:

Small scale perturbations (k > aH)

Small scale perturbations9 are the perturbations whose wavelengths are smaller

than the horizon size at the decoupling time. This means that after crossing

9this scale corresponds to both intermediate scale and small scale fluctuations in Chapter II.
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outside the horizon during inflation, they have re-entered the horizon before the

decoupling time, therefore the perturbations have been changed because of gravity.

Considering the equation of motion (3.111) in the small scale limit, k2 >> z′′/z,

one finds

u′′k + k2uk ≈ 0, (3.118)

whose solution is a plane wave:

uk(η) = Dke
−ikη.

The constant, Dk, is obtained by using the commutation relation

[ϕ(η, ~x), π(η′, ~x′)]η=η′ = iδ(3)(~x− ~x′). (3.119)

Here ϕ ≡ δφ is the inflaton field perturbation and π(η, ~x) = ∂L
∂ϕ̇

= a2ϕ′. The

relation above offers |uk(η)| = 1√
2k

, where u = aϕ+ zψ [see appendix C.2]. Thus

uk(η) =
1√
2k

e−ikη. (3.120)

An asymptotic form of the Hankel function is H
(1)
ν (x � 1) ≈

√
2

πx
ei(x−ν π

2
−π

4
).

Therefore

lim
−kη→∞

H(1)
ν (−kη) ≈

√
2

π(−kη)
e−ikηe−i π

2
(ν+ 1

2
). (3.121)

Substituting it into (3.117) and comparing with (3.120), the integration constants

are Bk = 0 and Ak = 1
2

√
π
k
ei π

2
(ν+ 1

2
). The solution which satisfies the short wave-

length limit is

uk(η) =

√
π

2
ei(π

2
(ν+ 1

2
))
√
−η H(1)

ν (−kη). (3.122)

Large scale perturbations (k < aH)

Large scale perturbations are the perturbations whose wavelengths are larger than

the horizon size at the decoupling time, they have not re-entered the horizon yet

therefore their amplitudes are the same as in the inflation period. This can be

shown by considering the equation of motion (3.111) in the long wavelength limit,

k2 << z′′/z, giving

u′′k +
z′′

z
uk ≈ 0,

whose solution is

uk(η) ∼ zk,
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or

Rk =
uk

zk

∼ const.,

Thus when primordial perturbations on the superhorizon scale re-enter the hori-

zon, the received information is purely the information from inflation.

From H
(1)
ν (x � 1) = −iΓ(ν)

π

(
x
2

)−ν
, the Hankel function in the long wavelength

limit, −kη → 0, is

H(1)
ν (−kη → 0) = −iΓ(ν)

π

(
−kη

2

)−ν

.

Γ(ν) is a gamma function10. The equation of motion, (3.122), in this limit is

uk(η) → −i ei(π
2
(ν+ 1

2
)) 2ν− 3

2
Γ(ν)

Γ(3
2
)

1√
2k

(−kη)
1
2
−ν . (3.123)

Here ν = 3
2

√
1 + 8

3
ε+ 4

3
δ1 ≈ 3

2
(1+ 4

3
ε+ 2

3
δ1) = 3

2
+2ε+δ1. The squared amplitude

of the perturbation is

|uk(η)|2 = 22ν−3

[
Γ(ν)

Γ(3
2
)

]2
(−kη)1−2ν

2k
. (3.124)

Considering the vacuum state, the perturbation amplitude can be expressed

as [see appendix C.3]

〈0|u∗(η, ~x)u(η′, ~x′)|0〉η=η′ =

∫
d3k

(2π)3
|uk(η)|2ei~k(~x−~x′), (3.125)

For ~x = ~x′, one defines the power spectrum, a quantity representing variance of

perturbations at a given comoving wavelength, k−1, as

〈0|u2(η, ~x)|0〉 ≡
∫
dk

k
Pu(k). (3.126)

Thus the power spectrum of the curvature perturbation is [see appendix C.3]

PR(k) =
k3

2π2
|Rk(η)|2

=
1

2m2
plε

(
H

2π

)2

22ν−3

[
Γ(ν)

Γ(3
2
)

]2 (
k

aH

)−4ε−2δ1

(1− ε)2+4ε+2δ1 . (3.127)

Because of the consistency conditions, we have small values for the slow roll pa-

rameters, ε� 1 and δn � 1. One uses the Taylor expansion up to the first order

10We use the property: Γ(x + 1) = xΓ(x). From Γ( 1
2 ) =

√
π and Γ( 3

2 ) = 1
2Γ( 1

2 ) therefore
√
π = 2Γ( 3

2 ).
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in the slow roll parameters to get

2ν− 3
2 = e(2ε+δ1) ln 2 ≈ 1 + (2ε+ δ1) ln 2,

Γ(ν)

Γ(3
2
)
≈ 1 + (2− 2 ln 2− γ)(2ε+ δ1),

(1− ε)2+4ε+2δ1 ≈ (1− 2ε− 4ε2 − 2εδ1),(
k

aH

)−4ε−2δ1

= e(−4ε−2δ1) ln
(

k
aH

)
≈ 1− (4ε+ 2δ1) ln

( k

aH

)
, (3.128)

where ν = 3
2

+ 2ε + δ1 and α = 2 − ln 2 − γ = 0.72963711. The power spectrum

up to the first order is

PR(k) =
1

2m2
plε

(
H

2π

)2 [
1− 2ε+ 2

(
α− ln

( k

aH

))
(2ε+ δ1)

]
. (3.129)

In addition, we can measure the amplitudes of the perturbations after the per-

turbations re-enter the horizon. In order to receive only the signal from inflation,

without other sources, it is necessary to measure the perturbations amplitudes

when they re-enter the horizon immediately. After that their amplitudes will

change due to gravitational instabilities. Therefore we calculate the primordial

power spectrum when the primordial perturbation wavelength is equal to the

horizon size: k = aH.

PR(k) = lim
k→aH

k3

2π2

∣∣∣∣uk(η)

z

∣∣∣∣2
=

1

2m2
plε

(
H

2π

)2

[1− 2ε+ 2α(2ε+ δ1)] . (3.130)

The spectral index is defined by the first derivative of the power spectrum with

respect to the scale k

nR(k) = 1 +
d lnPR
d ln k

. (3.131)

The scale invariant spectrum occurs when nR(k) = 1 which means that the power

spectrum does not depend on the scale, k.

Before computing the spectral index, one calculates d ln k up to the first order in

the slow roll parameters at the horizon crossing scale, and obtains

d ln k = (1− ε)Hdt = (1− ε)d ln a. (3.132)

The derivatives of the slow roll parameters with respect to the comoving time are

ε̇ = 2H(ε2 + εδ1), δ̇1 = H(εδ1 − δ2
1 + δ2), δ̇2 = H(2εδ2 − δ1δ2 + δ3). (3.133)

11γ = limn→∞(1 + 1
2 + ...+ 1

n − lnn) = 0.577216 is the Euler-Mascheroni constant.
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Using (3.133) and (3.132), one obtains

dε

d ln k
' 2(ε2 + εδ1),

dδ1
d ln k

' (εδ1 − δ2
1 + δ2),

dδ2
d ln k

' (2εδ2 − δ1δ2 + δ3).(3.134)

The spectral index up to the second order in the slow roll parameter is [see ap-

pendix C.4]

nR(k) = 1− 4ε− 2δ1 + (8α− 4)ε2 + (10α− 4)εδ1 − 2αδ2
1 + 2αδ2. (3.135)

The running of the spectral index is dnR
d ln k

. Its value up to the third order is

dnR
d ln k

(k) = −8ε2 − 10εδ1 + 2δ2
1 − 2δ2 + (32α− 16)ε3 + (62α− 28)ε2δ1

+(6α− 4)εδ2
1 + (14α− 4)εδ2 + 4αδ3

1 − 6αδ1δ2 + 2αδ3. (3.136)

The last two equations and the power spectrum depend on the inflation models

because the slow roll parameters depend on the inflaton potential. The spectral

index and its running in several models will be computed in the following chapter.

After that their values will be compared with the WMAP data.



CHAPTER IV

SINGLE-FIELD INFLATION

This chapter concerns the power-law inflation driven by a single inflaton field

in both commutative and noncommutative spacetime. We will show problems of

the simplest model of the commutative inflation and see how they can be solved

by the existence of a minimum length scale.

4.1 Commutative Inflation

In this model, the universe is in the commutative spacetime therefore the only one

effect coming from the spacetime is gravity (curvature).

The power-law inflation has the potential as below

V (φ) = V0 exp
(
−
√

2

p
φ
)
, (4.1)

where p > 1 gives the condition of accelerated expansion. The scale factor in this

model has the form

a(t) ∼ tp. (4.2)

One calculates the Hubble parameter and the slow roll parameters, and obtains

H =
p

t
, ε =

1

p
, δ1 = −1

p
, δ2 =

2

p2
, δ3 = − 6

p3
. (4.3)

The spectral index and the running for this model are

nR(k) = 1− 2

p
, (4.4)

dnR
d ln k

= 0. (4.5)

Comparing the obtained values with the WMAP data

nR = 0.93± 0.03,
dnR
d ln k

= −0.031+0.016
−0.017 (k = 0.05Mpc−1),

nR = 1.20+0.12
−0.11,

dnR
d ln k

= −0.077+0.050
−0.052 (k = 0.002Mpc−1),
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the power-law inflation gives only the scale invariant spectral index with red-tilt,

nR < 1, and the zero running for all exponent, p. The results are not consistent

with the WMAP data.

4.2 Noncommutative Inflation

The idea of the noncommutative spacetime comes from the string theory. In string

theory, there is the existence of the minimum length scale called string length, ls

(string is an one dimensional object). If we use it as a ruler, anything whose length

scale is smaller than the string scale cannot be measured correctly.

At high energies in the early universe and during the inflation period, quan-

tum effects are expected to be important. From the string theory, the primordial

perturbations whose wavelengths are closed to the string scale are affected by the

spacetime noncommutativity.

To probe these effects, the WMAP spectrum of CMB anisotropies is used.

We have already known that the anisotropies of the cosmic microwave background

radiation come from the primordial curvature perturbations generated during in-

flation period. When we observe the CMB anisotropies, we hope to get some infor-

mation on spacetime noncommutativity using noncommutative inflation models.

4.2.1 Noncommutative Modifications to the Perturbation

Equations of Motion

The universal property of the string theory is the stringy spacetime uncertainty

relation proposed by Brandenberger and Ho [13]:

∆tp∆xp ≥ l2s , (4.6)

where tp and xp are physical time and space respectively. This relation implies

that the space and time at the very short distance near the string scale are non-

commutative.

Considering the lowest limit, one finds the relation in the comoving coordinate1

(t, ~x(t)) where ∆tp = ∆t and ∆~xp = a(t)∆~x.

[
t, x
]

= i
2l2s
a
. (4.7)

1because we live in the expanding universe.



33

This commutation relation is time-dependent because the scale factor in the right

hand side is a function of time. When the time changes, both the scale factor and

the time interval change. The right hand side of the above equation is not constant.

From this reason, Brandenberger and Ho introduce the new time coordinate, τ and

apply the stringy spacetime uncertainty relation in cosmology:[
τ, x
]
∗ = i2l2s , (4.8)

where the ∗-commutator in the above equation is defined by
[
τ, x
]
∗ ≡ τ ∗x−x∗τ .

The ∗-product of any f(x, τ) and g(x, τ) functions can be defined as [13]

(f ∗ g)(x, τ) = e−il2s(∂τ ∂x−∂x∂τ ) · f(x, τ)g(y, τ ′)
∣∣
y=x,τ=τ ′

. (4.9)

The ∗-operator maps all multiplications in the noncommutative spacetime into

the ∗-product in the commutative spacetime. τ and x are coordinates in the FRW

metric:

ds2 = a−2(τ)dτ 2 − a2(τ)dx2 = dt2 − a2(t)dx2, (4.10)

so dτ = adt.

There is the difficulty for considering the noncommutative effect in the cos-

mological background because noncommutativity will break the homogeneity and

isotropy of the universe. So, one considers the noncommutative effect in the mo-

mentum space. First, one calculates the modified action of a free scalar field, φ, in

1+1 dimensional noncommutative spacetime, then extends it into 3+1 spacetime.

The modified action in 1+1 noncommutative spacetime is (One places (̃ )

over all parameters in the noncommutative spacetime.)

S̃ =

∫
dτdx

1

2

(
∂τ φ̃

† ∗ a2 ∗ ∂τ φ̃−
(
∂xφ̃
)† ∗ a−2 ∗ ∂xφ̃

)
. (4.11)

The Fourier transform of φ̃(τ, x) is φ̃(τ, k) ≡ φ̃k where

φ̃ = V
1
2

[1
2

∫
dk√
2π

(
φ̃ke

ikx + φ̃†ke
−ikx

)]
, (4.12a)

φ̃† = V
1
2

[1
2

∫
dq√
2π

(
φ̃†qe

−iqx + φ̃qe
iqx
)]
, (4.12b)

with the total spatial coordinate volume, V . The condition for the real value of

φ̃ is φ̃†k = φ̃−k. One substitutes (4.12) into (4.11), then uses the ∗-product, the

action for the time-time component is [see appendix C.5]

S̃time = V

∫
|k|<k0

dτdk
1

2
∂τ φ̃−k ∂τ φ̃k

[
a2(τ + kl2s) + a2(τ − kl2s)

2

]
.
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From the effect of the spacetime noncommutativity, the scale factor is a function

of time and the scale k (2). The cut-off momentum k0 comes from the stringy

uncertainty relation in the lowest limit ∆τ∆x = l2s . The lower bound of length

corresponds to the upper bound of the momentum k0 = aeff/ls. Here, aeff is the

effective scale factor with aeff (t) → a(t) when ls → 0.

In the same way, the action for the space-space component is

S̃space = −V
∫
|k|<k0

dτdk
1

2
k2φ̃−k φ̃k

[
a−2(τ + kl2s) + a−2(τ − kl2s)

2

]
.

The full action is

S̃ = V

∫
|k|<k0

dτdk
1

2

(
β+

k ∂τ φ̃−k∂τ φ̃k − k2β−k φ̃−kφ̃k

)
, (4.13)

where

β±k =
1

2

(
a±2(τ − l2sk) + (a±2(τ + l2sk)

)
. (4.14)

The action above is rewritten in a conformal time coordinate by defining [13]

dη̃ = a−2
eff dτ, (4.15)

where

a2
eff =

(
β+

k

β−k

)1/2

. (4.16)

Here, η̃ is called the modified conformal time coordinate. Defining yk = (β+
k β

−
k )1/4,

the full action in this coordinate is

S̃ = V

∫
|k|<k0

dη̃ dk
1

2
y2

k(η̃)
(
φ̃′−kφ̃

′
k − k2φ̃−kφ̃k

)
. (4.17)

Next, one generalizes the action to d+ 1 spacetime,

S̃ = V

∫
|k|<k0

dη̃ ddk
1

2
zd−1

k (η̃)
(
φ̃′−kφ̃

′
k − k2φ̃−kφ̃k

)
,

with zd−1
k (η̃, k) = zd−1(η̃)y2

k(η̃). In 3 + 1 spacetime, where we live in, the action is

S̃ = V

∫
|k|<k0

dη̃ d3k
1

2
z2

k(η̃)
(
φ̃′−kφ̃

′
k − k2φ̃−kφ̃k

)
. (4.18)

From the action principle, the equation of motion for φ̃ is

φ̃′′k + 2
z′k
z2

k

φ̃′k + k2φ̃k = 0. (4.19)

2In commutative models, a(t) depends only on time.
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Here, φ is any free scalar field which is affected by the spacetime noncommutativity

in the high energies era. The inflaton field in this model is also affected by the

uncertainty because the inflation era occurs in the early universe. According to

the previous chapter, the equation above is the same as the equation of motion

of the curvature perturbation, containing the inflaton fluctuation and the metric

fluctuation. It can be seen that in the case of inflation, φ̃ = R̃ [14].

4.2.2 Noncommutative Parameter and the Noncommuta-

tive Power Spectrum

Again, one eliminates the friction term by defining

ũk(η̃) = zkR̃k(η̃) (4.20)

The equation of motion for ũk is

ũ′′k +

(
k2 − z′′k

zk

)
ũk = 0. (4.21)

The noncommutative models have the same form of the equation of motion as

commutative models except that zk depends on the modified conformal time and

scale k (3). The difference leads to the different value of the power spectrum.

One defines the noncommutative parameter, µ, as [16]

µ =
( kH
aM2

s

)2

(4.22)

which measures the ratio of the Hubble radius at the horizon exit and the string

length, ls ≡M−1
s . From yk = (β+

k β
−
k )1/4, the relation between the noncommutative

parameter and yk is

yk ≈ 1 + µ, (4.23)

this relation will be used to find the power spectrum and show its suppression on

the large scale.

From (4.16) and H = da/dτ , one obtains

a2
eff =

(
β+

k

β−k

)1/2

= a(τ + kl2s) · a(τ − kl2s)

=

[
a+

da

dτ
(kl2s) +

1

2

d2a

dτ 2
(kl2s)

2 + ...

] [
a− da

dτ
(kl2s) +

1

2

d2a

dτ 2
(kl2s)

2 − ...

]
≈ a2(1− µ). (4.24)

3In commutative models, z(η) depends only on the conformal time.
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dη̃/dτ is written in terms of µ as

dτ = a2(1− µ)dη̃ (4.25)

whereas dτ = a2dη in the commutative case. The relation between the conformal

time and the modified conformal time is

dη = (1− µ)dη̃. (4.26)

Then as in Chapter III, z′′k/zk can be written in terms of the slow roll parameters

and the noncommutative parameter as

1

zk

d2zk

dη̃
=

1

zk

d2zk

dη2
(1− µ2)

≈ 1

z

d2z

dη2
(1− 2µ)

= 2(aH)2

(
1 + ε+

3

2
δ1 − 2µ

)
, (4.27)

where z′′/z = 2(aH)2
(
1 + ε+ 3

2
δ1
)

in the commutative case.

One determines the horizon crossing scale from the condition k2 = z′′k/zk [13],

which is the pivot scale in the equation of motion (4.21).

k2 =
z′′k
zk

= 2(aH)2

(
1 + ε+

3

2
δ1 − 2µ

)
(4.28)

k ≈
√

2aH. (4.29)

From (4.26) and η = −[aH(1− ε)]−1

aH ≈ −1

η̃
(1 + ε+ µ). (4.30)

Considering the time when the fluctuation mode k crosses outside the Hubble

radius, one finds η̃ =
(

1+ε+µ
1+ε

)
η > η. This means that the spacetime uncertainty

delays the exit time of fluctuations. Comparing with the commutative case, the

perturbation amplitudes at the horizon crossing are changed due to the delay of

the exit time.

The solution uk(η̃) of (4.21) looks very much like the equation (3.123) in

Chapter III because of the same form of the equation of motion. The power

spectrum determined at the new horizon crossing scale, k =
√

2aH, is

P̃R(k) = lim
k→

√
2aH

k3

2π2

∣∣∣∣uk(η̃)

zk

∣∣∣∣2
= lim

k→
√

2aH

1

z2
k

22ν−3

[
Γ(ν)

Γ(3
2
)

]2
(−kη̃)1−2ν

2k
.
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Substituting the equations (4.23), (4.30), z2
k = z2y2

k and ν = 3
2

+ 2ε + δ1 in the

above equation, then the power spectrum yields

P̃R(k) = lim
k→

√
2aH

1

2m2
plε

(
H

2π

)2

22ν−3

[
Γ(ν)

Γ(3
2
)

]2 [
k

aH

]−4ε−2δ1

· 1

(1 + ε+ µ)2+4ε+2δ1(1 + µ)2

≈ PR(k)
1

(1 + µ)4+4ε+2δ1
. (4.31)

It can be seen that the power spectrum of the primordial perturbations is sup-

pressed by the noncommutative effect by the factor 1
(1+µ)4

approximately. How-

ever, the suppression occurs only at the large scale when µ is large enough to be

important (will be shown later).

Using the Taylor expansion in appendix C.3, one calculates the power spec-

trum up to the first order in the slow roll parameters

P̃R(k) = lim
k→

√
2aH

{
1

2m2
plε

(
H

2π

)2 [
1− 2ε+ 2

(
α− ln

( k

aH

))
(2ε+ δ1)

]
− µ

2m2
plε

(
H

2π

)2 [
4 + 16ε

(
α− ln

( k

aH

))
+ 8ε

+8δ1

(
α− ln

( k

aH

))
+ 2δ1

]}

≈ PR(k)− µ

2m2
plε

(
H

2π

)2

[4 + (16α∗ + 8)ε+ (8α∗ + 2)δ1] , (4.32)

where the commutative contribution (the first term of the right hand side) is now

evaluated at k =
√

2aH which is the same as changing α to be α∗ = α − ln 2
2

=

0.3831. All additional terms depend on the noncommutative parameter, so the

power spectrum reduces to the commutative power spectrum when µ → 0 (no

minimum length scale).

Using the definition of µ, one finds its derivatives at k =
√

2aH [see appendix C.4

and (3.132)]

µ̇ = −4Hµε,
dµ

d ln k
≈ −4µε. (4.33)

The spectral index up to the second order in the slow roll parameters is

ñR(k) = nR(k) + 16µε

+ µ
[
(32α∗ + 16)ε2 − (8α∗ + 10)εδ1 + (8α∗ + 2)(δ2

1 − δ2)
]
.(4.34)
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The running of the spectral index up to the third order is

dñR(k)

d ln k
=

dnR(k)

d ln k
− 32µε(ε− δ1) (4.35)

− µ
[
−(136α∗ + 74)ε2δ1 + (24α∗ + 14)εδ2

1 − (8α∗ − 6)εδ2

+(8α∗ + 2)(2δ3
1 − 3δ1δ2 + δ3)

]
.

The power spectrum, the spectral index and the running are reduced to be those

obtained in the commutative case when ls → 0.

4.2.3 Noncommutative Power-Law Inflation

The power-law inflation gives

a(t) = ait
p, (4.36)

where ai is the value of the scale factor at the beginning of inflation. The slow roll

parameters in this model are

ε =
1

p
, δ1 = −1

p
, δ2 =

2

p2
, δ3 = − 6

p3
. (4.37)

One rewrites µ in terms of the exponent p by integrating the equation (4.33)

µ(k) =

(
k

kc

)−4ε

=

(
kc

k

) 4
p

, (4.38)

where kc is the integration constant which is the lowest limit of k. The small

scale limit where k � kc leads to µ → 0 giving the same power spectrum as the

commutative inflation.

In order to determine the inflation parameter p and the scale kc, we use the data

at k = 0.05Mpc−1. Later, we make a prediction about the spectral index and its

running at k = 0.002Mpc−1.

By comparison to the recent data at k = 0.05Mpc−1, the best-fit values of the

model parameters are

p = 12.171, kc = 9.82× 10−6Mpc−1. (4.39)

Next, the spectral index and its running at k = 0.002Mpc−1 are predicted to be

ñR = 1.11,
dñR
d ln k

= −0.089 (4.40)

whereas the commutative power-law inflation with the same exponent and ls = 0

gives

nR = 0.836,
dnR
d ln k

= 0. (4.41)
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It can be seen that the predicted values from the noncommutative inflation are

quite closed to those of the WMAP, especially the spectral index. In addition,

the noncommutative power-law inflation can give the blue-tilted spectrum for the

large scale, and allows for the running of the spectral index.

For determining the string scale, ls, the significant problem is that µ is im-

plicitly time-dependent. It is necessary to know the exact time when fluctuations

of mode k cross outside the horizon. Some papers, such as [17], use the ending

time of inflation to be the exit time. This method provides the correct value of

ls only for the perturbation mode that crosses outside the horizon at the end of

inflation. Another choice is using the value of the power spectrum. This approach

gives the same order of magnitude ls ∼ 10−29 cm. for the string scale from what-

ever scale of k we use.

For elucidating the results above, some new parameters are needed.

From (4.36), and dτ = adt. One finds

a(τ) = a
1

p+1

i [(p+ 1)τ ]
p

p+1 . (4.42)

a(τ) is dimensionless, one defines an inflation scale, l, as

l
p

p+1 =

[
a

1
p+1

i (p+ 1)
p

p+1

]−1

l =
1

a
1/p
i (p+ 1)

. (4.43)

The scale factor and the Hubble parameter in terms of the inflation scale are

a(τ) =
(τ
l

) p
p+1

, a(t) =

[
t

l(p+ 1)

]p

, (4.44)

H(τ) =

(
p

p+ 1

)
(lpτ)

−1
p+1 . (4.45)

Using the cut-off momentum k = k0 = aeff/ls, the time τ can be written in terms

of k as

τ = kl2s

[
1 +

(
k

ks

) p
2

] 1
2

(4.46)

with ks = lp−1
s /lp i.e. the ratio of the string scale and the inflation scale. When

k � ks
(4), one finds

τ ≈ l(kls)
p

p+1 . (4.47)

4The condition is in the UV region. In the UV region, the string energy scale is much larger

than the cosmological energy scale (here is the inflation scale) when perturbations are generated.

This region gives l� ls.
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Table 4.1: Comparison of important quantities between commutative and non-

commutative inflation models.

Commutative Inflation Noncommutative Inflation

Action

S = V

∫
dη d3k

1

2
z2(η)(

R′
−kR′

k − k2R−kRk

) S̃ = V

∫
|k|<k0

dη̃ d3k
1

2
z2

k(η̃)(
R̃′
−kR̃′

k − k2R̃−kR̃k

)

Equation of

motion

u′′k +
(
k2 − z′′

z

)
uk = 0 ũ′′k +

(
k2 − z′′k

zk

)
ũk = 0

Power

spectrum PR(k) =
1

2m2
plε

(
H

2π

)2

[1− 2ε+ 2α(2ε+ δ1)]

P̃R(k) = PR(k)− µ

2m2
plε

(
H

2π

)2

[4 + (16α∗ + 8)ε+ (8α∗ + 2)δ1]

Horizon

crossing scale

k = aH k =
√

2aH

Spectral

index

nR(k) = 1− 4ε− 2δ1 + (8α−
4)ε2 + (10α − 4)εδ1 − 2αδ2

1 +

2αδ2

ñR(k) = nR(k) + 16µε +

µ[(32α∗+16)ε2−(8α∗+10)εδ1+

(8α∗ + 2)(δ2
1 − δ2)]

Running of

spectral index

dnR
d ln k

(k) = −8ε2−10εδ1+2δ2
1−

2δ2 + (32α − 16)ε3 + (62α −
28)ε2δ1 +4αδ3

1 +(6α−4)εδ2
1−

6αδ1δ2 + (14α− 4)εδ2 + 2αδ3

dñR(k)
d ln k

= dnR(k)
d ln k

− 32µε(ε− δ1)−
µ[−(136α∗ + 74)ε2δ1 + (24α∗ +

14)εδ2
1 − (8α∗ − 6)εδ2 + (8α∗ +

2)(2δ3
1 − 3δ1δ2 + δ3)]
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From (4.45) and (4.47), one rewrites the scale k as

k =
1

ls

[
p

Hl(p+ 1)

]p

. (4.48)

Comparing the equation (4.38) with (4.22) at the horizon crossing, k =
√

2aH,

then we have the relation between kc and ks in the limit of large p for which

p± 1 ≈ p [18]

kc =

[
p(2p− 1)

(p+ 1)2

] p+1
4

ks. (4.49)

Substituting PR(k) from Chapter III (with α → α∗) into (4.32) and using

the value of the power spectrum at k = 0.05Mpc−1, we can solve for the inflation

energy scale5 related to the Planck energy scale:

H = 1.54× 10−4mpl. (4.50)

Remembering that mpl ≡ 1√
8πG

is the reduced Planck mass6. The noncom-

mutative parameter at the horizon exit is

µ =

(
kH

aM2
s

)2

= 2

(
H

Ms

)4

.

Computing µ at the same scale by using (4.38), the string mass and the string

length are found to be

Ms = 3.68× 10−4mpl,

ls = 2.19× 10−29cm. (4.51)

Similarly, the string scale obtained from the power spectrum at the cluster scale

is ls = 1.87×10−29 cm, which is the same order as that obtained from the galactic

scale.

Furthermore, the inflation scale can be computed by (4.49) and the definition

of ks:

ks = 1.94× 10−6Mpc−1 = 6.64× 10−31cm,

l = 1.49× 10−24cm. (4.52)

Note that 1 Mpc = 3.086× 1024 cm.

5The Hubble time, H−1 = a/ȧ, represents the timescale of the evolution of a(t), and the

energy scale is the inverse timescale. Therefore, H can be considered as the inflation energy

scale [22].
6mpl = 2.436× 1018GeV = 1.235× 1032cm−1.
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Figure 4.1: nR as a function of k with p = 12.171 and kc = 9.82× 10−6Mpc−1.

Figure 4.2: dnR
d ln k

as a function of k with p = 12.171 and kc = 9.82× 10−6Mpc−1.
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We summarize that the spacetime noncommutativity suppresses the power

spectrum on the large scale. The existence of the string length causes the delay

of time when perturbations cross outside the horizon, so their amplitudes are

changed, as well as the power spectrum, spectral index and the running as shown

in Table 4.1. Figure 4.1 shows that the spacetime uncertainty gives the blue-tilted

spectrum for the cluster scale and the red one for the galactic scale with the pivot

scale k = 0.0093 Mpc−1. Furthermore, noncommutative inflation allows for the

negative running of the spectral index as shown in Figure 4.2. All results are

consistent with the recent WMAP data.



CHAPTER V

MULTI-FIELD INFLATION

The chapter concerns inflation model driven by multiple scalar fields in the

commutative spacetime only. From Chapter III, the single-field inflation gives the

constant amplitude of the comoving curvature perturbation, R, when it leaves the

horizon. The perturbation is purely adiabatic. However, there remain problems

as follow:

• No origin of the cold dark matter (CDM)1.

• Slow roll approximations give the unnatural flat potential.

• Single-field models cannot give some kind of perturbations. According to

the observations ‘Temperature-Polarization angular power spectrum’ [5], the

single-field models can generate only the adiabatic perturbations.

• Single-field models usually give a zero running of the spectral index which

is not consistent with observations.

Some problem, such as the last one, can be solved by considering inflation on the

noncommutative spacetime as we have already discussed in the previous chapter.

However, adding other fields is another way to solve the rest.

Multi-field inflation models can be separated into two classes: 1. Multiple

inflation, where there are more than one inflaton fields driving inflation giving

rise to multiple inflationary stages. 2. N-field inflation2 where only one of the N

1Dark matter is the extra material whose interaction is only gravity and emits no detectable

radiation. The total mass of the visible matter is less than 10 percent of the mass of the dark

matter. Cold dark matter, one of the dark matter candidates, is the non-relativistic dark matter

which clumps into small regions.
2The second case corresponds to the particle physics point of view telling us that there are

many kinds of particles in the universe. However, this model is quite similar to the single field

inflation except that there are some auxiliary fields ending inflation. Thus, this chapter concerns

only the first case and its different results.
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scalar fields acts as the inflaton. The other N − 1 scalar fields have less energy

densities than that of the inflaton in order to have the inflation-dominated period.

The existence of more than one fields and their own fluctuations causes the

relative fluctuations among themselves. This produces another kind of primordial

perturbations.

5.1 Classification of Primordial Perturbations

Primordial perturbations can be classified into two kinds:

• Curvature/adiabatic perturbations (R)

Adiabatic perturbation is the perturbation in the total energy density of the

universe. The spatial distribution of each species is the same:

δρ

ρ
=

δρx

ρx

=
δρy

ρy

. (5.1)

Here ρ is the total energy density of the universe, ρx and ρy are energy den-

sities of any species x and y in the universe. In the field space, the adiabatic

perturbation perturbs the trajectory back and forth along the background

trajectory.

From the Einstein equation, this perturbation also perturbs the curvature,

as well as the expansion rate of the universe. Thus it is called the curvature

perturbation.

The curvature perturbation for N scalar fields is defined by [26]

R ≡ ψ +
H

ρ+ p
(

N∑
i=1

φ̇iδφi). (5.2)

In the case of N scalar fields which behave as the perfect fluid,

ρ =
∑N

i=1 φ̇i
2
/2 + V and p =

∑N
i=1 φ̇i

2
/2− V .

• Isocurvature/entropy perturbations (S)

Entropy perturbation is the perturbation by relative fluctuations between

species in the universe which leave the total density unperturbed:

δρ

ρ
= 0. (5.3)

The entropy perturbation perturbs the path orthogonal to the background

trajectory. It perturbs neither the total energy density, nor the expansion
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rate of the universe, thus the curvature is not perturbed by the isocurvature

perturbation.

The isocurvature perturbation of the two species x and y is [24]

Sxy ≡
δρx

ρx + px

− δρy

ρy + py

, (5.4)

where pi = ωiρi. For having the adiabatic mode, one has Sxy = 0.

In the case of the single field inflation, there is one degree of freedom giving

the unique background trajectory. The possible fluctuation is the fluctuation

along the trajectory, so only the curvature perturbation is obtained by the

model.

5.2 Evolution of Multiple Scalar Fields

5.2.1 Background Equations

The Lagrangian density corresponding to this model is

L = −1

2

N∑
i=1

gµνφi,µφi,ν − V (φ1, · · · , φN). (5.5)

The two Friedmann equations for N scalar fields are

H2 =
1

3m2
pl

[
V (φ1, · · · , φN) +

N∑
i=0

1

2
φ̇i

2

]
, (5.6)

ä

a
=

1

3m2
pl

[
V (φ1, · · · , φN)−

N∑
i=0

φ̇i
2

]
. (5.7)

The background homogeneous equations read

φ̈i + 3Hφ̇i +
∂V

∂φi

= 0 , (5.8)

The slow roll parameters can be defined analogously to the single field case as.

εi = − Ḣ

H2
= 2m2

pl

(
Hφi

H

)2

, (5.9)

εt =
N∑

i=1

εi, (5.10)

ηij = m2
pl

Vφiφj

V
= −δ1. (5.11)



47

5.2.2 Perturbation Equations

The spacetime linearly perturbed about the FRW spacetime is considered in the

longitudinal gauge as

ds2 = −(1 + 2ψ)dt2 + a2(1− 2ψ)δijdx
idxj . (5.12)

The perturbation equations are derived from the perturbed Einstein equations:

δ̈φi + 3H ˙δφi +
k2

a2
δφi +

∑
j

Vφiφj
δφj = −2Vφi

ψ + 4φ̇iψ̇. (5.13)

Moreover, the perturbed Einstein equations give the energy density and pressure

constraints as [26]

3H
(
ψ̇ +Hψ

)
+
k2

a2
ψ = − 1

2m2
pl

δρ, (5.14)

ψ̇ +Hψ = − 1

2m2
pl

δp. (5.15)

Here δρ is the total energy density perturbation and δp is the total pressure per-

turbation [26].

δρ =
∑

i

[
φ̇i

(
˙δφi − φ̇iψ

)
+ Vφi

δφi

]
(5.16)

δp,l = −
∑

i

φ̇iδφi,l . (5.17)

The simplest model of the multi-field inflation is the double inflation corresponding

to two inflationary stages during the inflation epoch.

5.3 Double Inflation Formalism

There are two inflatons φ and χ, whose equations of motion for the homogeneous

parts are

φ̈+ 3Hφ̇+ Vφ = 0, (5.18a)

χ̈+ 3Hχ̇+ Vχ = 0. (5.18b)

The scalar fields also have fluctuations, δφ and δχ, so the equations of motion for

their perturbation parts are

δφ̈+ 3Hδφ̇+

(
k2

a2
+ Vφφ

)
δφ = −2Vφψ + 4φ̇ψ̇ − Vφχδχ , (5.19a)

δχ̈+ 3Hδχ̇+

(
k2

a2
+ Vχχ

)
δχ = −2Vχψ + 4χ̇ψ̇ − Vφχδφ . (5.19b)
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Figure 5.1: The perturbation is decomposed into an adiabatic (δσ) and entropy

(δs) components [26].

The coupling between the two fields leads to correlations between adiabatic and

entropy perturbations. In order to discuss this, one introduces the perturbation

fields: the adiabatic field, σ, and the entropy field, s, for convenience. The de-

composition into δσ and δs of the two fields are characterized by the rotation in

the field space as shown in Figure 5.1.

δσ = (cos θ)δφ+ (sin θ)δχ, δs = − (sin θ)δφ+ (cos θ)δχ, (5.20)

where θ is the angle between the trajectory and the φ-axis in the field space with

cos θ =
φ̇√

φ̇2 + χ̇2

, sin θ =
χ̇√

φ̇2 + χ̇2

. (5.21)

The equations of motion for adiabatic and entropy field perturbations are

δσ̈ + 3Hδσ̇ +

(
k2

a2
+ Vσσ − θ̇2

)
δσ = −2Vσψ + 4σ̇ψ̇ + 2

d

dt
(θ̇δs)

−2Vσ

σ̇
θ̇δs, (5.22)

δs̈+ 3Hδṡ+

(
k2

a2
+ Vss + 3θ̇2

)
δs = 4m2

pl

θ̇

σ̇

k2

a2
ψ, (5.23)
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where

Vσσ = (cos2 θ)Vφφ + (sin 2θ)Vφχ + (sin2 θ)Vχχ, (5.24a)

Vss = (sin2 θ)Vφφ − (sin 2θ)Vφχ + (cos2 θ)Vχχ. (5.24b)

The sources of the curvature can be obtained by using the equations (5.15) and

(5.17). The solution of the gravitational potential is

ψ =
1

2am2
pl

∫
aσ̇δσdt . (5.25)

As we discuss in the section 5.1, only the adiabatic field perturbation perturbs the

curvature.

Because the adiabatic field perturbation is not gauge invariant, the gauge

invariant variable called the Sasaki-Mukhanov [23] is introduced:

Qi ≡ δφi +
φ̇i

H
ψ. (5.26)

Now the gauge invariant perturbations are

Qσ = (cos θ)Qφ + (sin θ)Qχ, Qs = (cos θ)Qχ − (sin θ)Qφ = δs. (5.27)

It can be seen that the relative entropy perturbation is automatically gauge in-

variant. The equation for the adiabatic field perturbation is rewritten as

Q̈σ + 3HQ̇σ +

(
k2

a2
+ Vσσ − θ̇2 − 1

m2
pla

3

d

dt

(a3σ̇2

H

))
Qσ =

2
d

dt
(θ̇δs)−

(Vσ

σ̇
+
Ḣ

H

)
θ̇δs. (5.28)

The right hand side of the equation shows that the relative entropy perturbation

plays a role as an additional source of the adiabatic perturbation in the curved

trajectory in the field space. Thus the two perturbations decouple when θ̇ = 0.3

However, there are no sources of the entropy perturbation on the large scale.

According to the slow roll conditions, the first terms of the equations (5.23)

and (5.28) can be neglected. Besides, long wavelength limit gives k2/a2 � 1. The

differential equations become

δṡ+
1

3H

(
Vss + 3θ̇2

)
δs = 0, (5.29)

Q̇σ +
1

3H

(
Vσσ − θ̇2 − 1

m2
pla

3

d

dt

(a3σ̇2

H

))
Qσ

=
1

3H

[
2
d

dt
(θ̇δs)−

(Vσ

σ̇
+
Ḣ

H

)
θ̇δs

]
. (5.30)

3According to [26], θ̇ = −Vs

σ̇ . It can be seen that σ̇ 6= 0 when θ̇ = 0.
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The general solutions are

δs = B(k)g(t), Qσ = A(k)f(t) + P (t). (5.31)

Here f(t) is the homogeneous solution while P (t) is the particular solution. In

the case of the single field inflation, the long wavelength solutions are evaluated at

the horizon crossing because the curvature perturbation is frozen when it crosses

outside the horizon. Thus considering quantum fluctuations at k = aHk, the

scale-dependent amplitudes are determined by

Qi ≈
Hk√
2k3

ei(k), (5.32)

where Hk is the Hubble parameter at the horizon exit and ei(k) is the classical

Gaussian random variable which satisfies the relation 〈ei(k)〉 = 0 and 〈ei(k)e∗j(k
′)〉 =

δijδ
(3)(k− k′) [26]. Therefore at the horizon exit

A =
Hk√
2k3

eQ(k) , B =
Hk√
2k3

es(k) , (5.33a)

f = g = 1, p = 0. (5.33b)

However, in the double field model, Qσ is not frozen in any scale because it couples

with δs. Thus the values in (5.33) are set to be the initial conditions for the

superhorizon scale. The solution for the entropy field perturbation is

g(t) = exp

[∫ t

tk

− µ2
s

3H
dt,

]
, (5.34)

where tk is the horizon exit time and µ2
s = Vss+3β̇2 is the effective squared mass of

the entropy field. The ratio of the effective squared mass and the squared Hubble

parameter can be written in terms of the slow roll parameters in the lowest order

as

− µ2
s

3H2
=
−(εχηφφ + εφηχχ) + 2(±√εφ)(±

√
εχ)ηφχ

εt
. (5.35)

The time-dependent part of µ2
s/3H

2 is the second order in the slow roll parameters

which can be neglected, so the mass of δs is constant.

Using the definition of the e-folding, g(t) becomes

g(t) = exp

[∫ tf

tk

− µ2
s

3H2
Hdt +

∫ t

tf

− µ2
s

3H2
Hdt,

]

≈ exp

[
− µ2

s

3H2
(N(tk)−N(t))

]
, (5.36)
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where N(tk) ≡ Nk =
∫ tf

tk
H dt is the number of e-folding between the horizon exit

time and the end of inflation4.

The perturbations are correlated until the end of inflation. The solution at the

end of inflation is

g(tf ) = exp

[(−(εχηφφ + εφηχχ) + 2(±√εφ)(±
√
εχ)ηφχ

εt

)
k

Nk

]
. (5.37)

The right hand side terms are evaluated at the horizon exit5.

The homogeneous solution for the adiabatic perturbation is

f(t) = exp

[∫ t

tk

−
µ2

Q

3H
dt,

]
≈ exp

[
−
µ2

Q

3H2
(Nk −N(t))

]
, (5.38)

where µ2
Q ≡

(
Vσσ − θ̇2 − κ2a−3(a3σ̇2/H)•

)
is the effective squared mass of the

adiabatic field. The µ2
Q/3H

2 term to the lowest order in the slow roll parameters

is

−
µ2

Q

3H2
=
−(εχηχχ + εφηφφ)− 2(±√εφ)(±

√
εχ)ηφχ

εt
+ 2εt . (5.39)

The homogeneous adiabatic perturbation at the end of inflation is

f(tf ) = exp

[(
−
εχηχχ + εφηφφ + 2(±√εφ)(±

√
εχ)ηφχ

εt
+ 2εt

)
k

Nk

]
. (5.40)

The source terms of the adiabatic perturbation can be written in terms of the

entropy perturbation (in the lowest order of the slow roll parameters) as

b(t) ≡ 2

3H

[
(β̇δs)· −

(
Vσ

σ̇
+
Ḣ

H

)
β̇δs

]
= 2θ̇δs

= 2H

(
θ̇

H

)
B(k)g(t), (5.41)

where the quantity θ̇/H can be expressed as [24]

θ̇

H
≈ 1

εt
[(εχ − εφ)ηφχ + (ηφφ − ηχχ)(±√εχ)(±√εφ)], (5.42)

4According to the recent observations, Nk ≈ 65.
5 µ2

s

3H2 is constant up to the lowest order in the slow roll parameters therefore it can be evaluated

at the horizon exit.
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which takes the value at the horizon exit scale. The particular solution is

P (t) = exp

[∫ t

tk

−
µ2

Q

3H
dt,

] ∫ t

tk

exp

[∫ t′

t′k

µ2
Q

3H
dt′′,

]
b(t′)dt′

= 2B

(
θ̇

H

)
f(t)

∫ N(t)

Nk

exp

[
µ2

s − µ2
Q

3H2
(N ′(t)−N ′

k)

]
dN ′

P (tf ) = 2B

(
θ̇

H

)
g(tf )

eCNk−1

C
, (5.43)

where

C ≡
µ2

s − µ2
Q

3H2
(5.44)

=
(εφ − εχ)ηχχ + (εχ − εφ)ηφφ − 4 (±√εφ)(±

√
εχ)ηφχ

εt
+ 2εt , (5.45)

is related to the difference in the effective squared mass of the two fields, and

g(tf ) = e−CNkf(tf ). The power spectrum of Qσ is

PQσ =
k3

2π2
|Qσ|2

=

(
Hk

2π

)2 [
|f 2|+ |P̃ 2|

]
. (5.46)

Here, P = BP̃ . In the same way, the other power spectra are

Pδs =

(
Hk

2π

)2

|g2|, (5.47)

PQσδs =

(
Hk

2π

)2

gP̃ . (5.48)

As we know the adiabatic perturbation perturbs the curvature therefore the cur-

vature perturbation is characterized by this mode. From the definition of R in

(5.2). The curvature perturbation for the two inflatons are

R = ψ +H
φ̇δφ+ χ̇δχ

φ̇2 + χ̇2
. (5.49)

Using (5.20), (5.21) and (5.28), the curvature perturbation is related to the adia-

batic perturbation as

R =
H

σ̇
Qσ . (5.50)

Here σ̇2 = φ̇2 + χ̇2 = 2m2
plH

2εt. Thus the power spectrum of R is

PR =

(
H(tf )

σ̇(tf )

)2

PQσ

=

(
Hk

2πmpl

)2
1

2εt

[
|f 2|+ |P̃ 2|

]
, (5.51)
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where φ̇i
2

= 2m2
plH

2εi.

The total energy density perturbation in (5.16) can be separated in those of

the two fields, δρ = δρφ+δρχ. From the definition of the isocurvature perturbation

in (5.4), one finds

Sχφ = δ̇χφ − 3Hδχφ, (5.52)

where δχφ = δχ/χ̇− δφ/φ̇. Its first derivative can be neglected because of the slow

roll approximations. From the equation (5.27), the relative entropy field can be

written in terms of the field perturbations as

δs =
φ̇δχ− χ̇δφ√
φ̇2 + χ̇2

=
φ̇χ̇√
φ̇2 + χ̇2

δχφ. (5.53)

The first derivative of δχφ can be neglected because of the slow roll approximations,

thus the isocurvature perturbation can be written in terms of the entropy field

perturbation as

Sχφ = −
3
√
εt√

2m2
pl(±

√
εφ)(±

√
εχ)

δs. (5.54)

The power spectrum for the isocurvature perturbation is

PS =

(
−

3
√
εt√

2m2
pl(±

√
εφ)(±

√
εχ)

)2

Pδs

=
9

2

(
Hk

2πmpl

)2
εt
εφεχ

|g2(tf )|. (5.55)

The cross-spectrum between R and S is found to be

PC =
H(tf )

σ̇(tf )

(
−

3
√
εt√

2m2
pl(±

√
εφ)(±

√
εχ)

)2

PQσδs

= −3
θ̇

H

eCNk−1

C

(
Hk

2πmpl

)2 |g2(tf )|
(±√εφ)(±

√
εχ)

. (5.56)

The spectral index is defined by

n− 1 ≡ d lnP
d lnk

=
(1 + εt)

P
dP
d lna

∣∣∣∣∣
k=aH

. (5.57)
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By the definition of the number of e-folds and g(tf ) = e−CNkf(tf ), the spectral

indices for all power spectra are

nR − 1 = −6εt +
2(εφηφφ + εχηχχ) + 4(±√εφ)(±

√
εχ)ηφχ

εt

− 8|f 2(tf )|
|f 2(tf )|+ |P 2(tf )|

(
θ̇

H

)2
e−CNk

C
(1− e−CNk) , (5.58)

nS − 1 = −2εt +
2(εφηχχ + εχηφφ)− 4(±√εφ)(±

√
εχ)ηφχ

εt
, (5.59)

nC − 1 = −2εt +
2(εφηχχ + εχηφφ)− 4(±√εφ)(±

√
εχ)ηφχ

εt
− CeCNk

eCNk − 1
.(5.60)

The running of spectral indices can be expressed as

dnR
d ln k

= −8

(
θ̇

H

)2
(e−CNk − 2e−2CNk)

1 + 4
(

θ̇
H

)2 (
1−e−CNk

C

)2

−64

(
θ̇

H

)4 e−2CNk

(
1−e−CNk

C

)2

(
1 + 4

(
θ̇
H

)2 (
1−e−CNk

C

)2
)2 , (5.61)

dnS
d ln k

= 0, (5.62)

dnC
d ln k

= − C2eCNk

eCNk − 1
. (5.63)

It can be seen that the running of the isocurvature perturbation is zero up to

the second order in the slow roll parameters. In contrast, if the adiabatic and

the entropy fields have no equal effective squared mass, the running of the cross-

spectrum is non-zero. Moreover, in the curved trajectory and C 6= 0, it is possible

to have the non-zero running of the curvature perturbation.

5.4 Double Inflation with Supersymmetric Po-

tential

Adding another field into the inflaton potential is a possible way to solve problems

of the single field model. However, some explanation for the existence of the

second field is needed. One possible theory is Supersymmetry. Supersymmetry

is the symmetry between boson and fermion. Supersymmetry may play very

important roles in cosmology such as inflation and the origin of the cold dark

matter. Furthermore, the supersymmetric potential or superpotential is suitable
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for being the inflaton potential because its shape is consistent with the slow roll

approximation and inflation can end. In addition, all particles have their own

superpartner which has the same mass but different spin in the supersymmetric

theory. Inflatons are scalar fields which are superpartners of the spin-1
2

fermions.

So inflatons are fundamental particles in this theory.

One considers the superpotential including two superfields, which are the

fields in supersymmetry, S and ϕ [28]

V = |k0ϕϕ̄− µ2|2 + k2
0|S|2

(
|ϕ|2 + |ϕ̄|2

)
+D-terms, (5.64)

where ϕ̄ is the complex conjugate of ϕ. k0 and µ are positive constants. One

finds the minimum of the superpotential at 〈S〉 = 0, 〈ϕϕ̄〉 = 〈ϕ〉〈ϕ̄〉 = µ2

k0
and the

condition for vanishing of the D-terms is |〈ϕ〉| = |〈ϕ̄〉| which is called flat direction

[32]. This condition makes the minimum lies at 〈S〉 = 0 and 〈ϕ〉 = 〈ϕ̄〉∗ = ± µ√
k0

.

So, the complex superfields can be replaced by real scalar fields φ and χ as

S = φ√
2
, ϕ = ϕ̄ = χ

2
. (5.65)

Substituting (5.65) in the potential, one obtains

V =
k2

0

16

(
χ2 − 4µ2

k0

)2

+
1

4
k2

0φ
2χ2. (5.66)

There are no D-terms in the new potential because the condition of flat direction.

The hybrid potential consisting of two inflaton fields with the coupling con-

stant g is

V =
λ

4

(
χ2 − M2

λ

)2

+
1

2
g2φ2χ2 +

1

2
m2φ2. (5.67)

Comparing the supersymmetric potential with the hybrid potential, One finds that

the mass term of the field φ is added into the superpotential. All constants are

constrained by µ2 = M2

2
√

λ
and

k2
0

2
= g2 = 2λ. So, supersymmetric hybrid inflation

corresponds to the value of the coupling constant: g =
√

2λ.

Figure 5.2 shows the supersymmetric potential. There are two inflation-

ary stages. The first stage begins when the inflaton rolls slowly along the nearly

flat potential in the φ-direction along the χ = 0-axis. This stage continues until

φ = φc ≡ M
g

, then the second stage occurs in the χ-direction along the φ = 0-axis.

Inflation ends when the inflaton reaches one of the true minima χ = χf ≡ ± M√
λ
.

According to the second consistency condition in (3.31), both of the infla-

tionary stages occur when the effective masses of the two fields are lighter than
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Figure 5.2: Supersymmetric potential [33].

the Hubble rate:

m2
φ ≡ m2 � H2,

m2
χ ≡ g2φ2 −M2 � H2.

The first stage of the inflation occurs when φ ≥ φc in the almost flat φ-

direction along the χ = 0-axis. The effective squared mass of χ is positive in this

stage. The potential is approximately reduced into the form

V ' M4

4λ
+
m2φ2

2
. (5.68)

In the case of M > m, which gives V ' M4

4λ
, the Hubble rate is almost constant

around φ ≈ φc.
6 Using the first background Friedmann equation, the Hubble rate

is

H ' Hc ≡
1

2
√

3λ

M2

mpl

. (5.69)

Therefore the slow roll conditions are valid when

M2 � 2
√

3λmmpl, and (5.70)

M2 � m2
plλ. (5.71)

6In the supersymmetric case, M2 = 2λφ2
c at φ ≈ φc. So V = M2φ2

c

2 + m2φ2
c

2 ≈ M2φ2
c

2 .
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The second inflationary stage occurs after the symmetry breaking due to the

tachyonic7 instability. The field evolves slowly in the almost flat χ-direction along

φ = 0-axis when φ < φc. The potential is approximately described as

V ' λ

4

(
χ2 − M2

λ

)2

. (5.72)

The e-folds N in the two stages are respectively

N1 ≈ M4

4λm2m2
pl

ln
φi

φc

, (5.73)

N2 ≈ M2

4λm2
pl

ln
χf

χc

, (5.74)

where φi and φc are the values at the beginning and the end of the first stage. χc

and χf are the values at the beginning and the end of the second stage respectively.

Under the consistency conditions, one sees that the e-folds in both stages are

greater than one. The total amount of e-folding is Nt ≡ N1+N2 whose constrained

value is closed to 65 according to CMB observations.

The effective masses at the minima of the potential are

mφc =
g√
λ
M,

mχf
=

√
2M.

Here, mφc is the mass at φ = φc = ±M/g while mχf
is the mass at χ = χf =

±M/
√
λ. Considering the supersymmetric case, one obtains the equal mass of the

inflatons at the potential minima: mφ = mχ =
√

2M .

The slow roll parameters at the horizon exit scale are

εφ =
m2

6H2
k

(
m2φ2

V

)
, ηφφ =

m2

3H2
k

εχ =
m2

χ

6H2
k

(
m2

χχ
2

V

)
, ηχχ =

m2
χ

3H2
k

(5.75)

ηφχ = 2m2
plg

2φχ

V
.

Before the symmetry breaking, the slow roll conditions are valid in the φ-direction

along the χ = 0-axis. Therefore the εt comes mainly from εφ (εχ ≈ 0). The

spectral indices in the first stage are found to be

nR − 1 ≈ −6εφ + 2ηφφ =
2

3

m2

H2
k

(
1− 3

2

m2φ2

V

)
,

nS − 1 ≈ −2εφ + 2ηχχ =
2

3

m2
χ

H2
k

− m2

H2
k

(
1

3

m2φ2

V

)
,

nC − 1 ≈ −2εφ + 2ηχχ −
CeCNk

eCNk − 1
.

7Tachyon is the particle whose squared mass is negative.
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As we know C is related to the effective squared mass difference between the

adiabatic and entropy fields, it can also be written in terms of the squared mass

difference of the inflatons as

C ≈ ηχχ − ηφφ =
m2

χ

3H2
k

− m2

3H2
k

.

Light field conditions give C → 0. In the limit |C|Nk � 1, one obtains

CeCNk

eCNk − 1
=
C(1 + CNk +

C2N2
k

2
+ ...)

CNk +
C2N2

k

2
+ ...

≈ 1

Nk

. (5.76)

When the condition m�M is satisfied, the spectral indices generated in the first

stage are

nR ≈ 1 +
2

3

m2

H2
k

, (5.77)

nS ≈ 1 +
2

3

m2
χ

H2
k

, (5.78)

nC ≈ nS −
1

Nk

. (5.79)

The results show that there are blue-tilted spectra in both of curvature and isocur-

vature perturbations. They are consistent with the data at the cluster scale. For

the correlation, nC can be blue-tilted at the beginning of the first stage when

φ� φc. At φ ≈ φc, m
2
χ ≈ 0 gives the red-tilted spectrum of the correlation.

Following the same procedure, the spectral indices in the second stage are

nR ≈ 1 +
2

3

m2
χ

H2
k

, (5.80)

nS ≈ 1 +
2

3

m2

H2
k

, (5.81)

nC ≈ nS −
1

Nk

. (5.82)

The spectrum of the curvature perturbations is red-tilted due to the negative

squared mass of the field χ while that of the isocurvature perturbations is still

blue-tilted. The paper [28] considers only the limit Nk � 1, therefore nC ≈ nS . In

the case of the supersymmetric potential, only the blue-tilted spectra are possible

in the first inflationary stage.

However, the red-tilted spectra can be generated, even in the first stage, by

the double inflation model with other potentials. If one considers non-interacting

inflatons with g = 0, one obtains m2
χ = −M2. So the red-tilted spectra can be

produced in both stages when M2 > 0:

nS1st = nR
2nd

≈ 1− 2

3

M2

H2
k

. (5.83)
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Let us come back to the supersymmetric case. The strength of the correlation

can be obtained from the curvature of the trajectory in the field space. The

curvature in the two stages are found to be

θ̇

H

∣∣∣
1st

≈ ηφχ = 2m2
plg

2φχ

V
, (5.84)

θ̇

H

∣∣∣
2nd

≈ −ηφχ. (5.85)

In the limit of flat potential, the field φ decreases to the critical value φc during the

first stage. This leads to the decreasing of θ̇/H which gives the weak correlation

between the perturbations. In contrast, during the second stage θ̇/H increases

due to the increasing of the field χ when it evolves to a potential minimum. Thus

there is the strong correlation between the adiabatic and entropy perturbations.

These results are consistent with [28].

Only the large scale perturbations or the small k modes are considered. This

case corresponds to the large Nk because the number of e-folds shows the enlarged

wavelength of the mode k at the end of inflation relative to its initial size. The

largerNk, the longer wavelength of the perturbation. The large scale perturbations

come from the quantum fluctuations generated at the beginning of the first stage

and cross outside the horizon immediately. Therefore the long wavelength modes

have Nk ≈ Nt.

According to [30], 50 ≤ N2nd ≤ 65 (where the total amount of e-folding is

Nt ≈ 65) satisfies the conditions for the suppressed isocurvature perturbations at

the end of inflation. Thus the second stage dominates inflation, N2nd → Nt. For

the large scale perturbations, one finds Nk ≈ N2nd.

We use the numerical values of the model parameters in [28]8, the values are

within the same limit as in [30], and are giving by

M = 4.26× 10−6mpl, m = 1.0× 10−6mpl, χc = 5.0× 10−3χf . (5.86)

Moreover, [30] gives the power spectrum of the correlation at Nk ≈ 60:

PC ∼ 10−11. (5.87)

In order to obtain one of our parameters by using the PC in the above equation,

we consider N2nd = 60 with the total amount of e-folding Nt = 65 in this model.

From the number of e-folds expressed in (5.74), the coupling constant of the two

fields is constrained to be

λ = 4× 10−13. (5.88)

8One uses the values in the case (b) of Fig.11 where Mp =
√

8πmpl is the Planck mass.
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The coupling constant and the mass of χ lead to the final value of χ as9

χf =
M√
λ

= 6.74mpl. (5.89)

The value of χ at the beginning of the second stage can be obtained by the

numerical values in (5.86):

χc = 5.0× 10−3χf = 0.03mpl. (5.90)

Although inflation is dominated by the potential energy of χ, the evolution of φ

is required because the horizon exit for the long wavelength modes occurs in the

first stage. The obtained value of the field φc is

φc =
M√
2λ

= 4.77mpl. (5.91)

Here the number of e-folds for the first stage is N1st = 5. The initial value of φ

can be obtained by using the equations (5.73), (5.86) and (5.88) ,

ln

(
φi

φc

)
= 0.024

φi = 1.03φc = 4.89mpl. (5.92)

It can be seen that during the first stage of inflation, all fields are of the order of

the Planck mass.

In the second stage εt comes mainly from εχ, thus the solutions for the

adiabatic and entropy perturbations are

f(tf ) = e−ηχχNk , g(tf ) = e−ηφφNk , (5.93)

p(tf ) = 2g(tf )
θ̇

H

eCNk − 1

C
≈ 2g(tf )

θ̇

H
Nk.

The time-independent effective masses of the two perturbation fields allow us to

evaluate the right hand side of (5.93) at the horizon exit scale. At this scale, the

curvature of the field trajectory reads10(
θ̇

H

)
k

= −4

3

λφkχk

H2
k

. (5.94)

Using the slow roll parameters from (5.76), the solutions for the two perturbations

become

f(tf ) = e
−

m2
χ

3H2
k

Nk

, g(tf ) = e
− m2

3H2
k

Nk

, (5.95)

p(tf ) = −8

3

λφkχkNk

H2
k

e
− m2

3H2
k

Nk

.

9Note that we use the positive values for all fields.
10The subscript k of any quantity denotes its value at the horizon exit scale.
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The power spectra can be expressed as

PR = 9

(
Hk

2π

)2
H4

k

m4
χχ

2
k

[
e
−2

m2
χ

3H2
k

Nk

+

(
8

3

)2(
λφkχkNk

H2
k

)2

e
−2 m2

3H2
k

Nk

]
, (5.96)

PS = 81

(
Hk

2π

)2
H4

k

m4φ2
k

e
−2 m2

3H2
k

Nk

, (5.97)

PC = 72

(
λ

4π2

)
H4

k

m2m2
χ

(
e
−2 m2

3H2
k

Nk

)
Nk. (5.98)

The long wavelength perturbations exit the horizon at the early time in the first

stage, therefore the value of φ at the horizon exit is closed to its value at the

beginning of this stage: φk ≈ φi = 4.89mpl. The effective squared mass of the field

χ at the horizon exit is

m2
χ ≈ 2λφ2

i −M2 = 9.3× 10−13m2
pl. (5.99)

Besides, for large scale perturbations, Nk ≈ N2nd = 60. Substituting all inflation-

ary parameters into (5.96), (5.97) and (5.98), then the solutions yield

PR =
2.64× 1023

m4
pl

(
H6

k

χ2
k

)[
e
−

3.75×10−11m2
pl

H2
k +

(
4.26× 10−21

) χ2
km

2
pl

H4
k

]
,(5.100)

PS =
8.58× 1022

m6
pl

(
H6

k

)
e
−

4×10−11m2
pl

H2
k , (5.101)

PC =
2.35× 1013

m4
pl

(
H4

k

)
e
−

4×10−11m2
pl

H2
k . (5.102)

Note that the Hubble parameter is time-dependent. Using the large scale cross-

spectrum in (5.87), the Hubble parameter at the exit time is

Hk = 2.83× 10−6mpl. (5.103)

We know from the Chapter IV that the inflation energy scale can be characterized

by the Hubble parameter. The inflation energy scale obtained by the supersym-

metric double inflation is of the order of 10−6mpl.

Using (5.103), one obtains the isocurvature power spectrum:

PS = 2.92× 10−13 (5.104)

which is the same order as its numerical value in [28].

In order to estimate the curvature power spectrum, the value of χk is re-

quired. Figure 5.2 shows that inflation begins with the small field value of χ. For
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long wavelength modes, they cross outside the horizon in the early time of the

inflation period. Thus, χk must be less than its initial value in the second stage:

χk < χc = 0.03mpl. Choosing χk = 0.023mpl, the power spectrum of the curvature

perturbation predicted by the supersymmetric double inflation model is

PR = 2.5× 10−9, (5.105)

which is two and four orders of magnitude greater than PC and PS respectively.

So the total power spectrum is dominated and approximately given by PR. The

power spectrum on the large scale as given by this model is of the same order as

the observational results.

Note that the upper limit of χk = 0.03mpl gives PR = 1.45× 10−9.

We summarize that isocurvature perturbations in multi-field models are an

additional source of curvature perturbations on the curved trajectory in the field

space. Thus the conservation of the large scale amplitudes of the curvature per-

turbations as in the single field model is violated. However, the power spectrum

of the isocurvature perturbations is constant on the large scale. The correlation

between the two kinds of perturbations appears and become strong in the second

inflationary stage. In addition, the existence of more than one field causes the

origin of the cold dark matter. For double inflation model, the decay of the in-

flaton φ creates the ordinary matter whereas the inflaton χ decays into the cold

dark matter. Furthermore, the slow roll conditions do not give the unnatural flat

potential any longer because the multi-field inflation models can be motivated by

particle physics. The double inflation with supersymmetric potential is in out in-

terest. In this case, the obtained power spectrum P ≈ PR = 2.5×10−9 is the same

order as in WMAP data on the superhorizon scale. Moreover, the result is in good

agreement with the power spectrum in the galactic scale, P = 2.46 × 10−9. The

spectrum of the curvature perturbations is blue-tilted in the first stage but red-

tilted in the second stage which correspond to the results from [30]. The running

of the spectral indices can be non-zero in this model.



CHAPTER VI

CONCLUSION

In the single-field inflation models, both commutative inflation and noncom-

mutative inflation are discussed. In this case, there are no relative fluctuations

because only a single field exists. The power spectrum is purely adiabatic. The

obtained curvature power spectrum is constant on the superhorizon scale. For the

commutative power-law inflation, the spectral index is red-tilted and the running

is zero.

There are the minimum length scale caused by the quantum effect in the

noncommutative inflation model. The spacetime noncommutativity presents as

the extra terms in P̃R, ñR and dñR
d ln k

. When ls → 0, the three quantities reduce to

the commutative version.

The extra terms in the power spectrum make it suppressed on the superhori-

zon scale by the factor (1+µ)−4. This is closed to the low multipoles of the CMB

power spectrum. The delay of the exit time due to the noncommutative effect

also slightly shifts the value of the spectral index, and the blue-tilted spectrum

presents. The non-zero running of the spectral index can appear by the same

procedure. Note that its value is always negative as the large scale data. In our

results, the string length in the power-law model is four orders of magnitude larger

than the Planck scale, ls ∼ 10−29 cm. The result corresponds to [15, 18]. In this

case, inflation occurs when the size of the universe is about 10−24 cm. and the

scale factor evolves with time as a ∝ t12.171.

For the multi-field inflation case, the light masses of all inflaton fields are

necessary to have the inflationary stages. In the presence of more than one infla-

tons, there exists of two kinds of the primordial perturbations. First, the curva-

ture perturbations which effect the gravitational potential (as shown in (5.25)), as

well as the expansion of the universe. Their large scale amplitudes are not con-

served because of the existence of the latter kind, the isocurvature perturbations.

The isocurvature perturbations are the perturbations by the relative fluctuations
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among species in the universe. The strength of the correlation between the two

perturbations depends on the curvature of the field trajectory.

In the double inflation model, the first stage occurs in the φ-direction along

the χ = 0-axis with its initial value is large. This stage stops when the field

reaches the critical value, then the second stage begins in the χ-direction along

the φ = 0-axis. Inflation ends when the field χ reaches one of its minima. The

energy lost of the two fields may create ordinary matter and dark matter in the

universe. During the second inflationary stage, in the case of the negative squared

mass, inflation is driven by the symmetry breaking due to the tachyonic instabil-

ity.

As shown in the equation (3.135), the single field inflation model usually

gives the red-tilted spectrum when the slow roll limits are employed [7]. In con-

trast, the double inflation model can give both red-tilted and blue-tilted spectra

depending on the coupling constant between the two fields.

For the supersymmetric version of inflation, the potential is realistic even

if the slow roll conditions are valid. The power spectrum is 2.5 × 10−9 which is

consistent with the large scale data of WMAP. The contribution of the isocurva-

ture perturbations to the CMB power spectrum is required to be small compared

to the curvature perturbations. In our results, PS/PR ∼ 10−4, as well as the

correlations, PC/PR ∼ 10−2. The results correspond to [30] with PS/PR < 0.004

and PC/PR < 0.07. Moreover, in the limit of large Nk (long wavelength limit), all

spectra in the first stage are blue-tilted. In the second stage the spectra of S and

C are still blue-tilted whereas the R’s becomes red-tilted. For the running of the

spectral indices, the isocurvature perturbations have the zero running while the

others do not.
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APPENDIX A

LIMITS FOR HAVING

INFLATION

A.1 Equation of Motion in Conformal Time Co-

ordinate

From

1√
−g

∂ν(g
µν
√
−g∂µφ)− Vφ = 0, (A.1)

the equation of motion is

1

a4

[
∂ν

( 1

a2
ηµνa4

)
∂µφ+

1

a2
ηµνa4∂ν∂µφ

]
− Vφ(φ) = 0

1

a4

[ ∂
∂η

(a2)ηµ0∂µφ+ a2(η00∂0∂0φ+ ηij∂i∂jφ)
]
− Vφ(φ) = 0

1

a4

[
− 2a

da

dη

∂φ

∂η
+ a2

(
− ∂2φ

∂η2
+∇2φ

)]
− Vφ(φ) = 0

∂2φ

∂η2
+

2

a

(da
dη

)∂φ
∂η

−∇2φ+ a2Vφ(φ) = 0. (A.2)

A.2 The E-Folding

By the definition of the e-folding, we can rewrite it in term of the inflaton potential

N =

∫ tf

ti

H(t)dt =

∫ φf

φi

dφH(φ)
dt

dφ

=

∫ φf

φi

H(φ)

φ̇
dφ = −

∫ φf

φi

3H2(φ)

Vφ(φ)
dφ

∴ N =

∫ φi

φf

1

m2
pl

V (φ)

Vφ(φ)
dφ. (A.3)
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Inflation needs more than 55 e-folds in order to solve all problems from big bang

model.

A.3 Derivatives of the Potential

From

V (φ) = 2m4
pl

[ 3

2m2
pl

H2(φ)− (Hφ(φ))2
]
,

Vφ(φ) = 2m4
pl

[ 3

m2
pl

H(φ)Hφ(φ)− 2Hφ(φ)Hφφ(φ)
]

= 2m4
pl

(3H(φ)Hφ(φ)

m2
pl

)[
1− 2

3

Hφφ(φ)

H(φ)

]
= 3

√
2mplH

2(φ)
(√

2mpl
Hφ(φ)

H(φ)

)[
1− 2

3

Hφφ(φ)

H(φ)

]
≡ −3

√
2mplH

2(φ)
√
ε(φ)

[
1 + δ1(φ)

]
, (A.4)

where δ1 ≡ −2mpl
Hφφ(φ)

H(φ)
= φ̈

H
.

From

Vφ(φ) = 2m4
pl

[ 3

m2
pl

H(φ)Hφ(φ)− 2Hφ(φ)Hφφ(φ)
]

Vφφ(φ) = 2m4
pl

[ 3

m2
pl

{
(Hφ(φ))2 +H(φ)Hφφ(φ)

}
−2(Hφφ(φ))2 − 2Hφ(φ)Hφφφ(φ)

]
= H2

[
3(2m2

pl)
(Hφ

H

)2 − 3
(
− 2m2

pl

Hφφ

H

)
−
(
2m2

pl

Hφ

H

)2
−
(
2m2

pl

Hφ

H

)(
2m2

pl

Hφφφ

H

)]
= H2

[
3ε− 3δ1 − δ2

1 − ε
(
2m2

pl

(Hφφφ

H

)2)]
. (A.5)

From

Hφ(φ) = − 1

2m2
pl

φ̇, (A.6)

Hφφφ(φ) = − 1

2m2
pl

d3φ

dt3
. (A.7)

Consider

2m2
pl

(Hφφφ

H

)2
= 2m2

plHφφφ

( H2

2m2
plHφ

2

)(
2m2

pl

Hφ

H2

)
= −d

3φ

dt3

(1

ε

)(−φ̇
H2

)
≡ δ2

ε
, (A.8)
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where δ2 ≡ 1
H2

d3φ
dt3

. So,

Vφφ(φ) = 3H2
[
ε(φ)− δ1(φ)− 1

3
δ2
1(φ)− 1

3
φ̇δ2(φ)

]
. (A.9)

Inflation occurs when Vφ � V and Vφφ � V . These are the consistency conditions

in Chapter III.

A.4 Calculation of η, 1
a

(
d2a
dη2

)
and ä

a

From the definition of the conformal time,

η =

∫
dη

da
=

∫
1

aH2
da

Integrating by parts to have

η = − 1

aH
+

∫
1

a

d

da

( 1

H

)
(A.10)

Consider d
da

( 1
H

)

d

da

( 1

H

)
=

−1

H2

dH

da
=

−1

H2

∂H

∂φ

∂φ

∂τ

dη

da

=
−1

H2

dη

da
(−2m2

plaHφ)Hφ

=
ε

aH
.

The conformal time can be calculated as

η = − 1

aH
+

∫
ε

a2H
da. (A.11)

The value of the slow roll parameter must be much less than one during inflation,

so ε can be treated as a constant. The first order expression is

η ≈ − 1

aH
+ ε

∫
1

a2H
da

= − 1

aH
+ ε
(∫ 1

a2H
+

∫
1

a

d

da

( 1

H

))
= − 1

aH
+ ε
(
− 1

aH
+

∫
ε

1

a2H
da
)

= − 1

aH
+ ε
[
− 1

aH
+ ε
(
− 1

aH
+

∫
ε

1

a2H
da
)]

= − 1

aH
(1 + ε+ ε2 + ε3 + ...)

∴ η ≈ − 1

aH

1

(1− ε)
. (A.12)
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Compute 1
a

(
d2a
dη2

)
by considering the Friedmann equations:

1

a2

(da
dη

)2

=
1

3m2
pl

[
a2V (φ) +

(∂φ
∂η

)2]
, (A.13)

1

a

(d2a

dη2

)
− 1

a2

(da
dη

)2

=
1

3m2
pl

[
a2V (φ)−

(∂φ
∂η

)2]
. (A.14)

2(A.13)+(A.14) gives

1

a

(d2a

dη2

)
+

1

a2

(da
dη

)2

=
a2

m2
pl

V (φ). (A.15)

Substituting

V (φ) = 3m2
plH

2(φ)
[
1− 1

3
ε(φ)

]
, (A.16)

one obtains

1

a

(d2a

dη2

)
+ a2H2 = 3a2H2

[
1− 1

3
ε(φ)

]
∴

1

a

(d2a

dη2

)
= a2H2(2− ε). (A.17)

One calculates a2H2 by using (A.12), and substitutes in (A.17)

1

a

(d2a

dη2

)
=

2− ε

η2(1− ε)2

=
1

η2
(2− ε)(1 + 2ε+ ...)

=
1

η2
(2 + 4ε− ε− 2ε2 + ...)

∴
1

a

(d2a

dη2

)
≈ 1

η2
(2 + 3ε). (A.18)

One finds ä
a

by considering

ä =
d

dt

(da
dt

)
=

d

dt

(1

a

da

dη

)
=

d

dη

(1

a

da

dη

)dη
dt

=
1

a

(d2a

dη2

1

a
− 1

a2

(da
dη

)2)
=

1

a2

d2a

dη2
− 1

a3

(da
dη

)2

(A.19)

Using (A.17), the result is

ä

a
= H2(2− ε)−H2

= H2(1− ε). (A.20)
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A.5 Limit of Pressure and Energy Density Dur-

ing Inflation

d lnH

d ln a
=

1
H
dH/dη

1
a
da/dη

=
1

aH
dH/dη

1
a2da/dη

=
1

aH2

dH

dη
=

1

aH2

∂H

∂φ

dφ

dη

=
Hφ

aH2

dφ

dη
. (A.21)

Consider dφ
dη

, from

Hφ(φ) = − φ̇
2m2

pl
= − 1

2m2
pl

(
1
a

dφ
dη

)
. (A.22)

Due to
√
ε = −

√
2mpl

Hφ

H
, hence,

dφ

dη
= 2m2

plaHφ(φ)

=
√

2mplaH(φ)
√
ε(φ) (A.23)

Substitute (A.23) into (A.21), the result is

d lnH

d ln a
=

Hφ

aH2

√
2mplaH(φ)

√
ε(φ)

= −ε, (A.24)

so the variation of the Hubble parameter with respect to the scale factor is the

first order in the slow roll parameter.

From the equation of state p = ωρ, the association between the energy density

and the scale factor is calculated by using the continuity equation:

ρ ∝ a−3(1+ω) (A.25)

d ln ρ

d ln a
∼ −3(1 + ω) (A.26)

From the first Friedmann equation in flat space, one has

a ∝ η
2

1+3ω (A.27)

Using the (A.27), the Hubble parameter can be written in terms of the scale factor

as follow,

H =
1

a2

da

dη
=

2

a2(1 + 3ω)
η

1−3ω
1+3ω

∝ a
−3
2

(1+ω). (A.28)
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From (A.25) and (A.28), one obtains;

d lnH

d ln a
=

1

2

d ln ρ

d ln a
. (A.29)

In order to know the limit of the parameters during the period of inflation, this

relation is used in the continuity equation

ρ̇+ 3
ȧ

a
(ρ+ p) = 0

ρ̇a3 + 3ρȧa2 + 3pȧa2 = 0
d

dt
(ρa3) = −p d

dt
(a3), (A.30)

this is the first law of Thermodynamics dU = dQ− dW, dW = PdV with dQ = 0

(adiabatic process).

Using 1
x3dx

3 = 3d lnx, we find

p = − d

da3
(ρa3) = −

[
ρ+ a3 dρ

da3

]
= −ρ

[
1 +

1
ρ
dρ

1
a3da3

]
∴ p = −ρ

[
1 +

1

3

d ln ρ

d ln a

]
. (A.31)

Now one considers how fast of the decreasing of the universe during inflation by

using the second Friedmann equation,ä ∝ −(ρ+ 3p). Because ä must be positive,

the negative pressure , p < −ρ
3

is the result. So,

p = −ρ
[
1 +

1

3

d ln ρ

d ln a

]
< −ρ

3

−1

3

d ln ρ

d ln a
<

2

3

We know that the energy density must not be increasing as the universe is ex-

panding. The derivative of ρ must be negative.∣∣∣d ln ρ

d ln a

∣∣∣ < 2. (A.32)

By substituting the value of the pressure in each epoch, one evaluates∣∣∣d ln ρm

d ln a

∣∣∣ = 3, (A.33)∣∣∣d ln ρr

d ln a

∣∣∣ = 4, (A.34)

where ρm and ρr are the energy density of the universe during the matter (non-

relativistic particle) - dominated epoch and the radiation (relativistic particle) -

dominated epoch respectively. We have seen that the energy density of the universe
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in the inflation period decreases slowly compared with the others periods.

Let’s consider the limit of the pressure during inflation. Replacing (A.29) in

(A.31), so that

p = −ρ
[
1 +

2

3

d lnH

d ln a

]
. (A.35)

By using (A.24), the pressure of the inflaton can be rewritten as

p = −ρ
[
1− 2

3
ε
]
. (A.36)

During inflation, ε ∈ [0, 1), so the lowest limit of p is p = −ρ. This occurs when

ε = 0 which is the case of the cosmological constant, Λ. The uppermost limit is

p = −ρ
3

occurring when ε = 1.



APPENDIX B

PERTURBED

EINSTEIN EQUATION

B.1 Perturbed Christoffel Connections

From

Γα
βγ =

1

2
gαρ (gργ,β + gβρ,γ − gβγ,ρ ) ,

and

δΓα
βγ =

1

2
δgαρ (gργ,β + gβρ,γ − gβγ,ρ )

+
1

2
gαρ (δgργ,β + δgβρ,γ − δgβγ,ρ ) .

Due to the diagonal metric structure, the Christoffel connections are symmetric

between the two indices down, Γα
[µν] = 0, This is called torsion free.

One finds the components of the unperturbed and perturbed Christoffel connec-

tions

Γ0
00 =

1

2
g0ρ (gρ0,0 + g0ρ,0 − g00,ρ )

=
1

2
g00 (g00,0 )

=
1

2

(−1

a2

)( d

dη

(
− a2

))
∴ Γ0

00 =
a′

a
. (B.1)

δΓ0
00 =

1

2
δg0ρ (gρ0,0 + g0ρ,0 − g00,ρ ) +

1

2
g0ρ (δgρ0,0 + δg0ρ,0 − δg00,ρ )

=
1

2
δg00 (g00,0 ) +

1

2
g00 (δg00,0 )

=
1

2

(
2A

a2

)(
− 2aa′

)
+

1

2

(−1

a2

)( ∂

∂η

(
− 2Aa2

))
∴ δΓ0

00 = A′. (B.2)
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Γ0
0i =

1

2
g0ρ (gρi,0 + g0ρ,i − g0i,ρ )

=
1

2
g00 (g0i,0 + g00,i − g0i,0 )

=
1

2

(−1

a2

) (
∂i

(
− a2

))
∴ Γ0

0i = 0. (B.3)

δΓ0
0i =

1

2
δg0ρ (gρi,0 + g0ρ,i − g0i,ρ ) +

1

2
g0ρ (δgρi,0 + δg0ρ,i − δg0i,ρ )

=
1

2
δg00 (g00,i ) +

1

2
g00 (δg00,i )

=
1

2

(
2A

a2
(0)

)
+

1

2

(−1

a2

) (
∂i

(
− 2Aa2

))
∴ δΓ0

0i = ∂iA. (B.4)

Γi
00 =

1

2
giρ (gρ0,0 + g0ρ,0 − g00,ρ )

=
1

2

(
1

a2
δil

)
(−g00,l )

∴ Γi
00 = 0. (B.5)

δΓi
00 =

1

2
δgiρ (gρ0,0 + g0ρ,0 − g00,ρ ) +

1

2
giρ (δgρ0,0 + δg0ρ,0 − δg00,ρ )

=
1

2
δgil (−g00,l ) +

1

2
gil (−δg00,l )

= 0 +
1

2

(
1

a2
δil

)(
− ∂l

(
− 2Aa2

))
∴ δΓi

00 = ∂iA, (B.6)

where l = 1, 2, 3.

Γ0
ij =

1

2
g0ρ (gρj,i + giρ,j − gij,ρ )

=
1

2

(−1

a2

)(
− ∂

∂η

(
a2δij

))
∴ Γ0

ij =
a′

a
δij. (B.7)

δΓ0
ij =

1

2
δg0ρ (gρj,i + giρ,j − gij,ρ ) +

1

2
g0ρ (δgρj,i + δgiρ,j − δgij,ρ )

=
1

2

(
2A

a2

)(
− 2aa′δij

)
+

1

2

(−1

a2

)(
− ∂

∂η

(
− 2a2ψδij

))
= −2

a′

a
Aδij −

1

a2

(
2aa′ψδij + a2ψ′δij

)
∴ δΓ0

ij = −2
a′

a
(A+ ψ)δij − ψ′δij. (B.8)
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Γi
0j =

1

2
giρ (gρj,0 + g0ρ,j − g0j,ρ )

=
1

2
gil (glj,0 + g0l,j − g0j,l )

=
1

2

( 1

a2
δil
)(

2aa′δlj
)

∴ Γi
0j =

a′

a
δi

j. (B.9)

δΓi
0j =

1

2
δgiρ (gρj,0 + g0ρ,j − g0j,ρ ) +

1

2
giρ (δgρj,0 + δg0ρ,j − δg0j,ρ )

=
1

2
δgil (glj,0 ) +

1

2
gil (δglj,0 )

=
1

2

(
2ψ

a2
δil

)( ∂
∂η
a2δlj

)
+

1

2

( 1

a2
δil
) ∂
∂η

(
−2a2ψδlj

)
= 2

a′

a
ψδi

j − 2
a′

a
ψδi

j − ψ′δi
j

∴ δΓi
0j = ψ′δi

j. (B.10)

Γi
jk =

1

2
giρ (gρk,j + gjρ,k − gjk,ρ )

=
1

2
gil (glk,j + gjl,k − gjk,l )

=
1

2

( 1

a2
δil
) ((

∂ja
2
)
δlk +

(
∂ka

2
)
δjl −

(
∂la

2
)
δjk
)

∴ Γi
jk = 0. (B.11)

δΓi
jk =

1

2
δgiρ (gρk,j + gjρ,k − gjk,ρ ) +

1

2
giρ (δgρk,j + δgjρ,k − δgjk,ρ )

=
1

2
δgij (glk,j + gjl,k − gjk,l ) +

1

2
gil (δglk,j + δgjl,k − δgjk,l )

= 0 +
1

2

(
1

a2
δil

)(
∂j

(
− 2a2ψ

)
δlk + ∂k

(
− 2a2ψ

)
δjl − ∂l

(
− 2a2ψ

)
δjk
)

= −δil (∂jψδlk + ∂kψδjl − ∂lψδjk)

∴ δΓi
jk = −∂jψδ

i
k − ∂kψδ

i
j + ∂iψδjk. (B.12)

B.2 Perturbed Ricci Tensor

From

Rµν = ∂αΓα
µν − ∂µΓα

να + Γα
σα Γσ

µν − Γα
σν Γσ

µα .

and

δRµν = ∂αδΓ
α
µν − ∂µδΓ

α
να + δΓα

σα Γσ
µν + Γα

σα δΓ
σ
µν

− δΓα
σν Γσ

µα − Γα
σν δΓ

σ
µα.
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Like the Christoffel connections, the Ricci tensor is symmetric between the two

indices down.

The unperturbed Ricci tensor are

R00 = ∂αΓα
00 − ∂0Γ

α
0α + Γα

σα Γσ
00 − Γα

σ0 Γσ
0α

= ∂0Γ
0
00 + ∂iΓ

i
00 − ∂0Γ

0
00 − ∂0Γ

i
0i + Γ0

00 Γ0
00 + Γ0

i0 Γi
00 + Γi

0i Γ
0
00

+ Γi
ji Γ

j
00 − Γ0

00 Γ0
00 − Γ0

i0 Γi
00 − Γi

00 Γ0
0i − Γi

j0 Γj
0i

= − ∂

∂η

(
a′

a

)
δi

i + 3

(
a′

a

)2

−
(
a′

a

)2

δijδji

∴ R00 = − 3
a′′

a
+ 3

(a′
a

)2

. (B.13)

R0i = ∂αΓα
0i − ∂0Γ

α
iα + Γα

σα Γσ
0i − Γα

σi Γ
σ
0α

= ∂0Γ
0
0i + ∂jΓ

j
0i − ∂0Γ

0
i0 − ∂0Γ

j
ij + Γ0

00 Γ0
0i + Γ0

j0 Γj
0i + Γj

0j Γ0
0i

+ Γj
kj Γk

0i − Γ0
0i Γ

0
00 − Γ0

ji Γ
j
00 − Γj

0i Γ
0
0j − Γj

ki Γ
k
0j

= ∂j

(
a′

a

)
δj

i

∴ R0i = 0. (B.14)

Rij = ∂αΓα
ij − ∂iΓ

α
jα + Γα

σα Γσ
ij − Γα

σj Γσ
iα

= ∂0Γ
0
ij + ∂kΓ

k
ij − ∂iΓ

0
j0 − ∂iΓ

k
jk + Γ0

00 Γ0
ij + Γ0

k0 Γk
ij + Γk

0k Γ0
ij

+ Γk
lk Γl

ij − Γ0
0j Γ0

i0 − Γ0
kj Γk

i0 − Γk
0j Γ0

ik − Γk
lj Γl

ik

=
∂

∂η

(
a′

a

)
δij +

(
a′

a

)2

δij + 3

(
a′

a

)2

δij −
(
a′

a

)2

δkjδ
k
i

−
(
a′

a

)2

δk
jδik

∴ Rij =

(
a′′

a
+

(
a′

a

)2
)
δij. (B.15)

One finds the 00-component of the perturbed Ricci tensor

δR00 = ∂αδΓ
α
00 − ∂0δΓ

α
0α + δΓα

σα Γσ
00 + Γα

σα δΓ
σ
00

− δΓα
σ0 Γσ

0α − Γα
σ0 δΓ

σ
0α ,



80

All six components can be computed as

∂αδΓ
α
00 = ∂0δΓ

0
00 + ∂iδΓ

i
00

= A′′ + ∂i∂
iA. (B.16)

∂0δΓ
α
0α = ∂0δΓ

0
00 + ∂0δΓ

i
0i

= A′′ − 3ψ′′. (B.17)

δΓα
σα Γσ

00 = δΓ0
00 Γ0

00 + δΓ0
i0 Γi

00 + δΓi
0i Γ

0
00 + δΓi

ji Γ
j
00

=
a′

a
A′ − 3

a′

a
ψ′. (B.18)

Γα
σα δΓ

σ
00 = Γ0

00 δΓ
0
00 + Γ0

i0 δΓ
i
00 + Γi

0i δΓ
0
00 + Γi

ji δΓ
j
00

= 4
a′

a
A′. (B.19)

δΓα
σ0 Γσ

0α = δΓ0
00 Γ0

00 + δΓ0
i0 Γi

00 + δΓi
00 Γ0

0i + δΓi
j0 Γj

0i

=
a′

a
A′ − ψ′δij

a′

a
=

a′

a
A′ − 3

a′

a
ψ′. (B.20)

Γα
σ0 δΓ

σ
0α = Γ0

00 δΓ
0
00 + Γ0

i0 δΓ
i
00 + Γi

00 δΓ
0
0i + Γi

j0 δΓ
j
0i

=
a′

a
A′ − 3

a′

a
ψ′. (B.21)

So

δR00 = ∂i∂
iA+ 3ψ′′ + 3

a′

a
ψ′ + 3

a′

a
A′. (B.22)

The 0i-component of the Ricci tensor is

δR0i = ∂αδΓ
α
0i − ∂0δΓ

α
iα + δΓα

σα Γσ
0i + Γα

σα δΓ
σ
0i

− δΓα
σi Γ

σ
0α − Γα

σi δΓ
σ
0α , (B.23)
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Its six components are

∂αδΓ
α
0i = ∂0δΓ

0
0i + ∂jδΓ

j
0i

=
∂

∂η
(∂iA) − ∂j(−ψ′)δj

i = ∂iA
′ − ∂iψ

′. (B.24)

∂0δΓ
α
iα = ∂0δΓ

0
i0 + ∂0δΓ

j
ij

= ∂iA
′ +

∂

∂η

(
−∂iψδ

j
j − ∂jψδ

j
i + ∂iψδij

)
= ∂iA

′ − 3∂iψ
′. (B.25)

δΓα
σα Γσ

0i = δΓ0
00 Γ0

0iδΓ
0
j0 Γj

0i + δΓj
0j Γ0

0i + δΓj
kj Γk

0i

= (∂jA)
a′

a
δj

i +
(
−∂kψδ

j
j − ∂jψδ

j
k + ∂jψδkj

) a′
a
δk

i

=
a′

a
∂iA − 3

a′

a
∂iψ. (B.26)

Γα
σα δΓ

σ
0i = Γ0

00 δΓ
0
0i + Γ0

j0 δΓ
j
0i + Γj

0j δΓ
0
0i + Γj

kj δΓ
k
0i

= 4
a′

a
∂iA. (B.27)

δΓα
σi Γ

σ
0α = δΓ0

0i Γ
0
00 + δΓ0

ji Γ
j
00 + δΓj

0i Γ
0
0j + δΓj

ki Γ
k
0j

=
a′

a
∂iA +

(
−∂iψδ

j
k − ∂kψδ

j
i + ∂jψδki

) a′
a
δk

j

=
a′

a
∂iA − 3

a′

a
∂iψ. (B.28)

Γα
σi δΓ

σ
0α = Γ0

0i δΓ
0
00 + Γ0

ji δΓ
j
00 + Γj

0i δΓ
0
0j + Γj

ki δΓ
k
0j

=
a′

a
∂jAδ

j
i +

a′

a
∂jAδji = 2

a′

a
∂iA. (B.29)

So

δR0i = 2∂iψ
′ + 2

a′

a
∂iA. (B.30)

The ij-component of the Ricci tensor is

δRij = ∂αδΓ
α
ij − ∂iδΓ

α
jα + δΓα

σα Γσ
ij + Γα

σα δΓ
σ
ij

− δΓα
σj Γσ

iα − Γα
σj δΓ

σ
iα , (B.31)
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Its six components are

∂αδΓ
α
ij = ∂0δΓ

0
ij + ∂kδΓ

k
ij

=
∂

∂η

(
−2

a′

a
(A+ ψ)δij − ψ′δij

)
+ ∂k

(
−∂iψδ

k
j − ∂jψδ

k
i + ∂kψδij

)
= −2

(
a′′

a
−
(a′
a

)2
)

(A+ ψ)δij − 2
a′

a
(A′ + ψ′)δij − ψ′′δij

+∂k∂
kψδij − 2∂i∂jψ. (B.32)

∂iδΓ
α
jα = ∂iδΓ

0
j0 + ∂iδΓ

k
jk

= ∂i∂jA + ∂i

(
−∂jψδ

k
k − ∂kψδ

k
j + ∂kψδjk

)
= ∂i∂jA − 3∂i∂jψ. (B.33)

δΓα
σα Γσ

ij = δΓ0
00 Γ0

ij + δΓ0
k0 Γk

ij + δΓk
0k Γ0

ij + δΓl
kl Γ

k
ij

=
a′

a
A′δij − 3

a′

a
ψ′δij. (B.34)

Γα
σα δΓ

σ
ij = Γ0

00 δΓ
0
ij + Γ0

k0 δΓ
k
ij + Γk

0k δΓ
0
ij + Γl

kl δΓ
k
ij

=
a′

a

(
−2

a′

a
(A+ ψ)δij − ψ′′δij

)
− a′

a
δk

k

(
2
a′

a
(A+ ψ)δij + ψ′′δij

)
= −8

(
a′

a

)2

(A+ ψ)δij − 4
a′

a
ψ′δij. (B.35)

δΓα
σj Γσ

iα = δΓ0
0j Γ0

i0 + δΓ0
kj Γk

i0 + δΓk
0j Γ0

ik + δΓl
kj Γk

il

= −a
′

a
ψ′δij −

(
2

(
a′

a

)2

(A+ ψ)δij +
a′

a
ψ′δij

)
. (B.36)

Γα
σj δΓ

σ
iα = Γ0

0j δΓ
0
i0 + Γ0

kj δΓ
k
i0 + Γk

0j δΓ
0
ik + Γl

kj δΓ
k
il

= −2

(
a′

a

)2

(A+ ψ)δij − 2
a′

a
ψ′δij. (B.37)

So

δRij =
(
− a′

a
A′ − 5

a′

a
ψ′ − 2

a′′

a
A− 2

(
a′

a

)2

A− 2
a′′

a
ψ

−2

(
a′

a

)2

ψ − ψ′′ + ∂k∂
kψ
)
δij + ∂i∂jψ − ∂i∂jA. (B.38)

B.3 Perturbed Ricci Scalar

From

R = gµαRαµ.
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The unperturbed part is

R = g0αRα0 + giαRαi = g00R00 + gijRji

= − 1

a2

(
−3

a′′

a
+ 3

(a′
a

)2
)

+
1

a2
δij

(
a′′

a
+
(a′
a

)2
)
δji

∴ R = 6
a′′

a3
. (B.39)

The perturbed Ricci scalar is

δR = δgµαRαµ + gµα δRαµ.

= δg00R00 + δgij Rji + g00 δR00 + gij δRji

=

(
2A

a2

)(
− 3

a′′

a
+ 3

(a′
a

)2
)

+

(
2ψ

a2
δij

)(
a′′

a
+
(a′
a

)2
)
δji

+

(
−1

a2

)(
∂i∂

iA + 3ψ′′ + 3
a′

a
ψ′ + 3

a′

a
A′
)

+
1

a2
δij

[
− a′

a
A′

− 5
a′

a
ψ′ − 2

a′′

a
A − 2

(
a′

a

)2

A − 2
a′′

a
ψ − 2

(
a′

a

)2

ψ − ψ′′

+ ∂k∂
kψ

]
δji +

1

a2
δij (∂i∂jψ − ∂i∂jA)

=

(
1

a2

){
2A

(
− 3

a′′

a
+ 3

(a′
a

)2
)

+ (6ψ)

(
a′′

a
+
(a′
a

)2
)

+ −
(
∂i∂

iA + 3ψ′′ + 3
a′

a
ψ′ + 3

a′

a
A′
)

+ 3

[
− a′

a
A′ − 5

a′

a
ψ′

− 2
a′′

a
A − 2

(
a′

a

)2

A − 2
a′′

a
ψ − 2

(
a′

a

)2

ψ − ψ′′ + ∂k∂
kψ

]

+
(
∂i∂

iψ − ∂i∂
iA
)}

∴ δR = − 1

a2

(
2∂i∂

iA+ 6ψ′′ + 6
a′

a
A′ + 18

a′

a
ψ′ + 12

a′′

a
A− 4∂i∂

iψ
)
. (B.40)

B.4 Perturbed Einstein Tensor

From

Gµν = Rµν −
1

2
gµν R. (B.41)
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The unperturbed components are

G00 = R00 −
1

2
g00R

= − 3
a′′

a
+ 3

(a′
a

)2

+
1

a2

(
6
a′′

a3

)
∴ G00 = 3

(a′
a

)2

. (B.42)

G0i = R0i −
1

2
g0iR

∴ G0i = 0. (B.43)

Gij = Rij −
1

2
gij R

=

(
a′′

a
+

(
a′

a

)2
)
δij −

1

2

(
a2δij

)(
6
a′′

a3

)

∴ Gij =

(
− 2

a′′

a
+

(
a′

a

)2
)
δij. (B.44)

From

δGµν = δRµν −
1

2
δgµν R − 1

2
gµν δR,
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The perturbed Einstein tensor is

δG00 = δR00 −
1

2
δg00R − 1

2
g00 δR

= ∂i∂
iA + 3ψ′′ + 3

a′

a
ψ′ + 3

a′

a
A′ − 1

2
(−2Aa2)

(
6
a′′

a3

)
−
(
−1

2
a2

)(
− 1

a2

)(
2∂i∂

iA + 6ψ′′ + 6
a′

a
A′ + 18

a′

a
ψ′

+ 12
a′′

a
A − 4∂i∂

iψ

)

∴ δG00 = −6
a′

a
ψ′ + 2 ∂i∂

i ψ. (B.45)

δG0i = δR0i −
1

2
δg0iR − 1

2
g0i δR

= δR0i

∴ δG0i = 2∂i ψ
′ + 2

a′

a
∂iA. (B.46)

δGij = δRij −
1

2
δgij R − 1

2
gij δR,

=
(
− a′

a
A′ − 5

a′

a
ψ′ − 2

a′′

a
A − 2

(
a′

a

)2

A − 2
a′′

a
ψ

− 2

(
a′

a

)2

ψ − ψ′′ + ∂k∂
kψ
)
δij + ∂i∂jψ − ∂i∂jA

− 1

2
(−2ψa2δij)

(
6
a′′

a3

)
− 1

2
(a2δij)

(
1

a2

)(
− 1

a2

)(
2∂k∂

kA

+ 6ψ′′ + 6
a′

a
A′ + 18

a′

a
ψ′ + 12

a′′

a
A − 4∂k∂

kψ
)

∴ δGij =

(
2
a′

a
A′ + 4

a′

a
ψ′ + 4

a′′

a
A − 2

(
a′

a

)2

A + 4
a′′

a
ψ

− 2

(
a′

a

)2

ψ + 2ψ′′ − ∂k∂
k ψ + ∂k∂

kA

)
δij + ∂i∂jψ

− ∂i∂jA. (B.47)

From

δGµ
ν = δgµαGαν + gµα δGαν .

(B.48)
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So

δG0
0 = δg0αGα0 + g0α δGα0

= δg00G00 + g00 δG00

=
2A

a2

(
3

(
a′

a

)2
)
− 1

a2

(
6
a′

a
ψ′ − 2∂i∂

iψ

)

∴ δG0
0 =

1

a2

(
6

(
a′

a

)2

A + 6
a′

a
ψ′ − 2∂i∂

iψ

)
. (B.49)

δG0
i = δg0αGαi + g0α δGαi

= δg00G0i + g00 δG0i

∴ δG0
i =

1

a2

(
−2∂iψ

′ − 2
a′

a
∂iA

)
. (B.50)

δGi
j = δgiαGαj + giα δGαj

= δgil Glj + gil δGlj

=
2ψ

a2
δil

(
− 2

a′′

a
+

(
a′

a

)2
)
δlj +

(
1

a2
δil

){[
2
a′

a
A′

+ 4
a′

a
ψ′ + 4

a′′

a
A − 2

(
a′

a

)2

A + 4
a′′

a
ψ − 2

(
a′

a

)2

ψ

+ 2ψ′′ − ∂k∂
k ψ + ∂k∂

kA

]
δlj + ∂l∂jψ − ∂l∂jA

}

=
1

a2

{
− 4ψ

a′′

a
δi

j + 2ψ

(
a′

a

)2

δi
j +

[
2
a′

a
A′

+ 4
a′

a
ψ′ + 4

a′′

a
A − 2

(
a′

a

)2

A + 4
a′′

a
ψ − 2

(
a′

a

)2

ψ

+ 2ψ′′ − ∂k∂
k ψ + ∂k∂

kA

]
δi

j + ∂i∂jψ − ∂i∂jA

}

∴ δGi
j =

1

a2

{(
2
a′

a
A′ + 4

a′′

a
A − 2

(a′
a

)2

A + ∂k∂
kA + 4

a′

a
ψ′

+ 2ψ′′ − ∂k∂
kψ

)
δi

j − ∂i∂jA + ∂i∂jψ

}
. (B.51)

B.5 Perturbed Energy-Momentum Tensor

From

Tµν = ∂µφ ∂νφ − gµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
.
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The background components are

T00 = ∂0φ ∂0φ − g00

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
= φ′

2 − (−a2)

(
− 1

2a2
φ′

2
+

1

2a2
δij∂iφ∂jφ + V (φ)

)
=

1

2
φ′

2
+

(∇φ)2

2
+ V (φ) a2

∴ T00 =
1

2
φ′

2
+ V (φ) a2. (B.52)

T0i = ∂0φ ∂iφ − g0i

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
= ∂0φ∂iφ = φ′∇φ

∴ T0i = 0. (B.53)

Tij = ∂iφ ∂jφ − gij

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
= ∂iφ ∂jφ − (a2δij)

(
− 1

2a2
φ′

2
+

1

2a2
δij∂iφ∂jφ + V (φ)

)
=

(
1

2
φ′

2 − (∇φ)2

2
− V (φ) a2

)
δij

∴ Tij =

(
1

2
φ′

2 − V (φ) a2

)
δij, (B.54)

while ∂iφ = ∇φ = 0 because the background field φ is homogeneous.

From

δTµν = ∂µδφ ∂νφ + ∂µφ ∂νδφ − δgµν

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− gµν

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ Vφ δφ

)
.
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The perturbed components are

δT00 = ∂0δφ ∂0φ + ∂0φ ∂0δφ − δg00

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− g00

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ Vφ δφ

)
= ∂0δφ ∂0φ + ∂0φ ∂0δφ − δg00

(
1

2
g00 ∂0φ ∂0φ +

1

2
gij ∂iφ ∂jφ + V (φ)

)
− g00

(
1

2
δg00 ∂0φ ∂0φ +

1

2
δgij ∂iφ ∂jφ + g00 ∂0δφ ∂0φ

+ gij ∂iδφ ∂jφ + Vφ δφ

)

= 2φ′δφ − (−2Aa2)

(
−1

2a2
φ′

2
+

1

2a2
δij∂iφ ∂jφ+ V (φ)

)
− (−a2)

[
1

2

(
2A

a2

)
φ′

2
+

1

2

(
2ψ

a2
δij

)
∂iφ ∂jφ +

(
− 1

a2

)
φ′δφ′

+
1

a2

(
δij
)
∂iδφ ∂jφ + Vφ δφ

]
∴ δT00 = δφ′ φ′ + 2AV (φ) a2 + a2 Vφ δφ. (B.55)

δT0i = ∂0δφ ∂iφ + ∂0φ ∂iδφ − δg0i

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− g0i

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ Vφ δφ

)
= 0 + φ′∂iδφ − 0 − 0

∴ δT0i = ∂i δφ φ
′. (B.56)

δTij = ∂iδφ ∂jφ + ∂iφ ∂jδφ − δgij

(
1

2
gαβ ∂αφ ∂βφ + V (φ)

)
− gij

(
1

2
δgαβ ∂αφ ∂βφ+ gαβ ∂αδφ ∂βφ+ Vφ δφ

)
= 0 + 0 − δgij

(
1

2
g00 ∂0φ ∂0φ +

1

2
glk ∂lφ ∂kφ + V (φ)

)
− gij

(
1

2
δg00 ∂0φ ∂0φ +

1

2
δglk ∂lφ ∂kφ + g00 ∂0δφ ∂0φ

+ glk ∂lδφ ∂kφ + Vφ δφ

)

= − (2ψa2δij)

(
− 1

2a2
φ′

2
+ V (φ)

)
− a2δij

(
A

a2
φ′

2 − φ′δφ′

a2
+ Vφδφ

)
∴ δTij =

(
δφ′ φ′ − Aφ′

2 − a2 Vφ δφ− ψ φ′
2
+ 2ψ V (φ) a2

)
δij . (B.57)
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From

δT µ
ν = δ(gµα Tαν)

= δgµα Tαν + gµα δTαν ,

so

δT 0
0 = δg0α Tα0 + g0α δTα0

= δg00 T00 + g00 δT00

=
2A

a2

(
1

2
φ′

2
+ V (φ) a2

)
− 1

a2

(
δφ′ φ′ + 2AV (φ) a2 + a2 Vφ δφ

)
∴ δT 0

0 =
1

a2

(
Aφ′

2 − δφ′ φ′ − δφ
∂V

∂φ
a2

)
. (B.58)

δT 0
i = δg0α Tαi + g0α δTαi

= δg00 T0i + g00 δT0i

∴ δT 0
i =

1

a2
(− ∂iδφ φ

′) . (B.59)

δT i
j = δgiα Tαj + giα δTαj

= δgil Tlj + gil δTlj

=
2ψ

a2
δil

(
1

2
φ′

2 − V (φ) a2

)
δlj

+
1

a2
δlj

(
δφ′ φ′ − Aφ′

2 − a2 Vφ δφ− ψ φ′
2
+ 2ψ V (φ) a2

)
δlj

∴ δT i
j =

1

a2

(
−Aφ′2 + δφ′ φ′ − δφ

∂V

∂φ
a2

)
δi

j. (B.60)

B.6 Perturbed Einstein Equation

The 00-unperturbed component is

G00 =
1

m2
pl

T00

3

(
a′

a

)2

=
1

m2
pl

(
1

2
φ′

2
+ V (φ) a2

)
(
a′

a

)2

=
1

3m2
pl

(
1

2
φ′

2
+ V (φ) a2

)
. (B.61)
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The ij-unperturbed component is

Gij =
1

m2
pl

Tij(
− 2

a′′

a
+

(
a′

a

)2
)
δij =

1

m2
pl

(
1

2
φ′

2 − V (φ) a2

)
δij

2
a′′

a
−
(
a′

a

)2

=
1

m2
pl

(
V (φ) a2 − 1

2
φ′

2

)
2
a′′

a
− 2

(
a′

a

)2

= −
(
a′

a

)2

+
1

m2
pl

(
V (φ) a2 − 1

2
φ′

2

)
. (B.62)

Substitute (B.61) in the right hand side, one obtains

a′′

a
−
(
a′

a

)2

=
1

3m2
pl

(
V (φ) a2 − φ′

2
)
. (B.63)

From

δGµ
ν =

1

m2
pl

δT µ
ν , (B.64)

one obtains

δG0
0 =

1

m2
pl

δT 0
0

1

a2

(
6H2A + 6Hψ′ − 2∂i∂

iψ
)

=
1

m2
pl

(
1

a2

)(
Aφ′

2 − δφ′ φ′ − δφ
∂V

∂φ
a2

)
3H2ψ + 3Hψ′ − ∇2ψ =

1

2m2
pl

(
ψφ′

2 − δφ′φ′ − δφVφa
2
)
. (B.65)

δG0
i =

1

m2
pl

δT 0
i

1

a2
(−2∂iψ

′ − 2H∂iA) =
1

m2
pl

(
1

a2

)
(− ∂iδφ φ

′)

∂iψ
′ + H∂iψ =

1

2m2
pl

( ∂i(δφ φ
′) − (∂iφ

′)δφ)

∂i(Hψ + ψ′) =
1

2m2
pl

∂i(δφ φ
′)

Hψ + ψ′ =
1

2m2
pl

(δφφ′) . (B.66)
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δGi
j =

1

m2
pl

δT i
j

1

a2

(
2HA′ + 4

(
H2 + H′)A − 2

(
H
)2

A + ∂k∂
kA + 4Hψ′

+ 2ψ′′ − ∂k∂
kψ

)
δi

j =
1

m2
pl

(
1

a2

)(
− Aφ′

2
+ δφ′ φ′ − δφ

∂V

∂φ
a2

)
δi

j

H2ψ + 2H′ψ + 3Hψ′ + ψ′′ =
1

2m2
pl

(
−ψφ′2 + δφ′φ′ − δφVφa

2
)

(B.67)



APPENDIX C

POWER SPECTRUM

AND THE ACTION

C.1 Calculation of z′′

z

From z = aφ′

H = aφ̇
H

,

dz

dη
= a

dz

dt
= a

[
ȧφ̇

H
+
ȧφ̈

H
− aφ̇Ḣ

H2

]
.

where ȧ
H

= a. Next one computes

d2z

dη2
= a

d

dt

(
a
dz

dt

)
= a

{
ȧ

[
aφ̇ +

ȧφ̈

H
− aφ̇Ḣ

H2

]
+ a

[
ȧφ̇ + aφ̈ +

ȧφ̈

H
+
a ˙̈φ

H

− 2
aφ̈Ḣ

H2
− ȧφ̇Ḣ

H2
− aφ̇Ḧ

H2
+ 2

aφ̇Ḣ2

H3

]}
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1

z

d2z

dη2
=

H

φ̇

{
ȧ

[
aφ̇ +

ȧφ̈

H
− aφ̇Ḣ

H2

]
+ a

[
ȧφ̇ + 2aφ̈ +

a ˙̈φ

H

− 2
aφ̈Ḣ

H2
− aφ̇Ḣ

H
− aφ̇Ḧ

H2
+ 2

aφ̇Ḣ2

H3

]}

=
(aH)2

φ̇

{
ȧ

a2H

[
aφ̇ + aφ̇δ1 + aφ̇ε

]
+

1

aH

[
ȧφ̇ + 2aφ̈ +

a ˙̈φ

H

+ 2aφ̈ε − aφ̇Ḣ

H
+ aφ̇

(
− Ḧ

H2
+ 2

Ḣ2

H3

)]}

= (aH)2

{[
1 + δ1 + ε

]
+

[
1 + 2δ1 + δ2

+ 2εδ1 + ε +
ε̇

H

]}

∴
z′′

z
= 2(aH)2

(
1 + ε+

3

2
δ1 +

δ2
2

+ ε2 + 2εδ1

)
. (C.1)

where ε = − Ḣ
H2 , δ1 = φ̈

φ̇H
, δ2 =

˙̈
φ

φ̇H2 and [see appendix C.4] ε̇ = 2H(ε2 + εδ1).

C.2 Commutation Relation Gives Norm of the

Field u(η, ~x)

From the commutator

[ϕ(η, ~x), π(η′, ~x′)]η=η′ = iδ(3)(~x− ~x′),

for ~x = ~x′, one has

[ϕ(η, ~x), π(η′, ~x)]η=η′ = i. (C.2)

From the lagrangian of the field, the canonical momentum is

π =
∂L
∂ϕ̇

= a2ϕ′. (C.3)

The commutator becomes

[ϕ , a2ϕ′] = i

a2(ϕkϕ
′
k
∗ − ϕ∗kϕ

′
k) = i.
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Consider υ ≡ aϕ, one obtains

υkυ
′
k
∗ − υ∗kυ

′
k = i. (C.4)

The relation between υk and υ′k which satisfies the condition above is

υ′k = −iωkυk,

where ωk is the positive frequency at mode k. Now we can compute the norm of

υk

υk(iωkυ
∗
k)− υ∗k(−iωkυk) = i

υ∗kυk =
1

2ωk

∴ |υk| =
1√
2ωk

. (C.5)

From u ≡ aδφ+ zψ = υ + zψ, its norm can be computed as follow (using (C.4))

uku
′
k
∗ − u∗ku

′
k = i, (C.6)

so

|uk| = |υk| =
1√
2ωk

. (C.7)

For the equation of motion in small scale limit u′′k + k2uk ≈ 0, the positive

frequency is ωk = k. Therefore

|uk| =
1√
2k
. (C.8)

C.3 Vacuum State and Power Spectrum

Consider vacuum state

〈0|u∗(η, ~x)u(η′, ~x′)|0〉η=η′ = 〈0|
∫

d3k

(2π)
3
2

d3p

(2π)
3
2

(
u∗k(η)â

†
~k
e−i~k·~x + uk(η)â~ke

i~k·~x
)

(
up(η)â~pe

i~p·~x′ + u∗p(η)â
†
~pe
−i~p·~x′

)
|0〉,

Using a~k|0〉 = 0 and [â~k, â
†
~p] = δ(3)(~k − ~p)

〈0|u∗(η, ~x)u(η′, ~x′)|0〉η=η′ =

∫
d3kd3p

(2π)3
uk(η)u

∗
p(η)

(
ei(~k·~x−~p·~x′)

)
〈0|â~kâ

†
~p|0〉

=

∫
d3kd3p

(2π)3
uku

∗
p

(
ei(~k·~x−~p·~x′)

)
〈0|
(
[â~k, â

†
~p] + â†~kâ~p

)
|0〉

=

∫
d3kd3p

(2π)3
uku

∗
p

(
ei(~k·~x−~p·~x′)

)
δ(3)(~k − ~p)

∴ 〈u∗(η, ~x)u(η, ~x′)〉 =

∫
d3k

(2π)3
|uk(η)|2ei~k(~x−~x′), (C.9)



95

so

〈u2〉 =

∫
d3k

(2π)3
|uk(η)|2 = 4π

∫
k2dk

(2π)3
|uk(η)|2

=

∫
dk

k

(
k3

2π2
|uk(η)|2

)
≡
∫
dk

k
Pu(k), (C.10)

where

Pu(k) =
k3

2π2
|uk(η)|2

is the power spectrum of the perturbation u(η) at the scale k. The power spectrum

of the curvature perturbation is

PR(k) =
k3

2π2
|Rk(η)|2 =

k3

2π2

∣∣∣∣uk(η)

z

∣∣∣∣2
=

k2

(2π)2

22ν−3

z2

[
Γ(ν)

Γ(3
2
)

]2

(−kη)1−2ν

=
k2

(2π)2

22ν−3

(aφ̇/H)2

[
Γ(ν)

Γ(3
2
)

]2 [
k

aH(1− ε)

]1−2ν

=
H4

(2πφ̇)2
22ν−3

[
Γ(ν)

Γ(3
2
)

]2 [
k

aH

]−4ε−2δ1

(1− ε)2+4ε+2δ1

∴ PR(k) = − 1

2m2
plε

(
H

2π

)2

22ν−3

[
Γ(ν)

Γ(3
2
)

]2 [
k

aH

]−4ε−2δ1

(1− ε)2+4ε+2δ1(C.11)

where η = −1
aH(1−ε)

and z = aφ̇
H

.

Using Taylor expansion up to the first order,

2ν− 3
2
Γ(ν)

Γ(3
2
)
≈ 1 + 2α(2ε+ δ1),

(1− ε)2+4ε+2δ1 ≈ (1− 2ε− 4ε2 − 2εδ1),(
k

aH

)−4ε−2δ1

= e(−4ε−2δ1) ln
(

k
aH

)
≈ 1− (4ε+ 2δ1) ln

( k

aH

)
, (C.12)

so

22ν−3

[
Γ(ν)

Γ(3
2
)

]2

≈ 1 + 8αε+ 4αδ1, (C.13)

The power spectrum becomes

PR(k) = − 1

2m2
plε

(
H

2π

)2
[(

1− (4ε+ 2δ1) ln
( k

aH

))
(1 + 8αε+ 4αδ1)

(
1− 2ε− 4ε2 − 2εδ1

) ]

= − 1

2m2
plε

(
H

2π

)2 [
1− 2ε+ 2

(
α− ln

( k

aH

))
(2ε+ δ1)

]
. (C.14)
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C.4 Spectral Index and Running

From the definition, the spectral index is

nR(k) = 1 +
d lnPR
d ln k

= 1 +
1

PR
dPR
d ln k

, (C.15)

where the power spectrum is

PR(k) =
1

2m2
plε

(
H

2π

)2 [
1− 2ε+ 2

(
α− ln

( k

aH

))
(2ε+ δ1)

]
. (C.16)

Computing ε̇, δ̇1, δ̇2 and µ̇ ( µ̇ is computed for Chapter IV).

ε = − φ̇2

2m2
plH

2

ε̇ = − 1

2m2
pl

[
2φ̇φ̈

H2
− 2φ̇2Ḣ

H3

]
= 2Hεδ1 + 2Hε2

∴ ε̇ = 2H(ε2 + εδ1), (C.17)

δ1 =
φ̈

φ̇H

δ̇1 =
˙̈φ

φ̇H
− φ̈2

φ̇2H
− φ̈Ḣ

φ̇H2
= Hδ2 −Hδ2

1 +Hεδ1

∴ δ̇1 = H(εδ1 − δ2
1 + δ2), (C.18)

δ2 =
˙̈φ

φ̇H2

δ̇2 =
¨̈φ

φ̇H2
−

˙̈φφ̈

φ̇2H2
− 2 ˙̈φḢ

φ̇H3
= Hδ3 −Hδ1δ2 + 2Hεδ2

∴ δ̇2 = H(2εδ2 − δ1δ2 + δ3), (C.19)

µ =

(
kH

aM2
s

)2

= 2

(
H

Ms

)4

, (k ≈
√

2aH)

µ̇ = 4

(
H

Ms

)3
Ḣ

Ms

= 4

[
2

(
H

Ms

)4
]
Ḣ

H
= − 4Hµε

∴ µ̇ = −4Hµε. (C.20)

In addition

dH2

d ln k
=

2Ḣ

1− ε
≈ −2Ḣε, (C.21)

dε−1

d ln k
= −2− 2

δ1
ε

(C.22)

In the crossing scale, one computes

PR
d ln k

=

(
H

2πmpl

)2 [(
−2− 2

δ1
ε

)
(1− 2ε+ 2α(2ε+ δ1))

]
=

1

ε
[−2ε2 − 2εδ1 + α(4ε2 + 5εδ1 − δ2

1 − δ2)].
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nR − 1 = 2

[
(−2ε− δ1) +

(−2ε2 − 2εδ1 + α(4ε2 + 5εδ1 − δ2
1 − δ2))

1− 2ε+ 2α(2ε+ δ1)

]
≈ 2

[
(−2ε− δ1) + (−2ε2 − 2εδ1 + α(4ε2 + 5εδ1 − δ2

1 − δ2))
]

(C.23)

Thus the spectral index is

nR(k) = 1− 4ε− 2δ1 + (8α− 4)ε2 + (10α− 4)εδ1 − 2αδ2
1 + 2αδ2. (C.24)

In the same procedure, one obtains the running of the spectral index

dnR
d ln k

(k) = −8ε2 − 10εδ1 + 2δ2
1 − 2δ2 + (32α− 16)ε3 + (62α− 28)ε2δ1

+(6α− 4)εδ2
1 + (14α− 4)εδ2 + 4αδ3

1 − 6αδ1δ2 + 2αδ3. (C.25)

C.5 Modified Action (Time-Time Component)

in the Noncommutative Spacetime

From

S̃ =

∫
dτdx

1

2

(
∂τ φ̃

† ∗ a2 ∗ ∂τ φ̃−
(
∂xφ̃
)† ∗ a−2 ∗ ∂xφ̃

)
. (C.26)

The time-time component action in momentum space is found to be

S̃time = V

∫
dτdx

dkdq

2π

1

2

[
∂τ

( φ̃†qe−iqx + φ̃qe
iqx

2

)
∗ a2 ∗ ∂τ

( φ̃ke
ikx + φ̃†ke

−ikx

2

)]

= V

∫
dτdx

dkdq

2π

1

8

[
∂τ φ̃

†
qe
−iqx ∗ a2 ∗ ∂τ φ̃ke

ikx + ∂τ φ̃qe
iqx ∗ a2 ∗ ∂τ φ̃ke

ikx

∂τ φ̃
†
qe
−iqx ∗ a2 ∗ ∂τ φ̃

†
ke
−ikx + ∂τ φ̃qe

iqx ∗ a2 ∗ ∂τ φ̃
†
ke
−ikx

]
.

Using the ∗-product

a2 ∗ ∂τ φ̃ke
ikx = a2 · e−il2s(∂τ ∂x − ∂x∂τ )∂τ φ̃k e

ikx

= ∂τ φ̃k

(
ek l2s ∂τa2

)
eikx,

a2 ∗ ∂τ φ̃
†
ke
−ikx = a2 · e−il2s(∂τ ∂x − ∂x∂τ )∂τ φ̃

†
k e

−ikx

= ∂τ φ̃
†
k

(
e−k l2s ∂τa2

)
e−ikx,

and
∫

(f ∗ g)(τ, x)dx =
∫

(f · g)(τ, x)dx due to the antisymmetric property in

SSUR, the action is then

S̃time = V

∫
dτdx

dkdq

2π

1

8

[
∂τ φ̃

†
q ∂τ φ̃k e

i(k−q)x
(
ek l2s ∂τa2

)
+ ∂τ φ̃q ∂τ φ̃k e

i(k+q)x
(
ek l2s ∂τa2

)
+ ∂τ φ̃

†
q ∂τ φ̃

†
k e

−i(k+q)x
(
e−k l2s ∂τa2

)
+ ∂τ φ̃q ∂τ φ̃

†
k e

−i(k−q)x
(
e−k l2s ∂τa2

)]
.
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Using the Dirac delta function∫
dx ei(k±q)x = 2πδ(k ± q), (C.27)

and the a property of the real field: φ̃†k = φ̃−k, the action becomes

S̃time = V

∫
dτdk

1

4

[
∂τ φ̃−k ∂τ φ̃k e

kl2s∂τa2 + ∂τ φ̃k ∂τ φ̃−k e
−kl2s∂τa2

]
.

Expanding the exponential term, one obtains

e±kl2s∂τa2(τ) =

[
1± kl2s∂τ +

1

2

(
kl2s∂τ

)2

± 1

3!

(
kl2s∂τ

)3

+ ...

]
a2(τ).

' a2(τ ± kl2s). (C.28)

Therefore

S̃time = V

∫
|k|<k0

dτdk
1

2
∂τ φ̃−k ∂τ φ̃k

[
a2(τ + kl2s) + a2(τ − kl2s)

2

]
.
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