Results and the Interpretation

Results and the Interpretation

1) Testing of the efficiency of the foreign exchange market

The equation (1) in chapter 4 was tested the efficiency of the foreign exchange market by using the ordinary least square method. The regression equation can be expressed as the following :

$$lnS_t = a + blnF_{t-1} + u_t$$
 ------ (1)

The empirical result of testing the model from July 2, 1997 to February 18, 1998 is shown in equation (2)

 $InS_{t} = 3.290023 + 0.141676InF_{t-1} -----(2)$ $(3.390897) \quad (0.581033)$ $Adjust R^{2} = 0.902212$ F-statistic = 167.0719

The other statistics are shown in table 3

Table3: Regression results of the efficiency of the foreign exchange market equation

LS // Dependent Varia Date: 05/18/98 Time: Sample(adjusted): 2 3 Included observations: Convergence achieved	15:23 8 : 37 after adjus			
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.290023	0.970252	3.390897	0.0018
LNF1	0.141676	0.243834	0.581033	0.5651
AR(1)	0.926187	0.083159	14.66426	0.0000
R-squared	0.907645	Mean depender	nt var	3.778050
Adjusted R-squared	0.902212	S.D. dependent		0.139494
S.E. of regression	0.043621	Akaike info crite		-6.186820
Sum squared resid	0.064695	Schwarz criterio	n	-6.056205
Log likelihood	64.95544	F-statistic		167.0719
Durbin-Watson stat	1.857082	Prob(F-statistic)		0.000000
Inverted AR Roots	.93			

Esrimation Method: Ordinary Least Squares

According to t-statistic which are greater than 1.671, the coefficients of the logarithm of the lagged forward rate is significantly indifferent from zero at 5 percent level of significance but the computed F-statistic is 167.0719 which is higher than the critical F-statistic with 1 and 54 degrees of freedom. So the null hypothesis that all coefficients are jointly zero can be strongly rejected.

From the coefficient of the logarithm of lagged forward rate, if the 1month forward rate in previous period increase 1 Baht, the current spot exchange rate may increase 0.141676 Baht. It can be explained that the 1month forward rate in previous period is less influenced in the current spot exchange rate. From this result, it can be concluded that the foreign exchange rate. From this result, it can be concluded that the foreign exchange market is inefficient under the risk neutrality and rational expectation, then, the forward rate is not an unbiased forecast of the future spot rate. This may be because of a failure of rational expectation or because there exists a sizeable time varying risk premium.

II) Testing of the determination of the exchange rate in the short-run : The News Model

The equation used in our estimation is equation (9). In this equation, the expected interest rate differential can be computed first by using the ordinary least squares (OLS) method.

The model used in the analysis is as the following :

$$\ln S_{t} = a + b \ln F_{t-1} + \alpha \left\{ \left[(1 - 1^{*}) \right]_{t} - E_{t-1} \left[(1 - 1^{*})_{t} \right] \right\} + u_{t} \qquad ----- (9)$$

From this equation, the expected interest rate differential is computed from a regression of the interest rate differential on a constant, on a lagged values of the differential, and the logarithm of the lagged forward exchange rates¹.

Model 1) : According to, 1-month interest rate differential and 1month forward rates are computed which can express as :

¹ See also chapter 4

By using ordinary least squares method, the estimated equation, with tstatistics in parentheses, is, as the following :

 $E_{t-1}(\mathbf{l} - \mathbf{l}^{*})_{t} = -0.003286 - 0.287516(\mathbf{l} - \mathbf{l}^{*})_{t-1} + 0.252470F_{t-1} - (11)$ (-0.001921) (-2.028616) (0.555391)

Adjust $R^2 = 0.459641$ F-statistic = 11.20746

The other statistics are shown in table 4

Table4: Regression results of the expected interest rate differential equation(1)

LS // Dependent Varia Date: 05/15/98 Time: Sample(adjusted): 2 3 Included observations: Convergence achieved	05:58 8 37 after adjus	ting endpoints		
Variable 🔼	Coefficient	Std. Error	t-Statistic	Prob.
c 🔽	-0.003286	1.710869	-0.001921	0.9985
LAG2DI1	-0,287516	0.141730	-2.028616	0.0506
LNF1 🧧	0.252470	0.454581	0.555391	0.5824
AR(1)	0.620566	0.132304	4.690452	0.0000
R-squared	0.504671	Mean depende	nt var	0.740246
Adjusted R-squared	0.459641	S.D. dependen		0.265295
S.E. of regression	0.195016	Akaike info crite	non	-3.167539
Sum squared resid	1.255035	Schwarz criterio	on 2 C	-2.993385
Log likelihood	10.09874	F-statistic		11.20746
Durbin-Watson stat	1.667582	Prob(F-statistic)	0.000032
Inverted AR Roots	.62			······································

Esrimation Method: Ordinary Least Squares

According to t-statistic which are greater than 1.697, the coefficient of the lagged value of interest differential is statistically differ from zero at 5 percent level of significance. The coefficient of the forward rate is not statistically significant, therefore, we will drop this variable from the model.

Model 2): The model used in this analysis is as the following :

$$E_{t-1}(1-1^*)_t = a + b(1-1^*)_{t-1} + u_t$$
 (12)

By using ordinary least squares method, the estimated equation, with tstatistics in parentheses, is, as the following :

$$E_{t-1}(1-1^{*})_{t} = -0.945129 - 0.289540(1-1^{*})_{t-1} \qquad ------(13)$$
(-7.679317) (-2.065639)

Adjust $R^2 = 0.470620$ F-statistic = 17.00206

The other statistics are shown in table 5

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

Table5: Regression results of the expected interest rate differential equation(2)

LS // Dependent Varia Date: 05/15/98 Time: Sample(adjusted): 2 3 Included observations Convergence achieved	07:49 8 : 37 after adjus	ting endpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	0.945129	0.123075	7.679317	0.0000
LAG2DI1	-0.289540	0.140170	-2.065639	0.0466
. AR(1)	0.622287	0.128264	4.851619	0.0000
R-squared	0.500030	Mean depende	nt var	0.740246
Adjusted R-squared	0.470620	S.D. dependent	t var	0.265295
S.E. of regression	0.193025	Akaike info crite	erion	-3.212268
Sum squared resid	1.266793	Schwarz criterio	n	-3.081653
Log likelihood 🥢 🥖	9.926227	F-statistic		17.00206
Durbin-Watson stat	1.686250	Prob(F-statistic)	0.00008
Inverted AR Roots	.62			

Esrimation Method: Ordinary Least Squares

The coefficient of all explanatory variables statistically differ from zero at 5 percent levels of significance.

The expected interest differentials can be computed directly from equation (13). Then, minus the actual interest differential by corresponding computed expected interest differential to obtain news.

Model 3): The future spot exchange rate is determined by two factors : expected future exchange rate reflecting on the forward exchange rate and unexpected new information which is called news. The regression format is as below :

$$\ln S_{t} = a + b \ln F_{t-1} + \alpha \left\{ \left[(1 - 1^{*}) \right]_{t} - E_{t-1} \left[(1 - 1^{*})_{t} \right] \right\} + u_{t} - ---(9)$$

By the method of ordinary least squares, the regression result including t-statistic is shown as the following equation :

 $lnS_{t} = 1.577131 + 0.590350 lnF_{t-1} + 0.023393 news$ (4.756240) (6.644752) (0.669526)

Adjust $R^2 = 0.539365$

F-statistic = 22.07652

The other statistics are shown in table 6

Table6: Regression results of the spot exchange rate equation (3)

LS // Dependent Varial Date: 05/15/98 Time; Sample(adjusted); 2 3/ Included observations;	11:47 8	ing endpoints		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
C	1.577131	0.331592	4.756240	0.0000
LNF1	0.590350	0.088645	6.644752	0.0000
NEWS	0.023393	0.034939	0.669526	0.5077
R-squared	0.564956	Mean depende	nt var	3.778050
Adjusted R-squared	0.539365	S.D. dependent	t var	0.139494
S.E. of regression 👘	0.094675	Akaike info crite	non	-4.637015
Sum squared resid	0.304751	Schwarz criterio	n	-4.506400
Log likelihood	36.28405	F-statistic		22.07652
Durbin-Watson stat	0.24063	Prob(F-statistic		0.000001

Esrimation Method: Ordinary Least Squares

 InF_{t-1} is highly correlated with InS_{t-1} , Durbin-Watson statistic may not be appropriate. Durbin's h-statistic is also not valid in this case². Durbin proposed an alternative method to test autocorrelation by estimating the equation.

Model 4) : After correcting this problem, the result of this model is shown in this equation.

 $lnS_{t} = 3.613727 + 0.063391lnF_{t-1} + 0.023520news$ (3.668158) (0.256617) (1.023555)

Adjust $R^2 = 0.9000917$ F-statistic = 107.0796

The other statistics are shown in table 7.

สถาบันวิทยบริการ จุฬาลงกรณ์มหาวิทยาลัย

² Damodar N. Gujarati, <u>Basic econometric</u>, p. 327.

Table7: Regression results of the spot exchange rate equation

LS // Dependent Varial Date: 05/18/98 Time: Sample(adjusted): 3 3 Included observations: Convergence achieved	'11:48 8 3 6 after adjus t	• •		
Variable	Coefficient	Std. Error	t-Statistic	Prob.
С	3.613727	0.985161	3.668158	0.0009
LNF1	0.063391	0.247027	0.256617	0.7991
NEWS	0.023520	0.022979	1.023555	0.3137
AR(1)	0.914351	0.059644	15.33017	0.0000
R-squared	0.909410	Mean depende	nt var	3.783454
Adjusted R-squared	0.900917	S.D. dependen	t var	0.137489
S.E. of regression	0.043278	Akaika info crite	arion	-6.175779
Sum squared resid	0.059936	Schwarz criterio	on	-5.999832
Log likelihood 🥢 🥌	64.08223	F-statistic		107.0796
Durbin-Watson stat	1.897202	Prob(F-statistic)	0.000000
Inverted AR Roots	.91			

Esrimation Method: Ordinary Least Squares

The coefficient of both InF_{t-1} and news are positive. The sign of the coefficient of news, in fact, may be either positive or negative, depending on the sources of news. The coefficient of them are significantly indifferent from zero at 5 percent level of significance. The overall test shows that F-statistic with 2 and 35 degrees of freedom is much greater than critical value so null hypothesis that all coefficients are jointly zero can be strongly rejected. In this regression, the computed F-statistic is 107.0796 which is highly significant so we can reject the null hypothesis.

The comparison with Frenkel's Model

We want to compare the result of our analysis with Frenkel's analysis of Dollar/Pound, Dollar/DM, and Dollar/Franc.

Frenkel found a statistically significant α in a model of Dollar/Pound but in other two model (Dollar/DM and Dollar/Franc) α were not significantly different from zero. The result of his study is shown in this table below.

InS,	Constant	InF _{t-1}	News	R ²
Dollar/Pound	0.031	0.959	0.432	0.96
	(1.824)	(39.958)	(2.387)	
Dollar/DM	-0.022	0.972	0.413	0.93
	(-0.846)	(31.355)	(1.190)	
Dollar/Franc	-2. <mark>4</mark> 6	0.837	0.245	0.80
	(-31.448)	(16.412)	(1.467)	

Source:Frenkel (1981)

It can be concluded from Frenkel's analysis that the current exchange rates already reflect expectations concerning the future course of events implies that the unanticipated changes in exchange rate are primarily due to innovations or news. From this results, the current changes in exchange rates are response to new information, therefore, the evidence indicates the importance of innovations in the interest differential. The result of our analysis.

inS _t	Constant	InF _{t-1}	News	R ²
Baht/US dollar	3.614	0.063	0.024	0.91
	(3.668)	(0.251)	(1.024)	

From our analysis, the coefficient of both lagged forward rate which are based on past information and news are significantly indifferent from zero at 5 percent level of significance. This indicates that both of these variables do not have any effect to changes in the current spot exchange rate in this period.

III) Testing of the determination of exchange rate in the long-run.

The equation (10) from chapter 4 was estimated by using cointegration method which tests the long run relationship between the current spot exchange rate and the price level in the logarithm forms. The price level are used to be the spot exchange rate which are computed from the ln(P/P*) according to the purchasing power parities.

The regression equation can be expressed as the following :

$$\Delta_{\rm r} = \ln {\rm S}_{\rm t} - \ln {\rm (P/P}^{*})_{\rm t}$$
 ------(10)

where Δ_t is the deviation from purchasing power parity during month t

- P. is the consumer price indices of Thailand
- P is the consumer price indices of US

InS_t is the logarithm of the current spot exchange rate (Baht / US dollar)

Firstly, we test in stationarity in both the spot exchange rate and the price level. Secondly, we perform the unit root test on the residual of equation (11) to find the cointegration of the two variables. The result indicates that there is no long run relation between the spot exchange rate and the price level. Thirdly, we search for the deviation pattern of analysis.

Table 11 : Augmented Dickey-Fuller Unit Root Test on exchange rate in logarithm form

ADF Test Statistic	-4.006519	5% Criti	cal Value* cal Value cal Value	-3.5850 -2.9286 -2.6021
*MacKinnon critical v	alues for reje	ction of hypoth	esis of a uni	it root.
Augmented Dickey-F LS // Depentdent Var Date: 04/30/98 Time Sample(adjusted): 19 Included observation	iable is D(F1 e: 11.47 994:04 1997:	LNEM,2) 11	nts	
Variable	Coefficient	Std. Error	T-statistic	Prob.
D(F1LNEM(-1)) D(F1LNEM(-1),2) C	-0.799337 0.033630 0.008573	0.199509 0.168011 0.006974	-4.006519 0.200162 1.229345	0.8423
R-squared Adjuated R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.387896 0.358038 0.044657 0.081766 75.90466 1.972696	Mean depende S.D. depende Akaike info cr Schwarz crite F-statistic Prob(F-statis	ent var iterion rion	0.000307 0.055736 -6.151725 -6.030076 12.99106 0.000043

From table 11, it shows that the spot rate in logarithm form is stationary in first difference because the computed value in absolute term is 4.006519 which is less than the 1%, 5%, and 10% ADF critical values are -3.5850, -2.9286, and -2.6021, respectively.

Table 12: Augmented Dickey-Fuller Unit Root Test on price level in logarithm form

ADF Test Statistic	-3.372970	1%Critical Value*5%Critical Value10%Critical Value	-3.5850 -2.9286 -2.6021
*MacKinnon critical va	alues for reje	ction of hypothesis of a un	iit root.
Augmented Dickey-F LS // Depentdent Var Date: 04/30/98 Time Sample(adjusted): 19 Included observation	iable is D(F1 5: 12.02 994:04 1997:	LNPPP,2)	
Variable	Coefficient	Std. Error T-statistic	Prob.
Variable D(F1LNPPP(-1))		Std. Error T-statistic 0.208000 -3.372970	
	-0.701579		0.0016
D(F1LNPPP(-1))	-0.701579	0.208000 -3.372970	0.0016 0.1332
D(F1LNPPP(-1)) D(F1LNPPP(-1),2) C	-0.701579 -0.236185	0.208000 -3.372970 0.154185 -1.531825	0.0016 0.1332
D(F1LNPPP(-1)) D(F1LNPPP(-1),2) C R-squared	-0.701579 -0.236185 0.002187	0.208000 -3.372970 0.154185 -1.531825 0.001153 1.896339	0.0016 0.1332 0.0650
D(F1LNPPP(-1)) D(F1LNPPP(-1),2) C R-squared Adjuated R-squared	-0.701579 -0.236185 0.002187 0.490026	0.208000 -3.372970 0.154185 -1.531825 0.001153 1.896339 Mean dependent var	0.0016 0.1332 0.0650 0.000141
D(F1LNPPP(-1)) D(F1LNPPP(-1),2) C R-squared Adjuated R-squared S.E. of regression	-0.701579 -0.236185 0.002187 0.490026 0.465149	0.208000 -3.372970 0.154185 -1.531825 0.001153 1.896339 Mean dependent var S.D. dependent var Akaike info criterion	0.0016 0.1332 0.0650 0.000141 0.009148
D(F1LNPPP(-1)) D(F1LNPPP(-1),2) C R-squared Adjuated R-squared	-0.701579 -0.236185 0.002187 0.490026 0.465149 0.006690	0.208000 -3.372970 0.154185 -1.531825 0.001153 1.896339 Mean dependent var S.D. dependent var Akaike info criterion	0.0016 0.1332 0.0650 0.000141 0.009148 -9.948530

Table 12 demonstrates that price level (InP/P*) is stationary in first difference. According to the computed absolute value is 3.37290 which is less

than the 1%, 5%, and 10% ADF critical values are -3.5850, -2.9286, and - 2.6021, respectively.

Then, we test the long run relationship between the spot exchange rate and the price level in the logarithm forms.

 $inS_t = a + bin(P/P^*)_t + u_t$ (11)

By using the ordinary least squares method, the estimated equation, with t-statistic in parentheses, is :

 $\ln S_{t} = 48.50414 + 1.549212\ln(P/P^{*})_{t}$

Adjust $R^2 = 1.867725$ F-statistic = 148.5996

Table13: Regression results of the spot exchange rate equation

LS // Dependent Varial Date: 05/15/98 Time: Sample(adjusted): 199 Included observations: Convergence achieved	06:21 4:02 1997:11 : 46 after adjust		9	
Variable 🔍	Coefficient	Std. Error	t-Statistic	Prob.
C	48.50414	29189.79	0.001662	0.9987
LNPPP	1.549212	1.027201	1.508187	0.1388
AR(1)	0.999874	0.085590	11.68220	0.0000
R-squared	0.873603	Mean depende	nt var	3.265930
Adjusted R-squared	0.867725	S.D. dependen	t var	0.120073
S.E. of regression	0.043670	Akaike info crite	non	-6.199194
Sum squared resid	0.082004	Schwarz criterio	Dİ	-6.079935
Log likelihood	80.31029	F-statistic		148.5996
Durbin-Watson stat	1.741503	Prob(F-statistic)	0.000000
Inverted AR Roots	1.00			

Esrimation Method: Ordinary Least Squares

61

The residual are estimated in this regression by Engle-Granger test.

Table 14 : Augment Dickey-Fuller Unit Root Test on Residual

ADF Test Statistic	-2.258511	5% Cri	tical Value* tical Value tical Value	-2.9303
*MacKinnon critical v	alues for reje	ction of hypot	hesis of a u r	ait root.
Augmented Dickey-F LS // Depentdent Var Date: 05/15/98 Time Sample(adjusted): 19 Included observation	riable is D(RE e: 12.05 994:05 1997:	SIDUAL)	Ants	1
Variable	Coefficient	Std. Error	T-statistic	Prob.
RESIDUAL(-1) D(RESIDUAL(-1) D(RESIDUAL(-2) C	-0.570073 -0.294168 -0.355478 0.001647		-1.357941	0.1823 0.0335
R-squared Adjuated R-squared S.E. of regression Sum squared resid Log likelihood Durbin-Watson stat	0.500051 0.461593 0.042782 0.071383 76.60498 1.876368	Schwarz crit	lent var criterion erion	0.000197 0.058305 -6.214853 -6.051020 13.00264 0.000005

From this result, the Engle-Granger 1%, 5%, and 10% critical values are -3.5889, -2.9303, and -2.6030, respectively. Since in absolute terms the estimated value of 2.258511 is still below any of these critical values, the conclusion would be that the residual is non-stationary. All the above, there is no long run relation between the spot exchange rate and the price level.

Then, the pattern of deviations from purchasing power parities for consumer price indices are examined by using the autocorrelation functions and the partial autocorrelation functions.

Table 15: The autocorrelation functions and the partial autocorrelation functions

Autocorrelation	Partial Correlation		AC	PAC	Q-Stat	Prob
I IFAMILIFIERMER		1	0.763	0.763	29.126	0.000
(UESSING)		2	0.493	-0.211	41.586	0.000
I DIREE		3	0.303	0.021	48.400	0.000
- 1 p 1		4	0.093	-0.227	46.866	0.000
េរស្មី		5	-0.079	-0.057	47.207	0.000
1 1 1		6	-0.033	0.339	47.270	0.000
		7	0.004	-0.139	47.270	0.000
4 4 1		8	-0.008	-0.028	47.274	0.000
1 1 1		9	-0.014	-0.100	47.285	0.000
F 🖞 I		10	-0.025	-0.033	47.324	0.000
I ⊈ I		11	-0.045	0.164	47.454	0.000
E 🗄 E 💭		12	-0.054	-0.093	47.647	0.000
· · · ₽ · · · · · · · · · · · · · · · · · · ·	1 1 1	13	-0.058	-0.034	47.872	0.000
😫 u 🔛		14	-0.064	-0.059	48.160	0.000
1 🖬 1	1 1	15	-0.068	-0.023	48.494	0.000
1 🖬 I	1 🖾 I	16	-0.065	0.094	48.812	0.000
I 🖾 I	0 5 E L	17	-0.069	-0.081	49.174	0.000
I 🗗 I 🥿 🖊					49.611	0.000
				-0.050		0.000
		20	-0.086	-0.021		0.000

Correlogram of DT

For this data, the Q-statistic based on 20 lags is about 29.126 exceeds the critical Q value from the chi-square table at 5 precent level of significance. It can reject the null hypothesis.

Based on correlogram, this conclusion is that the deviations from purchasing power parities is not stationary. In this case the autocorrelation function tails off at what seems to be an exponential rate, and the partial autocorrelation function shows a spike. This pattern seems to indicate that the deviations from purchasing power parities follow a first-order autoregressive process²⁸.

In view of this possibility it can be concluded that the deviations from purchasing power parities seem to follow a first-order autoregressive process. It implies that the deviation from purchasing power parities for consumer price indices from the last period can be used to determine the deviation from purchasing power parities for consumer price indices in this period.

Typeof model	Typical pattern of ACF	Typical pattern of PACF
AR(p)	Decays exponentially or with	Significant spikes through lage
	damped sine wave pattern or	ennee
	both	
MA(q)	Significant spikes through lags	Declines exponentially
	р	
ARMA(p,q)	Exponential decay	Exponential decay

²⁸ Table 16 : Theoritical patterns of ACF and PACF

Source: Damonar N. Gujarati, Basic econometric.