การดูดซับสารไซโปรฟลอกซาซินโดยไบโอชาร์ที่ได้จากเศษแผ่นเยื่อไม้อัดแข็งในระบบการดูดซับแบบ ตรึงในคอลัมน์

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต สาขาวิชาวิศวกรรมเคมี ภาควิชาวิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ปีการศึกษา 2566

ADSORPTION OF CIPROFLOXACIN BY BIOCHAR FROM HARDBOARD WASTE IN FIXED BED COLUMN

A Thesis Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Engineering in Chemical Engineering Department of Chemical Engineering Faculty Of Engineering Chulalongkorn University Academic Year 2023

หัวข้อวิทยานิพนธ์	การดูดซับสารไซโปรฟลอกซาซินโดยไบโอชาร์ที่ได้จากเศษ
	แผ่นเยื่อไม้อัดแข็งในระบบการดูดซับแบบตรึงในคอลัมน์
โดย	นายศุภณัฐ ตันฑวณิชย์
สาขาวิชา	วิศวกรรมเคมี
อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก	ผู้ช่วยศาสตราจารย์ ดร.ณัฐพร โทณานนท์

คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย อนุมัติให้นับวิทยานิพนธ์ฉบับนี้เป็นส่วนหนึ่ง ของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรมหาบัณฑิต

		คณบดีคณะวิศวกรรมศาสตร์
(ศาสตราจารย์ ดร.สุพจน์ เตชวรสินสกุล)	
คณะกรรมก	ารสอบวิทยานิพนธ์	
-		ประธานกรรมการ
(ศาสตราจารย์ ดร.อาทิวรรณ โชติพฤกษ์)	
_		อาจารย์ที่ปรึกษาวิทยานิพนธ์หลัก
(ผู้ช่วยศาสตราจารย์ ดร.ณัฐพร โทณานนท์)	
-		กรรมการ
(ศาสตราจารย์ ดร.ไพศาล กิตติศุภกร) าวิทยาลัง	
-	Син и окохови Цинског	กรรมการ
(รองศาสตราจารย์ ดร.ปฏิภาณ ปัญญาพลกุล)	
-		กรรมการภายนอกมหาวิทยาลัย
(้ดร.ชัญชณา ธนชยานนท์)	

ศุภณัฐ ตันฑวณิชย์ : การดูดซับสารไซโปรฟลอกซาซินโดยไบโอชาร์ที่ได้จากเศษแผ่นเยื่อ ไม้อัดแข็งในระบบการดูดซับแบบตรึงในคอลัมน์. (ADSORPTION OF CIPROFLOXACIN BY BIOCHAR FROM HARDBOARD WASTE IN FIXED BED COLUMN) อ.ที่ปรึกษาหลัก : ผศ. ดร.ณัฐพร โทณานนท์

วิทยานิพนธ์นี้ได้ทำการศึกษาการนำแผ่นเยื่อไม้อัดแข็งที่เป็นวัสดุเหลือทิ้งทาง อุตสาหกรรมมาใช้เป็นวัสดุตั้งต้นในการสังเคราะห์ใบโอชาร์ เพื่อนำไปใช้ในการกำจัดยาปฏิชีวนะไซ โปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์ โดยวัสดุดูดซับที่ใช้ Fe(NO₃)₃ เป็นตัวกระตุ้น นั้นจะถูกทดสอบด้วยวิธีการต่างๆ เช่น การดูดซับและการคายการดูดซับในโตรเจนที่อุณหภูมิ 77 K กล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด และการวิเคราะห์สมบัติทางความร้อน ซึ่งการมีอยู่ของ สารละลาย Fe(NO₃)₃ นั้นส่งเสริมให้เกิดรูพรุนขนาดมีโซ โดยแผ่นเยื่อไม้อัดแข็งที่ผ่านการกระตุ้น ด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ N₂ ที่อุณหภูมิ 800°C (HC-BI-800) มีปริมาตรรู พรุนมโซเท่ากับ 0.34 cm³/g และพื้นที่ผิวจำเพราะเท่ากับ 530 m²/g โดยจากนั้นไปโอชาร์จะถูก นำไปใช้ในการดูดซับไซโปรฟลอกซาซินด้วยกระบวนการดูดซับแบบกะและกระบวนการดูดซับแบบ ตรึงในคอลัมน์ โดยเมื่อทำการศึกษาแบบจำลองทางจลน์พลศาสตร์แบบ PSO และในการศึกษา กระบวนการดูดซับไซโปรฟลอกซาซินแบบตรึงในคอลัมน์ พบว่าประสิทธิภาพการดูดซับสูงสุด (q_{IH}) เท่ากับ 59.20 mg/g ที่ความเข้มเริ่มต้น 80 mg/L อัตราการไหล 10 mL/min และความสูงของ คอลัมน์ 15 cm และเมื่อทำการศึกษาแบบจำลองการดูดซับในระบบการดูดซับแบบตรึงในคอลัมน์ พบว่ามีความสอดคล้องกับแบบจำลองของ Thomas และ Yoon-Nelson

Chulalongkorn University

สาขาวิชา วิศวกรรมเคมี ปีการศึกษา 2566 ลายมือชื่อนิสิต ลายมือชื่อ อ.ที่ปรึกษาหลัก

6370283221 : MAJOR CHEMICAL ENGINEERING

KEYWORD: Fixed-bed column, Hardboard waste, Adsorption ciprofloxacin
 Suppanat Tantavanich : ADSORPTION OF CIPROFLOXACIN BY BIOCHAR
 FROM HARDBOARD WASTE IN FIXED BED COLUMN. Advisor: Asst. Prof.
 NATTAPORN TONANON, D.Eng.

The utilization of hardboard as a precursor for the synthesis of biochar to remove ciprofloxacin in fixed-bed adsorption columns was investigated in this research. The adsorbents were characterized by nitrogen adsorption-desorption at 77 K, scanning electron microscope and thermogravimetric analysis. The presence of Fe(NO₃)₃ served as a mesoporous activating agent. Biochar materials were prepared by impregnation of 0.10 M Fe(NO₃)₃ onto hardboard and followed by carbonization under nitrogen atmosphere at 800°C (HC-BI-800), resulting in a biochar with mesopore volume and specific surface area of 0.34 cm³/g and 530 m²/g respectively. Biochar was used for ciprofloxacin adsorption in both batch and fixed-bed column processes. Adsorption equilibrium data correlated with Langmuir and the Pseudo second-order (PSO) kinetics model. In fixed-bed column adsorption, the maximum adsorption capacity (q_{TH}) of 59.20 mg/g was achieved at an initial concentration of 80 mg/L, flow rate of 10 mL/min, and bed height of 15 cm. The adsorption modeling in the fixed-bed column correlated with the Thomas and Yoon-Nelson models.

Field of Study: Chemical Engineering Academic Year: 2023 Student's Signature Advisor's Signature

กิตติกรรมประกาศ

วิทยานิพนธ์ในหัวเรื่อง การดูดซับสารไซโปรฟลอกซาซินโดยไบโอชาร์ที่ได้จากแผ่นเยื่อไม้อัด แข็งในระบบการดูดซับแบบตรึงในคอลัมน์ สำเร็จลุล่วงไปด้วยดีเนื่องจากได้รับคำแนะนำและความ ช่วยเหลือจากผู้ช่วยศาสตราจารย์. ดร. ณัฐพร โทณานนท์ ผู้ให้คำปรึกษา ชี้แนะแนวทางและให้ความ ช่วยเหลือในทุกๆด้าน

นอกจากนี้ผู้วิจัยขอขอบคุณ PTEM LAB, ภาควิชาเคมีอุตสาหกรรม มหาวิทยาลัยเชียงใหม่ ที่ เอื้อเฟื้อสถานที่และเครื่องมือในการทำวิจัยจนสำเร็จลุล่วง อีกทั้งยังขอขอบคุณ ผู้ช่วยศาสตราจารย์. ดร. อดิศักดิ์ ไสยสุข และ ผู้ช่วยศาสตราจารย์. ดร. โยธิน ฉิมอุปละ ผู้ควบคุมห้องปฏิบัติการ PTEM ที่ให้ คำแนะนำและความช่วยเหลือในการปฏิบัติงาน

ผู้วิจัยขอขอบคุณทุนวิจัยจากโครงการทุนสนับสนุนการตีพิมพ์ผลงานวิชาการ จากภาควิชา วิศวกรรมเคมี คณะวิศวกรรมศาสตร์ จุฬาลงกรณ์มหาวิทยาลัย ที่ช่วยสนับสนุนเงินทุนวิจัยนี้ตั้งแต่เริ่มต้น จนสิ้นสุด

สุดท้ายนี้ขอกราบขอบคุณศาสตราจารย์. ดร. อาทิวรรณ โชติพฤกษ์ ที่ให้เกียรติเป็นประธาน ในการคุมสอบวิทยานิพนธ์รวมถึงศาสตราจารย์. ดร. ไพศาล กิตติศุภกร ,รองศาสตราจารย์. ดร. ปฏิภาณ ปัญญาพลกุล และดร. ชัญชณา ธนชยานนท์ คณะกรรมการในการคุมสอบวิทยานิพนธ์ที่มีส่วนให้ คำแนะนำเพื่อให้วิทยานิพนธ์นี้สำเร็จลุล่วงด้วยดี

> จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ศุภณัฐ ตันฑวณิชย์

สารบัญ

	หน้า
	ዋ
บทคัดย่อภาษาไทย	ዋ
	۹
บทคัดย่อภาษาอังกฤษ	۰۹
กิตติกรรมประกาศ	ຈ
สารบัญ	ົລ
สารบัญตาราง	ຄູ
สารบัญภาพ	ຊີ
บทที่ 1	
บทนำ	13
1.1 แรงจูงใจ เหตุผล และที่มา	13
1.2 วัตถุประสงค์	14
1.3 ขอบเขตงานวิจัย	14
1.4 ประโยชน์ที่คาดว่าจะได้รับ	15
1.5 ตารางการดำเนินแผนงาน	16
บทที่ 2	17
ทฤษฎีและเอกสารวิจัยที่เกี่ยวข้อง	17
2.1 แผ่นเยื่อไม้อัดแข็ง (Hardboard)	17
2.2 ชีวมวล (Biomass)	17
2.2 ไบโอชาร์ (Biochar)	
2.3 กระบวนการคาร์บอไนเซซัน (Carbonization process)	

2.4 ไซโปรฟลอกซาซิน (Ciprofloxacin)	. 19
2.4 แบบจำลองไอโซเทอมที่สภาวะสมดุล (Equilibrium isotherm models)	. 20
2.5 แบบจำลองทางจลนพลศาสตร์การดูดซับ	. 21
2.5 การดูดซับแบบตรึงในคอลัมน์ (Fixed-bed column)	. 22
2.6 แบบจำลองการดูดซับสำหรับระบบการดูดซับแบบตรึงในคอลัมน์	. 25
2.7 งานวิจัยที่เกี่ยวข้องกับการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์	. 27
บทที่ 3	. 30
การพิตสอง	. 30
3.1 วัสดุ	. 30
3.1.1 แผ่นเยื่อไม้อัดแข็ง (Hardboard)	. 30
3.1.2 สารเคมีที่ใช้ในการทดลอง	. 30
3.1.3 เครื่องมือที่ใช้ในการวิเคราะห์	. 31
3.2 การสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ด	. 31
3.2.1 การเตรียมฮาร์ดบอร์ด	. 31
3.2.2 การสังเคราะห์วัสดุดูดซับไบโอชาร์	. 32
3.2.3 การทดสอบคุณลักษณะของไบโอชาร์	. 32
3.3 ศึกษาการดูดซับสารไซโปรฟลอกซาซิน	. 33
3.3.1 ศึกษาการดูดซับไซโปรฟลอกซาซินจากการทดลองแบบกะ (Batch adsorption)	. 33
3.3.2 ศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบตรึงในคอลัมน์ (Fixed-	-
bed column)	. 33
บทที่ 4	. 36
ผลการทดลองและอภิปรายผลการทดลอง	. 36
4.1 การสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ดเหลือทิ้งจากกระบวนการผลิต	. 36

4.1.1 การศึกษาคุณสมบัติรูพรุนด้วยการดูดซับและคายการดูดซับไนโตรเจนที่อุณหภูมิ 77	К
	. 36
4.1.2 การศึกษาสัณฐานวิทยาและลักษณะพื้นผิวของวัสดุดูดซับ	. 39
4.1.3 การศึกษาสมบัติเชิงความร้อนของฮาร์ดบอร์ดและฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย	
Fe(NO ₃) ₃	. 40
4.2 การศึกษาการดูดซับยาปฏิชีวนะไซโปรฟลอกซาซิน	. 41
4.2.1 การศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบกะ	. 41
4.2.1.1 การศึกษาผลของความเข้มข้นเริ่มต้นที่มีต่อประสิทธิภาพการดูดซับไซโปร	
ฟลอกซาซิน	. 41
4.2.1.2 การศึกษาสมดุลการดูดซับและจลน์พลศาสตร์การดูดซับ	. 42
4.2.2 การศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์	. 46
4.2.2.1 ผลของความเข้มข้นเริ่มต้น	. 48
4.2.2.2 ผลของความสูงคอลัมน์	. 48
4.2.2.3 ผลของอัตราการไหล	. 49
4.2.3 แบบจำลองการดูดซับสำหรับระบบการดูดซับแบบตรึงในคอลัมน์	. 49
4.2.3.1 <i>แบบจำลองของ</i> Thomas	. 51
4.2.3.2 <i>แบบจำลองของ</i> Yoon-Nelson	. 53
4.2.3.3 แบบจำลองของ Adams-Bohart	. 55
บทที่ 5	. 59
สรุปผลการทดลอง	. 59
5.1 การสังเคราะห์วัสดุดูดซับ	. 59
5.2 การศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบกะ	. 59
5.3 การศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์	. 59
5.4 ข้อเสนอแนะ	. 60
ภาคผนวก	.61

บรรณานุกรม	
ประวัติผู้เขียน	72

Chulalongkorn University

สารบัญตาราง

	หน้า
ตารางที่ 1 แสดงแผนการดำเนินงาน	16
ตารางที่ 2 งานวิจัยที่เกี่ยวข้องกับการดูดซับไซโปรฟรอกซาซินในระบบการดูดซับแบบตรึงในคอลัมร	น์
	29
ตารางที่ 3 แสดงรายละเอียดของสารเคมีที่ใช้ในงานวิจัย	30
ตารางที่ 4 สภาวะการเตรียมวัสดุดูดซับ	36
ตารางที่ 5 ชนิดของไอโซเทอม พื้นที่ผิวจำเพาะ ปริมาตรรูพรุนขนาดไมโครและมีโซจากการดูดซับ-	
คายการดูดซับแก๊สไนโตรเจนที่ 77 K ของวัสดุดูดซับ	38
ตารางที่ 6 องค์ประกอบทางเคมีของฮาร์ดบอร์ดและไบโอชาร์จากฮาร์ดบอร์ด	40
ตารางที่ 7 ผลการวิเคราะห์พารามิเตอร์ของแบบจำลองไอโซเทอมการดูดซับแบบ Langmuir และ	
Freudlich ด้วยวิธีวิเคราะห์การถดถอยแบบไม่เชิงเส้น	43
ตารางที่ 8 ผลการวิเคราะห์พารามิเตอร์ Pseudo-first-order และ Pseudo-second-order ด้วย	
วิธีการวิเคราะห์การถดถอยแบบไม่เชิงเส้น	45
ตารางที่ 9 ผลการวิเคราะห์พารามิเตอร์จากกราฟเบรกทรูสำหรับการดูดซับไซโปรฟลอกซาซินของ	
ไปโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ควา	ม
เข้มข้นเริ่มต้น ,ความสูงคอลัมน์ และอัตราการไหลที่แตกต่างกัน	47
ตารางที่ 10 ผลการวิเคราะห์พารามิเตอร์ของแบบจำลอง Thomas, Yoon-Nelson และ Adams-	
Bohart	50
ตารางที่ 11 การเปรียบเทียบประสิทธิภาพการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึง	ใน
คอลัมน์บนวัสดุดูดซับชนิดต่างๆ	58
ตารางที่ 12 ค่าการดูดกลืนแสงของสารละลายไซโปรฟลอกซาซินมาตรฐานที่ความยาวคลื่น 274 nr	m
	62

สารบัญภาพ

	หน้า
รูปที่ 1โครงสร้างเซลลูโลส	18
รูปที่ 2 โครงสร้างเฮมิเซลลูโลส	18
รูปที่ 3 โครงสร้างลิกนิน	18
รูปที่ 4 โครงสร้างโมเลกุลไซโปรฟรอกซาซิน	19
รูปที่ 5 กราฟเบรกทรู	23
รูปที่ 6 แสดงแผนผังการเตรียมฮาร์ดบอร์ด	31
รูปที่ 7 แสดงแผนผังการเตรียมไบโอชาร์จากฮาร์ดบอร์ด	32
รูปที่ 8 การดูดซับแบบตรึงในคอลัมน์	35
รูปที่ 9 ไอโซเทอมการดูดซับและคายการดูดซับไนโตรเจนที่อุณหภูมิ 77 K ของไบโอชาร์ที่ถูกกระตุ้น ด้วย Fe(NO ₃) ₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 600°C (HC-BI-600), 700°C (HC-BI-700), 800° (HC-BI-800), 900°C (HC-BI-900) และที่ไม่ถูกกระตุ้นด้วย Fe(NO ₃) ₃ ตามด้วยคาร์บอไนเซชันที่ อุณหภูมิ 900°C (HC-900)	¦ °⊂ 37
รูปที่ 10 การกระจายตัวความกว้างของรูพรุนในช่วงมีโซพอร์ของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO ₃) ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 700°C (HC-BI-700), 800°C (HC-BI-800) และ 900°C (HC-BI- 900)) ₃ 38
รูปที่ 11 สัณฐานวิทยาและลักษณะพื้นผิวของฮาร์ดบอร์ด RAW (a-b) และของไบโอชาร์ที่ถูกกระตุ้น ด้วย Fe(NO ₃) ₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800)(c-d) วิเคราะห์ด้วยกล้อง จุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)	1 39
รูปที่ 12 TGA curve แสดงความสัมพันธ์ระหว่าง %weight loss กับอุณหภูมิและ DTG กับอุณหภู ของฮาร์ดบอร์ด (RAW) และฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO ₃)3 (HC-BI)	มิ 40
รูปที่ 13 ผลของความเข้มข้นเริ่มต้นที่มีผลต่อการกำจัดไซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้น ด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800)	41

บทนำ

1.1 แรงจูงใจ เหตุผล และที่มา

ในปัจจุบันการเพิ่มขึ้นของประชากรทำให้มีความต้องการในการใช้ยาปฏิชีวนะเพิ่มสูงขึ้นตาม ไปด้วยทั้งในส่วนของครัวเรือนและปศุสัตว์ [1] โดยยาปฏิชีวนะไซโปรฟรอกซาซิน (Ciprofloxacin; CIP) เป็นยาที่อยู่ในกลุ่มฟลูออโรควิโนโลน (Fluoroquinolones) ซึ่งเป็นยาที่มีการใช้งานอย่าง แพร่หลายในทางการแพทย์และสัตว์แพทย์ [2] โดยไซโปรฟรอกซาซินนั้นมีความเสถียรสูงและไม่ย่อย สลายตามธรรมชาติ [3, 4] ดังนั้นเมื่อไซโปรฟรอกซาซินปนเปื้อนลงในระบบนิเวศน์แล้วไปสะสมใน ร่างกายของสิ่งมีชีวิตแม้จะมีปริมาณเพียงเล็กน้อยแต่อาจทำให้เกิดการเป็นพิษเฉียบพลันและเรื้อรัง ตลอดจนทำให้เกิดการดื้อยาของเชื้อแบคทีเรีย โดยสาเหตุของการปนเปื้อนเกิดจากการจัดการยา เหลือใช้และยาที่หมดอายุด้วยวิธีการที่ไม่เหมาะสม เช่น การทิ้งลงถังขยะทั่วไป การทิ้งในป่า แหล่งน้ำ และการฝังกลบลงในดิน อีกทั้งยังเกิดจากสิ่งมีชีวิตที่ไม่สามารถเผาผลาญไซโปรฟลอกซาซินในร่างกาย ได้หมด ดังนั้นเมื่อรับประทานไซโปรฟรอกซาซินเข้าไปจะถูกเผาผลาญในร่างกายเพียง 25 % ซึ่งส่วน ที่เหลือจะถูกขับออกจากร่างกายทางปัสสาวะ [5, 6]

โดยอีกสาเหตุสำคัญที่ทำให้เกิดการปนเปื้อนในแหล่งน้ำก็คือระบบบำบัดน้ำในปัจจุบันไม่มี ประสิทธิภาพในการกำจัดยาปฏิชีวนะเนื่องจากเทคโนโลยีในระบบบำบัดน้ำเสียไม่ได้ถูกออกแบบเพื่อ การนี้ [7] จากการศึกษาน้ำเสียที่ผ่านกระบวนการบำบัดจากโรงพยาบาลในปี 2022 จำนวน 60 แห่ง ในประเทศไทย พบว่าน้ำเสียมีการปนเปื้อนของไซโปรฟลอกซาซิน โดยมีความเข้มข้นในช่วง 514-767 ng/L [8] ซึ่งมีความเข้มข้นเกินกว่าค่า PNEC-ENV (environmental predicted no-effect concentration) ที่ 640 ng/L โดยค่า PNEC-ENV นั้นจะบอกถึงความเข้มข้นสูงสุดที่ไซโปรฟลอก ซาซินจะไม่ส่งผลเสียต่อสิ่งแวดล้อม [9] โดยจะเห็นได้ว่าระบบการบำบัดน้ำเสียของโรงพยาบาลไม่ สามารถกำจัดไซโปรฟรอกซาซินได้จนหมด ดังนั้นจึงจำเป็นต้องใช้เทคโนโลยีที่มีประสิทธิภาพในการ กำจัดไซโปรฟรอกซาซินที่บนเปื้อนในน้ำ โดยในปัจจุบันมีหลากหลายวิธีในการกำจัดไซโปรฟรอก ซาซินได้แก่ การแยกด้วยเมมเบรน (Membrane separation), กระบวนการออกซิเดชั่นขั้นสูง (Advanced oxidation) ซึ่งทั้ง 2 วิธีนี้เป็นวิธีที่มีประสิทธิภาพที่ดีในการกำจัดไซโปรฟรอกซาซิน แต่มี ค่าใช้จ่ายในการดำเนินการที่สูง กระบวนการสร้างและรวมตะกอน (Coagulation-Flocculation) เป็นวิธีที่มีค่าใช้จ่ายในการดำเนินงานที่ต่ำ แต่มีข้อเสียคือจะเกิดกากตะกอนของเสียขึ้นในกระบวนการ ซึ่งต้องนำไปกำจัดในภายหลัง การใช้โอโซน (Ozonation) มักก่อให้เกิดสารพิษจากการย่อยสลายของ ยาปฏิชีวนะ และอีกวิธีหนึ่งซึ่งถือว่าเป็นกระบวนการที่น่าสนใจในการกำจัดไซโปรฟรอกซาซินนั้นคือ กระบวนการดูดซับ (Adsorption) เนื่องจากเป็นวิธีที่ดำเนินการง่าย ราคาถูก และไม่ก่อให้เกิด ผลิตภัณฑ์ที่เป็นอันตรายหลังการดูดซับ [10]

แผ่นเยื่อไม้อัดแข็งหรือฮาร์ดบอร์ด (Hard board) นั้นเป็นวัสดุที่น่าสนใจเนื่องจากในปี 2018 ประเทศไทยเป็นประเทศที่ส่งออกฮาร์ดบอร์ดเป็นอันดับ 2 ของทวีปเอเชีย โดยมีประมาณมากถึง 70,000 m³/year [11] ซึ่งทำให้เกิดของเหลือทิ้งในกระบวนการผลิตเป็นจำนวนมาก โดยในแต่ละปี ฮาร์ดบอร์ดที่เป็นของเสียทางอุตสาหกรรมนั้นถูกนำไปกำจัดโดยวิธีต่างๆ เช่น การฝังกลบ การเผา ฯลฯ เนื่องจากของเสียเหล่านี้ไม่มีมูลค่าทางด้านเศรษฐกิจและไม่สามารถนำกลับมาใช้ใหม่ได้ ดังนั้นจึง เป็นทางเลือกที่น่าสนใจในการนำมาทำเป็นวัสดุดูดซับ อีกทั้งตัวของฮาร์ดบอร์ดนั้นเป็นวัสดุลิกโน เซลลูโลส ซึ่งประกอบด้วย เซลลูโลส (Cellulose), เฮมิเซลลูโลส (Hemi-cellulose), และลิกนิน (Lignin) ที่เป็นแหล่งคาร์บอนที่สำคัญในการสังเคราะห์วัสดุคาร์บอนที่มีรูพรุน

ดังนั้นในงานวิจัยนี้จะทำการศึกษาการสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ดซึ่งเป็นวัสดุเหลือ ทิ้งทางอุตสาหกรรมเพื่อใช้เป็นวัสดุดูดซับไซโปรฟรอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์ และศึกษาอิทธิพลของตัวแปรที่มีผลต่อการดูดซับ ได้แก่ ความเข้มข้นเริ่มต้นของไซโปรฟรอกซาซิน ความสูงของคอลัมน์ และอัตราการไหล โดยนำผลที่ได้ไปศึกษาตามแบบจำลองการดูดซับเพื่อทำนาย เส้นโค้งการดูดซับ (Breakthrough curve) บนวัสดุดูดซับที่สังเคราะห์ได้

1.2 วัตถุประสงค์

 สังเคราะห์และศึกษาคุณลักษณะของไบโอชาร์ที่ได้จากแผ่นเยื่อไม้อัดแข็งที่เหลือทิ้งจาก กระบวนการผลิต

สึกษาปัจจัยที่มีผลต่อการดูดซับยาปฏิชีวนะไซโปรฟลอกซาซินโดยไบโอชาร์ที่ได้จากแผ่น
 เยื่อไม้อัดแข็งเหลือทิ้งจากกระบวนการผลิตในระบบการดูดซับแบบตรึงในคอลัมน์

1.3 ขอบเขตงานวิจัย

ส่วนที่ 1: การสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ดเหลือทิ้งจากกระบวนการผลิต ไบโอชาร์จากฮาร์ดบอร์ดจะถูกสังเคราะห์โดยนำสารละลายเหล็กไนเตรตที่ความเข้มข้น 0.1 M มาตรึง รูปบนฮาร์ดบอร์ดที่มีขนาดอยู่ในช่วง 0.125-0.250 mm โดยใช้อุณหภูมิ 100°C เป็นเวลา 2 hr. จากนั้นนำไปผ่านกระบวนการคาร์บอไนเซชัน (Carbonization) ภายใต้บรรยากาศไนโตรเจนเป็น เวลา 2 hr. โดยควบคุมอัตราการให้ความร้อนที่ 10°C/min และอัตราการไหลของแก๊สไนโตรเจนที่ 100 cm³/min โดยจะทำการศึกษาตัวแปรที่มีผลต่อคุณลักษณะของไบโอชาร์ดังนี้

- อุณหภูมิการคาร์บอไนเซชันโดยจะทำการศึกษาในช่วงอุณหภูมิ 600°C – 900°C

ส่วนที่ 2: ศึกษาการดูดซับยาปฏิชีวนะไซโปรฟลอกซาซิน

ศึกษาการดูดซับไซโปรฟลอกซาซินจากการทดลองแบบกะ (batch adsorption) โดยมี รายละเอียดดังนี้

- สมดุลการดูดซับ โดยศึกษาความเข้มข้นเริ่มต้นในช่วง 1-200 mg/L โดยควบคุมอุณหภูมิ
 ที่ 30°C
- จลนพลศาสตร์การดูดซับ โดยศึกษาการดูดซับอยู่ในช่วง 0-48 hr. ที่ความเข้มข้นเริ่มต้น
 1-100 mg/L

ศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบตรึงในคอลัมน์ (Fixed-bed column) โดยปัจจัยที่จะศึกษามีดังต่อไปนี้

- ผลของความเข้มข้นเริ่มต้น โดยศึกษาความเข้มข้นเริ่มต้นในช่วง 20-80 mg/L
- ผลของความสูงของคอลัมน์ โดยศึกษาความสูงของคอลัมน์ในช่วง 5-15 cm
- ผลของอัตราการไหล โดยศึกษาอัตราการไหลในช่วง 5-15 cm³/min

1.4 ประโยชน์ที่คาดว่าจะได้รับ

เป็นแนวทางในการบำบัดน้ำที่ปนเปื้อนยาปฏิชีวนะโดยใช้ไบโอชาร์ที่สังเคราะห์จากฮาร์ดบ อร์ด ซึ่งเป็นของเหลือทิ้งจากอุตสาหกรรมการผลิตฮาร์ดบอร์ดและยังช่วยเพิ่มมูลค่าให้กับของเหลือทิ้ง จากอุตสาหกรรมผลิตฮาร์ดบอร์ด อีกทั้งสามารถนำไปประยุกต์ใช้เพื่อเพิ่มประสิทธิภาพในการบำบัด น้ำเสียปนเปื้อนยาปฏิชีวนะไซโปรฟลอกซาซินที่มีในปัจจุบัน

Chulalongkorn University

1.5 ตารางการดำเนินแผนงาน

ตารางที่ 1 แสดงแผนการดำเนินงาน

แผนงานวิจัย	เดือนที่											
	1	2	3	4	5	6	7	8	9	10	11	12
1.ทบทวน												
เอกสารวิชาการ												
2.สังเคราะห์ ไบ												
โอชาร์จากเศษ			-									
ฮาร์ดบอร์ด					11/1	1 3						
3. ศึกษาผลของ			6. 2		2223/	\square						
ความเข้มข้น			100									
เริ่มต้น			1	///	7							
4. ศึกษาผลของ			1	///k								
ความสูงของ			//	/K	6	8////8		-				
คอลัมน์				12	1016		B	•	r			
5.ศึกษาผลของ				13		Sell	No.					
อัตราการไหล			1	Lecco	•@>>>>							
6.รวบรวมข้อมูล		1										
และเขียน		8	S.				X				-	
วิทยานิพนธ์			(m)	_		_						

จุฬาลงกรณ์มหาวิทยาลัย Chulalongkorn University

ทฤษฎีและเอกสารวิจัยที่เกี่ยวข้อง

2.1 แผ่นเยื่อไม้อัดแข็ง (Hardboard)

เป็นผลิตภัณฑ์จากไม้ โดยการนำเส้นใยไม้ไปขึ้นรูปเป็นแผ่นโดยผ่านกระบวนการอัดด้วย แรงดัน โดยจะเทคนิคการขึ้นรูปอยู่ 3 วิธี ได้แก่ wet-wet ,wet-dry และ dry-dry ซึ่งใน กระบวนการผลิตแบบ wet-wet คือการนำเยื้อไม้มาผสมกับน้ำจากนั้นนำไปขึ้นรูปบนเครื่องทำแผ่น โดยน้ำบางส่วนจะถูกบีบออกมาจากกระบวนการทำแผ่น แล้วจึงนำไปผ่านเครื่องรีดที่มีอุณหภูมิและ แรงอัดสูง ทำให้ได้แผ่นไม้ที่มีความหนาแน่นสูง แต่เนื่องจากแผ่นเยื้อไม้ก่อนเข้าเครื่องรีดนั้นเปียกทำ ให้จึงต้องรีดกับตะแกรงเพื่อที่จะได้ระบายไอน้ำออกได้ จึงทำให้ด้านหนึ่งของผลิตภัณฑ์มีรอยตะแกรง เรียกว่า แผ่นเรียบด้านเดียว (smooth-one-side;S1S) ต่อมาเป็นการผลิตแบบ wet-dry โดยจะทำ การขึ้นรูปแบบเปียก แต่จะทำให้แห้งก่อนที่จะนำไปรีดด้วยความร้อนโดยจะถูกรีดลงบนแผ่นโลหะ เรียบ ซึ่งผลิตภัณฑ์ที่ได้จะแผ่นเรียบทั้ง 2 ด้าน (smooth-two-sides;S2S) และสุดท้ายเป็น กระบวนการผลิตแบบ dry-dry นั้นเป็นกระบวนการที่ขึ้นรูปเป็นแผ่นและรีดด้วยอุณหภูมิกับแรงอัดสูง แบบแห้ง โดยจะมีการเติม phenol-formaldehyde เพื่อช่วยในการยึดเกาะ [12]

2.2 ชีวมวล (Biomass)

ชีวมวลเป็นสารประกอบอินทรีย์ที่มาจากพืช ซึ่งชีวมวลนั้นประกอบด้วยสารประกอบโพลิ เมอร์ชีวภาพหลักๆสามชนิดได้แก่ เซลลูโลส เฮมิเซลลูโลส และลิกนิน โดยทั้ง 3 ชนิดนี้มีองค์ประกอบ ของ คาร์บอน ออกซิเจน และไฮโดรเจน ซึ่งเป็นองค์ประกอบที่พบในโครงสร้างของวัสดุลิกโน เซลลูโลส แต่มีการจัดเรียงโครงสร้างที่แตกต่างกัน โดยเซลลูโลสนั้นเป็นพอลิเมอร์ชีวภาพสายตรงซึ่ง เป็นเส้นใยหลักที่ทำหน้าที่สร้างผนังเซลล์ของเซลล์พืช เฮมิเซลลูโลสเป็นพอลิเมอร์ชีวภาพแบบกิ่งทำ หน้าที่ให้ผนังเซลล์ตรงขึ้นโดยการจับกับเซลลูโลส และลิกนินทำหน้าที่เหมือนกาวระหว่างเส้นใยทำให้ โครงสร้างของพืชมีความแข็งแกร่งเพิ่มมากขึ้น โดยโครงสร้างของเซลลูโลส เฮมิเซลลูโลส และลิกนิน แสดงในรูปที่ 1-3 ตามลำดับ

2.2 ไบโอชาร์ (Biochar)

ไปโอชาร์เป็นวัสดุคาร์บอนที่มีรูพรุน (Porous carbonaceous material) ซึ่งได้จากการ สลายตัวทางความร้อนของชีวมวลภายใต้ภายใต้ออกซิเจนที่มีจำกัด โดยมีวัสดุชีวมวลหลากหลายชนิด ถูกนำมาใช้เพื่อการผลิตไปโอชาร์ ได้แก่ ของเหลือทิ้งจากการเกษตร ของเสียจากอาหารและการทำ สวน ของเสียจากการทำปศุสัตว์ เป็นต้น ซึ่งไปโอชาร์นั้นมีสมบัติที่โดดเด่น เช่น ราคาถูก เป็นมิตรต่อ สิ่งแวดล้อม และมีช่วงการใช้งานที่กว้างขวางในการเป็นวัสดุตั้งต้น (Feed stock) รวมทั้งมีเสถียรภาพ ทางกลและทางความร้อนที่ดี ซึ่งนิยมนำไปประยุกต์ใช้ด้านสิ่งแวดล้อม ยกตัวอย่างเช่น ใช้บำบัดน้ำ เสียและฟื้นฟูดินที่ปนเปื้อน เนื่องจากมีพื้นที่ผิวสูง มีรูพรุนสูง ประสิทธิภาพในการแลกเปลี่ยนไอออนดี และมีความสามารถในการเป็น pH บัฟเฟอร์ [13] 2.3 กระบวนการคาร์บอไนเซซัน (Carbonization process)

กระบวนการคาร์บอไนเซชันคือการเปลี่ยนสารชีวมวลให้เป็นเป็นวัสดุคาร์บอนโดยกระบวน ทางความร้อนที่เรียกว่าไพโรไลซิส โดยในระหว่างกระบวนการนั้นชีวมวลที่ได้รับความร้อนภายใต้ บรรยากาศที่มีออกซิเจนจำกัดจะเกิดการสลายตัวทางความร้อนของสารประกอบอินทรีย์ในเซลลูโลส เฮมิเซลลูโลส และลิกนิน ซึ่งผลิตภัณฑ์ที่ได้จากกระบวนการนี้ได้แก่ ก๊าซ น้ำมันดิน (ของเหลว) และ ถ่าน (ของแข็ง) [14]

 $C_{organic} \longrightarrow C_{coke/char/carbon} + liquids + gases$

2.4 ไซโปรฟลอกซาซิน (Ciprofloxacin)

ไซโปรฟลอกซาซินเป็นยาปฏิชีวนะรุ่นที่ 2 จัดอยู่ในกลุ่มยาฟลูออโรควิโนโลน โดยถูกพัฒนา มาจาก กรดนาลิดิซิก (Nalidixic acid) ซึ่งเป็นยาปฏิชีวนะตัวแรกในกลุ่มควิโนโลน เนื่องจากยา ปฏิชีวนะในรุ่นแรกนั้นก่อให้เกิดดื้อยาของเชื้อได้ง่าย จึงทำให้มีการดัดแปลงสูตรโครงสร้างของยาใน รุ่นแรกโดยการเติม ฟลูออรีน 1 อะตอมและวงแหวนปิเปอร์ราซิน (Piperazine) เข้าไปในโครงสร้าง ของกรดนาลิดิซิก โดยไซโปรฟลอกซาซินนั้นเป็นยาปฏิชีวนะที่มีการใช้กันอย่างแพร่หลายสำหรับการ รักษาหรือป้องกันการติดเชื้อแบคทีเรียทั้งแกรมบวกและลบ ซึ่งโดยทั่วไปใช้รักษาการติดเชื้อใน ทางเดินปัสสาวะและอุจจาระร่วงในมนุษย์และสัตว์ โดยยากลุ่มนี้ทำให้แบคทีเรียไม่สามารถสร้างดีเอ็น เอ (DNA) ซึ่งจำเป็นต่อการเจริญเติบโตและแบ่งตัว ทำให้ยับยั้งการเจริญเติบโตของแบคทีเรีย จาก สถิตในปี 2017 พบว่าทุกๆ 1000 คนของประชากรไทยจะมีคนใช้ยาปฏิชีวนะ 52.96 g ซึ่งมีการใช้ยา ปฏิชีวนะในกลุ่มฟลูออโรควิโนโลน 4.18 g หรือคิดเป็น 7.9% ของยาปฏิชีวนะที่ใช้ [15]

รูปที่ 4 โครงสร้างโมเลกุลไซโปรฟรอกซาซิน

2.4 แบบจำลองไอโซเทอมที่สภาวะสมดุล (Equilibrium isotherm models)

แบบจำลองไอโซเทอมของการดูดซับเป็นการอธิบายความสัมพันธ์ระหว่างความเข้มข้นที่ สมดุลกับจำนวนของตัวถูกดูดซับ (Adsorbate) ที่มีการดูดซับที่อุณหภูมิคงที่ถูกอธิบายโดยสมการสอง ตัวแปรได้แก่ Langmuir และ Freundlich

2.4.1) แบบจำลองของ Langmuir (Langmuir isotherm)

ในปี ค.ศ.1916 แลงเมียร์ (Irving Langmuir) ได้เสนอไอโซเทอมแบบง่ายสุดโดยมีสมมติฐาน คือ

1) ใช้สำหรับกลไกการดูดซับแบบโมโนเลเยอร์ (monolayer adsorption)

2) โมเลกุลที่ถูกดูดซับมีจำนวนที่แน่นอนและมีตำแหน่งของตัวดูดซับที่แน่นอน

 3) ในแต่ละตำแหน่งของตัวดูดซับจะดูดซับโมเลกุลของตัวถูกดูดซับได้เพียงหนึ่งโมเลกุล เท่านั้น ซึ่งในแต่ละตำแหน่งค่าความร้อนของการดูดซับเท่ากันและคงที่โดยไม่มีแรงกระทำระหว่าง โมเลกุลที่อยู่ในตำแหน่งใกล้กันพลังงานของการดูดซับจะเหมือนกันทุกๆพื้นที่ของตัวดูดซับ

 4) โมเลกุลที่ถูกดูดซับไม่สามารถย้ายข้ามพื้นผิวหรือเกิดปฏิกิริยากับโมเลกุลข้างเคียงได้ [16-18]

โดยสมการการดูดซับแบบ Langmuir เป็นไปดังสมการ (1)

$$q_e = \frac{Q_0 b C_e}{1 + b C_e}$$
(1)

เมื่อ q_e คือ ปริมาณสารที่ถูกดูดซับต่อปริมาณของตัวดูดซับที่สภาวะสมดุล (mg/g)

Q₀ คือ ประสิทธิภาพการดูดซับแบบชั้นเดียว (mg/g)

b คือ ค่าคงที่ทางพลังงานของการดูดซับ หรือค่าคงที่ของ Langmuir (L/mg)

C_e คือ ความเข้มข้นของตัวถูกดูดซับที่สมดุล (mg/L)

2.4.2แบบจำลองของ Freundlich (Freundlich isotherm)

สมการของ Freundlich มีสมมติฐานของการดูดซับที่ว่าพื้นผิวของตัวดูดซับไม่เป็นเนื้อ เดียวกันตลอดและเกิดการดูดซับแบบหลายชั้น (multilayer adsorption) พื้นที่ผิวและพลังงานมีการ กระจายตัวเป็นแบบเอ็กซ์โปเนนเชียล โดยมีการดูดซับทั้งทางเคมีและทางกายภาพ [19-21]

โดยสมการการดูดซับแบบ Freundlich เขียนได้ดังสมการ (2)

$$q_e = K_F C_e^{1/n}$$

เมื่อ K_F คือ ค่าคงของ Freundlich ซึ่งเกี่ยวข้องกับประสิทธิภาพการดูดซับ[(mg/g)/(mg/L)]^{1/n}

n คือ heterogeneity factor

2.5 แบบจำลองทางจลนพลศาสตร์การดูดซับ

เป็นการศึกษาอัตราเร็วในการเกิดปฏิกิริยาและค่าคงที่อัตราเร็วในกระบวนการดูดซับยา ปฏิชีวนะบนวัสดุดูดซับที่สังเคราะห์ได้ โดยแบบจำลองที่ใช้ในการศึกษาจลนพลศาสตร์การดูดซับ ได้แก่ แบบจำลอง Pseudo-first order (PFO) และ Pseudo-second order (PSO)

แบบจำลอง Pseudo-first order เป็นแบบจำลองจลนพลศาสตร์ที่นิยมใช้กันอย่าง แพร่หลายซึ่งเกี่ยวกับการดูดซับบนพื้นผิวที่เป็นของแข็ง [22] โดยแบบจำลองนี้ถูกอธิบายดังสมการที่ (3)

$$q_t = q_e (1 - e^{-k_1 t})$$
⁽³⁾

โดยที่ k₁ คือ ค่าคงที่ของสมการ PFO (min⁻¹)

(2)

แบบจำลอง Pseudo-second order สมการจลนพลศาสตร์สำหรับอธิบายการดูดซับบนผิว ตัวดูดซับที่นิยมอีกสมการหนึ่งคือสมการอัตราเร็วปฏิกิริยาเทียมอันดับสองเทียม (PSO rate constant; k₂) และยังสามารถหาอัตราเร็วของการดูดซับเริ่มต้น (initial rate constant; h₂) ของ ปฏิกิริยาได้ บนสมมติฐานการดูดซับของตัวถูกดูดซับบนผิวของตัวดูดซับเป็นผลมาจากแรงดึงดูดทาง ไฟฟ้าและเป็นการดูดซับทางเคมีที่มีผลมาจากตำแหน่งการเกิดปฏิกิริยา (active site) จากปฏิกิริยา การดูดซับ [23] โดยอธิบายได้ดังสมการ (4-5)

$$q_t = \frac{k_2 q_{e2}^2 t}{1 + k_2 q_{e2} t} \tag{4}$$

(5)

โดยที่ k₂ คือ ค่าคงที่ของสมการ PSO (g/mg•min)

h₂ คือ ค่าคงที่อัตราเร็วการดูดซับเริ่มต้น (mg/g·min)

2.5 การดูดซับแบบตรึงในคอลัมน์ (Fixed-bed column)

ระบบดูดซับแบบตรึงในคอลัมน์เป็นกระบวนที่ใช้ในการแยกสารซึ่งสามารถแยกได้ทั้งแก้ส และของเหลว โดยบรรจุสารดูดซับลงในคอลัมน์ในสภาพตรึงรูป (Fixed bed) แล้วป้อนของไหลผ่าน ตัวดูดซับที่ถูกตรึงรูปโดยเป็นของแข็งในคอลัมน์ในทิศทางไหลขึ้น (Up-flow)หรือไหลลง (Downflow) อย่างต่อเนื่อง เมื่อของเหลวไหลผ่านคอลัมน์สารที่สามารถถูกดูดซับได้จะถูกดูดซับและเกาะติด กับตัวดูดซับ จนถึงระยะเวลาหนึ่งตรงบริเวณทางเข้าของคอลัมน์จะอิ่มตัวจนทำให้เกิดเป็นเขตที่มีการ อิ่มตัวในการดูดซับเรียกว่าบริเวณอิ่มตัว (Saturated zone) ซึ่งจะเป็นชั้นที่ไม่มีการดูดซับเกิดขึ้นอีก แล้วในขณะที่บริเวณที่ต่อจากบริเวณที่มีการอิ่มตัวยังมีการดูดซับอยู่อย่างต่อเนื่องบริเวณของการดูด ซับนี้เรียกว่าบริเวณการถ่ายเทมวล (Mass transfer zone, MTZ) และเมื่อตรวจพบความเข้มข้นของ สารถูกดูดซับที่ตำแหน่งทางออกจะเรียกสภาวะนี้ว่าจุดเบรกทรู (Breakthrough point) จากนั้นเมื่อ ติดตามความเข้มข้นเทียบกับเวลาจะได้โปรไฟล์ของความเข้มข้น (Concentration profile) ที่มี ลักษณะเป็นเส้นโค้งที่มีลักษณะคล้ายตัว "S" ซึ่งเรียกว่ากราฟเบรกทรู (Breakthrough curve) โดย สามารถนำกราฟเบรกทรูที่ได้ไปคำนวณเพื่อหาค่าต่างๆได้แก่ ความยาวของชั้นการดูดซับ (Length of mass transfer zone), ปริมาณสารที่ถูกดูดซับต่อปริมาณของตัวดูดซับที่สภาวะสมดุล (q_e), ค่า Empty Bed Contact Time (EBCT) และค่าร้อยละการกำจัดไซโปรฟลอกซาซิน (%R) ซึ่งสามารถ นำไปใช้ในการออกแบบคอลัมน์ดูดซับขนาดใหญ่ต่อไปได้ [24, 25] โดยจะแสดงดังสมการ (6-9)

- L_{ab} คือ ความสูงทั้งหมดของชั้นตัวดูดซับ (cm)
- t_b คือ เวลาที่ใช้ในการบำบัดน้ำจากเริ่มต้นจนถึงจุด Breakthrough (min)
- t_{e.} คือ เวลาจากเริ่มต้นจนถึงจุดอิ่มตัวของตัวดูดซับ (min)

$$q_{e} = \frac{QC_{0}}{m} \int_{0}^{t_{e}} \left(1 - \frac{C_{t}}{C_{0}}\right)$$
(7)

โดย qe คือ ปริมาณสารที่ถูกดูดซับต่อปริมาณของตัวดูดซับที่สภาวะสมดุล (mg/g)

- m คือ น้ำหนักของตัวดูดซับ (mg)
- Q คือ อัตราการไหลเชิงปริมาตร (mL/min)
- C₀ คือ ความเข้มข้นของสารละลาย ณ เวลาเริ่มต้น (mg/L)
- C_t คือ ความเข้มข้นของสารละลาย ณ เวลาใดๆ (mg/L)
- t_e คือ เวลาของการดูดซับ ณ สภาวะสมดุล (min)

$$EBCT = \frac{V}{Q}$$
(8)

โดย V คือ ปริมาตรของคอลัมน์ (mL)

Q คือ อัตราการไหลเชิงปริมาตร (mL/min)

จุหาลงกรณ์มหาวิทยาลัย

HULALONGKORN UNIVERSITY

$$\% R = 100 \left(\frac{q_e m}{C_0 Q t_e}\right)$$
⁽⁹⁾

โดย q_e คือ ปริมาณสารที่ถูกดูดซับต่อปริมาณของตัวดูดซับที่สภาวะสมดุล (mg/g)

- m คือ น้ำหนักของตัวดูดซับ (mg)
- Q คือ อัตราการไหลเชิงปริมาตร (mL/min)
- C₀ คือ ความเข้มข้นของสารละลาย ณ เวลาเริ่มต้น (mg/L)
- t_e คือ เวลาของการดูดซับ ณ สภาวะสมดุล (min)

2.6 แบบจำลองการดูดซับสำหรับระบบการดูดซับแบบตรึงในคอลัมน์

ระบบการดูดซับแบบตรึงในคอลัมน์เป็นกระบวนการดูดซับระหว่างตัวดูดซับและตัวถูกดูดซับ ้ที่เกิดขึ้นภายในคอลัมน์อย่างต่อเนื่อง ดังนั้นจึงมีความจำเป็นอย่างยิ่งที่จะต้องทำนายระยะเวลาที่สาร ที่ต้องการจะดูดซับเริ่มออกจากคอลัมน์หรือจุดเบรกทรูซึ่งสามารถใช้แบบจำลองอย่างง่ายมาใช้ในการ ทำนายจุดเบรกทรูของคอลัมน์ ได้แก่ แบบจำลองของ Thomas, แบบจำลองของ Yoon-Nelson และแบบจำลองของ Adams-Bohart

2.6.1 แบบจำลองของ Thomas

เป็นแบบจำลองที่นิยมใช้อย่างกว้างขวางโดยแบบจำลองของ Thomas นั้นตั้งอยู่บน สมมุติฐานของแบบจำลองไอโซเทอร์มของแลงเมียร์และแบบจำลองจลนพลศาสตร์อันดับสอง [26, 27] โดยข้อมูลที่ได้จากการศึกษาแบบจำลองของ Thomas คือความสามารถในการดูดซับสูงสุด (q_{th}) และค่าคงที่อัตราการดูดซับ (K_{Th}) ซึ่งแสดงดังสมการที่ (10)

$$\frac{C_t}{C_0} = \frac{1}{1 + exp\left[\frac{k_{Th}q_{Th}m}{Q} - k_{Th}C_0t\right]}$$
(10)

K_{Th} คือ ค่าคงที่อัตราการดูดซับของ Thomas (L/min·g) โดยที่

q_{Th} คือ ประสิทธิภาพการดูดซับสูงสุด (mg/g) ไปไล้ย

m คือ น้ำหนักของตัวดูดซับในคอลัมน์ (mg)

O คือ อัตราการไหลเชิงปริมาตร (mL/min)

C_t คือ ความเข้มข้นของสารละลาย ณ เวลาใดๆ (mg/L)

C₀ คือ ความเข้มข้นของสารละลาย ณ เวลาเริ่มต้น (mg/L)

t คือ เวลาของการดูดซับที่เวลาใดๆ (min)

เป็นแบบจำลองทางคณิตศาสตร์ของกระบวนการดูดซับที่เกิดขึ้นในคอลัมน์ โดยอยู่บน พื้นฐานของสมมุติฐานที่ว่าอัตราการดูดซับที่ลดลงจะเป็นสัดส่วนโดยตรงกับการดูดซับของตัวถูกดูดซับ และ เบรกทรูของตัวดูดซับในกระบวนการดูดซับ ซึ่งโมเดลนี้มีความซับซ้อนที่น้อยกว่าโมเดลอื่นๆ เพราะในโมเดลนี้ไม่ต้องการรายละเอียดของข้อมูลคุณสมบัติของตัวดูดซับ ชนิดของตัวถูกดูดซับ และ คุณสมบัติทางกายภาพของการดูดซับ [28] ซึ่งแบบจำลองนี้ถูกอธิบายดังสมการที่ (11)

$$\frac{C_t}{C_0} = \frac{exp(k_Y t - k_Y \tau)}{1 + exp(k_Y t - k_Y \tau)}$$
(11)

โดยที่ k_y คือ ค่าคงที่อัตราของ Yoon-Nelson (1/min)

au คือ เวลา ณ ความเข้มข้นที่ 50 % ของกราฟเบรกทรู (min)

C_t คือ ความเข้มข้นของสารละลาย ณ เวลาใดๆ (mg/L)

C₀ คือ ความเข้มข้นของสารละลาย ณ เวลาเริ่มต้น (mg/L)

Chulalongkorn Universi

t คือ เวลาของการดูดซับที่เวลาใดๆ (min)

2.6.3 แบบจำลองของ Adams-Bohart

เป็นแบบจำลองที่ใช้สมมุติฐานที่ว่าแรงที่เกิดจากการแพร่ภายในและแรงที่เกิดจากการ ต้านทานการถ่ายเทมวลจากภายนอกมีค่าน้อยมากและตัวถูกดูดซับจะถูกดูดซับลงบนพื้นผิวของตัวดูด ซับโดยตรง แต่แบบจำลองนี้ใช้สำหรับอธิบายส่วนเริ่มต้นของกราฟเบรกทรูเท่านั้น คือตั้งแต่จุดเริ่มต้น ไปจนถึงเบรกพอยต์หรือ 10–50 % ของจุดอิ่มตัว [29, 30] ซึ่งแบบจำลองนี้ถูกอธิบายดังสมการที่ (12)

$$\frac{C_t}{C_0} = exp\left(k_A C_0 t - k_A N_0(\frac{H}{u})\right) \tag{12}$$

โดยที่ k_A คือ ค่าคงที่ทางจลน์พลศาสตร์ของ Adams-Bohart (L/min•g)

- N₀ คือ ความเข้มข้น ณ สภาวะอิ่มตัว (mg/L)
- H คือ ความสูงของคอลัมน์ (cm)
- น คือ ความเร็วเชิงเส้น (cm/min)
- C_t คือ ความเข้มข้นของสารละลาย ณ เวลาใดๆ (mg/L)
- C₀ คือ ความเข้มข้นของสารละลาย ณ เวลาเริ่มต้น (mg/L)
- t คือ เวลาของการดูดซับที่เวลาใดๆ (min)

 2.7 งานวิจัยที่เกี่ยวข้องกับการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงใน คอลัมน์

จากการศึกษางานวิจัยที่เกี่ยวข้องกับการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบ ตรึงในคอลัมน์ พบว่าตัวดูดซับยาปฏิชีวนะที่ใช้ในระบบการดูดซับแบบแบบตรึงในคอลัมน์นั้นมีความ หลากหลาย โดยสามารถแบ่งกลุ่มของตัวดูดซับที่ใช้ได้เป็นหลักๆ 2 กลุ่ม ดังที่แสดงไว้ในตารางที่ 2 โดยจะมีรายละเอียดดังนี้

กลุ่มที่ 1 คือกลุ่มที่ใช้ตัวดูดซับที่สังเคราะห์มาจากวัตถุดิบจากธรรมชาติหรือวัตถุดิบที่มีต้นทุน ต่ำ โดยมีนักวิจัย Darweesh และ Ahmed [31] ที่ได้ทำการสังเคราะห์ตัวดูดซับจากเมล็ดอินทผาลัม โดยแบบจำลองของ Thomas และ Yoon-Nelson เป็นแบบจำลองที่เหมาะสมกับการทดลองนี้ ซึ่ง บอกได้ว่ามีการดูดซับตามแบบจำลองไอโซเทอร์มการดูดซับของแลงเมียร์และแบบจำลอง จลนพลศาสตร์อันดับสอง และอัตราการดูดซับที่ลดลงเป็นสัดส่วนโดยตรงกับการดูดซับของตัวถูกดูด ซับและBreakthrough ของตัวดูดซับในกระบวนการดูดซับที่อัตราการไหลที่ 0.5 mL/min ความสูง ของคอลัมน์ที่ 25 cm และความเข้มข้นเริ่มต้นเท่ากับ 150 mg/L มีประสิทธิภาพการดูดซับอยู่ที่ 2.09 mg/g และค่าคงที่อัตราเท่ากับ 45.8x10⁻⁵ L/min•mg โดยจากการทดลองผลของความเข้มข้น เริ่มต้นมีผลต่อประสิทธิภาพการดูดซับมากกว่าผลของความสูง และผลของอัตราการไหล ต่อมา Das, Barui, Adak [32] ได้มีการนำแร่มอนต์มอริลโลไนท์มาปรับปรุงพื้นผิวด้วยการนำเส้นใยเซลลูโลสอะซี เตทมาตรึงรูป โดยใช้การปั่นเส้นใยด้วยไฟฟ้าสถิต ในการทดลองที่ความเข้มข้นเริ่มต้น 5 mg/L ความ สูงของคอลัมน์ 20 cm และอัตราการไหลที่ 1.6 mL/min โดยแบบจำลองของ BDST นั้นค่าอัตราการ ดูดซับมีค่าเท่ากับ 0.01 L/mg•h และความเข้มข้น ณ สภาวะอิ่มตัว (N₀) เท่ากับ 3,570 mg/L นอกจากนั้น Antonelli และคณะ [33] ได้ทำการศึกษากระบวนการดูดซับแบบตรึงในคอลัมน์ โดยใช้ ดินเบนโทไนท์เป็นตัวดูดซับ โดยที่ความเข้มข้นเริ่มต้นที่ 0.05 mmol/L อัตราการไหล 0.4 mL/min และความสูงของคอลัมน์ 7 cm ซึ่งมีประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 72.2 mg/g และลักษณะการ ดูดซับใกล้เคียงกับแบบจำลองของ Yan และDualSD ต่อมา Gupta และGarg [34] ได้สังเคราะห์ ถ่านกัมมันต์จากแอกทิเวเต็ดสลัดจ์มีประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 17.67 mg/g ที่ความเข้มข้น เริ่มต้นของไซโปรฟลอกซาซินเท่ากับ 50 mg/L อัตราการไหล 1.5 mL/min และความสูงของคอลัมน์ 4 cm ต่อมา Dhiman และSharma [35] สังเคราะห์ใบโอซาร์จากเปลือกถั่วลิสง ในแบบจำลองของ Thomas ค่าประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 5.84 mg/g

กลุ่มที่ 2 เป็นกลุ่มของวัสดุสังเคราะห์ โดย Gonzalez และคณะ [36] ได้ทำการสังเคราะห์ วัสดุโครงสร้างนาโนที่ได้จากการผสมระหว่าง ไคตินกับแกรฟีนออกไซด์ในอัตราส่วน 3:1 ซึ่งให้ ประภาพการดูดซับสูงสุดอยู่ที่ 91 mg/g ที่pH เท่ากับ 6.3 ในแบบจำลองของ Thomas นอกจากนั้น Feizi, Sarmah และRangsivek [37] ได้ทำการสังเคราะห์ถ่านกัมมันต์จากยางที่ใช้แล้ว โดยที่อัตรา การไหลที่ 3 mL/min ความสูงของคอลัมน์ที่ 20 cm และความเข้มข้นเริ่มต้นเท่ากับ 2 mg/L โดย ประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 4.34 mg/g ต่อมา Dhiman และSharma [35] ใช้วัสดุดูดซับเป็น ซิงค์ออกไซด์ที่มีอนุภาคขนาดนาโนในการดูดซับไซโปรฟรอกซาซิน ในแบบจำลองของ Thomas ค่า ประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 5.08 mg/g ต่อมา Wang และคณะ [38] ได้สังเคราะห์วัสดุดูดซับ นาโนคอมโพสิตระหว่างกรดฮิวมิคและเซลลูโลส ในการทดลองที่ความเข้มข้นเริ่มต้น 10 mg/L ความ สูงของคอลัมน์ 13 cm และอัตราการไหลที่ 2 mL/min ใน pH เท่ากับ 6.3 โดยแบบจำลองของ Thomas ค่าประสิทธิภาพการดูดซับสูงสุดอยู่ที่ 5.02 mg/g

โดยจากการศึกษางานวิจัยที่เกี่ยวข้องกับการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับ แบบตรึงในคอลัมน์ พบว่าตัวดูดซับที่มีประสิทธิภาพการดูดซับสูงสุดนั้นคือตัวซับที่ทำมากจากไคติน กับแกรฟีนออกไซด์ เท่ากับ 91 mg/g และตัวดูดซับที่มีประสิทธิภาพการดูดซับรองลงมานั้นคือตัวดูด ซับจากดินเบนโทไนท์ ซึ่งมีค่าเท่ากับ 72.2 mg/g นอกจากนั้นจะพบว่าตัวดูดซับชนิดอื่นๆที่เหลือนั้นมี ประสิทธิภาพในการดูดซับไซโปรฟรอกซาซินที่ค่อนข้างต่ำ โดยจะมีประสิทธิภาพการดูดซับในช่วง 2.09-17.67 mg/g

			ตัวแปร		ประสิทธิภาพ		
วัตถุดิบตั้งต้นที่ใช้ใน การสังเคราะห์เป็น ตัวดูดซับ	แบบจำลองที่ เหมาะสม	ความสูง คอลัมน์ (cm)	อัตราการ ไหล (mL/min)	ความ เข้มข้น เริ่มต้น (mg/L)	บระสทธรา เพ การดูดซับ สูงสุด (mg/g)	ค่าคงที่อัตรา (L/min•mg)	อ้างอิง
กลุ่มที่ 1 วัตถุดิบจากธ	รรมชาติ						
Date stones	Thomas, Yoon- Nelson	25	0.5	150	2.09	45.8×10 ⁻⁵	[31]
Montmorillonite- cellulose acetate	Logit	20	0.083	5	NR	0.01	[32]
Bentonite Clay	Yan, DualSD	7	0.4	16.6	72.2	2.15×10 ⁻³	[33]
Activated sludge	Thomas, Yoon- Nelson	4	1.5	50	17.67	10.4×10 ⁻⁵	[34]
Groundnut shell	Thomas, Yoon- Nelson	4	5	80	5.84	3.94×10 ⁻⁴	[35]
กลุ่มที่ 2 วัตถุดิบสังเคร	ราะห์			10			
Chitin/graphene oxide	Thomas, Yoon- Nelson	ากรณ์ม 1.5	เหาวิทย 1 1 ม มม	INR NR	91	5.1×10 ⁻⁴	[36]
ZnO nanoparticles	Thomas, Yoon- Nelson	4	5	80	5.08	4.65×10 ⁻⁴	[35]
Humic acid/cellulose	NR	13	2	10	5.02	NR	[38]
Tyre	Thomas, Yoon- Nelson	20	3	2	4.3	NR	[37]

a	-	a 2	a	a	ิย	e	ູ	и	5	1	. 9	ຄ		ູ	<i>a</i> 9	ູ	6
M757990	$^{\circ}$	9791728	19/1	SOL	റഖറ	909	10150000	116	o l X	159	ໄຮລູດສາດສາ	1 9	ເຮຍງາງເດົ	ട്രത്വില	9105919	ເພລາລາ	191
	2	VIRAAC	יואנ	500	100	אווע	70,141,4141,01	J٢	ΰιι	7 I I	1961.01.01	8 B K	4900111	14141-0 0 66 0		นทยเม	าน
							ં ગાં							- 91			

** NR = no report

การทดลอง

3.1 วัสดุ

3.1.1 แผ่นเยื่อไม้อัดแข็ง (Hardboard)

แผ่นเยื่อไม้อัดแข็งที่เป็นของเหลือทิ้งจากอุตสาหกรรมผลิตฮาร์ดบอร์ด ที่ใช้ในการทดลองนี้ได้มาจาก บริษัท Thai Cane Board จำกัด ซึ่งผลิตแผ่นเยื่อไม้อัดแข็ง ที่ตั้งอยู่ใน ตำบล วังศาลา อำเภอ ท่าเรือ จังหวัด กาญจนบุรี

3.1.2 สารเคมีที่ใช้ในการทดลอง

สารเคมีที่ใช้ในการทดลองทั้งหมด มีรายละเอียดดังแสดงในตารางที่ 3

		77 // AL 10/AL	
a .	a	a an 20	90
marga 990 2	11 3 6 15 7 11 2 21 2 16 6 1 2 13 1 3 1 3 1 5	109191 01 91	97917281
		brid I bubb	
		7 17 1 A M A M	

สารเคมี	สูตรเคมี	มวลโมเลกุล (g/mol)	เกรด	ยี่ห้อ
Ferric Nitrate	Fe(NO ₃) ₃	241.86	Analytical reagent	QReC
Deionized	HaQ	18.00		_
water	จุฬาลงกร		าลย	
Nitrogen gas		XORN UNIV	RSITY	Thailand
Mitt Ogen gas	IN2	20.01		industrial gas
Ciproflovacin		221 25	Analytical	Sigma -
Cipronoxacin	C ₁₇ I 1 ₁₈ F N ₃ O ₃	551.55	standard	Aldrich
Ciprofloxacin		367.80	Commercial	Medic
hydrochloride	$C_{17} H_{19} C(FN_3 O_3)$	00.100	grade	pharma

3.1.3 เครื่องมือที่ใช้ในการวิเคราะห์

เครื่องมือวิเคราะห์ที่ใช้ในการทดลองทั้งหมดประกอบด้วย

- 1. Scanning electron microscope (SEM)
- 2. Energy Dispersive X-ray Spectrometer (EDX)
- 3. Nitrogen adsorption-desorption apparatus
- 4. Thermogravimetric Analysis (TGA)
- 5. UV-Visible Spectrophotometer
- 6. Gas pycnometer

3.2 การสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ด

3.2.1 การเตรียมฮาร์ดบอร์ด

นำแผ่นฮาร์ดบอร์ดเหลือทิ้งมาบดลดขนาดโดยใช้เครื่องบดแบบลูกบอล (Ball mill) จากนั้น นำมาคัดขนาดด้วยโดยใช้เครื่อง Sieve shaker เป็นเวลา 30 min โดยให้มีขนาดอยู่ในช่วง 0.125-0.250 mm และนำไปล้างด้วยน้ำ DI เพื่อกำจัดสิ่งสกปรกและนำไปกรองแบบสุญญากาศ จากนั้น นำไปอบแห้ง

3.2.2 การสังเคราะห์วัสดุดูดซับไบโอชาร์

ฮาร์ดบอร์ดที่ผ่านการทำความสะอาดและอบแห้งแล้วจะถูกนำไปตรึงรูปในสารละลาย เหล็กไนเตรต [Fe(NO₃)₃] ที่ความเข้มข้น 0.1 M อุณหภูมิ 100°C เป็นเวลา 2 hr. จากนั้นนำไปกรอง และอบแห้งที่อุณหภูมิ 80°C เป็นเวลา 24 hr. และทำการเผาโดยใช้กระบวนการคาร์บอไนเซชั่น ภายใต้บรรยากาศไนโตรเจน โดยควบคุมอัตราการให้ความร้อนที่ 10°C/min และอัตราการไหลของ แก๊สไนโตรเจนที่ 100 cm³/min

ในกระบวนการสังเคราะห์ตัวดูดซับไบโอชาร์ได้มีการศึกษาตัวแปรดังต่อไปนี้

อุณหภูมิในกระบวนการคาร์บอไนเซชั่น :

ศึกษาในช่วง 600°C - 900°C

นำผงฮาร์ดบอร์ดไปแช่ในสารละลายเหล็กไนเตรตที่ความเข้มข้น 0.1 M อุณหภูมิ 100°C เป็นเวลา 2 hr.

นำไปกรองแบบสุญญากาศ จากนั้นนำไปอบแห้ง ที่ 80 °C เป็นเวลา 24 hr.

นำไปเผาภายใต้กระบวนการคาร์บอไนเซชันที่อุณหภูมิ 600, 700, 800 และ 900 °⊂ เป็นเวลา 2 hr.

รูปที่ 7 แสดงแผนผังการเตรียมไบโอชาร์จากฮาร์ดบอร์ด

3.2.3 การทดสอบคุณลักษณะของไบโอชาร์

3.2.3.1 Scanning electron microscope

ศึกษาสัณฐานวิทยาและลักษณะพื้นผิวของไบโอชาร์

3.2.3.2 Energy Dispersive X-ray Spectrometer (EDX)

ใช้สำหรับศึกษาการวิเคราะห์ธาตุในเชิงคุณภาพ

3.2.3.3 Nitrogen adsorption-desorption apparatus

ศึกษาวิเคราะห์หาพื้นที่ผิว ขนาดของรูพรุน การกระจายขนาดรูพรุน ปริมาตรรูพรุนทั้งมีโซ พอร์และไมโครพอร์ โดยใช้หลักการดูดซับทางกายภาพ

3.2.3.4 Thermogravimetric Analysis

ศึกษาการเปลี่ยนแปลงน้ำหนักของตัวอย่าง เมื่อให้ความร้อนแก่ตัวอย่าง โดยใช้เครื่องชั่งวัด น้ำหนักและใช้เทอร์โมคัพเปิลวัดอุณหภูมิของตัวอย่างเทียบกับอุณหภูมิของสาร

3.2.3.5 Gas pycnometer

ศึกษาหาปริมาตรและความหนาแน่นของตัวอย่างด้วยหลักการแทนที่ด้วยแก๊ส

3.3 ศึกษาการดูดซับสารไซโปรฟลอกซาซิน

3.3.1 ศึกษาการดูดซับไซโปรฟลอกซาซินจากการทดลองแบบกะ (Batch adsorption) การศึกษาการดูดซับไซโปรฟลอกซาซินจากการทดลองแบบกะ ทำได้โดยการนำไบโอชาร์ที่ สังเคราะห์ได้ผสมกับไซโปรฟลอกซาซินที่ทราบความเข้มข้นแน่นอน นำไปเขย่าจนกระทั่งเข้าสู่สมดุล จากนั้นกรองเอาส่วนของสารละลาย ไปวัดหาปริมาณความเข้มข้นไซโปรฟรอกซาซินที่เหลืออยู่โดยใช้ เครื่อง UV-Visible Spectrophotometer

โดยในการศึกษาการดูดซับไซโปรฟลอกซาซินแบบกะได้มีการศึกษาผลของตัวแปรดังต่อไปนี้

- สมดุลการดูดซับ โดยศึกษาความเข้มข้นเริ่มต้นในช่วง 1-200 mg/L โดยควบคุมอุณหภูมิ ที่ 30 ℃
- จลนพลศาสตร์การดูดซับ โดยศึกษาการดูดซับอยู่ในช่วง 0-48 hr. ที่ความเข้มข้นเริ่มต้น
 1-100 mg/L ที่ 30 °C

3.3.2 ศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบตรึงในคอลัมน์ (Fixedbed column)

การศึกษาการดูดซับไซโปรฟลอกซาซินแบบตรึงในคอลัมน์ทำได้โดยการป้อนสารละลายไซ โปรฟลอกซาซินผ่านตัวดูดซับที่สังเคราะห์ได้ ซึ่งถูกบรรจุอยู่ในคอลัมน์ในลักษณะไหลขึ้นและเก็บ สารละลายที่ไหลออกจากคอลัมน์ที่เวลาต่างๆ เพื่อหาความเข้มข้นของสารไซโปรฟลอกซาซิน โดยใช้ เครื่อง UV-Visible Spectrophotometer โดยในการศึกษาการดูดซับไซโปรฟลอกซาซินแบบตรึงในคอลัมน์ได้มีการศึกษาผลของตัวแปร ดังต่อไปนี้

3.3.2.1 ผลของความเข้มข้นเริ่มต้น

โดยทำการศึกษาความเข้มข้นเริ่มต้นของไซโปรฟรอกซาซินที่ใช้ในกระบวนการดูดซับแบบ ตรึงในคอลัมน์ โดยศึกษาความเข้มข้นในช่วง 20-80 mg/L ที่อุณหภูมิ 30°C ความสูงของคอลัมน์ เท่ากับ 5 cm และอัตราการไหลเท่ากับ 10 cm³/min

3.3.2.2 ผลของอัตราการไหล

โดยทำการศึกษาอัตราการไหลของไซโปรฟลอกซาซินที่ใช้ในกระบวนการดูดซับแบบตรึงใน คอลัมน์ โดยศึกษาอัตราการไหลในช่วง 5-15 cm³/min ที่อุณหภูมิ 30°C ความเข้มขันเริ่มต้นเท่ากับ 80 mg/L และความสูงคอลัมน์เท่ากับ 5 cm

3.3.2.3 ผลของความสูงคอลัมน์

โดยทำการศึกษาความสูงของคอลัมน์ที่ใช้ในกระบวนการดูดซับแบบตรึงในคอลัมน์ โดยศึกษา ความสูงในช่วง 5-15 cm ที่อุณหภูมิ 30°C ความเข้มขันเริ่มต้นเท่ากับ 80 mg/L และอัตราการไหล เท่ากับ 10 cm³/min

> จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

รูปที่ 8 การดูดซับแบบตรึงในคอลัมน์

3.3.3 เครื่องมือที่ใช้ในการวิเคราะห์ความเข้มข้นของไซโปรฟลอกซาซิน

3.3.3.1 เครื่อง UV-Visible Spectrophotometer

เป็นเครื่องมือที่ใช้ในการตรวจวัดปริมาณแสงและค่าความเข้มแสงในช่วงรังสียูวีและช่วงแสง ขาวที่ทะลุผ่านหรือถูกดูดกลืน ของตัวอย่าง โดยที่ความยาวคลื่นแสงจะสัมพันธ์กับปริมาณและชนิด ของสารที่อยู่ในตัวอย่าง
บทที่ 4

ผลการทดลองและอภิปรายผลการทดลอง

4.1 การสังเคราะห์ไบโอชาร์จากฮาร์ดบอร์ดเหลือทิ้งจากกระบวนการผลิต

4.1.1 การศึกษาคุณสมบัติรูพรุนด้วยการดูดซับและคายการดูดซับไนโตรเจนที่อุณหภูมิ 77 K ไบโอชาร์จากฮาร์ดบอร์ดเหลือทิ้งจากกระบวนการผลิตนั้นถูกนำมาใช้เป็นวัสดุดูดซับใน วิทยานิพนธ์นี้ ซึ่งไบโอชาร์จากฮาร์ดบอร์ดนั้นจะถูกสังเคราะห์โดยการนำสารละลาย Fe(NO₃)₃ มาตรึง รูปบนฮาร์ดบอร์ดและนำไปผ่านกระบวนการคาร์บอไนเซชันภายใต้บรรยากาศไนโตรเจน โดยมี สภาวะการเตรียมแสดงไว้ดังตารางที่ 4

	10
ตัวอย่าง	วิธีการผลิตเป็นวัสดุคาร์บอน
HC-BI-900	ฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ № ที่อุณหภูมิ 900 °C
HC-BI-800	ฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ № ที่อุณหภูมิ 800 °C
HC-BI-700	ฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ № ที่อุณหภูมิ 700 °C
HC-BI-600	ฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ № ที่อุณหภูมิ 600 °C
HC-900	ฮาร์ดบอร์ดที่ผ่านการคาร์บอไนเซชันภายใต้ № ที่อุณหภูมิ 900 °C

ตารางที่ 4 สภาวะการเตรียมวัสดุดูดซับ

ไปโอชาร์ที่ได้จากการเตรียมดังตารางที่ 4 จะถูกนำไปศึกษาพื้นที่ผิวและขนาดรูพรุนด้วยการ นำไปวิเคราะห์การดูดซับ-คายการดูดซับไนโตรเจนที่อุณหภูมิ 77 K ดังแสดงในรูปที่ 9 เป็นผลของ อุณหภูมิที่มีต่อสมบัติเชิงรูพรุนของวัสดุดูดซับ โดยศึกษาในช่วงอุณหภูมิ 600-900℃ ซึ่งควบคุมความ เข้มข้นสารละลาย Fe(NO₃)₃ เท่ากับ 0.10 M ในขั้นตอนการตรึงรูป พบว่า ตัวอย่าง HC-BI-900, HC-BI-800 และ HC-BI-700 มีลักษณะไอโซเทอมการดูดซับ-คายการดูดซับผสมระหว่าง Type-I และ Type-IV ตามการจำแนกของ IUPAC ซึ่งลักษณะไอโซเทอมแบบ Type-I บ่งบอกว่าวัสดุดังกล่าวมี โครงสร้างรูพรุนในช่วงไมโคร ในขณะที่ Type-IV บ่งบอกว่ามีโครงสร้างรูพรุนในช่วงมีโซ ดังนั้นจึง สรุปได้ว่าไปโอชาร์ที่ผ่านกระบวนการคาร์บอไนเซชันที่อุณหภูมิสูงกว่า 700°C จะทำให้เกิดโครงสร้างรู พรุนที่ผสมกันระหว่างไมโครและมีโซ ในขณะที่ตัวอย่าง HC-900 ที่ไม่ผ่านการตรึงรูปด้วย Fe(NO₃)₃ นั้นมีลักษณะไอโซเทอมแบบ Type-I ซึ่งหมายความว่ามีเพียงโครงสร้างรูพรุนในช่วงไมโครเท่านั้น ถึงแม้ว่าจะผ่านกระบวนการคาร์บอไนเซชันที่อุณหภูมิสูงกว่า 700°C โดยจากผลการวิเคราะห์จะสรุป ได้ว่า การมีอยู่ของ Fe(NO3)3 และผ่านกระบวนการคาร์บอไนเซซันภายใต้บรรยากาศไนโตรเจนที่ อุณหภูมิสูงกว่า 700°C ก่อให้เกิดโครงสร้างรูพรุนในช่วงมีโซพอร์ [39]

โดยเมื่อวิเคราะห์พื้นที่ผิวจำเพาะ ปริมาตรรูพรุนในช่วงไมโคร และปริมาตรรูพรุนในช่วงมีโซ ดังแสดงในตารางที่ 5 โดยจากผลการวิเคราะห์พบว่าไบโอชาร์ HC-BI-900, HC-BI-800 และ HC-BI-700 มีปริมาตรรูพรุนในช่วงมีโซเท่ากับ 0.42, 0.34, 0.28 cm³/g ตามลำดับ จึงสรุปได้ว่าเมื่ออุณหภูมิ คาร์บอไนเซซันเพิ่มขึ้นปริมาตรรูพรุนในช่วงมีโซมีแนวโน้มสูงขึ้น โดยที่อุณหภูมิ 900°C (HC-BI-900) จะให้ปริมาตรรูพรุนในช่วงมีโซที่มากที่สุดซึ่งมีค่าเท่ากับ 0.42 cm³/g ในทางกลับกันเมื่ออุณหภูมิ เพิ่มขึ้นจาก 700°C เป็น 900°C ส่งผลให้ปริมาณรูพรุนในช่วงไมโครและพื้นที่ผิวจำเพาะมีแนวโน้ม ลดลง นอกจากนั้นการกระจายตัวของความกว้างของรูพรุนในช่วงมีโซของไบโอชาร์ที่อุณหภูมิ 700-900°C แสดงดังรูปที่ 10 พบว่า HC-BI-900, HC-BI-800 และ HC-BI-700 มีความกว้างของรูพรุน ในช่วงมีโซเท่ากับ 2.7, 2.5, 2.8 nm ตามลำดับ

รูปที่ 9 ไอโซเทอมการดูดซับและคายการดูดซับไนโตรเจนที่อุณหภูมิ 77 K ของไบโอชาร์ที่ถูก กระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 600°C (HC-BI-600), 700°C (HC-BI-700), 800°C (HC-BI-800), 900°C (HC-BI-900) และที่ไม่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วย คาร์บอไนเซชันที่อุณหภูมิ 900°C (HC-900)

Mesopore width [nm]

รูปที่ 10 การกระจายตัวความกว้างของรูพรุนในช่วงมีโซพอร์ของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 700°C (HC-BI-700), 800°C (HC-BI-800) และ 900°C (HC-BI-900)

ตารางที่ 5 ชนิดของไอโซเทอม พื้นที่ผิวจำเพาะ ปริมาตรรูพรุนขนาดไมโครและมีโซจากการดูด ซับ-คายการดูดซับแก๊สไนโตรเจนที่ 77 K ของวัสดุดูดซับ

Samples	Type of 🔍	S _{BET}	V _{micro}	V _{meso}	Average pore
Sumptes	isotherm	[m²/g]	[cm³/g]	[cm³/g]	diameter [nm]
HC-BI-900	I+IV HUI	AL ³⁴⁷ GK0	RN ^{0.10}	ERS ^{0.42}	2.7
HC-BI-800	1+IV	530	0.13	0.34	2.5
HC-BI-700	I+IV	618	0.16	0.28	2.8
HC-BI-600	Ι	421	0.12	N/D*	N/D*
HC-900		450	0.11	N/D*	N/D*

Remark: *N/D = not determined

4.1.2 การศึกษาสัณฐานวิทยาและลักษณะพื้นผิวของวัสดุดูดซับ

สัณฐานวิทยาและลักษณะเชิงพื้นผิวของวัสดุดูดซับที่ได้ถูกศึกษาโดยใช้ SEM โดยทำการ เปรียบเทียบระหว่างฮาร์ทบอร์ด (RAW) และไบโอชาร์จากฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 Mแล้วคาร์บอไนเซชันที่อุณหภูมิ 800℃ (HC-BI-800) แสดงในรูปที่ 11 (a) และ (c) ตามลำดับ พบว่าสัณฐานวิทยาของตัวอย่างมีลักษณะเป็นเส้นใย (fiber) และรูปที่ 11 (b) และ (d) ลักษณะพื้นผิวของ RAW และ HC-BI-800 โดยพบว่าพื้นผิวของ HC-BI-800 นั้นมีลักษณะที่ขรุขระ กว่าพื้นผิวของ RAW นอกจากนั้นมีการศึกษา SEM-EDS เพื่อวิเคราะห์องค์ประกอบของธาตุดังตาราง ที่ 6 ซึ่ง RAW มี %atomic ของคาร์บอนเท่ากับ 57.57 และของออกซิเจนเท่ากับ 42.43 และ HC-BI-800 มี %atomic ของคาร์บอนเท่ากับ 94.92 และของออกซิเจนเท่ากับ 5.36 และเหล็กเท่ากับ 1.70

รูปที่ 11 สัณฐานวิทยาและลักษณะพื้นผิวของฮาร์ดบอร์ด RAW (a-b) และของไบโอชาร์ที่ถูก กระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800)(c-d) วิเคราะห์ ด้วยกล้องจุลทรรศน์อิเล็กตรอนแบบส่องกราด (SEM)

		Chemical composition										
Samples		Atomic %		Weight %								
	С	0	Fe	С	0	Fe						
HC-BI-800	92.94	5.36	1.70	86.06	6.61	7.33						
RAW	57.57	42.43	N/D	50.46	49.54	N/D*						

ตารางที่ 6 องค์ประกอบทางเคมีของฮาร์ดบอร์ดและไบโอชาร์จากฮาร์ดบอร์ด

Remark: *N/D = not determined

4.1.3 การศึกษาสมบัติเชิงความร้อนของฮาร์ดบอร์ดและฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃

รูปที่ 12 TGA curve แสดงความสัมพันธ์ระหว่าง %weight loss กับอุณหภูมิและ DTG กับ อุณหภูมิของฮาร์ดบอร์ด (RAW) และฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ (HC-BI)

โดยการศึกษาสมบัติเชิงความร้อนของฮาร์ดบอร์ดนั้นจะดูจากการเปลี่ยนแปลงน้ำหนักของ ตัวอย่างเมื่อได้รับความร้อนภายใต้บรรยากาศในโตรเจนของฮาร์ดบอร์ด (RAW) และฮาร์ดบอร์ดที่ ผ่านการกระตุ้นด้วย Fe(NO₃)₃ ที่ความเข้มข้น 0.10 M โดยจะแสดงดังรูปที่ 12 จากรูปพบว่าฮาร์ด บอร์ดมีร้อยละของน้ำหนักที่หายไปมากกว่าฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ โดยร้อยละ ของน้ำหนักที่หายไปของฮาร์ดบอร์ดและฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ นั้นมีค่าเท่ากับ 88.77% และ 86.63% ตามลำดับ ซึ่งฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ มีน้ำหนักที่หายไป น้อยกว่าเพราะเกิดจาก Fe(NO₃)₃ ในฮาร์ดบอร์ดได้เปลี่ยนไปเป็นสารประกอบเหล็กจึงไม่ถูกสลายโดย ความร้อน นอกจากนี้รูปที่ 12 ยังแสดงความสัมพันธ์ระหว่าง differential thermogravimetric (DTG) กับอุณหภูมิ ซึ่งจะเป็นการบ่งบอกถึงการสูญเสียน้ำหนักที่เกิดขึ้นในแต่ละอุณหภูมิ โดยเกิด ด้วยกัน 3 ขั้นตอน ขั้นตอนแรกที่อุณหภูมิ 220-325°C นั้นจะเป็นการสลายตัวทางความร้อนของเฮมิ เซลลูโลส โดยเฮมิเซลลูโลสจะมีการสูญเสียน้ำหนักสูงสุดที่อุณหภูมิ 285°C ต่อมาขั้นตอนที่สองที่ อุณหภูมิ 315-400°C เป็นอุณหภูมิที่เซลลูโลสสลายตัวทางความร้อน ซึ่งอุณหภูมิที่ทำให้เซลลูโลสมี การสูญเสียน้ำหนักสูงสุดคืออุณหภูมิที่ 346°C และขั้นตอนสุดท้ายคือการสลายตัวทางความร้อนของ ลิกนินที่อุณหภูมิมากกว่า 450°C โดยลิกนินมีเสถียรภาพทางความร้อนมากที่สุดทำให้การสลายตัวทาง ความร้อนเกิดขึ้นอย่างช้าๆทำให้ไม่ปรากฏลักษณะของพีค [40]

4.2 การศึกษาการดูดซับยาปฏิชีวนะไซโปรฟลอกซาซิน

4.2.1 การศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบกะ

Initial concentration [mg/L]

รูปที่ 13 ผลของความเข้มข้นเริ่มต้นที่มีผลต่อการกำจัดไซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้น ด้วย Fe(NO3)3 ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800)

การศึกษาผลของความเข้มข้นเริ่มต้นที่มีต่อประสิทธิภาพการดูดซับไซโปรฟลอกซาซิน จะ ทำการศึกษาโดยการเปลี่ยนแปลงความเข้มข้นของไซโปรฟลอกซาซิน ซึ่งจะทำการควบคุมอัตราส่วน น้ำหนักของวัสดุดูดซับต่อปริมาตรของไซโปรฟลอกซาซินไว้ที่ 1 g/L ปริมาตรไซโปรฟลอกซาซิน 100 mL ที่อุณหภูมิ 30℃ เป็นเวลา 24 hr. โดยผลการทดลองจากรูปที่ 13 พบว่า %removal ลดลงเมื่อ ความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซินเพิ่มขึ้นโดย %removal ลดลงจาก 99.99% ที่ความเข้มข้น เริ่มต้นที่ 5 mg/L เหลือ 21.80% ที่ความเข้มข้นเริ่มต้นที่ 300 mg/L เนื่องจากปริมาตรของตำแหน่ง การดูดซับของตัวดูดซับไม่เพียงพอ เมื่อความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซินเพิ่มสูงขึ้น

4.2.1.2 การศึกษาสมดุลการดูดซับและจลน์พลศาสตร์การดูดซับ

การศึกษาสมดุลการดูดซับเป็นการอธิบายความสัมพันธ์ระหว่างความเข้มข้นที่สมดุลกับ จำนวนของตัวที่ถูกดูดซับ โดยใช้แบบจำลองไอโซเทอมของการดูดซับที่สภาวะสมดุลแบบ Langmuir และ Freundlich ด้วยวิธีการถดถอยแบบไม่เชิงเส้นดังแสดงในรูปที่ 14 โดยมีการศึกษาสมดุลการดูด ซับอยู่ 2 ช่วงความเข้มข้นได้แก่ช่วงความเข้มข้นสูง (5-300 mg/L) และช่วงความเข้มข้นต่ำ (1-10 mg/L) โดยแสดงผลการวิเคราะห์พารามิเตอร์ต่างๆ ดังตารางที่ 7

รูปที่ 14 ผลไอโซเทอมการดูดซับไซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ช่วงความเข้มข้น 5-300 mg/L (a) และ 1-10 mg/L (b)

ตารางที่ 7 ผลการวิเคราะห์พารามิเตอร์ของแบบจำลองไอโซเทอมการดูดซับแบบ Langmuir และ Freudlich ด้วยวิธีวิเคราะห์การถดถอยแบบไม่เชิงเส้น

Sample	CIP	Langmuir			Freundlich			
	concentration	Q ₀	b	R ² (-)	K _f (mg/g)	n (-)	R ² (-)	
	(mg/L)	(mg/g)	(L/mg)	10	(L/mg) ^{1/n}			
HC-BI-800	Low conc.	47.01	7.03	0.9961	35.58	4.84	0.8602	
	(1-10) 🧃 🕯	ตาลงกร	ณ์มหา	วิทยาลั	E			
	High conc.	60.99	0.86	0.9804	26.41	1.34	0.8856	
	(5-300)							

จากผลการวิเคราะห์การดูดซับไซโปรฟลอกซาซินของไปโอชาร์ HC-BI-800 พบว่าทั้งช่วง ความเข้มข้นสูงและช่วงความเข้มข้นต่ำนั้นมีพฤติกรรมการดูดซับสอดคล้องกับไอโซเทอมการดูดซับ แบบ Langmuir โดยมีค่า R² เท่ากับ 0.9804 และ 0.9961 ตามลำดับโดยไอโซเทอมการดูดซับแบบ Langmuir นั้นอยู่ภายใต้สมมุติฐานที่ว่าเป็นการดูดซับแบบ monolayer ซึ่งบ่งบอกได้ว่าตัวถูกดูดซับ มีความชอบพื้นผิวของตัวดูดซับมากกว่า จึงทำให้ตัวถูกดูดซับเลือกที่จะจับกับตัวดูดซับและเมื่อ พิจารณาเปรียบเทียบค่าประสิทธิภาพการดูดซับสูงสุด (Q₀) ที่ได้จากการวิเคราะห์จากแบบจำลอง Langmuir พบว่าที่ช่วงความเข้มข้นสูงนั้นมีค่าประสิทธิภาพการดูดซับที่สูงกว่าช่วงความเข้มข้นต่ำ เท่ากับ 60.99 และ 47.01 mg/g ตามลำดับ เพราะว่าที่ความเข้มข้นสูงนั้นทำให้เกิดแรงขับเคลื่อน สำหรับการถ่ายเทมวลในกระบวนการดูดซับที่สูงกว่าที่ความเข้มข้นต่ำโดยแรงขับเคลื่อนในการดูดซับ นั้นขึ้นอยู่กับความแตกต่างของความเข้มข้นภายในตัวดูดซับกับความเข้มข้นของสารละลายไซโปร ฟลอกซาซิน [41]

รูปที่ 15 ผลจลน์พลศาสตร์การดูดซับไซโปรฟลอกซาซินของ ไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ความเข้มข้น 70 mg/L (a) และ 7 mg/L (b)

Sample	CID	Pseud	o-first-ord	er (PFO)	Pseudo-second-order (PSO)				
	concentration (mg/L)	k ₁	q _{e1}	R ² (-)	k ₂	q_{e^2}	h ₂	R ² (-)	
		(min ⁻¹)	(mg/g)		(g mg⁻	(mg/g)	(mg g⁻¹min⁻¹)		
					¹ min ⁻¹)				
	7	0.1608	40.32	0.8911	0.0057	42.11	10.06	0.9699	
TIC-BI-600	70	0.3723	43.47	0.7850	0.0147	45.21	30.06	0.9597	

ตารางที่ 8 ผลการวิเคราะห์พารามิเตอร์ Pseudo-first-order และ Pseudo-second-order ด้วยวิธีการ วิเคราะห์การถดถอยแบบไม่เชิงเส้น

การศึกษาจลน์พลศาสตร์การดูดซับไซโปรฟลอกซาซินของไบโอซาร์ (HC-BI-800) ที่ความเข้มข้น เริ่มต้นที่แตกต่างกันได้แก่ที่ 7 และ 70 mg/L โดยใช้แบบจำลอง Pseudo first order (PFO) และ Pseudo second order (PSO) โดยกำหนดเวลาในการดูดซับที่ 72 hr. ที่อุณหภูมิ 30℃ โดยใช้ ปริมาณคาร์บอนเท่ากับ 1.0 g/L ที่ความเข้มข้น 70 mg/L และ 0.1 g/L ที่ความเข้มข้น 7 mg/L ซึ่ง จะได้ผลแสดงดังรูปที่ 15 และตารางที่ 8 โดยจากผลดังกล่าวพบว่า HC-BI-800 ที่ความเข้มข้นเริ่มต้น 7 และ 70 mg/L มีความสอดคล้องกับแบบจำลอง PSO มากกว่า PFO โดยมีค่า R² เท่ากับ 0.9699 และ 0.9597 และมีค่าอัตราเร็วเริ่มต้น (h₂) เท่ากับ 10.06 และ 30.06 mg/g•min ซึ่งค่า h₂ ที่ แตกต่างกันนั้นเกิดจากแรงขับเคลื่อนในการดูดซับ โดยทั้งสองความเข้มข้นนั้นใช้เวลาในการเข้าสู่ สมดุลการดูดซับที่ 120 min ดังนั้นจึงสรุปได้ว่าความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซินที่เพิ่มสูงขึ้น นั้นส่งให้ค่าประสิทธิภาพการดูดซับสูงสุด (Q₀) และค่าอัตราเร็วเริ่มต้น (h₂) เพิ่มสูงขึ้นเนื่องจากผลของ แรงขับเคลื่อนในการดูดซับ

45

4.2.2 การศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์

รูปที่ 16 กราฟเบรกทรูการดูดซับไซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตาม ด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ความเข้มข้นเริ่มต้น (a) ,ความสูงคอลัมน์ (b) และอัตราการไหล (c) ที่แตกต่างกัน

ตารางที่ 9 ผลการวิเคราะห์พารามิเตอร์จากกราฟเบรกทรูสำหรับการดูดซับไซโปรฟลอกซาซินของ ไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ ความเข้มข้นเริ่มต้น ,ความสูงคอลัมน์ และอัตราการไหลที่แตกต่างกัน

	Condition			Parameters								
C ₀	Q	ค พ	าล _{ี่เ} กร	i i i t _e M	าวิชยา	EBCT	q _e	L _{MTZ}	%R			
(mg/L)	(mL/min)	(cm)	(min)	(min)	(min)	(min)	(mg/g)	(cm)	(%)			
ผลของความเข้มข้นเริ่มต้น												
20	10	5	735	1200	871	1.90	53.30	1.45	80.93			
40	10	5	465	675	535	1.90	53.43	1.59	78.87			
60	10	5	285	450	335	1.90	54.85	1.94	76.83			
80	10	5	195	375	245	1.90	56.84	2.40	67.54			
ผลของค	วามสูงคอลัม	น์										
80	10	5	195	375	245	1.90	56.84	2.40	67.54			
80	10	10	465	660	523	3.80	58.60	2.95	80.70			
80	10	15	675	870	733	5.70	59.53	3.36	85.81			
ผลของอั	ตราการไหล											

ตารางที่ 9 ผลการวิเคราะห์พารามิเตอร์จากกราฟเบรกทรูสำหรับการดูดซับไซโปรฟลอกซาซินของ ไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ ความเข้มข้นเริ่มต้น ,ความสูงคอลัมน์ และอัตราการไหลที่แตกต่างกัน

	Condition		Parameters								
C ₀	Q	Н	t _b	t _e	τ	EBCT	q _e	L _{MTZ}	%R		
(mg/L)	(mL/min)	(cm)	(min)	(min)	(min)	(min)	(mg/g)	(cm)	(%)		
80	5	5	375	645	447	3.80	58.82	1.98	72.27		
80	10	5	195	375	245	1.90	56.85	2.40	67.54		
80	15	5	105	210	141	1.27	52.45	2.50	64.76		

4.2.2.1 ผลของความเข้มข้นเริ่มต้น 🍚

ผลของความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซิน (20–80 mg/L) ต่อกราฟเบรกทรู ที่ อุณหภูมิ 30 ℃ ความสูงของคอลัมน์ 5 cm และ อัตราการไหลที่ 10 mL/min เป็นไปดังรูปที่ 16 (a) และตารางที่ 9 จากการทดลองพบว่า เมื่อมีการเพิ่มขึ้นของความเข้มข้นเริ่มต้นทำให้เวลา ณ จุด เบรกทรู (t_b) และเวลา ณ จุดอิ่มตัว (t_c) มีค่าลดลง โดยเวลา ณ จุดเบรกทรู (t_b) ลดลงจาก 735 min เหลือ 195 min และเวลา ณ จุดอิ่มตัว (t_c) ลดลงจาก 1200 min เหลือ 375 min เมื่อเพิ่มความ เข้มข้นเริ่มต้นจาก 20 mg/L เป็น 80 mg/L และค่าประสิทธิภาพการดูดซับ (q_c) มีค่าเพิ่มขึ้นจาก 53.30 mg/g ที่ความเข้มข้นเริ่มต้น 20 mg/L เป็น 56.84 mg/g ที่ความเข้มข้นเริ่มต้น 80 mg/L เนื่องจากที่ความเข้มข้นที่สูงขึ้นนั้นทำให้เกิดแรงขับเคลื่อนสำหรับการถ่ายเทมวลในกระบวนการดูด ซับที่เพิ่มขึ้น [42]

Chulalongkorn University

4.2.2.2 ผลของความสูงคอลัมน์

ผลของความสูงคอลัมน์ที่แตกต่างกัน (5, 10, และ 15 cm) ที่มีผลต่อกราฟเบรกทรู ที่ อุณหภูมิ 30 ℃ ความเข้มข้นเริ่มต้นที่ 80 mg/L และ อัตราการไหลที่ 10 mL/min จากรูปที่ 16 (b) และข้อมูลในตารางที่ 9 พบว่าเมื่อความสูงของคอลัมน์เพิ่มขึ้นจาก 5 cm เป็น 15 cm ส่งผลให้เกิด การเพิ่มขึ้นของ ค่า t_b จาก 195 min เป็น 675 min และ t_e จาก 375 min เป็น 870 min เนื่องจาก เมื่อความสูงของคอลัมน์เพิ่มขึ้นปริมาณของตัวดูดซับในคอลัมน์ก็จะมีมากขึ้นส่งผลให้มีพื้นที่ผิวของตัว ดูดซับมากขึ้น [43] อีกทั้งยังช่วยเพิ่มค่า q_e โดยเพิ่มขึ้นจาก 56.14 mg/g เป็น 59.53 mg/g ซึ่งความ สูงของคอลัมน์ที่เพิ่มขึ้นนั้นยังช่วยทำให้ไซโปรฟลอกซาซินมีเวลาในการสัมผัสกับตัวดูดซับได้นานขึ้น โดยเมื่อเพิ่มความสูงของคอลัมน์จาก 5 cm เป็น 15 cm ค่า Empty Bed Contact Time (EBCT) เพิ่มขึ้นจาก 1.90 min เป็น 5.70 min ส่งผลให้ร้อยละการกำจัด (%removal) เพิ่มขึ้นจาก 67.54% เป็น 85.81% [44]

4.2.2.3 ผลของอัตราการไหล

ผลของอัตราการไหลที่แตกต่างกัน (5, 10, และ 15 cm³/min) ที่มีผลต่อกราฟเบรกทรู ที่ อุณหภูมิ 30 °C ความเข้มข้นเริ่มต้นที่ 80 mg/L และ ความสูงของคอลัมน์ที่ 5 cm โดยจากรูปที่ 16 (c) และข้อมูลในตารางที่ 9 พบว่าเมื่อมีการเพิ่มขึ้นของอัตราการไหลจาก 5 cm³/min เป็น 15 cm³/min ส่งผลให้ เวลา ณ จุดเบรกทรู (t_b) และ เวลา ณ จุดอิ่มตัว (t_e) ลดลง โดย t_b ลดลงจาก 375 min เหลือ 105 min และ t_e ลดลงจาก 645 min เหลือ 210 min เนื่องจากอัตราการไหลที่ สูงขึ้น ส่งผลให้เวลาที่ใช้สัมผัสระหว่างไซโปรฟลอกซาซินกับตัวดูดซับไม่เพียงพอที่จะทำให้เกิดการ แพร่กระจายของไซโปรฟลอกซาซินเข้าไปในรูพรุนของตัวดูดซับ โดยดูจากค่า EBCT มีค่าลดลงจาก 3.80 min เป็น 1.27 min ดังนั้นไซโปรฟลอกซาซินจึงออกจากคอลัมน์ก่อนที่สมดุลการดูดซับจะ เกิดขึ้น [45] ซึ่งทำให้ค่า q_e ลดลงจาก 58.82 เหลือ 52.45 mg/g

4.2.3 แบบจำลองการดูดซับสำหรับระบบการดูดซับแบบตรึงในคอลัมน์

ข้อมูลที่ได้จากจากเส้นกราฟเบรกทรูที่สภาวะต่างๆจะถูกนำไปวิเคราะห์เพื่อที่จะใช้ในการ ทำนายเส้นกราฟเบรกทรูของการดูดซับ โดยใช้แบบจำลองการดูดซับสำหรับระบบการดูดซับแบบตรึง ในคอลัมน์ได้แก่ แบบจำลองของ Thomas, แบบจำลองของ Yoon-Nelson และแบบจำลองของ Adams-Bohart ซึ่งผลของการวิเคราะห์ของแบบจำลองต่างๆโดยใช้การคำนวณด้วยวิธีการถดถอย แบบไม่เชิงเส้นนั้นจะถูกนำมาเทียบกับข้อมูลที่ได้จากการทดลอง โดยค่าพารามิเตอร์ต่างๆที่ได้จาก แบบจำลองนั้นจะแสดงดังตารางที่10

	R ² (-)			0.8512	0.8705	0.8079	0.7771		0.7771	0.7830	0.8245		0.7860	0.7771	0.7033
t model	SSE			2.205	1.033	1.395	1.365		1.365	1.547	1.770		2.151	1.365	1.352
ns-Bohar	N ₀	(mg/L)		13518	13874	15978	16698		16698	15071	13055		14662	16698	17729
Adar	k	(mL/min•g)		0.1310	0.1529	0.0935	0.0742		0.0742	0.0597	0.0538		0.0498	0.0742	0.0753
	R ² (-)			0.9943	0.9957	0.9957	0.9957		0.9957	0.9978	0.9956		0.9925	0.9957	0.9962
on mode	SSE			0.0841	0.0345	0.0384	0.0261		0.0261	0.0158	0.0443		0.0751	0.0261	0.0173
oon-Nelsa	au (min)			890.4	541.7	358.2	247.0		247.0	527.6	742.4		470.2	247.0	142.6
×	¥	(1/min)		0.0138	0.0275	0.0379	0.0513		0.0513	0.0336	0.0251		0.0335	0.0513	0.0672
	R ² (-)			0.9943	0.9952	0.9952	0.9957		0.9957	0.9978	0.9956		0.9925	0.9957	0.9962
nodel	SSE			0.0841	0.0384	0.0384	0.0261		0.0261	0.0158	0.0443		0.0751	0.0261	0.0173
Thomas r	k _{тн}	(mL/min•g)	C	0.6627	0.6775	0.6629	0.6514	หา ท ไ	0.6514	0.4363	0.3244	(0.4268	0.6514	0.8564
	q _{тн}	(mg/g)		52.82	53.18	54.14	55.44		55.44	58.04	59.20		59.33	55.44	51.33
	Т	(cm)	มต้น	5	5	5	5	ت رمر	5	10	15		5	5	5
Condition	Ø	(mL/min)	วามเข้มข้นเร <u>ิ</u> :	10	10	10	10	ามสูงคอลัม'	10	10	10	ุ ราการใหล	5	10	15
J	0 0	(mg/L)	ผลของค	20	40	60	80	ผลของค	80	80	80	ผลของอัเ	80	80	80

ตารางที่ 10 ผลการวิเคราะห์พารามิเตอร์ของแบบจำลอง Thomas, Yoon-Nelson และ Adams-Bohart

4.2.3.1 แบบจำลองของ Thomas

พารามิเตอร์ที่ได้จากแบบจำลองของ Thomas นั้นคือ ค่าคงที่อัตราการดูดซับของ Thomas (k_{Th}) และประสิทธิภาพการดูดซับสูงสุด (q_{TH}) โดยข้อมูลที่ได้จากการทดลองนั้นมีความเข้ากันกับ แบบจำลองของ Thomas ดังรูปที่ 17 และจากตารางที่ 10 พบว่าแบบจำลองของ Thomas มีค่า สัมประสิทธิ์สหสัมพันธ์ (R²) ในช่วง 0.9978–0.9943 ซึ่งจากข้อมูลในตารางพบว่าเมื่อความสูงคอลัมน์ เพิ่มขึ้นส่งผลให้ค่า q_{TH} มีค่าเพิ่มขึ้นจาก 55.44 mg/g ที่ความสูงคอลัมน์ 5 cm เป็น 59.2 mg/g ที่ ความสูงคอลัมน์ 15 cm แต่ค่า k_{Th} ลดลงจาก 0.6514 เป็น 0.3244 mL/min·mg เนื่องจากความ ยาวของคอลัมน์ที่เพิ่มขึ้นส่งผลให้ไซโปรฟลอกซาซินมีเวลาในการสัมผัสกับตัวดูดซับได้นานขึ้นส่งผลให้ อัตราการถ่ายเทมวลลดลงและประสิทธิภาพการดูดซับสูงสุด (q_{TH}) เพิ่มขึ้น

นอกจากนี้อัตราการไหลที่เพิ่มขึ้นส่งผลให้ค่า k_{Th} เพิ่มขึ้น และ q_{TH} มีค่าลดลง โดยเมื่อเพิ่ม อัตราการไหลจาก 5 เป็น 15 cm³/min ทำให้ค่า k_{Th} เพิ่มขึ้นจาก 0.4268 เป็น 0.8564 mL/min·mg และ ค่า q_{TH} มีค่าลดลงจาก 59.33 เป็น 51.33 mg/g เนื่องจากอัตราการไหลที่สูงขึ้น ทำให้เวลาของไซโปรฟลอกซาซินคงอยู่ในคอลัมน์ลดลง ซึ่งการแพร่ภายในรูพรุนเป็นตัวกำหนดอัตรา ทำให้มีเวลาไม่เพียงพอที่จะทำให้เกิดสมดุลของการดูดซับส่งผลให้ q₀ ลดลง

ค่า q_{TH} เพิ่มขึ้นแต่ k_{Th} ลดลง เมื่อความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซินสูงขึ้น โดยค่า q_{TH} เพิ่มจาก 52.82 เป็น 55.44 mg/g และค่า k_{Th} ลดลงจาก 0.6627 เหลือ 0.6514 mL/min·mg เมื่อความเข้าข้นเริ่มต้นของไซโปรฟลอกซาซินเพิ่มขึ้นจาก 20 เป็น 80 mg/L เนื่องจากเมื่อความ เข้มข้นเริ่มต้นเพิ่มสูงขึ้นทำให้แรงขับเคลื่อนสำหรับการถ่ายเทมวลเพิ่มขึ้นส่งผลให้ q_{TH} เพิ่มขึ้น ในทาง กลับกันเมื่อความเข้มข้นเริ่มต้นเพิ่มสูงขึ้นนั้นจะทำให้เกิดการต้านทานการถ่ายเทมวลส่งผลให้ k_{Th} ลดลง [46]

รูปที่ 17 กราฟเบรกทรูจากการคาดการณ์โดยใช้ แบบจำลองของ Thomas ในการดูดซับ ไซโปรฟลอกซาซิน ของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ความเข้มข้นเริ่มต้น (a) ,ความสูงคอลัมน์ (b) และอัตราการไหล (c) ที่แตกต่างกัน

4.2.3.2แบบจำลองของ Yoon-Nelson

พารามิเตอร์ที่ได้จากแบบจำลองของ Yoon-Nelson นั้นคือ ค่าคงที่อัตราของ Yoon-Nelson (k_Y) และ เวลา ณ ความเข้มข้นที่ 50 % ของกราฟเบรกทรู (*T*) โดยค่า k_Y และ *T* จะแสดง ในตารางที่ 10 และรูปที่ 18 จากข้อมูลในตารางพบว่าค่าคงที่อัตราของ Yoon-Nelson (k_Y) ลดลง จาก 0.0513 เหลือ 0.0251 min⁻¹ และเวลา ณ ความเข้มข้นที่ 50 % ของกราฟเบรกทรู (*T*) เพิ่มขึ้น จาก 247.0 เป็น 742.6 min เมื่อความสูงของคอลัมน์เพิ่มจาก 5 เป็น 15 cm เนื่องจากมีปริมาณของ ตัวดูดซับที่เพิ่มขึ้นและเวลาในการสัมผัสกับตัวดูดซับที่นานขึ้น

อีกทั้งเมื่อเพิ่มความเข้มข้นและอัตราการไหลของไซโปรฟลอกซาซิน พบว่าค่า k_v มีค่าเพิ่มขึ้น จาก 0.0138 เป็น 0.0513 min⁻¹ เมื่อเพิ่มความเข้มข้นจาก 20 mg/L เป็น 80 mg/L และจาก 0.0335 เป็น 0.0672 min⁻¹ เมื่อเพิ่มอัตราการไหลจาก 5 เป็น 15 cm³/min ในทางกลับกันค่า **7** ลดลงอย่างมากจาก 890.4 min เหลือ 247.0 min เมื่อเพิ่มความเข้มข้นจาก 20 mg/L เป็น 80 mg/L และเมื่อมีการเพิ่มขึ้นของอัตราการไหลจาก 5 เป็น 15 cm³/min ค่า **7** มีค่าลดลงจาก 470.2 min เหลือ 142.6 min เนื่องจากการเพิ่มขึ้นของความเข้มข้นและอัตราการไหลส่งผลให้มีปริมาณของ ไซโปรฟลอกซาซินถูกป้อนเข้าสู่คอลัมน์ในปริมาณที่สูงขึ้นทำให้เกิดการอิ่มตัวอย่างรวดเร็วของตัวดูด ซับ โดยแบบจำลองของ Yoon-Nelson นั้นมีความเข้ากันอย่างมากกับกราฟเบรกทรู โดยมีค่า สัมประสิทธิ์สหสัมพันธ์ (R²) ในช่วง 0.9978–0.9943 และเมื่อเปรียบเทียบ au ที่ได้จากการทดลองใน ตารางที่ 9 เทียบกับ au ที่ได้จากแบบจำลองของ Yoon-Nelson ในตารางที่ 10 พบว่าค่า au ที่ได้จาก แบบจำลองของ Yoon-Nelson นั้นมีเปอร์เซ็นต์ความคลาดเคลื่อนสูงสูดอยู่ที่ 7% เมื่อเทียบกับค่า auที่ได้จากการทดลอง

รูปที่ 18 กราฟเบรกทรูจากการคาดการณ์โดยใช้ แบบจำลองของ Yoon-Nelson ในการดูดซับ ใซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO3)3 ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ความเข้มข้นเริ่มต้น (a) ,ความสูงคอลัมน์ (b) และอัตราการไหล (c) ที่แตกต่างกัน

4.2.3.3 แบบจำลองของ Adams-Bohart

จากรูปที่ 19 จะแสดงการวิเคราะห์ผลโดยใช้แบบจำลองของ Adams-Bohart ซึ่งพารามิเตอร์ที่ได้จาก แบบจำลองคือ ค่าคงที่ทางจลน์พลศาสตร์ของ Adams-Bohart (k_A) และความเข้มข้น ณ สภาวะ อิ่มตัว (N₀) ซึ่งจะแสดงในตารางที่ 10 จากตารางพบว่าค่าคงที่ทางจลน์พลศาสตร์ของ Adams-Bohart (k_A) มีค่าลดลงเมื่อมีการเพิ่มขึ้นของความเข้มข้นไซโปรฟลอกซาซินและความสูงของคอลัมน์ โดยลดลงจาก 0.1310 เหลือ 0.0742 mL/min·g เมื่อเพิ่มความเข้มข้นจาก 20 เป็น 80 mg/L และ เมื่อความสูงของคอลัมน์เพิ่มจาก 5 เป็น 15 cm ค่า k_A มีค่าลดลงจาก 0.0742 เหลือ 0.0538 mL/min·g ในทางกลับกันค่า k_A มีค่าเพิ่มขึ้น 0.0498 เป็น 0.0753 mL/min·g เมื่ออัตราการไหล เพิ่มขึ้นจาก 5 เป็น 15 cm³/min ในขณะเดียวกันค่าความเข้มข้น ณ สภาวะอิ่มตัว (N₀) มีค่าลดลง เมื่อความสูงของคอลัมน์เพิ่มขึ้น เนื่องจากความสูงของคอลัมน์ที่เพิ่มขึ้นส่งผลให้มีเพิ่มขึ้นของตัวดูดซับ ที่มากขึ้นในการดูดซับไซโปรฟลอกซาซิน ในทางกลับกันการเพิ่มขึ้นของความเข้มข้นและอัตรา การไหลส่งผลให้มีปริมาณของไซโปรฟลอกซาซินถูกป้อนเข้าสู่คอลัมน์ในปริมาณที่สูงขึ้น ทำให้เกิดการ บรรจุไซโปรฟลอกซาซินในชั้นดูดซับเพิ่มขึ้น [47] โดยแบบจำลองของ Adams-Bohart นั้นมี

รูปที่ 19 กราฟเบรกทรูจากการคาดการณ์โดยใช้ แบบจำลองของ Adams-Bohart ในการดูดซับ ใซโปรฟลอกซาซินของไบโอชาร์ที่ถูกกระตุ้นด้วย Fe(NO₃)₃ ตามด้วยคาร์บอไนเซชันที่อุณหภูมิ 800°C (HC-BI-800) ที่ความเข้มข้นเริ่มต้น (a) ,ความสูงคอลัมน์ (b) และอัตราการไหล (c) ที่แตกต่างกัน

4.2.4 เปรียบเทียบประสิทธิภาพการกำจัดไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์

การศึกษาเปรียบเทียบประสิทธิภาพการกำจัดไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึง ในคอลัมน์พบว่ามีหลากหลายงานวิจัยที่ได้ทำการศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูด ซับแบบตรึงในคอลัมน์ โดยใช้ตัวดูดซับที่มีความแตกต่างกันทั้งที่เป็นตัวดูดซับที่ได้จากวัตถุดิบจาก ธรรมชาติและจากวัตถุดิบสังเคราะห์ ซึ่งเมื่อนำมาเปรียบเทียบกับไบโอชาร์จากฮาร์ดบอร์ดที่ สังเคราะห์ได้จากวิทยานิพนธ์นี้ พบว่ามีค่าประสิทธิภาพการดูดซับสูงสุดเท่ากับ 59.20 mg/g ซึ่งมี ค่าสูงสุดเมื่อเทียบกับตัวดูดซับที่ได้จากวัตถุดิบจากธรรมชาติ แต่น้อยกว่าตัวดูดซับจากคอมโพสิตของ แกรฟันและไคติน (91.00 mg/g) และวัสดุโครงข่ายโลหะอินทรีย์จากอลูมิเนียม (101.70 mg/g) ซึ่ง เป็นตัวดูดซับที่มาจากวัตถุดิบสังเคราะห์ โดยข้อดีของการวิจัยนี้คือวัตถุดิบที่ใช้ในการผลิตตัวดูดซับนั้น มาจากวัสดุเหลือทิ้งจากอุตสาหกรรม ซึ่งมีราคาถูกและมีกระบวนการสังเคราะห์ที่ไม่ซับซ้อนเมื่อเทียบ วัสดูดูดซับซนิดอื่น

วัตถุดิบตั้งต้นที่ใช้ ในการสังเคราะห์ เป็นตัวดูดซับ	S _{BET} (m²/g)	V _T (cm ³ /g)	ขนาดรู พรุน เฉลี่ย (nm)	ความสูง คอลัมน์ (cm)	อัตราการ ไหล (mL/min)	ความ เข้มข้น เริ่มต้น (mg/L)	ค่า ประสิทธิภาพ การดูดซับ สูงสุด (mg/g)	อ้างอิง
กลุ่มที่ 1 วัตถุดิบจากเ	ธรรมชาติ		11/100	1122.				
Hardboard	530	NR	2.50	15.0	10.0	80	59.20	This work
Date stones	852	0.67	3.15	25.0	0.5	150	2.09	[31]
Sandy Silt Soil	321	NR	NR	30.0	2.9	50	4.67	[48]
Bentonite Clay	88	NR	NR	7.0	0.4	17	72.20	[33]
Activated sludge	332	0.18	3.52	4.0	1.5	50	17.67	[34]
Commercial granular activated carbon	359	0.2	3.65	4.0	1.5	50	19.46	[34]
Groundnut shell	NR	NR	NR	4.0	5.0	80	5.84	[35]
Sugarcane bagasse	3	0.01	10.19	4	3.0 ยาลย	10	14.08	[2]
กลุ่มที่ 2 วัตถุดิบสังเค	าราะห์ 🕞		ONGKO	rn Uni	VFRSITY	7		
Chitin/graphene oxide	NR	NR	NR	1.5	1.0	NR	91.00	[36]
ZnO nanoparticles	123	0.19	6.17	4.0	5.0	80	5.08	[35]
Humic acid/cellulose	NR	7.94	NR	13.0	2.0	10	5.02	[38]
Al-based metal organic framework	2	0.01	21.41	2.0	0.8	5	101.70	[49]
Mesoporous silica	496	0.50	2.50	NR	3.9	5	18.32	[50]

ตารางที่ 11 การเปรียบเทียบประสิทธิภาพการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงใน คอลัมน์บนวัสดุดูดซับชนิดต่างๆ

** NR = no report

บทที่ 5

สรุปผลการทดลอง

5.1 การสังเคราะห์วัสดุดูดซับ

จากการศึกษาพื้นที่ผิวและขนาดรูพรุนโดยการวิเคราะห์โดยใช้เทคนิคการดูดซับและการคาย การดูดซับไนโตรเจนที่อุณหภูมิ 77 K พบว่าอุณหภูมิที่ใช้ในกระบวนการคาร์บอไนเซชันมากกว่า 700°C และผ่านการกระตุ้นด้วย Fe(NO₃)₃ สามารถสร้างรูพรุนในช่วงมีโซได้ โดยเมื่ออุณหภูมิใน กระบวนการคาร์บอไนเซชันสูงขึ้นจะส่งผลให้ปริมาตรรูพรุนในช่วงมีโซเพิ่มขึ้นตามไปด้วย ซึ่ง ฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันที่ภายใต้ N₂ อุณหภูมิ 900°C (HC-BI-900) ให้ปริมาตรรูพรุนในช่วงมีโซสูงที่สุดเท่ากับ 0.42 cm³/g

5.2 การศึกษาการดูดซับไซโปรฟลอกซาซินในกระบวนการดูดซับแบบกะ

การศึกษาไอโซเทอมการดูดซับของวัสดุดูดซับพบว่าฮาร์ดบอร์ดที่ผ่านการกระตุ้นด้วย Fe(NO₃)₃ 0.1 M แล้วคาร์บอไนเซชันภายใต้ N₂ ที่อุณหภูมิ 800℃ (HC-BI-800) ในสองช่วงความ เข้มข้นได้แก่ ช่วงความเข้มข้นสูง (5-300 mg/L) และช่วงความเข้มข้นต่ำ (1-10 mg/L) พบว่าทั้งสอง ช่วงความเข้มข้นมีพฤติกรรมการดูดซับสอดคล้องกับไอโซเทอมการดูดซับของ Langmuir โดยมีค่า R² เท่ากับ 0.9804 และ 0.9961 ตามลำดับ ซึ่งบ่งบอกถึงพฤติกรรมการดูดซับของ Langmuir โดยมีค่า R² เป็นกลไกแบบชั้นเดียว (monolayer) และมีค่าความสามารถในการดูดซับสูงสุดเท่ากับ 60.99 และ 47.01 mg/g ตามลำดับ อีกทั้งในการศึกษาแบบจำลองทางจลน์พลศาสตร์พบว่าทั้งที่ความเข้มข้นสูง (70 mg/L) และที่ความเข้มข้นต่ำ (7 mg/L) มีความสอดคล้องกับแบบจำลอง PSO โดยมีค่าอัตราเร็ว เริ่มต้นเท่ากับ 30.06 และ 10.06 mg g⁻¹min⁻¹ ตามลำดับ

5.3 การศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์

การศึกษาการดูดซับไซโปรฟลอกซาซินในระบบการดูดซับแบบตรึงในคอลัมน์โดยจะ ทำการศึกษาอิทธิพลของความเข้มข้นเริ่มต้นของไซโปรฟลอกซาซิน, ความสูงคอลัมน์ และอัตราการ ไหลโดยพบว่าเวลาของการดูดซับ ณ จุดเบรกทรู (t_b), เวลาของการดูดซับ ณ สภาวะสมดุล (t_e) และ %removal (%R) เพิ่มขึ้นอย่างมากเมื่อเพิ่มความสูงคอลัมน์ ในขณะที่การเพิ่มขึ้นของอัตราการไหล และความเข้มข้นเริ่มต้นส่งผลให้ t_b, t_e และ %R ลดลง โดยที่ความสูงของคอลัมน์ 15 cm อัตราการ ไหล 10 mL/min และความเข้มข้นเริ่มต้นที่ 80 mg/L ให้ค่าความสามารถในการดูดซับ (q_{TH}) สูง ที่สุดที่ 59.20 mg/g

การศึกษาแบบจำลองจลน์พลศาสตร์การดูดซับในระบบการดูดซับแบบตรึงในคอลัมน์ พบว่า แบบจำลองของ Thomas และ Yoon-Nelson เหมาะสมสำหรับการอธิบายผลของของความเข้มข้น เริ่มต้นของไซโปรฟลอกซาซิน, ความสูงคอลัมน์ และอัตราการไหล เนื่องจากมีค่า R² ที่สูงเมื่อเทียบกับ แบบจำลองของ Adams-Bohart

5.4 ข้อเสนอแนะ

 1.ควรมีการศึกษาเพิ่มเติมถึงความเป็นไปได้ในการฟื้นฟูไบโอซาร์ที่ใช้แล้วและนำกลับมาใช้ ใหม่ในระบบการดูดซับแบบตรึงในคอลัมน์

2.ควรมีการนำไบโอซาร์ที่ผ่านการดูดซับไซโปรฟลอกซาซินไปทำการวิเคราะห์ขั้นสูงเพื่อ ศึกษากลไกการดูดซับ

3.ควรมีการศึกษาที่ความเข้มข้นที่ใกล้เคียงกับน้ำเสียที่ปนเปื้อนในน้ำจริงเช่น น้ำเสียจาก โรงพยาบาล, ชุมชน และแม่น้ำ

> จุฬาลงกรณีมหาวิทยาลัย Chulalongkorn University

การสร้างกราฟมาตรฐาน การดูดซับไซโปรฟลอกซาซิน และการคำนวณ

1.การสร้างกราฟมาตรฐาน

1.1 การเตรียมสารละลายมาตรฐาน

- ชั่งสารไซโปรฟลอกซาซินมาตรฐานน้ำหนัก 1 g ใส่ขวดปรับปริมาตร 1 L ละลายด้วยน้ำ DI และ ปรับปริมาตรให้ครบ 1 L

- เจือจางสารละลายมาตรฐานให้มีความเข้มข้นในช่วง 0.1-10 mg/L

- วัดค่าดูดกลืนแสงด้วยเครื่อง UV-Visible Spectrophotometer

1.2 ผลการวัดค่าการดูดกลื่นแสง

							1		
a		L d	И И И	5 .	A A A A A A A A A A A A A A A A A A A	a	di la chi		
m 0 ~ 0 000	10	000000000000000000000000000000000000000	10000000	~ 0	000000000000000000000000000000000000000	0000000000000	000101000001	074	
(6) 17 1,99/1		@ 11 10001 2411 2.4961.42	17799718118	וצווע	174/17/01/10/19/19/19/19	1(0) 2 3 14 14/16	1.1.14181.1.100/941	111	nm
	_			υьυ			0 100 0 10110110	214	
		91	· // · · / // · / · · · · · · · · · · ·			49			

Concentration	Absorbance	Absorbance	Absorbance	Absorbance
(mg/L)	(ครั้งที่ 1)	(ครั้งที่ 1)	(ครั้งที่ 1)	(เฉลี่ย)
0.1	0.011	0.010	0.012	0.011
0.2	0.018	0.019	0.019	0.019
0.4	0.041	0.041	0.041	0.041
0.6	0.063	0.062	0.061	0.062
0.8	0.084	0.084	0.085	0.084
1	0.106	0.110	0.108	0.108
2	0.222	0.223	0.222	0.222
3	0.330	0.330	0.330	0.330
4	0.454	0.455	0.454	0.454
5	0.563	0.563	0.562	0.563
6	0.662	0.660	0.658	0.660
7	0.785	0.785	0.784	0.785
8	0.887	0.887	0.887	0.887
9	1.006	1.007	1.008	1.007
10	1.101	1.101	1.100	1.101

รูปที่ 20 กราฟมาตรฐานของสารละลายไซโปรฟลอกซาซินที่ความยาวคลื่น 274 nm 1.3 การคำนวณความเข้มข้นจากกราฟมาตรฐาน

กราฟความเข้มข้นมาตรฐานจะแสดงความสัมพันธ์รหว่างความเข้มข้นสารละลายไซโปร ฟลอกซาซินที่ไม่ทราบความเข้มข้นที่แน่นอนโดยสามารถนำไปวัดค่าการดูดกลืนแสงและทำการ คำนวณผ่านสมการเชิงเส้นของกราฟความเข้มข้นของไซโปรฟลอกซาซินที่มาตรฐานเพื่อคำนวณกลับ เป็นความเข้มข้น

สมการเส้นตรงจากกราฟมาตรฐาน: y=8.974x + 0.0173

โดยเมื่อนำสารละลายไซโปรฟลอกซาซินที่ไม่ทราบความเข้มข้นไปวัดค่าการดูดกลืนแสงที่ความยาว คลื่น 274 nm ได้เท่ากับ 0.675 สามารถคำนวณหาความเข้มข้นได้ดังนี้

ดังนั้นสารละลายไซโปรฟลอกซาซินที่มีค่าการดูดกลืนแสงเท่ากับ 0.675 มีความเข้มข้นเท่ากับ 6.075 mg/L

บรรณานุกรม

- [1] P. Krasucka, B. Pan, Y. Sik Ok, D. Mohan, B. Sarkar, and P. Oleszczuk, "Engineered biochar – A sustainable solution for the removal of antibiotics from water," *Chemical Engineering Journal*, vol. 405, p. 126926, 2021/02/01/ 2021, doi: <u>https://doi.org/10.1016/i.cei.2020.126926</u>.
- [2] M. E. Peñafiel, J. M. Matesanz, E. Vanegas, D. Bermejo, R. Mosteo, and M. P. Ormad, "Comparative adsorption of ciprofloxacin on sugarcane bagasse from Ecuador and on commercial powdered activated carbon," *Science of The Total Environment*, vol. 750, p. 141498, 2021/01/01/ 2021, doi: <u>https://doi.org/10.1016/j.scitotenv.2020.141498</u>.
- [3] Y. Yan, X. Xu, C. Shi, W. Yan, L. Zhang, and G. Wang, "Ecotoxicological effects and accumulation of ciprofloxacin in Eichhornia crassipes under hydroponic conditions," *Environmental Science and Pollution Research*, vol. 26, no. 29, pp. 30348-30355, 2019/10/01 2019, doi: 10.1007/s11356-019-06232-5.
- [4] J.-R. Li, Y.-X. Wang, X. Wang, B. Yuan, and M.-L. Fu, "Intercalation and adsorption of ciprofloxacin by layered chalcogenides and kinetics study," *Journal of Colloid and Interface Science*, vol. 453, pp. 69-78, 2015/09/01/ 2015, doi: <u>https://doi.org/10.1016/j.jcis.2015.03.067</u>.
- [5] M. Bizi and F. E. El Bachra, "Evaluation of the ciprofloxacin adsorption capacity of common industrial minerals and application to tap water treatment," *Powder Technology*, vol. 362, pp. 323-333, 2020/02/15/ 2020, doi: <u>https://doi.org/10.1016/j.powtec.2019.11.047</u>.
- [6] M. Chiarello, L. Minetto, S. V. D. Giustina, L. L. Beal, and S. Moura, "Popular pharmaceutical residues in hospital wastewater: quantification and qualification of degradation products by mass spectroscopy after treatment with membrane bioreactor," *Environmental Science and Pollution Research*, vol. 23, no. 16, pp. 16079-16089, 2016/08/01 2016, doi: 10.1007/s11356-016-6766-2.
- [7] H. Bagheri, A. Roostaie, and M. Y. Baktash, "A chitosan–polypyrrole magnetic nanocomposite as μ-sorbent for isolation of naproxen," *Analytica Chimica Acta*,

vol. 816, pp. 1-7, 2014/03/13/ 2014, doi: https://doi.org/10.1016/i.aca.2014.01.028.

- [8] W. Chiemchaisri, C. Chiemchaisri, N. S. Hamjinda, C. Jeensalute, P. Buranapakdee, and V. Thamlikitkul, "Field investigation of antibiotic removal efficacies in different hospital wastewater treatment processes in Thailand," *Emerging Contaminants,* vol. 8, pp. 329-339, 2022/01/01/ 2022, doi: <u>https://doi.org/10.1016/j.emcon.2022.07.002</u>.
- [9] A. Booth, D. S. Aga, and A. L. Wester, "Retrospective analysis of the global antibiotic residues that exceed the predicted no effect concentration for antimicrobial resistance in various environmental matrices," *Environment International*, vol. 141, p. 105796, 2020/08/01/ 2020, doi: <u>https://doi.org/10.1016/j.envint.2020.105796</u>.
- [10] J. R. d. Andrade, M. F. Oliveira, M. C. d. Silva, and M. G. A. Vieira, "Adsorption of Pharmaceuticals from Water and Wastewater Using Nonconventional Low-Cost Materials: A Review," *Industrial & Engineering Chemistry Research*, vol. 57, pp. 3103-3127, 2018.
- [11] T. Poshyananda, "รายงานประจำปี 2561," 2018.
- F. A. Kamke, "Wood: Nonstructural Panel Processes," in *Encyclopedia of Materials: Science and Technology*, K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière Eds. Oxford: Elsevier, 2001, pp. 9673-9678.
- [13] D. Pattnaik, S. Kumar, S. Bhuyan, and S. Mishra, "Effect of carbonization temperatures on biochar formation of bamboo leaves," *IOP Conference Series: Materials Science and Engineering,* vol. 338, p. 012054, 03/01 2018, doi: 10.1088/1757-899X/338/1/012054.
- [14] J. G. Speight, "Chapter 3 Industrial Organic Chemistry," in *Environmental Organic Chemistry for Engineers*, J. G. Speight Ed.: Butterworth-Heinemann, 2017, pp. 87-151.
- [15] X. Peng, F. Hu, T. Zhang, F. Qiu, and H. Dai, "Amine-functionalized magnetic bamboo-based activated carbon adsorptive removal of ciprofloxacin and norfloxacin: A batch and fixed-bed column study," *Bioresource Technology*, vol.

249, pp. 924-934, 2018/02/01/ 2018, doi:

https://doi.org/10.1016/j.biortech.2017.10.095.

- [16] I. Langmuir, "THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS," *Journal of the American Chemical Society*, vol. 38, no. 11, pp. 2221-2295, 1916/11/01 1916, doi: 10.1021/ja02268a002.
- P. S. Ghosal and A. K. Gupta, "Determination of thermodynamic parameters from Langmuir isotherm constant-revisited," *Journal of Molecular Liquids*, vol. 225, pp. 137-146, 2017/01/01/ 2017, doi: <u>https://doi.org/10.1016/j.molliq.2016.11.058</u>.
- [18] A. A. Inyinbor, F. A. Adekola, and G. A. Olatunji, "Kinetics, isotherms and thermodynamic modeling of liquid phase adsorption of Rhodamine B dye onto Raphia hookerie fruit epicarp," *Water Resources and Industry*, vol. 15, pp. 14-27, 2016/09/01/ 2016, doi: <u>https://doi.org/10.1016/j.wri.2016.06.001</u>.
- [19] N. Ayawei, A. N. Ebelegi, and D. Wankasi, "Modelling and Interpretation of Adsorption Isotherms," *Journal of Chemistry*, vol. 2017, p. 3039817, 2017/09/05 2017, doi: 10.1155/2017/3039817.
- [20] H. Freundlich, "Über die Adsorption in Lösungen," vol. 57U, no. 1, pp. 385-470, 1907, doi: doi:10.1515/zpch-1907-5723.
- [21] P. Nanta, K. Kasemwong, and W. Skolpap, "Isotherm and Kinetic Modeling on Superparamagnetic Nanoparticles Adsorption of Polysaccharide," *Journal of Environmental Chemical Engineering*, vol. 6, 12/01 2017, doi: 10.1016/j.jece.2017.12.063.
- [22] H. Yuh-Shan, "Citation review of Lagergren kinetic rate equation on adsorption reactions," *Scientometrics*, vol. 59, no. 1, pp. 171-177, 2004/01/01 2004, doi: 10.1023/B:SCIE.0000013305.99473.cf.
- [23] Y.-S. Ho, "Review of second-order models for adsorption systems," Journal of Hazardous Materials, vol. 136, no. 3, pp. 681-689, 2006/08/25/ 2006, doi: <u>https://doi.org/10.1016/j.jhazmat.2005.12.043</u>.
- [24] Z. Z. Chowdhury, S. M. Zain, A. K. Rashid, R. F. Rafique, and K. Khalid,
 "Breakthrough Curve Analysis for Column Dynamics Sorption of Mn(II) Ions from
 Wastewater by Using <i>Mangostana garcinia</i> Peel-Based Granular-Activated
 Carbon," *Journal of Chemistry*, vol. 2013, p. 959761, 2012/06/14 2013, doi:

10.1155/2013/959761.

- [25] M. S. Shafeeyan, W. M. A. Wan Daud, and A. Shamiri, "A review of mathematical modeling of fixed-bed columns for carbon dioxide adsorption," *Chemical Engineering Research and Design*, vol. 92, no. 5, pp. 961-988, 2014/05/01/ 2014, doi: <u>https://doi.org/10.1016/j.cherd.2013.08.018</u>.
- [26] M. Ghasemi, A. R. Keshtkar, R. Dabbagh, and S. Jaber Safdari, "Biosorption of uranium(VI) from aqueous solutions by Ca-pretreated Cystoseira indica alga: Breakthrough curves studies and modeling," *Journal of Hazardous Materials,* vol. 189, no. 1, pp. 141-149, 2011/05/15/ 2011, doi: https://doi.org/10.1016/j.jhazmat.2011.02.011.
- [27] R. Han, D. Ding, Y. Xu, W. Zou, Y. Wang, Y. Li, and L. Zou, "Use of rice husk for the adsorption of congo red from aqueous solution in column mode," *Bioresource Technology*, vol. 99, no. 8, pp. 2938-2946, 2008/05/01/ 2008, doi: <u>https://doi.org/10.1016/j.biortech.2007.06.027</u>.
- Y. H. Yoon and J. H. Nelson, "Application of Gas Adsorption Kinetics I. A Theoretical Model for Respirator Cartridge Service Life," *American Industrial Hygiene Association Journal*, vol. 45, no. 8, pp. 509-516, 1984/08/01 1984, doi: 10.1080/15298668491400197.
- [29] A. D. Dorado, X. Gamisans, C. Valderrama, M. Solé, and C. Lao, "Cr(III) removal from aqueous solutions: A straightforward model approaching of the adsorption in a fixed-bed column," *Journal of Environmental Science and Health, Part A,* vol. 49, no. 2, pp. 179-186, 2014/01/28 2014, doi: 10.1080/10934529.2013.838855.
- [30] K. H. Chu, "Fixed bed sorption: Setting the record straight on the Bohart–Adams and Thomas models," *Journal of Hazardous Materials*, vol. 177, no. 1, pp. 1006-1012, 2010/05/15/ 2010, doi: <u>https://doi.org/10.1016/j.jhazmat.2010.01.019</u>.
- [31] T. M. Darweesh and M. J. Ahmed, "Adsorption of ciprofloxacin and norfloxacin from aqueous solution onto granular activated carbon in fixed bed column," *Ecotoxicology and Environmental Safety*, vol. 138, pp. 139-145, 2017/04/01/ 2017, doi: <u>https://doi.org/10.1016/j.ecoenv.2016.12.032</u>.
- [32] S. Das, A. Barui, and A. Adak, "Montmorillonite impregnated electrospun

cellulose acetate nanofiber sorptive membrane for ciprofloxacin removal from wastewater," *Journal of Water Process Engineering,* vol. 37, p. 101497, 2020/10/01/ 2020, doi: <u>https://doi.org/10.1016/j.jwpe.2020.101497</u>.

- [33] R. Antonelli, G. R. P. Malpass, M. G. C. da Silva, and M. G. A. Vieira, "Fixed-Bed Adsorption of Ciprofloxacin onto Bentonite Clay: Characterization, Mathematical Modeling, and DFT-Based Calculations," *Industrial & Engineering Chemistry Research*, vol. 60, no. 10, pp. 4030-4040, 2021/03/17 2021, doi: 10.1021/acs.iecr.0c05700.
- [34] A. Gupta and A. Garg, "Adsorption and oxidation of ciprofloxacin in a fixed bed column using activated sludge derived activated carbon," *Journal of Environmental Management*, vol. 250, p. 109474, 2019/11/15/ 2019, doi: <u>https://doi.org/10.1016/j.jenvman.2019.109474</u>.
- [35] N. Dhiman and N. Sharma, "Removal of ciprofloxacin hydrochloride from aqueous solution using vertical bed and sequential bed columns," *Journal of Environmental Chemical Engineering*, vol. 6, no. 4, pp. 4391-4398, 2018/08/01/ 2018, doi: <u>https://doi.org/10.1016/j.jece.2018.06.064</u>.
- [36] J. A. González, J. G. Bafico, M. E. Villanueva, S. A. Giorgieri, and G. J. Copello, "Continuous flow adsorption of ciprofloxacin by using a nanostructured chitin/graphene oxide hybrid material," *Carbohydrate Polymers*, vol. 188, pp. 213-220, 2018/05/15/ 2018, doi: <u>https://doi.org/10.1016/j.carbpol.2018.02.021</u>.
- [37] F. Feizi, A. K. Sarmah, and R. Rangsivek, "Adsorption of pharmaceuticals in a fixed-bed column using tyre-based activated carbon: Experimental investigations and numerical modelling," *Journal of Hazardous Materials*, vol. 417, p. 126010, 2021/09/05/ 2021, doi: <u>https://doi.org/10.1016/j.jhazmat.2021.126010</u>.
- [38] L. Wang, C. Yang, A. Lu, S. Liu, Y. Pei, and X. Luo, "An easy and unique design strategy for insoluble humic acid/cellulose nanocomposite beads with highly enhanced adsorption performance of low concentration ciprofloxacin in water," *Bioresource Technology*, vol. 302, p. 122812, 2020/04/01/ 2020, doi: <u>https://doi.org/10.1016/j.biortech.2020.122812</u>.
- [39] S. Damdib, N. Vanichsetakul, P. Pimpapoat, S. Mikhalovsky, R. Busquets, A.Siyasukh, and N. Tonanon, "Removal of Reactive Black Dye in Water by Magnetic

Mesoporous Carbon from Macadamia Nutshell," *Adsorption Science & Technology,* vol. 2022, p. 9884474, 2022/12/06 2022, doi: 10.1155/2022/9884474.

- [40] J. Escalante, W.-H. Chen, M. Tabatabaei, A. T. Hoang, E. E. Kwon, K.-Y. Andrew Lin, and A. Saravanakumar, "Pyrolysis of lignocellulosic, algal, plastic, and other biomass wastes for biofuel production and circular bioeconomy: A review of thermogravimetric analysis (TGA) approach," *Renewable and Sustainable Energy Reviews*, vol. 169, p. 112914, 2022/11/01/ 2022, doi: https://doi.org/10.1016/j.rser.2022.112914.
- [41] V. H. Nguyen, H. T. Van, V. Q. Nguyen, X. V. Dam, L. P. Hoang, and L. T. Ha,
 "Magnetic Fe₃O₄ Nanoparticle Biochar Derived from
 Pomelo Peel for Reactive Red 21 Adsorption from Aqueous Solution," *Journal of Chemistry*, vol. 2020, p. 3080612, 2020/06/13 2020, doi: 10.1155/2020/3080612.
- [42] D. Balarak, A. H. Mahvi, M. J. Shim, and S. Leec, "Adsorption of ciprofloxacin from aqueous solution onto synthesized NiO: isotherm, kinetic and thermodynamic studies," 2021.
- [43] K.-W. Jung, T.-U. Jeong, J.-W. Choi, K.-H. Ahn, and S.-H. Lee, "Adsorption of phosphate from aqueous solution using electrochemically modified biochar calcium-alginate beads: Batch and fixed-bed column performance," *Bioresource Technology*, vol. 244, pp. 23-32, 2017/11/01/ 2017, doi: <u>https://doi.org/10.1016/j.biortech.2017.07.133</u>.
- [44] U. Kumari, A. Mishra, H. Siddiqi, and B. C. Meikap, "Effective defluoridation of industrial wastewater by using acid modified alumina in fixed-bed adsorption column: Experimental and breakthrough curves analysis," *Journal of Cleaner Production,* vol. 279, p. 123645, 2021/01/10/ 2021, doi: <u>https://doi.org/10.1016/j.jclepro.2020.123645</u>.
- [45] T. M. Darweesh and M. J. Ahmed, "Batch and fixed bed adsorption of levofloxacin on granular activated carbon from date (Phoenix dactylifera L.) stones by KOH chemical activation," *Environmental Toxicology and Pharmacology,* vol. 50, pp. 159-166, 2017/03/01/ 2017, doi: <u>https://doi.org/10.1016/j.etap.2017.02.005</u>.

- [46] R. G. Mavinkattimath, V. Shetty Kodialbail, and G. Srinikethan, "Continuous fixedbed adsorption of reactive azo dye on activated red mud for wastewater treatment-Evaluation of column dynamics and design parameters," *Environmental Science and Pollution Research,* vol. 30, no. 19, pp. 57058-57075, 2023/04/01 2023, doi: 10.1007/s11356-023-26210-2.
- [47] N. Fallah and M. Taghizadeh, "Continuous fixed-bed adsorption of Mo(VI) from aqueous solutions by Mo(VI)-IIP: Breakthrough curves analysis and mathematical modeling," *Journal of Environmental Chemical Engineering*, vol. 8, no. 5, p. 104079, 2020/10/01/ 2020, doi: <u>https://doi.org/10.1016/j.jece.2020.104079</u>.
- [48] P. Zhao, Y. Wu, and F. Yu, "Experimental Data and Modeling the Adsorption-Desorption and Mobility Behavior of Ciprofloxacin in Sandy Silt Soil," *Water*, vol. 14, no. 11, doi: 10.3390/w14111728.
- [49] N. Kim, B. Cha, Y. Yea, L. K. Njaramba, S. Vigneshwaran, S. S. Elanchezhiyan, and C. M. Park, "Effective sequestration of tetracycline and ciprofloxacin from aqueous solutions by Al-based metal organic framework and reduced graphene oxide immobilized alginate biosorbents," *Chemical Engineering Journal*, vol. 450, p. 138068, 2022/12/15/ 2022, doi: https://doi.org/10.1016/j.cej.2022.138068.
- [50] D. Lu, S. Xu, W. Qiu, Y. Sun, X. Liu, J. Yang, and J. Ma, "Adsorption and desorption behaviors of antibiotic ciprofloxacin on functionalized spherical MCM-41 for water treatment," *Journal of Cleaner Production*, vol. 264, p. 121644, 2020/08/10/ 2020, doi: <u>https://doi.org/10.1016/j.jclepro.2020.121644</u>.

Chulalongkorn University
ประวัติผู้เขียน

ชื่อ-สกุล วัน เดือน ปี เกิด สถานที่เกิด วุฒิการศึกษา ที่อยู่ปัจจุบัน

ศุภณัฐ ตันฑวณิชย์ 5 มีนาคม 2541 เชียงใหม่ วิทยาศาสตรบัณฑิต สาขาวิชาเคมีอุตสหกรรม 6 หมู่ 16 ถ.พระเจ้าทันใจ ต.บ่อแฮ้ว อ.เมือง จ.ลำปาง 52100

Chulalongkorn University