

วิทยานิพนธ์นี้เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิทยาศาสตรมหาบัณฑิต

ปีการศึกษา 2544
ISBN 974-03-0475-3
ลิขสิทธิ์ของจุพาลงกรณ์มหาวิทยาลัย

GENERALIZED TRANSFORMATION SEMIGROUPS ADMITTING

 HYPERRING STRUCTURE

By

Field of Study
Thesis Advisor

Miss. Noknoi Rompurk
Mathematics
Associate Professor Yupaporn Kemprasit, Ph. D.

Accepted by the Faculty of Science, Chulalongkorn University in Partial Fulfillment of the Requirements for the Master's Degree

Dean of Faculty of Science
(Associate Professor Wanchai Phothiphichitr, Ph. D.)

THESIS COMMITTEE

(Assistant Professor Amorn Wasanawichit, Ph. D.)
\qquad
6 (Associate Professor Yupaporn Kemprasit, Ph. D.)

นกน้อย ร่มพฤกษ์ : เซมิกรุปการแปลงนัยทั่วไปที่ให้โครงสร้างไฮเปอร์ริง
(GENERALIZED TRANSFORMATION SEMIGROUPS ADMITTING HYPERRING STRUCTURE)
อ. ที่ปรึกษา : รองศาสตราจารย์ ตร. ยุพาภรณ์ เข็มประสิทธิ์, 48 หน้า. ISBN 974-03-0475-3.

เรากล่าวว่าเซมิกรุป S ให้โครงสร้างไอเปอร์ริง ถ้ามีไฮเปอร์โอเปอเรชัน + บน S^{0} ที่ทำให้ $\left(S^{0},+, \cdot\right)$ เป็น (คราสเนอร์) ไฮเปอร์ริง โดยที่ • เป็นโอเปอเรชันของ S^{0} สำหรับเซมิกรุป S และ $\theta \in S^{1}$ ให้ (S, θ) เป็นเซ มิกรุป S ภายไต้โอเปอเรชัน * กำหนดโดย $x * y=x \theta y$ สำหรับทุก $x, y \in S$

เราให้ $T(X)$ แทนเซมิกรุปการแปลงเต็มบนเซต X ซึ่งเป็นเซตไม่ว่าง สำหรับปริภูมิเวกเตอร์ V บนริง การหาร ให้ $L(V)$ เป็นเซมิกรุปของการแปลงเชิงเส้น $\alpha: V \rightarrow V$ ทั้งหมดภายใต้การประกอบ

ในการวิอัยนี้เราให้ลักษณะที่จะบอกว่าเซมิกรุป (S, θ) โดย $\theta \in S^{1}$ ให้โครงสร้างไฮเปอร์ริงเมื่อใด โดยที่ S เป็นเซมิกรุปย่อยใดๆของ $T(X)$ และ $L(V)$ ต่อไปนี้
$T(X)$
$M(X)=\{\alpha \in T(X) \mid \alpha$ หนึ่งต่อหนึ่ง $\}$
$E(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha=X\}$
$T_{1}(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha$ เป็นเซตอันตะ $\}$
$T_{2}(X)=\{\alpha \in T(X) \mid X \backslash \operatorname{Im} \alpha$ เป็นเซตอันตะ $\}$
$T_{3}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha)$ เป็นเซตอันตะ $\}$ เมื่อ $\mathrm{K}(\alpha)=\{x \in X \mid \alpha$ ไม่หนึ่งต่อหนึ่งที่ $x\}$
$T_{4}(X)=\{\alpha \in T(X) \mid \alpha$ หนึ่งต่อหนึ่ง และ X \Im α เป็นเซตอนันต์ $\}$ เมื่อ X เป็นเซตอนันต์
$T_{5}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha)$ เป็นเซตอนันต์ และ $\mathrm{I} \mathrm{m} \alpha=X\}$ เมื่อ X เป็นเซตอนันต์
$L(V)$
$M(V)=\{\alpha \in L(V) \mid \alpha$ หนึ่งต่อหนึ่ง $\}$
$E(V)=\{\alpha \in L(V) \operatorname{Im} \alpha=V\}$
$L_{1}(V)=\{\alpha \in L(V)+\operatorname{dim} \operatorname{Im} \alpha$ อันตะ $\}$
$L_{2}(V)=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha)$ อันตะ $\}$
$L_{3}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha$ อันตะ $\}$
$L_{4}(V)=\{\alpha \in L(V) \mid \alpha$ หนึ่งต่อหนึ่ง เละ $\operatorname{aim}(V / I m \alpha)$ อนันต์ $\}$ เมื่อ V เป็นปริภูมิเวกเตอร์ที่ มีมิติอนันต์
$L_{5}(V) \equiv\left\{\alpha \in L(V) \mid d \operatorname{dim} K e r \alpha\right.$ อนันต์และ $\left.\operatorname{Im} \alpha_{\bar{c}} V\right\}$ เมื่อ V เป็นปริภูมิเวกเตอร์ที่มีมีติติ อนันต์ 6 / d 6 roon d/C

ภาควิชา คณิตศาสตร์
สาขาวิชา คณิตศาสตร์
ปีการศึกษา 2544

ลายมือชื่อนิสิต.
ลายมือชื่ออาจารย์ที่ปรึกษา.
ลายมือชื่ออาจารย์ที่ปรึกษาร่วม -

A semigroup S is said to admit a hyperring structure if there exists a hyperoperation + on S^{0} such that ($\left.S^{0},+, \cdot\right)$ is a (Krasner) hyperring where \cdot is the operation of S^{0}. For a semigroup S and $\theta \in S^{1}$, let (S, θ) be the semigroup S under the operation $*$ defined by $x * y=x \theta y$ for all $x, y \in S$.

The full transformation semigroup on a nonempty set X is denoted by $T(X)$. For a vector space V over a division ring, let $L(V)$ be the semigroup of all linear transformations $\alpha: V \rightarrow V$ under composition.

In this research, we give characterizations determining when the semigroup (S, θ) with $\theta \in S^{1}$ admits a hyperring structure where S is any of the following subsemigroups of $T(X)$ and of $L(V)$:
$T(X)$,
$M(X)=\{\alpha \in T(X) \mid \alpha$ is $1-1\}$,
$E(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha=X\}$,
$T_{1}(X)=\{\alpha \in T(X) \mid$ Im α is finite $\}$,
$T_{2}(X)=\{\alpha \in T(X) \mid X \backslash \operatorname{Im} \alpha$ is finite $\}$,
$T_{3}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha)$ is finite $\}$ where $\mathrm{K}(\alpha)=\{x \in X \mid \alpha$ is not $1-1$ at $x\}$,
$T_{4}(X)=\{\alpha \in T(X) \mid \alpha$ is $1-1$ and $X \backslash$ Im α is infinite $\}$ where X is infinite,
$T_{5}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha)$ infinite and $\operatorname{Im} \alpha=X\}$ where X is infinite,
$L(V)$,
$M(V)=\{\alpha \in L(V) \mid \alpha$ is $1-1\}$,
$E(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\}$,
$L_{1}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha$ is finite $\}$,
$L_{2}(V)=\{\alpha \in L(V) \mid \operatorname{dim}(V / \operatorname{Im} \alpha)$ is finite $\}$,
$L_{3}(V)=\{\alpha \in L(V) \mid \operatorname{dim}$ Ker α is finite $\}$,
$L_{4}(V)=\{\alpha \in L(V) \mid \alpha$ is $1-1$ and $\operatorname{dim}(V / \operatorname{Im} \alpha)$ is infinite $\}$ where V is infinite dimensional,
$L_{5}(V)=\{\alpha \in L(V) \mid \operatorname{dim}$ Ker α is infinite and $\operatorname{Im} \alpha=V\}$ where V is infinite dimensional.
จุฬาลงกรณ์มหาวิทยาลัย

Department Mathematics
Field of Study Mathematics
Academic year 2001

Student's signature
Advisor's signature
Co-advisor's signature -

ACKNOWLEDGEMENT

I am greatly indebted to Assoc. prof. Dr. Yupaporn Kemprasit, my thesis advisor, for her untired offering me some thoughtful and helpful advice in preparing and writing my thesis. I am also grateful to Assist. Prof. Dr. Amorn Wasanawichit and Dr. Sajee Pianskool who served as the chairman and the member of my thesis committee, respectively. Moreover I would like to thank all of the lecturers for their previous valuable lectures while studying.

In particular, I would like to express my gratitude to my family and friends for their encouragement throughout my graduate study.

CONTENTS

ABSTRACT IN THAI iv
ABSTRACT IN ENGLISH V
ACKNOWLEDGEMENT vi
CHAPTER
I. INTRODUCTION AND PRELIMINARIES 1
II. CYCLIC SEMIGROUPS 15
III. GENERALIZED SEMIGROUPS OF SOME SEMIGROUPS OF TRANSFORMATIONS OF A SET 23
IV. GENERALIZED SEMIGROUPS OF SOME SEMIGROUPS OF LINEAR TRANSFORMATIONS OF A VECTOR SPACE 30
REFERENCES 41
VITA 43
สถาบันวิทยบริการ
จุฬาลงกรณ์มหาวิทยาลัย

CHAPTER I

INTRODUCTION AND PRELIMINARIES

For any set X, the cardinality of X will be denoted by $|X|$.
For a semigroup S, if S has an identity, let $S^{1}=S$, and if S does not have an identity, let S^{1} be the semigroup S with an identity 1 adjoined. The semigroup S^{0} is defined to be S if S has a zero and $|S|>1$; otherwise, let S^{0} be the semigroup S with a zero 0 adjoined.

For an element a of a semigroup S, the subsemigroup of S generated by a is defined to be

$$
\langle a\rangle=\left\{a^{n} \mid n \in \mathbb{N}\right\}
$$

where \mathbb{N} is the set of all positive integers. The order of a is defined to be $|\langle a\rangle|$. We have that $a^{i} \neq a^{j}$ for all distinct $i, j \in \mathbb{N}$ if and only if $\langle a\rangle$ is infinite.

Assume that $a \in S$ is such that $\langle a\rangle$ is finite. Then $a^{i}=a^{j}$ for some $i, j \in \mathbb{N}$
 $s=\min \left\{j \in \mathbb{N} \mid a^{j}=a^{i}\right.$ for some $\left.i<j\right\}$.
Then there is a unique $r \in \mathbb{N}$ such that $r<s$ and $a^{s}=a^{r}$. Let $m=s-r$. Then $s=r+m$. It follows that

$$
\langle a\rangle=\left\{a, a^{2}, \ldots, a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}, a^{r+m}=a^{r},
$$

$a, a^{2}, \ldots, a^{r+m-1}$ are all distinct and $\left\{a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}$ is a cyclic subgroup of $\langle a\rangle$ of order m ([2], page 19-20). It then follows that $a^{t} \in\left\{a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}$ for every positive integer $t \geq r$. Moreover, the numbers r and m are independent
of $a([2]$, page 20), that is, if $\langle a\rangle=\langle b\rangle$, then

$$
s=\min \left\{j \in \mathbb{N} \mid b^{j}=b^{i} \text { for some } i<j\right\}
$$

and $b^{s}=b^{r}$. We call r and m the index and the period of $\langle a\rangle$, respectively. Let index $(\langle a\rangle)$ and $\operatorname{period}(\langle a\rangle)$ respectively denote the index and the period of $\langle a\rangle$. The following statements are clearly obtained.
(1) index $(\langle a\rangle)=1$ if and only if $\langle a\rangle$ is a cyclic group and
(2) period $(\langle a\rangle)=1$ if and only if a^{r} is the zero of $\langle a\rangle$ where $r=\operatorname{index}(\langle a\rangle)$.

A semigroup S is said to be cyclic if $S=\langle a\rangle$ for some $a \in S$ and a is called a generator of S. As was mentioned above, if S is a finite cyclic semigroup, index (S) and period (S) are independent of generators of S.

If S is a semigroup, $\theta \in S^{1}$ and define $*$ on S by

$$
x * y=x \theta y \text { for all } x, y \in S,
$$

then $(S, *)$ is a semigroup which is called a generalized semigroup of S and we denote it by (S, θ). If $|S|=1$ or (S, θ) has no zero, it is clear that $(S, \theta)^{0}=$ $(S \cup\{0\}, *)$ where 0 is a symbol not representing any element of S and

From now on, for this case, $(S, \theta)^{0}$ will be denoted by $(S \cup\{0\}, \theta)$. Hence the following proposition is directly obtained.

Proposition 1.1. Let S be a semigroup and $\theta \in S^{1}$. If $|S|=1$ or (S, θ) has no zero, then for all $x, y \in S \cup\{0\}, x \theta y=0$ implies $x=0$ or $y=0$.

If S has an identity and θ is a unit (an invertible element) of S, the map $x \mapsto x \theta$ is clearly an isomorphism of (S, θ) onto S, so $(S, \theta) \cong S$. In this case, θ^{-1} is the
identity of (S, θ).

For a set A, let $P(A)$ denote the power set of A and let $P^{*}(A)=P(A) \backslash\{\phi\}$. A hyperoperation \circ on a nonempty set H is a mapping of $H \times H$ into $P^{*}(H)$.

A hypergroupoid is a system (H, \circ) consisting of a nonempty set H together with a hyperoperation o on H. We shall usually write H instead of (H, \circ) when there is no danger of ambiguity.

Let (H, \circ) be a hypergroupoid. For nonempty subsets A, B of H, let

$$
A \circ B=\bigcup_{\substack{a \in A \\ b \in B}}(a \circ b)
$$

and let $A \circ x=A \circ\{x\}$ and $x \circ A=\{x\} \circ A$ for all $x \in H$. An element e of H is called an identity of (H, \circ) if $x \in(x \circ e) \cap(e \circ x)$ for all $x \in H$. An element e of H is called a scalar identity of (H, \circ) if $x \circ e=e \circ x=\{x\}$ for all $x \in H$. If e is a scalar identity of (H, \circ), then e is the unique identity of (H, \circ).

The hyperoperation o of a hypergroupoid $(H, 0)$ is said to be associative if $(x \circ y) \circ z=x \circ(y \circ \bar{z})$ for all $x, y, z \in H$.

A hypergroupoid (H, \circ) is said to be commutative if $x \circ y=y \circ x$ for all

A semihypergroup is a hypergroupoid (H, \circ) such that the hyperoperation \circ is associative. A semihypergroup (H, \circ) is called a hypergroup if $H \circ x \stackrel{9}{=} H=x \circ H$ for all $x \in H$.

An element x of a semihypergroup (H, \circ) is said to be an inverse of an element y in (H, \circ) if there exists an identity e of (H, \circ) such that $e \in(x \circ y) \cap(y \circ x)$, that is, $(x \circ y) \cap(y \circ x)$ contains at least one identity of (H, \circ). Then every identity of a semihypergroup (H, \circ) is an inverse of itself since $e \in e \circ e$ for every identity e of (H, \circ).

A hypergroup H is said to be regular if every element of H has at least one
inverse in H.
A regular hypergroup (H, \circ) is said to be reversible if for $x, y, z \in H, x \in y \circ z$ implies $z \in u \circ x$ and $y \in x \circ v$ for some inverse u of y and inverse v of z in (H,०).

A canonical hypergroup is a commutative reversible hypergroup H such that H has a scalar identity and every element of H has a unique inverse in H. Hence a hypergroup (H, \circ) is a canonical hypergroup if and only if

1. (H, \circ) is commutative,
2. (H, \circ) has a scalar identity,
3. every element of H has a unique inverse in (H, \circ) and
4. for $a, x, y \in H, y \in a \circ x$ implies $x \in a^{\prime} \circ y$ where a^{\prime} denotes the unique inverse of a in (H, \circ).

A (Krasner) hyperring is a system $(A,+, \cdot)$ such that

1. $(A,+)$ is a canonical hypergroup,
2. (A, \cdot) is a semigroup with zero 0 where 0 is the scalar identity of $(A,+)$ and
3. $x \cdot(y+z)=x \cdot y+x \cdot z$ and $(y+z) \cdot x=y \cdot x \neq z \cdot x$ for all $x, y, z \in A$.

The operations + and \cdot of a hyperring $(A,+, \cdot)$ are called the addition and the multiplication of A, respectively, We shall usually write A instead of $(A,+, \cdot)$ when there is no danger of ambiguity. Hence every ring is a hyperring.
$\operatorname{Let}(A, f, \cdot)$ be a hyperring. The scalar identity of the canonicaPhypergroup $(A,+)$ which is the zero of the semigroup (A, \cdot) is called the zero of the hyperring $(A,+, \cdot)$ and it is usually denoted by 0 . For $x, y \in A$ and n a positive integer, let $-x$ denote the unique inverse of x in the canonical hypergroup $(A,+)$ which is called the additive inverse of x in $(A,+, \cdot), x y$ denote $x \cdot y$ and x^{n} denote $x x \cdots x$ (n times). Then the following statements hold.

1. $-0=0$,
2. $-(-x)=x$ for all $x \in A$,
3. $(-x) y=-(x y)=x(-y)$ for all $x, y \in A$ and
4. $(-x)(-y)=x y$ for all $x, y \in A$
([3], page 167). We give some examples of hyperrings as follows:

Example 1 ([12], page 16). Define the hyperoperation \oplus on \mathbb{Z}_{3} as follows:

\oplus	0	1	2
0	$\{0\}$	$\{1\}$	$\{2\}$
1	$\{1\}$	$\{1\}$	\mathbb{Z}_{3}
2	$\{2\}$	\mathbb{Z}_{3}	$\{2\}$

Then $\left(\mathbb{Z}_{3}, \oplus, \cdot\right)$ is a hyperring where \cdot is the usual multiplication in \mathbb{Z}_{3}. Observe that 0 is its zero and 1 is the additive inverse of 2 in this hyperring.

Example 2. For all $x, y \in[0,1]$, define

From [3], page $95-96,([0,1], \oplus)$ is a canonical hypergroup. It was shown by Y. Punkla [12] that $([0,1], \oplus, \cdot)$ is a hyperring where is the usual multiplication on $[0,1]$. In this hyperring, 0 is the zero and the additive inverse of $x \in[0,1]$ is x

Example 3. For all $x, y \in[-1,1]$, define

$$
\begin{aligned}
& x \oplus y=y \oplus x=\{x\} \text { if }|y|<|x|, \\
& x \oplus x=\{x\}, \\
& x \oplus(-x)=[-|x|,|x|] .
\end{aligned}
$$

From [3], page 182-183, $([-1,1], \oplus)$ is a canonical hypergroup. In fact, it is shown by Y. Kemprasit $[8]$ that $([-1,1], \oplus, \cdot)$ is a hyperring where \cdot is the usual
multiplication on $[-1,1]$. Note that 0 is its zero and the additive inverse of $x \in[-1,1]$ is $-x$.

Example 4. Let G be a group and define a hyperoperation + on G^{0} by

$$
\begin{array}{ll}
x+0=0+x=\{x\} & \text { for all } x \in G^{0} \\
x+x=G^{0} \backslash\{x\} & \text { for all } x \in G^{0} \backslash\{0\} \text { and } \\
x+y=\{x, y\} & \text { for all } x, y \in G^{0} \backslash\{0\} \text { with } x \neq y .
\end{array}
$$

It is given in [3], page 170 that if G is an abelian group, then $\left(G^{0},+, \cdot\right)$ is a hyperfield where \cdot is the operation on G^{0}. A hyperfield is defined naturally to be a hyperring $(A,+, \cdot)$ such that $(A \backslash\{0\}, \cdot)$ is an abelian group. In fact, it was proved by Y. Punkla [12] that $\left(G^{0},+, \cdot\right)$ is a hyperring without assuming the commutativity of the group G. In this hyperring, 0 is the zero and the additive inverse of $x \in G^{0}$ is x itself.

A semigroup S is said to admit a hyperring $[$ ring $]$ structure if there exists a hyperoperation [operation] + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a hyperring [ring]. Let $\boldsymbol{S R}$ and $\boldsymbol{S H R}$ denote the class of all semigroups admitting ring structure and the class of all semigroups admitting hyperring structure, respectively. Then $\boldsymbol{S H R}$ contains $\boldsymbol{S R}$ as a subclass. Note that for a semigroup S with $|S|=1$, then $S^{0} \cong\left(\mathbb{Z}_{2}, \cdot\right)$, so $S \in \boldsymbol{S} \boldsymbol{R} \subseteq \boldsymbol{S H R}$. The following proposition follows from Example 4.

Proposition 1.2. Every group belongs to $\boldsymbol{S H R}$.

Since every finite division ring is a field (Wedderburn's Theorem for finite division rings), we deduce that every finite nonabelian group is in $\boldsymbol{S H R}$ but not in $\boldsymbol{S R}$. Consequently, $\boldsymbol{S R}$ is a proper subclass of $\boldsymbol{S H R}$.

Semigroups belonging to the class $\boldsymbol{S R}$ have long been studied. For examples,
see [11], [13], [14], [1] and [15]. The purpose of this research is to study when certain semigroups belong to the class $\boldsymbol{S H R}$. However, characterizations of some semigroups in this class have been studied in [8], [9] and [12].

It was obtained from [7] by J. R. Isbell that every infinite cyclic semigroup is not in $\boldsymbol{S R}$. It was given in [11] that a finite cyclic semigroup S is in $\boldsymbol{S R}$ if and only if $|S| \leq 2$. In Chapter II, we characterize when any cyclic semigroup belongs to $\boldsymbol{S H R}$. It is shown that every infinite cyclic semigroup is in $\boldsymbol{S H R}$ and a finite cyclic semigroup S belongs to $\boldsymbol{S H R}$ if and only if index $(S)=1$ or $\operatorname{period}(S)=1$.

Let X be a nonempty set. By a transformation of X we mean a mapping of X into itself. Let $T(X)$ denote the set of all transformations of X. Then under composition, $T(X)$ is a semigroup having 1_{X} as its identity where 1_{X} is the identity map on X and it is called the full transformation semigroup on X. For $\alpha \in T(X)$, let $\operatorname{Im} \alpha$ denote the image of α. Then for $\alpha \in T(X), \alpha^{2}=\alpha$ if and only if $x \alpha=x$ for all $x \in \operatorname{Im} \alpha$. For $\alpha \in T(X)$ and $x \in X, \alpha$ is said to be 1-1 at x if $\left|(x \alpha) \alpha^{-1}\right|=1$. The symmetric group on X is denoted by $G(X)$. Then

$$
G(X)=\{\alpha \in T(X) \mid \alpha \text { is 1-1 and } \operatorname{Im} \alpha=X\} .
$$

The following two subsets of $T(X)$ are clearly subsemigroups of $T(X)$ containing $G(X): 99 / 96926)$
$M(X)=\{\alpha \in T(X) \mid \alpha$ is $1-1\}$
and

$$
E(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha=X\} .
$$

Then $M(X)[E(X)]=G(X)$ if and only if X is finite. Since $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$ for all $\alpha, \beta \in T(X)$, we have that

$$
T_{1}(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha \text { is finite }\}
$$

is a subsemigroup of $T(X)$ containing every constant map of X into X. Note that if X is infinite, $T_{1}(X)$ is an infinite
semigroup all of whose elements have finite order ([4], page 12). The subset

$$
T_{2}(X)=\{\alpha \in T(X) \mid X \backslash \operatorname{Im} \alpha \text { is finite }\}
$$

of $T(X)$ is also considered. If $\alpha, \beta \in T(X)$, then $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta \subseteq X$, so

$$
\begin{aligned}
X \backslash \operatorname{Im} \alpha \beta & =(X \backslash \operatorname{Im} \beta) \cup(\operatorname{Im} \beta \backslash \operatorname{Im} \alpha \beta) \\
& =(X \backslash \operatorname{Im} \beta) \cup(X \beta \backslash(X \alpha) \beta) \\
& \subseteq(X \backslash \operatorname{Im} \beta) \cup(X \backslash X \alpha) \beta
\end{aligned}
$$

Consequently, $T_{2}(X)$ is a subsemigroup of $T(X)$ containing $E(X) . T_{2}(X)$ can be considered as the semigroup of all " almost onto transformations " of X. Then the set of all " almost 1-1 transformations" of X should be given as follows:

$$
T_{3}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha) \text { is finite }\}
$$

where $\mathrm{K}(\alpha)=\{x \in X \mid \alpha$ is not $1-1$ at $x\}$. Clearly, $\mathrm{K}(\alpha) \subseteq \mathrm{K}(\alpha \beta)$ for all $\alpha, \beta \in T(X)$. From [10], we have

$$
\text { สิด } \left.\left.1 q_{K(\alpha \beta) \subseteq}\left(q_{K} \alpha\right) \cup q_{K}(\beta)\right)^{\alpha}-1\right)
$$

for all $\alpha, \beta \in T(X)$. It follows that for $\alpha, \beta \in T(X)$, if $\mathrm{K}(\alpha)$ and $\mathrm{K}(\beta)$ are finite, then $\mathrm{K}(\alpha \beta)$ is finite. Then $T_{3}(X)$ is a subsemigroup of $T(X)$ containing $M(X)$. Next, let

$$
T_{4}(X)=\{\alpha \in T(X) \mid \alpha \text { is } 1-1 \text { and } X \backslash \operatorname{Im} \alpha \text { is infinite }\}
$$

where X is infinite. Since X is infinite, there are subsets X_{1}, X_{2} of X such that

$$
X=X_{1} \cup X_{2}, \quad X_{1} \cap X_{2}=\varnothing \text { and }\left|X_{1}\right|=|X|=\left|X_{2}\right| .
$$

Then there exists a bijection $\lambda: X \rightarrow X_{1}$. Since $\lambda \in T(X), \lambda$ is $1-1$ and $X \backslash \operatorname{Im} \lambda=X \backslash X_{1}=X_{2}$ which is infinite, we have $\lambda \in T_{4}(X)$. This shows that $T_{4}(X) \neq \varnothing$. Since for $\alpha, \beta \in T(X), \operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$, it follows that $\alpha \beta \in T_{4}(X)$ for all $\alpha, \beta \in T_{4}(X)$. Then if X is infinite, $T_{4}(X)$ is a subsemigroup of $T(X)$ contained in $M(X)$. If X is countably infinite, $T_{4}(X)$ is called the Baer-Levi semigroup on X and $\alpha T_{4}(X)=T_{4}(X)$ for all $\alpha \in T_{4}(X)$ ([4], page 14). The semigroup $T_{4}(X)$ motivates us to consider the set

$$
T_{5}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha) \text { is infinite and } \operatorname{Im} \alpha=X\}
$$

which is defined in the opposite way. Let $X_{1}, X_{2} \subseteq X$ be as above. Since $\left|X_{1}\right|$ $=|X|$, there is a bijection $\varphi: X_{1} \rightarrow X$. Let $a \in X$ be fixed and define $\eta: X \rightarrow X$ by

$$
x \eta= \begin{cases}x \varphi & \text { if } x \in X_{1} \\ a & \text { if } x \in X_{2}\end{cases}
$$

Since $X_{1} \varphi=X, \operatorname{Im} \eta=X$. We can see that for every $x \in X_{2},(x \eta) \eta^{-1}=a \eta^{-1}$ $=X_{2}$. Then $\mathrm{K}(\eta)=X_{2} \cup\left\{a \varphi^{-1}\right\}$ which is infinite. Hence $\eta \in T_{5}(X)$, so $T_{5}(X)$ $\neq \varnothing$. Since $\mathrm{K}(\alpha) \subseteq \mathrm{K}(\alpha \beta)$ for all $\alpha, \beta \in T(X), T_{5}(X)$ is a subsemigroup of $T(X)$

The relations under inclusion of the transformation semigroups introduced above are as follows: 9 d6bon9
(1) If X is finite, then

$$
G(X)=M(X)=E(X) \subseteq T_{1}(X)=T_{2}(X)=T_{3}(X)=T(X)
$$

(2) If X is infinite, then

$$
\begin{gathered}
G(X) \subseteq E(X) \subseteq T_{2}(X) \subseteq T(X), G(X) \subseteq M(X) \subseteq T_{3}(X) \subseteq T(X) \\
T_{4}(X) \subseteq M(X) \subseteq T(X) \text { and } T_{5}(X) \subseteq E(X) \subseteq T(X)
\end{gathered}
$$

We note that if X is infinite, all the inclusions in (2) are proper. To see this, let λ and η be defined as above. Fix $b \in X$. Then $|X|=|X \backslash\{b\}|$. Let $\nu: X \rightarrow X \backslash\{b\}$ be a bijection and define $\xi: X \rightarrow X$ by

$$
x \xi= \begin{cases}x \nu^{-1} & \text { if } x \in X \backslash\{b\} \\ b & \text { if } \\ x=b\end{cases}
$$

Then $K(\xi)=\{b \nu, b\}$, so $\xi \in E(X) \cap T_{3}(X)$. Hence we have

$$
\begin{aligned}
& \eta \in E(X) \backslash G(X), \nu \in T_{2}(X) \backslash E(X), \lambda \in T(X) \backslash T_{2}(X), \\
& \nu \in M(X) \backslash G(X), \xi \in T_{3}(X) \backslash M(X), \eta \in T(X) \backslash T_{3}(X), \\
& 1_{X}, \nu \in M(X) \backslash T_{4}(X), \xi \in T(X) \backslash M(X) \\
& 1_{X}, \xi \in E(X) \backslash T_{5}(X), \nu \in T(X) \backslash E(X)
\end{aligned}
$$

The transformation semigroups $T(X), M(X), E(X), T_{2}(X)$ and $T_{3}(X)$ have been charactered in [8] and [12] when they belong to $\boldsymbol{S H R}$ as follows:

Proposition 1.3 ([8]). For a nonempty set X
(1) $T(X) \in \boldsymbol{S H R}$ if and only $|X|=1$,
(2) $M(X) \in \boldsymbol{S H R}$ if and only if X is finite and
(3) $E(X) \in \boldsymbol{S H R}$ if and only if X is finite. $\widetilde{\square}$

The first main purpose of this research is the results in Chapter III. We give in Chapter III characterizations of determining when generalized semigroups of the transformation semigroups $T(X), G(X), M(X), E(X)$ and $T_{1}(X)-T_{5}(X)$ belong to $\boldsymbol{S H R}$. Proposition 1.3 and 1.4 are respectively lemmas to characterize generalized semigroups of $M(X)$ and $E(X)$ and of $T_{2}(X)$ and $T_{3}(X)$ belonging to $\boldsymbol{S H R}$. The
following proposition will be useful for the characterizations in this chapter.

Proposition 1.5. Let X be a nonempty set.
(1) If $S(X)$ is any of $T(X), M(X), E(X)$ and $T_{1}(X)-T_{3}(X)$ and $\theta \in S^{1}(X)$, then $|S(X)|=1$ or $(S(X), \theta)$ has no zero.
(2) If X is infinite, $S(X)$ is $T_{4}(X)$ or $T_{5}(X)$ and $\theta \in S^{1}(X)$, then $(S(X), \theta)$ has no zero.

Proof. First, recall that for $\alpha \in T(X)$, if $\alpha^{2}=\alpha$, then $x \alpha=x$ for all $x \in \operatorname{Im} \alpha$.
Suppose that η is a zero of $(S(X), \theta)$. Then

$$
\begin{equation*}
\eta \theta \alpha=\eta=\alpha \theta \eta \text { for all } \alpha \in S(X) \tag{1.5.1}
\end{equation*}
$$

These imply that $(\eta \theta)^{2}=\eta \theta$ and for every $\alpha \in S(X), \operatorname{Im} \eta=\operatorname{Im}(\eta \theta \alpha) \subseteq \operatorname{Im} \alpha$. Hence we have
and

Case 1: $S(X)=T(X)$ or $T_{1}(X)$ and $|S(X)| P>1$. Then $|X|>1$. Let $a, b \in X$ be distinct. Then $X_{a}, X_{b} \in S(X)$. By (1.5.3), $\operatorname{Im} \eta \subseteq \operatorname{Im} X_{a} \cap \operatorname{Im} X_{b} \mp\{a\} \cap\{b\}=\varnothing$,

Case 2: $S(X)=M(X), E(X), T_{4}(X)$ or $T_{5}(X)$. Then $\eta \theta$ is $1-1$ or $\operatorname{Im} \eta \theta=X$. By (1.5.2), $\eta \theta=1_{X}$.

Subcase 2.1: $S(X)=M(X)$ or $E(X)$ and $|S(X)|>1$. Let $\alpha \in S(X) \backslash\{\eta\}$. Then $\eta \theta \alpha=1_{X} \alpha=\alpha$. By (1.5.1), $\eta \theta \alpha=\eta$, so $\alpha=\eta$, a contradiction.

Subcase 2.2: $S(X)=T_{4}(X)$ or $T_{5}(X)$ where X is infinite. From the proofs
of those $T_{4}(X) \neq \varnothing$ and $T_{5}(X) \neq \varnothing$ in Chapter I, page 8-9, we can see that $|S(X)|>1$ by interchanging X_{1} and X_{2}. As the proof of Subcase 2.1, we also get a contradiction.

Case 3: $S(X)=T_{2}(X)$ or $T_{3}(X)$ and $|S(X)|>1$. Then $|X|>1$. For each $a \in X$, choose $a^{\prime} \in X \backslash\{a\}$ and define $\alpha_{a}: X \rightarrow X$ by

Then for each $a \in X, \operatorname{Im} \alpha_{a}=X \backslash\{a\}$ and $\mathrm{K}\left(\alpha_{a}\right)=\left\{a, a^{\prime}\right\}$. Hence $\alpha_{a} \in T_{2}(X) \cap$ $T_{3}(X)$ for all $a \in X$. We have from (1.5.3) that

$$
\operatorname{Im} \eta \subseteq \bigcap_{a \in X} \operatorname{Im} \alpha_{a}=\bigcap_{a \in X}(X \backslash\{a\})=\varnothing
$$

a contradiction.

Therefore the proposition is completely proved.

For a vector space V over a division ring, let $L(V)$ denote the set of all linear transformations from V into V. Then under composition, $L(V)$ is a semigroup having 1_{V} as its identity where 1_{V} is the identity map on V. The following three propositionsare provided incthis chapter. They are simple facts of vector spaces and linear transformations which will be used. The proofs are routine and elementary and they will be omitted.

Proposition 1.6. Let $\alpha \in L(V)$ and B a basis of V. If $\alpha_{\mid B}$ is $1-1$ and $B \alpha$ is linearly independent, then α is $1-1$.

Proposition 1.7. Let B be a basis of V and $A \subseteq B$. If $\alpha \in L(V)$ is defined by

$$
v \alpha= \begin{cases}0 & \text { if } v \in A, \\ v & \text { if } v \in B \backslash A,\end{cases}
$$

then Ker $\alpha=\langle A\rangle$ and $\operatorname{Im} \alpha=\langle B \backslash A\rangle$.

Proposition 1.8. Let B be a basis of V and $A \subseteq B$. Then
(1) $\{v+\langle A\rangle \mid v \in B \backslash A\}$ is a basis of $V /\langle A\rangle$ and
(2) $\operatorname{dim}(V /\langle A\rangle)=|B \backslash A|$.

Let $G(V)$ denote the group of units of $L(V)$. Then

$$
G(V)=\{\alpha \in L(V) \mid \alpha \text { is } 1-1 \text { and } \operatorname{Im} \alpha=V\} .
$$

The following two subsets of $L(V)$ are clearly subsemigroups of $L(V)$:
and

$$
M(V)=\{\alpha \in L(V) \mid \alpha \text { is } 1-1\}
$$

$$
E(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\} .
$$

Then $M(V)$ and $E(V)$ contain $G(V)$ as a subsemigroup and $M(V)[E(V)]=G(V)$ if and only if $\operatorname{dim} V$ is finite. Since $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$ for all $\alpha, \beta \in L(V)$, we have that

$$
L_{1}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha \text { is finite }\}
$$

is a subsemigroup of $L(V)$ containing $0, \mathrm{C}$)

of $L(V)$ is also considered. Then $E(V) \subseteq L_{2}(V)$. We will show that $L_{2}(V)$ is a subsemigroup of $L(V)$. Let V be a vector space over a division ring D. Let $\alpha, \beta \in L_{2}(V)$. Then $\operatorname{dim}(V / \operatorname{Im} \alpha)$ and $\operatorname{dim}(V / \operatorname{Im} \beta)$ are finite. Let dim $(V / \operatorname{Im} \alpha)=n, \operatorname{dim}(V / \operatorname{Im} \beta)=m$ and $\left\{v_{1}+\operatorname{Im} \alpha, \ldots, v_{n}+\operatorname{Im} \alpha\right\}$ and $\left\{w_{1}+\operatorname{Im} \beta, \ldots, w_{m}+\operatorname{Im} \beta\right\}$ are bases of $V / \operatorname{Im} \alpha$ and $V / \operatorname{Im} \beta$, respectively. We claim that

$$
\left\langle\left\{w_{1}+\operatorname{Im} \alpha \beta, \ldots, w_{m}+\operatorname{Im} \alpha \beta, v_{1} \beta+\operatorname{Im} \alpha \beta, \ldots, v_{n} \beta+\operatorname{Im} \alpha \beta\right\}\right\rangle=V / \operatorname{Im} \alpha \beta
$$

Step 1: We shall show that for every $v \in \operatorname{Im} \beta, v+\operatorname{Im} \alpha \beta \in\left\langle v_{1} \beta+\operatorname{Im} \alpha \beta, \ldots, v_{n} \beta\right.$ $+\operatorname{Im} \alpha \beta\rangle$. Let $v \in \operatorname{Im} \beta$. Then there exists $u \in V$ such that $v=u \beta$. Since $\left\{v_{1}+\operatorname{Im} \alpha, \ldots, v_{n}+\operatorname{Im} \alpha\right\}$ is a basis of $V / \operatorname{Im} \alpha$, it follows that

$$
u+\operatorname{Im} \alpha=\sum_{i=1}^{n} a_{i}\left(v_{i}+\operatorname{Im} \alpha\right)=\sum_{i=1}^{n} a_{i} v_{i}+\operatorname{Im} \alpha
$$

for some elements a_{1}, \ldots, a_{n} of D. Then $u-\sum_{i=1}^{n} a_{i} v_{i} \in \operatorname{Im} \alpha$ and so

$$
v-\sum_{i=1}^{n} a_{i}\left(v_{i} \beta\right)=\left(u-\sum_{(i=1}^{n} a_{i} v_{i}\right) \beta \in(\operatorname{Im} \alpha) \beta=\operatorname{Im} \alpha \beta
$$

which implies that $v+\operatorname{Im} \alpha \beta=\sum_{i=1}^{n} a_{i}\left(v_{i} \beta\right)+\operatorname{Im} \alpha \beta=\sum_{i=1}^{n} a_{i}\left(v_{i} \beta+\operatorname{Im} \alpha \beta\right)$.
Step 2: Let $v \in V$. Then $v+\operatorname{Im} \beta=\sum_{j=1}^{m} a_{j}\left(w_{j}+\operatorname{Im} \beta\right)$ for some elements a_{1}, \ldots, a_{m} of D and so $v+\operatorname{Im} \beta=\sum_{j=1}^{m} a_{j} w_{j}+\operatorname{Im} \beta$. It follows that $v-\sum_{j=1}^{m} a_{j} w_{j} \in \operatorname{Im} \beta$. By Step 1, we have that

$$
\left(v-\sum_{j=1}^{m} a_{j} w_{j}\right)+\operatorname{Im} \alpha \beta=\sum_{i=1}^{n} c_{i}\left(v_{i} \beta+\operatorname{Im} \alpha \beta\right)
$$

for some $c_{1}, \ldots c_{n} \in D$ which implies that $\square \int \cap \cap \widetilde{\sigma}$

$$
99 / 9 v+\operatorname{Im} \alpha \beta=\sum_{j=1}^{m} a_{j}\left(w_{j}+\operatorname{Im} \alpha \beta\right)+\sum_{i=1}^{n} c_{i}\left(v_{i} \beta+\operatorname{Im} \alpha \beta\right) \cdot g
$$

Hence we have the claim. It follows that $\operatorname{dim}(V / \operatorname{Im} \alpha \beta)$ is finite. Therefore $L_{2}(V)$ is a subsemigroup of $L(V)$.

The subsemigroup $T_{3}(X)$ of $T(X)$ motivates us to consider

$$
L_{3}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { is finite }\} .
$$

Then $M(V) \subseteq L_{3}(V)$. To show that $L_{3}(V)$ is a subsemigroup of $L(V)$, let α, β $\in L_{3}(V)$. We claim that $\alpha_{\mid \operatorname{Ker} \alpha \beta}: \operatorname{Ker} \alpha \beta \longrightarrow \operatorname{Im} \alpha \cap \operatorname{Ker} \beta$ is an epimorphism and
$\operatorname{Ker}\left(\alpha_{\mid \operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha$. It is clearly seen that $v \alpha \in \operatorname{Im} \alpha \cap \operatorname{Ker} \beta$ for all $v \in \operatorname{Ker} \alpha \beta$. Let $v \in \operatorname{Im} \alpha \cap \operatorname{Ker} \beta$. Then $v \beta=0$ and there exists $u \in V$ such that $u \alpha=v$. Since $u \alpha \beta=(u \alpha) \beta=v \beta=0$, we have $u \in \operatorname{Ker} \alpha \beta$. This shows that $\alpha_{\mid \operatorname{Ker} \alpha \beta}$ is a map from $\operatorname{Ker} \alpha \beta$ onto $\operatorname{Im} \alpha \cap \operatorname{Ker} \beta$. Thus $\alpha_{\mid \operatorname{Ker} \alpha \beta}: \operatorname{Ker} \alpha \beta \longrightarrow \operatorname{Im} \alpha \cap \operatorname{Ker} \beta$ is an epimorphism. Next, we will show that $\operatorname{Ker}\left(\alpha_{\mid \operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha$. Trivially, $\operatorname{Ker}\left(\alpha_{\mid \operatorname{Ker} \alpha \beta}\right) \subseteq$ $\operatorname{Ker} \alpha$. Let $v \in \operatorname{Ker} \alpha$. Then $v \alpha=0$ which implies that $v \alpha \beta=0 \beta=0$. It follows that $v \in \operatorname{Ker} \alpha \beta$ and $v \alpha_{\mid \operatorname{Ker} \alpha \beta}=v \alpha=0$. Thus we get that $\operatorname{Ker}\left(\alpha_{\mid \operatorname{Ker} \alpha \beta}\right)=\operatorname{Ker} \alpha$. Consequently,

$$
\operatorname{dim} \operatorname{Ker} \alpha \beta=\operatorname{dim}(\operatorname{Im} \alpha \cap \operatorname{Ker} \beta)+\operatorname{dim} \operatorname{Ker} \alpha
$$

Since $\operatorname{dim} \operatorname{Ker} \alpha$ and $\operatorname{dim} \operatorname{Ker} \beta$ are finite, it follows that $\operatorname{dim} \operatorname{Ker} \alpha \beta$ is finite. Therefore we have that $L_{3}(V)$ is a subsemigroup of $L(V)$, as required.

Next, let us consider

$$
L_{4}(V)=\{\alpha \in L(V)\lceil\alpha \text { is } 1-1 \text { and } \operatorname{dim}(V / \operatorname{Im} \alpha) \text { is infinite }\}
$$

which is motivated by $T_{4}(X)$ of $T(X)$ where V is infinite dimensional. Because we can define a linear transformation of V on its given basis, by the same idea of the proof of that $T_{4}(X) \neq \varnothing$ and the facts of Proposition 1.6 and 1.8(2), we have $L_{4}(V) \neq \varnothing$ where $\operatorname{dim} V$ is infinite. We have that $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$ and
for all $\alpha, \beta \in L_{4}(V)$. Since $\operatorname{dim}(V / \operatorname{Im} \beta)$ is infinite, $\operatorname{dim}(V / \operatorname{Im} \alpha \beta)$ is also infinite. Thus $L_{4}(V)$ is a subsemigroup of $L(V)$ contained in $M(V)$.

Finally, following $T_{5}(X)$ of $T(X)$, we put

$$
L_{5}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { is infinite and } \operatorname{Im} \alpha=V\}
$$

where V is infinite dimensional. The proof of that $L_{5}(V) \neq \varnothing$ can be given similarly to the proof of that $T_{5}(X) \neq \varnothing$ by defining a linear transformation of V
on its given basis and using a to be 0 . Since $\operatorname{Ker} \alpha \subseteq \operatorname{Ker} \alpha \beta$ for all $\alpha, \beta \in L(V)$, $L_{5}(V)$ is a subsemigroup of $L(V)$ contained in $E(V)$.

The following relations are also obtained similarly.
(1) If $\operatorname{dim} V$ is finite, then

$$
G(V)=M(V)=E(V) \subseteq L_{1}(V)=L_{2}(V)=L(V)
$$

(2) If $\operatorname{dim} V$ is infinite, then

$$
\begin{aligned}
& G(V) \subsetneq E(V) \subsetneq L_{2}(V) \subsetneq L(V), G(V) \subsetneq M(V) \subsetneq L_{3}(V) \subsetneq L(V), \\
& L_{4}(V) \subsetneq M(V) \subsetneq L(V) \text { and } L_{5}(V) \subsetneq E(V) \subsetneq L(V) .
\end{aligned}
$$

Note that the proofs of the proper inclusions in (2) can be done similarly by defining linear transformations on bases and using Proposition 1.6, 1.7 and 1.8.

The second main purpose is the results in Chapter IV. We give in Chapter IV characterizations of determining when generalized semigroups of linear transformation semigroups $L(V), G(V), M(V), E(V)$ and $L_{1}(V)-L_{5}(V)$ belong to $\boldsymbol{S H R}$. The following Proposition will be used for the characterizations of this chapter.

Proposition 1.9. Let V be a vector space over a division ring D.
(1) If $S(V)$ is $M(V)$ or $E(V)$ and $\theta \in S(V)$, then $|S(V)|=1$ or $(S(V), \theta)$ has no zero. $9 / 9$ (2) If dim V is infinite, $S(V)$ is one of $L_{2}(V)-L_{5}(V)$ and $\theta \in S^{1}(V)$, then $(S(V), \theta)$ has no zero.

Proof. Assume that $(S(V), \theta)$ has a zero, say η. Then

$$
\begin{equation*}
\eta \theta \alpha=\eta=\alpha \theta \eta \text { for all } \alpha \in S(V) \tag{1.9.1}
\end{equation*}
$$

Consequently, $(\eta \theta)^{2}=\eta \theta$ and $\operatorname{Im} \eta=\operatorname{Im}(\eta \theta \alpha) \subseteq \operatorname{Im} \alpha$ for all $\alpha \in S(V)$. Thus

$$
\begin{equation*}
v(\eta \theta)=v \text { for all } v \in \operatorname{Im}(\eta \theta) \tag{1.9.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{Im} \eta \subseteq \operatorname{Im} \alpha \text { for all } \alpha \in S(V) \tag{1.9.3}
\end{equation*}
$$

Case 1: $S(V)=M(V), E(V), L_{4}(V)$ or $L_{5}(V)$. Then $\eta \theta$ is $1-1$ or $\operatorname{Im} \eta \theta=V$. By (1.9.2), $\eta \theta=1_{V}$.

Subcase 1.1: $S(V)=M(V)$ or $E(V)$ and $|S(V)|>1$. Let $\alpha \in S(V) \backslash\{n\}$. Then $\eta \theta \alpha=1_{V} \alpha=\alpha$. By (1.9.1), $\eta \theta \alpha=\eta$. Then $\alpha=\eta$, a contradiction.

Subcase 1.2: $S(V)=L_{4}(V)$ or $L_{5}(V)$ where $\operatorname{dim} V$ is infinite. By the descriptions how to prove that $L_{4}(V)$ and $L_{5}(V)$ are not empty in Chapter I, page 15-16 and $\left|T_{4}(X)\right|>1$ and $\left|T_{5}(X)\right|>1$ in the proof of Proposition 1.5, one can see that $|S(V)|>1$. From the proof of Subcase 1.1, we get a contradiction similarly.

Case 2: $S(V)=L_{2}(V)$ or $L_{3}(V)$ where $\operatorname{dim} V$ is infinite. Let B be a basis of V. Then B is infinite. For each $u \in B$, define $\alpha_{u} \in L(V)$ by

By proposition 1.8, $\alpha_{u} \in L_{2}(V)$ for all $u \in B$ and by Proposition 1.7, $\alpha_{u} \in L_{3}(V)$ for all $u \in B$. From (1.9.3), we have

$$
\operatorname{Im} \eta \subseteq \bigcap_{u \in B} \operatorname{Im} \alpha_{u}=\bigcap_{u \in B}\langle B \backslash\{u\}\rangle
$$

Let $v \in V \backslash\{0\}$. Then $v=a_{1} u_{1}+\ldots+a_{n} u_{n}$ for some $u_{1}, \ldots, u_{n} \in B$ and nonzero $a_{1}, \ldots, a_{n} \in D$. If $v \in\left\langle B \backslash\left\{u_{1}\right\}\right\rangle$, then $a_{1} u_{1}+\ldots+a_{n} u_{n}=b_{1} w_{1}+\ldots+b_{m} w_{m}$ for some $w_{1}, \ldots, w_{m} \in B \backslash\left\{u_{1}\right\}, b_{1}, \ldots, b_{m} \in D$. Since B is linearly independent, we have $a_{1}=0$, a contradiction. Thus $v \notin \bigcap_{u \in B}\langle B \backslash\{u\}\rangle$. This proves that
$\bigcap_{u \in B}\langle B \backslash\{u\}\rangle=\langle 0\rangle$. Hence $\operatorname{Im} \eta=\{0\}$, so $\eta=0$. Since $\operatorname{dim} V$ is infinite, $0 \notin L_{2}(V)$ and $0 \notin L_{3}(V)$, so we have a contradiction.

CHAPTER II

CYCLIC SEMIGROUPS

In this chapter, it will be shown that every infinite cyclic semigroup is in $\boldsymbol{S H R}$. Moreover, we shall show that for a finite cyclic semigroup S, the condition that $\operatorname{index}(S)=1$ or period $(S)=1$ is necessary and sufficient for S to belong to SHR.

Theorem 2.1. Every infinite cyclic semigroup is in $\boldsymbol{S H R}$.
Proof. Let S be an infinite cyclic semigroup. Then there exists an element $a \in S$ such that

$$
S=\left\{a^{n} \mid n \in \mathbb{N}\right\} .
$$

Then $a^{i} \neq a^{j}$ if $i \neq j$ and so S has no zero. Define a hyperoperation + on S^{0} by

$$
0+0=\{0\}, a^{n}+0=\left\{a^{n}\right\}=0+a^{n}
$$

$$
\text { 6. } a^{n}+a^{m}=\left\{\begin{array}{l}
\left\{a^{\min \{n, m\}}\right\} \\
\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\} \text { if } n=m .
\end{array}\right.
$$

Then $\left(S^{0}, 4\right)$ is a commutative hypergroupoid. ${ }^{-}$It is clearly seen that for x, y, z $\in S^{0}$, if at least one of them is 0 , then $(x+y)+z=x+(y+z)$. Let $n, m \in \mathbb{N}$.

If $n \leq m$, then

$$
\left(a^{n}+a^{n}\right)+a^{m}=\left(\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}\right)+a^{m}=\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}
$$

and

$$
a^{n}+\left(a^{n}+a^{m}\right)= \begin{cases}a^{n}+\left\{a^{n}\right\} & \text { if } n<m \\ a^{n}+\left(\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}\right) & \text { if } n=m\end{cases}
$$

$$
=\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}
$$

If $n>m$, then

$$
\left(a^{n}+a^{n}\right)+a^{m}=\left(\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}\right)+a^{m}=\left\{a^{m}\right\}
$$

and

$$
a^{n}+\left(a^{n}+a^{m}\right)=a^{n}+\left\{a^{m}\right\}=a^{n}+a^{m}=\left\{a^{m}\right\} .
$$

These imply that

$$
\begin{equation*}
\left(a^{n}+a^{n}\right)+a^{m}=a^{n}+\left(a^{n}+a^{m}\right) \tag{2.1.1}
\end{equation*}
$$

for all $n, m \in \mathbb{N}$. It then follows from (2.1.1) and the commutativity of + on S^{0} that for $n, m \in \mathbb{N}$,
$\left(a^{m}+a^{n}\right)+a^{n}=a^{n}+\left(a^{m}+a^{n}\right)=a^{n}+\left(a^{n}+a^{m}\right)=\left(a^{n}+a^{n}\right)+a^{m}=a^{m}+\left(a^{n}+a^{n}\right)$
and

$$
\left(a^{n}+a^{m}\right)+a^{n}=a^{n}+\left(a^{n}+a^{m}\right)=a^{n} \pm\left(a^{m}+a^{n}\right)
$$

By the definition of + on S^{0}, we have that for distinct elements n, m and k in \mathbb{N},

$$
6\left(a^{n}+a^{m}\right)+a^{k}=\left\{a^{m i n}\{n, m, k\}\right\}=a^{n}+\left(a^{m}+a^{k}\right)
$$

Then we prove that 9 q

$$
(x+y)+z=x+(y+z) \text { for all } x, y, z \in S^{0}
$$

It is clear that

$$
S^{0}+x=S^{0} \text { for all } x \in S^{0}
$$

Hence $\left(S^{0},+\right)$ is a hypergroup.
Since $0+0=\{0\}$ and $0+a^{n}=\left\{a^{n}\right\}=a^{n}+0$ for all $n \in \mathbb{N}$, we have that 0 is a scalar identity of the hypergroup $\left(S^{0},+\right)$. Since $0 \in\left\{a^{n}, a^{n+1}, \ldots\right\} \cup\{0\}=a^{n}+a^{n}$
for all $n \in \mathbb{N}$, it follows that for $n \in \mathbb{N}, a^{n}$ is an inverse of a^{n} in $\left(S^{0},+\right)$. Since 0 is the scalar identity of $\left(S^{0},+\right), 0$ is the unique inverse of 0 in $\left(S^{0},+\right)$. For $n \in \mathbb{N}, a^{n}$ is the unique inverse of a^{n} in $\left(S^{0},+\right)$ since for every $m \in \mathbb{N} \backslash\{n\}$, $0 \notin a^{n}+a^{m}\left(=\left\{a^{\min \{n, m\}}\right\}\right)$.

To show that $\left(S^{0},+\right)$ is reversible, it is clear that if $x, y, z \in S^{0}$ be such that $x \in y+z$ and at least one of them is 0 , then $z \in x+y$. Next, let $n, m, k \in \mathbb{N}$ be such that $a^{n} \in a^{m}+a^{k}$. Then

$$
a^{n} \in a^{m}+a^{k}= \begin{cases}\left\{a^{m}, a^{m+1}, \ldots\right\} \cup\{0\} & \text { if } m=k \\ \left\{a^{\left.\frac{\min \{m, k\}}{\operatorname{man}}\right\}}\right. & \text { if } m \neq k\end{cases}
$$

We have that $n=m<k, n=k<m, n>m=k$ or $n=m=k$. Each case gives $a^{k} \in a^{n}+a^{m}$ as follows:

$$
\begin{aligned}
& n=m<k \Rightarrow a^{k} \in\left\{a^{m}, a^{m+1}, \ldots\right\} \cup\{0\}=a^{m}+a^{m}=a^{n}+a^{m}, \\
& n=k<m \Rightarrow a^{k} \in\left\{a^{n}\right\}=a^{n}+a^{m}, \\
& n>m=k \Rightarrow a^{k} \in\left\{a^{m}\right\}=a^{n}+a^{m}, \\
& n=m=k \Rightarrow a^{k} \in\left\{a^{m}, a^{m+1}, \ldots\right\} \cup\{0\}=a^{m}+a^{m}=a^{n}+a^{m} .
\end{aligned}
$$

This proves that $\left(S^{0}, \Psi\right)$ is accanonical hypergroup. $\int \sim$
Next, we shall show that $x \cdot(y+z)=x \cdot y+x \cdot z$ for all $x, y, z \in S^{0}$ where \cdot is the operation of S^{0}. If $x, y, z \in S^{0}$ and at least one of them is 0 , it is clear that $x \cdot(y+z)=x \cdot y+x \cdot z$. Let $n, m, k \in \mathbb{N}$. Then

$$
\begin{aligned}
& a^{n} \cdot\left(a^{m}+a^{k}\right)= \begin{cases}a^{n} \cdot\left\{a^{\min \{m, k\}}\right\} & \text { if } m \neq k, \\
a^{n} \cdot\left(\left\{a^{m}, a^{m+1}, \ldots\right\} \cup\{0\}\right) & \text { if } m=k\end{cases} \\
& = \begin{cases}\left\{a^{n+\min \{m, k\}}\right\} & \text { if } m \neq k, \\
\left\{a^{n+m}, a^{n+m+1}, \ldots\right\} \cup\{0\} & \text { if } m=k\end{cases}
\end{aligned}
$$

$$
= \begin{cases}\left\{a^{\min \{n+m, n+k\}}\right\} & \text { if } m \neq k, \\ \left\{a^{n+m}, a^{n+m+1}, \ldots\right\} \cup\{0\} & \text { if } m=k\end{cases}
$$

and

$$
a^{n} \cdot a^{m}+a^{n} \cdot a^{k}=a^{n+m}+a^{n+k}= \begin{cases}\left\{a^{\min \{n+m, n+k\}}\right\} & \text { if } m \neq k \\ \left\{a^{n+m}, a^{n+m+1}, \ldots\right\} \cup\{0\} & \text { if } m=k\end{cases}
$$

Thus $a^{n} \cdot\left(a^{m}+a^{k}\right)=a^{n} \cdot a^{m}+a^{n} \cdot a^{k}$ for all $n, m, k \in \mathbb{N}$. Hence $x \cdot(y+z)=$ $x \cdot y+x \cdot z$ for all $x, y, z \in S^{0}$.

Therefore $\left(S^{0},+, \cdot\right)$ is a hyperring and so $S \in \boldsymbol{S H} \boldsymbol{R}$.

Theorem 2.2. Let S be a finite cyclic semigroup. Then $S \in \boldsymbol{S H R}$ if and only if $\operatorname{index}(S)=1$ or $\operatorname{period}(S)=1$.

Proof. If $\operatorname{index}(S)=1$, then S is a finite cyclic group (Chapter I, page 2), so by Proposition 1.2, $S \in \boldsymbol{S H R}$.

Assume that $\operatorname{period}(S)=1$. Let $S=\langle a\rangle$ and index $(S)=r$. Then

$$
S=\left\{a, a^{2}, \ldots, a^{r}\right\}, a^{r+1}=a^{r},
$$

a, a^{2}, \ldots, a^{r} are all distinct and a^{r} which is the zero of S (Chapter I, page 1-2).
Hence we have

If $r=1$, then $|S|=1$, so $S \in \boldsymbol{S H R}$ (Chapter I, page 6). Assume that $r>1$.
Define a hyperoperation + on S as follows: for $n, m \in\{1,2, \ldots, r\}$,

$$
a^{n}+a^{m}= \begin{cases}\left\{a^{\min \{n, m\}}\right\} & \text { if } n \neq m \tag{2.2.2}\\ \left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\} & \text { if } n=m\end{cases}
$$

Then $(S,+)$ is a commutative hypergroupoid. From the definition of + on S, we have that

$$
\begin{equation*}
a^{n}+a^{r}=\left\{a^{n}\right\}=a^{r}+a^{n} \text { for all } n \in\{1,2, \ldots, r\} \tag{2.2.3}
\end{equation*}
$$

Next, we claim that for all $n, m \in \mathbb{N}$,

$$
a^{n}+a^{m}= \begin{cases}\left\{a^{\min \{n, m\}}\right\} & \text { if } n \neq m \tag{2.2.4}\\ \left\{a^{n}, a^{n+1}, \ldots, a^{n+r}\right\} & \text { if } n=m\end{cases}
$$

To prove (2.2.4), let $n, m \in \mathbb{N}$.

Case 1: $n \neq m$. If $n, m \leq r$, by $(2.2 .2), a^{n}+a^{m}=a^{\min \{n, m\}}$. If $n \leq r \leq m$, by (2.2.1) and (2.2.3), $a^{n}+a^{m}=a^{n}+a^{r}=\left\{a^{n}\right\}=\left\{a^{\min \{n, m\}}\right\}$. Similarly, $m \leq r \leq n$ implies that $a^{n}+a^{m}=\left\{a^{\min \{n, m\}}\right\}$. If $n, m \geq r$, then $\min \{n, m\} \geq r$, so by (2.2.1) and (2.2.3), $a^{n}+a^{m}=a^{r}+a^{r}=\left\{a^{r}\right\}=\left\{a^{\min \{n, m\}}\right\}$.

Case 2: $n=m$. If $n=m \leq r$, then by (2.2.2), $a^{n}+a^{m}=\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\}$ and by (2.2.1), $a^{r}=a^{r+1}=\ldots=a^{n+r}$, so we have $a^{n}+a^{m}=\left\{a^{n}, a^{n+1}, \ldots, a^{n+r}\right\}$. By (2.2.1) and (2.2.3), $n=m \geq r$ implies $a^{n}+a^{m}=a^{r}+a^{r}=\left\{a^{r}\right\}$ and $a^{r}=a^{n}=a^{n+1}+\frac{\square}{6}=a^{n+r}$, so $\left.a^{n}+a^{m}=\left\{a^{r}\right\} \xlongequal[0^{r}]{\{ } a^{n}, a^{n+1}, \ldots, a^{n+r}\right\}$.
Hence (2.2.4) holds.

$$
\left(a^{n}+a^{n}\right)+a^{m}=\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\}+a^{m}= \begin{cases}\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\} & \text { if } n \leq m \\ \left\{a^{m}\right\} & \text { if } n>m\end{cases}
$$

and

$$
a^{n}+\left(a^{n}+a^{m}\right)= \begin{cases}a^{n}+\left\{a^{n}\right\} & \text { if } n<m \\ a^{n}+\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\} & \text { if } n=m \\ a^{n}+\left\{a^{m}\right\} & \text { if } n>m\end{cases}
$$

which implies that

$$
= \begin{cases}\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\} & \text { if } n<m \\ \left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\} & \text { if } n=m \\ \left\{a^{m}\right\} & \text { if } n>m\end{cases}
$$

$$
\begin{equation*}
\left(a^{n}+a^{n}\right)+a^{m}=a^{n}+\left(a^{n}+a^{m}\right) \tag{2.2.5}
\end{equation*}
$$

for all $n, m \in\{1,2, \ldots, r\}$. We have from (2.2.5) and the commutativity of + on S that for $n, m \in\{1,2, \ldots, r\}$,
$\left(a^{m}+a^{n}\right)+a^{n}=a^{n}+\left(a^{m}+a^{n}\right)=a^{n}+\left(a^{n}+a^{m}\right)=\left(a^{n}+a^{n}\right)+a^{m}=a^{m}+\left(a^{n}+a^{n}\right)$
and

$$
\left(a^{n}+a^{m}\right)+a^{n}=a^{n}+\left(a^{n}+a^{m}\right)=a^{n}+\left(a^{m}+a^{n}\right)
$$

By the definition of + on S, it follows that for distinct elements n, m and k in $\{1,2, \ldots, r\}$,

$$
\left(a^{n}+a^{m}\right)+a^{k}=\left\{a^{\min \{n, m, k\}}\right\}=a^{n}+\left(a^{m}+a^{k}\right) .
$$

It is clearly seen from the definition of + on S that

Hence $(S,+)$ is a hypergroup. By $(2.2 .3), a^{r}$ is a scalar identity of the hypergroup $(S,+)$. Since $a^{r} \in\left\{a^{n}, a^{n+1}, \ldots, a^{r}\right\}=a^{n}+a^{n}$ for all $n \in\{1,2, \ldots, r\}$, we have that for $n \in\{1,2, \ldots, r\}, a^{n}$ is an inverse of a^{n} in $(S,+)$. Moreover, for $n \in\{1,2, \ldots, r\}$, a^{n} is the unique inverse of a^{n} in $(S,+)$ since for every $m \in\{1,2, \ldots, r\} \backslash\{n\}, a^{r} \notin$ $a^{n}+a^{m}\left(=\left\{a^{\min \{n, m\}}\right\}\right)$.

To show that $(S,+)$ is reversible, let $n, m, k \in\{1,2, \ldots, r\}$ be such that $a^{n} \in$
$a^{m}+a^{k}$. Since

$$
a^{m}+a^{k}= \begin{cases}\left\{a^{m}, a^{m+1}, \ldots, a^{r}\right\} & \text { if } m=k \\ \left\{a^{\min \{m, k\}}\right\} & \text { if } m \neq k\end{cases}
$$

we have that $n=m<k, n=k<m, n>m=k$ or $n=m=k$. Each case gives $a^{k} \in a^{n}+a^{m}$ as follows:

$$
\begin{aligned}
& n=m<k \Rightarrow a^{k} \in\left\{a^{m}, a^{m+1}, \ldots, a^{r}\right\}=a^{m}+a^{m}=a^{n}+a^{m}, \\
& n=k<m \Rightarrow a^{k} \in\left\{a^{n}\right\}=a^{n}+a^{m}, \\
& n>m=k \Rightarrow a^{k} \in\left\{a^{m}\right\}=a^{n}+a^{m}, \\
& n=m=k \Rightarrow a^{k} \in\left\{a^{m}, a^{m+1}, \ldots, a^{r}\right\}=a^{m}+a^{m}=a^{n}+a^{m} .
\end{aligned}
$$

This proves that $(S,+)$ is a canonical hypergroup.
Next, we shall show that $a^{n} \cdot\left(a^{m}+a^{k}\right)=a^{n} \cdot a^{m}+a^{n} \cdot a^{k}$ for all $n, m, k \in$ $\{1,2, \ldots, r\}$ where • is the operation of S. Let $n, m, k \in\{1,2, \ldots, r\}$. Then by

$$
a^{n} \cdot\left(a^{m}+a^{k}\right)= \begin{cases}a^{n} \cdot\left\{a^{\min \{m, k\}}\right\} & \text { if } m \neq k, \tag{2.2.4}\\ a^{n} \cdot\left\{a^{m}, a^{m+1}, \ldots, a^{m+r}\right\} & \text { if } m=k\end{cases}
$$

and 99 and $\left\{\begin{array}{l}\left\{a^{m i n}\{n+m, n+k\}\right. \\ \sigma^{2} \\ \left\{a^{n+m}, a^{n+m+1}, \ldots, a^{n+m+r}\right\} \\ \text { if } m=k\end{array}\right.$

$$
\begin{aligned}
a^{n} \cdot a^{m}+a^{n} \cdot a^{k}=a^{n+m}+a^{n+k} & = \begin{cases}\left\{a^{\min \{n+m, n+k\}}\right\} & \text { if } n+m \neq n+k, \\
\left\{a^{n+m}, a^{n+m+1}, \ldots, a^{n+m+r}\right\} & \text { if } n+m=n+k\end{cases} \\
= & \begin{cases}\left\{a^{\min \{n+m, n+k\}}\right\} & \text { if } m \neq k, \\
\left\{a^{n+m}, a^{n+m+1}, \ldots, a^{n+m+r}\right\} & \text { if } m=k .\end{cases}
\end{aligned}
$$

Thus $a^{n} \cdot\left(a^{m}+a^{k}\right)=a^{n} \cdot a^{m}+a^{n} \cdot a^{k}$ for all $n, m, k \in\{1,2, \ldots, r\}$.

Hence $(S,+, \cdot)$ is a hyperring. Therefore $S \in \boldsymbol{S H R}$.
For the converse, assume that $S=\langle a\rangle$, $\operatorname{index}(S)=r>1$ and $\operatorname{period}(S)=$ $m>1$. Then

$$
S=\left\{a, a^{2}, \ldots, a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}, a^{r+m}=a^{r}, r>1, m>1
$$

and $a, a^{2}, \ldots, a^{r+m-1}$ are all distinct. Since $\operatorname{period}(S)>1, S$ has no zero (Chapter I, page 2). Consequently, for $x, y \in S^{0}, x y=0$ implies $x=0$ or $y=0$. To show that $S \notin \boldsymbol{S H R}$, suppose on the contrary that $S \in \boldsymbol{S H R}$. Then there exists a hyperoperation + on S^{0} such that $\left(S^{0},+, \cdot\right)$ is a hyperring where \cdot is the operation on S^{0}. Then $0 \in a+a^{k}$ for some $k \in\{1,2, \ldots, r+m-1\}$.

Case 1: $k=1$. Then $0 \in a+a$. Consequently,

$$
0 \in a^{r-1}(a+a)=a^{r}+a^{r}=a^{r}+a^{r+m}=a^{r-1}\left(a+a^{m+1}\right)
$$

This implies that $0 \in a+a^{m+1}$. Then $a^{m+1}=a$. But $1<m+1 \leq r+m-1$ (since $r>1$), so we have $a \neq a^{m+1}$, a contradiction.

Case 2: $k>1$. Then $2 k-1>1$ and
สถานนดินมมสิมาร

Subcase 2.1: $2 k-1<r$. Then $1<2 k-1<r+m-1$, so $a^{2 k-1} \neq a$, a contradiction.

Subcase 2.2: $2 k-1 \geq r$. Then $a^{2 k-1} \in\left\{a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}$ (Chapter I, page 1) which implies that $a \in\left\{a^{r}, a^{r+1}, \ldots, a^{r+m-1}\right\}$. This is a contradiction since $r>1$.

CHAPTER III

GENERALIZED SEMIGROUPS OF SOME SEMIGROUPS OF TRANSFORMATIONS OF A SET

The purpose of this chapter is to characterize when generalized semigroups of the following transformation semigroups admit a hyperring structure where X is a nonempty set.

$$
\begin{aligned}
& T(X)=\text { the full transformation semigroup on } X, \\
& G(X)=\{\alpha \in T(X) \mid \alpha \text { is } 1-1 \text { and } \operatorname{Im} \alpha=X\}, \\
& M(X)=\{\alpha \in T(X) \mid \alpha \text { is } 1-1\}, \\
& E(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha=X\}, \\
& T_{1}(X)=\{\alpha \in T(X) \mid \operatorname{Im} \alpha \text { is finite }\}, \\
& T_{2}(X)=\{\alpha \in T(X) \mid X \backslash \operatorname{Im} \alpha \text { is finite }\}, \\
& T_{3}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha) \text { is finite }\}
\end{aligned}
$$

$$
\text { where } \mathrm{K}(\alpha)=\{x \in X \mid \alpha \text { is not } 1 \in 1 \text { at } x\}, \square \delta ? \prod
$$

and
$T_{4}(X)_{q}=\{\alpha \in T(X) \nmid \alpha$ is, $1-F$ and $X d \operatorname{Im} \alpha$ is infinite $\}$ where X is infinite

$$
T_{5}(X)=\{\alpha \in T(X) \mid \mathrm{K}(\alpha) \text { is infinite and } \operatorname{Im} \alpha=X\} \text { where } X \text { is infinite. }
$$

We recall from Chapter I that $G(X) \in \boldsymbol{S H R}$ (Proposition 1.2), $M(X) \in \boldsymbol{S H R}$ if and only if X is finite (Proposition 1.3(2)) and $E(X) \in \boldsymbol{S H R}$ if and only if X is finite (Proposition 1.3(3)). Moreover, the condition that $|X|=1$ is necessary and sufficient for $T_{2}(X)$ and for $T_{3}(X)$ to belong to $\boldsymbol{S H R}$ (Proposition 1.4).

Throughout this chapter, let X denote a nonempty set. For convenience,
the following notation will be used. For $a \in X$, let X_{a} denote the constant transformation of X with image $\{a\}$ and for $a, b \in X$, let (a, b) be the element of $G(X)$ defined by

$$
x(a, b)= \begin{cases}b & \text { if } x=a \\ a & \text { if } x=b \\ x & \text { if } x \in X \backslash\{a, b\}\end{cases}
$$

If $\theta \in G(X)$, we have $(G(X), \theta) \cong G(X)$ (Chapter I, page 2). Then the following theorem is obtained from Proposition 1.2.

Theorem 3.1. For any $\theta \in G(X),(G(X), \theta) \in \boldsymbol{S H R}$.

We recall that if $S(X)$ is any of the semigroups $T(X), M(X), E(X)$ and $T_{1}(X)-T_{5}(X)$ and $\theta \in S^{1}(X)$, by Proposition $1.5,|S(X)|=1$ or $(S(X), \theta)$ has no zero. Hence $(S(X), \theta)^{0}=(S(X) \cup\{0\}, \theta)$ (Chapter I, page 2).

Theorem 3.2. Let $S(X)$ be $T(X)$ or $T_{1}(X)$. For $\theta \in S^{1}(X),(S(X), \theta) \in \boldsymbol{S H R}$ if and only if $|X|=1$.

Proof. Assume that $(S(X), \theta) \in \boldsymbol{S H R}$. Then there exists a hyperoperation + on $S(X) \cup\{0\}$ such that $(S(X) \cup\{0\},+, \cdot)$ is a hyperring where \cdot is the operation on $(S(X) \cup\{0\}, \theta)$. To show that $|X|=1$, suppose on the contrary that $|X| \geq 2$. Let a and b be two distinct elements in X. Then $X_{a}, X_{b} \in S(X)$ and it is easily seen that $X_{a} \theta X_{a}=X_{a}$ and $X_{b} \theta X_{a}=X_{a}$. Thus we have

$$
0 \in X_{a}-X_{a}=X_{a} \theta X_{a}-X_{b} \theta X_{a}=\left(X_{a}-X_{b}\right) \theta X_{a}
$$

which implies by Proposition 1.1 and 1.5 that $0 \in X_{a}-X_{b}$. Hence $X_{a}=X_{b}$ which is a contradiction since $a \neq b$. Hence $|X|=1$.

Conversely, if $|X|=1$, then $|S(X)|=1$, so $(S(X), \theta) \in \boldsymbol{S H R}$ (Chapter I, page 6).

Hence Proposition 1.3(1) becomes a corollary of Theorem 3.2.

Corollary 3.3. If $S(X)=T(X)$ or $T_{1}(X)$, then $S(X) \in \boldsymbol{S H R}$ if and only if $|X|=1$.

Theorem 3.4. For $\theta \in M(X),(M(X), \theta) \in \boldsymbol{S H R}$ if and only if X is finite.

Proof. If X is finite, then $M(X)=G(X)$, so by Theorem $3.1,(M(X), \theta) \in \boldsymbol{S H R}$.
For the converse, assume that $(M(X), \theta) \in \boldsymbol{S H R}$. Then there exists a hyperoperation + on $M(X) \cup\{0\}$ such that $(M(X) \cup\{0\},+, \cdot)$ is a hyperring where \cdot is the operation on $(M(X) \cup\{0\}, \theta)$. To show that $\operatorname{Im} \theta=X$, suppose that $\operatorname{Im} \theta \subsetneq X$. Since θ is $1-1$, we have that $(\operatorname{Im} \theta) \theta \subsetneq X \theta$. Thus $\operatorname{Im} \theta^{2} \subsetneq \operatorname{Im} \theta \subsetneq X$. This implies that $\left|X \backslash \operatorname{Im} \theta^{2}\right| \geq 2$. Let $a, b \in X \backslash \operatorname{Im} \theta^{2}$ be distinct. Consequently, $\theta^{2}(a, b)=\theta^{2}$. Since

$$
0 \in \theta^{2}-\theta^{2}=\theta^{2}-\theta^{2}(a, b)=\theta \theta\left(1_{X}-(a, b)\right)
$$

by Proposition 1.1 and 1.5, $0 \in 1_{X}-(a, b)$. This implies that $(a, b)=1_{X}$ which is a contradiction. Hence $\theta \in G(X)$. Then $(M(X), \theta) \cong M(X)$ (Chapter I, page 2). Since $(M(X), \theta) \in \boldsymbol{S H R}, M(X) \in \boldsymbol{S H R}$. By Proposition 1.3(2), X is finite. Theorem 3.5. For $\theta \in E(X),(E(X), \theta) \in \boldsymbol{S H R}$ if and only if X is finite. Proof. If X cis finite, then $E(X) \stackrel{\sigma}{=} G(X)$ and hence $(E(X), \theta) \in \boldsymbol{S H R}$ by Theorem 3.1.

For the converse, assume that $(E(X), \theta) \in \boldsymbol{S H R}$. Then there exists a hyperoperation + on $E(X) \cup\{0\}$ such that $(E(X) \cup\{0\},+, \cdot)$ is a hyperring where \cdot is the operation on $(E(X) \cup\{0\}, \theta)$. To show that $\theta \in G(X)$, suppose not. Because $\operatorname{Im} \theta=X$, θ is not 1-1. Then there exist distinct elements a and b in X such that $a \theta=b \theta$. Consequently, $(a, b) \theta=\theta$. Then

$$
0 \in \theta-\theta=\theta-(a, b) \theta=\left(1_{X}-(a, b)\right) \theta 1_{X}
$$

which implies by Proposition 1.1 and 1.5 that $0 \in 1_{X}-(a, b)$. Hence $(a, b)=1_{X}$, a contradiction. Therefore $\theta \in G(X)$. It follows that $(E(X), \theta) \cong E(X)$ (Chapter I, page 2). But $(E(X), \theta) \in \boldsymbol{S H R}$, so $E(X) \in \boldsymbol{S H R}$. Hence X is finite by Proposition 1.3(3).

Theorem 3.6. Let $S(X)$ be $T_{2}(X)$ or $T_{3}(X)$. For $\theta \in S(X),(S(X), \theta) \in \boldsymbol{S H R}$ if and only if $|X|=1$.

Proof. Assume that $(S(X), \theta) \in \boldsymbol{S H R}$ and + is a hyperoperation on $S(X) \cup\{0\}$ such that $(S(X) \cup\{0\},+, \cdot)$ is a hyperring where \cdot is the operation on $(S(X) \cup\{0\}, \theta)$. First, we will prove that θ is $1-1$. Suppose not. Then there exist distinct elements a and b in X such that $a \theta=b \theta$. Therefore $(a, b) \in S$ and $(a, b) \theta=\theta$. Then we have

$$
0 \in \theta-\theta=\theta-(a, b) \theta=\left(1_{X}-(a, b)\right) \theta 1_{X}
$$

which implies by Proposition 1.1 and 1.5 that $0 \in 1_{X}-(a, b)$, so $(a, b)=1_{X}$, a contradiction. Hence θ is $1-1$.

Next, we will prove that $\operatorname{Im} \theta=X$. Suppose that $\operatorname{Im} \theta \subsetneq X$. Since θ is $1-1$, $(\operatorname{Im} \theta) \theta \subsetneq X \theta$. Then $\operatorname{Im} \theta^{2} \subsetneq \operatorname{Im} \theta \subsetneq X$. Let $a, b \in X \backslash \operatorname{Im} \theta^{2}$ be distinct. Then

we have $0 \in 1_{X}-(a, b)$. Hence $(a, b)=1_{X}$, a contradiction. This proves that $\theta \in$ $G(X)$. Consequently, $(S(X), \theta) \cong S(X)$ and hence $S(X) \in \boldsymbol{S H R}$. By Proposition 1.4, $|X|=1$.

For the converse, assume that $|X|=1$. Then $|S(X)|=1$ and so $(S(X), \theta) \in$ $\boldsymbol{S H R}$ (Chapter I, page 6).

The following lemma is required to prove that $\left(T_{4}(X), \theta\right) \notin \boldsymbol{S H R}$ if X is infinite and $\theta \in T_{4}^{1}(X)$.

Lemma 3.7. $M(X) T_{4}(X) \subseteq T_{4}(X)$ where X is infinite.

Proof. Let $\alpha \in M(X)$ and $\beta \in T_{4}(X)$. Then $\alpha \beta$ is 1-1 and $\operatorname{Im} \alpha \beta \subseteq \operatorname{Im} \beta$. Since $X \backslash \operatorname{Im} \beta$ is infinite, $X \backslash \operatorname{Im} \alpha \beta$ is infinite. Hence $\alpha \beta \in T_{4}(X)$.

Theorem 3.8. For any $\theta \in T_{4}^{1}(X),\left(T_{4}(X), \theta\right) \notin \boldsymbol{S H R}$ where X is infinite.

Proof. Assume that $\left(T_{4}(X), \theta\right) \in \boldsymbol{S H R}$ and let + be a hyperoperation on $T_{4}(X) \cup\{0\}$ such that $\left(T_{4}(X) \cup\{0\},+, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(T_{4}(X) \cup\right.$ $\{0\}, \theta)$. Let $\alpha \in T_{4}(X)$. Then $\alpha \theta \in T_{4}(X)$, so $X \backslash \operatorname{Im} \alpha \theta$ is infinite. Let a and b be distinct elements in $X \backslash \operatorname{Im} \alpha \theta$. Then $\alpha \theta(a, b)=\alpha \theta$, and so $\alpha \theta(a, b) \alpha=\alpha \theta \alpha$. By Lemma 3.7, we have that $(a, b) \alpha \in T_{4}(X)$. But

$$
0 \in \alpha \theta \alpha-\alpha \theta \alpha=\alpha \theta \alpha-\alpha \theta(a, b) \alpha=\alpha \theta(\alpha-(a, b) \alpha)
$$

so $0 \in \alpha-(a, b) \alpha$ by Proposition 1.1 and 1.5. This implies that $(a, b) \alpha=\alpha$.
Hence

Hence the following corollary is obtained.

Corollary 3.9. If X is infinite, then $T_{4}(X) \notin \boldsymbol{S H R}$.

The following lemma is given to prove that $\left(T_{5}(X), \theta\right) \notin \boldsymbol{S H R}$ where X is infinite and $\theta \in T_{5}^{1}(X)$.

Lemma 3.10. If X is infinite, then $T_{5}(X) E(X) \subseteq T_{5}(X)$.

Proof. Let $\alpha \in T_{5}(X)$ and $\beta \in E(X)$. Then $\operatorname{Im} \alpha \beta=X$ since $\operatorname{Im} \alpha=X=\operatorname{Im} \beta$.
If α is not 1-1 at $x \in X$, then $\alpha \beta$ is not 1-1 at x. Consequently, $\mathrm{K}(\alpha)=\{x \in X \mid \alpha$ is not 1-1 at $x\} \subseteq\{x \in X \mid \alpha \beta$ is not 1-1 at $x\}=\mathrm{K}(\alpha \beta)$.

Since $\mathrm{K}(\alpha)$ is infinite, $\mathrm{K}(\alpha \beta)$ is infinite. Hence $\alpha \beta \in T_{5}(X)$.

Theorem 3.11. For any $\theta \in T_{5}^{1}(X),\left(T_{5}(X), \theta\right) \notin \boldsymbol{S H R}$ where X is infinite.

Proof. Assume that $\left(T_{5}(X), \theta\right) \in \boldsymbol{S H R}$. Then there exists a hyperoperation + on $T_{5}(X) \cup\{0\}$ such that $\left(T_{5}(X) \cup\{0\},+, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(T_{5}(X) \cup\{0\}, \theta\right)$.

Case 1: $\theta=1_{X}$. Since X is infinite, there exist $X_{1}, X_{2} \subseteq X$ such that

$$
X_{1} \cup X_{2}=X, \quad X_{1} \cap X_{2}=\varnothing,\left|X_{1}\right|=\left|X_{2}\right|=|X|
$$

Then there is a bijection $\varphi: X_{1} \rightarrow X$. Let $a \in X_{1}$ and define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}\frac{x \varphi}{x \varphi} & \text { if } \\ a \in X_{1} \\ a & \text { if } \\ x \in X_{2}\end{cases}
$$

Thus $\operatorname{Im} \alpha=X$ and α is not $1-1$ at every $x \in X_{2}$. Therefore $\alpha \in T_{5}(X)$. Let $s, t \in X_{2}$ be such that $s \neq t$. Thus there exist unique $p, q \in X_{1}$ such that $p \alpha=s$ and $q \alpha=t$. Moreover, the following equalities hold.

$$
\begin{equation*}
\mathbb{X}_{2} \alpha(s, t) \alpha=\{a \alpha\} \Rightarrow X_{2} \alpha \alpha . \tag{2.10.1}
\end{equation*}
$$

Since $\varphi: X_{1} \rightarrow X$ is $1-1$, for $x \in X_{1} \backslash\{p, q\}, x \alpha \notin\{s, t\}$. Then

$$
\begin{equation*}
\text { وqM刁 Gor every } x \in X_{1} \downarrow\{p, q\}, x \alpha(s, t) \alpha=x \alpha \alpha \tag{2.10.2}
\end{equation*}
$$

From (2.10.1) and (2.10.2), we have $\alpha(s, t) \alpha=\alpha^{2}$. By Lemma 3.10, $\alpha(s, t) \in$ $T_{5}(X)$. But

$$
0 \in \alpha \alpha-\alpha \alpha=\alpha \alpha-\alpha(s, t) \alpha=(\alpha-\alpha(s, t)) \alpha
$$

so by Proposition 1.1 and $1.5,0 \in \alpha-\alpha(s, t)$. Hence $\alpha(s, t)=\alpha$. It then follows that

$$
s=p \alpha=p \alpha(s, t)=s(s, t)=t
$$

a contradiction.

Case 2: $\theta \in T_{5}(X)$. Then $s \theta=t \theta$ for some distinct $s, t \in X$. Since $X \backslash\{s, t\}$ is infinite, there exist $X_{1}, X_{2}^{\prime} \subseteq X \backslash\{s, t\}$ such

$$
X_{1} \cup X_{2}^{\prime}=X \backslash\{s, t\}, X_{1} \cap X_{2}^{\prime}=\varnothing,\left|X_{1}\right|=\left|X_{2}^{\prime}\right|=|X \backslash\{s, t\}|
$$

Let $X_{2}=X_{2}^{\prime} \cup\{s, t\}$. Then

$$
X_{1} \cup X_{2}=X, X_{1} \cap X_{2}=\varnothing,\left|X_{1}\right|=\left|X_{2}\right|=|X|
$$

Let $\varphi: X_{1} \rightarrow X$ be a bijection. Let $a \in X_{1}$ and define $\alpha: X \rightarrow X$ by

$$
x \alpha= \begin{cases}x \varphi & \text { if } x \in X_{1} \\ a & \text { if } x \in X_{2}\end{cases}
$$

Then $\operatorname{Im} \alpha=X$ and α is not $1-1$ at every $x \in X_{2}$, so $\alpha \in T_{5}(X)$. By Lemma 3.10, $\alpha(s, t) \in T_{5}(X)$. Let $p, q \in X_{1}$ be such that $p \alpha=s$ and $q \alpha=t$. Hence

$$
\begin{align*}
& p \alpha(s, t) \theta \alpha=t \theta \alpha=s \theta \alpha=p \alpha \theta \alpha, \\
& q \alpha(s, t) \theta \alpha=s \theta \alpha=t \theta \alpha=q \alpha \theta \alpha, \tag{2.10.3}
\end{align*}
$$

Since $\varphi: X_{1} \rightarrow X$ is $1-1$, for $x \in X_{1} \backslash\{p, q\}, x \alpha \notin\{s, t\}$. We deduce that

$$
X_{2} \alpha(s, t) \theta \alpha=\{a \theta \alpha\}=X_{2} \alpha \theta \alpha
$$

From (2.10.3) and (2.10.4), $\alpha(s, t) \theta \alpha=\alpha \theta \alpha$. Then

$$
0 \in \alpha \theta \alpha-\alpha \theta \alpha=\alpha \theta \alpha-\alpha(s, t) \theta \alpha=(\alpha-\alpha(s, t)) \theta \alpha
$$

so $0 \in \alpha-\alpha(s, t)$ by Proposition 1.1 and 1.5. Thus $\alpha(s, t)=\alpha$. This is a contradiction since

$$
s=p \alpha=p \alpha(s, t)=s(s, t)=t
$$

In particular, we have

Corollary 3.12. $T_{5}(X) \notin \boldsymbol{S H R}$ where X is infinite.

CHAPTER IV

GENERALIZED SEMIGROUPS OF SOME SEMIGROUPS OF LINEAR TRANSFORMATIONS OF
 A VECTOR SPACE

In this chapter, we characterize when generalized semigroups of the following semigroups of linear transformations under composition belong to the class $\boldsymbol{S H R}$ where V is a vector space over a division ring D.

$$
\begin{aligned}
& L(V)=\{\alpha: V \rightarrow V \mid \alpha \text { is a linear transformation }\}, \\
& G(V)=\{\alpha \in L(V) \mid \alpha \text { is } 1-1 \text { and } \operatorname{Im} \alpha=V\}, \\
& M(V)=\{\alpha \in L(V) \mid \alpha \text { is } 1-1\}, \\
& E(V)=\{\alpha \in L(V) \mid \operatorname{Im} \alpha=V\}, \\
& L_{1}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Im} \alpha \text { is finite }\}, \\
& L_{2}(V)=\left\{\alpha \in L(V) \mid \operatorname{dim}_{2}(V / \operatorname{Im} \alpha) \text { is finite }\right\} \\
& L_{3}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha \text { is finite }\}, \\
& L_{4}(V)=\{\alpha \in L(V) \mid \alpha \text { is } 1-1 \text { and dim }(V / \operatorname{Im} \alpha) \text { is infinite }\} \text { if } V \text { is infinite }
\end{aligned}
$$ dimensional and

$L_{5}(V)=\{\alpha \in L(V) \mid \operatorname{dim} \operatorname{Ker} \alpha$ is infinite and $\operatorname{Im} \alpha=V\}$ if V is infinite dimensional.

Throughout this chapter, let V be a vector space over a division ring D. The following notation will be used. If B is a basis of V and $u, w \in B$, let
$(u, w)_{B} \in L(V)$ be defined by

$$
v(u, w)_{B}= \begin{cases}u & \text { if } v=w \\ w & \text { if } v=u \\ v & \text { if } v \in B \backslash\{u, w\} .\end{cases}
$$

If the notation (A, \oplus, \cdot) is used to denote a hyperring, then for $x, y \in A, \ominus x$ and $x \ominus y$ will denote the inverse of x in (A, \oplus) and $x \oplus(\ominus y)$, respectively.

By Proposition 1.2, $G(V) \in \boldsymbol{S H R}$. It follows from the fact in Chapter I, page 2 that $(G(V), \theta) \cong G(V)$ for all $\theta \in \overline{G(V)}$. Therefore we have

Theorem 4.1. For $\theta \in G(V),(G(V), \theta) \in \boldsymbol{S H R}$.

We know that $L(V)$ is a ring under usual addition and composition. Moreover, $L_{1}(V)$ is an ideal of this ring ($\{6]$, page 424). Thus $L(V), L_{1}(V) \in \boldsymbol{S} \boldsymbol{R}$ and so $L(V), L_{1}(V) \in \boldsymbol{S H R}$. Since for $\alpha, \beta, \gamma, \theta \in L(V)$,
and

$$
e^{(\beta+\gamma)} \theta \alpha=\beta \theta \alpha+\gamma \theta \alpha
$$

Hence $(L(V), \theta) \in \boldsymbol{S} \boldsymbol{R}$ for every $\theta \in L(V)$ and $\left(L_{1}(V), \theta\right) \in \boldsymbol{S} \boldsymbol{R}$ for every $\theta \in$

Theorem 4.2. If $S(V)$ is $L(V)$ or $L_{1}(V)$, then for every $\theta \in S^{1}(V),(S(V), \theta) \in$ SHR .

We recall the facts from Proposition 1.9 that if $S(V)$ is any of
(1) $M(V)$ and $E(V)$ and
(2) $L_{2}(V)-L_{5}(V)$ where $\operatorname{dim} V$ is infinite
and $\theta \in S^{1}(V)$, then $|S(V)|=1$ or $(S(V), \theta)$ has no zero, and hence $(S(V), \theta)^{0}=$ $(S(V) \cup\{0\}, \theta)$ (Chapter I, page 2).

To characterize when $(M(V), \theta)$ with $\theta \in M(V)$ belongs to $\boldsymbol{S H R}$, we require the following lemma.

Lemma 4.3. $M(V) \in \boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite.

Proof. If $\operatorname{dim} V$ is finite, then $M(V)=G(V)$, so by Proposition $1.2, M(V) \in$ SHR .

For the converse, assume that $M(V) \in \boldsymbol{S H R}$. Then there exists a hyperoperation \oplus on $M(V) \cup\{0\}$ such that $(M(V) \cup\{0\}, \oplus \cdot \cdot)$ is a hyperring where \cdot is the operation on $\left(M(V) \cup\{0\}, 1_{V}\right)$. To show that $\operatorname{dim} V$ is finite, suppose on the contrary that $\operatorname{dim} V$ is infinite. Let B be a basis of V and $u, w \in B$ such that $u \neq w$. Since B is infinite, it follows that $|B|=|B \backslash\{u, w\}|$. Then there exists a 1-1 map φ from B onto $B \backslash\{u, w\}$. Let $\alpha \in L(V)$ be defined by $v \alpha=v \varphi$ for all $v \in B$. By Proposition 1.6, α is $1-1$ and so $\alpha \in M(V)$. Since $B \alpha=B \backslash\{u, w\}$, we have $v \alpha(u, w)_{B}=v \alpha$ for all $v \in B$. It follows that $\alpha(u, w)_{B}=\alpha$. Therefore

$$
0 \in \alpha \ominus \alpha=\alpha 1_{V} \ominus \alpha(u, w)_{B}=\alpha\left(1_{V} \ominus(u, w)_{B}\right) .
$$

But $\alpha \neq 0$, so by Proposition 1.1 and $1.9,0 \in 1_{V} \ominus(u, w)_{B}$. Hence $(u, w)_{B}=1_{V}$, a contradiction. Therefore $\operatorname{dim} V$ is finite. 19 ?
Theorem 4.4. For $\theta \in M(V),(M(V), \theta) \in \boldsymbol{S H R}$ if and only if dim V is finite.
Proof. First, we recall that if A is a linearly independent subset of V and $u \in$ $V \backslash\langle A\rangle$, then $A \cup\{u\}$ is linearly independent.

If $\operatorname{dim} V$ is finite, then $M(V)=G(V)$ and thus $(M(V), \theta) \in \boldsymbol{S H R}$ by Theorem 4.1.

For the converse, assume that $(M(V), \theta) \in \boldsymbol{S H R}$. Let \oplus be a hyperoperation on $M(V) \cup\{0\}$ such that $(M(V) \cup\{0\}, \oplus, \cdot)$ is a hyperring where \cdot is the operation on $(M(V) \cup\{0\}, \theta)$. To show that $\theta \in E(V)$, suppose on the contrary that
$\theta \notin E(V)$. Then $\operatorname{Im} \alpha \subsetneq V$. Since θ is $1-1$, we have $(\operatorname{Im} \theta) \theta \subsetneq V \theta$. Hence $\operatorname{Im} \theta^{2} \subsetneq$ $\operatorname{Im} \theta \subsetneq V$.

Next, let $u \in V \backslash \operatorname{Im} \theta, w \in \operatorname{Im} \theta \backslash \operatorname{Im} \theta^{2}$ and B_{1} a basis of $\operatorname{Im} \theta^{2}$. Then $w \in$ $V \backslash\left\langle B_{1}\right\rangle$. It follows that $B_{1} \cup\{w\}$ is linearly independent. But $\left\langle B_{1} \cup\{w\}\right\rangle \subseteq \operatorname{Im} \theta$, so $u \in V \backslash\left\langle B_{1} \cup\{w\}\right\rangle$. It follows that $B_{1} \cup\{u, w\}$ is linearly independent. Let B be a basis of V containing $B_{1} \cup\{u, w\}$. Since $u, w \notin\left\langle B_{1}\right\rangle$ and for $v \in V, v \theta^{2} \in\left\langle B_{1}\right\rangle$, we deduce that $v \theta^{2}(u, w)_{B}=v \theta^{2}$ for all $v \in V$. Hence $\theta^{2}(u, w)_{B}=\theta^{2}$. But

$$
0 \in \theta^{2} \ominus \theta^{2}=\theta^{2} \ominus \theta^{2}(u, w)_{B}=\theta \theta\left(1_{V} \ominus(u, w)_{B}\right)
$$

so $0 \in 1_{V} \ominus(u, w)_{B}$ by Proposition 1.1 and 1.9. Consequently, $(u, w)_{B}=1_{V}$, a contradiction. Now, we have $\theta \in G(V)$. It follows that $(M(V), \theta) \cong M(V)$ (Chapter I, page 2). Therefore $M(V) \in \boldsymbol{S H R}$. By Lemma 4.3, $\operatorname{dim} V$ is finite.

Next, we shall prove that $(E(V), \theta)$ with $\theta \in E(V)$ belongs to $\boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite. The following lemma is required.

Lemma 4.5. $E(V) \in \boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite.

Proof. If $\operatorname{dim} V$ is finite, then $E(V)=G(V)$, so by Proposition 1.2, $E(V) \in$ SHR

For the converse, assume that $E(V) \in \boldsymbol{S H R}$ and let \oplus be a hyperoperation on $E(V) \cup\{0\}$ such that $(E(V) \cup\{0\}, \oplus, \cdot)$ is a hyperring where is the operation on $\left(E(V) \cup\{0\}, 1_{V}\right)$. To show that $\operatorname{dim} V$ is finite, suppose on the contrary that $\operatorname{dim} V$ is infinite. Let B be a basis of V and let $u, w \in B$ be such that $u \neq w$. Since B is infinite, it follows that $|B|=|B \backslash\{u, w\}|$. Then there exists a 1-1 map φ from $B \backslash\{u, w\}$ onto B. Let $\alpha \in L(V)$ be defined by

$$
v \alpha= \begin{cases}v \varphi & \text { if } v \in B \backslash\{u, w\} \\ u & \text { if } v=u \text { or } v=w\end{cases}
$$

Then $\operatorname{Im} \alpha=\langle B\rangle=V$, so $\alpha \in E(V)$. Moreover,

$$
\begin{aligned}
& v(u, w)_{B} \alpha=v \alpha \text { for all } v \in B \backslash\{u, w\}, \\
& u(u, w)_{B} \alpha=w \alpha=u=u \alpha \text { and } \\
& w(u, w)_{B} \alpha=u \alpha=u=w \alpha .
\end{aligned}
$$

It follows that $(u, w)_{B} \alpha=\alpha$. Hence

$$
0 \in \alpha \ominus \alpha=\alpha \ominus(u, w)_{B} \alpha=\left(1_{V} \ominus(u, w)_{B}\right) \alpha
$$

which implies by Proposition 1.1 and 1.9 that $0 \in 1_{V} \ominus(u, w)_{B}$. Therefore $(u, w)_{B}=1_{V}$, a contradiction. This proves that $\operatorname{dim} V$ is finite.

Theorem 4.6. For $\theta \in E(V),(E(V), \theta) \in \boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite.

Proof. If $\operatorname{dim} V$ is finite, then $E(V)=G(V)$, so by Theorem 4.1, $(E(V), \theta) \in$ SHR .

For the converse, assume that $(E(V), \theta) \in \boldsymbol{S H R}$. Let \oplus be a hyperoperation on $E(V) \cup\{0\}$ such that $(E(V) \cup\{0\}, \oplus, \cdot)$ is a hyperring where \cdot is the operation on $(E(V) \cup\{0\}, \theta)$. To show that $\theta \in M(V)$, suppose that $\theta \notin M(V)$. Then $\operatorname{Ker} \theta \neq\{0\}$. Let B_{1} be a basis of $\operatorname{Ker} \theta$ and B abasis of V such that $B_{1} \subseteq B$. Since $\operatorname{Ker} \theta \neq\{0\}$, it follows that $B_{1} \neq \varnothing$. Let $\alpha \in L(V)$ be defined by

Then $\alpha \neq \theta$. Since

$$
\begin{aligned}
\operatorname{Im} \alpha=V \alpha & =\langle B \alpha\rangle \\
& =\left\langle\left(B \backslash B_{1}\right) \alpha \cup B_{1} \alpha\right\rangle \\
& \supseteq\left\langle\left(B \backslash B_{1}\right) \alpha\right\rangle \\
& =\left\langle\left(B \backslash B_{1}\right) \theta\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =\left\langle\left(B \backslash B_{1}\right) \theta \cup B_{1} \theta\right\rangle \text { since } B_{1} \theta=\{0\} \\
& =\langle B \theta\rangle \\
& =\langle B\rangle \theta=V \theta=V \text { since } \theta \in E(V)
\end{aligned}
$$

we have $\alpha \in E(V)$. The following proof shows that $\alpha \theta=\theta^{2}$.

$$
\begin{aligned}
& v \in B \backslash B_{1} \Rightarrow v \alpha \theta=v \theta \theta=v \theta^{2} \text { and } \\
& v \in B_{1} \Rightarrow v \alpha \theta=v \theta=0=0 \theta=(v \theta) \theta=v \theta^{2} .
\end{aligned}
$$

Then

$$
0 \in \theta^{2} \ominus \theta^{2}=\theta^{2} \ominus \alpha \theta=(\theta \ominus \alpha) \theta 1_{V} .
$$

This implies from Proposition 1.1 and 1.9 that $0 \in \theta \ominus \alpha$. Hence $\theta=\alpha$, a contradiction. This proves that $\theta \in M(V)$. Thus $\theta \in G(V)$. Consequently, $(E(V), \theta) \cong E(V)$. Therefore $E(V) \in \boldsymbol{S H R}$. By Lemma 4.5, dim V is finite.

We show in the next theorem that finiteness of $\operatorname{dim} V$ is necessary and sufficient for $\left(L_{2}(V), \theta\right)$ with $\theta \in L_{2}(V)$ and $\left(L_{3}(V), \theta\right)$ with $\theta \in L_{3}(V)$ to belong to $\boldsymbol{S H R}$. The following two lemmas will be used.

Lemma 4.7. $L_{2}(V) \in \boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite.

Proof. If $\operatorname{dim} V$ is finite, then $L_{2}(V)=L(V) \in \boldsymbol{S H R}$.
Conversely, assume that dim V is infinite. Suppose that there exists a hyperoperation \oplus on $L_{2}(V) \cup\{0\}$ such that $\left(L_{2}(V) \cup\{0\}, \oplus, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(L_{2}(V) \cup\{0\}, 1_{V}\right)$. Let B be a basis of V and u, w distinct elements of B. Then $|B|=|B \backslash\{u, w\}|$, so there exists a bijection $\varphi: B \rightarrow B \backslash\{u, w\}$. Define $\alpha \in L(V)$ by $v \alpha=v \varphi$ for all $v \in B$. Then $\operatorname{Im} \alpha=V \alpha=\langle B\rangle \alpha=\langle B \alpha\rangle=\langle B \varphi\rangle=$ $\langle B \backslash\{u, w\}\rangle$. By Proposition 1.8(2), $\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /\langle B \backslash\{u, w\}\rangle)=2$. Therefore $\alpha \in L_{2}(V)$. Since $B \alpha=B \backslash\{u, w\}$, we have $v \alpha(u, w)_{B}=v \alpha$ for all
$v \in B$. Consequently, $\alpha(u, w)_{B}=\alpha$. Therefore

$$
0 \in \alpha \ominus \alpha=\alpha \ominus \alpha(u, w)_{B}=\alpha\left(1_{V} \ominus(u, w)_{B}\right)
$$

We then have from Proposition 1.1 and 1.9 that $0 \in 1_{V} \ominus(u, w)_{B}$. Hence $(u, w)_{B}=$ 1_{V}, a contradiction. This proves that if dim V is infinite, then $\left(L_{2}(V), \theta\right) \notin$ SHR.

Lemma 4.8. $L_{3}(V) \in \boldsymbol{S H R}$ if and only if $\operatorname{dim} V$ is finite.

Proof. If $\operatorname{dim} V$ is finite, then $L_{3}(V)=L(V) \in \boldsymbol{S H R}$.
Conversely, assume that $\operatorname{dim} V$ is infinite and suppose that $L_{3}(V) \in \boldsymbol{S H R}$. Let \oplus be a hyperoperation on $L_{3}(V) \cup\{0\}$ such that $\left(L_{3}(V) \cup\{0\}, \oplus, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(L_{3}(V) \cup\{0\}, 1_{V}\right)$. Let B be a basis of V and $u, w \in B$ be distinct. Define α as in the proof of Lemma 4.7. Then $\alpha(u, w)_{B}=\alpha$. By Proposition 1.6, $\alpha \in M(V) \subseteq L_{3}(V)$. Thus

It follows from Proposition 1.1 and 1.9 that $0 \in 1_{V} \ominus(u, w)_{B}$ which is a contradiction since $(u, w)_{B} \neq 1_{v}$ Hence if dim V is /infinite, then $L_{3}(V) \notin \boldsymbol{S H R}$.

Theorem 4.9. Let $S(V)$ be $L_{2}(V)$ or $L_{3}(V)$ and $\theta \in S(V)$. Then $(S(V), \theta) \in$ $\boldsymbol{S H R}$ if and only if dim V is finite.

Proof. If $\operatorname{dim} V$ is finite, then $S(V)=L(V)$, and so $(S(V), \theta) \in \boldsymbol{S H} \boldsymbol{R}$ by Theorem 4.2.

For the converse, assume that $(S(V), \theta) \in \boldsymbol{S H R}$, and suppose that $\operatorname{dim} V$ is infinite. Let \oplus be a hyperoperation on $S(V) \cup\{0\}$ such that $(S(V) \cup\{0\}, \oplus, \cdot)$ is a hyperring where \cdot is the operation on $(S(V) \cup\{0\}, \theta)$.

Case 1. θ is not 1-1. Then $\operatorname{Ker} \theta \neq\{0\}$. Let $u \in \operatorname{Ker} \theta \backslash\{0\}$ and B a basis of V containing u. Define $\alpha \in L(V)$ by

$$
v \alpha= \begin{cases}0 & \text { if } v=u \\ v & \text { if } v \in B \backslash\{u\}\end{cases}
$$

By Proposition 1.7, $\operatorname{Ker} \alpha=\langle u\rangle$ and $\operatorname{Im} \alpha=\langle B \backslash\{u\}\rangle$. By Proposition 1.8(2), $\operatorname{dim}(V / \operatorname{Im} \alpha)=\operatorname{dim}(V /\langle B \backslash\{u\}\rangle)=1$. Then $\alpha \in S(V)$. From the fact that

$$
u \alpha \theta=0=u \theta
$$

$$
v \alpha \theta=v \theta \text { for all } v \in B \backslash\{u\},
$$

we have $\alpha \theta=\theta$. Consequently,

$$
0 \in \theta \ominus \theta=\theta \ominus \alpha \theta=\left(1_{V} \ominus \alpha\right) \theta 1_{V} .
$$

This implies by Proposition 1.1 and 1.9 that $0 \in 1_{V} \ominus \alpha$ and so $\alpha=1_{V}$, a contradiction.

Case 2: θ is 1-1 and onto. Then $S(V) \cong(S(V), \theta) \in \boldsymbol{S H R}$. By Lemma 4.7 and 4.8, $\operatorname{dim} V$ is finite, a contradiction.

Case 3: θ is $1-1$ but not onto. Then $\operatorname{Im} \theta \subsetneq V$ and $(\operatorname{Im} \theta) \theta \subsetneq V \theta$. Consequently, $\operatorname{Im} \theta^{2} \subsetneq \operatorname{Im} \theta \subsetneq V$ Let $u \in V \backslash \operatorname{Tm} \theta$ and $w \in \operatorname{Im} \theta P \operatorname{Im} \theta^{2}$. Let B_{1} be a basis of $\operatorname{Im} \theta^{2}$. Then

$$
w \notin \operatorname{Im} \theta^{2}=\left\langle B_{1}\right\rangle \text { and } u \notin \operatorname{Im} \theta \supseteq\left\langle B_{1} \cup\{w\}\right\rangle
$$

which imply that $B_{1} \cup\{u, w\}$ is linearly independent. Let B be a basis of V containing $B_{1} \cup\{u, w\}$. Since for every $v \in B, v \theta^{2} \in\left\langle B_{1}\right\rangle$ and $u, w \notin\left\langle B_{1}\right\rangle$, it follows that $v \theta^{2}(u, w)_{B}=v \theta^{2}$ for all $v \in B$. Therefore $\theta^{2}(u, w)_{B}=\theta^{2}$. We then have

$$
0 \in \theta^{2} \ominus \theta^{2}=\theta^{2} \ominus \theta^{2}(u, w)_{B}=\theta \theta\left(1_{V} \ominus(u, w)_{B}\right)
$$

By Proposition 1.1 and 1.9, $0 \in 1_{V} \ominus(u, w)_{B}$, so $(u, w)_{B}=1_{V}$, a contradiction.

This proves that $(S(V), \theta) \in \boldsymbol{S H R}$ implies that $\operatorname{dim} V$ is finite.

Next, to show that $\left(L_{4}(V), \theta\right) \notin \boldsymbol{S H R}$ for any infinite dimension of V, we require following lemma.

Lemma 4.10. $M(V) L_{4}(V) \subseteq L_{4}(V)$ where dim V is infinite.

Proof. Let $\alpha \in M(V)$ and $\beta \in L_{4}(V)$. Since α and β are 1-1, $\alpha \beta$ is 1-1. We have that

$$
V / \operatorname{Im} \beta \cong(V / \operatorname{Im} \alpha \beta) /(\operatorname{Im} \beta / \operatorname{Im} \alpha \beta)
$$

Since $\operatorname{dim}(V / \operatorname{Im} \beta)$ is infinite, $\operatorname{dim}(V / \operatorname{Im} \alpha \beta)$ is also infinite. Hence $\alpha \beta \in$ $L_{4}(V)$.

Theorem 4.11. For $\theta \in L_{4}^{1}(V),\left(L_{4}(V), \theta\right) \notin \boldsymbol{S H R}$ where $\operatorname{dim} V$ is infinite.
Proof. Assume that there exists a hyperoperation \oplus on $L_{4}(V) \cup\{0\}$ such that $\left(L_{4}(V) \cup\{0\}, \oplus, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(L_{4}(V) \cup\{0\}, \theta\right)$. Let $\alpha \in L_{4}(V)$. Then $\alpha \theta \in L_{4}(V)$. Let B_{1} be a basis of $\operatorname{Im} \alpha \theta$ and B a basis of V containing B_{1}. Since $\left\langle B_{1}\right\rangle=\operatorname{Im} \alpha \theta$, by Proposition 1.8(2), $\operatorname{dim}(V / \operatorname{Im} \alpha \theta)=$ $\left|B \backslash B_{1}\right|$ which is infinite. Let $u, w \in B \backslash B_{1}$ be distinct. Then $u, w \notin\left\langle B_{1}\right\rangle=$ $\operatorname{Im} \alpha \theta$ and also $u \alpha \neq w \alpha$ because α is $1-1$. We have that for every $v \in$ $B, v \alpha \theta(u, w)_{B}=\vartheta \alpha \theta$. Hence $\alpha \theta(u, w)_{B}=\alpha \theta$ and so $\alpha \theta(u, w)_{B} \alpha=\alpha \theta \alpha$. By Lemma 4.10, $(u, w)_{B} \alpha \in L_{4}(V)$. Thus

$$
0 \in \alpha \theta \alpha \ominus \alpha \theta \alpha=\alpha \theta \alpha \ominus \alpha \theta(u, w)_{B} \alpha=\alpha \theta\left(\alpha \ominus(u, w)_{B} \alpha\right)
$$

From Proposition 1.1 and 1.9, we have $0 \in \alpha \ominus(u, w)_{B} \alpha$. Therefore $(u, w)_{B} \alpha=$ α and so $u(u, w)_{B} \alpha=u \alpha$. But $u(u, w)_{B} \alpha=w \alpha$, so $w \alpha=u \alpha$. This is a contradiction.

This proves that $\left(L_{4}(V), \theta\right) \notin \boldsymbol{S H R}$, as required.

The following corollary is an immediate consequence of Theorem 4.11.

Corollary 4.12. $L_{4}(V) \notin \boldsymbol{S H R}$ where $\operatorname{dim} V$ is infinite.

Finally, we shall show that for $\theta \in L_{5}^{1}(V),\left(L_{5}(V), \theta\right) \notin \boldsymbol{S H R}$ for any infinite dimension of V. The following lemma will be used.

Lemma 4.13. $L_{5}(V) E(V) \subseteq L_{5}(V)$ where $\operatorname{dim} V$ is infinite.

Proof. Let $\alpha \in L_{5}(V)$ and $\beta \in E(V)$. Since $\operatorname{Im} \alpha=V=\operatorname{Im} \beta$, we have $\operatorname{Im} \alpha \beta=V$. Since $\operatorname{Ker} \alpha \beta \supseteq \operatorname{Ker} \alpha$ and $\operatorname{dim} \operatorname{Ker} \alpha$ is infinite, it follows that $\operatorname{dim} \operatorname{Ker} \alpha \beta$ is infinite. Hence $\alpha \beta \in L_{5}(V)$.

Theorem 4.14. For $\theta \in L_{5}^{1}(V),\left(L_{5}(V), \theta\right) \notin \boldsymbol{S H R}$ where dim V is infinite.

Proof. Suppose that there exists a hyperoperation \oplus on $L_{5}(V) \cup\{0\}$ such that $\left(L_{5}(V) \cup\{0\}, \oplus, \cdot\right)$ is a hyperring where \cdot is the operation on $\left(L_{5}(V) \cup\{0\}, \theta\right)$. Let $\alpha \in L_{5}(V)$. Then $\theta \alpha \in L_{5}(V)$, so $\operatorname{dim} \operatorname{Ker} \theta \alpha$ is infinite. Let $u, w \in \operatorname{Ker} \theta \alpha$ be linearly independent. Then $u \theta \alpha=0=w \theta \alpha$. Let B be a basis of V containing u and w. Since $B \backslash\{u, w\}$ is infinite, there are two subsets B_{1} and B_{2}^{\prime} of $B \backslash\{u, w\}$ such that
 $B \backslash\{u, w\}=B_{1} \cup B_{2}^{\prime}, B_{1} \cap B_{2}^{\prime}=\varnothing$ and $\left|B_{1}\right|=\left|B_{2}^{\prime}\right|=|B Q\{u, w\}|$.

Let $B_{2}=B_{2}^{\prime} \cup\{u, w\}$. Then

$$
B=B_{1} \cup B_{2}, B_{1} \cap B_{2}=\varnothing \text { and }\left|B_{1}\right|=\left|B_{2}\right|=|B| .
$$

Let $\varphi: B_{1} \rightarrow B$ be a bijection. Define $\beta \in L(V)$ by

$$
v \beta= \begin{cases}v \varphi & \text { if } v \in B_{1} \\ 0 & \text { if } v \in B_{2}\end{cases}
$$

Then $\operatorname{Im} \beta=\langle B \beta\rangle=\left\langle B_{1} \beta\right\rangle=\left\langle B_{1} \varphi\right\rangle=\langle B\rangle=V$ and $B_{2} \subseteq \operatorname{Ker} \beta$. Thus $\operatorname{dim} \operatorname{Ker} \beta \geq\left|B_{2}\right|$, so $\operatorname{dim} \operatorname{Ker} \beta$ is infinite. Hence $\beta \in L_{5}(V)$. Let $u^{\prime}, w^{\prime} \in B_{1}$ be such that $u^{\prime} \varphi=u$ and $w^{\prime} \varphi=w$. Thus $u^{\prime} \beta=u$ and $w^{\prime} \beta=w$. Since $\beta_{\left.\right|_{B_{1}}}=\varphi: B_{1} \rightarrow B$ is a bijection, for all $v \in B_{1} \backslash\left\{u^{\prime}, w^{\prime}\right\}, v \beta \in B \backslash\{u, w\}$, and so $v \beta(u, w)_{B}=v \beta$ for all $v \in B \backslash\{u, w\}$. The following equalities yield $\beta(u, w)_{B} \theta \alpha \beta=\beta \theta \alpha \beta$.

$$
\begin{aligned}
& u^{\prime} \beta(u, w)_{B} \theta \alpha \beta=u(u, w)_{B} \theta \alpha \beta=w \theta \alpha \beta=(w \theta \alpha) \beta=0 \beta=0, \\
& u^{\prime} \beta \theta \alpha \beta=u \theta \alpha \beta=(u \theta \alpha) \beta=0 \beta=0, \\
& w^{\prime} \beta(u, w)_{B} \theta \alpha \beta=w(u, w)_{B} \theta \alpha \beta=u \theta \alpha \beta=(u \theta \alpha) \beta=0 \beta=0, \\
& w^{\prime} \beta \theta \alpha \beta=w \theta \alpha \beta=(w \theta \alpha) \beta=0 \beta=0, \\
& v \beta(u, w)_{B} \theta \alpha \beta=0=v \beta \theta \alpha \beta \text { for all } v \in B_{2} \text { and }
\end{aligned}
$$

$$
\text { for } v \in B_{1} \backslash\left\{u^{\prime}, w^{\prime}\right\}, v \beta(u, w)_{B} \theta \alpha \beta=\left(v \beta(u, w)_{B}\right) \theta \alpha \beta=v \beta \theta \alpha \beta \text {. }
$$

By Lemma 4.13, $\beta(u, w)_{B} \in L_{5}(V)$. Then

$$
0 \in \beta \theta \alpha \beta \ominus \beta \theta \alpha \beta=\beta \theta \alpha \beta \ominus \beta(u, w)_{B} \theta \alpha \beta=\left(\beta \ominus \beta(u, w)_{B}\right) \theta \alpha \beta .
$$

This implies that $0 \in \beta \ominus \beta(u, w)_{B}$ by Proposition 1.1 and 1.9. Thus $\beta(u, w)_{B}=\beta$. But $u^{\prime} \beta(u, w)_{B}=u(u, w)_{B}=w, u \beta=u$ and $u \neq w$, so we have a contradiction. This proves that $\left(L_{5}(V), \theta\right) \notin \boldsymbol{S H R}$, as required.

The following corollary is a particular case of Theorem 4.14.

Corollary 4.15. $L_{5}(V) \notin \boldsymbol{S H R}$ where $\operatorname{dim} V$ is infinite.

REFERENCES

[1]. Chu, D. D., and Shyr, H. J. Monoids of languages admitting ring structure.
Semigroup Forum 19(1980): 127-132.
[2]. Clifford, A. H., and Preston, G. B. The algebraic theory of semigroups
(Vol. I). Mathematical Surveys, American Mathematical Society, Providence, R. I., 1961.
[3]. Corsini, P. Prolegomena of hypergroup theory. Aviani Editore, 1992.
[4]. Higgins, P. M. Techniques of semigroup theory. New York: Oxford University Press, 1992.
[5]. Howie, J. M. An introduction to semigroup theory. London : Academic Press, 1976.
[6]. Hungerford, T. W. Algebra. New York : Springer - Verlag, 1974.
[7]. Isbell, J. R. On the multiplicative semigroup of a commutative ring. Proceedings American Mathematical Society 10(1959) : 908-909.
[8]. Kemprasit, Y., and Punkla, Y. Transformation semigroups admitting hyperring structure. Italian Journal of Pure and Applied Mathematics, 12(to appear).
[9]. Kemprasit, Y. Multiplicative interval semigroups on \mathbb{R} admitting hyperring structure. Italian Journal of Pure and Applied Mathematics, 13(to appear).
[10]. Limbupasiriporn, P.Absolutely closed transformation semigroups. Master's Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1989.
[11]. Peinado, R. E. On semigroups admitting ring structure. Semigroup Forum 1(1970) : 189-208.
[12]. Punkla, Y. Hyperrings and transformation semigroups admitting hyperring structure. Master's Thesis, Department of Mathematics, Graduate School, Chulalongkorn University, 1991.
[13]. Satyanarayana, M. On semigroups admitting ring structure. Semigroup Forum 3(1971) : 43-50.
[14]. Satyanarayana, M. On semigroups admitting ring structure II. Semigroup Forum 6(1973) : 189-197.
[15]. Satyanarayana, M. On 0 - simple semigroups admitting ring structure.
Semigroup Forum 19(1980) : 307-312.

VITA

Miss Noknoi Rompurk was born on December 7, 1975 in Kalasin, Thailand. She graduated with a Bachelor Degree of Science in Mathematics from Khonkaen University in 1997. In 1998, she was admitted into the Master Degree program in Mathematics, Department of Mathematics, Faculty of Science, Chulalongkorn University. During the study for her Master's degree, she received a financial support from University Development Commission (UDC) for two years.

จุฬาลงกรณ์มหาวิทยาลัย

