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CHAPTER I

INTRODUCTION

Inflation theory was first proposed by Guth in 1981 [1]. Inflation is a pe-
riod of accelerated expansion in the early universe. It occurs when the energy
density of the universe is dominated by the potential energy of some scalar field
called inflaton. During this period, the universe has accelerated expansion, and
the quantum fluctuations are enlarged to be the primordial density fluctuations.
They grow into the large-scale structure in the universe today. In order that in-
flation can occur, the slow roll approximation (the inflaton rolls very slowly along
the almost flat potential) is needed to have a large amount of inflation to solve
problems arising from the standard Big Bang model as well as the large scale of
perturbations [1]-[3], [12]. Inflation ends when the inflaton comes to a minimum of
the potential and oscillates about it. During the damped oscillations, the energy
lost of the inflaton reheats the universe and all the ordinary matters are created.

The cosmic microwave background radiation (CMB) was discovered in 1964
by Penzias and Wilson [4]. It is the roughly isotropic radiation. Its spectrum is
almost the blackbody spectrum of temperature about 2.725 K. However, it has
small variations of temperature. The degree of anisotropies in CMB is about one
part in 100,000 [2]. The origin of anisotropies in CMB is thought to be associated
with the density fluctuations at the decoupling time, the time when the universe
cooled down enough for protons and electrons to form neutral Hydrogen atoms
(380,000 years after big bang). These fluctuations are the primordial density fluc-
tuations generated from quantum fluctuations during inflation period. We study
CMB anisotropies by using the power spectrum which indicates the amplitude of
variations of the temperature as a function of the angular scale. For inflation, the
shapes of the theoretical power spectrum depends on the parameters assumed by
the model. In each model, the power spectrum and its derivatives (the spectral
index and the running of the spectral index) are computed as the appropriate
inflationary observables and compared with the present CMB observations.

The aim of this thesis is to test and discriminate different slow-roll inflation

models by using CMB observations. The thesis is organized as follows. In Chap-



ter II, CMB formation and its anisotropy associated with inflation are considered.
Structure formation, all fluctuation scales and CMB power spectrum are discussed
respectively. We end this chapter by showing the recent CMB data.

Chapter III concerns dynamics of inflation as well as the slow roll conditions:
the conditions required for inflation. The following section presents cosmological
perturbations in the form of the perturbed Einstein equation. In the last section,
we compute the power spectrum of the primordial perturbations and its deriva-
tives in terms of the slow roll parameters.

In Chapter IV, the inflation models driven by a single scalar field are studied.
The commutative inflation and its problems will be in our interest. Noncommuta-
tive inflation model [13]-[21] is described as a candidate of solving the problems.
The perturbation equation of motion and the power spectrum in Chapter III are
modified due to the existence of the noncommutative parameter. All parameters
of the noncommutative power-law inflation are constrained by the observational
data and the results will be seen to be in good agreement with the observations.

Multi-field inflation models [29, 31] are studied in Chapter V. The classifi-
cation of the primordial perturbations are included here. We continue to compute
the evolution of multiple scalar fields. The simplest model called double inflation
25, 28, 30] is then discussed, as well as the correlation between perturbations [24]-
[28]. In the last section, the realistic double inflation model in supersymmetric
theory [28, 30] and some constrains due to WMAP data [27, 30] are described.

Finally, we draw our conclusion in Chapter VI.



CHAPTER 11

COSMIC MICROWAVE
BACKGROUND
ANISOTROPIES

There are many models explaining the origin and the evolution of the uni-
verse. Inflation theory is one of the possible candidates. Which one is the
best model of inflation? The inflationary parameters, as well as the cosmolog-
ical parameters, are constrained by the recent data from Wilkinson Microwave
Anisotropy Probe (WMAP). One of the WMAP results is the observed cosmic
microwave background (CMB) anisotropies. Before constructing any inflation

models, it is important to study the CMB observations.

2.1 Formation of the CMB and Its Properties

Cosmic microwave background radiation is the primordial light we can observe
from every direction today. Photons are formed after the inflation period in the
radiation era (when the age of the universe is-less than one second). When the
universe has eooled down enough for protons-and electrons to form neutral hydro-
gen atoms in the matter era, photons have no charged particles to scatter, then
they move freely to us as CMB.

The universe begins with the gigantic explosion called Big Bang. At that
time the universe is very hot and dense, and when it expands it becomes cooler
and less dense. The universe is a hot plasma containing particles such as electrons,
protons, neutrons and photons. Photons interact with electrons by Thomson scat-
tering! . When the temperature of the universe is about 3000K, atoms are formed,

mostly hydrogen. There are no free electrons for photons to scatter, then they

!Thomson scattering being the Compton scattering in low temperature is the scattering of

the electromagnetic wave by a point charge, and the incident wave has the same wavelength



travel freely in the direction of last scattering. Their wavelengths are stretched to
be in microwave range owing to the expansion of the universe. The universe is not
a plasma any longer, photons do not couple with matter anymore, so it becomes
transparent. This time is called decoupling time occurred when the age of the
universe is about 380,000 years old (in the matter-dominated period).

CMB is the most perfect black-body spectrum we know; however, its tem-
perature is slightly different on different patches of the sky to 1 part in 100,000.
This is called anisotropies [8, 9] which are caused by the variation of frequency as
photons move into and out of more dense and less dense regions, and the Doppler
effect (the photon is red shifted or blue shifted when the electron it scattered off
is moving away or toward us).

The origins of the fluctuations in the density at the decoupling time are
quantum fluctuations in the early universe. Next section, CMB anisotropies and

their connection to inflation will be considered.

2.2  Anisotropy Mechanisms and Inflation

From the previous section, one of the important sources of CMB anisotropies is
the gravitational potential fluctuations at the time CMB is formed. The photon
gains energy (blueshifting) when it falls into the gravitational potential wells, and
loses energy (redshifting) when it climbs out of the gravitational potential wells.
The gravitational potential fluctuations at the decoupling time come from
the very tiny fluctuations in the early universe. According to the Heisenberg
Uncertainty Principle, there are quantum fluctuations? created all the time. Ac-
cording to the observations [5], the age of the universe today is about 13.7 billion
years. The age is too short for quantum fluctuations ([ ~ 1073% m.) to grow to
be galaxies or clusters of galaxies (I > 10** m.) Inflation, which begins when the

age of the universe is less than one second (about: Planck time), can be one of

with the scatter wave. The Thomson scattering cross section of photons by electron is

8ma?
ar =
3m?2
. 2 .
where m is the electron mass and o = 27‘;? is the fine structure constant.

2Quantum fluctuations can be classified into two kinds:
e Fluctuations in the inflaton field: ¢ (¢, &) = ¢(t) + dp(t, T).

o Geometrical perturbations of the spacetime metric: g,, = guv + 0G0 -



the answers. Inflation enlarges fluctuations on quantum scales into cosmic scales.
Because there are all scales of fluctuations, after inflation, classical fluctuations
can be separated into three scales: large scale fluctuations which are the source of
galaxies and clusters of galaxies, intermediate scale fluctuations, and small scale
fluctuations.

After inflation, the enlarged fluctuations are considered in the form of gravi-
tational potential wells (more dense regions) and gravitational potential hills (less
dense regions) in the plasma.

Gravity compresses all matters in the plasma into potential wells, but the
photon pressure coming from the scattering of electrons resists the gravity. These
events cause acoustic oscillations or sound waves. When the sound wave causes
compression, the plasma gets more dense and hotter, but when it causes rarefac-
tion, the plasma gets less dense and colder. From inflation, there are many scales
of fluctuations, so there are different modes of oscillation in different length scales.
Each mode oscillates independently®. The frequency of oscillation is kc, where
cs is the sound speed. The oscillations tell us that there is the changing in time
between the less dense state and the more dense state in each region.

Acoustic oscillations stop at the decoupling time when electrons are com-
bined into atoms, so photons bound with nothing. They travel freely to us as
CMB. Modes that reach the extrema of their oscillations will increase the differ-
ence in the energy density, and also the temperature. The patterns at the end of

the oscillations are sent to us as the CMB anisotropies.

2.3 Structure Formation and Fluctuation Scales

After the decoupling time (all modes stop oscillating), gravitational fluctuations
are amplified by gravity and grow into structure observed today.

Different scales of fluctuations cause different scales of structure.

2.3.1 Large Angular Scales ( > 10°)

Large scale fluctuations (enlarged by inflation) are the modes in which length
scales are much larger than the wavelength of the sound wave. These modes
will not oscillate until the decoupling time. Then the fluctuations amplitudes

are unchanged and become the large scale anisotropies in CMB, and will grow

3if the fluctuations are Gaussian.



to be galaxies and clusters of galaxies. Because the large scale fluctuations come
from the quantum fluctuations in the early universe, they tell us about the initial

conditions of the universe.

2.3.2 Intermediate Angular Scales (1° < 0 < 10°)

Intermediate scale fluctuations whose wavelengths are of the order of the sound
horizon have acoustic oscillations. The oscillations stop at the decoupling time
and leave the fluctuations in the new patterns which cause intermediate scale
anisotropies in CMB.

This scale of the anisotropies corresponds to the scale in the CMB power

spectrum in the range 100 < [ < 1000.

2.3.3 Small Angular Scales (6 < 1°)

We know that the decoupling time is not instantaneous, photons are able to dif-
fuse out of the more/less dense regions and balance their temperature. This event
reduces photons temperature variations, and decays the fluctuations amplitudes
during the oscillations. So, the anisotropies in the small scale have the Silk damp-
ing as we see in the power spectrum for { > 1000.

We see that only the large scale perturbations bring the information of in-

flation directly to us because they neither oscillate, nor damp.

2.4 CMB Power Spectrum

CMB power spectrum shows the size of variations of the temperature as a function
of the angular scale. Since temperature fluctuations distribute over the surface of
the sphere, it is convenient to write them in terms of the spherical harmonics. One

introduces the temperature fluctuation ©(n) = % [6]:

On) = 3 arYin (). (21)

Ilm

In this work, we consider only the Gaussian random fluctuations whose statistic

properties give

< afmal/m/ >= 010 Cl. (2.2)



In addition, the temperature perturbation field can be described by its Fourier

modes
O(#) = | =L ok ek 2.3
@ = [ e (2.3
each Fourier mode corresponds to the mode of acoustic oscillations. The Gaus-
sianity provides that Fourier components of the fluctuations are uncorrelated and
have random phases.

Considering the n-direction on the sky today, the temperature variation generated

at the decoupling time is
F 25 A
Q(h) = | —=-0(k)eH " 24
(0) = [ GO, (2.4
where D, = c(ty —t.) is the distance traveled by light (CMB) from the decoupling
time (t.) to today (to).
One expands the plane wave in terms of the spherical harmonics
et DI = am N iy (kD,)Ye, (k) Yim (7). (2.5)

im

Substituting (2.1) and (2.5) in (2.4), one finds
A d3k 74 L/ x /7 A
%;alelm(n) 4,4 / 5:90) %;z DY () Vi (). (2.6)
The orthogonality of the spherical harmonics provides the multipole moments as

A, = AT / @%@(E)ilﬁ(w*mm(/&). (2.7)

By using the two-point correlation function,
< O(k)*O(K) >= (27)38(k — k') Pr(k) (2.8)
with the power spectrum Pr = %PT(k), one computes < aj, ayyy > as
<) Ay >= OOt AT / dn kj? (kD) Pa(k) (2.9)

For the slowly varying P(k) e.g. the power spectrum for the large scale perturba-
tions; the dominant contribution comes from peaks of the spherical Bessel function.
Since j;(z) is strongly peaked at x =~ [ (here x = kD,), we can take k = [/D, as
the characteristic scale corresponding to [ [6]. From [;* j2(x)dInz = [21(1+1)]*
the power spectrum is

(1+1)
2 —
Pr(k) —up. = o C. (2.10)

The power spectrum of CMB anisotropies is plotted using the quantity
%Cl against the multipole [. Oscillation modes that reach an extrema of the

oscillation become the peaks in the CMB power spectrum as shown in Figure 2.1.
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Figure 2.1: CMB power spectrum [10].
2.4.1 First Peak and Geometry of the Universe

The first peak corresponds to the sound horizon which is the distance the sound
wave has propagated until the decoupling time, r,. This mode is the longest wave-
length of fluctuations of the acoustic oscillations. The fluctuations in this scale
are the dominant fluctuations existed in the plasma at last scattering. Moreover,
this mode reaches an extrema of the oscillation at decoupling, so the first peak is
the highest peak in the power spectrum.

The location of the peak depends on the total matter in the universe,

200
Qtot

obtains [ ~ 200, therefore we live in the flat space as the inflation predicted
(another evidence is the data from WMAP: Q;,, = 1.02 +.0.02 [5]).

[ ~

(For flat universe: €,; = 1). 'According to the power spectrum, one

:

2.4.2 Relative Height of Peaks and Dark Matter

Another parameter that affects the height of every peak is the amount of baryons.
If the amount of baryons is increased, the odd peaks corresponding to the com-
pression of the plasma will be higher. This is because more baryons mean more
mass which will cause more infall. On the other hand, the even peaks correspond-

ing to the rarefaction of the plasma will be lower. The more baryons, the higher



the odd peaks and the lower the even peaks.

All observations in [5] constrain the amount of the baryons in the universe
to be Qh? = 0.024 & 0.001. If all matters contained in the universe are purely
baryons: €,,h? ~ Quh?, the relative height of the first two peaks is less than that
appears in Figure 2.1. In order to have the relative height between the odd and the
even peaks as in Figure 2.1, the existence of the dark baryons or the dark matter
is required. An inflation model called double inflation, which will be studied in
Chapter V, can explain the origin of dark matter.

Although the acoustic peaks give much information about the universe, we
are interested in the power spectrum on the angular scale greater than 10° (or

[ <20) when we study the initial conditions or inflation.

2.5 Observational Data

As we know the sources of CMB temperature anisotropies come from the gravita-
tion potential wells at the decoupling time, and the gravitation potential wells are
caused by the quantum fluctuations during the inflation period. The two types of
quantum fluctuations are combined into the curvature perturbation R. Therefore
from the equation (2.10),

11+ 1)

PA(k) = P(k) = ==

C. (2.11)

It can be seen that the CMB power spectrum is an important observation for
testing inflation models. Moreover, the derivatives of the power spectrum are the
other constraints for discriminating among inflation models. The WMAP data [5]

on the large scale are

d

k = 0.05Mpc': Pr =246 x 10~°, ng = 0.93 =+ 0.03, d%ﬁ — —0.031+0016
d

E ="0.002Mpc ! : Pr = 2.09 x 1077, np = 12000, dﬁfk = —0.07715025.

where nr and jf‘ﬁ are the first and second derivatives of Pz with respect to In k
respectively. Note that 1 Mpc = 3.086 x 10%* cm.

The scale & = 0.05Mpc~! corresponds to the galactic scale L = 20Mpc
whereas the scale & = 0.002Mpc~! is for the cluster of galaxies L = 500Mpc.
We use only the large scale observations because the temperature fluctuations
on these scales are directly caused by the primordial perturbations in the early

universe (inflation).
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Another observation that can test inflation models is the CMB polarization
[8, 34, 35]. The polarization of the CMB at the end of the decoupling time can
give some information about the primordial perturbations. However, detecting the
CMB polarization precisely is very difficult. In the near future, Planck satellite
may give us the high-resolution map of the CMB polarization. In our study, we

consider only the data of the CMB anisotropies.



CHAPTER III

INFLATION REVIEW

3.1 Scalar Field Dynamics

In this chapter, we consider a single scalar field, called inflaton during the period
of inflation (the multi-field model will be considered in Chapter V).
The Lagrangian® of the inflaton, ¢, is

1
L2 250" 0,00, = V@), 32
where

-1 00 0

1.0 0
, =a : 3.3
g <@ | B 33)

00 1

is the the Friedmann-Robertson-Walker (FRW) metric in the unperturbed space-
time with the conformal time coordinate, . (For convenience, the proper time,
t, is changed to the conformal time, 1, by the definition dt = a(n)dn). And a(n)
is the scale factor which depends only on time. It tells us about the rate of the
expansion of the universe.

The action for the inflation is
B /d4x\/—g£ (3.4)
1
— — [ devg[yemasa + Ve, (35

'Normally, the Lagrangian is defined as

1
L= 9" 0,60,0 — V(6), (3.1
in this form, the metric is g,, = a®n,, where n,, = diag(1l,—1,—1,—1) is the Minkowski
2
metric. The metric g, gives 0,,p0"¢ = (g—(f;) — (V¢)2. But for the notation above, 0,,p0"¢ =

N2
_ (%;f;) + (V¢)2 gives the opposite sign of the kinetic term.
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where [ d*z/=g is the invariant volume element, and the determinant of the

metric g, 18

g = det G = _a8<77)- (36)
The invariance of the action under changing field configurations is

0§ = 0
1 1
= — / d*r\/—g {Eg“”au&b&,qb + 59““ 00,00 + 5V(¢)}

= - [ fagevmiuony (o =300 - V=350 )56

Due to vanishing variations at the boundary, the surface terms vanish. Then the

equation of motion becomes
1
—0,(g""/—g0,¢) — V, =0, 3.7
\/_‘g K ) ¢ ( )

where Vj is the derivative of the potential, V', with respect to the field, ¢. Re-
placing g,, with a?(n)n,,, oue gets the equation of motion for the inflaton in the

conformal time coordinate [see appendix A.1]
8% £2 davod

2 2 _

Spatially homogeneity implies that the gradient of ¢ vanishes, the equation of
motion becomes
P¢ 2

da 0¢
a2 T ala)

— +a’Vy(p) = 0. (3.9)
The Hubble parameter in the conformal time and the proper time coordinates is
1 da a

H = bt B (3.10)

From the definition; H, measures the rate of change of the scale factor, therefore
one calls it the Hubble rate. The equation of motion in terms of the Hubble

parameter can be written as follow,

o ¢ _
o 2aH8—77 +a'Vy(¢) = 0. (3.11)

The energy-momentum tensor for the inflation is given by
T;w = au¢au¢ + ‘Cg;w
1
- 8,u¢au¢ - guv(égaﬁaa¢aﬁ¢ + V(¢)) (312)
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For any perfect fluid which has no viscosity and heat flow. The energy-momentum

tensor is
—p 0 0 0
0 0 0
T, = b . (3.13)
0 0 p O
0 00 p

Here p and p are the density and the pressure of the perfect fluid respectively.

Because T, = gmgTﬁy, one obtains

(3.14)

o o O X
= = 1< | 1
=0 Nl |
isf J= ) (e

Considering the inflaton field as a homogeneous perfect fluid (V¢ = 0), its energy-

momentum tensor in (3.12) can be written in components as

1,8 )
Too = [5(5,) o V@), (3.150)
Toi =0, (3.15b)
1, < B0 = Vo) (3.150)

Comparing the results with (3.14), the energy density and the pressure of the

inflaton are

p= 2a2(?7)(3_77) + V (o), (3.16a)
o1 00y -
P T (n>( 877) V(). (3.16b)

It can be seen that when the potential energy of the inflaton'is larger than its
kinetic energy, the negative pressure appears. This condition is very important in
order to have inflation (@ > 0).

The continuity equation derived from V,T"; = 0 is
p+3H(p+p) =0. (3.17)
The equation of state is

p=uwp, (3.18)
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where w is a number depending on fluid types. The Friedmann equations derived

by Einstein equation are

1 daya pa?
— k¥ = — 3.19
2 ta) T By 319
1, d%a 1 da.o a?
— (=) — —)" = —(p+3p), 3.20
a(n) (CW) a?(n) (dn) Gmy, ) (320)
where my = \/8—17? is the reduced Planck mass, and k is the curvature constant

describing the geometry of the universe in three-dimensional space.

Using (3.16), the Friedmann equations in the flat universe (k = 0) become

1 da,2 .- : 1,0¢. 2
a2(n) (d_ﬁ) = 322, [a (mV(e) + 5(@_77) }, (3.21)

1 ,d%a 1 da. 2 A\ 1 n B % 9
o @) |\ ag e -G e

Using the equation of state, the continuity equation and the (flat) Friedmann

equations, one finds
a oxX ,03(1+W)7 a o t3(1iw)7 (323)

this shows that the energy density of the universe determines its evolution?. For
the negative pressure in the inflation epoch (w < 0): a o t?, p > 1. Notice that,
the distance traveled by light is @ = ¢t, ¢ = 1. Therefore during inflation epoch,
the spacetime expands faster than the speed of light.

In the next section we will consider all conditions necessary for having in-

flation and the relevant parameters are included there.

3.2 Slow Roll Conditions

From (3.9), the field equation in the proper time coordinate, ¢, can be written as

é+3(g)¢+v¢(¢) =0. (3.24)

In the inflation period, the energy density of the universe is dominated by the
inflaton potential energy. It means V(¢) > (ﬁz. Moreover, the friction is large,

so the inflaton rolls slowly along the potential with a constant velocity (as in the

2For example, during the epoch of relativistic matter (w = é) a x p* and a t2. During

the epoch of non-relativistic matter (w = 0): a o p3 and a o t5.
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case of a ball falls in a fluid with high viscosity). Then the $-term in the equation

of motion can be neglected.
3H¢ + Vy(¢) ~ 0. (3.25)

The first Friedmann equation (in the proper time coordinate) in the slow roll limit,
G < vi(g).is

H? ~ 2, (3.26)
Using (3.25) and (3.26), one obtains
(0 iy [Ve(o))?
% T V(o) (3.27)
< V()
therefore the first consistency condition is:
miz Vs(9) :
=g < 529
‘mpl%‘ < V6. (3.29)
Differentiating (3.27) with respect to time, one has
Loy o Mo | 2V(@)Ves(@)d - [Vi(9)] :
520 = T | ZORABR o v 5
- My V() Vap(®) M [Vi(8)]”
R s it 330

The last term is neglected due to the first consistency condition in (3.28). Besides,

the result from: the slow roll approximation in (3.25) gives ¢ < Vy(¢). Then

|¢‘ ~ '";szqs(Q?/)X;ﬁ;b(@‘«‘%(@"
ol Voo (9)
TW’ < L
'mgl ‘;‘*}"E%) ‘ < 3. (3.31)

This is the second consistency condition.

These two slow roll consistency conditions require a very flat inflaton potential.
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This kind of potential also gives the large amount of inflation or the large amount
of e-folding, N, which is defined by?

N = / ! H(t)dt, (3.32)

where ¢; and t; are the time at the beginning and the end of the inflation period.

From (3.26), the number of e-folding is [see appendix A.2]

%1V
N = —2ﬂd¢ (3.33)
oy Yo V¢(¢)
The Friedmann equation in (3.21) can be written in terms of the Hubble parameter
as

H? — a0 [ oo V(@ Rzt (22)7]. (3.34)

3m12,l a?(n)

Differentiating the equation with respect to the conformal time, one finds

dH 1 dp\2
i T o ) 35
= WALY
Hy(o) = S a(n) dn (3.36)
Here, Hy = %_I;' Using (3.34) and (3.36), we have
; -
V(o) = 2mf {2m§l H2(6) = (Ho(0))’ (3.37)
2 12
S [ )
= 3m3H%(0) |1 - %e(qﬁ)}, (3.38)
where € is a slow roll parameter defined by*
) Hy ()1
e(d) = 2m§,[H<¢)] . (3.39)
The derivatives of the potential Vy(¢) and V,4(¢) are [see appendix A.3]
Vo(0) = —3V2muH?(9)\/e(9)[1+81(0)], (3.40)
Vo) = BH[e(6) = 01(0) — 38(0) — 300(0)],  (3a4)

SN(t) = fttf H(t")dt' is the e-folds between a particular time, ¢, and the end of inflation.

2 . SN\ 2
4. _ 2 |He($)|" _ _ H _ _1 é
6_2mpl[H¢(¢)} —_ﬁ—zm;(ﬁ)-
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where the other slow roll parameters are defined by

1 dn+1¢

on -,
Hng dintt

(3.42)

The Friedmann equation in (3.22) is rewritten in term of the slow roll parameter,

€, as [see appendix A.4]

i

(%) = #2(@)[1 - (). (3.43)

a

It can be seen that € < 1 gives @ > 0 which is a condition for inflation. Moreover,
the large amount of inflation is needed in order that quantum fluctuations are
enlarged to be the large scale structure today. It requires € < 1 as well as 9,, < 1.
From the equations (3.40) and (3.41), the limit of the slow roll parameters gives
Vo(¢) < 1 and Vyg(¢) <1 which satisfy the consistency conditions.

The equation of state in the inflation period can be expressed as [see ap-
pendix A.5]

p= —p(l o ge(aﬁ)). (3.44)

It shows that —p <p < —for =1 <w < —% during inflation.
Now we have already known about the slow roll conditions for inflaton field
dynamics. Next section, using the conditions, dynamics of inflaton field fluctua-

tions in the perturbed spacetime are studied.

3.3 Perturbed Einstein Equation

The two sections above concern the dynamics of the homogeneous inflaton field in
the homogeneous spacetime. But the universe cannot be perfectly homogeneous
in the past because of inhomogeneities today. In this section all fluctuations are

considered as perturbations in the Finstein equation.

3.3.1 Metric Fluctuations

The most generic perturbed FRW-metric is written as [11]

ds*> = a*((-1=2A)dr* + 2B,; drda’ + (1 —21)d;;da’ da’)
+a*(E,;; da' da’). (3.45)
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where B,; = 28 and E,;; = =2£_. One transforms the coordinates as follow
) ox g ozt oxi

n — n—(B-FE)
T — 2 +AE,; (3.46)

( ¥ is the spatial metric) to simplify the problem. The perturbed FRW-metric

becomes
ds* = a®(— (1+2A)dy” + (1 —24)6;;) da’ dz?). (3.47)

This is called the longitudinal gauge which keeps only the scalar perturbations.

From (3.47), the metric tensor is

Sl T — 2% 0
S a( 0 (1 = 24) 6, ) (348)

= G+ 0gum- (3.49)

Here the unperturbed metric is

S 0N
¢ = a2< AN ) (3.50)
(%]

while the perturbed metric is

—2A 0
ij

From ¢"* g,, = 0",, the lowest order of the unperturbed inverse metric is

1 -1 0
I — -

so the inverse metric of g, can be written in general,

g g2 -1+ X 0 (3.53)
0 1 +v)eu |- '

The 00-component is

g% g0 = —(=1+ X)(1 +24) =1,
X = 24 (3.54)

The ij-component is

giaga]’ = (1 + Y) 611(1 — 2¢) 6lj = 5%’,
Y = 2. (3.55)
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So, the inverse metric is

wo_ 1 —1+24 0
g ( . L+ e ) (3.56)

where

2 (A 0
g = ?(o oo ) (3.57)

The perturbations in the spacetime metric, dg,,, lead to the perturbations

in the Christoffel connections which will be studied in the next subsection.

3.3.2 Perturbed Christoffel Connections

The Christoffel connections, I'j. ; are defined in terms of the metric tensor as,

(0% 1 (0%
By~ 159 (98 + 9Bpry — 9 ) - (3.58)
where g,,,5 = %i—”g. The first order in the perturbations of the connections are
« 1 ap
5F,8’y 3 559 <9p77ﬁ + 98py _gﬂ%p)
1 o
+§ 9" (0GB +098py —098y5p ) - (3.59)

By the computation in appendix B.1, the non-zero components of the unperturbed
Christoffel connections are

/ ! /
a

o o i i o _ ¢
oo = = Loy = 553'7 Iy = E5ija (3.60)

where o’ is the derivative of a with respect to the conformal time, 7.

The perturbed part of the connections are

sI% =1 A ; (3.61)
Ty = 8 A; (3.62)
ST = A (3.63)
oY = —2%/(A+w)5ij — ' 0y ; (3.64)
oTY, = 6l (3.65)
0T, = =000 — Opd)’ + 0. (3.66)
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3.3.3 Perturbed Ricci Tensor

In order to compute the perturbed Einstein equation, the perturbed Ricci tensor
and Ricci scalar are needed.
The Ricci tensor is defined by

Ry, = 0.1, — 8,I'%, + I 9, — %19, . (3.67)

oo pv ov T po

The first order in the perturbations of the tensor is

0R,, = 0.017%, — 0,017, + oI5, T, + T5, 0Ly,
= SNNEY 2 o i (3.68)
The non-zero components of the unperturbed Ricei tensor are [see appendix B.2]
1 -3
A7) L QNS (“—) : (3.69)
a a
a// a/ )
whereas the components of the perturbed part are
/ /
SRy = OW0°A 30" 4 3%y +3La. (3.71)
a a
y A
SRy = 2000 + 220,A : (3.72)
a
/ / /" 7\ 2 "
SRy = (— il s e (1> A—2%y
a a a a a

N2
—2 (%) P — "+ 5@%)%‘ + 005 — 0:0;A. (3.73)

3.3.4 Perturbed Ricci Scalar

The Ricci scalar is defined by contracting the Ricci-tensor with the metric tensor

R = ¢"R.,,, (3.74)
Its first order perturbations are
dR = 6¢"* Rop + " Ry (3.75)
Its unperturbed part is [see appendix B.3]
6 a//
R=—— 3.76
5 (3.76)
while the perturbed part is
1 ) a/ a/ a// )
SR = —— (2@864 Fou" 162 A 185y +12% A - 4&10%). (3.77)
a a a a

Now the perturbed Einstein tensor can be derived.
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3.3.5 Perturbed Einstein Tensor

The Einstein tensor is

1
G/u/ - RMV - éguu R. (378)

The first order perturbations of the Einstein tensor can be written in terms of the

perturbed Ricci tensor and Ricci scalar as follow

1 1
5Gul/ = (SR/“/ N §5g/WR - ig/“/ OR. (379)
The non-zero unperturbed components of the tensor are [see appendix B.4]
a'\?
a

" I\ 2
G A (—2% i (%) ) 5 (3.81)

The perturbed components are
a ‘
a
/!
5Gu = 20,4 +2%0,4: (3.83)
a
/ / " I\ 2 "
3Gy = (2“— A a4 A= 2 (“—) At 4Ly
a a a a a

a

N\ 2
-2 (Z> Y+ 20" — 0,0 + 0k8kA> 0ij
+ 0,0;9 — 0,0;A. (3.84)
From G*, = ¢"*G4,, SO

5GH, | =, (" Gay)
= 50" Gy + ¢ G . (3.85)

The non-zero components of the Einstein tensor are

I\ 2 /
5G0 = iz (6 (ﬁ) A+ 6Ly — 2@8%) : (3.86)
a a a
0 1 , a
a a

' / " ND) /
3G = i{(zﬂA’+4a—A—2<i)A+aka’n4+4a_¢'
a a a a

a?

+ 29" — akakzp)éij — 0'0;A + aiajz/;}. (3.88)
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Raising one of the indices of the Einstein tensor makes the computation shorter
as we will see later.

We have already obtained the geometrical perturbations in form of the per-
turbed Einstein tensor. Now the perturbations of the energy momentum tensor

in needed in order to complete the Einstein equation.

3.3.6 Perturbed Energy-Momentum Tensor

In this subsection, the matter part in the Einstein equation is considered. Matter

is represented in the energy-momentum tensor whose background part is

TMV = H¢au¢ — Guv (% gaﬁ aong aﬁ¢ + V(¢)> ) (389)

while its perturbed part is

1
5TMV == 8M5¢ &,¢5 + 8;L¢ 81/5¢ v 5g;u/ (5 gaﬁ aa¢ aﬁQS + V(¢)>

1
G (ﬁdgaﬂ 00030 + 9° Db 05 + Vi 5¢>) . (3.90)
The background components are the same as in (3.15)

e
Too = §¢2+V(¢)a2;

Toi i =-0;
Tigi (% ¢ = V(o) cﬂ) 8ij » (3.91)
whereas the perturbed components are [see appendix B.5]
§Toe = 68" + 2AV(¢)a® + a® V460 (3.92)
0y = 0,000 ; (3.93)

0Ty = (000 = A” — 0> Vo b0~ 09 +20V(0)a®) 6. (3.94)

Again,
NS S | A AARD
= 0" T, + ¢g" 0T, (3.95)
which is written in components as
570, = L A¢’2—6q§’¢’—5¢a—va2 : (3.96)
0 a2 a¢ ) *
1 /
0T = ?(—@'&ﬁ(ﬁ) ,
i 1 /2 Y ov i
6T’ = ﬁ(—A¢ + 0¢ ¢ —5¢8—¢a2)5j. (3.97)

We are ready to find the Einstein equation in each component.
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3.3.7 Perturbed Einstein Equation

The background Einstein equations:
1

Gop = —Too
2
a 1 1 2 2
) = ~¢? + V(d)a > . (3.98)
( a ) 3m120l <2

The equation above is the first Friedmann equation while the second can be derived

from the ij-component of the Einstein equation below

Gy = %E'
my,
2
a’ a 3 1 ) P
o (Z{) - (V(¢)a — 4 ) (3.99)

In the proper time coordinate, the second Friedmann equation is

25 ) (V(¢) N ’2), (3.100)

3ma, a?

. " /N 2
where ¢ = % [% — (%) }
The perturbed Einstein equation is considered. Since there are no non-diagonal
component in the energy momentum tensor, the non-diagonal part of the Einstein

tensor is equal to zero °

00 — 0'0A = 0
— (3.101)

The components of the perturbed Einstein equation are [see appendix B.6]

/ ]' / ! !
IHZ) + SHY. — VX = o <¢¢2 _ e — 5¢5V¢a2) . (3.102)
2'A R 1 N .
s V2L 60, (3.109
MU o R G B £ v ] s (“07 8601 - 8V4a ), (3.104)
2mpl

®Consider Bardeen’s potentials [11]

, I
A+1[(B+E>a} ,
a 2

1 ' E
v o= - -VvE+L (B2,
6 a 2

P

which are gauge invariant. For longitudinal gauge, one finds

O = —A, U = —q
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where H = d'/a = aH and o’ /a = H* + H'.
Summing (3.102) and (3.104), replacing d¢ by using (3.103), then using the (ho-

mogeneous) field equation, one obtains

¢”+2<H—%)¢’—V2¢+2(H’—H%’)¢:0. (3.105)
From the perturbed Einstein equation, the perturbation in the matter field, d¢(n, Z),
leads to the perturbation in the spacetime metric, ¥ (n, ¥), and vise versa. After
the inflation era, the two quantum perturbations, d¢ and v, are enlarged to be
the classical perturbations called primordial perturbations. Their solutions in the
long wavelength limit and short wavelength limit will be considered in the next

section.

3.4 Primordial Perturbations and Their Power

Spectrum

During the period of inflation, spacetime expands faster than the speed of light. So
the wavelengths of perturbations are stretched outside the causal-contact region
called horizon.® Their magnitudes are assumed to be constant if there are no other
sources (entropy perturbations) when they leave outside the horizon. However, the
metric perturbation, ¢, is not constant even in the large scale [12] (A > HTfl or
k < aH where k is the comoving wave number), one introduces the comoving
curvature perturbation, R, which takes the form

H
qb/

This is for a single field inflation model, which has no entropy perturbation,” thus

R = ¢+ — 66 (3.106)

the curvature perturbation is constant (will be proved later) in the large scale.

6the furthest distance/area that light can travel: the furthest distance that the observer can
observe. The region inside the horizon contains all events that are visible while the outside
contains all events that cannot be observed by the observer. From the definition of the Hubble

. . . . -1
parameter, the comoving horizon size is £—.

"There are no entropy perturbation in single field models, therefore perturbations are purely

adiabatic (will be explained in Chapter V).
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Substituting (3.106) in (3.105), the result is®
!/
R' + 2R — V*R =0, (3.108)
z

Here, z = a¢//H = a¢/H.
In order to eliminate the friction term, the curvature perturbation is replaced by
a gauge invariant quantity, u = zR. The equation of motion for u(n, ¥) is

Z”

u’ — Vu— —u = 0. (3.109)
z

Inflation occurs when the size of the universe is about the Planck scale in which

quantum effect cannot be neglected. We quantize the perturbation field by ex-

panding it into a creation operator, d%, and an annihilation operator, ag.

- Bk N e
7)< [ L2 (wlige™ 4 ayale ™) (3110
()3
where the two operators satisfy the commutator [aj, dg/] = 5(3)(E — 7)
The equation of motion becomes
z//
uf + <k2 = —) up = 0. (3.111)
2z

Computing 2”/z in terms of the slow roll parameters (appendix C.1), the result is
"

)
~ = 2(aH)’ <1+€—|—§51+52+62+2651). (3.112)

Recall that the slow roll parameters are small because of the almost flat inflaton

potential, one needs to keep the first few orders in the slow roll parameters. Using

—1
aH = m, —00.< N)-< 0, (3113)
one finds
(* 2 3 0.
ZZ f m<1+6+§51+§2+62+2651)
2 35
= ?(1—%26—%...) 1+e—|—§ 1+
1
~ g (24 6e+30). (3.114)

8This equation in the Fourier space is

!
Ry + 2%7%; + k¥R = 0. (3.107)
k
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Consider the second order differential equation:
d’y dy
2 2, 2r 2
the solution is

y = 7 [A Hél)(gxr> + Bﬂg)(gaf)] . a=p -

r T

where A and B are integration constants. H él) (%a:’“) is the Hankel function of the

first kind while H 22) (%xr> = [H S) (%ﬂ)] ) is the Hankel function of the second
kind.

In order to find the solution of (3.111), one rewrites it in the form

1 1
LL/k/ 5 [kﬁ2 'r —2(V2— —):| U =

+ l(kn)2 XS —)] w, = 0. (3.116)

where 12 = % + 6€ + 307. It can be seen that the equation (3.116) is in the form
of (3.115) with p = =1/2, a=r =1, #* = —(v>*— 1/4) and q = v. Therefore the

solution for (3.116) is given in terms of the Hankel functions:

ue(n) = =k [AHD(=kn) + B.HP (—kn)], (3.117)

the negative sign shows that 7 lies in —o0 < n < 0. The range of the conformal

time corresponds to-the range of the comoving time as 0 < ¢t < oo.

After inflation, the spacetime expands slower than the horizon. Thus pertur-
bations will re-enter the horizon when their wavelengths become smaller than the
horizon size. The perturbations re-entered the horizon at the matter-dominated
period, since that time they have grown by the gravitational attraction and caused
the structure formations and anisotropies in the CMB radiation. These perturba-
tions are universally called primordial perturbations.

For convenience, we consider the perturbations in small scale and large scale

separately:

Small scale perturbations (k > aH)

Small scale perturbations® are the perturbations whose wavelengths are smaller

than the horizon size at the decoupling time. This means that after crossing

9this scale corresponds to both intermediate scale and small scale fluctuations in Chapter II.
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outside the horizon during inflation, they have re-entered the horizon before the
decoupling time, therefore the perturbations have been changed because of gravity.
Considering the equation of motion (3.111) in the small scale limit, k? >> 2" /z,
one finds

ul + Kuy =~ 0, (3.118)

whose solution is a plane wave:
ug(n) = Dye™ ™.
The constant, Dy, is obtained by using the commutation relation
[, B, ()] = 0O — ). (3.119)

Here ¢ = §¢ is the inflaton field perturbation and = (n,z) = g_i = a*¢’. The

relation above offers |ug(n)| = \/szk, where u = ap + 21 [see appendix C.2]. Thus

1
i (17) = ok

An asymptotic form of the Hankel function is HS”(z > 1) ~ \/ Zetere T,

Therefore

ek, (3.120)

2 . - T 1
lim H"(=kn) ~ e et (rs), (3.121)

—hn—o0 m(=kn)
Substituting it into (3.117) and comparing with (3.120), the integration constants
are By, = 0 and A, = %\/g ¢5+3)  The solution which satisfies the short wave-

length limit is

T (m(yal
’LLk(T]> = %ez(z( +3)) /_nngl)(_kn) (3122)

Large scale perturbations (k <aH)

Large scale perturbations are the perturbations whose wavelengths are larger than
the horizon size at the decoupling time, they have not re-entered the horizon yet
therefore their amplitudes are the same as in the inflation period. This can be
shown by considering the equation of motion (3.111) in the long wavelength limit,
k* << 2"/z, giving
uy + luk ~ 0,
z

whose solution is

u(n) ~ 2,
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or

Uk
Ryr = — ~ const.,
2k

Thus when primordial perturbations on the superhorizon scale re-enter the hori-
zon, the received information is purely the information from inflation.

From H,Sl)(x <1) = —iy (%)_V, the Hankel function in the long wavelength

limit, —kn — 0, is

HY(—kn — 0) = —irgr’/) (_Tk”>

['(v) is a gamma function'®. The equation of motion, (3.122), in this limit is

g Sl 1
2,

Here v = %, /14 ge + %61 = g(l—l—%e—l—%él) = %+2€+51. The squared amplitude
of the perturbation is

POER S [” )} (h (3.124)

9

Considering the vacuum state, the perturbation amplitude can be expressed

as [see appendix C.3]

« 5 = dgk iﬂfff/
O O 2PNy = e, (3125)

For # = 7', one defines the power spectrum, a quantity representing variance of

perturbations at a given comoving wavelength, k!, as

Ol = [ FPm. (3.126)

Thus the power spectrum of the curvature perturbation is[see appendix C.3]

PR L IR

1 H 2 F(V) 2 L —4e—281
— il 221/73 v 1 o 2+4e+261 ) 3127
me (o) 20 [g) () oo a

Because of the consistency conditions, we have small values for the slow roll pa-

rameters, € < 1 and 9,, < 1. One uses the Taylor expansion up to the first order

10We use the property: I'(z + 1) = 2T'(z). From I'() = /7 and I'(3) =
VT =2(3).

3T(3) therefore
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in the slow roll parameters to get

272 = et gy (2¢ +d1) In 2,
L)
¢
(1 —€)* T2~ (1 —2¢ — 4€® — 2¢0,),

k —4e—261 . k
LA _ (—4e=25)In (7) ~ 1 — (_)
(aH) e H 1 — (4e+26;) In ) (3.128)

~ 1+ (2—-2In2—7v)(2¢+ 1),

where v = 2 4+ 2¢+4 6, and a =2 —In2 — v = 0.729637"". The power spectrum
up to the first order is

Pr(k) = Qﬂ}bzle (%)2 [1 L9249 (a =11, (%)) (2 + 51)} . (3.129)

In addition, we can measure the amplitudes of the perturbations after the per-

turbations re-enter the horizon. In order to receive only the signal from inflation,
without other sources, it is necessary to measure the perturbations amplitudes
when they re-enter the horizon immediately. After that their amplitudes will
change due to gravitational instabilities. Therefore we calculate the primordial
power spectrum when the primordial perturbation wavelength is equal to the
horizon size: k = aH.

.3

k—aH 272

L (N et pa(de + 6] (3.130)

= — | — — 2e+ 2a(2¢ : )
2mZie \ 2m !

The spectral index is defined by the first derivative of the power spectrum with

respect to the scale k
dInPr

dink *
The scale invariant spectrum occurs when ng (k) = 1 which means that the power

(3.131)

spectrum does not depend on the scale, k.
Before computing the spectral index, one calculates d1nk up to the first order in

the slow roll parameters at the horizon crossing scale, and obtains
dink=(1—-¢)Hdt = (1—¢)dIna. (3.132)
The derivatives of the slow roll parameters with respect to the comoving time are

¢ = 2H(e> +€0y), 6, = H(edy — 624 83), 02 = H (2605 — 8102 + 03). (3.133)

Uy = limy—oo(l+ 3 + ...+ + —Inn) = 0.577216 is the Euler-Mascheroni constant.
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Using (3.133) and (3.132), one obtains

de 2 d51 2
dlnk ~ 2(6 +€(51), m =~ (651 —51 +(52),

dbs
dlnk

~ (26(52 - (5152 + (53)(3134)

The spectral index up to the second order in the slow roll parameter is [see ap-
pendix C.4]

nr(k) =1 —4e —20; + (8a — 4)e® + (10a — 4)ed; — 2067 + 2ad,.  (3.135)

The running of the spectral index is j?—ni. Its value up to the third order is
dng 2 2 3 2
7 k:(k) = —8¢” — 10€0; + 207 — 205 + (32a — 16)e” + (620 — 28)€e°;
n

+(6a — 4)ed] + (14a — 4)edy + 4ad? — 66,0, + 2ad3.  (3.136)

The last two equations and the power spectrum depend on the inflation models
because the slow roll parameters depend on the inflaton potential. The spectral
index and its running in several models will be computed in the following chapter.
After that their values will be compared with the WMAP data.



CHAPTER IV

SINGLE-FIELD INFLATION

This chapter concerns the power-law inflation driven by a single inflaton field
in both commutative and noncommutative spacetime. We will show problems of
the simplest model of the commutative inflation and see how they can be solved

by the existence of a minimum length scale.

4.1 Commutative Inflation

In this model, the universe is in the commutative spacetime therefore the only one
effect coming from the spacetime is gravity (curvature).

The power-law inflation has the potential as below

V(9= Voon =/ ) (4.1)

where p > 1 gives the condition of accelerated expansion. The scale factor in this

model has the form
a(t) ~ tP. (4.2)

One calculates the Hubble parameter and the slow roll parameters, and obtains

1 1 2 6
HIB, €= —, (51:——, 62:_2; 53:__3~ (43)
t D D D D

The spectral index and the running for this model are

2

nr(k) = 1-2, (4.4)
p

dTLR

TnE 0. (4.5)

Comparing the obtained values with the WMAP data

d
ng = 0.93+0.03, ﬁ = —0.03172018 (& = 0.05MpcY),

d?’L'R
dlnk

ng = 1207017, = —0.077700% (k= 0.002Mpc™ 1),
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the power-law inflation gives only the scale invariant spectral index with red-tilt,
nr < 1, and the zero running for all exponent, p. The results are not consistent
with the WMAP data.

4.2 Noncommutative Inflation

The idea of the noncommutative spacetime comes from the string theory. In string
theory, there is the existence of the minimum length scale called string length, [
(string is an one dimensional object). If we use it as a ruler, anything whose length
scale is smaller than the string scale cannot be measured correctly.

At high energies in the early universe and during the inflation period, quan-
tum effects are expected to be important. From the string theory, the primordial
perturbations whose wavelengths are closed to the string scale are affected by the
spacetime noncommutativity.

To probe these effects, the WMAP spectrum of CMB anisotropies is used.
We have already known that the anisotropies of the cosmic microwave background
radiation come from the primordial curvature perturbations generated during in-
flation period. When we observe the CMB anisotropies, we hope to get some infor-

mation on spacetime noncommutativity using noncommutative inflation models.

4.2.1 Noncommutative Modifications to the Perturbation

Equations of Motion

The universal property of the string theory is the stringy spacetime uncertainty

relation propesed by Brandenberger and Ho [13]:
At,Ax, > 12, (4.6)

where ¢, and =z, are physical time and space respectively. This relation implies
that the space and time at the very short distance near the string scale are non-
commutative.
Considering the lowest limit, one finds the relation in the comoving coordinate!
(t,%(t)) where At, = At and Az, = a(t)AZ.

22

[t,2] = i (4.7)

hecause we live in the expanding universe.



33

This commutation relation is time-dependent because the scale factor in the right
hand side is a function of time. When the time changes, both the scale factor and
the time interval change. The right hand side of the above equation is not constant.
From this reason, Brandenberger and Ho introduce the new time coordinate, 7 and

apply the stringy spacetime uncertainty relation in cosmology:
[7,2], = 2l2, (4.8)

where the *-commutator in the above equation is defined by [7‘, x} LS THT—T*T.

The *-product of any f(z,7) and g(z,7) functions can be defined as [13]

(f * 9) o, Ty = e RO gy, )] (4.9

The x-operator maps all multiplications in the noncommutative spacetime into
the *-product in the commutative spacetime. 7 and x are coordinates in the FRW

metric:
ds? = a7%(7)dr? — a*(7)d2z® = dt* — a?(t)dz?, (4.10)

so d1 = adt.

There is the difficulty for considering the noncommutative effect in the cos-
mological background because noncommutativity will break the homogeneity and
isotropy of the universe. So, one considers the noncommutative effect in the mo-
mentum space. First, one calculates the modified action of a free scalar field, ¢, in
1+1 dimensional noncommutative spacetime, then extends it into 341 spacetime.

The modified action in 1+1 noncommutative spacetime is (One places (")

over all parameters in the noncommutative spacetime.)

S = /dex% <8T<;~ST *.a> * 8ng~5 — (&ngy * a2 % (‘ng) (4.11)
The Fourier transform of ¢(7, z) is &(7, k) = ¢, where
s % 1 ikx
o=V [ \/—(qbe Lote )] (4.12a)

5/7§éyw+@wﬁ} (4.12b)

with the total spatial coordinate volume, V. The condition for the real value of
¢ is gg,t = ¢_j,. One substitutes (4.12) into (4.11), then uses the %-product, the

action for the time-time component is [see appendix C.5]

{aQ(T + El2) + a*(1 — kli)} |

_ 1 - N
Stime = V drdk -0 ¢_y, O- ¢y,

k| <ko 2 2



34

From the effect of the spacetime noncommutativity, the scale factor is a function
of time and the scale k (?). The cut-off momentum ko comes from the stringy
uncertainty relation in the lowest limit A7Az = [2. The lower bound of length
corresponds to the upper bound of the momentum ko = a.ss/ls. Here, acss is the
effective scale factor with a.s¢(t) — a(t) when [y — 0.

In the same way, the action for the space-space component is

a (1 + k) +a (1 — kl?)}
5 .

1 o~ -
Sepace = —V drdk=k26_, ¢k[
Ik|<ko 2

The full action is

1 - o

S = v / dekﬁ( :iﬂT(p_k@Tqbk—kQﬁ,;gb_kgbk), (4.13)
|k <ko

where

a4 1 E 3 2 A R

GE =2 (2 = B0) + (=27 +E0)). (4.14)

The action above is rewritten in a conformal time coordinate by defining [13]

di = az?; dr, (4.15)
where
=l 2
k

Here, 7 is called the modified conformal time coordinate. Defining yi, = (5, 8, )%,

the full action in this coordinate is
- R 1 5  /~ = -
5 = v [ didk 3R (36 - ) (417
|k|<ko 2

Next, one generalizes the action to d + 1 spacetime,

B P N
Sm Vo i 'l 5o ) (8GR i)
k<Ko

with 2071 (7, k) = 271 (7)y2(7). In 3 + 1 spacetime, where we live in, the action is

§ = v di @k g (5 - ). (4.18)
|k|<ko

From the action principle, the equation of motion for ¢ is

/
"t %gb’k + K2y, = 0. (4.19)
k

2In commutative models, a(t) depends only on time.
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Here, ¢ is any free scalar field which is affected by the spacetime noncommutativity
in the high energies era. The inflaton field in this model is also affected by the
uncertainty because the inflation era occurs in the early universe. According to
the previous chapter, the equation above is the same as the equation of motion
of the curvature perturbation, containing the inflaton fluctuation and the metric

fluctuation. It can be seen that in the case of inflation, ¢ = R [14].

4.2.2 Noncommutative Parameter and the Noncommuta-

tive Power Spectrum

Again, one eliminates the friction term by defining

(1) = 2R (1) (4.20)

The equation of motion for w is

&/ 2 z;c/ ¥
G+ ket = 'dp = 0. (4.21)

The noncommutative models have the same form of the equation of motion as
commutative models except that z, depends on the modified conformal time and
scale k& (®). The difference leads to the different value of the power spectrum.
One defines the noncommutative parameter, u, as [16]
u= (%)2 (4.22)
which measures the ratio of the Hubble radius at the horizon exit and the string
length, I, = M. From y; = (5,’:5,;)1/4, the relation between the noncommutative

parameter and yy, is
Uk ~ L4, (4.23)

this relation will be used to find the power spectrum and show its suppression on
the large scale.
From (4.16) and H = da/dr, one obtains

ﬁ+ 1/2
i = (5)

= a(T+ kl?) ca(r — kl?)

B da, o 1d*a, o, da, o 1d*a, ..,
= [a+5(k;ls)+§ﬁ(kls) + ... G—E(kls)JrgW(kls) — ..
~ a*(1—p). (4.24)

3In commutative models, z(n) depends only on the conformal time.
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dn/dr is written in terms of p as
dr = a*(1 — p)d (4.25)

whereas dr = a®dn in the commutative case. The relation between the conformal

time and the modified conformal time is

dn = (1 — p)di. (4.26)

Then as in Chapter III, 2}//z, can be written in terms of the slow roll parameters

and the noncommutative parameter as

1 d’z 1 d*z
‘d_Nk = _d_2k<1_ﬁ52)
2k an 2k an
1d?z
A AN
zdnz( 1)
3
= 2(aH)? (1+e—1—§51—2u), (4.27)

where 2”/z = 2(aH)? (1 + € + 24,) in the commutative case.
One determines the horizon crossing scale from the condition k% = z//z; [13],

which is the pivot scale in the equation of motion (4.21).

7

K= R o(qH)? <1—|—6+§51—2u) (4.28)
2k 2

k ~ 2l (4.29)

From (4.26) and 1 = —[aH (1 — €)] !
—
aH =~ 7(1 + e+ p). (4.30)

Considering the time when. the-fluctuation mode % crosses outside the Hubble
radius, one finds 1 = (IJ{—:H) 7 > 7. This means that the spacetime uncertainty
delays the exit time of fluctuations. Comparing with the commutative case, the
perturbation amplitudes at the horizon crossing are changed due to the delay of
the exit time.

The solution u(n) of (4.21) looks very much like the equation (3.123) in
Chapter III because of the same form of the equation of motion. The power

spectrum determined at the new horizon crossing scale, k = v/2aH, is

~ k3 Uk(ﬁ) ?
PR(k) kﬂ%laH 27T2 2k
1 T 2/ p=\1-2w
— lim _22,/—3[ (g)} (—k7) .
k—v2aH Zk F<§) 2k
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Substituting the equations (4.23), (4.30), 27 = z%yf and v = 3 4 2¢ + §; in the
above equation, then the power spectrum yields
) 1 2 r 21 p ]2
Pr(k) = lim —; (—> 92v=3 {_@} {—}
k—v2aH 2 € \ 27 ['(3) aH
1
(T e+ pPr s (1 + )2

1
~ PR(IC)(1+M)4+46+251'

(4.31)

It can be seen that the power spectrum of the primordial perturbations is sup-

pressed by the noncommutative effect by the factor m approximately. How-
ever, the suppression occurs only at the large scale when p is large enough to be
important (will be shown later).

Using the Taylor expansion in appendix C.3, one calculates the power spec-

trum up to the first order in the slow roll parameters
- I} ey k
= i — 1—2e+42 —In(— 2
Pr(k) kﬂi}gaH { 2m12,le (27r> [ \" <a t (aH)) (2e + 61)}
2
7 H k
= o= ) a6 (a—n(—)) +3
e (27r) [ F 66(04 n{og )—i— €
+86, (a—1 (Ji> +20
1| & I =37 1.

R -
2m§le

Q

Pr(k) (g) [4 + (160, + 8)e + (8a, +2)d4], (4.32)

where the commutative contribution (the first term of the right hand side) is now
evaluated at k = v/2aH which is the same as changing a to be a, = a — 1“72 =
0.3831. All additional terms depend on the noncommutative parameter, so the
power spectrum reduces to the commutative power spectrum when p — 0 (no
minimum length scale).

Using the definition of u;, onefinds its derivatives-at k= n/2aH [see appendix C.4

and (3.132)]

i = —4H pe, —Adpe. (4.33)

dnk

The spectral index up to the second order in the slow roll parameters is

fir(k) = nr(k)+ 16pe
+ 1 [(32a, + 16)€* — (8w, + 10)edy + (8cv + 2)(07 — 62)] . (4.34)
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The running of the spectral index up to the third order is

Tk~ dmk 32ue(e — dy) (4.35)

— p [—(1360a, + T4)€*5; + (24cv, + 14)ed] — (8cv. — 6)eds

The power spectrum, the spectral index and the running are reduced to be those

obtained in the commutative case when [, — 0.

4.2.3 Noncommutative Power-Law Inflation

The power-law inflation gives
a(t) = a;t?, (4.36)

where a; is the value of the scale factor at the beginning of inflation. The slow roll
parameters in this model are
2 6

N (4.37)

1 1
s =y 51:_‘7 52:_2a
p p p p

One rewrites u in terms of the exponent p by integrating the equation (4.33)

where k. is the integration constant which is the lowest limit of k. The small

hSAT

scale limit where k > k. leads to p — 0 giving the same power spectrum as the
commutative inflation.

In order to determine the inflation parameter p and the scale k., we use the data
at k = 0.05Mpc~!. Later, we make a prediction-about the spectral index and its
running at k= 0.002Mpc.

By comparison to the recent data at k& = 0.05Mpc~!, the best-fit values of the

model parameters are

p = 12171, k. = 9.82 x 10 Mpc ™. (4.39)

1

Next, the spectral index and its running at k£ = 0.002Mpc~ are predicted to be

dng
ng = 1.11 — = —0. 4.4
nR T 0.089 (4.40)

whereas the commutative power-law inflation with the same exponent and [, = 0
gives

dTLR

nr = 0.836, ok

= 0. (4.41)
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It can be seen that the predicted values from the noncommutative inflation are
quite closed to those of the WMAP, especially the spectral index. In addition,
the noncommutative power-law inflation can give the blue-tilted spectrum for the
large scale, and allows for the running of the spectral index.

For determining the string scale, I, the significant problem is that p is im-
plicitly time-dependent. It is necessary to know the exact time when fluctuations
of mode k cross outside the horizon. Some papers, such as [17], use the ending
time of inflation to be the exit time. This method provides the correct value of
ls only for the perturbation mode that crosses outside the horizon at the end of
inflation. Another choice is using the value of the power spectrum. This approach
gives the same order of magnitude I, ~ 10-2* em. for the string scale from what-
ever scale of k we use.

For elucidating the results above, some new parameters are needed.

From (4.36), and d7 = adt. One finds

1

a(r) = a’ ™ [(p + 177 (4.42)

a(T) is dimensionless, one defines an inflation scale, [, as

P L p _1
T {ai”“(p—l—l)wl}
1
= N (4.43)
a;"(p+1)

The scale factor and the Hubble parameter in terms of the inflation scale are

Yol (%)* a(t)zlft—)r, (4.44)

p+1

H(r) = (L) (IP7)eri, (4.45)

p+1

Using the cut-off momentum & = ko = @esr/ls, the time 7 can be written in terms

()

with k, = [P71/IP i.e. the ratio of the string scale and the inflation scale. When

k> k™) one finds

of k as

(SIS

1
T = k2 ] (4.46)

7o~ U(kly)P (4.47)

4The condition is in the UV region. In the UV region, the string energy scale is much larger
than the cosmological energy scale (here is the inflation scale) when perturbations are generated.

This region gives [ > [,.
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Table 4.1: Comparison of important quantities between commutative and non-

commutative inflation models.

Commutative Inflation

Noncommutative Inflation

Action

1
S = V/dn d*k 522(77)

(R’_ A kQR_kRk>

- 1
S = V/ dij d*k = 22(7)
[k|<ko 2

(7%’_k7~2;§ —~ k%,,ﬂéQ

Equation of

il + (k= E) iy =0

motion
Power
2 2
spectrum 4/ 1 E D — __H E
Pr() 2miye <2w> uliad 2mye \ 27
[1 —2e+ 2a(2e +6y)] [4+ (160 + 8)e + (8cv. + 2)d1]
Horizon k=aH k= +v2aH
crossing scale
Spectral nr(k) =1—4e¢— 26, + Ba— | nr(k) = ngr(k) + 16pe +
index 4)e* + (10 — 4)edy — 2a0? + | p[(32a+16)€e? — (8av, +10)ed; +

20&(52

=
(Saus + 2)(62 — 62))]

Running of

spectral index

I () = —8¢?—10€d; +207 —
205 +(32ac—16)€® + (6200 =
28)€%0, +4adt + (6 — 4)ed? —
6ad10s + (14 — 4)edy + 203

et = e 7 2ue(e—61) -
pl—=(1360v, + T4)€*d; + (24a, +
14)e6? = (8a, — 6)edy + (Sau, +

2)(263 — 36102 + 03)]
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From (4.45) and (4.47), one rewrites the scale k as

s - ]

Comparing the equation (4.38) with (4.22) at the horizon crossing, k = v/2aH,

(4.48)

then we have the relation between k. and kg in the limit of large p for which
pEt1~pll§]

~ [p(2p—-1) S
S U201 LY o

Substituting Pr (k) from Chapter 1T (with o — «) into (4.32) and using

1

the value of the power spectrum at k& = 0.05Mpc™", we can solve for the inflation

energy scale® related to the Planck energy scale:
H = 1.54 x107*m,. (4.50)

Remembering that m,; = \/8%76‘ is the reduced Planck mass®. The noncom-

mutative parameter at the horizon exit is

_ (EEN L (HY
P ae )T\ )

Computing p at the same scale by using (4.38), the string mass and the string

length are found to be

M, = 3.68 x 10"*m,,,
l, = 2.19x10"*cm. (4.51)

Similarly, the string scale obtained from the power spectrum at the cluster scale
is [, = 1.87 x 107 cm, which is the same order-as that obtained from the galactic
scale.

Furthermore, the inflation scale can be computed by (4.49)-and the definition
of kg:

ks = 1.94 x 107°Mpc™! = 6.64 x 10! cm,
[ = 1.49 x 10" *cm. (4.52)

Note that 1 Mpc = 3.086 x 10** cm.

°The Hubble time, H~! = a/a, represents the timescale of the evolution of a(t), and the
energy scale is the inverse timescale. Therefore, H can be considered as the inflation energy

scale [22].
Smp = 2.436 x 1018GeV = 1.235 x 1032cm ™.
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kiMpcy

Figure 4.1: ng as a function of & with p = 12.171 and k. = 9.82 x 10~ °Mpc1.

dng
dlnk

kiMpc)
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Figure 4.2: jﬁfh as a function of k with p = 12.171 and k, = 9.82 x 10~ *Mpc~!.
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We summarize that the spacetime noncommutativity suppresses the power
spectrum on the large scale. The existence of the string length causes the delay
of time when perturbations cross outside the horizon, so their amplitudes are
changed, as well as the power spectrum, spectral index and the running as shown
in Table 4.1. Figure 4.1 shows that the spacetime uncertainty gives the blue-tilted
spectrum for the cluster scale and the red one for the galactic scale with the pivot
scale k = 0.0093 Mpc~!. Furthermore, noncommutative inflation allows for the
negative running of the spectral index as shown in Figure 4.2. All results are
consistent with the recent WMAP data.



CHAPTER V

MULTI-FIELD INFLATION

The chapter concerns inflation model driven by multiple scalar fields in the
commutative spacetime only. From Chapter Ill, the single-field inflation gives the
constant amplitude of the comoving curvature perturbation, R, when it leaves the
horizon. The perturbation is purely adiabatic. However, there remain problems

as follow:

e No origin of the cold dark matter (CDM)!.
e Slow roll approximations give the unnatural flat potential.

e Single-field models cannot give some kind of perturbations. According to
the observations ‘Temperature-Polarization angular power spectrum’ [5], the

single-field models can generate only the adiabatic perturbations.

e Single-field models usually give a zero running of the spectral index which

i1s not consistent with observations.

Some problem, such as the last one, can be solved by considering inflation on the
noncommutative spacetime as we have already discussed in the previous chapter.
However, adding other fields is another way to solve the rest.

Multi-field inflation models can be separated into two classes: 1. Multiple
inflation, where there are more than one inflaton fields driving inflation giving

rise to-multiple inflationary stages. 2. N-field inflation® where only one of the N

'Dark matter is the extra material whose interaction is only gravity and emits no detectable
radiation. The total mass of the visible matter is less than 10 percent of the mass of the dark
matter. Cold dark matter, one of the dark matter candidates, is the non-relativistic dark matter

which clumps into small regions.
2The second case corresponds to the particle physics point of view telling us that there are

many kinds of particles in the universe. However, this model is quite similar to the single field
inflation except that there are some auxiliary fields ending inflation. Thus, this chapter concerns

only the first case and its different results.
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scalar fields acts as the inflaton. The other N — 1 scalar fields have less energy
densities than that of the inflaton in order to have the inflation-dominated period.

The existence of more than one fields and their own fluctuations causes the
relative fluctuations among themselves. This produces another kind of primordial

perturbations.

5.1 Classification of Primordial Perturbations

Primordial perturbations can be classified into two kinds:

e Curvature/adiabatic perturbations (R)
Adiabatic perturbation is the perturbation in the total energy density of the

universe. The spatial distribution of each species is the same:

op.__ 0ps _ Opy (5.1)

P Pa Py

Here p is the total energy density of the universe, p, and p, are energy den-
sities of any species x and g in the universe. In the field space, the adiabatic
perturbation perturbs the trajectory back and forth along the background

trajectory.

From the Einstein equation, this perturbation also perturbs the curvature,
as well as the expansion rate of the universe. Thus it is called the curvature
perturbation.

The curvature perturbation for N scalar fields is defined by [26]

R

H L.
S b 5.2
w+p+p<; ;) (5.2)

In the case of N scalar fields which behave as the perfect fluid,
=21 %24 Viand p = 50K, 6:1/2 - V.

e Isocurvature/entropy perturbations (S)
Entropy perturbation is the perturbation by relative fluctuations between
species in the universe which leave the total density unperturbed:
o _y (5.3)
p
The entropy perturbation perturbs the path orthogonal to the background

trajectory. It perturbs neither the total energy density, nor the expansion
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rate of the universe, thus the curvature is not perturbed by the isocurvature
perturbation.

The isocurvature perturbation of the two species z and y is [24]

_ Ops  Opy
petps Py tDy

(5.4)

Say

where p; = w;p;. For having the adiabatic mode, one has S;, = 0.

In the case of the single field inflation, there is one degree of freedom giving
the unique background trajectory. The possible fluctuation is the fluctuation
along the trajectory, so only the curvature perturbation is obtained by the

model.

5.2 Evolution of Multiple Scalar Fields

5.2.1 Background Equations

The Lagrangian density corresponding to this model is

N
1 14
L=-3 gg bintiy =V (01, dw). (5.5)
The two Friedmann equations for /N scalar fields are
” i == . -
H? = Vidy,--- = 5.6
3771?,; (¢17 7¢N)+§2¢ ] ; ( )
1 : N,
- = V e — i |- 5.7
3m12,l (¢17 7¢N) ZZ:(;¢ ] ( )
The background homogeneous equations read
. e
i +3Hp 4+ +— =0, 5.8
% BHA Y5, (5.8)
The slow roll parameters can be defined analogously to the single field case as.
a Hy\?

N
€ = Zei, (5.10)

Nij = My V‘ = —01. (5.11)
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5.2.2 Perturbation Equations

The spacetime linearly perturbed about the FRW spacetime is considered in the

longitudinal gauge as
ds® = —(1 4 2¢)dt* + a*(1 — 2¢)d;;dx"da’ . (5.12)

The perturbation equations are derived from the perturbed Einstein equations:
3} . L2 .
06, +BHO6, + —00; + > Vi, 005 = =2Vt + 41, (5.13)
J

Moreover, the perturbed Einstein equations give the energy density and pressure

constraints as [26]

. k2 1

/ W = .14

BH (1 + Hy) + —v NG (5.14)
: 1

b HY = 5 bp. (5.15)

Here dp is the total energy density perturbation and dp is the total pressure per-
turbation [26].

op = N 1608 = 6) + Vo0 (5.16)

opy = —Z@&bu- (5.17)

The simplest model of the multi-field inflation is the double inflation corresponding

to two inflationary stages during the inflation epoch.

5.3 Double Inflation Formalism

There are two inflatons ¢ and y, whose equations of motion for the homogeneous

parts are

b+ 3Hp+V, =0, (5.18a)
X+ 3Hy+V, =0. (5.18b)

The scalar fields also have fluctuations, d¢ and dy, so the equations of motion for

their perturbation parts are
2

8¢+ 3HSd + (% + v¢¢) 0p = —2Vyth + 4gnh — Vi, Oy, (5.19a)

2

k .
0% + 3HOY + (@ + VXX> Ox = —2Vh + 4xt) — Vi 06 (5.19b)
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oy Perturhation

A -

Background trajectory

i

Figure 5.1: The perturbation is decomposed into an adiabatic (do) and entropy

(0s) components [26].

The coupling between the two fields leads to correlations between adiabatic and
entropy perturbations. In order to discuss this, one introduces the perturbation
fields: the adiabatic field, o, and the entropy field, s, for convenience. The de-
composition into do and ds of the two fields are characterized by the rotation in

the field space as shown in Figure 5.1.
do = (cosf)op + (sinf)dx, ds = — (sinb)op + (cos)dx, (5.20)

where 6 is the angle between the trajectory and the ¢-axis in the field space with

cosf = L ; sinf = L . (5.21)
‘/¢2+X2 ‘/¢2_’_>‘<2
The equations of motion for adiabatic and entropy field perturbations are
. . k? 9 w d .
06 +3H06 + | — + Voo — 07| 00 = =2Vo0p +40¢ + 2%(855)
a
2V, .
— V 0os, (5.22)
o

k> .
65+ 3HHS + <¥ + Vis + 392) §s = 4dmi—-—1, (5.23)
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where

Voo = (cos® 0)Vyy + (sin 20)Vy, + (sin? 0)V,,, (5.24a)
Vs = (sin? 0)Vyy — (sin 20)Vy, + (cos® )V, (5.24b)
The sources of the curvature can be obtained by using the equations (5.15) and

(5.17). The solution of the gravitational potential is

5 / acdodt . (5.25)

pl

V=3

As we discuss in the section 5.1, only the adiabatic field perturbation perturbs the
curvature.
Because the adiabatic field perturbation is not gauge invariant, the gauge

invariant variable called the Sasaki-Mukhanov [23] is introduced:

Qi= do: + % (5.26)

Now the gauge invariant perturbations are
Qs = (c0s0)Qy + (5in)Q,, Qs = (cos0)Q, — (sinh)Q, = ds. (5.27)

It can be seen that the relative entropy perturbation is automatically gauge in-

variant. The equation for the adiabatic field perturbation is rewritten as

.. . 2 . 3'2
Qa+3HQU+(k—2+Vw—92— 1 i(“’))ng
a

mgla?’ dt\ H
d v, I
2 (00s) - ( ; H)eas (5.28)

The right hand side of the equation shows that the relative entropy perturbation
plays a role as an additional source of the adiabatic perturbation in the curved
trajectory in_the field space. Thus the two perturbations decouple when 6 =03
However, there are no sources of the entropy perturbation on the large scale.
According to the slow roll conditions, the first terms of theequations (5.23)
and (5.28) can be neglected. Besides, long wavelength limit gives k*/a*> < 1. The

differential equations become

. ]- N2 .
05 + 3—H(VSS +36%)0s = 0, (5.29)
- 1 o 1 d/a’s?
QU+3_H<VUG'_0 _m§1a3dt< >> Qa
1 |.d vV, H
= = [ —(805) - (0_ >6’§5] . (5.30)

3 According to [26], § = f% It can be seen that & # 0 when 6 = 0.



20

The general solutions are
55 = BRg(t), Qo = AR)F()+ P(). (5.31)

Here f(t) is the homogeneous solution while P(t) is the particular solution. In
the case of the single field inflation, the long wavelength solutions are evaluated at
the horizon crossing because the curvature perturbation is frozen when it crosses
outside the horizon. Thus considering quantum fluctuations at k& = aHy, the

scale-dependent amplitudes are determined by
1,
€;
Vv 2k?
where Hj is the Hubble parameter at the horizon exit and e;(k) is the classical

Gaussian random variable which satisfies the relation (e;(k)) = 0 and (e;(k)ej(k')) =
60 (k — k') [26]. Therefore at the horizon exit

Q; ~

(), (5.32)

Hy, Hy,
7 75 eo(k), B= — es(k), (5.33a)
T = 19V " 0. (5.33b)

However, in the double field model, ), is not frozen in any scale because it couples
with ds. Thus the values in (5.33) are set to be the initial conditions for the

superhorizon scale. The solution for the entropy field perturbation is

g(t) = exp Vtt —;; dt,} : (5.34)

where t}, is the horizon exit time and p2 = V, +352 is the effective squared mass of

the entropy field. The ratio of the effective squared mass and the squared Hubble
parameter can be written in terms of the slow Toll parameters in the lowest order

as

Mg . _<€x77¢¢ + 6¢77xx) + 2<i\/@)(i\/§)n¢x

_3H2 €t

(5.35)

The time-dependent part of 2 /3H? is the second order in the slow roll parameters
which can be neglected, so the mass of Js is constant.

Using the definition of the e-folding, ¢(t) becomes

tf M2 t ILLQ
) = — s fgay —s Hat
g(t) exp /tk Ve +/tf agps 1t

2

~ exp {— Ps (N (t) —N(t))} , (5.36)

3H?
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where N(t) = Ny = fttkf H dt is the number of e-folding between the horizon exit
time and the end of inflation?.
The perturbations are correlated until the end of inflation. The solution at the

end of inflation is

g(ty) =

exp K—(exw + €47) +€f(iﬂ)(iﬁ)n¢x>k Nk]  (537)

The right hand side terms are evaluated at the horizon exit®.

The homogeneous solution for the adiabatic perturbation is

i 2
f(t) = exp U —g%dt,]

2

- {—%(Nk - N(t))] , (5.38)
where g, = (VM — 0% — k’a (a6 /H )’) is the effective squared mass of the
adiabatic field. The ué /3H? term to the lowest order in the slow roll parameters
1s
1y (el €oiss) = 2(4/E) (Fy/E)x
3H? €

+ 2 . (5.39)

The homogeneous adiabatic perturbation at the end of inflation is

~ SXThx T €shpp + 2(:&\/@)(:':\/@)77@(

€t

f(ty) = exp [( + 2et)k Nk] . (5.40)

The source terms of the adiabatic perturbation can be written in terms of the

entropy perturbation (in the lowest order of the slow roll parameters) as

2 |, . . V., HY .

I [(ﬁés) — (? + ﬁ) Bés]

= 2065 '

=2 B <%) B(k)g(t), (5.41)

b(t)

where the quantity /H can be expressed as [24]

5~ e = eoon + (s = 1) (EVE VR, (542

4According to the recent observations, Ny ~ 65.

2
5 3*;;2 is constant up to the lowest order in the slow roll parameters therefore it can be evaluated

at the horizon exit.
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which takes the value at the horizon exit scale. The particular solution is

t M2Q t t’ H/é
P(t) = exp {/ - dt,} / exp / —<dt", | b(t)dt’
(t) T A L3I (t')

/
k

— 9B (%) £(0) / " exp {“33;[5?9 (N'(¢) —Ng)l AN’

Ng

Q‘ eCNk—1

P(t;) = 2B (ﬁ) g(ts) o (5.43)
where
2 2

c ="t 3;15 9 (5.44)
_ (e — et (ex = €¢>)Z¢>¢> — 4 (F£/65) (F/E)Nx 2. (5.45)

)

is related to the difference in the effective squared mass of the two fields, and

g(ty) = e Ne f(t;). The power spectrum of Q, is

]CS
PQU - |QU l2

5
::(532Wﬂ+@ﬂ. (546

Here, P = BP. In the same way, the other power spectra are

H 2
— Qi)m% (5.47)

27

H.\?
—— e 4
Pq,ss (27T) g (5.48)

As we know the adiabatic perturbation perturbs the curvature therefore the cur-
vature perturbation is characterized by this mode. From the definition of R in
(5.2). The curvature perturbation for the two inflatons are
900 + X0y
7
Using (5.20), (5.21) and (5.28), the curvature perturbation is related to the adia-

batic perturbation as

R = ¢+H (5.49)

H
R = —Q,. (5.50)

Here 62 = ¢2 + x% = 2m2,H?¢;. Thus the power spectrum of R is

P — <H(tf)>27>Qg

- (Hﬂ)g%Wﬂ+mﬂ, (5.51)
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where @2 = 2m2, H?¢;.

The total energy density perturbation in (5.16) can be separated in those of
the two fields, 0p = dps+0p,. From the definition of the isocurvature perturbation
in (5.4), one finds

So= by — 3Hbys, (5.52)

where d,4 = 0x/Xx — ¢/ . Tts first derivative can be neglected because of the slow
roll approximations. From the equation (5.27), the relative entropy field can be

written in terms of the field perturbations as

_Gx— X0 ox

R— N —— X
(b2 2L XQ ¢2 <= XZ

The first derivative of d, 4 can be neglected because of the slow roll approximations,

Ss (5.53)

thus the isocurvature perturbation can be written in terms of the entropy field

perturbation as

[+ st .
o, e e 5s. (5.54)

The power spectrum for the isocurvature perturbation is

Sx¢> y

<_ 3\/6 ) 2 P&s
V2mZ (£ /) (£/E)

= 9( = )— RO (5.55)

2 \ 2mmy,

Ps =

The cross-spectrum between R and § is found to be

Pe = H{(ty) (_ 3V >2
U\ 2 Ve )

N O (T S (7))
SIPETO (%mpl) NG (5:56)

PQG ds

The spectral index is defined by

dlnP  (1+¢) dP
dlnk P dlna

n—1= (5.57)

k=aH
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By the definition of the number of e-folds and g(t;) = e~“™« f(t;), the spectral

indices for all power spectra are

2(€¢>77¢¢ + Exnxx) + 4<i\/@)(i\/§)n¢x

€t

3172(1) (ﬁ) N oy, (5.58)

ng—1 = —6¢ +

P+ P2t \ H C
2(€pmx + ExMos) — 4(F/€5) (E/E)Nox

ng—1 = —2¢+ : (5.59)
t
2(epNyy + Exlse) — 4(E£/€5) (£ /Ex)N C'eCNe
e -1 = _9¢, 4 2Cothot Sl : VE) (EV/EJMex e (s60)
) -

The running of spectral indices can be expressed as
L\ 2
dng o (ﬁ) (e=CNr — 2¢—2CNk)
dInk H i \2 [(1_e-ON \2
14 (F) (=)
5 4 o—2CN, (1%01%)2
—64 7 ) L (5.61)
<1 () () )
iz} c

dng

T =0 (5.62)
dn¢ C2%eENk
dink  eCNe—1° (5.63)

It can be seen that the running of the isocurvature perturbation is zero up to
the second order in the slow roll parameters. In contrast, if the adiabatic and
the entropy fields have no equal effective squared mass, the running of the cross-
spectrum is non-zero. Moreover, in the curved trajectory and C' # 0, it is possible

to have the non-zero running of the curvature perturbation.

5.4 . Double Inflation with Supersymmetric Po-

tential

Adding another field into the inflaton potential is a possible way to solve problems
of the single field model. However, some explanation for the existence of the
second field is needed. One possible theory is Supersymmetry. Supersymmetry
is the symmetry between boson and fermion. Supersymmetry may play very
important roles in cosmology such as inflation and the origin of the cold dark

matter. Furthermore, the supersymmetric potential or superpotential is suitable
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for being the inflaton potential because its shape is consistent with the slow roll
approximation and inflation can end. In addition, all particles have their own
superpartner which has the same mass but different spin in the supersymmetric
theory. Inflatons are scalar fields which are superpartners of the spin—% fermions.
So inflatons are fundamental particles in this theory.

One considers the superpotential including two superfields, which are the

fields in supersymmetry, S and ¢ [28§]
V = ko — 11%|” + Kg|SI” (Il* + |]") + D-terms, (5.64)

where ¢ is the complex conjugate of . ky and p are positive constants. One
finds the minimum of the superpotential at (S) =0, (pp) = (p)(@) = ’g—z and the
condition for vanishing of the D-terms is ()| = [()| which is called flat direction
[32]. This condition makes the minimum lies at (S) = 0 and (p) = (¢)* = £-4=.

Vko
So, the complex superfields can be replaced by real scalar fields ¢ and y as
Substituting (5.65) in the potential, one obtains
2 42\ 1
V=22 —kod*x>. 5.66
16<x k0)+4o¢X (5.66)

There are no D-terms in the new potential because the condition of flat direction.
The hybrid potential consisting of two inflaton fields with the coupling con-

stant g is

_)\ 2 M22 1222 1 2 .2
V_Z<X_T) +59¢X +§m¢. (5.67)

Comparing the supersymmetric potential with the hybrid potential, One finds that
the mass term of the field ¢ is added into the superpotential. All constants are
constrained by u? = % and %(2’ = ¢?> = 2). So, supersymmetric hybrid inflation
corresponds to the value of the coupling constant: g = \/2\.

Figure 5.2 shows the supersymmetric potential. There are two inflation-
ary stages. The first stage begins when the inflaton rolls slowly along the nearly
flat potential in the ¢-direction along the y = 0-axis. This stage continues until
o= ¢. = %, then the second stage occurs in the y-direction along the ¢ = 0-axis.

)
According to the second consistency condition in (3.31), both of the infla-

Inflation ends when the inflaton reaches one of the true minima x = x; = j:%.

tionary stages occur when the effective masses of the two fields are lighter than
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Figure 5.2: Supersymmetric potential [33].

the Hubble rate:

mi et ] 2
t—= gt =M < H

The first stage of the inflation occurs when ¢ > ¢, in the almost flat ¢-
direction along the y = 0-axis. The effective squared mass of y is positive in this
stage. The potential is approximately reduced into the form

MY m2e?
Vi — 4 ¢
4\ 2

. (5.68)

In the case of M > m, which gives V' ~ %—:, the Hubble rate is almost constant

around ¢ = ¢.. % Using the first-background Friedmann equation, the Hubble rate

1S

1 M?
H~H. = —+—. (5.69)

2 V 3\ My

Therefore the slow roll conditions are valid when
M? > 2V3\mm,, and (5.70)
M? > m2\. (5.71)

2,2 2,2
6In the supersymmetric case, M? = 2\¢? at ¢ ~ ¢.. So V = M2¢C + m2¢° R
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The second inflationary stage occurs after the symmetry breaking due to the
tachyonic” instability. The field evolves slowly in the almost flat y-direction along

¢ = 0-axis when ¢ < ¢.. The potential is approximately described as

A M*\?
Vel (v ——) . 5.72
2 (e-%) (5.72)

The e-folds N in the two stages are respectively

M* bi
Ny ~ ———In— 5.73
! Am2m?, rn (5.73)
M2

Ny =~ ~In (5.74)

AAmay - Xe

where ¢; and ¢, are the values at the beginning and the end of the first stage. x.
and x s are the values at the beginning and the end of the second stage respectively.
Under the consistency conditions, one sees that the e-folds in both stages are
greater than one. The total amount of e-folding is N; = N; + N, whose constrained
value is closed to 65 according to CMB observations.

The effective masses at the minima of the potential are

g
m¢c = WM,
Mogp = V2M.

Here, my, is the mass at ¢ = ¢. = £M /g while my, is the mass at x = xy =
+M/ v/A. Considering the supersymmetric case, one obtains the equal mass of the
inflatons at the potential minima: my = m, = V2.

The slow roll parameters at the horizon exit scale are

d m2 m2¢2 - m2
T em\ v ) T 3

m? m2y>? m2

RE 2 (%) me = g (5.75)
B s 2 PX

Nox = 2mplg 7

Before the symmetry breaking, the slow roll conditions are valid in the ¢-direction
along the x = 0-axis. Therefore the ¢ comes mainly from €, (¢, ~ 0). The

spectral indices in the first stage are found to be

2m? 3m2¢p?
HR—l ~ —6€¢+27]¢¢ = ——(1—— ),
3H,3 2V
2 m? m? 1mz¢2
ns—1 = —2e+2n,, = ——X——(——),
xx 3H,§ Hlf 3V
C'e“Ne
ne—1 = _2€¢+277XX_—60Nk_1'

"Tachyon is the particle whose squared mass is negative.
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As we know C' is related to the effective squared mass difference between the
adiabatic and entropy fields, it can also be written in terms of the squared mass

difference of the inflatons as

m? m2
C = — = X _____
Light field conditions give C' — 0. In the limit |C'| Ny < 1, one obtains
eONe —1 C’Nk+CQQN’“ + ... Ny
When the condition m < M is satisfied, the spectral indices generated in the first
stage are
il
& A — 5.77
2m?
2 AE 5.78
ns X 3 HE’ ( )
1
(N o —Jvk (579)

The results show that there are blue-tilted spectra in both of curvature and isocur-
vature perturbations. They are consistent with the data at the cluster scale. For
the correlation, ne can be blue-tilted at the beginning of the first stage when
o> ¢.. At ¢ = ¢, mi ~ 0 gives the red-tilted spectrum of the correlation.

Following the same procedure, the spectral indices in the second stage are

2m
e e 5.80
2 m?
o — 5.81
ns 3 H]g? ( )
1
] — 5.82
ne ns TN (5.82)

The spectrum of the curvature perturbations is red-tilted due to the negative
squared mass of the field y while that of the isocurvature perturbations is still
blue-tilted. The paper [28] considers only the limit Ny > 1, therefore ne ~ ns. In
the case of the supersymmetric potential, only the blue-tilted spectra are possible
in the first inflationary stage.

However, the red-tilted spectra can be generated, even in the first stage, by
the double inflation model with other potentials. If one considers non-interacting
inflatons with g = 0, one obtains mi = —M?. So the red-tilted spectra can be

produced in both stages when M? > 0:

2 M?
ns e = n'RQnd ~ 1-— 5? (583)
k
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Let us come back to the supersymmetric case. The strength of the correlation
can be obtained from the curvature of the trajectory in the field space. The

curvature in the two stages are found to be

0 2 29X

ﬁ Lst ~ 77¢X — Qmplg 7, (584)
0

T lons — Ny (5.85)

In the limit of flat potential, the field ¢ decreases to the critical value ¢, during the
first stage. This leads to the decreasing of 9/ H which gives the weak correlation
between the perturbations. In contrast, during the second stage H/H increases
due to the increasing of the field y when it evolves to a potential minimum. Thus
there is the strong correlation between the adiabatic and entropy perturbations.
These results are consistent with [28].

Only the large scale perturbations or the small £ modes are considered. This
case corresponds to the large Ny because the number of e-folds shows the enlarged
wavelength of the mode k at the end of inflation relative to its initial size. The
larger Ny, the longer wavelength of the perturbation. The large scale perturbations
come from the quantum fluctuations generated at the beginning of the first stage
and cross outside the horizon immediately. Therefore the long wavelength modes
have N, ~ N,.

According to [30], 50 < Ny,q < 65 (where the total amount of e-folding is
N, =~ 65) satisfies the conditions for the suppressed isocurvature perturbations at
the end of inflation. Thus the second stage dominates inflation, Ny,; — N,. For
the large scale perturbations, one finds N & Na,4.

We use the numerical values of the model parameters in [28]%, the values are

within the same limit as‘in [30], and are giving by
M = 426 % 107%m,, m = 1.0x 10" %y, x. = 5.0x107%y;.  (5.86)
Moreover, [30] gives the power spectrum of the correlation at Ny 22 60:
Pe ~ 107 (5.87)

In order to obtain one of our parameters by using the P¢ in the above equation,
we consider No,q = 60 with the total amount of e-folding N, = 65 in this model.
From the number of e-folds expressed in (5.74), the coupling constant of the two

fields is constrained to be

A= 4x1071, (5.88)

80ne uses the values in the case (b) of Fig.11 where M, = v/8mm,; is the Planck mass.
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The coupling constant and the mass of x lead to the final value of y as®
M
X = ﬁ

The value of y at the beginning of the second stage can be obtained by the

= 6.74m,. (5.89)

numerical values in (5.86):
Xe = 5.0x107%x; = 0.03m,. (5.90)

Although inflation is dominated by the potential energy of y, the evolution of ¢
is required because the horizon exit for the long wavelength modes occurs in the
first stage. The obtained value of the field ¢. is

M

Here the number of e-folds for the first stage is Ny = 5. The initial value of ¢
can be obtained by using the equations (5.73), (5.86) and (5.88) ,

In (%) = 0.024
¢; = 1.03¢. = 4.89m,,. (5.92)

It can be seen that during the first stage of inflation, all fields are of the order of
the Planck mass.
In the second stage € comes mainly from e,, thus the solutions for the

adiabatic and entropy perturbations are

Flbp)y—= e~ Nk gltly) = e=MesNi, (5.93)
o) = 2l St & 2t N

The time-independent effective masses of the two perturbation fields allow us to
evaluate the right hand side of (5.93) at the horizon exitscale. At this scale, the

curvature of the field trajectory reads!®

0\ o 10 oA
BlNATA -

Using the slow roll parameters from (5.76), the solutions for the two perturbations

become
m2 2
X N _m~ A
flty) = e " gty) = e i (5.95)
8 AGeXkNK  — 2% Ny
p(ty) = —ngg@ e

9Note that we use the positive values for all fields.
10The subscript k of any quantity denotes its value at the horizon exit scale.
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The power spectra can be expressed as

2
P’R - 9 (_) k e B3Hj
2 m4xi

A N _ m?
+< ) ( DX ’“) e QSH%N’“], (5.96)
H —2m N,
Ps = 81(2‘;) m4¢2 T (597
A *237”7221\71@
P = T2 Xt m2m2 e 3k N (5.98)

The long wavelength perturbations exit the horizon at the early time in the first
stage, therefore the value of ¢ at the horizon exit is closed to its value at the
beginning of this stage: ¢ ~ ¢; = 4.89m,,;. The effective squared mass of the field

x at the horizon exit is

m2 i 2X\¢7 = M? = 9.3 x 10 "m2. (5.99)

Besides, for large scale perturbations, N, &~ Ns,q = 60. Substituting all inflation-
ary parameters into (5.96), (5.97) and (5.98), then the solutions yield

2.64 x 10*® [ HS
po - 20ty
m

87510 11 21 X
e Ay + (4.26 x 10721) 2F ”l 5.100

pl k
8.58 x 1022 20
Ps = m—6(H,§)e BN (5.101)
pl
2.35x 1013 "
Pe = 2o (H)e & (5.102)
nl

Note that the Hubble parameter is time-dependent. Using the large scale cross-

spectrum in (5.87), the Hubble parameter at the exit time is
H, = 2.83x 10 %m,. (5.103)

We know from the Chapter IV that the inflation energy scale can be characterized
by the Hubble parameter. The inflation energy scale obtained by the supersym-
metric double inflation is of the order of 107%m,,.

Using (5.103), one obtains the isocurvature power spectrum:
Ps = 292x 107" (5.104)

which is the same order as its numerical value in [28].
In order to estimate the curvature power spectrum, the value of y; is re-

quired. Figure 5.2 shows that inflation begins with the small field value of y. For
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long wavelength modes, they cross outside the horizon in the early time of the
inflation period. Thus, y; must be less than its initial value in the second stage:
Xt < Xe = 0.03my;. Choosing xj = 0.023m,;, the power spectrum of the curvature

perturbation predicted by the supersymmetric double inflation model is
Pr = 25x1077, (5.105)

which is two and four orders of magnitude greater than Pr and Pgs respectively.
So the total power spectrum is dominated and approximately given by Pr. The
power spectrum on the large scale as given by this model is of the same order as
the observational results.

Note that the upper limit of x; = 0.03m,, gives Pr = 1.45 x 107°.

We summarize that isocurvature perturbations in multi-field models are an
additional source of curvature perturbations on the curved trajectory in the field
space. Thus the conservation of the large scale amplitudes of the curvature per-
turbations as in the single field model is violated. However, the power spectrum
of the isocurvature perturbations is constant on the large scale. The correlation
between the two kinds of perturbations appears and become strong in the second
inflationary stage. In addition, the existence of more than one field causes the
origin of the cold dark matter. For double inflation model, the decay of the in-
flaton ¢ creates the ordinary matter whereas the inflaton x decays into the cold
dark matter. Furthermore, the slow roll conditions do not give the unnatural flat
potential any longer because the multi-field inflation models can be motivated by
particle physics. The double inflation with supersymmetric potential is in out in-
terest. In this case, the obtained power spectrum P ~ Pr = 2.5x 1077 is the same
order as in WMAP data on the superhorizon scale. Moreover, the result is in good
agreement with the power spectrum in the galactic scale, P = 2.46 x 107Y. The
spectrum of the curvature perturbations is blue-tilted in the first stage but red-
tilted in the second stage which correspond to the results from [30]. The running

of the spectral indices can be non-zero in this model.



CHAPTER VI

CONCLUSION

In the single-field inflation models, both commutative inflation and noncom-
mutative inflation are discussed. In this case, there are no relative fluctuations
because only a single field exists. The power spectrum is purely adiabatic. The
obtained curvature power spectrum is constant on the superhorizon scale. For the
commutative power-law inflation, the spectral index is red-tilted and the running
is zero.

There are the minimum length scale caused by the quantum effect in the
noncommutative inflation model. The spacetime noncommutativity presents as
the extra terms in 757%, nr and j%@kf. When [, — 0, the three quantities reduce to
the commutative version.

The extra terms in the power spectrum make it suppressed on the superhori-
zon scale by the factor (1+ p)~* This is closed to the low multipoles of the CMB
power spectrum. The delay of the exit time due to the noncommutative effect
also slightly shifts the value of the spectral index, and the blue-tilted spectrum
presents. The non-zero running of the spectral index can appear by the same
procedure. Note that its value is always negative as the large scale data. In our
results, the string length in the power-law model is four orders of magnitude larger
than the Planck scale; iy ~107* ¢m. The result corresponds to [15, 18]. In this
case, inflation occurs when the size of the universe is about 1072* cm. and the

scale factor evolves with time as a oc 12171,

For the multi-field inflation case, the light masses of all inflaton fields are
necessary to have the inflationary stages. In the presence of more than one infla-
tons, there exists of two kinds of the primordial perturbations. First, the curva-
ture perturbations which effect the gravitational potential (as shown in (5.25)), as
well as the expansion of the universe. Their large scale amplitudes are not con-
served because of the existence of the latter kind, the isocurvature perturbations.

The isocurvature perturbations are the perturbations by the relative fluctuations
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among species in the universe. The strength of the correlation between the two
perturbations depends on the curvature of the field trajectory.

In the double inflation model, the first stage occurs in the ¢-direction along
the x = 0O-axis with its initial value is large. This stage stops when the field
reaches the critical value, then the second stage begins in the y-direction along
the ¢ = O-axis. Inflation ends when the field x reaches one of its minima. The
energy lost of the two fields may create ordinary matter and dark matter in the
universe. During the second inflationary stage, in the case of the negative squared
mass, inflation is driven by the symmetry breaking due to the tachyonic instabil-
ity.

As shown in the equation (3.135), the single field inflation model usually
gives the red-tilted spectrum when the slow roll limits are employed [7]. In con-
trast, the double inflation model can give both red-tilted and blue-tilted spectra
depending on the coupling constant between the two fields.

For the supersymmetric version of inflation, the potential is realistic even
if the slow roll conditions are valid. The power spectrum is 2.5 x 1072 which is
consistent with the large scale data of WMAP. The contribution of the isocurva-
ture perturbations to the CMB power spectrum is required to be small compared
to the curvature perturbations. In our results, Ps/Pr ~ 1074, as well as the
correlations, P¢/Pr ~ 1072 The results correspond to [30] with Ps/Pr < 0.004
and P¢/Pr < 0.07. Moreover, in the limit of large N (long wavelength limit), all
spectra in the first stage are blue-tilted. In the second stage the spectra of S and
C are still blue-tilted whereas the R’s becomes red-tilted. For the running of the
spectral indices, the isocurvature perturbations have the zero running while the

others do not.
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APPENDIX A
LIMITS FOR HAVING

INFLATION

A.1 Equation of Motion in Conformal Time Co-

ordinate

From
—0,(¢""\/—90,0) — Vs =0, (A.1)
the equation of motion is

1 ] 1 :
g[@ ( w“”“‘) O+ " @'y b = Vs(9) = 0
1 a > i
E[a—n(a%??wa ¢+ a’(n 0030504174—77”@8]'@ —Veld) = 0
1 da 0¢ 90
_4[ “ a2< o

+V20)| ~ Vo) = 0

Pd. 2 da, Do

g 2 _
a2 e (dn)an—V@+aV(¢) = 0. (A2

A.2 The E-Folding

By the definition of the e-folding, we can rewrite it in term of the inflaton potential

2] dt
N = / Hid = [ don(o) 5
br o5 2
- L Hif” o= - Ve

oy V¢(¢>
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Inflation needs more than 55 e-folds in order to solve all problems from big bang

model.

A.3 Derivatives of the Potential

From

Va9) = 2mi| S5 H(O)H,(B) = 2Hy(6) Hyo(6)]

g =R

= B0 (Vo Ty [y 2
=3V2muH*(9)3/€(9)[1 + 01(0)], (A.4)

Heo(d) _ &
H(9) H:

where 0; = —2my,

From

H H
-~ (2m2, 1o (am, Moee)]

H H
2 [36 30, = 82— e<2m§l(H“’¢¢)2>] (A.5)

From
1.
Hy(0) = —Mﬁb, (A.6)

1 d*
Hypp(9) = w2
D

Consider

Hogoy2 H* Hy
2my (=) = 2m§IH¢¢¢(W)(2milﬁ)

3 —
- w0
0

)

€

If
|
~—
>
x
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where 0, = 1}2 (5;? So,
Viold) = BH?[€(0) — 61(6) — 253(6) — 10(0)]. (A.9)

Inflation occurs when V,, < V and V44 < V. These are the consistency conditions
in Chapter III.

A.4 Calculation of 7, - (Z 3‘) and %

From the definition of the conformal time,

dn / 1 p
" —_— T — a
da aH?
Integrating by parts to have
/i .. . 1 d ( >
'S aH ada\H
(A.10)
Consider (L)
d(l) . —ldH  —10H 0¢dn
da\H/) — H2da = H? 0¢ 0rda
—1dn
= ﬁ%(—QmizaH@f%
g
- aH’
The conformal time can be calculated as
= L + d (A.11)
= aH a2H @ ’

The value of the slow roll parameter must be much less than one during inflation,

so € can be treated as a constant. The first order expression is

- __+ /aQH /ada

= —a—H+€ ———I—/e—da

= ———l—e[———l—e ———i—/eﬁda

R
|
Q
- &
_1_
N~
Q[\')
m\
QL
(=)

n

= —E(l—i-e—l—e +e+ )

1 1
aH (1—¢€)

(A.12)
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Compute %(%‘5) by considering the Friedmann equations:

(%) - 3;12[ v+ (5)] (A13)
() - w (@) = mglve-G)] e
2(A.13)+(A.14) gives
(b - Svo o
Substituting
V(o) = a2 HA(@) 1= 5e(0)], (A16)
one obtains
i—(z%(;) S a? BP=2 \362H [1 - %e((b)}
2(%) = a’H*(2—¢). (A.17)

One calculates a®H? by using (A.12), and substitutes in (A.17)

2 o4
(ap) = =

=

_ %(2—6)(1+2e+...)
= %(2+4e—e—262+...)
é(;%) %(2+3e). (A.18)
One finds % by considering
A< AL HAES)

2
O - L)

1 d*a 1 /day?
= i wil) (4-19)
Using (A.17), the result is
- = H*(2-¢) — H?

= H*(1—¢). (A.20)



73

A.5 Limit of Pressure and Energy Density Dur-

ing Inflation

dinH  rdH/dy  dH/dy
dlna — tda/dy Lda/dn
1 dH 1 0Hdg
 aH? dpy ~ aH? 0¢ dn
Hy do
= ——. A.21
aH? dn ( )
Consider ‘;—"5, from
n
= 4 = dg
Hy(0) =~ ——zéil<§7>- (A.22)
Due to /e = —ﬂmpl%, hence,
dg
dT? = 2m;2)zaH¢(¢)
= V2muaH(9)\/e(9) (A.23)
Substitute (A.23) into (A.21), the result is
din H Hd)
Il Pat () /@)
s/ A (A.24)

so the variation of the Hubble parameter with respect to the scale factor is the
first order in the slow roll parameter.
From the equation of state p = wp, the association between the energy density

and the scale factor is calculated by using the continuity equation:

pocq B (A.25)
dlnp
T o S e) (A.26)

From the first Friedmann equation in flat space, one has
a nH% (A.27)

Using the (A.27), the Hubble parameter can be written in terms of the scale factor

as follow,

1 da 2 1—-3w
H = _— e —1’] 1+3w
a? dn a?(1+ 3w)

x a7 ), (A.28)
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From (A.25) and (A.28), one obtains;

dinH ldlnp
dlna  2dlna’

(A.29)

In order to know the limit of the parameters during the period of inflation, this

relation is used in the continuity equation

p+ 3%(/) +p) = 0
pa* + 3paa® + 3paa® = 0
Lo = (), (A.30)
this is the first law of Thermodynamics dU = d@) — dW,dW = PdV with dQ) = 0
(adiabatic process).
Using %da® = 3dInz, we find

T O N PR
14
7 _p[HaL:dZ?J
opl = —p[l—%jﬁﬂ. (A.31)

Now one considers how fast of the decreasing of the universe during inflation by
using the second Friedmann equation,d oc —(p + 3p). Because d@ must be positive,

the negative pressure , p < =% is the result. So,

. 1dlnp P

P = —e[Liamr 3
~Ldlnp - 2
3dlna 3

We know that the energy density must not be increasing as the universe is ex-

panding. The derivative of p must be negative.

dlnp
dlna

(A.32)

By substituting the value of the pressure in each epoch, one evaluates

d1n p,

dlna
d1n p,

dlna

3, (A.33)

4, (A.34)

where p,, and p, are the energy density of the universe during the matter (non-
relativistic particle) - dominated epoch and the radiation (relativistic particle) -

dominated epoch respectively. We have seen that the energy density of the universe
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in the inflation period decreases slowly compared with the others periods.
Let’s consider the limit of the pressure during inflation. Replacing (A.29) in
(A.31), so that

2dIn H
— o135 A35
b p [ 3dlna ( )
By using (A.24), the pressure of the inflaton can be rewritten as
2
p = —p[l — ge} (A.36)
During inflation, € € [0,1), so the lowest limit of p is p = —p. This occurs when

e = 0 which is the case of the cosmological constant, A. The uppermost limit is

p = —% occurring when ¢ = 1.



APPENDIX B
PERTURBED

EINSTEIN EQUATION

B.1 Perturbed Christoffel Connections

From

1 R
Fgw 7 59 ”(gm,ﬂ + 9Bpsy _gﬁv,p)7

and
o 1 ap
511% 2 5 0g (gm,ﬁ +98py — gﬁvm)

1 «
"‘59 P (09pyss +098pry — 095vsp ) -

Due to the diagonal metric structure, the Christoffel connections are symmetric

between the two indices down, Fﬁ‘w] = 0, This is called torsion free.

One finds the components of the unperturbed and perturbed Christoffel connec-

(B.1)

tions
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B.2 Perturbed Ricci Tensor

From

R, = 0.,1%, — 9,I's, + 9,19, —T%,17

oo pv ov - pot
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Like the Christoffel connections, the Ricci tensor is symmetric between the two

indices down.

The unperturbed Ricci tensor are

ROO

R

" Ro;
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One finds the 00-component of the perturbed Ricci tensor
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All six components can be computed as
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The Oi-component of the Ricci tensor is
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Its six components are
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- ¢ (-2“ (A )6, = @z/'aij) — =t <2%(A+¢)5ij + ¢"5Zj)

a

a
a' \? a
= —8 (E> (A 25 w)éij = 4Ewl(5ij. (B.35)
5F§j F?a = 5F8j F?o + 5F2j F?o + 5F](§j F?k + 5112:;’ Pfl
a 7 2 a
Ie érg, = T9, 005 + I, 6Tl + If; 0I5, + Ty, 0Ty
a\? a’
= =2 (Z) (A +¢)5ij = 2577/)’5@‘. (B.37)
So
a a a’ a’ 2 a
(5Rij = ( LA T hEAY L0 A 2 <—) A—2—1
a a a a a

I\ 2
» (%) b M) 0 A0 — 0D A: (B3Y)

B.3 Perturbed Ricci Scalar

From

R = ¢"*R,,.
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The unperturbed part is

R = ¢"Rupo + ¢ Rai = ¢"Roo + ginjz'
1 " / 2 1 . " / 2
_ ( 3 (Y ))+_25w(a_+ (z))(sﬂ
a a a a
a/l

The perturbed Ricci scalar is

R = 0¢"" Roy + 9" 0R,.
= §9% Ry + 69" o8 9”6 Roo + g” OR;;

B 2A CL” CL/ 2 ¢ i a/l CL/ 2
= (?)(‘3;“’(5)) ( 5)(;*(;))
+ (=2 BidA & 30"+ 3% 132 A + Lsi| — ZA/
a? a a a?
/ " N\ 2 a” /
—53¢’—21A—2(3>A—2 ¢—2(a)¢ "
a a a

0ji + 515527 (005 — 0,0;A)

%

e

+ 00"

: (;){m(-g%”w(%f) coo (5 ()

— a_,A/ — 5a_,¢/
a a

(80ZA+3¢”+3 '+ 3— A)+3
" I\ 2 a’ a

—2a—A—2<a—)A—2 ¢—2( )w w”+aak¢]
a a

+ (00— ,0'A) }

14

1 % 1 al ! CL/ / a A
“0R = ——2<28Z-6A+6w +6%A F18%y + 124 — 49,0 w). (B.40)
a a a a

B.4°" Perturbed Einstein Tensor

From

G R (B.41)
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The unperturbed components are

1
Gow = Rop — EQOOR

(B.44)

From

AONUUINBUINT )
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The perturbed Einstein tensor is

From

0Goo

5G00

0Go;

5G;

1 1
Ry — 559003 - 5900 OR
) li ! 1 "
80 A + 30" + 3%y + 3% A4 - Z(—24a?) (6L
a a 2 a’d

1 1 ) / /
—(=2a?) (-=) (20,04 + 60" + 624 + 185y
2 a? a a

+12%4 - 4@-0%)
a

—6% W+ 28,004, (B.45)
i 1

Ry — 55QOiR — 5 J0i oR

20, 41+ 2 % O;A. (B.46)

1 1
ORij — 559@1'3 ~ 59 oR,

/ / " I\ 2 "
<~1Af_5a_¢f_2a_A_2(%) A 2%y

a a a

a

1 A 1 1
— 5(~2¢a’;) <6%> - (@) <?) <—¥) (2aka’fA

"

/ /
60" + 624 + 1859 + 1224 - 49,0
a a =

/ 2
—9 (3> b = aka%)éij + 0,051 — 0,0,A

a

i a a’ fro 2 a’
2— A + 44—y +4—A -2 (—) A+ 44—
a a a a

N2
—2 (%) WP F 2" — akaw + 8k8kA> dij + 0;0;¢

— 9:0;A. (B.47)

oGt, = 5.9“& Gov + g;wc 0Gqy-
(B.48)
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6G%

5G00

5GY;

- 6GY
5G';
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590(1 GocO + 9004 5Go¢0
6% Goo + 9% 6Goo

2A "\ 2 1 ' .

s (L) ) - = 62y — 2007

a? a a? a

1 a\ 2 a .

- <6 (—) A+ 6—Y — 2@8%&) . (B.49)
a a a

59004 Gai - 9004 5Go¢i

5900 Goi + 900 0Gy;

1 !

= (—Qaiw' - 23@,4) : (B.50)
a a

dg™ @ g 0G4

59“ G[j —+ g” 5Glj

204 a’ a\? 1
al b ! 2 a a 2
4y 4= AL 2(-) Ag 4%y — 2(—) "
a a a a a
8 + O — alajA}

1 a//i a 2 .
o

2"
a

Lo — 3R + 0" A

2% o
a a

T T T 2 a a 2
F4= +4— A — 2(—) A+ 4=y — 2(—) .
a a a a

a

—{—2’@/1” — 8;4?’“@0 + GkékA

5+ 00 — aiajA}

/ " 2 /
L {(2“—A’ + il L 2(1> At 8,074 + 4%y
a a

a? a a

Y2yl am%)a@ L 00,4 + afajzp}. (B.51)

B.5 Perturbed Energy-Momentum Tensor

From

1
Tw/ = u¢au¢ — Yuv (§ gaﬁ aaqb aﬁ¢ + V(¢)> :
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The background components are

TOO

T(]O

Tos

- Ty

0060 — o (%gaﬁ 0u 00 + V<¢>)

¢/2 . (_a2) ( 1 ¢/2 + 2La25zgaz¢a]¢ + V(gb))

242

1 /2 (V¢)2
R (Ol

%cb’Q + V(g)a® (B.52)
Oo® 056 — goi <% 9% 0a B30 + V(¢))

pdip = ¢'Vo

0. (B.53)
00050 = sy  5.4°* 0000 + 1 (0))

0006 4 (i) (5m0” + 5a00030 + V(9))

(3¢ 4 B2 viore?) 4,

(% ¢° = V() a2) dij, (B.54)

while 0;¢0 = V¢ = 0 because the background field ¢ is homogeneous.

From

5T,

1
= 0,00.0,0 + 0,60, — 3G, (2 9°% 9.9 050 + V(¢>)>

1
o (000009304 470,00 030 + Vi35 ).
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The perturbed components are

0Too

6T00
5To,’

5To¢
5T}

20T

ij

00600 + 005 9u6 — dnn  5.4° 0000+ V(0))

a0 (590°7 0u6.000 + 9°7 0,00 036 + Vi 00

00002 + Qo 0uo — dg (5 0000 + 367910036 + V(0 )
~ g (%5900 Q0600 + 5997 016 30 + 9 0060 8o

+ 47 0;000;0 + Vi 5¢>

20/60 ~(=2APY( 550" + So060,6+ V(o))

4 (e - (2)o

1 o
+— (69) 0660,0 + Vi, 80

- (~a?)

6¢' ¢ + 2AV(¢)a® + a® Vyio. (B.55)
0009 0;p + 0o 0;0¢ — 6goi (% 9 0.0 059 + V(Cb))
g (3097 2,080+ 4 Budo 20+ Vi 00

0+ #9066 — 0 — 0
0,604 (B.56)

056 0,0 + 060,06 — dg; (%gaﬁ 000 030 + V(cb))
= 9ij (%@aﬁ D 3t + g% 0adp Dpp+ Vs 5¢)
0+ 0 — dgi; (% 9% 9o Do + %glk 010 Orp + V(¢))
-9 (%6900 000 O+ 559" 010 3k + 9™ 8650 On
+glk 815¢ 8k¢> -+ V¢ (5@5)
1, A 50
— (2a?6;) <—ﬁ¢2 + V(qs)) — a2, (?w — ¢a2¢ +v¢5¢)
(66/6' = 40" —a*Vydo — v o +20V(9)a?) & (B.57)
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SO

oT°,

5T00

5T,

2 0TY,
5T

- 0T
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ST", = 6(g" Tuy)
— §gM T + ¢ 8T,

5gOa TaO + gOoz 5Ta0

69" Too + g% 6Too

24 (1 1
2 (5 & +V(9) a2) 096+ 2AV9) @ + a?V,09)

% (A¢'2 — 8¢ ¢ — (5@52—‘;&2) : (B.58)
6¢° Toi + ¢°* 0T,

69" To, + g% 6Ty

% (= 060 &) . (B.59)
09" To; 4 g 0T,

59" Ty + 9" 6T},

29 (1
a—fé“ (5 of = V(o) ) iy

+ gy (0078 = A0 = @V 69— 4 6" + 20 V(9)a?) &

1 ! i av 7
?(—A¢2+6¢¢ —5¢a—¢a2>5j. (B.60)

B.6 Perturbed Einstein Equation

The 00-unperturbed component is

GOO = T TOO
m

w
N
o |
~~_

(3]

I
:zw‘“
VR
N —

<

no

+
=
=

)

[\
~~

(B.61)
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The ij-unperturbed component is

Substitute (B.61) in the right hand side, one obtains

7 p 2 1
= @) e
From
JEL— miiléT“l,, (B.64)
one obtains
(5G00 — %6T00
me
1 2 ’ & — L l 2 v a_v 2
= (6H*A + 6HY' — 20,0')) = = (QQ) (A¢ 8¢’ ¢ — ¢ 59 a>
! — L 12 /o
SH2Y T 3H =y o (¢¢ — . 5¢V¢a2>. (B.65)
6GY; = izaTOi
me
1 / _ L AN asew
@(—2&'@0 — 2HO;A)- = mf,l (aQ)( ;00 ¢")
1
o) + HOw = Gy (0i(60.¢") — (0:¢")09)
pl
nlnod W b a4
oty + ) 2S00 )
1
Hy + ¢ = (69¢) . (B.66)

2
2mpl
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) 1 )
5Gi = —oT;
J m12)l J

2
%(27{14’ +4HP+H)A - 2 (H) A+ 90" A + 4 HY

" 7 1 1 / /o) ov 7

Hop + 2H + 3HY + o = — (—¢¢'2 I (5¢V¢a2) (B.67)

2
2mpl
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APPENDIX C
POWER SPECTRUM

AND THE ACTION

C.1 Calculation of %”

S

_ ap __
Fromz-H =

dz dz o [a_gb \ ! % aqf)H] '

and YT E T H B

where % = a. Next one computes
d*z d dz
d | \di

prng {CL

agf)H angH apH agpH?
H2 H? H? = H3

a¢+a¢+ﬁ¢+%

a¢+—— 2}—#@
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a¢+2aé+%¢

}

aH

a(b+%_a¢]{

1d%z
H H?

HY.
= —Ka
z dn? o
apH — adpH  apH N QagéH 2
H? H H? H3

_ (aH) { a

+ a

-2

at
H

b + add, + ade| + ad + 2a¢ +

o\ @H
o . o
+ 2a¢e — % +a¢5<—%+2%)]}

— (aH)Z{[l NN b e] -

}

= 2(aH)? (1—|—6+-§51+%+62—|—26(51) . (C.1)

1+ 26; + o

€
+2651—|—6+ﬁ

where € = —45 §, = fﬁ , 0 = ¢—I¢;§ and [see appendix C.4] ¢ = 2H (e? + €dy).

C.2 Commutation Relation Gives Norm of the

Field u(n, %)

From the commutator

-

for ¥ = 2/, one has
[@(7]75)7#(77/75)]77:77' = Z (CQ)
From the lagrangian of the field, the canonical momentum is
oL
T = —
¢
= d’y. (C.3)
The commutator becomes
[o, a®¢] = i

a*(opl” — erpl) = i
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Consider v = ay, one obtains
vpU, — URU, = i (C.4)
The relation between vy and v;, which satisfies the condition above is
/

U, = —IWgUk,

where wy, is the positive frequency at mode k. Now we can compute the norm of

Uk
vk (lwrvg) — vp(—lwgvg) = i
A 1
Uk’l}k = 2_wk
1

\/Zwk .

From u = ad¢ + z1p = v + 214, its norm can be computed as follow (using (C.4))
upu) — upuy, = i, (C.6)

SO

1
B 2 : C.7
| | Ukl Do (C.7)

For the equation of motion in small scale limit u] + k*u; =~ 0, the positive

frequency is wy = k. Therefore

$
Juk| = o (C.8)

C.3 Vacuum State and Power Spectrum

Consider vacuum state

(Ol (n, Yy 2)[0) oy | =10 / e g

Using @z|0) = 0 and [ag, d;] — 03 (k — )
w/ o - d*kd’p % i(k-Z—p-7 oA
(O (5, Eyun), )0y = / G e ) (557 Olagatio
Phdp G A ot
= / 2n)? Uy, (e (k-&=p )> <0|<[a,~€»,a;] + a%aﬁ>]0>
3173 L .
gy
s
% - — &’k 2 _ik(Z-2")
S, Du(n, ) = (ZW);),\U (n)|"e : (C.9)
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o[ &k ) B k2dk ,
w) = [Goahm@P = [ S
- [5 (muor) = [Frm. (.10
where
Puk) = aglun)l

is the power spectrum of the perturbation u(n) at the scale k. The power spectrum

of the curvature perturbation is

Prlh) = aglRalnlf = o [Z
kK 227 T(v) \ g\ 1=2
- G i) |

- Gptardd il o)
(

2 —4e—261
= _H:22V—3 [F V)] [i] (1— 6)2+4e+261
(276)> r@)] leH
1 H\?2 NO) 2 1 g 1420
k - _ ¥y 221/—3 - 1— 2+4e+2571 C11
Pel) = —gc (o )@ | g a-omemon
where 1 = ﬁf_e) and z = %‘b
Using Taylor expansion up to the first order,
_s ()
72—~ 14 20(2e+ 6y),
')

( 1 — 6) 2+4e+20,1

Q

(1 —2¢ — 4e* — 2¢0y),

—4e—26;
(%) L et () & (e 4 26))In (%) (C.12)

SO

T 2
22"*3{ @} ~ 1+ Bae +4aby, (C.13)

I'(3)

The power spectrum becomes

1 (H\ k
k) = — — 1—(4e+4201)In (— 1 4
Pr(k) 2m;2>z€ (27r> [( (4de + 207) n(aH))( + 8ave 4+ 4ady)

(1 — 2 — 4¢% — 2651) ]

_ _27%6 (%)2 [1 242 (a —In (%)) (2 + 51)] . (C.14)




C.4 Spectral Index and Running

From the definition, the spectral index is

d1n P 1 dPx
k) =1 14
nr(k) =14 -7 LAk

where the power spectrum is

Prlk) = 2”%16 <%)2 [1 — 2642 (a ~In (a%)) (2€ + 51)} .

Computing €, 01, 02 and [ ( fvis computed for Chapter IV).

(Z'52
T TomEe
pl
e 2em :
= = — L 2H
€ 2m72)l P e €d1 + 2He
s = 2H(E fedy),
o=
oH
.‘. ..2 .. .
: T
G = L LE O s b+ Hes,

G6H | H — oH?
s = H(ed, = 01 + &),

0y = ‘gzﬁ
QH?
52 = ¢ ¢¢ — ¢ = H(Sg——H(Sl(SQ—FQHE(SQ

HH> = 22— H3
0y = H(2€05 — 6102 + 03),

HN\? | HNA
NG AR | 7 2
Soft = —4Hpe.
In addition

dH?> 2H :
= ~ —2H

dln k 1—e ©

de! 01
= —2-221

dlnk €

In the crossing scale, one computes

Pr H \? 5
Pr o () [(-22) e 2ataery

1
= —[-268 — 265 + a(de’ + 5edy — 5 — )]
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(C.15)

(C.16)

(C.17)

(C.18)

(C.19)

(C.20)

(C.21)

(C.22)
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(—2€% — 201 + a(4€® + Hedy — 67 — 53))
1 — 2¢ + 2a(2¢ + 6y)
~ 2[(—2e— &) + (—2€* — 2eb; + a(4€® + 5edy — 65 — &2))] (C.23)

nR—l = 2 (—26—(51)“*

Thus the spectral index is
nr(k) =1 —4e — 201 + (8a — 4)e® + (10a — 4)ed; — 2067 + 2ad,.  (C.24)

In the same procedure, one obtains the running of the spectral index
an
dlnk

(k) = —8€ —10e6; + 207 — 205 + (32a — 16)€® + (62a — 28)€?6,
+(6cc — 4)ed? + (14a — 4)edy + 4ad? — 606,05 + 2ad3.  (C.25)

C.5 Modified Action (Time-Time Component)

in the Noncommutative Spacetime

From

S = /drdx ( 0-0f * a* x 0-¢p — ( mé)**a**amé). (C.26)

The time-time component action in momentum space is found to be

- - dkdq 1 q}ge—z‘q;c + pgeia , dpethe + Gle—ike
Stime = V/dd—ﬂ—g{a( ; )*a *@( > >

dkdg 1
— V/dea: 5 qS[ ng % @2 % Qe ge™ + 3T¢q €% % a2 % O, e’
s

87&;6 * a2 *6T¢k —ikx + aT¢ YT 4 o2 *aT¢T —zkx]'

Using the *-product
o o B -
a? * 0, ™ = g? . W00 %0 g, cike
i 4 :
. aT¢k (ekls 8Ta2) ezkx7

a2 % aTéLG—ikx _ Cl2 . €_l (07 0p = 020~ )a ¢T —ikx

Y (e—kls Oy ) ik
and [(f % g)(r,x)dx = [(f - ¢g)(r,x)dz due to the antisymmetric property in
SSUR, the action is then

& dkdq 1
Stime = V/de Tq—[ qu 0r by €= q)x( k12 8Ta2>
+ 0,0y Or gy €1 FFD (ekzg afaz) I 3#52 8, ] e~ilkra)e (efklg aTag)

0,6, 0,8] ¢~ 6-0 (560:2) ] |
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Using the Dirac delta function
/dm e k0T — 915 (k + q), (C.27)
and the a property of the real field: gg,t = qg,k, the action becomes
Spime = V/dek% [8ng~5_k Oy, M0 g2 4 Or-p O-p_y, e_klgafaz} )
Expanding the exponential term, one obtains

2 1 2 1 3
k120, 2 _ 5 1y, 100 ,
¢ a (7—) l:l j: kl‘sa’r + 2 (kl887'> j: 3' (klsaT> + :| a (7‘)

~ a*(t £ ki?). (C.28)

Therefore

S 1, ~ - [d*(r+ ki) + (T — k2
Stime = V/ d/rdk:_8'r¢_k 67—¢k. |:a (7— + s) +a (T S):| .
|| <o 2

2
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