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g(x)             = vector of inequalities of dimension m2 

h(x)       =         vector of equations of dimension m1 

Jv  = permeate flux, m3/m2
•min 
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CHAPTER 1 
 

INTRODUCTION 
 

 

  In recent years, membrane has become an important unit operation in 

chemical technology because many industries concern about colloidal particles, including 

the following: natural organic matter (NOM), heavy metals, and nonmetallic inorganic 

ions from contaminated waters and industrial effluents. A large variety of membranes are 

used in numerous processes devoted to molecular-scale separation in liquids or gases. 

The most classic operations are electrodialysis, reverse osmosis, ultrafiltration, and 

nanofiltration. Membranes applications in water and wastewater treatment have grown 

rapidly because they have many advantages than other separation processes such as it 

separates components as pure as other separation units and energy consumption is much 

lower than. The lower energy consumption can be explained in term of latent heat that 

membrane separation processes do not require latent heat in change of phase, unlike 

distillation and evaporation. Furthermore, membrane processes are appropriate to 

manufacture high purity, quality, and valuable products. Nowadays membranes are 

higher quality and lower price so the membrane processes have been applied to replace 

other separation processes in most plants. In the future membrane process probably play 

important role in environment because of high potential for recovery.  

   

  The economics of membrane filtration processes are dependent on the 

permeate flux (Chellam and Wiesner, 1997). Almost membrane separation processes are 

found operating condition that could be obtained maximizing permeate flux rate by using 

optimal condition experiments. But permeate flux in cross-flow filtration is controlled by 

dynamic process of gel-layer formation and growth. A serious limitation in such process 

is the progressive permeate flux deterioration due to two phenomena: membrane fouling 

and concentration polarization. The resistances that occur in membrane process could be 

cause by the membrane, concentration polarization, internal pore fouling, and gel-layer 
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formation. Membrane fouling can be reversible when flux recovery can be achieve by 

chemical cleaning or fluid dynamics, or irreversible when flux recovery is not possible.   

 

  The desire to maximize filtration rate using minimum energy is presents as 

the motivation for this research. The model-base control is required to control the process 

automatically so the reliable membrane transport model, developed for prediction and 

simulation of membrane filtration dynamics with reference to permeate flux, is necessary.  

 

In this work, the nanofiltration of aqueous solutions containing organic 

compounds developed by Chieh Tu et al. (2001) is considered. Nanofiltration membranes 

are a new class of membrane, which have properties in between those of ultrafiltration 

membranes and reverse-osmosis membrane. In this process the nanofiltration membrane, 

which is a plate-and-frame system, is simulated to perform the filtration tests to remove 

tannic acid, a model compound representing natural organic matter, under different 

operating conditions including transmembrane pressure, reject flow rate, and acid 

concentration. The primary purpose of this research is to develop process model 

incorporating the concentration polarization and gel layer formation in the filtration 

process and control the permeation rate of a chemical species through the membrane.  

Applied pressure is used to control the operating flux at it desired trajectory. A generic 

model control (GMC) coupled with a Kalman filter is implemented to track an optimal 

operating flux. 
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1.1 Objectives of Research 
 

The objectives of this research are: 

 

1. To study and develop membrane transport model for nanofiltration process, 

2. To study the parameters of process that affect to performance of the nanofiltration 

process, 

3. To study algorithm of Generic Model Control (GMC) and design a control 

configuration for the process to track the obtained optimal operating flux, 

4. To study and develop computer program for nonlinear control of the process, 

5. To assess the performance and robustness of the GMC controller and compare result 

with PID controller. 

 

 

1.2 Scope of Research  
 

The scope of this research can be listed as follows:  

 

1. A nanofiltration membrane for removal tannic acid is studied in this research. 

2. An off-line optimal control problem is solved with fixed batch time to find the 

optimal flux. A nonlinear programming problem (NLP) is solved using a successive 

quadratic programming (SQP) based optimization technique. 

3. A generic model control (GMC) coupled with Kalman filter is applied to handle the 

studied process. Applied pressure is selected as a manipulated variable. 

4. The control response of GMC is compared with PID by using computer simulation. 

5. The simulated program of the membrane separation process is developed by using 

MATLAB language. 
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1.3 Contributions of Research 
 

The contributions of this research can be listed as follows: 

 

1. The mechanisms of transport phenomena and flux decline that occur in nanofiltration 

have been studied. 

2. The factors of flux decline during operation have been specified. 

3. Mathematical model of a nanofiltration process has been developed. 

4. The computer programs developed by MATLAB language have been simulated to 

study the behavior of a nanofiltration process. 

5. A nanofiltration process has been controlled to achieve a desire objective. 

 

 

1.4 Activity Plan 
 

1. Relevant information regarding membrane separation process is reviewed. 

2. Mathematical model of a nanofiltration membrane is developed to present behavior of 

the process.  

3. Relevant information regarding optimization and control are reviewed. 

4. Kalman filter is applied to estimate uncertain parameters. 
5. An optimal operating flux of a nanofiltration process is determined to achieve the 

desired objective. 
6. A suitable control law is designed to track the obtained optimal operating flux. 

7. All simulation results are collected and summarized. 
8. Edit and improve the report. 
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This thesis is divided into six chapters 

 

Chapter 1 is an introduction to this research. This chapter consists of 

research objective, scope of research, contribution of research, and activity plan. 

 

Chapter 2 reviews the literature for work related to modeling of 

nanofiltration system, Generic Model Control (GMC) strategy, optimization and Kalman 

filter. 

 

Chapter 3 covers some background information of membrane separation 

process (nanofiltration), optimization, Generic model control (GMC), and Kalman filter. 

 

   Chapter 4 describes the membrane separation process, a modeling of 

nanofiltration for tannic acid in aqueous solution and control configuration. Simulation 

results obtained by simulating the optimization formulation and the formulation of a 

GMC controller are detailed in each section. 

 

   Chapter 5 presents the conclusions of this research and makes the 

recommendations for future work.  

 

   This is follow by: 

 

   References 

 

   Appendix A: Mathematical Model Development, 

   Appendix B: Mass Transfer Coefficient Determination, 

   Appendix C: System Checking, 

   Appendix D: Integral Error Criteria, 

   Appendix E: Successive Quadratic Programming (SQP). 

   



CHAPTER 2 
 

LITERATURE REVIEW 
 

 

2.1 Nanofiltration and Membrane Filtration Process 
 

Porter  (1972)    studied   concentration  polarization   with  membrane. 

Nanofiltration and ultrafiltration are pressure-driven processes, in which  water  is  forced 

to permeate the small membrane pores  by the  application of pressure. The permeate flux 

rate is generally  proportional  to the applied  pressure until the accumulation of solutes in 

the concentration polarization layer reaches a  threshold  concentration  that limits further 

increases in flux. The  amount or  thickness of  solute  accumulation is also dependent on 

the flow hydrodynamics at the membrane surface. Increasing the Reynolds number of the 

flow produces greater shear at the membrane surface causing a reduction in the amount of 

foulant material. 

 

Bhattacharyya and Madadi (1988) developed the mathematical model for 

separation of phenolic compounds by low pressure composite membranes. The set of 

differential equations based on solute diffusion through membranes. The solute 

adsorption phenomenon, which creates large flux drops for polymer membranes, was 

investigated, accounted for in the mathematical model, and used in the computer 

program. The validity of the model was tested for single and multiple component systems 

using experimental data. The systems studied in this work were chloro-and nitrophenols 

in water.  

 

Li et al. (1996) presented numerical, finite difference methods to calculate 

water concentration profiles over the time course from initial water uptake to equilibrium 

in poly (vinyl chloride)-based ion selective membrane.  
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 Hong et al. (1997) proposed kinetics of permeate flux decline in crossflow 

membrane filtration of colloidal suspensions. The membrane filtration experiments were 

performed to systematically investigate the dynamic behavior of permeate flux in cross 

flow membrane filtration of colloidal suspensions. The model was based on a simplified 

particle mass balance for the early stages of crossflow filtration. Experimental results and 

model predictions verify that permeate flux in crossflow membrane filtration of colloidal 

suspensions declines more rapidly with increasing transmembrane pressure, and when 

filtering suspensions with higher feed particle concentration and smaller particle size. 

   

Cho (1998) developed a gel resistance model for a membrane filtration. 

The development required an understanding of the factors related to NOM fouling. 

Considerable research in this area had revealed that the NOM accumulation at the 

membrane surface is dependent on operating parameters (e.g., pressure, feedwater 

velocity) and properties of the NOM, feed water, and membrane. 

 

Afonso et al. (1998) studied mass transfer of salt in the tangential 

turbulent flow inside a nanofiltration tubular membrane. This could be described by a 

modified eddy diffusive model, which accounts for the effect of high permeation fluxes 

on the mass transfer rates through permeation Reynolds number. For the mass transfer to 

be modeled, the following phenomena were then considered: concentration polarization 

in the feed solution; Donnan equilibrium in the interfaces feed-membrane active layer 

and permeate-membrane active layer; diffusion, convection, and electromigration in the 

membrane active layer, described by the extended Nernst-Planck equations. The 

prediction of the nanofiltration performance in terms of permeation fluxes and salt 

rejections is achieved through an integrated model, considering the mass transfer 

mechanisms both in the feed solution adjacent to the membrane and in the membrane 

phase.  

Bowen and Mohammad (1998) developed a predictive model for the 

performance of a nanofiltration membrane in separating the components of a dye/salt 

solution. A diafiltration process involving a mixture of dye and NaCl has been modeled  
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using a Donnan-steric pore model which was based on the extended Nernst-Planck 

equation. Finally, the model was used to investigate optimization of the processing 

conditions and also the membrane parameters.  

  

  Bhattacharjee et al. (1998) described the mechanism of concentration 

polarization of interacting solute particles in cross-flow membrane filtration and permeate 

flux declination during cross-flow membrane filtration. In this work, the solution was 

assumed to be a pseudo-one-component system. The mathematical model was illustrated 

as the steady-state differential solute material balance in the polarized layer.  

 

Williams et al. (1999) proposed the predictive reverse osmosis model for 

the application to dilute organic-water systems. This research established the permeate 

flux quality and flux drop characteristics of membrane involving the separation of dilute 

organic (nonionized and ionized) pollutants and to develop a transport theory based on 

fundamental diffusion-adsorption models. Two models are presented in this work: a 

modified steady-state solution diffusion model and an unsteady-state diffusion adsorption 

model which are able to predict flux and permeate concentrations from a single reverse 

osmosis experiment.  

 

De Carlo and Meirina (2000) developed a simplified time domain process 

model of ultrafiltration in hemodialysis. Using a variable displacement pump to control 

the dialysate flow rate, a transmembrane pressure gradient is generated to force excess 

water in the blood to flow across the membrane into the dialysate. This work investigates 

the modeling and adaptive control the ultrafiltration process for a single pass delivery 

system. The controller design takes an adaptive PID approach to control the ultrafiltration 

process based on a physical model of the filtration process. 

 

Jounela and Oja (2000) studied the modeling module for a pressure filter. 

Their work presents the intelligent control system designed for a variable-volume 

pressure filter. The system consists of the modeling, classification, economic, fault 

diagnosis and control modules. The modeling module of the intelligent system predicts 
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filtration using the two-stage hybrid model. The first stage model is based on a numerical 

model for compressive cake filteration and the second stage model is the identified grey-

box model based on the classical filtration model. 

 

Chieh Tu et al. (2001) studied a membrane transport model, developed for 

prediction and simulation of nanofiltration dynamics with refference to permeate flux. 

The important membrane transport phenomena that affect to flux decline contain 

concentration polarization and gel layer formation. Membrane filtration tests using tannic 

acid as a model organic compound were designed for investigating permeate flux, as well 

as solute concentration profiles for permeates and concentrates. The experiments were 

conducted under various operating conditions by varying several parameters including 

solute concentration, transmembrane pressures, and reject flow rates.        

 

Van Der Bruggen and Vandecasteele (2001) studied different mechanisms 

of flux decline for the nanofiltration of aqueous solutions containing organic compounds. 

Experiments with different organic components in aqueous solution showed that 

adsorption resulted in a strong decrease of the water flux. The results of flux decline as a 

function of the concentration could well be fitted with the Freundlich equation for 

adsorption. This research focuses on pore blocking and adsorption inside the membrane 

pores. Blocking of the pores by adsorbed compounds was studied to explain mechanism 

of flux decline. 

 
 Alvarez et al. (2001) developed the model to predict flux and aroma 

compounds rejection in a reverse osmosis concentration of apple juice. The equations 

describing mass transport in the membrane were developed from flux equations of the 

system and the film theory. In this work, the permeability of the membrane and the solute 

transport parameters were determined from the experiments with water and with aqueous 

solutions of apple juice aroma compounds, respectively. 

 

Timmer (2001) proposed the use of nanofiltration for concentration and 

demineralization in the dairy industry. Models were developed, based on the extended 
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Nernst-Planck equation, which describe the salt rejection as a function of the flux for 

binary and ternary salt solutions. Effects of concentration polarization, composition of 

feed and concentration are incorporated in the model. Furthermore, mass transfer in 

boundary layer and mass transfer inside the membrane were calculated separately and the 

distribution of the solute at the membrane/boundary layer interface was described. 

 

Lee et al. (2002) proposed determination of mass transport characteristics 

for natural organic matter (NOM) in ultrafiltration and nanofiltration membranes. This 

study is mainly concerned with  establishing a reliable method of the quantitative analysis 

of natural organic matter transport characteristics through ultrafiltration and 

nanofiltration membranes with molecular weight cutoffs of 8000 (GM) and 250 (ESNA), 

respectively. 

 

Bowen et al. (2002) developed the linearized transport model for 

nanofiltration. Finite difference linearization of pore concentration gradient in 

nanofiltration membranes simplified the solution of a three-parameter model for 

electrolyte rejection by removing the requirement for numerical integration of the 

extended Nernst-Planck equation. The validity of the linearized model was first 

experimentally tested by comparing with a rigorous characterization of the Desal-DK 

nanofiltration membrane. Overall, the model was powerful tool for characterization of 

nanofiltration membranes and subsequent prediction of separation performance due to the 

removal of the need for complex nonlinear numerical methods through the reduction of 

the governing equations to algebraic expressions.  
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2.2 Generic Model Control (GMC) 
 

Lee and Sullivan (1988) proposed a model-base control algorithm, GMC 

capable of using nonlinear process model directly. In GMC scheme, first-principles 

models derived from dynamic material and energy balances are mostly used. The direct 

implement of the nonlinear process model could be imbedded into the GMC controller 

without resorting to linearization. They generalized relatively easy GMC framework that 

relied upon the process model to approximate plant behavior. In 1989, Lee et al. extended 

the application of the model bases GMC controller to forced circulation single-stage 

evaporator. The control strategy employing a process model derived from fundamental 

mass and energy balances was shown to outperform single loop and predictive control 

strategies by a significant amount. The control structure was first presented in general 

form and then specifically applied to this process. Later, Lee et al. (1991) applied the use 

of GMC for controlling the level in a surge tank. This work focuses on the effect of 

certain user–selectable parameters on the controlled response to changes in the inlet flow 

rate and model inaccuracies. The overall algorithm was shown to be significantly lower 

in computational requirements than previously proposed algorithms for surge tank 

control. Implementation was straightforward and was suitable for even small-scale 

process control computing systems. 

 

  Cott and Macchietto (1989) presented a new model-based controller for 

the initial heat-up and subsequent temperature maintenance of exothermic batch reactors. 

The controller was developed by using the Generic Model Control framework of Lee and 

Sullivan, which provided a rigorous and effective way of incorporating a nonlinear 

energy balance model of the reactor and the heat-exchange apparatus into the controller. 

It also allowed the use of the same control algorithm for both heat-up and temperature 

maintenance, thereby eliminating the need to switch between two separate control 

algorithms as was the case with today’s more commonly used strategies. A deterministic 

on-line estimator was used to determine the amount and rate of heat released by the 

reaction. This information was, in turn, utilized to determine the change in jacket 

temperature setpoint in order to keep the reaction temperature on its desired trajectory. 
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The performance of the new GMC-based controller was compared to that of the 

commonly used dual-mode controller. Simulation studies showed the new controller to be 

as good as the dual-mode controller for a nominal case for which both controllers were 

will tuned. However, the new controller was shown to be much more robust with respect 

to changes in process parameters and to model mismatch. 

 

Kershenbaum and Kittisupakorn (1994) studied a temperature control of a 

batch reactor using GMC controller. In this study, the amount of heat released by the 

reactions had been estimated online using an extended Kalman filter, and incorporated 

into the GMC algorithm. Simulation results had shown that the Kalman filter gave an 

accurate estimate of the amount of heat released and together with the GMC controller, 

gave reliable robust control. An experimental extension of the work using the PARSEX 

(Partially simulated Exothermic) reactor showed that the extended Kalman filter was 

rather more sensitive to plant/model mismatch than would have been predicted from 

simulations alone. 

 

Farrell and Tsai (1995) implemented a GMC algorithm for batch 

crystallization process. The resulting algorithm which was called batch GMC  (BGMC) 

algorithm utilized a time variant reduced-order input-output model derived by correlating 

historical data of solubility vs. weight mean size. Control of the weight mean size 

trajectory in response to seed disturbances was demonstrated in this paper. 

 

  Khandalekar and Riggs (1995) applied the nonlinear process model based 

control (PMBC) to the Amoco/Lehigh University Model IV FCC industrial challenge 

problem. In particular, PMBC was applied for the control of reactor temperature, 

regenerator temperature and the flue gas oxygen concentration. The GMC law was used 

for the nonlinear PMBC controller. Both the nonlinear PMBC and conventional PE 

controllers were tested first for the unconstrained control. Finally, the nonlinear PMBC 

constraint controllers were used for optimization studies to analyze the operation at the 

economic optimum in the face of variations in feed characteristics and variations in 

operative constraints. 
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  Vega et al. (1995) used a dynamic model of the evolution of the 

temperature of a batch cooling crystallizer for the development of a GMC system for the 

crystallizer. This servo-control system had been found experimentally to work 

adequately. The crystallizer had also been controlled with a conventional PI controller, 

and the process had been simulated with the model. Simulations were accurate enough to 

allow the model to be used for the design of control strategies for programmed cooling 

crystallizers. The methodology described could be adapted to the study of other systems 

or control algorithms. 

 

Dunia and Edgar (1996) improved a generic model control algorithm for 

linear systems. This work evaluated the basic GMC algorithm when applied to SISO 

linear processes and provided insight regarding its limitation to ensure robust stability. 

The basic algorithm of GMC was presented as a special case of feed-back linearization. 

The effect of sampling time on the reference trajectory for discrete systems was analyzed 

in order to avoid unstable responses for perfect models. Finally, a predictive GMC was 

developed to handle models with dead time in a reliable way. 

 

  Nussara (1999) presented the application of GMC to control the 

temperature of a batch polyvinyl chloride polymerization reactor. In this work, heat 

released of reactions was needed in the GMC formulation but not available for 

measurement, on-line heat released estimator was used to estimate the heat released of 

the reactions. The GMC controller coupled with the estimator could give better control 

performance than the PID controller could. Furthermore, the GMC controller was more 

robust than the PID controller in the presence of plant/model mismathches. 

 

  Aziz et al. (2000) designed and implemented three different types of 

controllers namely PI,PID (both in DM strategy) and GMC controllers to track the 

optimal reactor temperature profiles using a complex reaction scheme in a batch reactor. 

Off-line optimal control problem had been formulated and solved to obtain the optimum 

temperature profiles (dynamic set point for controllers) to maximize the amount of the 

desired product while minimizing the waste by-product. Neural network technique was 
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used as the on-line estimator the amount of heat released by the reaction within the GMC 

algorithm. The GMC controller coupled with a neural network was found to be more 

effective and robust than the PI and PID controllers in tracking the optimal temperature 

profiles to obtain the desired products on target. 

 

  Xie et al. (2000) developed a quqadratic programming-based optimization 

algorithm, which had the ability to handle linear constraints of manipulated and 

controlled variables and their moving velocities. By combination of the proposed 

optimization algorithm with the generic model control scheme, a novel approach to 

constrained generic model control based on quadratic programming was proposed for 

nonlinear affine systems with relative order one. Computer simulation results show that 

the proposed approach had definite robustness against process/model parameter 

mismatches, it could be applied in real time, and it appeared to hold a considerable 

promise in process control. 

 

Meethong (2002) studied the GMC for a concentration control of 

continuous stirred tank reactor with first-order exothermic reactor, which was the process 

of relative degree two. This research used an internal controlled variable, the key 

component that made the control variable to be effected directly like the relative degree 

one processes. The results showed that the GMC with internal controlled variable could 

use the techniques that improved the robustness like a conventional GMC. 

 

Moolasartsatorn (2002) recently implemented GMC coupled with 

extended Kalman Filter (EKF) for a pervaporative membrane reactor thatestorification of 

acetic acid and butanol was considered. Both optimal temperature set point and optimal 

temperature profile obtained in the off-line optimization were tracked in this research.  
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2.3 Optimization 
 

Tremblay and Luus (1989) proposed to present a computational procedure 

to enable one to examine benefits to be expected from non-steady-state operation of 

chemical reactors. Three examples showed that the proposed algorithm using dynamic 

programming can be used for a wide variety of problems, such as to maximize the yield, 

average rate of production or average concentration overtime. It was found that dynamic 

programming performed well even for a 6th order system. The optimum period, split of 

period and amplitude of the input could be obtained in a reasonable computation time 

when the optimal input signal was in fact periodic in nature. 
 

  Chang and Hseih (1995) proposed an integrated method for optimization 

and control of semibatch reactors. Based on the desired control objective, dynamic 

programming was applied to obtain optimal operating trajectories. Yield optimization 

was assured for a real plant by tracking model-dependent optimal trajectories according 

to the proposed modified globally linearizing control (MGLC) structure. The behavior of 

the proposed MGLC structure was predictable and reliable, with tuning parameters based 

on the proposed tuning method if the manipulated variables were not constrained. 
 

Garcia et al. (1995) converted the optimal control problem into a nonlinear 

programming problem solved by the generalized reduced gradient procedure coupled 

with the golden search method, for the search of the total batch time for fine chemical 

productions in batch reactors. The efficiency of the methodology was shown by its 

application to different formulations of the problem for different chemical reaction 

schemes and with stress laid on the influence of the constraints on the limitation of 

temperature variations and byproduct formation. 
 

  Chang et al. (1996) proposed an integrated method for optimization and 

control of batch reactors. Based on the desired performance index, the modified two-step 

method was applied to optimize an operating trajectory. Yield optimization was assured 

for a real plant by tracking the model-dependent optimized trajectory through the  

 



 16

proposed modified globally linearizing control (MGLC) structure. Experimental results 

revealed that the proposed MGLC structure could be applied in tracking an operating 

trajectory determined on-line or off-line. 

 

  Rojnuckarin and Floudas (1996) applied an optimal control strategy to the 

problem of finding the flux profiles for the conversion of methane to ethylene and 

acetylene in a plug flow reactor. The optimal control approach implemented in the paper 

belonged to the class known as gradient methods in function space. The optimal control 

designs were performed with respect to the final mass fractions of ethylene and acetylene 

in a plug flow reactor using heat, oxygen, and chlorine fluxes as controls. 

 

  Carrasco and Banga (1997) considered the dynamic optimization (optimal 

control) of chemical batch reactors. The solution of these types of problems was usually 

very difficult due to their highly nonlinear and multimodal nature. Two algorithms based 

on stochastic optimization were proposed as reliable alternatives. These stochastic 

algorithms were used to successfully solve four difficult case studies taken from the 

recent literature: the Denbign’s system of reactions, the oil shale pyrolysis problem, the 

optimal fed-batch control of induced foreign protein production by recombinant bacteria, 

and the optimal drug scheduling of cancer chemotherapy. The advantages of these 

alternative techniques, including ease of implementation, global convergence properties, 

and good computational efficiency, were discussed. 

 

  Guntern et al. (1998) proposed a methodology for the optimization of 

semibatch reactors using dynamic programming. This included synthesis of a 

mathematical model, analysis of the performance of the process at its present state, 

definition of a set of decision variables, and optimization and simplification of this 

optimum toward feasibility, The methodology was applied to an industrial case study in 

the fine chemical industry using the lowest product cost as the objective function. 

 

  Luus and Okongwu (1999) determined the optimal flow rates of heating 

and cooling fluids instead of finding only the optimal temperature profile, so that the 
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yield of a desired product in a batch reactor was maximized. The purpose of this paper 

was to investigate such an approach in the control of typical chemical reactors by 

considering two examples. By using iterative dynamic programming (IDP) in multi-pass 

fashion, the optimal policy could be readily obtained. Optimization as carried out on two 

typical batch reactor problems showed that if the heat transfer coefficient was reasonably 

chosen, then the optimal yield could be significantly larger than what could be expected 

from the best isothermal operation. 

 

 

2.4 Kalman Filter 
 

Kalman (1960) published a famous paper describing a recursive solution 

to the discrete data linear filtering problem. This paper formulated and solved the Wiener 

problem from the state point of view. The Kalman filter has been the subject of extensive 

research and application, particularly in the area of autonomous or assisted navigation 

 

Alag and Gilyard (1990) presented a Kalman algorithm for estimation of 

unmeasured output variables for an F100 turbofan engine. The approach was based on 

explicitly modeling the effects of off-nominal engine behavior as biases on the measured 

output variables. Results were presented for estimates of the output variables and were 

compared with values obtained from detailed nonlinear simulation of the engine. The 

evaluation was carried out for both a nominal engine and an engine in which intentional 

deterioration was introduced. The proposed estimation algorithm was able to accurately 

predict the values of the output variables for the simulation studies for both nominal and 

degraded engine conditions. The proposed algorithm had been validated by comparing its 

estimates with the values from the detailed nonlinear simulation, and it had performed 

well on flight data.  

  

Myers and Luecke (1991) described and illustrated an efficient new 

algorithm on process examples for solution of the extended Kalman filter equations for a 

continuous dynamic system with discrete measurements. Implicit simultaneous methods, 
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which were powerful in terms of accuracy and efficiency, were utilized for numerical 

integration. At the internal integration step level, the new algorithm exploited the 

decoupled nature of the state estimate and error covariance equations along with the 

symmetry of the error covariance matrix. The error control strategy included both the 

state estimates and error covariance. 

 

Avery (1992) presented an approach to track fitting that uses an iterative 

algorithm to correctly account for the effects of multiple scattering and energy loss along 

the track trajectory. This technique, known generally as a Kalman filter, was first applied 

to track fitting by Billoir (1984) and was used by several CERN experiments. In this 

work, The tracks was measured through a two step process. First, detector measurements 

were put through a pattern finding algorithm to select a subset that seems consistent with 

belonging to a single track This set of measurements was then fit statistically through a 

maximum likelihood method to determine the most probable set of track parameters 

consistent with the measurements. Errors in these parameters were estimated from the 

measurement uncertainties and other factors, as discussed below. Measurements may be 

further eliminated during the track fit if they were found to be of sufficiently poor quality 

or not consistent with belonging to the track. Because of its well understood properties, 

the least squares algorithm was most commonly used to fit the track parameters and 

estimate the parameter errors. 

 

Russell et al. (2000) investigated a model-based inferential quality 

monitoring approach for a class of batch systems. First, an extended Kalman filter based 

fixed-point smoothing algorithm was presented and compared to a popular approach to 

estimating the initial conditions. Subsequently, a nonlinear optimization-based approach 

was introduced and analyzed. A sub-optimal on-line approximation to the optimization 

problem was developed and shown to be directly related to the extended Kalman filter 

based results. Finally, some practical implementation aspects were discussed, along with 

simulation results from and industrially relevant example application. 
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Lersbamrungsuk (2000) designed and developed two software programs 

based on Kalman filter. The first one, named kSTAPEN+, was a software component 

based on Kalman filter. In kSTAPEN+, users could define their own systems including 

states and parameters to be estimated. After running the program, estimation results are 

given. The estimates obtained from the kSTAPEN+ had been compared to those obtained 

from the program written on Matlab. Furthermore, the program had been tested with a 

heater, a stirred-tank reactor and a microfeeder. In kSTAPEN-C, the component had been 

developed by using Component Object Model (COM) technology. The estimates 

obtained from kSTAPEN-C had been compared to those obtained from kSTAPEN+. 

Results had shown that both kSTAPEN-C and kSTAPEN+ were equivalent. 



CHAPTER 3 
 

THEORY 
 

 

  The aim of this work is to apply mathematical models of nanofiltration 

to flux control. The economics and energy consumption of membrane separation 

processes can be directly related to the permeate flux deterioration. Therefore, a clear 

understanding of nanofiltration process is necessary. To solve this problem, the model 

of nanofiltration is developed to predict, design, and optimise the nanofiltration 

process. To start model development, the first step is to establish the basic 

characteristics of membrane processes and the mechanisms that are responsible for 

the separation. 

 

  The purpose of this chapter is to provide the practical introduction to 

some theoretical groundwork and background information. This introduction includes 

a description some discussion of membrane separation process, optimization, Kalman 

filter, and Generic Model Control (GMC) configuration.  

 

 

3.1 Membrane Separation Process 
 

The details on a general introduction to membrane separation 

technology and transfer mechanism in membrane separation are provided in the 

following sections. 

  

3.1.1 Introduction 
 

Starting in the late sixties, membrane processes gradually have found 

their way into industrial applications and serve as viable alternatives for more 

traditional processes like distillation, evaporation, or extraction. Based on the main 

driving force, which is applied to accomplish the separation, many membrane 
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processes can be distinguished. An overview of the driving forces and the related 

membrane separation processes is given in Table 3.1 (Timmer, 2001). 

 

Table 3.1. Driving forces and their related membrane separation processes 

 
 

Driving force 
 

Membrane processes 
 

• Pressure difference 

 

• Chemical potential difference 

 

• Electrical potential difference 

 

• Temperature differential 

 

 

microfiltration, ultrafiltration, nanofiltration, 

reverse osmosis or hyperfiltration 

pervaporation, pertraction, dialysis, gas 

separation, vapor permeation, liquid membranes 

electrodialysis, membrane electrophoresis, 

membrane electrolysis 

membrane distillation 

 

This thesis will focus on pressure driven membrane separations. 

 

Pressure driven membrane processes 

 

Four pressure driven membrane processes are distinguished in practice: 

1. Microfiltration (MF) is characterised by a membrane pore size between 0.05 and 2 

µm and operating pressures below 2 bar. MF is primarily used to separate 

particles and bacteria from other smaller solutes. 

2. Ultrafiltration (UF) is characterised by a membrane pore size between 2 nm and 

0.05 µm and operating pressures between 1 and 10 bar. UF is used to separate 

colloids like proteins from small molecules like sugars and salts. 

3. Nanofiltration (NF) is characterised by a membrane pore size between 0.5 and 2 

nm and operating pressures between 5 and 40 bar. Nanofiltration is used to 

achieve a separation between sugars, other organic molecules and multivalent 

salts on one hand and monovalent salts and water on the other. 

4. Reverse osmosis (RO) or hyperfiltration. Reverse osmosis membranes are 

considered not to have pores. Transport of the solvent is accomplished through the 
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free volume between the segments of the polymer of which the membrane is 

constituted. The operating pressures in Reverse osmosis are generally between 10 

and 100 bar and this membrane process is mainly used to remove water.  

 

Nanofiltration is a form of pressure driven filtration that uses 

membranes to preferentially separate different fluids or ions. Nanofiltration is a 

membrane liquid separation technology that is positioned between reverse osmosis 

and ultrafiltration. The filtration process takes place on a selective separation layer 

formed by a semipermeable membrane. The driving force of the separation process is 

the pressure difference between the feed (retentate) and the filtrate (permeate) side at 

the separation layer of the membrane. However, because of its selectivity, one or 

several components of a dissolved mixture are retained by the membrane despite the 

driving force, while water and substances with a molecular weight < 200 D are able to 

permeate the semipermeable separation layer. Because nanofiltration membranes also 

have a selectivity for the charge of the dissolved components, monovalent ions can 

pass the membrane and divalent and multivalent ions are rejected.  

 

The basic processes in membrane separation are dead–end and cross 

flow filtration. Comparison of dead-end and cross flow filtration are illustrated in 

figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Comparison of dead-end and cross flow filtration 
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 Membranes are manufactured as flat sheets, hollow fibers, capillaries, 

or tubes, for practical applications membranes are installed in a suitable device, which 

is referred to as membrane module. The most commonly used devices are pleated 

cartridges, tubular and capillary membrane modules, plate-and-frame and spiral-

wound modules, and hollow-fiber modules. There are several other module types used 

in special applications, such as the rotation cylinder and the transversal flow capillary 

module. The key properties of efficient membrane modules are high packing density, 

good control of concentration polarization and membrane fouling, low operating and 

maintenance costs, and cost-efficient production. For the efficiency of a membrane 

process in a certain application, the choice of the proper membrane module is of great 

importance. 

 

3.1.2 Mass Transfer in Nanofiltration   
 

The membrane process is applied for separate or increase 

concentration of the species in mixture. The most important property of membranes is 

their ability to control the rate of permeate of different species. The two models used 

to describe the mechanism of permeation are illustrated in figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2. Molecular transport through membranes can be described 

by a flow through permanent pores or by the solution-diffusion mechanism. 
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One model is the solution-diffusion model, in which permeant 

dissolved in the membrane material and then diffuse through the membrane down a 

concentration gradient. The permeants are separated because of the differences in the 

solubilities of the materials in the membrane and the differences in the rates at which 

the materials diffuse through the membrane. The other model is the pore flow model 

that permeants are transported by pressure-driven convective flow through tiny pores. 

Separation occurs because one of the permeants is excluded from some of the pores in 

the membrane through which other permeants move.   

 

Diffusion, the basis of the solution-diffusion model, is the process by 

which matter is transported from one part of a system to another by a concentration 

gradient. The individual molecules in the membrane medium are in constant random 

molecular motion, but in an isotropic medium, individual molecules have no preferred 

direction of motion. Although the average displacement of an individual molecule 

from its starting point can be calculated, after a period of time nothing can be said 

about the direction in which any individual molecule will move. However, if a 

concentration gradient of permeate molecules is formed in the medium, simple 

statistics show that a net transport of matter will occur from the high-concentration to 

the low-concentration region.     

 

Mass transfer through nanofiltration membrane is usually described by 

the solution diffusion model (Strathmann et al., 1979). The driving force for solvent 

flow is the pressure gradient across the membrane. Solute transport in the membrane, 

according to the solution diffusion model, is driven by the concentration gradient of 

solute across the membrane (Timmer, 2001). In the solution diffusion model it is 

further assumed that no coupling between solute and solvent transport is present 

(Pusch, 1986). However, this assumption is not always valid. Drag by solvent flow 

may cause additional transfer of solute through the membrane. For the mass transfer 

in nanofiltration to be modeled, the following phenomena are then considered; 

concentration polarization in feed solution and  advection-diffusion mechanisms. A 

representation of the mass transfer process occurring in nanofiltration is given in 

figure 3.3. 
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Figure 3.3.  Mass transfer in nanofiltration 
 

When an external pressure ∆P is imposed on a liquid which is adjacent 

to a semi-permeable membrane, solvent will flow  through  the  membrane. A  neutral 

solute  dissolved  in the  solvent at  a concentration level Cb will also flow towards the 

membrane. If  the membrane exhibits rejections for the solute, partial permeation will 

occur  and  non-permeated  solute  accumulates  in the  boundary  layer, and  hence  a 

concentration profile develops. This phenomenon is called concentration polarization 

(Mulder, 1991; Cheryan, 1998).  Thesolute   distributes  at  the  membrane/solution 

interface and will be transported through the membrane by convection and diffusion. 

At the  permeate  side,  a   second    distribution   process   will  occur   and  a  final 

concentration of solute in the permeate, Cm,2
ext, will be reached. 

 

  The fundamental equation of membrane transport model is the classic 

is advection-diffusion equation. The general form of the advection-diffusion equation 

for a binary system (solute/solvent system) can be written as show below: 
 

2C v C D C
t

∂
+ ⋅∇ = ∇

∂
    (3.1.1) 

                                     

Where C is the concentration of the solute and D is the diffusivity of the solute in the 

solvent phase. 
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Figure 3.4. Mathematical representation of mass transport in the membrane module. 

 

The proposed membrane transport model considers only the solute 

mass transfer in the region between the membrane surface and membrane cell wall. 

And internal pore fouling is neglected. The mathematical model that represent solute 

transport through the membrane system in the region between the membrane and the 

membrane cell wall is illustrated in figure 3.4. Marked A in the figure 3.4 is the 

control volume for advection and back diffusion. According to the rectangular 

Cartesian coordinate system, the bulk solution flow between the membrane and the 

membrane cell wall in the x-direction. The solute transport occurs in the y-direction 

that is controlled by advection from bulk solution to the membrane and diffusion from 

membrane surface back to the bulk solution. It must be noted that the advective and 

diffusive transport mechanisms are not exactly balanced before steady state, and 

consequently the concentration polarlization and gel layers exhibit variable thickness 

with time. The advection-diffusion equation, shown in equation (3.1.1), developed for 

the control volume that is illustrated in figure 3.4 can be simplified using the 

following assumptions: 

 1. No concentration gradient exists in the z-direction; that is∂C/∂z and ∂C2/∂z2 

are equal to zero. 

h* 
δBL 

x 

y 

(a) Solute transport through 
the membrane system in 
the region between the 
membrane and the cell 
wall, showing the control 
volume for advection and 
back diffusion.  

(b) Hydrodynamic  
boundary layer in 
the flow channel.  
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 2. The concentration gradient in the direction of product flow (∂C/∂x) can be 

considered negligible in comparison with ∂C/∂y. 

  

According to the preceding assumptions and considering the relation vy 

= -Jv, equation (3.1.1) can be transformed as 

  
2

2v
C C CJ D
t y y

∂ ∂ ∂
− =

∂ ∂ ∂
    (3.1.2) 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.    Concentration profiles of the proposed model without internal fouling. 

 

As illustrates in figure 3.5, The boundary conditions for equation 

(3.1.2) can be written as follows.  

For the temporal and spatial stages before the gel-layer formation (Cm 

< Cg), figure 3.5(a).  

 

  at t = 0,  C = Cm,0 = Cb,0   

at y = δ,  C = Cb 

at   y = 0,  JvCm = -D (       ) y = 0  
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  For the temporal and spatial stages after the gel-layer formation (Cm = 

Cg), figure 3.5(b). 

 

  at y = L + δ, C = Cb   

at y < L,  C = Cb  . 

 

Under steady-state conditions (dC/dt = 0), the solution to equation 

(3.1.2) with the boundary conditions becomes 

 

ln lnm m
v

b b

C CDJ k
C Cδ

= = ,   (3.1.3) 

 

where k represents the mass-transfer coefficient for solute transport through the 

membrane cell. After the gel-layer formation, the solute concentration on the 

membrane surface will equal the gel-layer concentration (Cm = Cg), and equation 

(3.1.3) can therefore be written as 

 

ln ln gm
v

b b

CCJ k k
C C

= = .   (3.1.4) 

 

Driving forces such as concentration gradient and/or pressure gradient 

that drive the mixture transport through the membrane separates the permeants. 

According to Darcy’s law, permeate flux decline is caused by decreased driving 

forces and increased resistances (van den Berg and Smolders, 1988; Ho and Sirkar, 

1992). Membrane permeate flux (Jv) can be described by the relation following: 

 

       

                                                                                                                    (3.1.5) 

 

Concentration polarization, reversible and directly occurring 

phenomena, and Fouling, irreversible and long term phenomena, are two major 

phenomena that affect to flux decline. The resistance occurring in membrane 

processes could be caused by the membrane, concentration polarization, internal pore 

Viscosity x Total resistance 

Driving force (such as ∆P, ∆C, or ∆T) 
Flux, Jv  = 
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fouling, and gel-layer formation.  The resistance of virgin membrane (Rm) is a 

constant factor during filtration. Concentration polarization resistance increases due to 

solute retention by the membrane when solvent transport is facilitated. Solute 

accumulates on the membrane and forms a layer at the membrane interface with a 

relatively high concentration. The resistance due to the concentration profile layer 

(Rcp) increases during membrane filter operation until the system reach steady state. 

For some cases, the solution concentration at the membrane interface can reach 

certain high values and will progressively evolve into a gel layer accumulation on the 

membrane surface (Rg). Internal pore fouling occurring inside the membrane can also 

lead to permeate flux decline (Rin). 

 
The advantage of membrane processes are summarized below: 

1. In the membrane processes, each species are separated by difference of molecular 

size so the processes can be operated at normal temperature. Then the membrane 

processes are suitable to separate species that decline by heat. 

2. Most of the membrane processes consume lower energy than other separation 

processes because they are not necessary to change phase. 

3. Because both of permeate and retentate are products of the membrane processes, it 

dose not generate waste.   

4. Most of membrane units are designed for high separation area per volume of 

module so they are compact.   

5. The membrane processes can operate as batch or continuous processes. And they 

are not complicated to install automatic process control.    

 

The disadvantage of membrane processes are summarized below: 

1. Accumulation of solute particles on retentate side, known as “concentration 

polarization”, is cause of high concentration at membrane surface and flux 

decline.  

2. Flux decline due to fouling in the membrane pores and surface affects to 

performance of membrane processes.  

3. Membranes stability is limited by their material such as; cellulous membranes are 

appropriate to operate at pH 4-8. 
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3.2 Optimization 
 

Optimization is the use of specific methods to determine the most 

effective and efficient solution to a problem or design for a process. This technique is 

one of the major quantitative tools in industrial decision making. A wide variety of 

problem in the design, construction, operation, and analysis of chemical plants (as 

will as many other industrial processes) can be resolved by optimization (Edgar et al., 

2001). 

 

3.2.1 The Essential Features of Optimization Problems 
 

The essential elements of the optimization problems are: 

1. Objective function, 

2. Decision variable, 

3. Constraint. 

 

The objective function is a mathematical function that, for the best 

values of the decision variables, reaches a minimum (or maximum). Thus, the 

objective function is the measure of value or goodness for the optimization problem. 

There may be more than one objective function for a given optimization problem. 

There are different types of objective function depending on the needs and uses. 

 

The decision variables are those independent variables over which the 

engineer has some control. These can be continuous variables such as temperature or 

discrete (integer) variables such as number of stages in a column. 

 

Constraints are values that indicate the ability and limit of the feasible 

path of the process. Constraints can be classified into two types as follow: 

1. Equality constraints are constraints that indicate the limits of the process or 

its product such as the purity of the products, mass and energy balance. 

2. Inequality constraints are constraints that indicate the limit due to design 

and other limits 
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Constraints in optimization arise because a process must describe the 

physical bounds on the variables, empirical relations, and physical laws that apply to a 

specific problem. Examples of equality and inequality constraints follow: 

• Production limitations, 

• Raw material limitations (e.g., limitation of feedstock supplies), 

• Safety or operability restrictions (e.g., temperature, pressure), 

• Environmental limitations (e.g., production of toxic material), 

• Physical property specifications on products. 

 
The optimization models represent problem choices as decision 

variables and seek values that maximize or minimize objective functions of the 

decision variables subject to constraints on variable values expressing the limits on 

possible decision choices. The optimization model description is stated as: 

 

    f (x) objective function 

Subject to:  h(x) = 0 equality constraints (3.2.1) 

   g(x) ≥ 0 inequality constraints 

 
where x is a vector of n decision variables (x1, x2, …, xn), 

 h(x) is a vector of equations of dimension m1, 

 g(x) is a vector of inequalities of dimension m2. 

 
An efficient and accurate solution to this problem is not only 

dependent on the size of the problem in terms of the number of constraints and 

decision variables but also on characteristics of the objective function and constraints. 

 

From equation (3.2.1), it is unconstrained problem if there are no 

constraint functions and no bounds on the xi. Linear Programming (LP) refer to 

problems in which both the objective function and the constraints are linear. More 

difficult to solve is the Nonlinear Programming (NLP) problem in which the objective 

functions and constraints may be nonlinear functions of the decision variables. 
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3.3 Kalman Filter 
 

To develop advanced control system for filtration process 

performance, uncertainty parameters and unmeasurable variables must be estimated. 

Therefore, estimation is a necessary procedure in control strategy to estimate 

measured and unmeasured process data and reduce errors from mathematical model in 

order to force the process to satisfied state. The Kalman filter is an efficiently 

estimated technique. It is a tool that can estimate the variables of a wide range of 

processes. The Kalman filter not only works well in practice, but it is theoretically 

attractive because it can be shown that of all possible filters, it is the one that 

minimizes the variance of the estimation error. Kalman filter is often implemented in 

embedded control systems because in order to control a process, process control 

engineers first need an accurate estimate of the process variables.  

 

The Kalman filter is a set of mathematical equations that provides an 

efficient computational (recursive) solution of the least-squares method. The filter is 

very powerful in several aspects: it supports estimations of past, present, and even 

future states, and it can do so even when the precise nature of the modeled system is 

unknown. A linear system is simply a process that can be described by the following 

two equations: 

  

 State equation:  1+kx  =  A kx + B ku + kw    (3.3.1) 

 Output equation: ky    =  C kx  + kv     (3.3.2) 

 

             In the above equations A,B, and C are matrices; k is the time index; x  

 is called the state of the system; u is a known input to the system; y is the measured 

output; and the random variables w and v are the process and measurement noise, 

respectively. Each of these quantities are vectors and therefore contain more than one 

element. The vector x contains all of the information about the present state of the 

system, but x is not measured directly. Instead y , which is a function of x that is 

corrupted by the noise v , is measured. 
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  From equation (3.3.1) and (3.3.2), the random variables w and v are 

assumed to be independent of each  other  and  with  normal  probability  distributions 

 

   P ( w ) ≈  N (0,Q),     (3.3.3) 

   P ( v )  ≈  N (0,R).     (3.3.4) 

 

In practice, the process noise covariance Q and measurement noise covariance R 

matrices might change with each time step or measurement, however here they are 

assumed to be constant. 

 

  The n×n matrix A in the difference equation equation (3.3.1) relates 

the state at the previous time step k to the state at the current step k+1, in the absence 

of either a driving function or process noise. Note that in practice A might change 

with each time step, but here we assume it is constant. The n× l matrix B relates the 

optional control input u ∈  lR to the state .x The m×n matrix C in the measurement 

equation equation (3.3.2) relates the state to the measurement ky . In practice C might 

change with each time step or measurement, but here it is assumed as constant. 

 

3.3.1 The Computational Origins of the Filter 
 

Define 1|ˆk kx +  to be a priori state estimate at step k+1 given knowledge 

of the process prior to step k+1, and 1| 1ˆk kx + + ∈  nR  to be a posteriori state estimate at 

step k+1 given measurement 1+ky .Thus, a priori and a posteriori estimate errors can be 

definded as 

  1| 1 1|ˆk k k k ke x x+ + += −  ,     (3.3.5) 

and    1| 1 1 1| 1ˆk k k k ke x x+ + + + += − .    (3.3.6) 

 

The a priori estimate error covariance is then 

 

    1| 1| 1|[ ]T
k k k k k kP E e e+ + += ⋅  ,   (3.3.7) 
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And the a posteriori estimate error covariance is 
 

    1| 1 1| 1 1| 1[ ]T
k k k k k kP E e e+ + + + + += ⋅  .   (3.3.8) 

 

In deriving the equations for the Kalman filter, calculation begin with 

the goal of finding an equation that computes an a posteriori state estimate 1| 1ˆk kx + +  as a 

linear combination of an a priori estimate 1|ˆk kx +  and a weighted difference between an 

actual measurement ky and a measurement prediction C 1|ˆk kx +  as shown below in 

equation (3.3.9). 
 

1| 1 1| 1 1 1 1|ˆ ˆ ˆ( )k k k k k k k k kx x K y C x+ + + + + + += + −    (3.3.9) 

 

The difference 1 1 1|ˆ( )k k k ky C x+ + +− in equation (3.3.9) is called the 

measurement innovation, or the residual. The residual reflects the discrepancy 

between the predicted measurement 1|ˆk kCx + and the actual measurement ky . A residual 

of zero means that the two are in complete agreement. 
 

The n×m matrix K in equation (3.3.9) is chosen to be the gain or 

blending factor that minimizes the a posteriori error covariance equation (3.3.8). This 

minimization can be accomplished by first substituting equation (3.3.9) into the above 

definition for 11 ++ kke , substituting that into equation (3.3.8), performing the indicated 

expectations, taking the derivative of the trace of the result with respect to K, setting 

that result equal to zero, and then solving for K. For more details see (Maybeck 1979; 

Jacobs 1993; Brown and Hwang 1996). One form of the resulting K that minimizes 

equation (3.3.8) is given by 
 

1
1 1| 1 1 1| 1 1( )T T

k k k k k k k k kK P C C P C R −
+ + + + + + += +   (3.3.10) 

 

From equation (3.3.10) show that as the measurement error covariance R approaches 

zero, the gain K weights the residual more heavily. Specially, 
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1

1
1 10

lim
k

k kR
K C

+

−
+ +→

= .   

   

On the other hand, as the a priori estimate error covariance Pk+1|k approaches zero, the 

gain K weights the residual less heavily. Specially, 

 

1|
10

lim 0
k k

kP
K

+
+→

= .  

    

Another way of thinking about the weighting by K is that as the measurement error 

covariance Rk+1 approaches zero, the actual measurement yk+1 is trusted more and 

more, while the predicted measurement 1|ˆk kCx +  is trusted less and less. On the other 

hand, as the a priori estimate error covariance Pk+1|k approaches zero the actual 

measurement yk+1 is trusted less and less, while the predicted measurement 1|ˆk kCx +  is 

trusted more and more. 

 

3.3.2 The Kalman Filter Algorithm 
 

The Kalman filter estimates a process by using a form of feedback 

control: the filter estimates the process state at some time and then obtains feedback in 

the form of (noisy) measurements. As such, the equations for the Kalman filter fall into 

two groups: time update equations and measurement update equations. The time 

update equations are responsible for projecting forward in time the current state and 

error covariance estimates to obtain the a priori estimates for the next time step. The 

measurement update equations are responsible for the feedback—i.e. for incorporating 

a new measurement into the a priori estimate to obtain an improved a posteriori 

estimate. 

 

The time update equations can also be thought of as predictor 

equations, while the measurement update equations can be thought of as corrector 

equations. Indeed the final estimation algorithm resembles that of a predictor-corrector 

algorithm for solving numerical problems as shown below in figure 3.6. 
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  Figure 3.6. The ongoing Kalman filter cycle. 
 

Figure 3.6 shows schematically the steps involved in the execution of 

the Kalman filter. The time update projects the current state estimate ahead in time. 

The measurement update adjusts the projected estimate by an actual measurement at 

that time. 

 

The specific equations for the time and measurement updates are presented below. 

The predictor equations can be described by the following two equations: 

 

(1) Project the state ahead: 

 

    1| |ˆ ˆk k k k k k kx A x B u+ = +  ,    (3.3.11) 

 

(2) Project the error covariance ahead: 

 

    1| |
T

k k k k k k kP A P A Q+ = +  .   (3.3.12) 

Compute Kalman gain 
 
Kk+1 = Pk+1|kCT

k+1(Ck+1Pk+1|kCT
k+1+Rk+1)-1

xk+1|k Pk+1|k
^

Compute error covariance 
 

Pk+1|k+1 = (I - Kk+1Ck+1)Pk+1|k 

Measurement update 
 

xk+1|k+1 = xk+1|k + Kk+1(yk+1 - Ck+1xk+1|k) 
^ ^ ^

Time update 
 

xk+1|k = Akxk|k + BkUk 
 

Pk+1|k = AkPk|kAT
k + Qk 

^ ^
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Again notice how the time update equations in equation (3.3.11) and (3.3.12) project 

the state and covariance estimates forward from time step k to step k+1. A and B are 

from equation (3.3.1), while Q is from equation (3.3.3). Initial conditions for the filter 

are discussed in the earlier references. 

The corrector equations can be presented by the following three equations:  
 

(1) Compute the Kalman gain: 
 

1
1 1| 1 1 1| 1 1( )T T

k k k k k k k k kK P C C P C R −
+ + + + + + += +  (3.3.13) 

 

(2) Update estimate with measurement 1+ky  

 

    1| 1 1| 1 1 1 1|ˆ ˆ ˆ( )k k k k k k k k kx x K y C x+ + + + + + += + −   (3.3.14) 

 

(3) Update the error covariance 
     

1| 1 1 1 1|( )k k k k k kP I K C P+ + + + += −    (3.3.15) 

 

The first task during the measurement update is to compute the 

Kalman gain, kK . Notice that the equation given here as equation (3.3.13) is the same 

as equation(3.3.10). The next step is to actually measure the process to obtain ky , and 

then to generate an a posteriori state estimate by incorporating the measurement as in 

equation (3.3.14). Again equation (3.3.14) is simply equation (3.3.9) repeated here for 

completeness. The final step is to obtain an a posteriori error covariance estimate via 

equation (3.3.15) 
 

After each time and measurement update pair, the process is repeated 

with the previous a posteriori estimates used to project or predict the new a priori 

estimates. This recursive nature is one of the very appealing features of the Kalman 

filter—it makes practical implementations much more feasible than (for example) an 

implementation of a Wiener filter (Brown and Hwang 1996) which is designed to 

operate on all of the data directly for each estimate. The Kalman filter instead 

recursively conditions the current estimates on all of the past measurements. 
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  Figure 3.7 is a flowchart of the process to by analysed by the Kalman 

filter. Data from time step k are conducted to calculate the state from time k+1. The 

value of xk+1 is turned to calculate a new value of the state at next step and transmitted 

to the measurement unit. The measurement value (yk+1) is sent to Kalman Filter to 

estimate  1| 1ˆk kx + + . The estimated value, 1| 1ˆk kx + +  is recurred to estimate the value of 

1| 1ˆk kx + + . These processes are repeated continuously.  

   

 

3.4 Generic Model Control (GMC) Algorithm  
 

  In many chemical industries, the development of new control 

technology is quite motivated by practical need. This is certainly true of classical 

automatic process control where the emergence of the chemical process industries, 

with its large production volume and complex of the processes, created automatic 

process control technology. In process control technology with in the field of control 

itself, the model-based control techniques have been already developed such as State 

Feedback Control (SFC), Dynamic Matrix Control (DMC), Generic Model Control 

(GMC), and etc.   

 

        Most of membrane processes are nonlinear processes because there are 

nonlinear terms such as multiple terms and/or square terms of variables in the 

equations. Because of nonlinear of the processes, the linear control algorithm is rarely 

applied to control some nonlinear process. According to preceding, Using linear 

control algorithm is not appropriate to control nonlinear processes so nonlinear 

control technique application should be better than. A simple nonlinear control 

technique, developed by Lee and Sullivan in 1988, is Generic Model Control (GMC) 

that can be applied to control many SISO (Single Input Single Output) processes. The 

GMC, a model-based control technique, requires mathematical model of process and 

measured data of controlled variables in its algorithm. GMC uses a model of the 

process in formulating the control law. The design framework is similar to other 

model based approaches such as Dahlin’s algorithm and IMC. However, rather than 

adopting a classical approach of comparing the trajectory of the process output against 

a desired trajectory, GMC defines the performance objective in terms of the time 
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derivatives of the process output, i.e. minimizing the difference between the desired 

derivative of the process output and the actual derivative. 

 

  A general mathematical model of process can be developed in 

relationship of state variables (x), manipulated variables (u), and time (t) as 

 

( , , )dx F x u t
dt

=     (3.4.1) 

 

( )y H x=            (3.4.2)                                

                                                                                            

where x is the vector of state variables, 

 u is the vector of manipulated variables, 

 y is the process output. 

 

  Good control performance will be given by combination of the 

proportional and derivative term of error.  The rule of manipulated variable selection 

is 

1 20
( ) ( )ft

y K e t K e t dt
•

= + ∫    (3.4.3) 

 

where   e(t) = (y* – y), 

   K1 ,K2 are tuning parameters of the GMC,  

and    y* is the set point of out put. 

 

From equation (3.4.3), the first term is used to control the process output to the 

desired target, y* and the second term provides zero offset response. 

 

By differentiate equation (3.4.2) becomes  

 

( )H x xy
x t

• ∂ ∂
= ⋅

∂ ∂
.    (3.4.4) 

 

Substituting equation (3.4.1) in equation (3.4.4) to obtain, 
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( ) ( , , )H xy F x u t
x

• ∂
= ⋅

∂
.    (3.4.5) 

 

From equation (3.4.3) and (3.4.5) the control algorithm can be written as following: 

 

1 20

( )( ) ( ) ( , , )ft H xK e t K e t dt F x u t
x

∂
+ = ⋅

∂∫ .  (3.4.6) 

  

For nonlinear system with relative degree one, we can handle in linear 

form as following equation 

 

    ( , , ) ( ) ( )F x u t F x G x u′= + ⋅ .   (3.4.7) 

 

Combinating equation (3.4.6) and equation (3.4.7), gives 

 

1 20

( )( ) ( ) [ ( ) ( ) ]ft H xK e t K e t dt F x G x u
x

∂ ′+ = ⋅ + ⋅
∂∫ .  (3.4.8) 

 

Mostly     ( ) 1H x
x

∂
=

∂
           

            

In general, the exact process model is rarely known, and an approximate model is 

introduced such that: 

 

1 20
( ) ( ) [ ( ) ( ) ]ft

K e t K e t dt F x G x u′+ = + ⋅∫ .  (3.4.9) 

 

  Considering equation (3.4.9), Ability of the GMC algorithm to handle 

the process depends on the accuracy of process model.  Because the integral term in 

the algorithm ensures that the controller is robust despite modeling error, inaccuracies 

introduced by this approximation will be compensated by the integral term.  

  

  The process control performance is specified by choosing the values of 

K1 and K2, with the appropriate values of these parameters the process response 

provides the reasonable desired trajectory. These values are related to the natural 
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dynamic response of the process. How well the system matches this performance 

index is governed by how closely the chosen model matches the plant behavior. By 

taking Laplace transform of the equation (3.4.3), transfer function becomes,  
  

* 2 2

2 1
2 1

y s
y s s

τξ
τ τξ

+
=

+ +
     (3.4.10) 

 

where   
2

1
K

τ =  and 1

22
K

K
ξ =    (3.4.11) 

 

This system does not yield the same response as a classical second-

order system (Stephanopoulos, 1984). However, similar plots to the classical second-

order response showing the normalized response of the system */y y  versus 

normalized time /t τ  with ξ  as a parameter can be produced and is shown in figure 

3.8. 

 

Figure 3.8. Generalized GMC profile specification 
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The design procedure can be specified as follows: 

1. Choose ξ  from figure 3.8 to obtain desired trajectory, 

2. Choose τ  from figure 3.8 to obtain appropriate time of response in 

relation to known or estimated plant speed of response, 

3.   Calculate K1 and K2 using these following equations: 

 

    1
2K ξ
τ

= ,     (3.4.12) 

 

2 2

1K
τ

= .     (3.4.13) 

     

The pattern of the Generic model control shows in the following 

figure.  

 

 

 

 

 

Figure 3.9. The pattern of the Generic model control 
 

Figure 3.9 represents the GMC algorithm. The value of manipulated 

variable, calculated by GMC, is obtained by the model of process and measured 

output data. Therefore, the most important of control, using GMC, is accurate model 

or at least reliable model is required.   

 

GMC has several advantages that make it a good framework for 

developing the process controllers: 

1. The process model derived from mass and energy balances appears 

directly in the control algorithm. 

2. The process model does not need to be linearized before use, allowing for 

the inherent nonlinearity of exothermic batch reactor operation to be taken 

into account. 
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3. The relationship between feedforward and feedback control is explicitly 

stated in the GMC algorithm. 
4. Controller tuning is straightforward and easy to understand. 

5. Finally and importantly, the GMC framework permits for developing a 

control algorithm that can be used for membrane separation process and 

therefore eliminates the need for a switching criterion between different 

algorithms; this should result in a much more robust control strategy. 

 

Since GMC is the advanced controller based on mathematical 

modeling of the process so that the uncertainty of the process parameter or variable 

causes the poor control performance. Thus, with these conditions the estimator is 

imperative procedure in control strategy to evaluate these values. 

 

 

3.5 GMC Coupled with Kalman filter 
 

  Since the uncertainty of the state variables and process parameters 

obtained with measurement or supposition, it affects to low process control 

performance. Hence, the estimation of these data is an important feature to efficient 

control operation of plants. The Kalman filter is then incorporated with GMC 

controller to estimate unknown parameter and variable.  

 

  

 

 

 

 

 

 

 

 

Figure 3.10. GMC integrated with Kalman filter 
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  As seen figure 3.10, the unknown parameter and variable are estimated 

based on the reconciled estimates of measurements by Kalman filter algorithm. The 

GMC controller further calculates the control action relied upon these estimates. Thus 

Kalman filter is an imperative adjunct in control strategy. If the estimated quantities 

and the reconciled estimates are close to the actual values, the controller will give 

good control performance with less offset or none. 



CHAPTER 4 
 

NANOFILTRATION FOR ORGANIC COMPONENT  

IN AQUEOUS SOLUTION 
 

 

Separation of molecules present in organic solvents by nanofiltration has a 

great potential in a wide range of industries from refining to fine chemical and 

pharmaceutical synthesis. Recently suitable organic solvent stable nanofiltration 

membranes have become available, and during the 1990s the first large-scale application 

of solvent NF was realised for lube oil solvent recovery. This research field is in its 

infancy, and is becoming an area of intensive study. However, there is still little 

information available on the processes controlling solvent fluxes and solute rejections 

during solvent nanofiltration. A series of papers in the last 2-3 years have presented 

measurements of solvent fluxes and solute rejections carried out using dead end filtration 

cells with pure solvents, and with dilute solutions (<1wt% solute). In actual applications 

however, solutes will typically be more concentrated (>5wt%) and phenomena such as 

concentration polarisation and osmotic pressure may contribute significantly to solvent 

flux, as they do in aqueous systems, which have been thoroughly studied.  

 

In order to improve our understanding of organic solvent nanofiltration 

phenomena, experiments were performed in a continuous cross flow rig (plate-and frame 

module). In the membrane separation systems, permeate fluxes and separation properties 

of the membranes were determined along with their dependence on process parameters 

such as concentration of solution , applied pressure, and fluid flow rate. 

 

This chapter is divided into three sections: mathematical model of a 

nanofiltration process, optimization study, and control study. Simulation results obtained 
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by simulating the optimization formulation and the formulation of a GMC controller are 

detailed in each section. 

 

 

4.1 Process and Mathematical Model 
 

This section describes the characteristics of membrane using in this study, 

the filtration process for tannic acid in aqueous solution and mathematical modeling. In 

this work, the membrane transport model is developed to predict the permeate flux 

decline in nanofiltration processes under unsteady-state conditions.  

 

4.1.1 Membrane and Process Description  
 

Model studies were performed with the aim of improving organic 

component separation from aqueous solution by nanofiltration process. In this work, a 

plate-and-and frame membrane system developed by Tu et al. (2001) is considered. The 

membranes tested in these studies were chosen from commercially available industrial 

products. The nanofiltration membranes used in the membrane separation tests were 

FilmTec NF-45 thin-film composite membranes (FilmTec Corporation, Dow Chemical 

Co., Midland MI). The important characteristics of the NF-45 membrane are summarized 

in table 4.1. 

 

Table 4.1. Characteristics of membrane using in this study 

 
Membrane Types NF-45 

Membrane material Polypiperazine amide 

Molecule weight cutoff (MWCO) ~ 200-300 Da 

PH Operating range 2-11 
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Table 4.1. Characteristics of membrane using in this study (continued) 
 

Membrane Types NF-45 

Contact angle 

      Clean membrane 

      Exposed to 30 mg/L tannic acid 

 

45o 

50.2o 

Maximum temperature, oc 45 

Maximum pressure, MPa 4.1 

Surface charge or surface potential (at pH of 6-9)

      Deionized distilled water 

      Tannic acid, 10 mg/L 

 

-22 mV to –33 mV 

-17 mV to –20 mV 

Water flux (at 1.0 Mpa, clean membrane), L/m2.h 56  
 

Source: Redondo and Lanari, 1997; Van der Bruggen et al., 1998; Sadr Ghayeni et al., 1998 

 
A plate-and-frame membrane system was employed in the membrane 

filtration experiments, which is illustrated in figure 4.1. The feed solution is pump from 

the feed tank to the stainless-steel plate-and-frame membranes cell, as shown in the 

figure. The system was maintained under high transmembrane pressures of 750-1,500 

kPa (110-220 psi). The feed solutions consisted of tannic acid at concentrations in the 

range of 0-10 mg/L. The feed is allowed to flow into the plate-and-frame cell, and the 

flow rate into the cell is controlled by the recirculation flow rate into the feed tank. 

Permeate and reject flow rates are continuously measured. The transmembrane pressure 

is carefully monitored and maintained at the desired levels. The temperature of the feed is 

maintained at 20 oc, and the feed flow velocity is varied from 0.4 cm/s to 1 cm/s. The 

permeate and the concentrates are collected at their corresponding outlets as shown in the 

figure. Samples are obtained from the permeates and the concentrates, and are analyzed 

for tannic acid concentrations to evaluate the solute rejection characteristics of the 

membrane.    
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  Membrane fouling is generally explained by the phenomena of boundary-

layer development and gel-layer formation, as previously discussed. However, the 

fouling potential of a membrane is greatly influenced by its surface characteristics. Three 

major factors are generally believed to contribute to the flux-decline phenomenon: (1) 

sorption of organic molecules on membrane surface, (2) chemical interaction between 

membrane surface and the organic molecules, and (3) electrostatistic interactions between 

membrane surface and the organic molecules. Physical adsorption organic molecules on 

the hydrophobic sites of the membrane surface is an important factor with refference to 

organic rejection, but its effect on permeate flux is highly dependent on whether polymer-

organic molecule interactions occur.      

 

 

 

 

 

 

  

 

 

Figure 4.1. Cross flow membrane experimental setup. 

 

Tannic acid is chosen for these tests to represent natural organic 

compounds present in surface and ground waters. It is a hydrophilic organic compound 

that contain both saccharide and aromatic acid components of significance in surface 

waters (Mallevialle et al., 1989). Tannic acid (C76H52O46, molecular weight = 1701.22) is 

a derivative of glucose in which five hydroxyl groups are substituted for digalic acids, 

and thus contains a large number of phenolic hydroxyl groups. The molecule structure of 

tannic acid is presented in figure 4.2. The charge phenolic groups in tannic acid and the 

carbonyl groups in the membrane polymer dictate the overall surface charge that showed 
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in figure 4.3. Under low pH conditions, the membrane surfaces charges, mainly 

contributed by the charged phenolic groups generated by hydrolysis of tannic acid. 

 

 

 

 
Figure 4.2. Approximate molecule structure of tannic acid. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3. Interactions between NF-45 polypeperazine amide membrane and tannic acid. 
 

4.1.2 Model Framework 
 

  Several key assumptions are made for the purposes of this study:  

1. The filtration process is batch membrane system. 

2. No solute adsorption in the membrane. 

3. No internal pore fouling. 

4. No effect of charge during mass transfer. 
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5. Thickness of the concentration polarization layer is assumed as a constant.  

6. Transmembrane pressure and temperature is supposed to be constant. 
7. The physical properties of solution are assumed to be constant. 

 

Mathematical modeling of a plate-and-frame membrane system as 

presented in figure 4.1 can be derived under the assumptions above as follows: 

 

0 (1 )
b m v bdC A J C

dt V r
=

−
     (4.1.1) 

 

0

m
v

Adr J
dt V

=       (4.1.2) 

 

where  Cb is the concentration in the bulk solution, 

  Cp is the concentration in the permeate solution, 

  Jv is the permeation flux,   

  r is the product recovery = permeate volume 100
initial feed volume

×  , 

  Am is the membrane surface area, 

  V0 is the initial feed volume. 

 

From equation (3.1.5) in chapter 3, The membrane permeate flux can be 

described by the fundamental relation 

 

  Flux, Jv = 
( )m g cp

P
R R R

π
µ

∆ − ∆
+ +

 ,    (4.1.3) 

 

where is ∆P the applied pressure, ∆π is total osmotic pressure between the bulk solution 

and permeate solution, (Rm + Rg + Rcp) denotes the total resistance, Rtotal of the system, 

and µ is the feed solution dynamic viscosity. 
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Differentiating equation (4.1.1) with respect to time, and regarding ∆P, µ, 

and, Rm as constants, the equation becomes 

 

2( ) ( ) 0g cpv
v v

dR dRdJ dP J J
dt dt dt dt

ππ µ ∆
∆ − ∆ × + × + + =   (4.1.4) 

 

where the osmotic pressure variation with time is given by the following equation base on 

virial coefficients (Haynes et al., 1992) 

 

2 3
2 3( ...)b b b

RT C B C B C
M

π∆ = + + + .   (4.1.5) 

 

The concentration polarization resistance Rcp referred to in equation (4.1.3) 

and (4.1.4) can be estimated by a modification of the power law suggested by several 

investigators (van Boxtel et al., 1991; Pradanos et al., 1992; Akay and Wakeman, 1993; 

Timmer etal., 1994) as shown below 

 

b c d e
cp b f

aR v k C C
δ

= .    (4.1.6) 

 

In the preceding equation, the concentration polarization resistance Rcp is considered as a 

time-dependent variable. Hence, differentiating the preceding relation with respect to 

time results in 

 

1cp b c d e b
b f

dR dCa dv k C C
dt dtδ

−=  .    (4.1.7) 

 

The progressive accumulation of solute on the membrane (gel-layer 

formation) is due to the difference between the net solute transport from the bulk solution 

to the membrane and solute back-diffusion from the membrane to the bulk solution (van 
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Boxtel et al., 1991; Timmer et al., 1994). The gel-layer resistance Rg variation with time 

can be written as: 

lng g
b v b

g g b

dR CkC J C
dt Cρ ρ

∈ ∈
= −     (4.1.8) 

 

where ∈  is the resistance per unit of the gel-layer thickness. 

 

4.1.3 Model parameters estimation 
 

As the compositions of the membrane are proprietary, and their material 

properties are not available, results from membrane filtration tests are employed for 

parameter estimation. These parameters included the following: the intrinsic membrane 

resistance, Rm, the osmotic pressure, ∆π, the mass transfer coefficient, k, and the specific 

gel layer resistance, ε. The parameter estimation is outlined in this section.  

 

  The membrane resistance, Rm, was measured by conducting membrane 

filtration tests employing deionized distilled water as the feed solution. The membrane 

resistance, Rm determined from equation (4.1.3), for NF-45 membrane were 6.412 x1013. 

Several investigators, including Nabetani and coworkers (1990), and Haynes et al. 

(1992), had observed that the osmotic pressure (∆π) could be expressed by the empirical 

relationship of equation (4.1.5). These works demonstrated the fact that osmotic pressure 

for tannic acid solutions were negligible in comparison with the applied transmembrane 

pressures. Therefore, the total driving force for the tannic acid with nanofiltration in the 

propose model was only represented by the transmembrane pressure. Equation (4.1.4) can 

be written as: 
2

( )g cpv v dR dRdJ J
dt P dt dt

µ
= − × +

∆
.    (4.1.9) 

 

  The constants a, b, c, d, and e can be estimated by multiple regression, 

where it is assumed that gel-layer resistance does not exist (Rg = 0) at the commencement 

of membrane operations (t = 0). From the membrane performance test results, the 
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constants a, b, c, d, and e for the NF-45 membrane were estimated as 3.80 x10-16, - 3.02, 

3.65, 3.18, -3.18, respectively. The parameters, namely k, ε/ρg ,and Cg were determine 

from the preceding relationship using experimental data. The estimated values of ε/ρg and 

Cg were 1.54 x1016 m/kg and 0.10 kg/m3, respectively. Determination of mass transfer 

coefficients was demonstrated in Appendix B. It must be noted that the membrane 

performance tests were conducted under laminar flow conditions, and so estimates of 

mass-transfer coefficients varied between 1.28 x10-6 and 1.68 x10-5 m/s, depending on 

fluid dynamic regimes and operation conditions. The input parameters for the proposed 

membrane transport model are listed in table 4.2. 

 

It must be noted that the parameters associated with concentration 

polarization and gel-layer formation cannot be estimated with reliability for complex 

solute-solvent and membrane systems from equations without using experimental data. 

Additionally, due to the complex structure of tannic acid, and the proprietary nature of 

commercial membrane materials, regression techniques represented the only well-

established, reliable, and accurate for estimating the resistances Rg and Rcp from 

experimental data.  

 

Table 4.2. Entry values for model parameters and operating condition 

 

Parameter Symbol Unit Value 

Feed solution concentration Cf kg/m3 2.50×10-3 

Gel-layer concentration Cg kg/m3 1.00×10-1 

Applied pressure ∆P Pa 1.50×106 

Diffusion coefficient D m2/s 2.64×10-10 

Mass-transfer coefficient k m/s 2.28×10-6 

Cross-flow rate v m/s 4.81×10-3 

Solution dynamic viscosity µ Pa•s 1.002×10-3 

Resistance of membrane Rm 1/m 6.41×1013 
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Table 4.2. Entry values for model parameters and operating condition (continued) 

 

Parameter Symbol Unit Value 

Resistance per unit of Lg / gel-layer density ε / ρg m/kg 1.54×1016 

Thickness of the conc. polarization layer δ m 2.0586×10-4

Initial solution volume V0 m3 1.50×10-3 

Membrane surface area Am m2 1.55×10-2 

Membrane cell cross-section area Ac m2 1.25×10-4 

a - 3.80×10-16 

b - -3.02 

c - 3.65 

d - 3.18 

Coefficient for resistance of  

concentration polarization layer 

e - -3.18 

 

The initial values for the proposed membrane transport model are listed in 

table 4.3. 

 

Table 4.3. Initial values in the nanofiltration process 

  

Parameter Symbol Unit Value 

Bulk concentration Cb kg/m3 2.50×10-3 

Permeate flux Jv m3/m2/min 1.78×10-5 

Rate of recovery r - 0 

Resistance of gel-layer Rg m-1 0 

Resistance of concentration polarization Rcp m-1 9.23×1012 

 

4.1.4 Open-loop behavior 
 

The simulation results presented in figure 4.4 illustrate the open-loop 

response for the nanofiltration process.  
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(a) Permeate flux and Bulk concentration of the tannic solution 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, Resistance of conc. polarization, and Total resistance 

 

Figure 4.4. Open-loop behavior of the nanofiltration process 
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The open-loop behavior shows the progressive permeate flux deterioration due to the 

resistance of the membrane, gel-layer, and concentration polarization. In these 

simulations, the operating conditions were identical; the transmembrane pressure was 

1,500 kPa, the cross flow rate was maintained at 4.81×10-3 m/s, and the duration of 

simulation was 10 hours. The parameters and the initial values are shown in table 4.2 and 

4.3, respectively.  

 

 

4.2 Optimization Study 
 

The mathematical models of a nanofiltration process indicate that an 

operating permeate flux is one of key factors of the membrane filtration process. In order 

to operate the nanofiltration process efficiently, optimaization framework is formulated to 

determine an optimal permeate flux of water in tannic acid solution studied by Shih-

Chieh Tu et al. (2001). An optimization goal is to determine an optimal permeate flux for 

the filtration process to maximize volume of permeate (water) with a semi-batch time.   

 

In this work, a Matlab program is written to solve the optimization 

problem by using a successive quadratic programming (SQP) algorithm in Matlab 

Optimization Toolbox as detailed in Appendix E. 

 

4.2.1 Optimization Formulation 
 

An off-line optimal control is solved with fixed batch time to calculate the 

maximum permeate flux of water for the nanofiltration process of tannic solution. The 

maximum permeate flux is applied as a trajectory set point of control strategies. The 

objective function is to maximize the water-permeate flux of tannic solution over the 

batch time intervals. The next step in formulating the optimization problem is to 

determine the constrains by considering the fundamental chemical and physical 

phenomena and physical limitations that influence the nanofiltration process behavior. 

For the case of nanofiltration process, the construction of the process mathematical model 
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and operating pressure of the nanofiltration membrane are constrains that limit the 

membrane separation. The objective function and the constraints can be written as 

following problem. 

 

max   f    =    Jv(tf)     (4.2.1) 

 

Subject to   5 65 10 4 10kP× ≤ ∆ ≤ ×   (inequality constrain) 

 

and    G xk + H uk – xk+1 = 0  (equality constrains)  

 

where    

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

df df df
dx dx dx
df df dfG
dx dx dx
df df df
dx dx dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 and   

1

2

3

df
du
dfH
du
df
du

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

. 

 

 

Matrices G and H are obtained by substitution the members of the matrices with the 

equation (4.1.1), (4.1.2), and (4.1.9). Determination of matrices G and H are detailed in 

Appendix C. 

 

 

Table 4.4. The optimal results 

 

Off-line optimal permeate flux (m3/m2/min)

Time intervals (min) 

 

Case 

0-200 201-400 401-600 

Summation 

of permeant 

volume (m3) 

%increasing 

of permeant 

volume 

1 6.5770×10-6 6.5770×10-6 6.5770×10-6 6.12170×10-5 22.57% 

2 8.6813×10-6 8.4212×10-6 8.3963×10-6 7.9114×10-5 58.40% 
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In this research, two cases of the off-line optimal control are carried out. 

One is an optimal flux set point using one control time interval (case 1). The other is an 

optimal flux profile using three fixed control intervals (case 2). The optimization results 

are shown in table 4.4 and figure 4.5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5. Permeate flux in open-loop compared with 

the optimal permeate fluxes of both cases. 
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trajectory optimal flux profile (case 2) gives an increase in the performance of filtration 

than using an optimal flux set point (case 1). 

 

 

4.3 Design and Study of Controllers 
 

  The purpose of this section is to design a control configuration for a 

nanofiltration membrane to track an optimal operating flux. In this work, a PID 

controller, a GMC controller, and a generic model control (GMC) coupled with a Kalman 

filter is implemented to track an optimal operating flux. The controlled variable and 

manipulated variable are permeate flux of water, Jv and applied pressure, ∆P, 

respectively. The volume of permeant (water) is employed as a measurement variable to 

track the controlled variable.    

 

4.3.1 PID Configuration 

 
  PID controller is a classical controller. The control strategy of PID does 

not need mathematical model of the process because it takes a control action to force the 

process response to the desired set point via the final control element based on the error 

(deviation of the process measurement from its desired set point value). The digital PID 

controller in the form of continuous equation is  

 

   
0

1 ( )( ) ( ) ( )
t

s c D
I

de tp t p K e t e t dt
dt

τ
τ

⎡ ⎤
= + + +⎢ ⎥

⎣ ⎦
∫ .  (4.3.1) 

 

Here the operating equation in the discrete form is 

 

( ) ( 1) [ ( ) ( 1)] ( ) [ ( ) 2 ( 1) ( 2)]D
c

I

tp k p k K e k e k e k e k e k e k
t

τ
τ

⎧ ⎫∆
= − + − − + + − − + −⎨ ⎬

∆⎩ ⎭
. (4.3.2) 
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where  p is controller output, 

   ps is controller output when e(t) is zero, 

  ∆t is the sampling period,  

  Kc is controller gain, 5.0×1011, 

  τI  is integral time constant, 21 minutes, 

    τD  is derivative time constant, 0.009 minutes. 

 

In this work, controlled variable is permeate flux and manipulated variable is applied 

pressure. The error in this studied process is a different between the optimal flux set 

point, Jv,sp and the permeate flux of the process, Jv. The manipulated equation of PID 

controller in this research is 

 

( ) ( 1) [ ( ) ( 1)] ( ) [ ( ) 2 ( 1) ( 2)]D
c

I

tP k P k K e k e k e k e k e k e k
t

τ
τ

⎧ ⎫∆
∆ = ∆ − + − − + + − − + −⎨ ⎬

∆⎩ ⎭
(4.3.3) 

 

where     e(k)  =  Jv,sp – Jv(k).  

 

4.3.2 Generic Model Control (GMC) Configuration 
 

  GMC controller is an automatic process controller. It is a good control 

strategy model-based controller because it can handle the nonlinear process to the 

trajectory set point and the nonlinear process model does not need to be linearized for this 

control scheme. Furthermore, in the situation where the controlled nonlinear processes 

are required to operate in a wide range condition, the linear controllers may give a poor 

control response because approximate linear models cannot be represented the effect of 

nonlinearities. According to the above reasons, GMC is chosen as a controller for the 

permeate flux control studied in this research. Two tunning parameters, K1 and K2 are 

used to obtain the desired shape of the trajectory response. The general form of the GMC 

algorithm can be written as: 
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                      1 2( ) ( )sp sp
dy K y y K y y dt
dt

= − + −∫    (4.3.4) 

 

  This may be further rearranged to give: 

   

  
1 2

0
[ ( )] [ ( )] ( )

( )
( )

k

sp sp
k

K y y k K y y k t F k
u k

G k
=

′− + − ∆ −
=

∑
  (4.3.5) 

 

where  y   is the current value of controlled variable, 

  ysp is a desired value of controlled variable, 

  u   is a manipulated variable, 

  and K1 and K2 are tuning parameters. 

 

  For permeate flux control of the nanofiltration process, the manipulated 

input of this tracking system is the inverse of applied pressure, ∆P-1 and the controlled 

variable is the permeate flux, Jv.  

 

To implement the GMC, a model of membrane permeatte flux relation is 

required; it gives the relation between the permeate flux (controlled variable) and the 

inverse of applied pressure (manipulated variable). Equation (4.1.9) is rearranged in form 

as: 

     

  2 1( )g cpv
v

dR dRdJ J
dt dt dt P

µ
⎡ ⎤

= − + ×⎢ ⎥ ∆⎣ ⎦
   (4.3.6) 

 

Rearranging the equation (4.3.6) as in the form of GMC algorithm, the 

following functions, F’(k) and G(k) can be defined  

 

    F’(k)  =   0      (4.3.7) 
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G(k)   = 2 ( ) ( )
( )( )g cp

v

R k R k
J k

t t
µ

∆ ∆
− +

∆ ∆
  (4.3.8) 

 

Replacing these equations in equation (4.3.5) and substituting water permeate flux, 

optimal permeate flux set point, and inverse of applied pressure for y, ysp, and u, 

respectively, the manipulated variable of the GMC in the discrete form can be written as: 

 

  
1 , 2 ,

1 0

2

[ ( )] [ ( )]
( ) ( ) ( )

( ) [ ]

k

v sp v v sp v
k

g cp
v

K J J k K J J k t
P k R k R k

J k
t t

µ

− =

− + − ∆
∆ =

∆ ∆
− × +

∆ ∆

∑
  (4.3.9) 

 

where ∆t is the sampling time of the controller. 

 

  In this work, the appropriate values of the tunning parameters of the 

GMC controller are K1 = 0.04 min-1 and K2 = 0.0025 min-2. 

 

4.3.3 GMC with Kalman Filter 
 

For membrane filtration performance, an estimator is applied with the 

model-based controller to estimate uncertainty parameters or unmeasurable variables. In 

the studied system, the filtration performance is depended on two physical parameters: 

mass-transfer coefficient, k and dynamic viscosity, µ.  The Kalman filter is employed to 

estimate these parameters. To use the Kalman filter as a parameter estimator, it is 

important to check observability of the system. The detail of observability checking is 

detailed in Appendix C.  

 

To estimate the deviated parameters, two equations of the process in state 

space form are applied to explain the relationship between the measurement variable and 

the estimated parameters. The mathematical model of the process can be written as 

following: 
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x Ax Bu= +&     (4.3.10) 

 

and the measurement equation is described as 

 

     y Cx= .    (4.3.11) 

 

In this research, the volume of permeate water, Vout is measured and used 

to estimate the entire state, x̂  = [ Jv   r   Cb   k  µ ] T and manipulated variable, u is ∆P-1. 

Volume of permeated water, Vout  that is selected as the measurement variable, y can be 

written the relationship with the permeate flux as following equation 

   

   Vout = Am Jv .    (4.3.12) 

 

The mathematical model of the nanofiltration process that is inserted into the Kalman 

filter algorithm is shown below 

 

f1 = 
2

1
1 2 3 ln gdv v b

b b v b
b

CdJ J dCz C z C J z C
dt P dt C

−⎡ ⎤
= + −⎢ ⎥∆ ⎣ ⎦

,  (4.3.13) 

 

f2 = 
0

m
v

Adr J
dt V

= ,      (4.3.14) 

 

f3 = 
0 (1 )

b m v bdC A J C
dt V r

=
−

,      (4.3.15) 

 

f4 = 0dk
dt

= ,       (4.3.16) 

 

f5 = 0d
dt
µ

= ,       (4.3.17) 
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where     

1

2

3 .

b c e
f

g

g

z ad v k C

z

z k

µ
δ
εµ
ρ

εµ
ρ

= −

= −

= −

 

 
 
From equation (4.3.13), (4.3.14), (4.3.15), (4.3.16), and (4.3.17), state space form of the 

system can be determined matrix A, B, and C as    

 

1 1 1 1 1

1 2 3 4 5

2 2 2 2 2

1 2 3 4 5

3 3 3 3 3

1 2 3 4 5

4 4 4 4 4

1 2 3 4 5

5 5 5 5 5

1 2 3 4 5

df df df df df
dx dx dx dx dx
df df df df df
dx dx dx dx dx
df df df df df
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dx dx dx dx dx
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dx dx dx dx dx
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⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
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⎢ ⎥
⎢ ⎥
⎢ ⎥
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,  

1

2

3

4

5

df
du
df
du
dfB
du
df
du
df
du

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

,  

 
 
and [ ]0 0 0 0mC A=  

 
 

where   21
1 2 3

1

2 3 2 ln gdb v b
b v

b

CC J dCdf z C z J z
dx P dt C

−⎡ ⎤
= + −⎢ ⎥∆ ⎣ ⎦

, 

1

2

0df
dx

= , 

2 2
11

1 2 32
3

( 1)( ) (1 ln )dv b b b
b v

b g

J d C dC Cdf dz C z J z
dx P dt C dt C

−
⎡ ⎤−

= + + + +⎢ ⎥
∆ ⎢ ⎥⎣ ⎦

, 

2
1 31

1
4

ln gdv b
b b

b

CJ dC zdf cz C C
dx P k dt k C

−⎡ ⎤
= −⎢ ⎥∆ ⎣ ⎦

, 
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2
11 1

5

dv b
b

J dCdf z C
dx P dtµ
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5
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0df
dx

= ,   5

4
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= , 

5

5

0df
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= , 

 

The flow chart diagram of the GMC controller coupled with Kalman filter 

is illustrated in figure 4.6. 

 

 

 

 

 

 

 

 

 

Figure 4.6. The estimation diagram of µ , k in the nanofiltration process 
 

 

  To determine mismatch parameters, µ and k via Kalman filter, the set of 

matrices, P, Q, and R is used to determine covariance of estimated values, process model 

values, and measurement value, respectively. The matrices can be written as following: 

 

1,1

2,2

3,3
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where  p1,1   =   7.00×102, p2,2   =   4.00×102, p3,3   =   4.00×102, 

  p4,4   =   2.32×109, p5,5   =   3.14×1010,  

  q1,1   =   3.10×103, q2,2   =   1.20×102, q3,3   =   1.20×102,  

  q4,4  =   2.20×103, q5,5   =   1.90×103,  

  and r1,1    =   5.00×103. 

 

4.3.4 Control Results 
   

In this section, the simulation of closed-loop behaviors is studied in two 

parts: nominal case and robustness tests. Nominal case is studied to compare the 

performance of PID and GMC controllers. Robustness cases are studied the control result 

of controllers when some process parameters have deviated from their nominal values.  

The GMC controller couple with the Kalman filter is developed to estimate parameter 

mismatch and handle the permeate flux to the trajectory set point.  In this study, IAE 

(Integral absolute error) and ISE (Integral square error) are used as the control 

performance index to compare each controller. 

  

Nominal Case 
 

  In this section, two cases of permeate flux control are carried out in table 

4.5. The simulation results are shown in figure 4.7- 4.10.  

 

Table 4.5. The comparison of IAE and ISE for nominal case 

 
Case Controller IAE ISE 

PID 0.4966 1.3542×10-6  

1 GMC 0.2416 1.2052×10-6 

PID 0.5614 1.3384×10-6  

2 GMC 0.1900 6.7457×10-7 
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(a) Permeate flux, Bulk conc. of the tannic solution and applied pressure 
 

 

 

 

 

 

 

 

 

 

 
 

(b)  Resistance of gel-layer, Resistance of conc. polarization, and Total resistance 

 

Figure 4.7. The controlled response for nominal case of the nanofiltration 

process using PID (case 1) 
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(a) Permeate flux, Bulk conc. of the tannic solution and applied pressure 
 

 

 

 

 

 

 

 

 

 
 

 

(b) Resistance of gel-layer, Resistance of conc. polarization, and Total resistance 

 

Figure 4.8.       The controlled response for nominal case of the nanofiltration 

process using GMC (case 1) 
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(a) Permeate flux, Bulk conc. of the tannic solution and applied pressure 
 

 

 

 

 

 

 

 

 

 

 
 

(b)  Resistance of gel-layer, Resistance of conc. polarization, and Total resistance 

 

Figure 4.9. The controlled response for nominal case of the nanofiltration  

process using PID (case 2) 
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(a) Permeate flux, Bulk conc. of the tannic solution and applied pressure 
 

 

 

 

 

 

 

 

 

 

 
 

(b)  Resistance of gel-layer, Resistance of conc. polarization, and Total resistance 

 

Figure 4.10. The controlled response for nominal case of the nanofiltration  

   process using GMC (case 2) 
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Robustness Tests 
 

  As seen the control results for the nominal case, The GMC controller is 

effective to handle the permeate flux to the trajectory set point. The GMC controller is a 

model-based controller so the mathematical model that represents the real process is 

required. However the developed model cannot represent all of the real process because 

of complexity of the real process or changing of some process physical properties. These 

are the main cause that determined parameters deviate from their real values. Changing of 

process parameters may be effected to the stability of the controlled process so it is 

important to examine the robustness of controllers with respect to changes in process 

parameters. The GMC controller coupled with Kalman filter, tuned for nominal case, is 

used to control the nanofiltration process where some of the conditions have changed 

from their nominal value. In this work, two process parameters: mass-transfer coefficient, 

k and solution dynamic viscosity, µ are set to deviate 20% from their nominal values. The 

robustness tests are divided into five cases as listed below: 

   

• Mass-transfer coefficient, k, increase 20% 

• Mass-transfer coefficient, k, decrease 20% 

• Solution dynamic viscosity, µ, increase 20% 

• Solution dynamic viscosity, µ, decrease 20% 

• Mass-transfer coefficient, k and Solution dynamic viscosity, µ, increase 20% 

 

  In this section, two cases of the optimal permeate flux set point are 

considered as following:  

 

Case 1: Tracking an optimal flux set point using one control time interval 

 

  In this case, parameter mismatches are studied by tracking an optimal flux 

set point using one control time interval. Table 4.6 shows the comparison of the control 

performance index in robustness tests for case 1. The simulation results are illustrated in 

figure 4.11 – 4.20. 
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Table 4.6. The comparison of IAE and ISE for robustness tests (case 1) 

 

 

GMC 

GMC coupled with 

Kalman filter 

 

Condition 

IAE ISE IAE ISE 

+20% k 0.25087 1.1844×10-6 0.2250 9.6251×10-7 

-20% k 0.2817 1.4702×10-6 0.2414 1.1012×10-6 

+20% µ 0.2498 1.1840×10-6 0.2208 9.3885×10-7 

-20% µ 0.2822 1.4732×10-6 0.2456 1.1306×10-6 

+20% k and +20% µ 0.2893 1.5476×10-6 0.2177 9.0658×10-7 

 

 

Case 2: Tracking an optimal flux profile using three fixed control intervals 

 

In this case, the control objective is to track an optimal flux profile when 

the mass-transfer coefficient and/or solution viscosity changes. Table 4.6 shows the 

comparison of the control performance index in robustness tests for case 2. The 

simulation results are illustrated in figure 4.21 – 4.30. 

 

Table 4.7. The comparison of IAE and ISE for robustness tests (case 2) 

 

 

GMC 

GMC coupled with 

Kalman filter 

 

Condition 

IAE ISE IAE ISE 

+20% k 0.1928 5.7681×10-7 0.1888 6.7088×10-7 

-20% k 0.2140 8.2054×10-7 0.2025 7.7243×10-7 

+20% µ 0.4151 7.7884×10-7 0.1833 6.4627×10-7 

-20% µ 0.2208 8.6686×10-7 0.2074 7.9991×10-7 

+20% k and +20% µ 0.4225 7.4961×10-7 0.2094 6.4606×10-7 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.11. The controlled response for +20% k change of the nanofiltration  

process using GMC (case 1) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.12. The controlled response for -20% k change of the nanofiltration  

process using GMC (case 1) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.13. The controlled response for +20% µ change of the nanofiltration  

process using GMC (case 1) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.14. The controlled response for -20% µ change of the nanofiltration  

process using GMC (case 1) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b)  Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.15. The controlled response for +20% k and +20% µ change of the 

nanofiltration process using GMC (case 1) 
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Figure 4.16. The controlled response and estimate of mass-transfer coefficient for 

+20% k change of the nanofiltration process using GMC coupled with 

Kalman filter (case 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.17. The controlled response and estimate of mass-transfer coefficient for         

-20% k change of the nanofiltration process using GMC coupled with 

Kalman filter (case 1) 
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Figure 4.18. The controlled response and estimate of solution viscosity for +20% µ 

change of the nanofiltration process using GMC coupled with Kalman 

filter (case 1) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.19. The controlled response and estimate of solution viscosity for -20% µ 

change of the nanofiltration process using GMC coupled with Kalman 

filter (case 1) 
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(a) Permeate flux and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Estimates of mass-transfer coefficient and solution viscosity 

 

Figure 4.20. The controlled response and estimates of parameters for +20% k and 

+20% µ change of the nanofiltration process using GMC coupled with 

Kalman filter (case 1) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.21. The controlled response for +20% k change of the nanofiltration  

process using GMC (case 2) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.22. The controlled response for -20% k change of the nanofiltration  

process using GMC (case 2) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.23. The controlled response for +20% µ change of the nanofiltration  

process using GMC (case 2) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.24. The controlled response for -20% µ change of the nanofiltration  

process using GMC (case 2) 
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(a) Permeate flux, bulk conc. of the tannic solution and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Resistance of gel-layer, resistance of conc. polarization, and total resistance 

 

Figure 4.25. The controlled response for +20% k and +20% µ change of the 

nanofiltration process using GMC (case 2) 
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Figure 4.26. The controlled response and estimate of mass-transfer coefficient for 

+20% k change of the nanofiltration process using GMC coupled with 

Kalman filter (case 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.27. The controlled response and estimate of mass-transfer coefficient for         

-20% k change of the nanofiltration process using GMC coupled with 

Kalman filter (case 2) 
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Figure 4.28. The controlled response and estimate of solution viscosity for +20% µ 

change of the nanofiltration process using GMC coupled with Kalman 

filter (case 2) 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.29. The controlled response and estimate of solution viscosity for -20% µ 

change of the nanofiltration process using GMC coupled with Kalman 

filter (case 2) 
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(a) Permeate flux and applied pressure 

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) Estimates of mass-transfer coefficient and solution viscosity 

 

Figure 4.30. The controlled response and estimates of parameters for +20% k and 

+20% µ change of the nanofiltration process using GMC coupled with 

Kalman filter (case 2) 
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4.3.5 Discussion 
 

Nominal Case  
  

Performances of PID and GMC controller are compared in this part. The 

studied process is nanofiltration which has highly nonlinear behavior as seen in its 

mathematical model. From the performance index in table 4.5 and the closed-loop 

responses in figure 4.7 – 4.10, the control results in nominal case show that the 

performance of the GMC controller is better than PID for both cases. The GMC 

controller can force the permeate flux to the desires set point but the PID controller 

cannot handle the studied process because the water permeate fluxes take long time to 

reach their set points in both cases. These can conclude that the GMC controller is more 

suitable than PID to use as a controller for track the nanofiltration process because the 

GMC calculates the control action based on the mathematical model and it directly 

inserts nonlinear process model into its controller output. PID controller uses the error to 

calculate the control action and equation of its manipulated variable is linear equation.    

 

Robustness Tests 
 

  In this part, the closed-loop responses of the nanofiltration process when 

the mass-transfer coefficient and/or solution viscosity have changed are studied. The 

GMC controller and GMC coupled with Kalman filter are developed to control the 

process. The comparisons of IAE and ISE for each robustness tests are shown in table 4.6 

for case1 and table 4.7 for case 2. 

 

Case 1: Tracking an optimal flux set point using one control time interval  

   

• Mass-transfer coefficient change 

The results given in figure 4.11-4.12 for the GMC and figure 4.16-4.17 for 

the GMC coupled with Kalman filter. The simulations show that the GMC controller has 

still provided control action similar to the nominal case. The GMC is robust to the mass-
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transfer coefficient changes. However, the Kalman filter improves the control 

performance of the controller when compared IAE of GMC with GMC coupled with 

Kalman filter because a reasonable estimation token from the filter decreases the 

deviation of the model and real process. 

 

• Solution viscosity change 

In the cases of solution viscosity changes, the results are given in figure 

4.13-4.14 for the GMC and figure 4.18-4.19 for the GMC coupled with Kalman filter. It 

can be seen that the estimations of the viscosity are approached to the nominal value. The 

GMC controller is still robust to the solution viscosity changes.  

 

• Mass-transfer coefficient and solution viscosity change 

Figure 4.15 and 4.20 show the control results for the case that combines 

the increment in the mass-transfer and the solution viscosity for the GMC and GMC 

coupled with Kalman filter, respectively. It can be seen from the figure 4.20 (b) that the 

Kalman filter gives reasonable estimations, As shown in figure 4.15 (a) and 4.20 (a), the 

controllers perform satisfactorily; the permeate flux is delivered to the desired set point. 

 

Case 2: Tracking an optimal flux profile using three fixed control intervals 

 

• Mass-transfer coefficient change 

The simulation results of mass-transfer coefficient change are illustrated in 

figure 4.21-4.22 for GMC and figure 4.26-4.27 for GMC coupled with Kalman filter. It 

can be seen that the Kalman filter gives the reasonable estimations of the mass-transfer 

coefficient. The GMC controller is still robust to the mass-transfer coefficient changes. 

 

• Solution viscosity change 

Figure 4.23-4.24 show the closed-loop responses of the process controlled 

with the GMC controller for the case that solution viscosity changes. Figure 4.23 

illustrates that the GMC controller can not handle the process when the solution viscosity 

has increased. While in the case of solution viscosity declination, the GMC controller is 
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still robustness. These can be explained by solution-diffusion model. The permeant 

dissolved in the membrane material and diffuse through the membrane down the 

concentration gradient. The permeant is separated because of the differences in the 

solubilities of the materials in the membrane and the differences in the rates at which the 

materials diffuse through the membrane. The solution viscosity increment is a cause of 

the permeant solubility declination and deterioration of permeant diffusion rate through 

the membrane. Figure 4.28-4.29 show the control response of  the process controlled with 

the GMC coupled with Kalman filter. The Kalman filter gives the reasonable estimations 

of the solubility viscosity and the controller gives the satisfied response for these cases.    

 

• Mass-transfer coefficient and solution viscosity change 

In the case of combines the increment in the mass-transfer and the solution 

viscosity, the results are given in figure 4.25 for the GMC and figure 4.30 for the GMC 

coupled with Kalman filter. Figure 4.25 illustrates that the GMC controller can not 

handle the process to the set point. The GMC controller is not robust for this case because 

of affect of solution viscosity increment. Figure 4.30 (b) shows the estimated values of 

the parameter mismatch. The Kalman filter gives the reasonable estimation for mass-

transfer coefficient but for the solution viscosity estimation, the filter gives the estimation 

value that deviate 0.62% from the nominal value. However, the GMC coupled with 

Kalman filter is still robust for this case. 

 

The GMC controller and GMC coupled with the Kalman filter are 

implementted to track either optimal permeate flux set point or optimal permeate flux 

profile of the nanofiltration process for tannic acid solution. From the simulation results, 

it can be summarized that the GMC controller coupled with the Kalman filter is robust 

for all the changes. The control response of the GMC controller is sensitive to the case 

that solution viscosity increases and mass-transfer coefficient and viscosity increase when 

it is applied to track the optimal permeate flux profile (case 2). For these robustness tests, 

The GMC controller coupled with the Kalman filter has been found to be effective and 

robust in tracking the nanofiltration process.  



CHAPTER 5 
 

CONCLUSIONS AND RECOMMENDATIONS 
 

 

In this work, the nanofiltration process for tannic acid solution has been 

studied. In summary, to achieve the desired successful control of the process, the system 

depends on the integration of three important ingredients: a reliable mathematical model, 

an optimal operating trajectory, and a suitable design of the control configuration. The 

GMC controller is a model-based control, which is a simple nonlinear control technique. 

For this reason, the GMC controller is chosen to track the studied process that has highly 

nonlinear behavior. Although the GMC can handle the studied process in nominal case, 

the developed controller has to have a good performance and robustness. In this research, 

the Kalman filter is applied to improve the performance and robustness of the GMC 

controller when the operating condition has changed. 

 

 

5.1 Conclusions 
 

From studying of the nanofiltration process, the filtration performance 

index is permeate flux. A serious limitation in such membrane filtration process is flux 

declination. The factors that have impact on the progressive permeate flux deterioration 

are membrane resistance, gel-layer resistance, and concentration polarization resistance. 

To improve the performance of the nanofiltration process, the GMC is develop to track 

the permeate flux to the optimal trajectory set point. Due to the significant of the 

operating condition, the optimization framework is formulated to determine the optimal 

permeate flux. The obtained optimal permeate flux is used as the set point for the 

nanofiltration membrane in the control study. In this work, the determination of off-line 

optimal flux control is studied in two cases. One is an optimal flux set point using one 

time interval (case 1). The other is an optimal flux set point using three fixed control 



 95

intervals (case 2). From the optimization study it can be concluded that the use of an 

optimal permeate flux profile give an increase in the performance of filtration rather than 

an optimal permeate flux set point.  

 

In the control study, A GMC controller and a GMC coupled with Kalman 

filter are implemented to track the permeate flux. Both optimal flux in case 1 and case 2 

are used as the trajectory set point. From the study it can be conclude that: 

• For nominal case, the GMC controller performs satisfactorily in tracking 

both optimal flux set point and optimal flux profile of the nanofiltration process. 

• The robustness of the controllers is evaluated by changing the process 

parameters such as mass-transfer coefficient and solution viscosity. It has been found that 

the GMC controller can handle the process for all cases of parameter mismatch except 

tracking the optimal flux profile in the case of solution viscosity increase and case of 

combines the increment in mass-transfer and solution viscosity. While the GMC coupled 

with Kalman filter is robust for all cases of parameter change because the filter gives the 

reasonable estimations of the parameter mismatch. 

 

 

5.2 Recommendations 
 

To explain the behavior of nanofiltration process, model in partial 

differential equation (PDE) is more accurate and reliable than ordinary differential 

equation (ODE) although developed mathematical model of the nanofiltration process 

which is in the term of ODE gives the satisfactorily results. In this research, researcher 

keeps off PDE to study the behavior of the process because the limitation of computer 

and software, solving of PDE spend long time in calculation. 
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APPENDICES 

 



APPENDIX A 
 

MATHEMATICAL MODEL DEVELOPMENT 
 

 

For the incorporation of the transport model equation in a batch membrane 

system, the volume and concentration changes as a function of time must be included. 

The model is based on the general material balance equation, given as; 

 

Accumulation = Input – Output +Generation – Consumption. (A.1) 

 

For a batch system, a solute material balance results in 

 

( ) 0 0 0b
m v p

d C V A J C
dt

= − + −     (A.2) 

 

b
b m v p

dC dVV C A J C
dt dt

+ = −     (A.3) 

 

m v p b
b

dVA J C CdC dt
dt V

− −
= .    (A.4) 

 

The solution volume in the membrane unit at any time is given as: 

 

     0 (1 )V V r= − ,     (A.5) 

 

where V0  is the initial feed volume. The rate of water recovery from the cell can be 

presented as: 

     
0

m
v

Adr J
dt V

=  .     (A.6) 
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Substituting into equation (A.4), it follows that: 

 

     
0

( )
(1 )

m v b pb A J C CdC
dt V r

−
=

−
.    (A.7) 

 

For the membrane filtration process, bulk concentration, Cb is very greater than 

concentration of species in the permeate side of membrane, Cp. Equation (A.7) can be 

written as following: 

     

0 (1 )
b m v bdC A J C

dt V r
=

−
.     (A.8) 

 



APPENDIX B 
 

MASS-TRANSFER COEFFICIENT 

DETERMINATION 
 

 

The mass-transfer coefficient, k can be calculated from Sherwood 

correlations of the form used by several researchers (Bird et al., 1960; van den Berg et al., 

1989; Pradanos et al., 1992, 1995; von Meien and Nobrega, 1994): 

 

/ ,q r
hSh kd D pRe Sc= =    (B.1) 

 

where dh is the hydraulic diameter of the system,  

D  is the diffusion coefficient,   

Re is the Reynold number (Re = ρvdh /µ), 

Sc is the Schmidt number (Sc = µ / ρD), 

and p, q, and r are constants depending on the hydraulic regimes.  

 

Aqueous diffusion coefficients of the natural organic mater in dilute solution can be 

estimated by the Stokes-Einstein equation (Cornel et al., 1986). The diffusion coefficient 

evaluated for tannic acid is 2.635 × 10-10 m2/s. 

 

Wiley et al. (1985) and van den Berg et al. (1989) used the following 

correlations for membrane filtration systems operating under laminar flow conditions 

( Re ≤ 2,000). 

   
* 0.33 0.33: 0.664 ( / )0.5

hL L Sh Re Sc d L< =   (B.2) 

* 0.33 0.33: 1.86 ( / )0.33
hL L Sh Re Sc d L> = ,  (B.3) 
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where L and L* are length of a membrane module and length of the entry region in the 

module, respectively.  The entry length L* is given by the relation  

 

L* = 0.029dhRe.    (B.4)  

 

These correlations establish the dependence of the mass-transfer coefficient on fluid 

dynamics of the system and the solute/solvent characteristics for positions represented by 

L less than or greater than the characteristics entry length L* required for fully developed 

flow. While the Reynolds number characterizes the fluid flow and momentum transport 

along the membrane surface in relation to inertial forces, the Schmidt number describes 

the diffusion transport of solute (foulant) molecules to and from the membrane surface 

under these conditions.  
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In this study, the state of equations is 

 

f1 = 
2

1
1 2 3 ln gdv v b

b b v b
b

CdJ J dCc C c C J c C
dt P dt C

−⎡ ⎤
= + −⎢ ⎥∆ ⎣ ⎦

,  (C.7) 

 

f2 = 
0

m
v

Adr J
dt V

= ,      (C.8) 

 

f3 = 
0 (1 )

b m v bdC A J C
dt V r

=
−

      (C.9) 

 

where     

1

2

3 .

b c e
f

g

g

c ad v k C

c

c k

µ
δ
εµ
ρ

εµ
ρ

= −

= −

= −

 

 

State variables, xn are Jv, r, and Cb and manipulated variable, u is ∆P-1. Volume of 

permeated water, Vout is selected as the measurement variable, y that can be written 

the relationship with the permeate flux as following equation 

     

    Vout = AmJv .     (C.10) 

 

From equation (C.4), (C.5), (C.7), (C.8), and (C.9), state space form of the system can 

be determined matrix A, B, and C as    

 

1 1 1

1 2 3

2 2 2

1 2 3

3 3 3

1 2 3

df df df
dx dx dx
df df dfA
dx dx dx
df df df
dx dx dx

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

, 

1

2

3

df
du
dfB
du
df
du

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

,     and [ ]0 0mC A=  
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where   21
1 2 3

1

2 3 2 ln gdb v b
b v

b

CC J dCdf c C c J c
dx P dt C

−⎡ ⎤
= + −⎢ ⎥∆ ⎣ ⎦

, 

1

2

0df
dx

= , 

2 2
11

1 2 32
3

( 1)( ) (1 ln )dv b b b
b v

b g

J d C dC Cdf dc C c J c
dx P dt C dt C

−
⎡ ⎤−

= + + + +⎢ ⎥
∆ ⎢ ⎥⎣ ⎦

, 

  2

1 0

mAdf
dx V

= , 

  2

2

0df
dx

= , 

2

3

0df
dx

= , 

3

1 0 (1 )
m bdf A C

dx V r
=

−
, 

  3
2

2 0 (1 )
m v bdf A J C

dx V r
=

−
, 

3

3 0 (1 )
m vdf A J

dx V r
=

−
, 

2 11
1 2 3 ln gd b

v b b v b
b

CdCdf J c C c C J c C
du dt C

−⎡ ⎤
= + −⎢ ⎥

⎣ ⎦
, 

2 0df
du

= , 

and  3 0df
du

= . 

 

Substituting all variables in matrix A, B, and C with the steady state values, the 

determination of the system checking via MATLAB program can be summarized as 

following: 

1. The poles of this system are on left hand side of complex plane. This can 

be concludes that the open-loop of system is stable. 

2. Determinant of the controllability matrix is not equal to zero (The rank of 

the matrix is full rank.). This can be conclude that the control variable can 

be controlled by the selected manipulate variable.  
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3. Determinant of the observability matrix is not equal to zero (The rank of 

the matrix is full rank.). This can be concluded that the measurement 

variable contains sufficient information to completely identify the state 

variable. 



APPENDIX D 
 

 INTEGRAL ERROR CRITERIA 
 

 

  Integral error measures indicate the cumulative deviation of the 

controlled variable from its set point during the transient response. The following 

formulations of the integral can be proposed. 

 

 

 

 

 

 

 

 

 

Figure D1. Definition of error integrals 

 

Integral absolute error (IAE) 

 
0

( )IAE e t dt
∞

= ∫  (D.1) 

 

Integral square error (ISE) 

 2

0

( )ISE e t dt
∞

= ∫  (D.2) 

 

Integral of time-weighted absolute error (ITAE) 

 
0

( )ITAE e t tdt
∞

= ∫  (D.3) 

 

where e is the usual error (i.e., set point – control variable).  

t 

e(t) 

0 
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Each of the three figures of merit given by equation (D.1), (D.2), and 

(D.3) have different purposes. The ISE will penalize (i.e., increase the value of ISE) the 

response that has large errors, which usually occur at the beginning of a response, 

because the error is squared. The ITAE will penalize a response, which has errors that 

persist for a long time. The IAE will be less severe in penalizing a response for large 

errors and treat all errors (large and small) in a uniform manner. The ISE figure of merit 

is often used in optimal control theory because it can be used more easily in mathematical 

operations (for example differentiation) than the figures of merit, which use the absolute 

value of error. In applying the tuning rules to be discussed in the next section, these 

figures of merit can be used in comparing responses that are obtained with different 

tuning rules. 



APPENDIX E 
 

SUCCESSIVE QUADRATIC PROGRAMMING (SQP) 
 

 

Successive quadratic programming (SQP) method solved a sequence of 

quadratic programming approximation to nonlinear programming problem. Quadratic 

programs (QPs) have a quadratic objective function and linear constraints, and there exist 

efficient procedures for solving them 

 

Problem formulation with equality constraints  

To derive SQP, we again consider a general NLP 

   
: ( )
: ( )

Minimize f x
Subjectto g x b=

    (E.1) 

The Lagrangian function for this problem is 

( , ) ( ) ( ( ) )TL x f x g x bλ λ= + −     (E.2) 

and the KTC are 

  
1

( ) ( ) 0
m

x i i
i

L f x g xλ
=

∇ = ∇ + ∇ =∑    (E.3) 

and      ( )g x b=       (E.4) 

The equation (E.1)-(E.2) is a set of ( n m+ ) nonlinear equations in the n  unknowns x  

and m  unknown multipliersλ . Linearization of (E.2) and (E.3) with respect to x and λ  

 

2 0T
x xL L x g λ∇ −∇ ∆ +∇ ∆ =     (E.5) 
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0g g x+∇ ∆ =      (E.6) 

For problem with only equality constraints, we could simply solve the 

linear equations (E.2)-(E.3). To accommodate both equalities and inequality, an 

alternative viewpoint is useful. Consider the quadratic programming problem 

21min :
2

: 0

T T
ximize L x x L x

Subject to g g x

∇ ∆ + ∆ ∇ ∆

+∇ ∆ =
   (E.7) 

If we call the Lagrange mutipliers for (E.7) λ∆ , the Lagrangian for the 

QP is  

2
1

1
( , ) ( )

2
T T T

xL x L x x L x g g xλ λ∆ ∆ = ∇ ∆ + ∆ ∇ ∆ + ∆ + ∇ ∆   (E.8) 

 

Inclusion of the both equality and inequality constraints 

When the original problem has a mixture of equalities and inequalities, it 

can be transformed into a problem with equalities and simple bounds by adding slacks, so 

the problem has an objective function f , equalities (E.1), and bounds 

I x u≤ ≤      (E.9) 

This system is the KTC for the QP in (E.6) with the additional bound 

constraints  

I x x u≤ + ∆ ≤      (E.10) 

Here the QP sub problem now has both equality constraints and must be 

solved by some iterative QP algorithm. 
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The approximate Hessian 

Solving a QP with a positive-definite Hessian is fairly easy. Several good 

presented in (E.6) and (E.10) is 2 ( , )xL x λ∇ , and this matrix need not be positive-definite, 

even if ( , )x λ is an optimal point. In addition, to compute 2
xL∇ , one must compute 

second derivative of all problem functions. Both difficulties are eliminate by replacing 
2
xL∇  by positive-definite quasi-Newton approximate B , which is updated using only 

values of L and xL∇ . Most SQP algorithms use Powell’s modification of BFGS update. 

Hence the QP subproblem becomes 

( , )QP x B  

1min :
2

: ,

T Timize L x x B x

Subject to g x g I x x u

∇ ∆ + ∆ ∆

∇ ∆ = − ≤ + ∆ ≤
  (B.11) 

 

The SQP line search  

TO arrive at a reliable algorithm, one more difficulty must be over come. 

Newton and quasi-Newton method may not converge if a step of 1.0 is used at each step. 

Both trust region and time search versions of SQP have been developed that converge 

reliability. A widely used line search strategy is to use the 1L exact penalty 

function ( , )P x w . In a line search SQP algorithm, ( , )P x w is used only to determine the 

step size along the direction determined by the QP subproblem ( , )QP x B . The 1L  exact 

penalty function for the NLP problem is  

1
( , ) ( ) | ( ) |

m

i i i
i

P x w f x w g x b
=

= + −∑    (E.12) 



 116

where a separate penalty weight iw is used for each constraint. The SQP 

line search chooses a positive step size α  to find an approximate minimum of 

( ) ( , )r P x x wα α= + ∆     (E.13) 

A typical line search algorithm, which uses the derivative of ( )r α  

evaluated at 0α = denote by (0)r′ , is 

1. α ←1 

2. if  ( ) (0) 0.1 (0)r r rα α ′< −       (E.14) 

stop and return the current α  value 

3. Let 1α be the unique minimum of the convex quadratic function that 

passes through (0)r , (0)r′ and ( )r α . Take the new estimate of α  as  

α ←max (0.1α , 1α )    (E.15) 

4. Go to step 2. 

 

SQP algorithm  

 Base on this line search and the QP subproblem ( , )QP x B  

1. Initialize: 0B I← , 0x x← , 0k ←  

2. Solved the QP subproblem ( , )QP x B , yieldiging a solution kx∆  and Langrange 

multiplier estimates kλ  

3. Update the penalty weights in penalty function 

4. Apply the line search algorithm, yielding a positive step size kα  
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5. 1 1,k k k k k kx x xα λ λ+ += + ∆ =  

6. Evaluated all problem function and their gradients at new point. Update matrix 
kB   

7. Replace k by k+1, and go to step 2 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure E.1. Flowchart of SQP algorithm 

Initialize: k = 0, B0, x0

Calculated kx∆  and kλ  from 
subproblem ( , )QP x B  

 

Update penalty weights

Calculate step length, kα  

Let, 1 1,k k k k k kx x xα λ λ+ += + ∆ =  

Update BK

k=k+1
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